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Key Points  
 

• A deep learning model was trained to detect and segment spheroids in 
images from microscopes and Incucytes. 

• The model performed well on both types of images with the total loss 
decreasing significantly during the training process. 

• A web tool called SpheroScan was developed to facilitate the analysis of 
spheroid images, which includes prediction and visualization modules. 

• SpheroScan is efficient and scalable, making it possible to handle large 
datasets with ease. 

• SpheroScan is user-friendly and accessible to researchers, making it a 
valuable resource for the analysis of spheroid image data. 
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Abstract  
 
Background 
 
In recent years, three-dimensional (3D) spheroid models have become increasingly 
popular in scientific research as they provide a more physiologically relevant 
microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has 
proven to be advantageous as it offers a better understanding of the cellular behavior, 
drug efficacy, and toxicity as compared to traditional two-dimensional cell culture 
methods. However, the use of 3D spheroid assays is impeded by the absence of 
automated and user-friendly tools for spheroid image analysis, which adversely affects 
the reproducibility and throughput of these assays. 
 
Results 
 
To address these issues, we have developed a fully automated, web-based tool called 
SpheroScan, which uses the deep learning framework called Mask Regions with 
Convolutional Neural Networks (R-CNN) for image detection and segmentation. To 
develop a deep learning model that could be applied to spheroid images from a range 
of experimental conditions, we trained the model using spheroid images captured 
using IncuCyte Live-Cell Analysis System and a conventional microscope. 
Performance evaluation of the trained model using validation and test datasets shows 
promising results.  
 
Conclusion 
 
SpheroScan allows for easy analysis of large numbers of images and provides 
interactive visualization features for a more in-depth understanding of the data. Our 
tool represents a significant advancement in the analysis of spheroid images and will 
facilitate the widespread adoption of 3D spheroid models in scientific research. The 
source code and a detailed tutorial for SpheroScan are available at 
https://github.com/FunctionalUrology/SpheroScan. 
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Introduction  
 
Two-dimensional (2D) cell culture models have long been a key component of 
biomedical research, but they often do not accurately replicate the in vivo environment 
[1]. In recent years, there has been an increasing realization that three-dimensional 
(3D) cell cultures, such as 3D spheroid models, are better able to mimic the in vivo 
environment. Moreover, the 3D cell cultures provide more clinically relevant insights 
into cellular behaviour and responses [2,3]. The 3D spheroid models, in particular, 
have become increasingly popular due to their ability to recreate the complex 
microenvironment found in vivo. This has made them a valuable tool for studying a 
variety of biological processes and diseases. 
 
Tumour spheroids are widely used for testing anti-cancer medications [4]. They 
present a compromise between the cell accessibility of adherent cultures and the 
three-dimensionality of animal models. Spheroids retain more biological tumor 
features and reproduce intra-tumour environment, which is an important feature when 
selecting an effective treatment strategy. Most of the spheroid-based assays use the 
overall size and/or cell survival as a readout [5]. Thereby, a quick and easy tool for 
spheroid size estimation would be advantageous for such applications.  
 
Another important area of research that is dependent on the spheroid size evaluation 
is the collagen gel contraction assay (CGCA) method [6]. CGCA is a widely used in 
vitro model for studying the interactions between cells and 3D extracellular matrices. 
These assays help understand matrix remodelling during fibrosis and wound healing. 
CGCA is a competent tool to evaluate the contractility of myofibroblasts harvested 
from fibrotic tissues. The advent of aqueous two-phase printing of cell-containing 
contractile collagen microgels has further advanced the CGCA technology [7]. 
Recently, the printing of the microscale cell-laden collagen gels has been combined 
with live cell imaging and automated image analysis to study the kinetics of cell-
mediated contraction of the collagen matrix [8]. The image analysis method utilizes a 
plugin for FIJI, built around Waikato Environment for Knowledge Analysis (WEKA) 
Segmentation. 
 
Despite the advantages of 3D spheroid models over 2D cell cultures, a major 
challenge has been the lack of fully automated and user-friendly tools for analysing 
spheroid images. This has hindered the widespread adoption of 3D spheroid models 
and has made high throughput analysis of spheroids difficult. Currently, the only 
options available for automatic spheroid detection in images are SMART [9] and 
SpheroidPicker [10].  However, SpheroidPicker is not open source, and using SMART 
requires a moderate to advanced level of computational and programming skills. As a 
result, many researchers with domain expertise are unable to utilize SMART easily. 
Furthermore, neither of these options provides visualization features to allow for 
efficient analysis of spheroid data. This is a significant drawback, as visualizing data 
can greatly aid in the interpretation and understanding of results. 
 
To address these challenges, we have developed a fully automated, user-friendly web-
based tool called SpheroScan for spheroid detection and interactive visualization of 
spheroid data using multiple publication-ready plots. Our tool is designed to be 
accessible to researchers regardless of their computational skills and aims to make 
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the process of analysing spheroid images as simple and straightforward as possible. 
We have employed a state-of-the-art deep learning model called Mask R-CNN 
(Region-based Convolutional Neural Network) for image detection and segmentation. 
This model has proven to be highly effective in image analysis tasks and allows our 
tool to accurately detect and segment spheroids in images. With our tool, researchers 
can easily and quickly analyse large numbers of spheroid images and can use the 
interactive visualization features to gain a deeper understanding of their data (Figure 
1).  
 
 
Results and Discussion 
Training and evaluating the performance of deep learning model 
 
Figure 2 presents the performance of the trained Deep Learning (DL) model on the 
training, validation, and testing datasets for microscope and Incucyte images. The 
results show that the DL model was able to effectively learn and improve its 
performance over the course of training for both types of images. In particular, for 
Incucyte images, the total loss at baseline was 1.6 for the training data and 1.3 for the 
validation data. However, in the last epoch, the total loss reached its minimum values 
of 0.09 and 0.13 for the training and validation data, respectively (Figure 2A). This 
represents a significant improvement in performance. Similarly, the bounding box and 
mask loss started at relatively high values of 0.3 and 0.7, respectively, but decreased 
to their minimum values of 0.03 and 0.04 in the last epoch (Figure 2B). The model also 
performed well on the training and validation datasets for microscope images, with the 
total loss decreasing from 1.8 and 1.4 to 0.09 and 0.16 at the last epoch, respectively 
(Figure 2D). The bounding box and mask losses for the microscope dataset were also 
low, 0.036 and 0.045, respectively, at the last epoch (Figure 2E).  Overall, these results 
demonstrate the robustness and effectiveness of the DL model in accurately detecting 
and segmenting spheroids in images from both microscopes and Incucytes. 
 
To evaluate the performance of the trained model in segmenting spheroids, we 
calculated the Average Precision (AP) metric for bounding boxes and segmentation 
masks in the range of 0.5 to 0.95. Throughout the text, APbbox@[0.5:0.95] represents 
the AP for bounding boxes, and APmmask@[0.5:0.95] represents the AP for 
segmentation masks. In general, the trained models showed similar performance on 
the test and validation datasets. The values for APbbox@[0.5:0.95] and 
APmmask@[0.5:0.95] were 0.937 and 0.972, respectively, for the validation data, and 
0.927 and 0.97, respectively, for the test data of Incucyte images (Figure 2C). The 
model's performance on the validation and test datasets for microscopic images were 
also strong, with scores of 0.89 and 0.944 for APbbox@[0.5:0.95] and APmmask@[0.5:0.95] 
respectively on the validation data, and scores of 0.899 and 0.977 respectively on the 
test data (Figure 2F). 
 
SpheroScan characteristics 
 
We have developed an open-source web tool called SpheroScan to facilitate the 
analysis of spheroid images. This user-friendly, interactive tool is designed to 
streamline the process of spheroid segmentation, area calculation, and downstream 
analysis of spheroid image data. Furthermore, it helps to standardize and accelerate 
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the analysis of spheroid assay results. SpheroScan consists of two main modules: 
prediction and visualization. The prediction module uses previously trained DL models 
to detect the spheroid in the input images; accordingly, a CSV file is generated with 
the area and intensity of each detected spheroid (Figure S1.A). The visualization 
module allows the user to analyse the results of the prediction module through various 
types of plots and statistical analyses (Figure S1.B). The plots generated by the 
visualization module are ready for publication and can be saved as high-quality images 
in PNG format. Overall, SpheroScan is a powerful and user-friendly tool that greatly 
simplifies and enhances the analysis of spheroid image data (Figure S2-S4). 
 
The runtime complexity of the prediction module is linear, meaning that it scales in 
proportion to the size of the input data. This is an important property because it means 
that the prediction module will be efficient and scalable, even when processing large 
datasets. To confirm the linear runtime complexity of the prediction module, we tested 
it on four different image datasets with various numbers of images. The results of these 
tests showed that the prediction module consistently had a linear runtime, taking less 
than one second to mask a single image (Figure 3D). This demonstrates that the 
prediction module is highly efficient and capable of handling large datasets with ease. 
We evaluated the run-time performance on a Red Hat server with 16 Central 
Processing Unit (CPU) cores and 64 GB of Random-Access Memory (RAM). 
 
Limitations and considerations 
 
As with any technology, there are limitations and considerations to keep in mind when 
using the SpheroScan system. First, it is important to note that this developed tool is 
primarily designed for use with the spheroid images from Incucyte and microscope 
platforms. Additionally, when analyzing images that contain more than one spheroid, 
the performance of the SpheroScan system may decrease. Therefore, it is important 
to carefully consider the experimental design and imaging conditions to ensure optimal 
performance and accurate results. The authors aim to expand the training dataset with 
a diverse range of external images from various experimental environments and 
platforms in the future to improve and advance the utility of SpheroScan. Generally, 
while the SpheroScan system offers many advantages for high-throughput spheroid 
analysis, it is important to be aware of its limitations and take steps to address them 
as needed. 
 
Conclusion  
 
The development of the web-based tool SpheroScan represents a significant 
advancement in the analysis of 3D spheroid images. Using the state-of-the-art deep 
learning techniques, our tool accurately detects and segments spheroids in images, 
making it easy for researchers to analyse large numbers of spheroid images. 
Additionally, our tool is user-friendly and accessible to researchers regardless of their 
computational skills, making it a valuable resource for the scientific community. The 
interactive visualization features provided by our tool also allow for a more in-depth 
understanding of spheroid data, which will further facilitate the widespread adoption of 
3D spheroid models in research. Overall, SpheroScan represents a valuable tool for 
researchers working with 3D spheroid models and will help to advance the use of 
these models in scientific research. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2023. ; https://doi.org/10.1101/2023.06.28.533479doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.533479
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Materials and Methods 

Availability and implementation 

The source code, example input data, and a detailed tutorial for SpheroScan are 
available at https://github.com/FunctionalUrology/SpheroScan. SpheroScan was 
developed using Plotly Dash [11] library in Python (version 3.10.6) and all the plots 
were made using Plotly. Pandas library [12,13] was used to store and process the 
data.  

 
Spheroid image acquisition  
In this study, our goal was to create a generalized DL model that can be used for 
spheroid images from various experimental setups or laboratory environments. To this 
end, we applied the aqueous two-phase solution method [7] to embed the cells of 
interest into collagen matrix spheroids. To estimate the cell-driven contraction of the 
collagen matrix, we collected spheroid images from different treatment conditions and 
time points, using both bladder Smooth Muscle Cells (SMCs) and Human Embryonic 
Kidney (HEK) cells. SMC cells were chosen for this study since they have the ability 
to contract, which we expected to lead to the creation of spheroids in a wide range of 
sizes. HEK cells, on the other hand, do not contract and were used as a negative 
control to ensure the accuracy of our results. The spheroids were treated with various 
concentrations of histamine and Fetal Bovine Serum (FBS) and were observed at 
regular intervals to track their response to these treatments. 
 
To generate the image datasets needed for a DL model, we performed a spheroid gel 
contraction assay using 5000 SMC or HEK cells per collagen spheroid. After the 
collagen droplet polymerized, the medium was changed and plates were transferred 
to an Incucyte Live-Cell Analysis System, which acquired images of the spheroids 
every hour for 24 hours. Alternatively, we used a ZEISS Axio Vert.A1 Inverted 
Microscope and manually acquired images of the spheroids at selected time points. 
By using both methods, we were able to capture a wide range of spheroid images and 
to create a robust dataset for our DL model.  
 
A total of 480 images were obtained from the Incucyte system, and these were 
randomly divided into a training dataset of 336 images (70%) and a validation dataset 
of 144 images (30%). An additional test dataset of 50 images was used to evaluate 
the performance of the trained model. To create a model specifically for microscopic 
images, we gathered spheroid images from the microscope and divided them into 
three datasets: training, validation, and test. The training dataset included 265 images, 
the validation dataset included 117 images, and the test dataset included 50 images 
(Figure 3A). To test the robustness of the trained model, the spheroids in the test 
dataset were treated differently from those in the training and validation datasets. The 
medium used here was smooth muscle cell medium and Dulbecco's Modified Eagle 
Medium (DMEM) with 0.5% and 1% FBS.   
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In the following step, an experienced researcher in the spheroid assay manually 
annotated the images from Incucyte and microscopes using the VGG Image Annotator 
[14].  
 
Deep learning framework  
 
For spheroid detection and segmentation, we used a state-of-the-art DL model called 
Mask R-CNN and an open-source Python [15] library called Detectron2 [16]. Mask R-
CNN is a method for solving the problem of instance segmentation, which involves 
both object detection and semantic segmentation. Object detection is the process of 
identifying and classifying multiple objects within an image, while semantic 
segmentation involves understanding the image at the pixel level to distinguish 
individual objects within the image. In order to perform these tasks, Mask R-CNN first 
uses a deep Convolutional Neural Network (CNN) to process the input image and to 
generate a set of feature maps. These feature maps are then used as input for the 
next step in the process. 
 
Mask R-CNN performs object detection in two stages. First, it uses a Region Proposal 
Network (RPN) module to identify Regions of Interest (ROIs) within the image. ROIs 
are defined as bounding boxes with a high probability of containing objects. In the 
second stage, Mask R-CNN uses an ROI classifier and bounding box regressor 
module to classify the objects within the ROIs and to determine their bounding boxes. 
Both the RPN and ROI classifier and bounding box regressor modules are 
implemented as CNNs. 
 
For semantic segmentation, Mask R-CNN uses a fully convolutional network (FCN) 
called the mask segmentation module to predict masks for each ROI determined in 
the object detection phase. This allows Mask R-CNN to accurately identify and 
distinguish individual objects within the image and segment them from the 
background. Overall, the combination of object detection and semantic segmentation 
allows Mask R-CNN to achieve highly accurate and detailed instance segmentation 
results (Figure S5). 
 
In this study, we used the Mask R-CNN model for instance segmentation and tuned 
several of its parameters to fit the specific problem and the dataset we were working 
with. The backbone of the model was a ResNet-50 feature pyramid network, and we 
initialised the model with weights from a pre-trained COCO instance segmentation 
model. The batch size for training was set to 4, and the base learning rate was set to 
0.00025. The RoIHead batch size was 256, and we used a single output class (for 
spheroids). We trained the model for a total of 1000 iterations. In addition to these 
specified parameters, we used the default values for all other parameters of the Mask 
R-CNN model. 
 
Evaluation Metrics  
To evaluate the performance of the trained models on spheroid segmentation, we 
used the Average Precision (AP) or Mean Average Precision (mAP) metric. mAP is a 
commonly used evaluation metric in computer vision for measuring the accuracy of 
instance segmentation and object detection models. Many of the state-of-the-art object 
detection algorithms, such as Faster R-CNN [17], Mask R-CNN [18], MobileNet SSD 
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[19], and YOLO [20], and benchmark challenges such as PASCAL VOC [21], use AP 
to evaluate their models. Calculation of AP is dependent on the following metrics: 
 
Precision: It is defined as the fraction of true instances among all predicted instances 
and is calculated using the following formula: 

Precision = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
	

 
Recall: It is a metric that represents the fraction of retrieved instances among all 
relevant instances and is calculated as follows: 
 

Recall = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	

 
Intersection over Union (IoU): The intersection over union (IoU) is a metric that 
measures the overlap between two bounding boxes or masks. It is commonly used to 
evaluate the accuracy of object detection and instance segmentation models. The IoU 
value ranges from 0 to 1, with a value of 1 indicating a completely accurate prediction. 
To calculate the IoU, the overlap between the predicted and ground truth regions is 
first determined and divided by the total area of both regions. The IoU is a useful metric 
because it allows for comparing predictions with different shapes and sizes, as it 
considers the area of both the predicted and ground truth regions (Figure 3B). 
 
Average Precision (AP): The Average Precision (AP) is a metric used to evaluate the 
performance of object detection and instance segmentation models. It is calculated as 
the area under the precision-recall curve, which plots the precision (the proportion of 
true positive detections among all positive detections) against the recall (the proportion 
of true positive detections among all ground truth objects) of a model. AP ranges from 
0 to 1, with a higher value indicating better performance. A higher AP value indicates 
that the model can achieve both high precision and high recall, making it a useful 
metric for evaluating the overall performance of a model. AP can be calculated for a 
specific IoU threshold as follows: 
 

AP = $ Precision	d(Recall)
!

"
	

 
Often, AP is used as the average over multiple IoU thresholds, and it is calculated as 
follows: 
 

mAP =	
1
𝑛6𝐴𝑃#

#$%

#$!

	

 
where,  

𝐴𝑃! = AP at 𝑘th IoU threshold 
𝑛						= Number of IoU thresholds under consideration. 
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In the following, AP@0.75 represents AP at IoU threshold 0.75 and AP@[0.5:0.95] 
represents the average AP over 10 IoU thresholds (from 0.5 to 0.95 with a step size 
of 0.05). 
 
Area and Intensity Calculation  
 
After performing object detection and instance segmentation on an image, we can use 
the predicted contour boundary of each spheroid to calculate its area and intensity. To 
calculate the area of a spheroid, we use Python's OpenCV library to count the number 
of pixels within the contour boundary. This gives us the total area of the spheroid in 
pixels. To calculate the intensity of the spheroid, we follow a similar process. First, we 
create a new image with the same shape and number of pixels as the original, but with 
a default intensity of zero. This image is then masked with the predicted contour 
boundary of the spheroid, setting all pixels within the boundary to a value of 255. We 
then extract the x and y coordinates of all pixels with a value of 255, which correspond 
to the pixels within the contour boundary of the spheroid in the original image. Finally, 
we use OpenCV to calculate the average intensity of these pixels, which gives us the 
intensity value for the spheroid. This process allows us to accurately measure the area 
and intensity of each spheroid in an image (Figure 3C). 
 
Availability of supporting source code and requirements 
 
Project name: SpheroScan 
Project home page: https://github.com/FunctionalUrology/SpheroScan 
Operating system(s): Linux or Mac 
Programming language: Python 3.10.6   
Other requirements: Docker, Python, Anaconda, Git 
License: GNU GPL 
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Figure 1. Graphical Abstract. (A) Data Acquisition. We used Incucyte and microscope platforms to generate spheroid images for the training and evaluation of deep learning model. (B)
Deep Learning (DL) Pipeline. Two models were trained using Incucyte and microscope image datasets. These models were then evaluated on validation and test datasets. (C) SpheroScan
consists of two submodules: Prediction and Visualization. The Prediction module applies the trained deep learning models to mask the input spheroid images, producing a CSV file with the
area and intensity of each detected spheroid as output. The Visualization module enables the user to analyse the output from the Prediction module by providing various plots and
statistical analyses.
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Figure 2. Results of the deep learning model's performance. The total loss for both training and validation datasets of Incucyte (A) and microscope (D) images. The bounding box loss and mask loss for the training dataset
of Incucyte (B) and microscope (E) images. The APbbox@[0.5:0.95] and APmmask@[0.5:0.95] for the validation and test datasets of Incucyte (C) and microscope (F) images. The APbbox@[0.5:0.95] represents the average precision
for bounding boxes, and the APmmask@[0.5:0.95] represents the average precision for segmentation masks in the range of 0.5 to 0.95.
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Figure 3. (A) Datasets. Training, validation and test datasets size for Incucyte and microscpe model. (B) IoU metric. The Intersection over Union (IoU) metric is a measure of the overlap between two bounding boxes or masks. It is
calculated by dividing the overlap area between the predicted and ground truth regions by the total area of both regions combined. (C) Spheroid Intensity calculation. To determine the intensity of the spheroid image, a new
image with the same shape and number of pixels as the original is created, but with all pixels set to zero intensity. The predicted contour boundary of the spheroid or spheroids is applied to this new image, and all pixels inside the
boundary are set to 255 intensity. The x and y coordinates of each pixel in the new image with a value of 255 are then extracted. The average pixel intensity value for all points within the contour boundary is then calculated using
Python's OpenCV module. (D) Run-time analysis. The runtime complexity of the prediction module was analysed using four different image datasets of varying sizes. The results showed that it takes less than a second to mask an
image, and the runtime complexity of the prediction module is linear. This means that the time required to process an image increases in proportion to the number of images being processed.
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