
Andersen, Nico; Zehner, Fabian
shinyReCoR. A shiny application for automatically coding text responses
using R
Psych 3 (2021) 3, S. 422-446, 10.3390/psych3030030

Quellenangabe/ Reference:
Andersen, Nico; Zehner, Fabian: shinyReCoR. A shiny application for automatically coding text
responses using R - In: Psych 3 (2021) 3, S. 422-446 - URN: urn:nbn:de:0111-dipfdocs-271737 - DOI:
10.25657/02:27173; 10.3390/psych3030030

https://nbn-resolving.org/urn:nbn:de:0111-dipfdocs-271737
https://doi.org/10.25657/02:27173

Nutzungsbedingungen Terms of use

Dieses Dokument steht unter folgender Creative Commons-Lizenz:
http://creativecommons.org/licenses/by/4.0/deed.de - Sie dürfen das Werk
bzw. den Inhalt vervielfältigen, verbreiten und öffentlich zugänglich
machen sowie Abwandlungen und Bearbeitungen des Werkes bzw. Inhaltes
anfertigen, solange Sie den Namen des Autors/Rechteinhabers in der von ihm
festgelegten Weise nennen.

This document is published under following Creative Commons-License:
http://creativecommons.org/licenses/by/4.0/deed.en - You may copy, distribute
and render this document accessible, make adaptations of this work or its
contents accessible to the public as long as you attribute the work in the
manner specified by the author or licensor.

Mit der Verwendung dieses Dokuments erkennen Sie die
Nutzungsbedingungen an.

By using this particular document, you accept the above-stated conditions of
use.

Kontakt / Contact:

DIPF | Leibniz-Institut für
Bildungsforschung und Bildungsinformation
Frankfurter Forschungsbibliothek
publikationen@dipf.de
www.dipfdocs.de

https://nbn-resolving.org/urn:nbn:de:0111-dipfdocs-271737
https://doi.org/10.25657/02:27173

Article

shinyReCoR: A Shiny Application for Automatically Coding
Text Responses Using R

Nico Andersen 1,* and Fabian Zehner 1,2

����������
�������

Citation: Andersen, N.; Zehner, F.

shinyReCoR: A Shiny Application for

Automatically Coding Text Responses

Using R. Psych 2021, 3, 422–446.

https://doi.org/10.3390/

psych3030030

Academic Editors:

Alexander Robitzsch and Gongjun Xu

Received: 17 June 2021

Accepted: 12 August 2021

Published: 16 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Leibniz Institute for Research and Information in Education (DIPF), 60323 Frankfurt, Germany;
Fabian.Zehner@dipf.de

2 Centre for International Student Assessment (ZIB), 60323 Frankfurt, Germany
* Correspondence: andersen.nico@dipf.de

Abstract: In this paper, we introduce shinyReCoR: a new app that utilizes a cluster-based method for
automatically coding open-ended text responses. Reliable coding of text responses from educational
or psychological assessments requires substantial organizational and human effort. The coding
of natural language in responses to tests depends on the texts’ complexity, corresponding coding
guides, and the guides’ quality. Manual coding is thus not only expensive but also error-prone.
With shinyReCoR, we provide a more efficient alternative. The use of natural language processing
makes texts utilizable for statistical methods. shinyReCoR is a Shiny app deployed as an R-package
that allows users with varying technical affinity to create automatic response classifiers through
a graphical user interface based on annotated data. The present paper describes the underlying
methodology, including machine learning, as well as peculiarities of the processing of language in
the assessment context. The app guides users through the workflow with steps like text corpus
compilation, semantic space building, preprocessing of the text data, and clustering. Users can adjust
each step according to their needs. Finally, users are provided with an automatic response classifier,
which can be evaluated and tested within the process.

Keywords: automatic response coding; R; shiny; natural language processing; machine learning;
visualization; assessment; rating process

1. Introduction

Text responses are often integrated into assessments, especially in the social sciences.
In comparison to the straightforward evaluation of multiple-choice tasks, text responses
require the recognition and interpretation of linguistic relationships during their evaluation.
Perceiving [1] and understanding [1–3] written text is a cognitively complex task, which is
additionally affected by cognitive biases [4], for example, due to prior information [5,6].
Several challenges may arise during the evaluation process and affect the coding result,
ranging from illegible words in hand-written assessments to comprehension problems
across the written text. Evaluation sessions require steady attention, which can wane
during longer sessions. Thus, the rater has to make responsible decisions while being
affected by heuristics and monotonous work [7]. Overall, we can summarize that rating
is a demanding procedure and is costly due to the training and required time for the
personnel involved.

In the present paper, we introduce our R-based software shinyReCoR, which makes
it possible to train an automatic response coder to code answers quickly, reliably, and
completely automatically. We describe the method behind shinyReCoR, which augments
the automatic text response coder (ReCo) [8] and comprises a pipeline of different natural
language processing and machine learning methods. We also explain the employed tech-
niques and how they have been included in the app, the specificity behind them, alternative
processing capabilities, and computational aspects. Since the core method was developed
and tested with German short text responses from a large-scale assessment, its focus is

Psych 2021, 3, 422–446. https://doi.org/10.3390/psych3030030 https://www.mdpi.com/journal/psych

https://www.mdpi.com/journal/psych
https://www.mdpi.com
https://orcid.org/0000-0002-8333-9071
https://orcid.org/0000-0003-3512-1403
https://doi.org/10.3390/psych3030030
https://doi.org/10.3390/psych3030030
https://doi.org/10.3390/psych3030030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/psych3030030
https://www.mdpi.com/journal/psych
https://www.mdpi.com/article/10.3390/psych3030030?type=check_update&version=2

Psych 2021, 3 423

on German. However, with the employed techniques being partly language-agnostic
and otherwise widely available for many languages, the app also allows coding of other
languages (currently, English).

The method was developed for coding short text responses. The length of the answers
varies, depending on the task, between one word and several sentences. For the presented
method, there is no such requirement as an optimal answer length, as other variables
also play a crucial role for response complexity. Less complex tasks usually evoke shorter
responses, for example when only text parts of the task have to be recalled, while more
complex tasks tend to generate longer answers, which may also contain a greater variety
of words. This can lead to poorer automatic coding quality [9]. However, it has already
been shown [8] that the method also works with linguistically more diverse responses.
Nevertheless, this is an empirical question to be answered for each data set.

With the development of the app, we not only aimed to create a freely available
program that codes responses, we also intended to meet high scientific requirements
and grant maximum transparency, flexibility, and usability. To achieve these goals, we
decided to develop an R-based app, which can be controlled via a graphical user interface
without programming knowledge. Furthermore, the procedure primarily involves only
baseline techniques that are available for a large range of languages. The whole process
can be controlled easily and is user-friendly, while all computations are carried out in the
background. The present article illuminates which calculations the app runs in the backend
as well as which capabilities users find in the frontend.

The coding used to train the model is manually assigned by humans, which can
be regarded as a gold standard for training and evaluation models. Possible issues re-
garding human work as the ground truth are discussed in the article. It can be noted,
though, that the first part of the procedure is unsupervised and carried out without human
codes. In such a case, the app can categorize text data into response types according to
responses’ semantics.

Finally, let us define the crucial terminology in this paper.

• We use the term coding, which describes the process of assigning a nominal class to a
response (e.g., correct or incorrect). Since a deterministic clustering process plays a
central role in the (automatic) coding process, we focus on the term coding instead of
scoring, which is more commonly used when data are classified at an ordinal or metric
scale. The classification of ordinal data is not excluded by the described method, but
it is restricted according to the deterministic approach.

• Moreover, we use the terms classes or labels, which appear more often in the context
of machine learning applications.

• In supervised learning, a model is trained to separate data based on their features
and assigned labels, whereas in unsupervised learning, such as clustering, data are
organized based only on their features.

• The term hyperparameter refers to model parameters that are specified for method-
ological components, but not optimized during training. For example, the number
of clusters, k, which has to be predefined a-priori, can optimize both supervised and
unsupervised models.

The following part of the text refers to the current version of the app, shinyReCoR v0.2.0.

2. Method

In order to provide an overview of the entire process, this section first outlines the
different components of the method (see Figure 1). Second, the subsequent subsections
explain each step in more detail.

Psych 2021, 3 424Psych 2021, 3 424

Figure 1. Overview of the response analysis pipeline for creating and applying a cluster model for
automatic response coding.

The overall aim of the process is to use response data and an external text corpus to
train an item-specific cluster model for automatic coding in order to be able to code unseen
responses to the same item automatically. Training data, as well as a semantic space, are
needed to depict the semantics of the different response types as representatively as pos-
sible. The semantic space itself is not part of the training data but a vector space model
representing semantic similarities of words from an external text corpus. A minimum re-
quirement of the number of responses cannot be specified since the success of clustering
depends on several factors, such as the complexity of the responses, the response lengths,
the characteristics and complexity of the language, the number of possible codes, and the
semantic delimitation of the response categories, to name just a few. The method was pre-
dominantly tested with data from a large-scale assessment (see [8,10]). Large-scale assess-
ments, on the one hand, satisfy requirements such as data volume (n > 1000), and, on the
other hand, they constitute an attractive field of application. Nevertheless, applicability
for smaller data sets is not precluded and can be easily tested and evaluated in the app.

The first step of the response analysis process, according to the original paper [8]
(Figure 1), is building or choosing a semantic space from a text corpus (1). In simple terms,
semantic spaces are a set of n-dimensional vectors, where each vector represents the se-
mantics of a word as a set of numerical values. For example, the word ‘dog’ is represented
by the vector 𝑑𝑜𝑔 ⃗ = 0.1 0.5 0.3 . We first assume that we have ready-made vector
spaces, e.g., built with Latent Semantic Analysis, covering the relevant words in a target
language as vector representations. The set of those words can also be called the diction-
ary. Numerical representations of words allow measuring their similarity with mathemat-
ical operations, for example, using the cosine distance between two vectors. The responses
are separated into single words (tokens; 2) and can be, as well as the text corpus, prepro-
cessed to normalize the text and focus on relevant semantics by removing supposedly
unnecessary information. Additionally, automatic spelling correction can optimize the
quality of the response texts. Words are transferred further into their numerical represen-
tations by assigning word vectors from the previously formed semantic space to all re-
sponse words. All word vectors within a response must be averaged across the n dimen-
sions to generate a single response vector (3). Like measuring the similarity between word
vectors, the distance or angle between two response vectors can represent their semantic
similarity. Due to their numerical representation, the responses can be clustered in the
next step. Response types are formed by the unsupervised process, with responses being
assigned to clusters according to their semantic similarity (4). The cluster information of
the responses now makes it possible to assign new responses to a given response cluster
(5). The new response is then automatically coded according to the code distribution of
the responses within the cluster. In machine learning methods, it is common to separate
the data set and then use one part to train the model and the other part(s) to evaluate the

Figure 1. Overview of the response analysis pipeline for creating and applying a cluster model for automatic response coding.

The overall aim of the process is to use response data and an external text corpus
to train an item-specific cluster model for automatic coding in order to be able to code
unseen responses to the same item automatically. Training data, as well as a semantic space,
are needed to depict the semantics of the different response types as representatively as
possible. The semantic space itself is not part of the training data but a vector space model
representing semantic similarities of words from an external text corpus. A minimum
requirement of the number of responses cannot be specified since the success of clustering
depends on several factors, such as the complexity of the responses, the response lengths,
the characteristics and complexity of the language, the number of possible codes, and the
semantic delimitation of the response categories, to name just a few. The method was
predominantly tested with data from a large-scale assessment (see [8,10]). Large-scale
assessments, on the one hand, satisfy requirements such as data volume (n > 1000), and, on
the other hand, they constitute an attractive field of application. Nevertheless, applicability
for smaller data sets is not precluded and can be easily tested and evaluated in the app.

The first step of the response analysis process, according to the original paper [8]
(Figure 1), is building or choosing a semantic space from a text corpus (1). In simple
terms, semantic spaces are a set of n-dimensional vectors, where each vector represents the
semantics of a word as a set of numerical values. For example, the word ‘dog’ is represented

by the vector
→

dog = [0.1 0.5 0.3]T . We first assume that we have ready-made vector
spaces, e.g., built with Latent Semantic Analysis, covering the relevant words in a target
language as vector representations. The set of those words can also be called the dictionary.
Numerical representations of words allow measuring their similarity with mathematical
operations, for example, using the cosine distance between two vectors. The responses are
separated into single words (tokens; 2) and can be, as well as the text corpus, preprocessed
to normalize the text and focus on relevant semantics by removing supposedly unnecessary
information. Additionally, automatic spelling correction can optimize the quality of the
response texts. Words are transferred further into their numerical representations by
assigning word vectors from the previously formed semantic space to all response words.
All word vectors within a response must be averaged across the n dimensions to generate
a single response vector (3). Like measuring the similarity between word vectors, the
distance or angle between two response vectors can represent their semantic similarity.
Due to their numerical representation, the responses can be clustered in the next step.
Response types are formed by the unsupervised process, with responses being assigned to
clusters according to their semantic similarity (4). The cluster information of the responses
now makes it possible to assign new responses to a given response cluster (5). The new
response is then automatically coded according to the code distribution of the responses

Psych 2021, 3 425

within the cluster. In machine learning methods, it is common to separate the data set and
then use one part to train the model and the other part(s) to evaluate the coding quality.
The success of the coding can be interpreted using several evaluation measures, such as
accuracy, sensitivity, or kappa [11].

2.1. Building a Semantic Space

To make responses accessible for mathematical operations, they must be transferred
into a quantitative format. For this purpose, we use semantic spaces, which are also
called vector space models (VSMs) or word embeddings in the context of natural language
processing. Semantic spaces have been used for several decades and can be built using a
large text corpus.

One popular method is Latent Semantic Analysis (LSA). Established in the 1990s [12], it
forms a semantic space via a singular value decomposition of a count-based term-document
matrix. Term weighting can increase word association precision [13].

More recently, neural networks (NN) have become increasingly popular again and
have become state-of-the-art for training semantic spaces [14–17].

In comparison to modern methods, LSA shows satisfying results in different similarity
tasks [18]. This is especially important since newer (NN-)methods rely on the correct adjust-
ment of hyperparameters [18,19] and a large amount of data [20] to realize their advantages,
while the processing of more data is also associated with a longer computation time.

Since the dictionary must cover as many words in the respective response data as pos-
sible, we offer to create a custom semantic space using LSA. LSA can be easily implemented
using existing R packages. Furthermore, we offer to download pre-built topic-specific
semantic spaces. This enables quick usage without investing computing time to build
new spaces. The increasing popularity of NLP, especially word embeddings trained with
neural networks, leads to a wide offer of pre-trained models on the Internet. We do not
want to exclude the use of such methods and therefore also allow the use of third-party
vector spaces, such as ones trained with w2v [17] or GloVe [15], which only require a
minor adjustment to be used in the app. How to use third-party models is described on
our website.

What method-independent vector spaces have in common is that words can be
mapped to n-dimensional vectors. Usually, the number of the dimensions is set to 300,
yielding promising results across methods (see [15,17,21]). The cosine distance can be used
to calculate the semantic similarity (1), cos(θ), based on the angle θ between two vectors
→
a and

→
b in an n-dimensional space and is the standard measurement for comparing words

and documents in semantic spaces. Compared to Euclidean distance, cosine refers to the
direction of two vectors only and not the spatial distance. The semantic similarity lies in
the range of values −1 < cos(θ) < 1, where 0 indicates orthogonality of the vectors to
each other and a maximum dissimilarity, while θ, defined as the minimum of two vectors’
angles, can range from 0 to 180 degrees.

sim
(
→
a ,
→
b
)
= cos(θ) =

→
a ·
→
b

‖→a ‖‖
→
b ‖

=
∑n

i=1 aibi√
∑n

i=1 a2
i

√
∑n

i=1 b2
i

(1)

As previously mentioned, all relevant words must be covered by the semantic space.
Relevant words can be seen as those that distinguish the responses on the basis of their
meaning. If a word occurs in responses and not in the dictionary, the semantic information
of this single word is lost for the further process. Complete coverage of words would
be ideal, but it is not possible in cases where, for example, spelling mistakes cannot be
corrected accurately so that these are not represented in the semantic space. This is where
preprocessing comes into play for normalizing observed language utterances.

Psych 2021, 3 426

2.2. Preprocessing

Language can be very diverse in its form. The complexity is reflected in morphology,
syntax, and semantics. Thus, language offers a wide range of possibilities to write down
certain information. Through preprocessing steps, texts can be normalized to a certain
degree, which enables easier machine processing; for example, by involving less linguistic
noise. In the first step, the responses are separated into word elements, which are, in
their single form, also called unigrams or tokens. Typically, words are corrected regarding
their spelling. After decapitalization, language-specific steps like normalizing umlauts can
apply. In the next step, digits and punctuation, as well as stop words, will be removed.
Stop words frequently occur in the language but have no meaningful semantics and are
therefore considered noise. These include, for example, determiners and pronouns. In
the last step, the words can be reduced to their word stems. Table 1 shows the effects of
preprocessing for an example sentence. Preprocessing steps can be selected and adjusted
individually within the app. For example, stemming is not mandatory, and the stop word
list can be modified. Numerical representations can also remain a component, but they
must also be covered within the semantic space. Numbers in the form of integers (e.g.,
1, 3, 7) or in written form (e.g., one, three, seven) are mostly covered here up to a certain
number and considered a text string.

Table 1. Demonstration of the preprocessing pipeline based on the misspelled sample response, ‘The
story is about annimals (sic!) in a zoo’.

Preprocessing Step Example

Tokenization [The] [story] [is] [about] [annimals] [in] [a] [zoo] [.]
Spelling correction [The] [story] [is] [about] [animals] [in] [a] [zoo] [.]
Decapitalization [the] [story] [is] [about] [animals] [in] [a] [zoo.] [.]
Remove punctuation and numbers [the] [story] [is] [about] [animals] [in] [a] [zoo]
Remove stop words [story] [animals] [zoo]
Stemming [stori] [anim] [zoo]

Note: A step’s affected element is underlined in the adjacent line above.

The spell checker algorithm changes tokens that are not recognized as words into
words from a predefined dictionary. The quality gain of the classifier with spelling corrected
responses is determined by the word distribution. If relevant words are misspelled more
often, this may also affect the accuracy of the classifier. For simple responses like our demo
dataset, spelling correction has only a small impact and improves the accuracy by one
percent. For other response characteristics, the impact may well be greater.

Morphology adds further information to the word by adding, changing, or omitting
affixes. Together with the limited number of responses, compared to the complete universe
of possible responses, this can lead to unreliable clustering because more data (in the
training set as well as in the text corpus for semantic space building) are needed to represent
them properly in the semantic space. This type of linguistic variability can be minimized
by a stemming algorithm, which automatically removes affixes and reduces the word to
its stem. We use the Porter stemmer, a rule-based algorithm [22], which is one of the most
widely used stemming algorithms.

Further irrelevant linguistic variability can be minimized by decapitalizing words. For
example, the sentence, ‘The cat hunts the bird’ initially contains five unique words. Due
to the capitalization at the beginning of the sentence, ‘The’ is considered to be a different
word than ‘the’.

Normalizing responses provides two advantages. First, fewer training data are needed
to represent the prototypical responses. Second, at the same time, the model becomes more
generalizable because it only differentiates between the supposedly relevant criteria and
thus counteracts overfitting.

It is important to note that both the text corpus used to create the semantic space and
the responses undergo the same preprocessing steps. Otherwise, not all the words can be

Psych 2021, 3 427

matched, so that not all the semantic information is captured. As mentioned in Section 2.1,
words that are not covered will get lost in the process since they cannot be represented
in the semantic space. Spelling correction is useful to maximize the coverage rate, as no
misspelled words are lost in the further process.

2.3. Response Semantics

In order to get a response representation from the individual word vectors, these are
averaged using their centroid vector (i.e., arithmetic mean for each dimension). Figure 2
shows the process using the previously preprocessed example sentence.

Psych 2021, 3 427

the semantic space. Spelling correction is useful to maximize the coverage rate, as no mis-
spelled words are lost in the further process.

2.3. Response Semantics
In order to get a response representation from the individual word vectors, these are

averaged using their centroid vector (i.e., arithmetic mean for each dimension). Figure 2
shows the process using the previously preprocessed example sentence.

We use the bag of words paradigm, which means that the word order is ignored
when calculating the response vector. On the one hand, this has the advantage of requir-
ing fewer responses to identify response types. On the other hand, word order sometimes
encodes relevant information (e.g., compare ‘The cat hunts the bird.’ and ‘The bird hunts
the cat.’). With bag of words, such differences in responses may be overlooked. It is always
a matter of construct relevance whether this is appropriate or not.

Figure 2. From word to response semantics. This plot reduces the hyperdimensional semantic space
to two dimensions by Principal Component Analysis (PCA).

2.4. Response Types
Response types are clusters of responses with similar semantic content. On the one

hand, the classification provides the basis for automatic coding assignments; on the other
hand, the cluster assignments can be used to explore qualitative relationships (outside of
the app). The semantic comparison of two responses works like the semantic comparison
of two words by determining the cosine similarity of two response vectors. A distance
matrix is created to compare all responses’ (dis-)similarities to cluster the responses re-
garding their coarse meaning. Zehner et al. [8] use hierarchical clustering with the Ward
fusion algorithm [23,24], which yields good results on the evaluated data, is a fast method,
and is not NP-hard, which is the case for the popular k-Means clustering [25].

We provide different clustering methods to explore individual options and select the
method that achieves the best results. Hierarchical methods mostly form clusters of dif-
ferent sizes, whereas k-Means tends to form clusters of similar sizes. The advantage of
hierarchical methods is that they are good at detecting outliers, i.e., atypical responses and
arranging these responses into individual clusters, which improves the homogeneity of
other clusters. In the app’s current version, the parameter k, which represents the number
of clusters, must be defined beforehand. Standard methods like the elbow method are
typically not suitable in the context of hyperdimensional spaces, which means that the
number of clusters has to be determined exploratively. A later version of the app will
allow determining the optimal number of clusters more systematically.

In the evaluation process described later on, the optimal number of clusters can be
assessed. The optimum is dependent on factors such as the responses’ complexity and the
size of the data set. It is essential to form clusters that are as pure as possible in terms of

Figure 2. From word to response semantics. This plot reduces the hyperdimensional semantic space
to two dimensions by Principal Component Analysis (PCA).

We use the bag of words paradigm, which means that the word order is ignored when
calculating the response vector. On the one hand, this has the advantage of requiring fewer
responses to identify response types. On the other hand, word order sometimes encodes
relevant information (e.g., compare ‘The cat hunts the bird.’ and ‘The bird hunts the cat.’).
With bag of words, such differences in responses may be overlooked. It is always a matter
of construct relevance whether this is appropriate or not.

2.4. Response Types

Response types are clusters of responses with similar semantic content. On the one
hand, the classification provides the basis for automatic coding assignments; on the other
hand, the cluster assignments can be used to explore qualitative relationships (outside of
the app). The semantic comparison of two responses works like the semantic comparison of
two words by determining the cosine similarity of two response vectors. A distance matrix
is created to compare all responses’ (dis-)similarities to cluster the responses regarding
their coarse meaning. Zehner et al. [8] use hierarchical clustering with the Ward fusion
algorithm [23,24], which yields good results on the evaluated data, is a fast method, and is
not NP-hard, which is the case for the popular k-Means clustering [25].

We provide different clustering methods to explore individual options and select
the method that achieves the best results. Hierarchical methods mostly form clusters of
different sizes, whereas k-Means tends to form clusters of similar sizes. The advantage of
hierarchical methods is that they are good at detecting outliers, i.e., atypical responses and
arranging these responses into individual clusters, which improves the homogeneity of
other clusters. In the app’s current version, the parameter k, which represents the number
of clusters, must be defined beforehand. Standard methods like the elbow method are
typically not suitable in the context of hyperdimensional spaces, which means that the

Psych 2021, 3 428

number of clusters has to be determined exploratively. A later version of the app will allow
determining the optimal number of clusters more systematically.

In the evaluation process described later on, the optimal number of clusters can
be assessed. The optimum is dependent on factors such as the responses’ complexity
and the size of the data set. It is essential to form clusters that are as pure as possible
in terms of coding since the coding distribution in the clusters forms the foundation
for the classification process. At the same time, overfitting must be avoided. If the
number of clusters equals the number of data points, each response forms its own cluster.
Consequently, in the case of automatic coding, an answer would receive the same coding
as the most similar response regarding its cosine distance.

Figure 3 shows the impact of k on the accuracy of the automatic coding for exemplary
training and test data. While the accuracy of the training data increases steadily with the
number of clusters, the accuracy of the test data stays nearly constant from k = 200 clusters.
Thus, when k is too high, this presents the issue of overfitting, so the coding assignments
are too specific and cannot be generalized to new independent data. Cluster models tend
to be robust in this aspect (see Figure 3). While the classification accuracy of the exemplary
training data set increases steadily with increasing k, the classification accuracy of the
corresponding test data reaches a plateau at about 200 clusters and then only decreases
slightly. While this example shows moderate robustness, more sensitive data or methods
can lead to a faster-decreasing accuracy after reaching the local maximum.

Psych 2021, 3 428

coding since the coding distribution in the clusters forms the foundation for the classifi-
cation process. At the same time, overfitting must be avoided. If the number of clusters
equals the number of data points, each response forms its own cluster. Consequently, in
the case of automatic coding, an answer would receive the same coding as the most similar
response regarding its cosine distance.

Figure 3 shows the impact of k on the accuracy of the automatic coding for exemplary
training and test data. While the accuracy of the training data increases steadily with the
number of clusters, the accuracy of the test data stays nearly constant from k = 200 clusters.
Thus, when k is too high, this presents the issue of overfitting, so the coding assignments
are too specific and cannot be generalized to new independent data. Cluster models tend
to be robust in this aspect (see Figure 3). While the classification accuracy of the exemplary
training data set increases steadily with increasing k, the classification accuracy of the cor-
responding test data reaches a plateau at about 200 clusters and then only decreases
slightly. While this example shows moderate robustness, more sensitive data or methods
can lead to a faster-decreasing accuracy after reaching the local maximum.

Figure 3. Comparison of classification accuracy in training and test data with increasing k. The error
bars show the standard deviation of accuracy across all folds. One hundred calculations (ten folds
with ten repetitions) were performed for each cluster using the demo item (more in Section 2.6.1).

Now that the automatic coding system has a model of response types, unseen re-
sponses can be related to it for automatically coding them. It can be noted that the proce-
dure does not take human coding into account until this point.

2.5. Response Coding
A response’s automatic coding is based on its assignment to a cluster and the code

distribution within the cluster. For this assignment, the response is processed under the
same preprocessing conditions as the responses in the training data and is also repre-
sented in the n-dimensional vector space. It is then assigned to the cluster with the highest
similarity between its centroid vector and the response vector. Finally, the response’s clas-
sification is based on the conditional probability 𝑃(𝐿|𝐶) (see Equation (2)). It represents
the probability of a response being labeled in a certain way 𝐿, given that it is assigned to
a certain cluster 𝐶. It can be computed via 𝑃(𝐿|𝐶), which gives the probability that a re-
sponse is classified as code, or label, 𝐿, given it was assigned to cluster 𝐶. 𝑃(𝐿|𝐶) = 𝑃(𝐶|𝐿) ∙ 𝑃(𝐿)𝑃(𝐶) (2)

The conditional probability calculation is illustrated using an example of a poly-
tomous coding system (Table 2). We assume that the response is assigned to a fictitious
cluster 𝐶 with 210 responses. Four hundred responses are located outside the cluster,
which makes a total of 610 responses.

Figure 3. Comparison of classification accuracy in training and test data with increasing k. The error bars show the standard
deviation of accuracy across all folds. One hundred calculations (ten folds with ten repetitions) were performed for each
cluster using the demo item (more in Section 2.6.1).

Now that the automatic coding system has a model of response types, unseen re-
sponses can be related to it for automatically coding them. It can be noted that the
procedure does not take human coding into account until this point.

2.5. Response Coding

A response’s automatic coding is based on its assignment to a cluster and the code
distribution within the cluster. For this assignment, the response is processed under the
same preprocessing conditions as the responses in the training data and is also represented
in the n-dimensional vector space. It is then assigned to the cluster with the highest
similarity between its centroid vector and the response vector. Finally, the response’s
classification is based on the conditional probability P(L|C) (see Equation (2)). It represents
the probability of a response being labeled in a certain way L, given that it is assigned

Psych 2021, 3 429

to a certain cluster C. It can be computed via P(L|C), which gives the probability that a
response is classified as code, or label, L, given it was assigned to cluster C.

P(L|C) = P(C|L)·P(L)
P(C)

(2)

The conditional probability calculation is illustrated using an example of a polytomous
coding system (Table 2). We assume that the response is assigned to a fictitious cluster C
with 210 responses. Four hundred responses are located outside the cluster, which makes a
total of 610 responses.

Table 2. Example of a response distribution of an assigned cluster.

No. of Responses Code L

No. Credit (0) Partial Credit (1) Full Credit (2)

Within Cluster C 4 6 200
Outside Cluster C 100 100 200

Note: The distributions within the cluster and outside the cluster are included in the prediction.

For each possible code, the automatic coding calculates the conditional probability that
the response is classified as certain code L, given that it is assigned to a certain cluster C. For
this, it incorporates the code probabilities P(0) = 0.17, P(1) = 0.17, and P(2) = 0.66, while
the cluster probability is P(C) = 0.34. The response is then assigned to the most likely code,
or label, regarding the response distribution in cluster C. In our example, the conditional
probabilities for all possible code assignments are P(0|C) = 0.02, P(1|C) = 0.03 , and
P(2|C) = 0.95 . Thus, if a response is assigned cluster C, it is coded as Full Credit (i.e.,
code 2).

With these rules to classify unseen responses, the resulting classifier finally requires
an assessment of its evaluation.

2.6. Evaluation
2.6.1. Repeated k-Fold Cross-Validation

In a final step, the out-of-sample accuracy of the automatic coding process is measured
empirically. This way, not only its performance but also its generalizability can be assessed.

Typically, in machine learning, the available data is split into at least two parts, where
the majority of the data is used for training and another part is withheld for evaluation.
The simplest way of implementing this concept is a hold-out evaluation. There, typically,
70 percent of the data is taken to train the model, and the resulting classifier is then evalu-
ated based on the remaining 30 percent. Since responses are assigned randomly to either
the training or test set, this simple split potentially leads to higher or lower performance
results randomly. Thus, to increase its reliability, the evaluation with its random assignment
should be repeated, and performance results aggregated across evaluation cycles.

Ideally, training is carried out with as much information as possible. Therefore, the op-
timal implementation of this concept is leave-one-out cross-validation, which only removes
one response for training. However, leave-one-out cross-validation is computationally
highly expensive because it requires as many repetitions as there are responses. Hence, we
instead use a repeated, stratified k-fold cross-validation strategy (Figure 4). Please note that
k here represents the number of folds, not the number of clusters.

Psych 2021, 3 430

Psych 2021, 3 429

Table 2. Example of a response distribution of an assigned cluster.

No. of Responses Code 𝑳
 No. Credit (0) Partial Credit (1) Full Credit (2)

Within Cluster 𝐶 4 6 200
Outside Cluster 𝐶 100 100 200

Note: The distributions within the cluster and outside the cluster are included in the prediction.

For each possible code, the automatic coding calculates the conditional probability
that the response is classified as certain code 𝐿, given that it is assigned to a certain cluster 𝐶. For this, it incorporates the code probabilities 𝑃(0) = 0.17, 𝑃(1) = 0.17, and 𝑃(2) =0.66, while the cluster probability is 𝑃(𝐶) = 0.34. The response is then assigned to the
most likely code, or label, regarding the response distribution in cluster 𝐶. In our example,
the conditional probabilities for all possible code assignments are 𝑃(0|𝐶) = 0.02 , 𝑃(1|𝐶) = 0.03, and 𝑃(2|𝐶) = 0.95. Thus, if a response is assigned cluster 𝐶, it is coded as
Full Credit (i.e., code 2).

With these rules to classify unseen responses, the resulting classifier finally requires
an assessment of its evaluation.

2.6. Evaluation
2.6.1. Repeated k-Fold Cross-Validation

In a final step, the out-of-sample accuracy of the automatic coding process is meas-
ured empirically. This way, not only its performance but also its generalizability can be
assessed.

Typically, in machine learning, the available data is split into at least two parts, where
the majority of the data is used for training and another part is withheld for evaluation.
The simplest way of implementing this concept is a hold-out evaluation. There, typically,
70 percent of the data is taken to train the model, and the resulting classifier is then eval-
uated based on the remaining 30 percent. Since responses are assigned randomly to either
the training or test set, this simple split potentially leads to higher or lower performance
results randomly. Thus, to increase its reliability, the evaluation with its random assign-
ment should be repeated, and performance results aggregated across evaluation cycles.

Ideally, training is carried out with as much information as possible. Therefore, the
optimal implementation of this concept is leave-one-out cross-validation, which only re-
moves one response for training. However, leave-one-out cross-validation is computa-
tionally highly expensive because it requires as many repetitions as there are responses.
Hence, we instead use a repeated, stratified k-fold cross-validation strategy (Figure 4).
Please note that k here represents the number of folds, not the number of clusters.

Figure 4. Stratified 10-fold cross-validation with 75% correct and 25% incorrect re-
sponses (without repetitions).

Figure 4. Stratified 10-fold cross-validation with 75% correct and 25% incorrect responses (without repetitions).

For this, the data are divided into k folds (i.e., parts), with one fold being withheld
for evaluation and the remaining data serving as the training basis. As an example, let us
consider a data set with 1000 responses, of which 75 percent are classified as correct and
25 percent as incorrect. The split of the data set leaves us with ten folds, each containing
100 responses. Importantly, each fold contains 75 correct and 25 incorrect responses,
mirroring the complete data’s code distribution. In its first cycle, the cross-validation
trains the classifier (i.e., the cluster-based Bayes classifier) with 900 responses and tests its
performance on the remaining 100 ones. This process is repeated k (here, ten) times until
every single fold constituted the test set once. In turn, the entire process with k evaluations
can be repeated t (often, ten) times to minimize the influence of the random assignment to
folds. The final evaluation measure results from aggregating the t× k evaluation results.

As to which measures can be used for evaluation, this is part of the next section.

2.6.2. Evaluation Metrics for Dichotomous Items

As automatic coding is a classification problem, its evaluation is based on a confusion
matrix with l × l cells, where l is the number of possible codes. For a simple showcase, see
Table 3; this is a 2-by-2 matrix. In this dichotomously coded example, the code ‘correct’
is considered as the positive class. By comparing the predictions with their true codings,
various measures can be used to assess classification quality.

Table 3. Confusion matrix.

Manual Code Automatic Code

Correct Incorrect

Correct True Positive (TP) False Positive (FP)
Incorrect False Negative (FN) True Negative (TN)

Accuracy is the simplest measure. It gives the percentage of all correctly coded
responses compared to the number of all responses. It is computed by the sum of correct
predictions relative to the total number of predictions (see Equation (3)).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

The measure offers a first indication of the classifier’s quality, but its interpretation
should always incorporate the code distribution. That is, if 85 percent of the responses
were correct and a naïve baseline system assigned the code ‘correct’ to all responses, it
would already attain an accuracy of 85 percent. Thus, responses with a skewed distribution
naturally receive a higher value. In order to evaluate coding quality beyond random
chance granted by the code distribution, Cohen’s kappa [26] is a central measure for coder

Psych 2021, 3 431

agreement (see Equation (4)), where κ indicates the relative agreement between all correctly
predicted codings po in comparison to expected chances pc.

κ =
po − pc

1− pc
(4)

Kappa’s values range between −1 > κ > 1, while κ = 1 means a perfect agreement
between the machine predictions and the manually coded test data. A value of κ = 0
means there is no predictive power, and the predictions are as good as chance, and they
could also be reached by random guessing. Values of κ < 0 means that the predictions
are less accurate than the chances and can indicate methodological problems if it is highly
negative. Examples and interpretation guidelines can be found in [27].

Since, as a measure of agreement, kappa’s sampling distribution is similar to the
sampling distribution of correlation coefficients, the agreement values attained in each
evaluation cycle of the k folds are converted using the Fisher z-transformation before and
transformed back after aggregation.

In addition to those two measures to interpret classification success, further metrics
are integrated into the evaluation process.

Sensitivity indicates the ratio between true positives TP to all positives P,

TPR =
TP
P

, (5)

while specificity is used to show the relation of the correctly predicted negatives TN to all
negatives N,

TNR =
TN
N

, (6)

and precision shows the relation of all true positives TP to the sum of all TP and false
positives FP

PPV =
TP

TP + FP
. (7)

Precision, as well as sensitivity and specificity, provide more detailed insights into
the coding process, in particular, whether codings are biased in a certain direction. The
F1-Score unites precision PPV and sensitivity TPR into a single score, which also allows it
to be used alongside kappa and accuracy as a measure of coding success,

F1 = 2· PPV · TPR
PPV + TPR

(8)

2.6.3. Evaluation with Polytomous Coding

If the responses are coded with more than two levels, it is possible to evaluate the
classification of each code individually. For each code L, a 2× 2 confusion matrix is formed
in which the respective code can be regarded as positive and all other codes as negative.
On this basis, measures of accuracy, kappa, or sensitivity and specificity can be calculated
and compared with each other.

2.6.4. Partial-Credit Scoring or Ordinal Coding

The ordinal character of partial credit scoring, or ordinal coding more generally, is not
taken into account in our automatic coding approach. This is the case because we identify
response types based on a semantic space. Such semantic spaces do not encode information
about the superiority or inferiority of one or the other response type. Instead, we assume
that certain areas of the semantic space are associated with a certain code. Responses
are, thus, nominally assigned to scores based on their semantic features. However, this
procedure does not preclude the use of ordinal codes as long as there is sufficient code
separation through semantics.

Psych 2021, 3 432

For the evaluation of polytomous codes with an ordinal character, quadratic weighted
kappa [26,28] can be used. This agreement coefficient weights classifications with respect
to the distance between the automatic and manual codes. This way, misclassifications of
adjacent codes are penalized less than those that have at least one other code in between.
For example, an automatic coding’s misclassification of a response which actually is a
Full Credit response as No Credit is more penalized in this coefficient than when it would
have assigned Partial Credit because the latter is closer to the target code. With quadratic
weighted kappa, in particular, the distance between the code levels is not linearly equal,
but it is squared.

3. ReCo’s Shiny App: shinyReCoR

While the previous section described the underlying methods, this section now out-
lines how you can download, install, and use the app shinyReCoR. It is loosely based on
the program ReCo (Automatic Text Response Coder), which lacks a graphical user interface.
With shinyReCoR, you can build classifiers for automatically coding your text response
data without the need for scripting in R.

3.1. Download and Installation

The app can be automatically installed by entering the following command into the
R console:

source(“https://www.reco.science/latest”)

This command causes R to execute an R script which downloads the package from
our secure server as well as any required dependencies from a CRAN mirror. In order to
see what the script does, users can type the URL above into a web browser and inspect
the script. Alternatively, the package can be downloaded and installed manually via our
website (www.reco.science). Once the installation is complete, a message confirms the
installation success in the R console.

3.2. Troubleshooting

Regarding different R setups, certain file system structures can lead to difficulties. For
example, if R’s library path is located in a folder with limited access rights (e.g., Windows
program directory), shinyReCoR cannot write required files. In such a case, by running the
program with administrator rights, the app will be granted access, and the program will
run as planned.

Moreover, the package’s setup can fail on Windows if Rtools40 is not installed before-
hand. If this is the case, the automatic setup routine will notify the user.

Bug reports are collected and published in its repository, along with recommended solutions.

3.3. First Steps

Now, how does automatic coding work with shinyReCoR? The following part de-
scribes the response coding pipeline from the user’s perspective. The section can also be
used as a guide which to consult while using the app. Please also note that all workflow
steps display an information column on the left, presenting instructions on the current step.

3.3.1. Starting the App

After successful installation, the app can be started by entering the following command
into the R console:

shinyReCoR::recoApp() Alternatively, the library shinyReCoR can be loaded, and
then the function recoApp() needs to be called separately. Both variants will launch the
user interface. Depending on whether RStudio is used, the interface will open in the web
browser or RStudio’s built-in viewer (Figure 5). The users then find themselves directly in
the first step of the response analysis. There is also the possibility of switching to the tabs
for creating or managing projects as well as accessing further information (e.g., to see how

https://www.reco.science/latest
www.reco.science

Psych 2021, 3 433

the demo item and its responses are designed) and setting up the system (e.g., to enable
parallel processing). On the left side is a permanent column with background information
on the step the user is currently working on.

3.3.2. Managing and Storing Your Items in Projects

Something Shiny users are usually not used to is that shinyReCoR allows storing
their results across sessions. That is, even if the app is closed, the products of the previous
session will still be available without the need for the user to export and import them. This
is achieved via projects.

One separate project must be created for each item and its responses intended to be
coded automatically. This comprises the responses and codes after the data import. A single
project is focused on building a coding model (i.e., classifier), dependent on the responses
to one item. While the user interface will always display English texts, it is important to
select the project’s test language because external information such as language-specific
dictionaries for spelling correction or stop-word lists are required.

Psych 2021, 3 433

Figure 5. shinyReCoR interface.

3.3.2. Managing and Storing Your Items in Projects
Something Shiny users are usually not used to is that shinyReCoR allows storing

their results across sessions. That is, even if the app is closed, the products of the previous
session will still be available without the need for the user to export and import them. This
is achieved via projects.

One separate project must be created for each item and its responses intended to be
coded automatically. This comprises the responses and codes after the data import. A sin-
gle project is focused on building a coding model (i.e., classifier), dependent on the re-
sponses to one item. While the user interface will always display English texts, it is im-
portant to select the project’s test language because external information such as language-
specific dictionaries for spelling correction or stop-word lists are required.

3.3.3. Demo Dataset
The package includes a demo item with empirically-based but actually simulated re-

sponses to a fictitious educational large-scale assessment task for measuring reading lit-
eracy. The item and its responses are recreated from a real-world empirical data collection
by semi-automatically replacing words with corresponding words from the fictitious task,
including adapted spelling mistakes and empty responses. Item confidentiality prohibited
the use of the actual empirical data, but this way, we were able to provide a simple re-
sponse set with mostly realistic responses and a prototypical number of student responses
for a large-scale assessment (𝑛 = 4223). The item is a fairly simple task (Figure 6) that
only requires naming at least two of four animal species from a text. The codings nomi-
nally discriminate between correct and incorrect responses (coded as 0 and 1, respec-
tively). The response data set is used as a running example in the following sections to
illustrate the analysis. We chose to use a simple data set at this point because it allowed
us to manually reconstruct a large number of responses and keep a realistic assessment
character. More complex responses can typically lead to lower performance.

Figure 5. shinyReCoR interface.

3.3.3. Demo Dataset

The package includes a demo item with empirically-based but actually simulated
responses to a fictitious educational large-scale assessment task for measuring reading
literacy. The item and its responses are recreated from a real-world empirical data collection
by semi-automatically replacing words with corresponding words from the fictitious task,
including adapted spelling mistakes and empty responses. Item confidentiality prohibited
the use of the actual empirical data, but this way, we were able to provide a simple response
set with mostly realistic responses and a prototypical number of student responses for
a large-scale assessment (n = 4223). The item is a fairly simple task (Figure 6) that only
requires naming at least two of four animal species from a text. The codings nominally
discriminate between correct and incorrect responses (coded as 0 and 1, respectively). The
response data set is used as a running example in the following sections to illustrate the
analysis. We chose to use a simple data set at this point because it allowed us to manually
reconstruct a large number of responses and keep a realistic assessment character. More
complex responses can typically lead to lower performance.

Psych 2021, 3 434

3.4. Response Analysis: From Data Import to Exploring the Classifier

The following subsections describe the workflow from importing the response data
together with manual codes to exploring the resulting classifier for automatic coding. After
one analysis step is completed, the user can either choose the next numbered workflow
tab at the top of the app or navigate through the workflow using arrow buttons on the
top right.

Some methods in the app (i.e., stop word removal, automatic spelling correction, and
text corpus for building the semantic space) rely on language-specific dictionaries, making
the provision of methods dependent on available resources. This is why only a selection
of languages are supported. Currently, users are limited to English and German response
texts, although other common languages will be included in future versions.

Psych 2021, 3 434

Figure 6. Demo item (more information in the app’s INFO tab).

3.4. Response Analysis: From Data Import to Exploring the Classifier
The following subsections describe the workflow from importing the response data

together with manual codes to exploring the resulting classifier for automatic coding. Af-
ter one analysis step is completed, the user can either choose the next numbered workflow
tab at the top of the app or navigate through the workflow using arrow buttons on the top
right.

Some methods in the app (i.e., stop word removal, automatic spelling correction, and
text corpus for building the semantic space) rely on language-specific dictionaries, making
the provision of methods dependent on available resources. This is why only a selection
of languages are supported. Currently, users are limited to English and German response
texts, although other common languages will be included in future versions.

3.4.1. Upload and Structure Data
In the data import section (1 Data), which is the first step of the response-analysis

pipeline, the response data are imported into the app for further processing.
This requires a specific data structure. The data should not include responses to more

than one items or tasks. The response data set must have at least one response column
with text and, in the app’s current version, should have a column with the manual code
(Figure 7). The interface provides the ability to select which column contains the response
texts and which one contains the codes.

Figure 6. Demo item (more information in the app’s INFO tab).

Psych 2021, 3 435

3.4.1. Upload and Structure Data

In the data import section (1 Data), which is the first step of the response-analysis
pipeline, the response data are imported into the app for further processing.

This requires a specific data structure. The data should not include responses to more
than one items or tasks. The response data set must have at least one response column
with text and, in the app’s current version, should have a column with the manual code
(Figure 7). The interface provides the ability to select which column contains the response
texts and which one contains the codes.

Psych 2021, 3 435

Figure 7. Demo responses.

With this, all information needed to apply automatic coding is given. It is essential to
have one unambiguous code assigned to each response. If the file contains codings of sev-
eral raters, they should be reduced to one beforehand; for example, by determining the
modal value. If the data set contains additional variables beyond the response and code
columns (e.g., ID), these can be kept in the data set. Later on, intermediate results and
responses’ cluster assignments can be exported as a complete data set. Once the data are
imported and the relevant columns selected, the input data can be inspected in a table.

Alternatively, users can choose to import the demo data set that is delivered with the
package. For this, the button OR: Import Demo Data Set can be used.

3.4.2. Preprocessing and Word Predictiveness
The preprocessing of texts in natural language processing is common to reduce un-

necessary linguistic variance. shinyReCoR offers a range of preprocessing techniques (2.1
Preprocessing) that can be applied in different combinations. The user can spellcheck and
decapitalize the responses as well as remove digits, punctuation, and stop words. Lists of
stop words are predefined and can be customized for each project. With stemming, the
words are reduced to their word stem, which cuts off affixes of words based on a simple
set of rules [22]. The combination of chosen preprocessing techniques directly impacts the
processed responses. Both text views, original and processed, are shown interactively so
that the effect of each technique on the responses can directly be assessed. Users can
choose between an example text as well as a sample from their response data. All prepro-
cessed responses can be inspected in an interactive table via the button View Preprocessing
Results.

Once the responses have been preprocessed, the next step (2.2 Word Predictiveness)
provides insights as to what words (more precisely, tokens) are predictive for each code.
If certain words contained in responses have a strong association with the response’s over-
all code, they are crucial for automatic coding. This view provides the user with infor-
mation on the frequency of single tokens and their value for predicting the overall code.
The latter is operationalized as 𝜒2-value (see [29], pp. 169–172); the higher the value, the
stronger the association between the token and dominant code.

3.4.3. Text Corpus, Semantic Space, and Response Semantics
The next step (3 Text Corpus) constitutes the base for building a semantic space in the

subsequent step (4 Semantic Space). In turn, the semantic space then serves as the base for
computing the response semantics (5 Response Semantics).

A quality text corpus is essential when translating qualitative text data into a numer-
ical representation. In the long run, the app provides two ways for choosing a text corpus.
First, users can specify important topics on the basis of which the app collects texts from
Wikipedia that are relevant for the response data at hand. This feature is not included in
the current version but will be in the next release. Second, the app offers to choose pre-

Figure 7. Demo responses.

With this, all information needed to apply automatic coding is given. It is essential
to have one unambiguous code assigned to each response. If the file contains codings of
several raters, they should be reduced to one beforehand; for example, by determining
the modal value. If the data set contains additional variables beyond the response and
code columns (e.g., ID), these can be kept in the data set. Later on, intermediate results and
responses’ cluster assignments can be exported as a complete data set. Once the data are
imported and the relevant columns selected, the input data can be inspected in a table.

Alternatively, users can choose to import the demo data set that is delivered with the
package. For this, the button OR: Import Demo Data Set can be used.

3.4.2. Preprocessing and Word Predictiveness

The preprocessing of texts in natural language processing is common to reduce un-
necessary linguistic variance. shinyReCoR offers a range of preprocessing techniques
(2.1 Preprocessing) that can be applied in different combinations. The user can spellcheck
and decapitalize the responses as well as remove digits, punctuation, and stop words. Lists
of stop words are predefined and can be customized for each project. With stemming, the
words are reduced to their word stem, which cuts off affixes of words based on a simple
set of rules [22]. The combination of chosen preprocessing techniques directly impacts the
processed responses. Both text views, original and processed, are shown interactively so
that the effect of each technique on the responses can directly be assessed. Users can choose
between an example text as well as a sample from their response data. All preprocessed
responses can be inspected in an interactive table via the button View Preprocessing Results.

Once the responses have been preprocessed, the next step (2.2 Word Predictiveness)
provides insights as to what words (more precisely, tokens) are predictive for each code. If
certain words contained in responses have a strong association with the response’s overall
code, they are crucial for automatic coding. This view provides the user with information
on the frequency of single tokens and their value for predicting the overall code. The latter
is operationalized as χ2-value (see [29], pp. 169–172); the higher the value, the stronger the
association between the token and dominant code.

Psych 2021, 3 436

3.4.3. Text Corpus, Semantic Space, and Response Semantics

The next step (3 Text Corpus) constitutes the base for building a semantic space in the
subsequent step (4 Semantic Space). In turn, the semantic space then serves as the base for
computing the response semantics (5 Response Semantics).

A quality text corpus is essential when translating qualitative text data into a numerical
representation. In the long run, the app provides two ways for choosing a text corpus.
First, users can specify important topics on the basis of which the app collects texts from
Wikipedia that are relevant for the response data at hand. This feature is not included in
the current version but will be in the next release. Second, the app offers to choose pre-built
corpora and semantic spaces. The following focuses on this second path as it is available in
the currently released app.

The app allows using pre-built semantic vector spaces to match the words with their
word vectors. The corpus is processed with the same preprocessing technique as the
responses. Most crucially, it should contain as many words that are relevant to the item
contents as possible. As touched upon above, future versions will provide a semantic vector
space generator that uses keywords to search item-relevant documents from a Wikipedia
dump to build a custom vector space using LSA [12]. Moreover, additional larger pre-built
domain-specific semantic spaces will be available for download. The data size of the
semantic space depends on the number of words, number of dimensions, and number
of decimal places, with a typical space ranging from 100 MB to 1 GB. Due to the file size,
only a small general space is included in the base package. Additional spaces can then be
downloaded within the app.

As already mentioned, the coverage of words is of great importance so that no relevant
information is lost. When the text corpus is selected, the coverage of words that are
contained in the responses is calculated and displayed, making it easy to determine the
optimal corpus and space.

When using the demo data set, users can select the pre-built corpus SocialZoo.
After the selection of the text corpus, the next step (4 Semantic Space) allows exploring

the selected or built semantic space. An interactive 3D plot shows the positions of words
contained in the response data within the semantic space. The plot also encodes words’
frequency in the response data set (not in the text corpus) in the dots’ colors. Please note
that dimensionality reduction techniques reduce the hyperdimensional semantic space
here. In addition to interacting with the visualization, users can also enter word pairs and
compute their semantic similarity or inspect the complete list of tokens covered by the
selected semantic space.

3.4.4. Response Semantics and Response Types

After this exploratory one, the next step (5 Response Semantics) is crucial. It projects
the response data into the selected semantic space. For this, users press the button Compute
Response Vectors. After some time, during which the app computes the centroid vectors
of all responses, the progress bar at the bottom right disappears and is replaced by a
plot similar to the previous one. The plot visualizes the responses. A table presents the
response vectors.

The similarity of the responses can be measured by their spatial proximity and an-
gles. The spatial representation in the space, reduced to two or three dimensions via
dimensionality reduction, allows visualizing the semantic space.

Figure 8 shows a two-dimensional representation of the demo data’s response vectors
in the app. Every dot represents a single response within the data. For a better visual
overview, the responses are displayed as dots and not as vectors. The different colors
indicate the different response codes. Apparently, in the demo data set, the response
vectors separated spatially well concerning their codes, which provides a good foundation
for the next step.

Psych 2021, 3 437Psych 2021, 3 437

Figure 8. Response semantics of the demo data set in shinyReCoR. The colors distinguish the human
raters’ codings as correct (blue) and incorrect (orange). Here, the semantic space is reduced to two
dimensions using principal component analysis.

Based on these response vectors, the next step (6 Response Types) aims to identify ho-
mogeneous groups of responses and to separate those from other, distinguishable groups
of responses. For this, the user selects the distance measure, clustering method, and the
number of clusters. At this point, the app does not support the user in finding the optimal
number of clusters. In the future, it will do so by reporting performance results in relation
to the number of clusters and measures of clustering quality such as Average Silhouette
Width. Currently, the user can find the optimal solution by carrying out the clustering
(Button Create Clusters) and inspecting cluster purity in the resulting table on the right as
well as using cross-validation for evaluation in the next step.

Once clustering is completed, the app displays another interactive table on the right
that allows detailed diagnostic investigations. The table displays each cluster’s code dis-
tribution and the number of assigned responses. Obviously, clusters should be as homo-
geneous as possible concerning their codes, which is summarized in the entropy measure
[30] (the closer to 0, the purer).

Furthermore, via a click in the Details column, each cluster can be investigated more
closely. The appearing dialogue (Figure 9) shows a table with each response’s distance to
the cluster centroid to which it is assigned. One usage of this table is to sort the table by
codes in order to identify misclassified responses in that cluster. Moreover, the top shows
a summary for the cluster in the form of (half) a rose diagram, which visualizes the distri-
bution of angles to the cluster centroid. The distribution’s dispersion, the mean’s shift
from 0, as well as the distances of deviating responses concerning their code are of partic-
ular interest in this diagnostic plot.

Figure 8. Response semantics of the demo data set in shinyReCoR. The colors distinguish the human raters’ codings as
correct (blue) and incorrect (orange). Here, the semantic space is reduced to two dimensions using principal component analysis.

Based on these response vectors, the next step (6 Response Types) aims to identify
homogeneous groups of responses and to separate those from other, distinguishable groups
of responses. For this, the user selects the distance measure, clustering method, and the
number of clusters. At this point, the app does not support the user in finding the optimal
number of clusters. In the future, it will do so by reporting performance results in relation
to the number of clusters and measures of clustering quality such as Average Silhouette
Width. Currently, the user can find the optimal solution by carrying out the clustering
(Button Create Clusters) and inspecting cluster purity in the resulting table on the right as
well as using cross-validation for evaluation in the next step.

Once clustering is completed, the app displays another interactive table on the right
that allows detailed diagnostic investigations. The table displays each cluster’s code
distribution and the number of assigned responses. Obviously, clusters should be as
homogeneous as possible concerning their codes, which is summarized in the entropy
measure [30] (the closer to 0, the purer).

Furthermore, via a click in the Details column, each cluster can be investigated more
closely. The appearing dialogue (Figure 9) shows a table with each response’s distance
to the cluster centroid to which it is assigned. One usage of this table is to sort the table
by codes in order to identify misclassified responses in that cluster. Moreover, the top
shows a summary for the cluster in the form of (half) a rose diagram, which visualizes
the distribution of angles to the cluster centroid. The distribution’s dispersion, the mean’s
shift from 0, as well as the distances of deviating responses concerning their code are of
particular interest in this diagnostic plot.

Psych 2021, 3 438Psych 2021, 3 438

Figure 9. Detail view with response-specific distance information. The distance of the response vec-
tor to the respective cluster centroid is displayed in a rose plot.

3.4.5. Evaluation
Testing the coding methods of the automatic classifier and seeing how it codes dif-

ferent responses can be exciting, but its practical implementation requires systematic evi-
dence-based reasoning; in other terms, evaluation (7 Evaluation). The app offers a strati-
fied, repeated k-fold cross-validation, which splits the data into k parts and each part is
used as the test set once. This procedure is repeated t times. Both parameters, k and t, can
be defined manually. In the end, the 𝑡 × 𝑘 evaluation results are aggregated, serving as a
proxy for out-of-sample performance.

Usually, 5- or 10-fold evaluation strategies are used. However, the definitions of k
and t should be based on the size of the data set and the coding distribution. For a 10-fold
strategy evaluating a data set with 100 responses and a skewed response distribution in
which 90 percent of the responses are coded as correct, there will only be one incorrect
response in each fold due to stratified assignment. In this example, the evaluation could
be optimized by smaller folds or more repetitions.

3.4.6. Classification
The classifier screen (8 Classifier) is the heart of the app, as all methods converge at

this point. In this part, the complete final classifier is used, meaning all responses are used
for model training. The interface has a simple design to focus on the response assignment
(Figure 10). In this part of the app, the classifier can be explored by typing in different
responses and their automatic classification. The response can be entered into a text field,
and with one click on Classify Response, it will be automatically coded. In addition to the
coding result, information about the processing and the classification of the response to a
cluster is displayed to understand the coding process and to give a deeper insight into the
underlying mechanics of the procedure. The response text is displayed in raw and pro-
cessed form, and information about all similar responses is presented. Similar responses
here means other responses that are located in the same cluster as the just entered re-
sponse. The response is depicted in an interactive plot showing the semantic space to give
a visual understanding of the response location in relation to other responses. The user
can filter the data points regarding their cluster assignment and change between two- and
three-dimensional figures.

Figure 9. Detail view with response-specific distance information. The distance of the response vector to the respective
cluster centroid is displayed in a rose plot.

3.4.5. Evaluation

Testing the coding methods of the automatic classifier and seeing how it codes different
responses can be exciting, but its practical implementation requires systematic evidence-
based reasoning; in other terms, evaluation (7 Evaluation). The app offers a stratified,
repeated k-fold cross-validation, which splits the data into k parts and each part is used
as the test set once. This procedure is repeated t times. Both parameters, k and t, can be
defined manually. In the end, the t× k evaluation results are aggregated, serving as a proxy
for out-of-sample performance.

Usually, 5- or 10-fold evaluation strategies are used. However, the definitions of k
and t should be based on the size of the data set and the coding distribution. For a 10-fold
strategy evaluating a data set with 100 responses and a skewed response distribution in
which 90 percent of the responses are coded as correct, there will only be one incorrect
response in each fold due to stratified assignment. In this example, the evaluation could be
optimized by smaller folds or more repetitions.

3.4.6. Classification

The classifier screen (8 Classifier) is the heart of the app, as all methods converge at
this point. In this part, the complete final classifier is used, meaning all responses are used
for model training. The interface has a simple design to focus on the response assignment
(Figure 10). In this part of the app, the classifier can be explored by typing in different
responses and their automatic classification. The response can be entered into a text field,
and with one click on Classify Response, it will be automatically coded. In addition to
the coding result, information about the processing and the classification of the response
to a cluster is displayed to understand the coding process and to give a deeper insight
into the underlying mechanics of the procedure. The response text is displayed in raw
and processed form, and information about all similar responses is presented. Similar
responses here means other responses that are located in the same cluster as the just entered
response. The response is depicted in an interactive plot showing the semantic space to

Psych 2021, 3 439

give a visual understanding of the response location in relation to other responses. The
user can filter the data points regarding their cluster assignment and change between two-
and three-dimensional figures.

Psych 2021, 3 439

Figure 10. Exploring the classifier in shinyReCoR.

Currently, the automatic classification is limited to exploration in the sense of manu-
ally typed responses. In future versions, it will also be possible to evaluate entire data sets
without using them for model training.

3.5. Future Developments
The app is under ongoing development to cover additional usage scenarios for auto-

matic coding and for categorizing texts without manual labels. The article describes only
the app’s current state.

Currently, the upload is limited to CSV files, with a focus on two columns: one text
and one code column. For enhancing analyses without manual codes, the app will soon
allow text data imports without any manual annotations. We also plan to provide import-
ing data formats from R and third-party applications, such as SPSS.

Already now, users can view and export responses’ assignments to clusters inde-
pendently of the manual coding, but the import step currently requires two columns.

Furthermore, we plan to enable users to generate their own semantic spaces via the
ReCo-server and download them directly into the app to cover item-specific vocabulary.

We are also planning an export function for the classifier to integrate it into other
applications, such as assessment systems, which allow real-time coding.

4. Objectives and Requirements of shinyReCoR
shinyReCoR is a freely available R package, downloadable from our website

shinyReCoR. The app works on the popular operating systems Windows, macOS, and
Linux, on which at least R 4.0.1 is installed. RStudio can be useful for further processing
of the data but is not necessary for using the app. The hardware requirements depend on
the size of the used data sets. It is possible to use parallel processing, which can speed up
individual tasks, depending on the number of CPU cores and data volume. Using hard-
ware with lower performance may lead to longer execution times for particularly large
data sets, but it is still possible to use the app.

Figure 10. Exploring the classifier in shinyReCoR.

Currently, the automatic classification is limited to exploration in the sense of manually
typed responses. In future versions, it will also be possible to evaluate entire data sets
without using them for model training.

3.5. Future Developments

The app is under ongoing development to cover additional usage scenarios for auto-
matic coding and for categorizing texts without manual labels. The article describes only
the app’s current state.

Currently, the upload is limited to CSV files, with a focus on two columns: one text and
one code column. For enhancing analyses without manual codes, the app will soon allow
text data imports without any manual annotations. We also plan to provide importing data
formats from R and third-party applications, such as SPSS.

Already now, users can view and export responses’ assignments to clusters indepen-
dently of the manual coding, but the import step currently requires two columns.

Furthermore, we plan to enable users to generate their own semantic spaces via the
ReCo-server and download them directly into the app to cover item-specific vocabulary.

We are also planning an export function for the classifier to integrate it into other
applications, such as assessment systems, which allow real-time coding.

4. Objectives and Requirements of shinyReCoR

shinyReCoR is a freely available R package, downloadable from our website shinyReCoR.
The app works on the popular operating systems Windows, macOS, and Linux, on which

Psych 2021, 3 440

at least R 4.0.1 is installed. RStudio can be useful for further processing of the data but is
not necessary for using the app. The hardware requirements depend on the size of the
used data sets. It is possible to use parallel processing, which can speed up individual
tasks, depending on the number of CPU cores and data volume. Using hardware with
lower performance may lead to longer execution times for particularly large data sets, but
it is still possible to use the app.

4.1. The Advantages of Using R as the Basis

The central idea behind R, to use a particular programming language for applying
statistics [31,32] combined with open accessibility and a huge exchange of the community,
leads to great popularity, especially in the scientific context. The number of offered pack-
ages, which are programmed and provided mainly by the community, covers many require-
ments for statistical analysis and research. Therefore, with R at the basis of shinyReCoR,
users can continue their work seamlessly in R with the package’s output. Moreover, we
plan to enable users to change the workflow flexibly according to their needs over the
long run.

Due to the release of Shiny [33], it is possible to handle data in an interactive and vivid
way through a graphical user interface. The special advantage of Shiny, which we also use
for the app, is that parameters can be changed quickly via the interface (e.g., with a slider).
Recalculations are executed in real-time. This way, shinyReCoR, for example, provides the
user with interactive plots so that the user gains valuable insights into the data and the
influence of different parameter realizations. With the advantages of Shiny, more users
can benefit from the software package as they can focus on exploring their data, choosing
reasonable methods, and exploring resulting classifiers while all calculations run in the
backend. We took advantage of these potentials to implement our app for automatic coding
and offer shinyReCoR, an instrument that researchers can use across diverse domains and
without any required programming knowledge. The R code of the app can be viewed after
the package downloads.

4.2. Privacy

To ensure maximum data protection of your research data while using the app,
shinyReCoR, including all dependent packages, must be installed locally on the com-
puter. There is no external communication regarding the response or user data, and for
all stored parameters, (intermediate) results are stored locally in your working directory
(which is the package library here). Only the download process and the (not yet released)
tailored text corpus assembly involve communication with the ReCo server. That is, first,
the users’ computer will communicate with the ReCo server when the package is down-
loaded manually from the website or the automatic installation process is triggered in R.
Second, in its future version, the app will allow harvesting a text corpus from Wikipedia
dumps stored on our server that is tailored to the users’ response data. For this, the user
will enter relevant terms that are at the heart of the item responses’ semantics. This query
will be sent to the ReCo server, and the app will then download a corresponding text
corpus, which will be used to compute a semantic space model for the app.

4.3. Updates

The development and deployment of software are more of a process than a static de-
livery. Especially the context of science and the rapidly growing knowledge in the domains
of natural language processing [34,35] and machine learning [36] require constant adaption
and implementation of new techniques. The paper describes the currently released alpha
version v0.2.0 of shinyReCoR, which is still limited to the core methods described in the
article. Updates will be published regularly on our website.

Psych 2021, 3 441

5. Discussion and Challenges
5.1. Polytomous Coding

The whole coding process is not restricted to the use of binary (i.e., dichotomous) codes.
The cluster structure within the automatic coding allows polytomous coding assignments
as well as those with ordinal properties. Let us consider this challenge with respect to the
semantic space, where each response is represented as a vector. The presence of multiple
code levels increases the potential of semantic overlapping where similar content actually
must be separated through the unsupervised processes. Each code typically has one or
more prototypical responses assigned (i.e., reference texts in the coding guides). It can be
assumed that the more the responses differ semantically, the greater the distances between
them, which increases the probability that the unsupervised process will separate them.

5.2. Gold Standard: Human Coding

A classifier is trained and evaluated on the basis of human coded responses. The
success of the automatic classifier is thus measured against the human class assignments.
These represent the gold standard. However, since a relatively large amount of unstruc-
tured data, be it images, videos, or text responses, needs to be labeled or coded, human
involvement is necessary. The coding quality can have a large impact on the accuracy
of classifiers, depending on the relative number of miscodings [37,38]. Once again, a
distinction must be made between incorrect codings where the label does not fit the data
material and just disagreement between raters where a certain margin of interpretation
allows varying codings (i.e., border cases). Both harm the accuracy of a trained classifier
through noise [39–41].

While strict misclassification is caused, for example, due to the human coder’s way of
working and motivation, a low agreement between two raters can be caused by several
characteristics. Here, especially, the margin of interpretation plays an important role, which
should be eliminated by an efficient coding instruction because all possible responses and
response variants have been considered, and the coding is fixed for them. Thus, more
or less, every response is mentally matched with the coding guides. It is, of course, not
possible that all variants are covered word-for-word in the coding instruction. At this
point, it requires humans or machines to transfer the coding directive to the text. Humans
naturally have the advantage that they are called intelligent, and they can complete this
simple task; however, a certain variance can lead to mistakes. Here, again, the advantage of
the machine comes into play, which cannot be considered intelligent from a psychological
point of view even though this buzz term is often used for complex and less complex
algorithms but, using a deterministic approach, it always produces the same result under
the same conditions. This means that an item-specific model is always assigned the same
coding for a given response.

5.3. Ambiguity

Comprehension problems involving word ambiguities are not restricted to human
perception, see [42,43]. When forming word embeddings using LSA, the method ignores
the variety of different word contexts. In the semantic space, words are considered to be
similar if they occur in similar contexts [12,17,44], where the context can be defined as the
neighbor words close to a target word in the text. The window, though, defining what
is considered a neighborhood varies. LSA [12] includes all words in the same document,
whereas word2vec uses a window of words [17] which includes the n words before and
after the target word.

If there is a word in a dictionary with multiple meanings, this can lead to unreliable
representations. For example, the word ‘break’ can mean to stop an activity or to separate
something into several parts. It can also be used for referring to a component of a car. Even
though the meanings may be similar in some sense, they are used in different contexts. This
blends the spatial representation of the word vector across different contexts, resulting in a
fuzzier representation. While deep learning methods can take this contextual information

Psych 2021, 3 442

into account [16], the model training is more involved and requires larger data sets to train
and work with it.

We argue that a precise representation is unnecessary because we only need a point in
the semantic space, which we associate with a category, to set further points in relation to
these. Nevertheless, we cannot rule out the possibility that unreliable representations due
to word ambiguities influence the clustering process.

5.4. Bag of Words

The word order is not taken into account for representing the response in the vector
space. This means that fewer responses are needed to represent certain response types.
However, if the word order or a part of the syntactical structure is essential for determining
a response’s code, which can be the case depending on the item, this could lead to several
response types being mixed together. The result would be miscodings and would reduce
the performance of the automatic coding process. A special case is negation which refers to
a verb. Ignoring the word order in the two sentences ‘No, he is guilty’ and ‘He is not guilty’
will lead the bag of words process to the same result.

5.5. Language Diversity
5.5.1. Stop Words

Stop words usually are frequent words without significant semantic content on their
own. Thus, they are typically omitted in many natural language processing tasks to
reduce the noise within the text. The number of stop words is strongly dependent on the
language. Within the Natural Language Toolkit (NLTK) stop word list [45], for example,
179 stop words are listed for English, 232 for German, 313 for Spanish, and 1784 for
Slovenian. In addition, the stop word lists can even differ within languages, depending on
the predefined lists.

Furthermore, negations are also often listed. Omitting them through stop word
removal results in a sentence such as ‘He did forget the wedding day’ equalling the
sentence ‘He did not forget the wedding day’, which can have serious consequences
and bias the calculation of response semantics. Fortunately, the empirical world makes
processing a little easier for automatic coding for most assessment domains, because test
takers rarely intend to write the correct thing but bluntly negate it. For example, if testees
are required to write down what a story is about, instruction-conform (i.e., motivated) test
behavior would not result in the proper semantics just complemented with a negating
particle. Therefore, shinyReCoR offers the possibility of checking all stop words during
processing and to customize them manually. This is important as the given example is not
representative for all assessment domains.

5.5.2. Language Structure

Language diversity is one of the greatest challenges in NLP. There are between 5000
and 8000 languages spoken worldwide, which differ greatly in terms of their characteris-
tics [46]. NLP research is mainly done based on the English language, which, on the one
hand, comes from its global usage [47] and also because it is considered the language of
science [48].

With some methods, it is difficult or even impossible to make them usable for other
languages. Different language properties require different processing. For example, lan-
guages differ in terms of the alphabet and their sentence and word structure. Based on
those characteristics, languages are often classified as analytic or synthetic. Analytic lan-
guages have few or no inflections, while synthetic languages might contain an abundance.
The extraction of information from texts, thus, can vary from focusing on morphemes or
sentence structure.

Building language models or semantic spaces requires a large number of text examples.
Languages that are widely spread on the internet are easily accessible, whereas models of

Psych 2021, 3 443

low-resource languages might require adaption of high-resource language models by, for
example, linear projection [49] (see [50] for an overview).

In its current version, shinyReCoR allows the use of both English and German texts.
The implementation of new languages is planned and will initially cover all common
languages, and different variants such as American English, British English, and Australian
English will also be implemented.

5.6. Parameter Settings

With shinyReCoR, we intend to offer a variety of methods and settings with which
users can customize processes to fit their text data and assessment setting as best as possible.
Specific configurations in the machine processing of language are commonly applied and
provide satisfactory results. A good example of this is preprocessing, such as stemming
words and removing stop words. Those common methods constitute the app’s basis,
whereby it allows to vary certain methods and parameter values to optimize the model.
This concerns the individual composition of the semantic space, all preprocessing steps, and
the clustering method. Since there is no recipe for success, it is up to the user to explore the
optimal configuration. Every setting can have a significant impact on classification success,
depending on the response’s characteristics. However, the app offers the possibility to try
out different strategies to gain the most accurate automatic response coder.

5.7. Bias

The use of algorithm-based decisions can have far-reaching consequences, depending
on how they are used, and the user should be aware of this. The training of machine
learning and language models is strongly dependent on the data being offered, where
the qualitative content of the texts and the distribution of content can serve as a source of
biases [51–53]. In the context of education and educational evaluation, the use of automated
methods can systematically disadvantage individuals [51] or groups [52,53].

Whether and how a disadvantage could arise from the presented automated coding
system has not yet been empirically tested, while it has been shown for others [54,55].
Influences could arise from various factors, such as biased language models [51–53], lin-
guistic patterns that go beyond semantics to infer groupings, or simply biased target labels
(i.e., human codes). That said, the distortion of language models [52] can theoretically
be relativized for the intended use here to a certain extent since the exact word vector
representations are not relevant, but only the relations between the response vectors are
of interest. The nature of the preprocessing steps could also be of importance, since, for
example, responses with certain spelling errors might be corrected accurately. Likewise,
preprocessing offers different added value for different languages, which means that in-
dividual test language users could be discriminated against in multilingual comparisons.
However, it is particularly important to prevent individuals from being systematically
disadvantaged by an automatic process, for example, in high-stakes assessments, so it is
necessary to investigate any influences. Even assessments that are considered low-stakes
for individuals might have a negative impact on them if, for example, policy making [56] is
influenced by the assessments’ potentially biased evidences.

The reference to possible discrimination should be made with every method involving
machine decisions with far-reaching consequences. However, machine methods also
offer important advantages to reduce discrimination in decision processes and to increase
objectivity and reliability. Machines are inherently objective in their judgment process and
are not cognitively influenced by strenuous coding work. Thus, while automatic coding
might involve its own biases, one can also consider it wrong to not apply automatic coding
where it could help to get rid of human biases in assessment.

The classification process in shinyReCoR is transparent compared to many other
machine learning techniques, where decisions are made in a black box. The cluster-based
method makes each decision understandable to users, where similarly ranked responses
can be viewed to understand the process. The method may not be perfect, but its simplicity

Psych 2021, 3 444

and transparency provide a practical application for assessment, while the performant or
fair applicability of shinyReCoR can be supported or refuted by empirical evaluation.

6. Summary

shinyReCoR is supposed to open the possibility for coding responses automatically,
especially in large-scale applications. The software is free to download and use as an
R-package. The mechanisms can be read transparently through the source code. The appli-
cation can be empirically tested and evaluated on the user’s assessment data, providing an
empirical basis for potential application. The app itself is still in its early stages and will be
further developed and adapted to new methods as time progresses.

Further research can involve not only the implementation of new NLP methods, which
may improve prediction accuracy, but also research questions which can be derived from
the application of machine learning in the assessment area.

Author Contributions: Conceptualization, N.A. and F.Z.; methodology, N.A. and F.Z.; software, N.A.
and F.Z.; validation, N.A. and F.Z.; resources, F.Z.; writing—original draft preparation, N.A.; writing—
review and editing, F.Z. and N.A.; visualization, N.A.; supervision, F.Z.; project administration, F.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available within the shinyReCoR package, downloadable at
https://www.reco.science.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Just, M.A.; Carpenter, P.A. A theory of reading: From eye fixations to comprehension. Psychol. Rev. 1980, 87, 329–354. [CrossRef]

[PubMed]
2. Graesser, A.C.; Singer, M.; Trabasso, T. Constructing inferences during narrative text comprehension. Psychol. Rev. 1994, 101,

371–395. [CrossRef]
3. Kintsch, W. The role of knowledge in discourse comprehension: A construction-integration model. Psychol. Rev. 1988, 95, 163–182.

[CrossRef] [PubMed]
4. Bejar, I.I. Rater Cognition. Implications for validity. Educ. Meas. Issues Pract. 2012, 31, 2–9. [CrossRef]
5. Miller, L.M.S.; Cohen, J.A.; Wingfield, A. Contextual knowledge reduces demands on working memory during reading. Mem.

Cogn. 2006, 34, 1355–1367. [CrossRef]
6. Johnston, P. Prior knowledge and reading comprehension test bias. Read. Res. Q. 1984, 19, 219–239. [CrossRef]
7. Klein, J.; El, L.P. Impairment of teacher efficiency during extended sessions of test correction. Eur. J. Teach. Educ. 2003, 26, 379–392.

[CrossRef]
8. Zehner, F.; Salzer, C.; Goldhammer, F. Automatic coding of short text responses via clustering in educational assessment. Educ.

Psychol. Meas. 2016, 76, 280–303. [CrossRef] [PubMed]
9. Horbach, A.; Zesch, T. The Influence of Variance in Learner Answers on Automatic Content Scoring. Front. Educ. 2019, 4, 28.

[CrossRef]
10. OECD. PISA 2012 Assessment and Analytical Framework; OECD Publishing: Paris, France, 2013.
11. Tang, W.; Hu, J.; Zhang, H.; Wu, P.; He, H. Kappa coefficient: A popular measure of rater agreement. Shanghai Arch Psychiatry

2015, 27, 62–67. [CrossRef]
12. Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 1990, 41,

391–407. [CrossRef]
13. Dumais, S.T. Improving the retrieval of information from external sources. Behav. Res. Methods Instrum. Comput. 1991, 23, 229–236.

[CrossRef]
14. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237.

15. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), New Orleans, LA, USA, 25–29 October 2014; pp. 1532–1543.

https://www.reco.science
https://www.reco.science
http://doi.org/10.1037/0033-295X.87.4.329
http://www.ncbi.nlm.nih.gov/pubmed/7413885
http://doi.org/10.1037/0033-295X.101.3.371
http://doi.org/10.1037/0033-295X.95.2.163
http://www.ncbi.nlm.nih.gov/pubmed/3375398
http://doi.org/10.1111/j.1745-3992.2012.00238.x
http://doi.org/10.3758/BF03193277
http://doi.org/10.2307/747364
http://doi.org/10.1080/0261976032000128201
http://doi.org/10.1177/0013164415590022
http://www.ncbi.nlm.nih.gov/pubmed/29795866
http://doi.org/10.3389/feduc.2019.00028
http://doi.org/10.11919/j.issn.1002-0829.215010
http://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://doi.org/10.3758/BF03203370

Psych 2021, 3 445

16. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

17. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their composition-
ality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5
December 2013; pp. 3111–3119.

18. Levy, O.; Goldberg, Y.; Dagan, I. Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc.
Comput. Linguist. 2015, 3, 211–225. [CrossRef]

19. Kiela, D.; Clark, S. A systematic study of semantic vector space model parameters. In Proceedings of the 2nd Workshop on
Continuous Vector Space Models and their Compositionality, Gothenburg, Sweden, 26–30 April 2014; pp. 21–30.

20. Altszyler, E.; Ribeiro, S.; Sigman, M.; Slezak, D.F. The interpretation of dream meaning: Resolving ambiguity using Latent
Semantic Analysis in a small corpus of text. Conscious. Cogn. 2017, 56, 178–187. [CrossRef] [PubMed]

21. Landauer, T.K.; Foltz, P.W.; Laham, D. An introduction to latent semantic analysis. Discourse Process. 1998, 25, 259–284. [CrossRef]
22. Porter, M.F. An algorithm for suffix stripping. Program 1980, 14, 130–137. [CrossRef]
23. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
24. Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion?

J. Classif. 2014, 31, 274–295. [CrossRef]
25. Mahajan, M.; Nimbhorkar, P.; Varadarajan, K. The planar k-means problem is NP-hard. Theor. Comput. Sci. 2012, 442, 13–21.

[CrossRef]
26. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
27. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]

[PubMed]
28. Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70,

213–220. [CrossRef]
29. Manning, C.; Schutze, H. Foundations of Statistical Natural Language Processing; MIT Press: Cambridge, MA, USA, 1999.
30. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
31. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/

(accessed on 1 June 2021).
32. Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [CrossRef]
33. Chang, W.; Cheng, J.; Allaire, J.; Xie, Y.; McPherson, J. Shiny: Web Application Framework for R. Available online: https:

//CRAN.R-project.org/package=shiny (accessed on 1 June 2021).
34. Cambria, E.; White, B. Jumping NLP curves: A review of natural language processing research [Review Article]. IEEE Comput.

Intell. Mag. 2014, 9, 48–57. [CrossRef]
35. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing [Review

Article]. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]
36. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]

[PubMed]
37. Northcutt, C.G.; Athalye, A.; Mueller, J. Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv 2021,

arXiv:2103.14749.
38. Hao, D.; Zhang, L.; Sumkin, J.; Mohamed, A.; Wu, S. Inaccurate Labels in Weakly-Supervised Deep Learning: Automatic

Identification and Correction and Their Impact on Classification Performance. IEEE J. Biomed. Health Inform. 2020, 24, 2701–2710.
[CrossRef]

39. Frénay, B.; Verleysen, M. Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25,
845–869. [CrossRef] [PubMed]

40. Loukina, A.; Madnani, N.; Cahill, A.; Yao, L.; Johnson, M.S.; Riordan, B.; McCaffrey, D.F. Using PRMSE to evaluate automated
scoring systems in the presence of label noise. In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building
Educational Applications, Seattle, WA, USA, 10 July 2020; pp. 18–29.

41. Reidsma, D.; Carletta, J. Reliability Measurement without Limits. Comput. Linguist. 2008, 34, 319–326. [CrossRef]
42. Raynar, K.; Duffy, S.A. Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical

ambiguity. Mem. Cogn. 1986, 14, 191–201. [CrossRef] [PubMed]
43. Duffy, S.A.; Morris, R.K.; Rayner, K. Lexical ambiguity and fixation times in reading. J. Mem. Lang. 1988, 27, 429–446. [CrossRef]
44. Harris, Z.S. Distributional structure. WORD 1954, 10, 146–162. [CrossRef]
45. Benoit, K.B.; Muhr, D.; Watanabe, K. Stopwords: Multilingual Stopword Lists. Available online: https://CRAN.R-project.org/

package=stopwords (accessed on 1 June 2021).
46. Evans, N.; Levinson, S.C. The myth of language universals: Language diversity and its importance for cognitive science. Behav.

Brain Sci. 2009, 32, 429–448. [CrossRef]
47. Kralisch, A.; Mandl, T. Barriers to information access across languages on the internet: Network and language effects. In

Proceedings of the 39th Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2006; p. 54b.

http://doi.org/10.1162/tacl_a_00134
http://doi.org/10.1016/j.concog.2017.09.004
http://www.ncbi.nlm.nih.gov/pubmed/28943127
http://doi.org/10.1080/01638539809545028
http://doi.org/10.1108/eb046814
http://doi.org/10.1080/01621459.1963.10500845
http://doi.org/10.1007/s00357-014-9161-z
http://doi.org/10.1016/j.tcs.2010.05.034
http://doi.org/10.1177/001316446002000104
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://doi.org/10.1037/h0026256
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.R-project.org/
http://doi.org/10.2307/1390807
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
http://doi.org/10.1109/MCI.2014.2307227
http://doi.org/10.1109/MCI.2018.2840738
http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://doi.org/10.1109/JBHI.2020.2974425
http://doi.org/10.1109/TNNLS.2013.2292894
http://www.ncbi.nlm.nih.gov/pubmed/24808033
http://doi.org/10.1162/coli.2008.34.3.319
http://doi.org/10.3758/BF03197692
http://www.ncbi.nlm.nih.gov/pubmed/3736392
http://doi.org/10.1016/0749-596X(88)90066-6
http://doi.org/10.1080/00437956.1954.11659520
https://CRAN.R-project.org/package=stopwords
https://CRAN.R-project.org/package=stopwords
http://doi.org/10.1017/S0140525X0999094X

Psych 2021, 3 446

48. Hamel, R.E. The dominance of English in the international scientific periodical literature and the future of language use in science.
AILA Rev. 2007, 20, 53–71. [CrossRef]

49. Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting similarities among languages for machine translation. arXiv 2013, arXiv:1309.4168.
50. Ruder, S.; Vulić, I.; Søgaard, A. A survey of cross-lingual word embedding models. J. Artif. Intell. Res. 2019, 65, 569–631.

[CrossRef]
51. Caliskan, A.; Bryson, J.J.; Narayanan, A. Semantics derived automatically from language corpora contain human-like biases.

Science 2017, 356, 183–186. [CrossRef]
52. Bolukbasi, T.; Chang, K.-W.; Zou, J.; Saligrama, V.; Kalai, A. Man is to computer programmer as woman is to homemaker?

Debiasing word embeddings. In Proceedings of the 30th International Conference on Neural Information Processing Systems,
Barcelona, Spain, 5 December 2016; pp. 4356–4364.

53. Manzini, T.; Lim, Y.C.; Tsvetkov, Y.; Black, A.W. Black is to criminal as caucasian is to police: Detecting and removing multiclass
bias in word embeddings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 615–621.

54. Loukina, A.; Madnani, N.; Zechner, K. The many dimensions of algorithmic fairness in educational applications. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, Florence, Italy, 2 August 2019;
pp. 1–10.

55. Madnani, N.; Cahill, A. Automated Scoring: Beyond Natural Language Processing. In Proceedings of the 27th International
Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 1099–1109.

56. Breakspear, S. The Policy Impact of PISA: An Exploration of the Normative Effects of International Benchmarking in School System
Performance; OECD: Paris, France, 2012.

http://doi.org/10.1075/aila.20.06ham
http://doi.org/10.1613/jair.1.11640
http://doi.org/10.1126/science.aal4230

	Introduction
	Method
	Building a Semantic Space
	Preprocessing
	Response Semantics
	Response Types
	Response Coding
	Evaluation
	Repeated k-Fold Cross-Validation
	Evaluation Metrics for Dichotomous Items
	Evaluation with Polytomous Coding
	Partial-Credit Scoring or Ordinal Coding

	ReCo’s Shiny App: shinyReCoR
	Download and Installation
	Troubleshooting
	First Steps
	Starting the App
	Managing and Storing Your Items in Projects
	Demo Dataset

	Response Analysis: From Data Import to Exploring the Classifier
	Upload and Structure Data
	Preprocessing and Word Predictiveness
	Text Corpus, Semantic Space, and Response Semantics
	Response Semantics and Response Types
	Evaluation
	Classification

	Future Developments

	Objectives and Requirements of shinyReCoR
	The Advantages of Using R as the Basis
	Privacy
	Updates

	Discussion and Challenges
	Polytomous Coding
	Gold Standard: Human Coding
	Ambiguity
	Bag of Words
	Language Diversity
	Stop Words
	Language Structure

	Parameter Settings
	Bias

	Summary
	References

