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1 Introduction

As the nature of dark matter remains unresolved and non-standard ideas have become an
accepted part of the speculation, one of the avenues is to envisage the existence of a whole
dark sector. There is a great variety of possibilities for the field content of the dark sector
and for its interactions with the visible one. Yet any dark sector surely couples to gravity,
and then it is natural to assume that it connects to inflationary dynamics as well.

If the dark sector consists of a non-Abelian Yang-Mills theory, so that gauge invariant
operators have dimension 4, then its interactions with the Standard Model can be very weak,
possibly even suppressed by the Planck mass squared (cf., e.g., refs. [1–3] and references
therein). Weak interactions between the dark and visible sectors allow the dark sector
temperature to differ from the Standard Model one. We would like to know how high the
dark sector temperature can be, as this affects several phenomena, such as the spectrum of
gravitational waves that gets generated; the efficiency with which dark matter candidates
can be produced; and the kind of thermal phase transitions that can be encountered.

When we talk about thermodynamic notions, it is a relevant question under which
conditions the temperature can be defined at all. For a non-Abelian Yang-Mills theory, the
generic equilibration rate, originating from kinematically unconstrained 2→ 2 scatterings,
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is of order Γg ∼ α2Tdark, where α ≡ g2/(4π) is the gauge coupling. An upper bound on the
temperature is obtained by comparing this with the Hubble rate of a radiation-dominated
expanding universe, H ∼ max{T 2

dark, T
2
visible}/mpl, where mpl is the Planck mass. For

Tdark < α2mpl, the equilibration rate exceeds the Hubble rate, i.e. Γg > H. If we consider
dark sectors with α ∼ 0.3, it is therefore in principle meaningful to discuss temperatures
almost up to the Planck scale. On the other hand, if the Hubble rate is dominated by a
temperature-independent part, like a vacuum energy density, there is also a lower bound
on Tdark. We will return to a posteriori comparisons of the equilibration and Hubble rates.

In order to carry out a concrete discussion, we adopt a specific inflationary scenario that
can indeed be argued to thermalize efficiently (cf. section 2.7), namely that of non-Abelian
axion-like (or natural) inflation [4]. The parameters of the inflaton potential are fixed from
standard “cold inflation” predictions, to match Planck data [5]. The heating-up dynamics is
characterized by the gauge coupling α that does not affect inflationary predictions at leading
order. Apart from the self-interactions of the Yang-Mills plasma, α also parametrizes the
interactions between the dark sector and the inflaton, and for this we adopt the form of the
pseudoscalar operator,

L ⊃ 1
2∂

µϕ∂µϕ− V0(ϕ)− ϕχ

fa
, χ ≡

α εµνρσF cµνF
c
ρσ

16π , (1.1)

where ϕ is the inflaton field, F cµν is the Yang-Mills field strength, c is a colour index, and fa
is the axion decay constant. The advantage of this interaction term is that concrete (even
if so far incomplete) information is available about the friction and mass corrections that it
leads to. We normally reparametrize α through a dark confinement scale ΛIR, cf. eq. (2.21).
Furthermore, for simplicity, we denote T ≡ Tdark in the following, and assume that the
effect of the visible sector can be neglected in the period of time that we are interested in.1

Our presentation is organized as follows. After an exposition of our general setup
(cf. section 2), we first introduce the concept of a stationary temperature. The latter
permits for a simple qualitative estimate of the energy density that the Yang-Mills plasma
obtains during inflation (cf. section 3.1). For a quantitative understanding, we then proceed
to a numerical solution of the maximal temperature, which is somewhat higher than the
stationary one (cf. section 3.2). After elaborating upon physical implications for gravitational
waves (cf. section 4), we turn to a summary and outlook (cf. section 5).

2 Inflationary setup

2.1 Evolution equations

Given the fast thermalization rate of non-Abelian gauge theory (the arguments for this are
revisited in section 2.7), we carry out our discussion assuming that the notion of a local
temperature-like quantity can be defined. The degrees of freedom are then the average

1If the dark sector consists of a relativistic plasma, this assumption is roughly equivalent to Tdark > Tvisible.
There are concrete scenaria where it has been argued that the dark sector indeed heats up first and injects
subsequently a part of its energy density into the visible one, so that the dark sector could be hotter than
the Standard Model, see e.g. refs. [6–8] and references therein.
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inflaton field, ϕ̄, and the plasma temperature, T . The equations governing their evolution
can be written as (a justification from energy conservation follows below eq. (2.4))

¨̄ϕ+ (3H + Υ) ˙̄ϕ+ Vϕ ' 0 , (2.1)

ėr + 3H
(
er + pr − TVT

)
− T V̇T ' Υ ˙̄ϕ2 , (2.2)

where er and pr denote the energy density and pressure of radiation. Furthermore H ≡ ȧ/a
is the Hubble rate; V is the inflaton potential;2 Vx ≡ ∂xV ; and Υ is a friction coefficient,
which transfers energy from the inflaton to radiation degrees of freedom (cf. section 2.4). If
we set T → 0 and Υ→ 0 as initial conditions, the plasma remains at zero temperature, and
we return back to normal cold inflation.

Denoting the pressure and energy density carried by the inflaton by

pϕ ≡
˙̄ϕ2

2 − V , eϕ ≡
˙̄ϕ2

2 + V − TVT , (2.3)

and multiplying eq. (2.1) by ˙̄ϕ, the evolution equation for ϕ̄ can equivalently be expressed as

ėϕ + 3H ˙̄ϕ2 + T V̇T ' −Υ ˙̄ϕ2 . (2.4)

Summing together eq. (2.2) and (2.4) yields the overall energy conservation equation,
ė+ 3H(e+ p) = 0, where e ≡ eϕ + er and p ≡ pϕ + pr. In the same notation the Friedmann
equation reads H2 = 8πe/(3m2

pl), where mpl = 1.22091× 1019 GeV.

As we will see in section 3.2, the system just defined can cross a first-order phase
transition. In this case, eq. (2.2) needs to be supplemented by another equation, valid
when the system is in a mixed phase. The technical reason is that in a mixed phase, the
temperature stays constant at T = Tc, so that Ṫ = 0. At the same time, the energy density
has a discontinuity, er(T+

c ) − er(T−c ) > 0, so that ∂Ter|T=Tc diverges. Therefore a naive
evaluation of the time derivative is ambiguous, ėr = Ṫ ∂Ter = “0×∞”.

In the real world, a mixed phase can incorporate complicated physics (bubble nucleations,
sound wave dynamics, turbulence). However, the overall picture should be well captured
by an adiabatic approximation. In this treatment, we re-parametrize er(t)|T=Tc through a
volume fraction, u, as

er(t) ≡ er(T+
c )u(t) + er(T−c ) [1− u(t)] , 0 ≤ u ≤ 1 (2.5)

⇒ ėr(t) = u̇(t)
[
er(T+

c )− er(T−c )
]
. (2.6)

In contrast, the pressure pr is continuous at T = Tc, since it equals minus the free energy
density, and therefore independent of u. Thereby eq. (2.2) gets replaced with

u̇
[
er(T+

c )− er(T−c )
]

+ 3H
(
er + pr − TVT

)
− T V̇T ' Υ ˙̄ϕ2 . (2.7)

We note that the potential V and its derivatives are well-defined, since the inflaton field
does not undergo any phase transition in our setup.

2How it differs from the tree-level potential V0 in eq. (1.1) is discussed in section 2.5.
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Figure 1. Examples in which the critical point is reached and surpassed (left, middle) or only
reached (right). Here u denotes the volume fraction of the deconfined phase (cf. eq. (2.5)), N the
number of e-folds from t = tref (cf. eq. (2.28)), and x a parameter introduced in eq. (2.21). The
cases (i–iii) are defined in section 3.1. The temperature evolution of the left and right solution is
shown in figure 4.

The solution of the differential equations needs now to be complemented by a monitoring
of T and u (cf. figure 1 for an illustration). If we are solving eq. (2.2), and notice that
T → T−c (respectively T → T+

c ), then we need to go over into eq. (2.7), with the initial
condition u = 0 (respectively u = 1). If we are solving eq. (2.7), and notice that u → 0
(u → 1), then we need to go over into eq. (2.2), with the initial condition er = er(T−c )
(er = er(T+

c )). It is possible that the system enters and exits the mixed phase from the
same side (for instance, if Tmax = Tc), or from different sides (if the transition is passed
through on the way towards higher or lower temperatures).

2.2 Non-perturbative thermodynamic functions for a radiation plasma

As an essential ingredient to eqs. (2.2) and (2.7), we need the thermodynamic energy
density and pressure of the radiation plasma, er and pr. These are often parametrized
through degrees of freedom g∗ or h∗, as er ≡ g∗π2T 4/30 and er + pr = Tsr ≡ h∗2π2T 4/45,
where sr is the entropy density. If the plasma is very weakly coupled, g∗ is to a good
approximation constant and h∗ ' g∗, however our focus is on self-interacting plasmas, where
the interactions can become strong as well.3 In the latter case, g∗ and h∗ decrease rapidly
at low temperatures, and their complete functional forms are needed.

It turns out to be convenient to parametrize the thermodynamic information through
the entropy density, sr. On one hand, this is because we need sr for eq. (3.2); on the other,
because sr can be precisely studied with lattice simulations (cf. refs. [9, 10] and references
therein). Denoting by Tc the critical temperature, and setting Nc = 3 from now on, the

3In this section and in section 2.5, we make use of non-perturbative information, so that the coupling can
be arbitrarily strong, whereas for the friction coefficient discussed in section 2.4, reliable non-perturbative
information is not available. Then we extrapolate weak-coupling predictions, strictly speaking only applicable
for α < 0.3, to a strongly coupled regime, introducing an estimate of the corresponding error along the way.
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results of the deconfined phase of a Yang-Mills plasma can be represented as [10]4

sr
T 3

∣∣∣∣
lattice

≈


6.9829− 1.0348

ln(T/Tc)
, T ≥ 3.222Tc

1.7015 + 77.757 ln(T/Tc) + 232.33 ln2(T/Tc)
1.0 + 19.033 ln(T/Tc) + 32.200 ln2(T/Tc)

, Tc < T < 3.222Tc

. (2.8)

For T/Tc →∞ this agrees within 0.5% with the Stefan-Boltzmann value

sr
T 3

∣∣∣∣
free

= 2π2 × 16
45 = 7.018 . (2.9)

The determination of sr/T 3 is more difficult in the confined phase, as the results soon
become exponentially small. Fitting to the tabulated results from ref. [10],5 viz.

sr/T
3 T/Tc

0.37(15) 1.0−
0.31(11) 0.980
0.108(23) 0.904
0.001(4) 0.660

, (2.10)

which appear to be consistent with ref. [11], we model the low-T region with the ansatz

sr
T 3

∣∣∣∣
lattice

T<Tc' a

(
T

Tc

)b
exp

(
−c Tc

T

)
, a = 45.8 , b = 6.81 , c = 4.80 . (2.11)

The transition is of the first order, so that sr/T 3 displays a discontinuity at T = Tc. For
the conversion between Tc and ΛIR, we estimate Tc ' 1.24ΛIR [12].

Given sr = dpr/dT , the other thermodynamic functions can be obtained as

pr(T )− pr(0) =
∫ T

0
dT ′ T ′3

(
sr
T ′3

)
, er(T )− er(0) = Tsr −

[
pr(T )− pr(0)

]
. (2.12)

Furthermore, in order to evaluate ėr = Ṫ cr, we need the heat capacity cr = ∂Ter = T∂Tsr.
To keep cr continuous, we have moved the matching point in eq. (2.8) to T = 4.863Tc when
evaluating ∂Tsr. At low temperatures, in turn, eq. (2.11) implies

pr(T )− pr(0)
T 4

T<Tc' a cb
(
cTc
T

)4
Γ
(
−b− 4, c Tc

T

)
, (2.13)

cr
T 3

T<Tc' a

[(
b+ 3

)( T
Tc

)b
+ c

(
T

Tc

)b−1]
exp

(
−c Tc

T

)
, (2.14)

where Γ(s, x) =
∫∞
x dt ts−1 e−t is an incomplete gamma function.

Restricting to the SU(3) plasma is a special case, however this is the system for which
the most reliable non-perturbative information is available. In addition, it entails a weak
first-order transition, which is typical of many other thermal systems.

4Ref. [10] gives T = 3.433Tc as the transition point between the two functional forms; we have replaced
this with the value at which the curves cross each other, with the approximate coefficients at our disposal.

5The first number can be found in the text, not the table. The last number appears to contain a typo in
the table of ref. [10]; we have reconstructed the correct value from the er and pr given on the same line.
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2.3 Perturbative thermodynamic functions for a thermalized inflaton

As the system heats up, the inflaton field might equilibrate as well (see, however, the
discussions in sections 2.7 and 3.2). Around the minimum of the potential, the inflation is
a weakly coupled massive scalar field, whose interactions are suppressed by powers of 1/fa.
Then the effective potential V contains a temperature dependent part, which contributes to
the thermodynamic functions pϕ and eϕ according to eq. (2.3).

The starting point for the evaluation of pϕ and eϕ is the 1-loop expression for a thermal
effective potential,

V
(1)
eff =

∫
p

[
ε

2 + T ln
(
1− e−ε/T

)]
ε=
√
p2+m2

. (2.15)

We omit the T -independent vacuum part of V (1)
eff in the following. Changing variables to a

form convenient for a numerical evaluation, the pressure and energy density from eq. (2.3)
then obtain the contributions

−pϕ ⊃ V ⊃ V0 + T

2π2

∫ ∞
m

dε ε
√
ε2 −m2 ln

(
1− e−ε/T

)
, (2.16)

eϕ ⊃ V − TVT ⊃ V0 + 1
2π2

∫ ∞
m

dε ε2
√
ε2 −m2 nB(ε) , (2.17)

where nB(ε) ≡ 1/(eε/T − 1) is the Bose distribution. The tree-level potential V0 should
contain no T -dependence, so that we have set V0,T to vanish, however this requires some
discussion of thermal mass corrections, to which we return in section 2.5. Finally, eqs. (2.2)
and (2.4) contain the contribution of ϕ to the heat capacity,

− T V̇T ⊃
Ṫ

2π2T 2

∫ ∞
m

dε ε3
√
ε2 −m2 nB(ε)

[
1 + nB(ε)

]
. (2.18)

In the massless limit, i.e. m� πT , eqs. (2.16)–(2.18) amount to the substitutions g∗ → g∗+1
and h∗ → h∗ + 1 in the number of effective degrees of freedom.6

2.4 Friction coefficient

A key role for the heating-up dynamics, according to eq. (2.2), is played by the friction
coefficient Υ. If Υ = 0, like in standard cold inflation computations, there is no source term
for the temperature evolution, and any possible initial temperature just redshifts away.

It has been realized, however, that the assumption Υ = 0 is mathematically troublesome.
The problem is that even if the T = 0 solution represents a fixed point, it can be an unstable
one. Just a small perturbation may drive the system to another fixed point, where T > 0
and Υ > 0 [13, 14]. The properties of this thermal fixed point constitute the topic of
section 3.1.

In general, Υ is a function of the frequency, ω, at which the system is probed [15]. Then
the full equation of motion does not have a local form, but rather contains a dispersive
integral over the medium response.

6A numerical evaluation at low or intermediate temperatures may be facilitated by representations in terms
of modified Bessel functions, pϕ ⊃ m2T2

2π2

∑∞
n=1

1
n2K2(nm

T
), eϕ ⊃ m2T2

2π2

∑∞
n=1

{
1
n2K2(nm

T
) + m

2nT

[
K1(nm

T
) +

K3(nm
T

)
]}

, −T V̇T ⊃
m4Ṫ
4π2T

∑∞
n=1

{
K2(nm

T
) +K4(nm

T
)
}
.
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A local evolution equation is obtained around the global minimum, where the frequency
scale can be replaced by the corresponding mass scale, ω → m. Before the system settles to
the global minimum, the situation may be intuitively probed by replacing the frequency
scale by the curvature of the potential, ω → ωdyn ≡

√
max(0, Vϕϕ) [16]. Then, if Vϕϕ ≤ 0,

temperature is the only scale at early stages of inflation. But, as mentioned, T = 0 is
an unstable fixed point in this setup. As the focus of the current study is the heating-up
period, we will adopt the replacement ω → m throughout, with the understanding that at
early stages of inflation this is just a recipe.

Like the thermodynamic functions in section 2.2, the determination of Υ requires lattice
simulations. Lattice simulations come in two different variants. At very high temperatures,
T � ΛIR, so-called classical real-time simulations can be employed, and this is the method
used for estimating ΥIR in eq. (2.20) [17], as well as the shape in eq. (2.19) [18]. However,
when T <∼ΛIR, these effective-theory type setups should be replaced by full four-dimensional
lattice simulations. Unfortunately, extracting real-time information from the latter is
exponentially hard (cf., e.g., refs. [19, 20]), even if exploratory studies for determining ΥIR

have been launched [21, 22]. For this reason, our estimates contain a systematic error,
reflected by the x-dependence introduced in eq. (2.21).

Now, for a qualitative understanding, it is often sufficient to consider limiting “thermal”
(ω � T ) or “vacuum” (ω � T ) frequencies [15].7 Then

Υ ω�T' ΥIR ≡
dAα

2κ (αNc)3T 3

f2
a

, Υ ω�T' ΥUV ≡
dAα

2

4f2
a

ω3

(4π)3 , (2.20)

where dA ≡ N2
c − 1 and κ ' 1.5. The latter represents the vacuum decay width for the

process ϕ → gg. For the gauge coupling, we adopt a leading-logarithmic running value,
representative of a Yang-Mills plasma,

α ' 6π
11Nc

ln−1
[√(x 2πΛIR)2 + (2πT )2 + ω2

ΛIR

]
. (2.21)

The first term in the square root serves as an (arbitrary) infrared (IR) regulator, so that any
value of T or ω can be inserted; we will check the IR sensitivity of the results by varying
the parameter x in the range x ∈ (0.2 . . . 2.0). Nevertheless the expression is guaranteed to
be physically meaningful only for max{2πT, ω} � ΛIR, so that α� 0.3.

2.5 Mass correction

Apart from a friction coefficient, the Yang-Mills plasma in general induces a mass correction
to the inflaton field [15]. This is again a function of the frequency, ω. In principle we
could carry out a discussion similar to Υ, adapting a weak-coupling computation from
T � ΛIR [16] to a strongly coupled regime through a modelling of α. However, partial

7In the numerical solutions, we use the full interpolating function as estimated in ref. [18], viz.

Υ ' dAα
2

f2
a

{
κ (αNcT )3

1 + ω2

(cIRα
2N2

c T )2

1 + ω2

(cMαNcT )2

+
[
1 + 2nB

(
ω

2

)]
πω3

(4π)4

}cIR ' 106

cM ' 5.1
. (2.19)
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non-perturbative lattice information is also available, so we would like to make use of it,
even if it is not exactly what is needed. Let us explain the issues.

The lattice simulations are usually viewed in the context of the QCD axion mass. As a
rule, it is (implicitly) assumed that the axion has no mass at tree level, so that all of it is
generated by the SU(3) gauge dynamics. Then, the mass correction can be evaluated at
ω = 0, in which case it is proportional to the so-called (Euclidean) topological susceptibility.
Though the problem is technically challenging, results have become available (cf., e.g.,
refs. [23, 24] and references therein), and we return to them presently (cf. eq. (2.22)).

However, a mass determined at ω = 0 is correct only if there is no “bare mass” from an
UV theory. This is a problem, since our inflaton potential V0 already contains a mass; it is
envisaged to have been generated by an UV gauge theory, at a scale higher than the IR
one on which we focus. In this situation, the contribution to the mass through the SU(3)
topological susceptibility is only a correction, and its determination at ω = 0 rather than
ω ' m represents an uncontrolled approximation from the physics point of view.

Despite these reservations, let us estimate how large the mass correction could be. We
denote by χtopo the SU(3) topological susceptibility, and by t0 an auxiliary quantity often
used for setting the scale in lattice simulations. Then, at T = 0, t20 χtopo = 6.67(7)×10−4 [23],
whereas examples of thermal values are t20 χtopo = 2.25(12)× 10−5 at T√8t0 = 1.081 and
t20 χtopo = 3.43(27) × 10−6 at T√8t0 = 1.434 [24]. Inserting a conversion to the critical
temperature, Tc

√
t0 = 0.2489(14) [12], a rough qualitative represention, incorporating an

expected functional dependence at higher temperatures, is

χtopo
T <∼ 0.95Tc
' 0.17T 4

c , χtopo
T >∼ 0.95Tc
' 0.12T 11

c
T 7 , (2.22)

and the corresponding mass correction from the IR gauge theory evaluates to

δm2
IR

∣∣
ω=0 '

χtopo

f2
a

. (2.23)

Let us connect δm2
IR to the parameters that appear in V0. We have referred to V0 as the

tree-level potential, but let us now assume that it also includes those radiative and thermal
corrections which do not change the shape of V0 (in contrast, shape-changing structures
lead to what we have denoted by V , as discussed in section 2.3). Let then m2

0 be the value
of the mass before the inclusion of the IR contribution. Then, at zero temperature,

m2|T=0 = m2
0 + δm2

IR|T=0 , (2.24)

whereas a would-be thermal mass squared reads

m2
T = m2

0 + δm2
IR,T = m2|T=0 − δm2

IR|T=0 + δm2
IR,T . (2.25)

According to eq. (2.22), δm2
IR,T < δm2

IR|T=0, so the thermal correction in eq. (2.25) is
negative: the effective mass squared decreases at high temperatures.

After these order-of-magnitude estimates, let us explain why the mass correction should
be unimportant. First of all, inserting numerical values from eq. (2.27) and estimating the
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bare mass as m2 ∼ Λ4
UV/f

2
a , in accordance with eq. (2.23), the scale of the UV gauge theory

is ΛUV ∼
√
mfa ∼ 10−3mpl. Now, according to section 3.2, the solutions fall in two different

classes. If Tmax ≥ Tc, then |δm2
IR,T − δm2

IR|T=0| ∼ Λ4
IR/f

2
a � Λ4

UV/f
2
a ∼ m2, i.e. the thermal

mass correction is exceedingly small. If Tmax < Tc, the system stays in the confined phase,
and there is no thermal mass correction.

It is for these reasons, as well as the conceptual issues explained at the beginning of
this section, that we omit thermal mass corrections in the following.

2.6 Inflaton potential and parameter choices

In order to study heating-up in a semi-realistic framework, we consider axion-like (or
natural) inflation [4], and fix the parameters of the potential to agree with Planck data [5].
For this purpose, we adopt the predictions of cold inflation, despite the fact that the
solution is technically unstable (cf. section 2.4). The coupling α does not appear in these
predictions, and can thus be freely varied for understanding heating-up dynamics. In
principle it would be interesting to verify a posteriori how significantly phenomenological
predictions are altered by thermal effects if high temperatures are reached already during
the inflationary stage (for a review of warm inflation see, e.g., ref. [25]). However, this
dynamics is physically distinct from and takes place much earlier than the heating-up stage
that we are interested in.

For the inflaton potential, we take the ansatz

V0 ' m2f2
a

[
1− cos

(
ϕ̄

fa

)]
, V0,ϕ ' m2fa sin

(
ϕ̄

fa

)
, (2.26)

whereas V0,T is approximated as small (cf. section 2.5). In the numerical estimates the
parameters are fixed to benchmark values from ref. [16],

fa = 1.25mpl , m = 1.09× 10−6mpl , ϕ̄(tref) = 3.5mpl , (2.27)

where tref denotes the time at which we start the simulation, conveniently chosen as

tref ≡
√

3
4π

mpl

mϕ̄(tref)
. (2.28)

This is within O(1) of the initial inverse Hubble rate.

2.7 When is the thermalization assumption self-consistent?

To conclude this section, let us return to the important question of when the temperature is
a useful concept. An upper bound extending almost up to the Planck scale was presented
in section 1, however it was based on the assumption that the Hubble rate is already
dominated by the energy density carried by radiation.

The question of how fast a general system equilibrates is a hard one. Frequently, the
dynamics following inflation is studied by solving classical field equations of motion.8 The
problem is that classical field dynamics can be correct only for large occupation numbers,

8This method is referred to as preheating [26, 27].
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(a) (b)

Figure 2. (a) example of an elastic process responsible for the thermalization of gauge fields (wiggly
lines); (b) an artistic impression of an inelastic process contributing to the thermalization of the
inflaton (dashed line). Given the peculiar nature of the operator in eq. (1.1), indicated by the blob,
the gauge configurations are non-perturbative here (if ω � m). Therefore we have sketched them
with multiple wiggly lines.

not in the typical domain where the occupation is of order unity. But it is precisely momenta
from the latter domain, p ∼ πT , which carry most of the radiation energy density. In other
words, the issue of thermalization cannot be properly resolved with classical field theory.
In the heavy-ion context, where thermalization of non-Abelian systems has been studied
extensively, the method of choice relies nowadays rather on effective kinetic theory [28].

If we do think in the language of effective kinetic theory, we can draw diagrams
responsible for thermalization. Examples for a non-Abelian plasma and for the inflaton,
respectively, are illustrated in figure 2. The gauge plasma equilibration rate (i.e. the thermally
averaged amplitude squared) is then Γg ∼ α2T within the weak-coupling expansion, whereas
the inflaton equivalent is Γϕ ∼ ΥIR. In the subsequent sections, we will compare these with
the Hubble rate a posteriori, while the computations themselves are carried out in the
presence of a temperature-like parameter, reminiscently of the scenario of warm inflation [25].
Here it is appropriate to remark that the general objections to warm inflation, raised in
ref. [29], are avoided in the non-Abelian axion inflation context, as it is possible to have a
large thermal friction coefficient (cf. section 2.4) without inducing a large thermal mass
correction (cf. section 2.5).

3 Temperature evolution

Before attacking the full numerical solution of eqs. (2.1), (2.2), and (2.7) (cf. section 3.2),
we introduce the concept of a stationary temperature, Tstat, which already helps us to
understand the parametric dependence of the temperature scale reached (cf. section 3.1).

3.1 Stationary temperature as a qualitative estimate

The existence of a stationary temperature at intermediate stages of warm natural inflation
follows from the argumentation in refs. [13, 14]. Physically, this corresponds to a situation
in which the energy released from the inflaton to radiation through friction, precisely
balances against the energy diluted by the Hubble expansion. After a while, T starts to
increase above Tstat, obtaining a maximal value, Tmax. While estimating Tmax requires
the solution of a coupled set of differential equations, it is easier to determine Tstat, as
the equations are algebraic, and we may furthermore employ slow-roll approximations in
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Figure 3. Left: the left-hand side (lhs) and right-hand side (rhs) of eq. (3.2), in units of m4
pl,

with the former evaluated for the three cases defined in section 3.1. In this example the scale
parameter has been set to ΛIR = 10−5mpl. The grey band corresponds to the variation x ∈ (0.2, 2.0)
in eq. (2.21). Right: the solution (crossing point), denoted by Tstat, as a function of ΛIR/mpl. For
comparison we also show the critical temperature Tc.

them. Yet, as consolidated by the numerical studies in section 3.2, Tstat already gives an
order-of-magnitude estimate of Tmax.

Let us consider the solution of eqs. (2.1) and (2.2) in the slow-roll regime. Then eq. (2.1)
implies that

˙̄ϕ ' −
Vϕ

3H + Υ . (3.1)

In eq. (2.2), we search for a stationary solution, with ėr − T V̇T ' 0. Recalling the
thermodynamic relation e+p = Ts, where s is the entropy density, yields the master relation

3Tstats '
Υ
H

V 2
ϕ

(3H + Υ)2 . (3.2)

As further simplifications, the Hubble rate can be approximated as H '
√

8πV/(3m2
pl)

during the slow-roll period, and we may furthermore set ϕ̄→ ϕ̄(tref) in V and Vϕ.
We illustrate the solution originating from eq. (3.2) in three qualitatively different cases:

(i) confining plasma, non-thermal inflaton. In this case we insert the equation of
state from section 2.2, s→ sr, and assume that the inflaton does not thermalize. This
assumption can often be justified a posteriori, cf. section 3.2.

(ii) confining plasma, thermalized inflaton. We add the contribution of a thermalized
inflaton to the entropy density, s→ sr − VT , as specified in section 2.3.
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Figure 4. Examples of solutions in which Tc is crossed (left), reached (middle), and not reached
(right). For the first two cases, the corresponding volume fractions are shown in figure 1. In the
right-most panel, the temperature of case (i) far exceeds the Hubble rate, but the friction coefficient
Υ remains small (the implications from here are discussed in the text).

(iii) confining plasma with a light degree of freedom and thermalized inflaton.
We further add one free massless bosonic degree of freedom to the radiation plasma,
in order to illustrate the qualitative influence of a dark photon or a dark light pion.
Then s→ sr − VT + 2π2T 3

stat/45 in eq. (3.2).

For the three cases defined, the left and right-hand sides (lhs, rhs) of eq. (3.2) are
illustrated in figure 3(left). The resulting values of Tstat/mpl, from the crossings of the
respective curves, are plotted in figure 3(right).

It can be observed from figure 3(right) that there is a specific domain of ΛIR at which
the behaviour of the system changes. Let us denote the smallest value of ΛIR for which the
system stays stationary at exactly the critical temperature by [ Λ0 ]stat. This corresponds to

3Tc s
T→Tc≡

ΛIR→[Λ0]stat

Υ
H

V 2
ϕ

(3H + Υ)2 ⇒
[
Λ0

]
stat ' 3× 10−9mpl . (3.3)

A similar logic will be applied in section 3.2, with however the stationary temperature
replaced by the maximal one, yielding then an outcome denoted by Λ0. In between [ Λ0 ]stat
and Λ0, the system heats up to above Tc, and experiences two nearby phase transitions,
before and after this moment. At ΛIR > Λ0, Tmax < Tc, and no phase transition takes place.

Now, in terms of figure 3(left), we find that when ΛIR = [ Λ0 ]stat, then the lines cross in
a domain where the rhs curve is flat. The cusp in the rhs curve is where the behaviour of Υ
changes, from ΥUV at low temperatures to ΥIR at high temperatures. Therefore, [Λ0]stat is
determined by ΥUV, and independent of the non-perturbative physics of ΥIR that originates
from sphaleron dynamics. The latter is important in the regime ΛIR � [Λ0]stat.

3.2 Maximal temperature from a numerical solution

We now move on to consolidate the qualitative results from section 3.1 through a full
solution of eqs. (2.1), (2.2), and (2.7). For this we consider the same three cases as defined
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Figure 5. Scan of Tmax, for the three prototype systems defined in section 3.1, as a function
of ΛIR/mpl. Our setup is self-consistent only for ΛIR < ΛUV ∼ 10−3mpl, so we restrict the axis
to this domain. The grey bands show the effect of varying the parameter x in eq. (2.21) in
the range x ∈ (0.2, 2.0). The uncertainties are huge for cases (ii) and (iii) at large ΛIR, as we
then need to evaluate the friction coefficient Υ deep in the confined phase. By Tc we denote the
critical temperature.

in section 3.1 and illustrated in figure 3. As initial conditions, we take T (tref) ' 0.2Tstat,
ϕ̄(tref) from eq. (2.27), and the slow-roll evolution rate ˙̄ϕ(tref) ' −Vϕ/(3H). However, the
solution is an attractor, and therefore soon independent of the initial conditions. The
domain in which the system heats up exactly to Tc is denoted by Λ0, with the numerical
value Λ0 ∼ 2× 10−8mpl.

Examples of solutions are shown in figure 4, and a scan of the resulting values of Tmax
in figure 5. We conclude that

• if ΛIR < Λ0, Tmax > Tc, and the system undergoes a phase transition as it cools
down. For [Λ0]stat < ΛIR < Λ0, it also undergoes a nearby previous transition as
it heats up, as visible in figure 4(left). However, in this domain α2T � T � H,
so it is questionable whether the temperature has a literal meaning during the
first transition (cf. section 2.7). The maximal temperature has the numerical value
Tmax ∼ Λ0 ∼ 2× 10−8mpl.

• if ΛIR ∼ Λ0, then Tmax = Tc: the system heats up to Tc (cf. figures 1(right)
and 4(middle)).

• if ΛIR > Λ0, Tmax < Tc, and the system undergoes no phase transition. Nevertheless
it heats up to a high temperature, Tmax ∼ ΛIR, if the plasma is confining. If
the inflaton thermalizes, the maximal temperature is cut off by the inflaton mass,
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Tmax ∼ min(m,ΛIR). However, it appears unlikely that the inflaton thermalizes,
because its would-be thermalization rate ∼ ΥIR is much below the Hubble rate, cf.
figure 4(right). If the plasma includes g∗ massless degrees of freedom, the maximal
temperature stays at Tmax ∼ Λ0(2dA/g∗)1/4, irrespective of the value of ΛIR. However,
this consideration assumes that the massless degrees of freedom thermalize, i.e. that
their full phase space can be filled to accommodate the entropy released from inflaton
oscillations.9

It can be observed from figure 5 that in cases (ii) and (iii), there is a large uncertainty
in the value of Tmax. This originates from the gauge coupling α, through the parameter
x (cf. eq. (2.21)). The reason is that these would-be solutions lie deep in the confined
phase, where our treatment of Υ is not reliable. However, as discussed above, the physical
significance of these solutions is questionable for another reason as well, namely that the
thermalization assumption is hard to consolidate. It is a lucky coincidence that both the
technical and conceptual uncertainties can be reflected by the same error bands.

4 Physical implications for gravitational waves

The patterns observed in section 3.2 have a number of potential implications for primordial
gravitational waves, to which we now turn.

4.1 Total energy density in the gravitational wave background

A thermal plasma necessarily generates a spectrum of gravitational waves, whose energy
density contributes to the effective number of massless degrees of freedom, Neff [30]. As long
as the maximal temperature is below ∼ 10−2mpl, the contribution to Neff is small [31–35].
At the same time, our framework is consistent as long as ΛIR < ΛUV ∼ 10−3mpl. Given that
Tmax < ΛIR for large values of ΛIR, we then also have Tmax < ΛUV. Therefore none of the
heating-up scenaria that we have found is excluded by constraints from Neff.

4.2 Monotonically growing spectrum from the hottest epoch

Thermal fluctuations generate a monotonically increasing intermediate-frequency component
in the gravitational wave background [16], originating dominantly from when T ∼ Tmax,

ΩGWh
2 10−6 Hz≤ f0≤ 102 Hz

⊃ A

(
f0

Hz

)3( Tη
m4

pl

)
max

,
(
Tη
)
max ∼

T 4
max
α2
min

, (4.1)

where η denotes the shear viscosity and the parametric behaviour shown applies within
the weak-coupling expansion. Close to the upper bound Tmax ∼ ΛUV ∼ 10−3mpl, this
background could become marginally observable at the highest frequencies f0 ∼ 100 Hz that

9For the example of dark pions, the equilibration rate from 2 → 2 scatterings is Γπ ∼ T 5/f4
π , where

fπ ∼ ΛIR ∼ Tc. If we assumed thermalization and found Tmax ∼ Tc, the assumption would be self-consistent.
However, since the thermalization assumption leads generically to Tmax � Tc, so that Γπ � Γg, it is less so.
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are perhaps probed in the future by the Einstein telescope and the DECIGO interferometer.
It would be interesting to carry out a more quantitative sensitivity study of this possibility.10

4.3 Peaked spectra from first-order phase transitions

If ΛIR < Λ0, we find that Tmax > Tc. As the system cools down, it then undergoes a thermal
first-order phase transition, which may lead to a gravitational wave signal [36]. In our
particular example, the transition is a weak one, with ∆e(Tc)/e(Tc) � 1, but it could
conceivably be stronger in other strongly coupled theories.

In order to discuss the significance of such transitions, let us envisage causal bubble
dynamics taking place with a characteristic length scale `B � `H ≡ H−1. Three different
temperatures play a role, the critical temperature (Tc); the temperature at which radiation
takes over from ϕ̄ as the dominant component of the energy density (Te); and the temperature
today (T0). Within our computation, Te is reached approximately when H ' Υ, but it might
be reached sooner if preheating dynamics were accounted for [26, 27]. We may redshift `B

as `B(T0) = a(T0)
a(Te)

a(Te)
a(Tc) `B(Tc). The current-day frequency corresponding to this wavelength

is f0 ' c/`B(T0). Expressing the first ratio of the scale factors with the help of entropy
densities, and the second with e-folds, yields (in natural units)

f0

Hz '


sT0

(
s0/T

3
0

se/T
3
e

) 1
3
e−∆Nc→e

`H

`B

H(Tc)
Te

, Tc > Te

sT0

(
s0/T

3
0

sc/T
3
c

) 1
3 `H

`B

H(Tc)
Tc

, Tc < Te

. (4.2)

For ΛIR ' Λ0 we find Tc ' 2 × 10−8mpl; T
(i)
e ' 3 × 10−9mpl and T

(iii)
e ' 2 × 10−12mpl,

where the superscript refers to the case defined in section 3.1; and ∆Nc→e ' 23. For
ΛIR < Λ0, Tc decreases in proportion to ΛIR, and goes ultimately below Te. Inserting
T0 ≈ 2.7255K, `H/`B ' 102...4,11 and assuming that at T ≤ Te the visible sector temperature
is similar to the dark sector one, whereby Standard Model values can be adopted for the
entropy densities [37], gives f (i)0 <∼ 5 × 103...5 Hz and f

(iii)
0 <∼ 8 × 106...8 Hz. A part of this

range can be probed by interferometers, like again the Einstein telescope and ultimately
perhaps DECIGO.

In figures 1(left,middle), we also see another phase transition, passed as the system
heats up. Concerning its significance, two issues should be raised. The first is that as
the gravitational energy density scales as ∼ 1/a4, the signal from the first transition is
diluted by a factor ∼ e−4∆N compared with the second one, where ∆N is the number of
e-folds between the transitions. If ∆N � 1, then the signal gets diluted away. Only for
a fine-tuned value ΛIR ∼ 1.5× 10−8mpl, when the transitions are immediately adjacent to
each other, could the dilution be less spectacular. Second, as visible in figures 4(left,middle),
the Hubble rate far exceeds the temperature during the first transition, and also during the

10We thank Germano Nardini for drawing our attention to this prospect. As far as the numerical coefficient
in eq. (4.1) goes, ref. [16] estimated A ∼ 10−9 for ΛIR ∼ 10−20mpl, but the value could be different at
larger ΛIR, given that it depends on the cosmological expansion history.

11In the gravitational wave literature, `H/`B is frequently denoted by β/H (up to a factor of velocity).
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second one if the two transitions are nearby. As the thermalization rate is ∼ α2T � H (cf.
section 2.7), it is questionable whether the temperature is a physically meaningful notion in
this case. Despite these concerns, it could be that non-equilibrium fluctuations produced
during the first epoch could have a physical effect, for instance by serving as nucleation
seeds which would permit for the second transition to proceed in a non-standard manner
(cf., e.g., ref. [38]).

5 Summary and outlook

The purpose of this study has been to estimate the maximal temperature that strongly
coupled dark sectors may reach. The basic point is that in the confined phase of such
theories, thermodynamic functions such as the entropy density and the heat capacity are
exponentially small. Therefore, even a small release of energy density from the inflaton
field can heat up the system by a large amount. For the very largest confinement scales,
ΛIR ∼ (10−8 − 10−3)mpl, we find that the system heats up to close to the critical point,
even if it remains just slightly below Tc (cf. figure 5). Interestingly, this most interesting
scenario is treated most reliably by our methods, as the gauge field thermalization rate
clearly exceeds the Hubble rate, so that there is no doubt about the validity of temperature
as a physical notion (cf. figure 4(right)).

As a particular consequence of such dynamics, we have considered the gravitational
wave background produced by thermal fluctuations around the heating-up epoch. In
the frequency window (10−4 − 102) Hz, relevant for the LISA, Einstein telescope, and
DECIGO interferometers, we predict a background increasing monotonically as ∼ f3

0 , with
a coefficient proportional to the maximal shear viscosity of the plasma phase (cf. eq. (4.1)).
At the highest frequencies, the signal could be marginally observable in the future, though
quantitative sensitivity studies would be needed for confirming or refuting this prospect.

A complementary consequence is reached if the confinement scale is lowered, ΛIR <

10−8mpl. Then the system heats up above the critical temperature, confirming the possibility
of a first-order phase transition in a dark sector [36].

We should underline that we have on purpose kept our study on a rather general level,
with the hope that it is then also more broadly applicable. Adding specific model assump-
tions, further issues could be addressed. Notably, the value of the maximal temperature,
and in particular whether it is above Tc or not, has implications for dark matter production,
but the details are very model-dependent (cf., e.g., refs. [1–3]).

Apart from phenomenological issues, there are also theoretical ingredients that could
be built into our framework. Hoping that exploratory low-temperature investigations of the
friction coefficient [21, 22] turn ultimately into a semi-quantitative tool, the error bands
in figure 5 could be reduced. Were the same to happen with the shear viscosity η, the
gravitational wave estimate in section 4.2 could be sharpened. Inserting assumptions about
the couplings of the inflaton to both the dark and the visible sector, and of the sectors
between each other, two different temperatures could be tracked. Finally, investigating the
non-equilibrium physics of a system possessing two adjacent transitions (cf. figure 1(middle))
might reveal interesting gravitational wave signatures. In the last case, it should be recalled
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that the transition takes place during a period in which inflaton oscillations dominate the
energy density, resulting in changes to the normal predictions that assume a radiation-
dominated universe.
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