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Mancha, Ciudad Real, Spain, 2 Sorbonne Université, Paris, France, 3 Departamento de Ciencias Exactas y

Tecnologı́a Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico,

4 Department of Mathematics, Universidad de Cádiz, Biomedical Research and Innovation Institute of Cádiz

(INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain, 5 Department of Radiology, Virgen del Rocı́o

University Hospital, Seville, Spain, 6 Department of Neurosurgery, Inselspital Bern and University Hospital,

Bern, Switzerland

☯ These authors contributed equally to this work.

* jesus.bosque@uclm.es

Abstract

Low-grade gliomas are primary brain tumors that arise from glial cells and are usually

treated with temozolomide (TMZ) as a chemotherapeutic option. They are often incurable,

but patients have a prolonged survival. One of the shortcomings of the treatment is that

patients eventually develop drug resistance. Recent findings show that persisters, cells that

enter a dormancy state to resist treatment, play an important role in the development of

resistance to TMZ. In this study we constructed a mathematical model of low-grade glioma

response to TMZ incorporating a persister population. The model was able to describe the

volumetric longitudinal dynamics, observed in routine FLAIR 3D sequences, of low-grade

glioma patients acquiring TMZ resistance. We used the model to explore different TMZ

administration protocols, first on virtual clones of real patients and afterwards on virtual

patients preserving the relationships between parameters of real patients. In silico clinical tri-

als showed that resistance development was deferred by protocols in which individual

doses are administered after rest periods, rather than the 28-days cycle standard protocol.

This led to median survival gains in virtual patients of more than 15 months when using rest-

ing periods between two and three weeks and agreed with recent experimental observations

in animal models. Additionally, we tested adaptive variations of these new protocols, what

showed a potential reduction in toxicity, but no survival gain. Our computational results high-

light the need of further clinical trials that could obtain better results from treatment with TMZ

in low grade gliomas.

Author summary

Low-grade gliomas are incurable brain tumors that originate from glial cells, the cells that

provide physical and chemical support to neurons. Patients typically receive
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temozolomide (TMZ) chemotherapy as part of the standard treatment, but eventually

develop resistance to the drug, what constitutes an important therapeutic challenge. We

developed a mathematical model to explore novel TMZ delivery protocols that could

improve survival and reduce toxicity. These are grounded in the reduction of the persister

population, a recently discovered glioma cell type that reversibly changes to a quiescent

state to resist insults. We measured tumor volume from longitudinal imaging studies per-

formed in patients that showed resistance to treatment and used those measurements to

validate our mathematical model. We proposed a general scheme of TMZ administration

that consisted in delivering isolated doses with long resting periods, in contrast to classical

cycle delivery with higher concentration of doses. Computational simulations modified

schemes showed a benefit in survival with reduced toxicity. Our findings could guide bio-

logical experiments aimed at improving overall survival and quality of life for patients

with low-grade gliomas.

Introduction

Gliomas are a heterogeneous group of primary brain tumors that originate from glial cells, the

supporting cells of neurons. They represent 24% of all central nervous system (CNS) tumors,

and are therefore the most common primary brain tumors of the CNS [1]. Gliomas are classi-

fied into three categories depending on their severity: benign (WHO grade 1), low-grade

(WHO grade 2) and high-grade (WHO grade 3–4). Low-grade gliomas (LGG) usually harbor

mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) and show a distinct behav-

ior from their high-grade counterparts [2]. They are slow growing and most often occur in

young adults. Due to their infiltrative nature, the tumor cells invade the surrounding brain,

making LGGs usually incurable with near-systematic recurrence, even after total resection [3].

With time, LGGs acquire new mutations, and eventually evolve into higher grade, malignant,

and much more aggressive tumors [4]. Nevertheless, survival can exceed 10 years with a 5-year

survival rate estimated at 50% [1].

The optimal management of LGGs remains unclear [5]. After first-line surgery, the patient

usually receives chemotherapy, radiotherapy, or radiochemotherapy [6]. Temozolomide

(TMZ) is one of the most widely used antitumor agents against LGGs, mainly due to its effec-

tiveness and relatively low toxicity. However, TMZ is not exempt from one of the major prob-

lems facing anti-cancer therapies: drug resistance. Many mechanisms can explain the

development of such resistance, but it is now becoming increasingly clear that a recently dis-

covered cell type, persistent cells, or persisters, are key to explaining the development of such

acquired resistance [7–11]. These cells have a slow or dormant metabolism, what makes them

tolerant to drugs. Under treatment-induced selection pressure, these cells are able to evolve

towards a resistant phenotype, but can also revert to a sensitive phenotype in the absence of

drug exposure. Several recent studies have shown that persistent cells may explain the develop-

ment of TMZ resistance in glioblastoma [12–14]. Experiments conducted by Segura et al. [13]

in slow-growing glioblastoma cell lines and orthotopic glioblastoma mouse models have

shown that spacing out individual TMZ doses increased cell viability/mouse overall survival

and decreased the amount of resistance-associated factors. This suggests that spacing individ-

ual doses may provide more time for persisters to revert to a sensitive state, and thus delay the

emergence of resistance. Interestingly this type of study has never been conducted in LGGs,

mainly due to the lack of availability of good experimental models of the disease. Nevertheless,

due to their similarity and common precursor cell, it is reasonable to expect that the results
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obtained in glioblastomas regarding the existence of persisters can be translated to the case of

LGGs [13]. Thus, it is crucial that the populations of persistent cells are taken into account in

the modeling of the disease and therapies are adapted consequently.

In clinical trials, the identification of an optimal protocol is often difficult. Indeed, the

choice between different therapies, drugs concentration and their administration schedule

imposes a large number of potential combinations, often too many to be tested by classical

empirical approaches. This is particularly true for LGG: here, the rarity of the disease makes

recruitment of patients into trials difficult, and long natural overall survival lead to very long

trial duration times. In this context, mathematical modeling and computational simulations

are proving to be powerful tools to explore new clinical protocols, via a virtual, low-cost, fast

and patient-free approach [15, 16]. A mathematical model is based on strong assumptions,

and is not intended to perfectly reproduce the real world. The purpose of a model is to explore

certain hypotheses by placing them in an abstract and simplified context. This kind of

approach can generate ideas or “proofs of concept” to guide clinical research.

This work has two goals. The first one is to build a mathematical model able to describe the

macroscopic growth of LGGs under the influence of TMZ chemotherapy. The second one is to

use this model to implement a virtual clinical trial that identifies an improved TMZ protocol

postponing the emergence of acquired TMZ resistance, while controlling tumor growth and

reducing treatment toxicity. Several LGGs models have been previously developed [17–22]

but, to our knowledge, none of them have included the emergence of resistance considering

the role of persister cells. Here we developed such a model and validated it by fitting longitudi-

nal volumetric data from longitudinal MRI data of LGG patients showing evidence of acquired

TMZ resistance. For each patient, we obtained a set of parameters describing the tumor behav-

ior, what allowed us to create virtual copies of each real patient. Using those virtual twins, we

conducted simulations to explore new TMZ administration schemes. We found that spacing

out the same amount of TMZ in the form of individual doses lead to a delay in the emergence

of resistance with respect to the 28-days cycle standard protocol. Finally, to extend our results

we conducted a virtual clinical trial generating a cohort of in silico patients with variable values

of the parameters. Our results suggested that dose protocols with 14 or 21 days intervals

between individual doses significantly delay the emergence of resistance in comparison to the

conventional administration protocol.

Materials and methods

Ethics statement

The study was approved by Kantonale Ethikkommission Bern (Bern, Switzerland), with

approval number: 07.09.72, and by the Institutional Review Board of Hospital Virgen Macar-

ena y Virgen del Rocı́o with approval number 2158-N-19. Written informed consent was

obtained for all participants in the study.

Formulation of the mathematical model

Rabé et al. [12] studied the acquisition of resistance of human glioma cells to TMZ performing

in vitro and in vivo longitudinal experiments. Their results recognized three main cell types

with disparate behavior: drug sensitive, drug-tolerant and fully resistant cells. Drug-tolerant
state is caused by epigenetic alterations due to TMZ exposure, what produce a change in gene

expression but do not initially affect the DNA sequence. Since there are no mutations, this cel-

lular state can be reversed, i.e. if TMZ exposure is ceased, the drug-tolerant cells become sensi-

tive again. These cells exhibit a slow proliferation rate allowing them to survive treatment and

then give rise to permanently resistant cancer cells if exposure to the drug persists in time.
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Drug-tolerant cells share common antibiotic tolerance properties observed in bacteria, thus

they are also known as persistent cancer cells or persisters, replicating the term used for bacte-

ria [9]. However, precise characterization of this particular population remains a major chal-

lenge in cancer biology (see e.g. [10, 14] for more details). Fig 1A shows schematically the most

important cell types and a general framework of the resistance acquirement process, inferred

from Rabé et al. work [12].

The treatment is also associated to an increase in the tumor aggressiveness. Together with

resistance to treatment, TMZ exposure induces the proneural to mesenchymal phenotypic

transition, in which cells change to a more aggressive state that is associated to a poor progno-

sis [13, 23]. Actually, this transition is a step towards resistance acquisition, and the two effects

represent two sides of the same coin. The velocity of diametric expansion (VDE) of low-grade

gliomas, estimated from the evolution of T2-weighted MRIs over time, was assessed by Pallud

et al. [24]. They found that, in most patients, the VDE before treatment (mean 5.9 mm/year)

Fig 1. Visualization of the resistance acquisition process and its translation to biological interactions between populations. (A) At the beginning of

TMZ treatment, there are only sensitive cells (blue). When TMZ is administered, some sensitive cells enter a persistent state (orange) and others are

damaged (green). Under continuous administration of TMZ, cells acquire a fully resistant phenotype (red). (B) Diagram of interactions between the

different populations as modeled by Eqs (1–6). Sensitive cells proliferate at a rate ρ1. When TMZ is administered, some sensitive cells are damaged at a

rate ψ and enter the persistent state at a rate α1 under the exposure to TMZ. Persister cells can return to a sensitive state at a rate β or give raise to a fully

resistant phenotype at a rate α2 if TMZ exposure continues. Damaged cells die due to mitotic catastrophe at a rate τ, while resistant cells grow at a rate

ρ2. Assumptions are based on biological experiments and clinical observations of patients diagnosed with LGGs.

https://doi.org/10.1371/journal.pcbi.1011208.g001
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was lower than the VDE after the treatment (mean 7.8 mm/year) when the tumor relapses,

pointing to a higher proliferation rate of cells exposed to TMZ.

We developed a mathematical model of LGG growth and response to TMZ taking into con-

sideration all the previous experimental results and clinical observations. The model was based

on ordinary differential equations (ODE) and describes the evolution in time of the volumes

occupied by the following four well-mixed tumor cell populations:

• Sensitive cells (VS): Cells in which TMZ has an effect, which would be assumed to be pro-

portional to the concentration of drug E [25, 26]. We will assume that the generation of dam-

age in the cells due to the alkylating effect of the drug has a rate ψ, and the promotion of the

emergence of reversible persistent behavior has a rate α1. Additionally, cells in this compart-

ment proliferate at a rate ρ1 [27–29].

• Damaged cells (VD): There are different modes of LGG cell death due to TMZ cytotoxic

action [30]. We considered that the one that best explains the LGG clinical response to TMZ

observed in patients by Ricard et al. [31] is the mitotic catastrophe. This implies a delayed

effect that is noticeable months after the application of the treatment [32]. Thus we assume

that cells exposed to TMZ first transit into this compartment and then decay to dead cells

with characteristic time τ.

• Persister cells (VP and VPI): These are quiescent cells due to the exposure of sensitive cells to

the TMZ. There are two stages of the process of persister stabilization before the sensitive

cells can reach the resistant state: First, sensitive cells enter the intermediate and temporary

persistent state VPI due to the exposure to high concentrations of drug E. Having been

exposed to TMZ, these initial persisters can stabilize to a fully persistent phenotype VP,

which happens after the administration of the drug, when the concentration E is low. This

behavior is ruled by the transit function f(E) > 0, what has appreciable values only for very

low values of E. If the drug concentration E returns to high values due to a subsequent dose,

the persister VP can become fully resistant VR with a rate α2. In the absence of drug exposure,

these cells can also revert to a sensitive phenotype with a rate β.

• Resistant cells (VR): Cells that stop being sensitive to TMZ due to a continuous exposure of

persistent cells VP to the drug E. The transformation of sensitive cells to resistant cells is asso-

ciated to the proneural to mesenchymal transition, in which cells acquired a more aggressive

phenotype [13]. Consequently, they proliferate with a rate ρ2 that should obey ρ2 > ρ1

according to Pallud’s observations [24].

In addition to the those cellular populations, the normalized concentration of the drug E is

tracked in the model. TMZ is known to exhibit linear kinetics [33], i.e. the instantaneous rate

of change in drug concentration depends only on the current concentration [34]. Thus, E(t)
can be interpreted as the effect of TMZ with a clearance rate λ. As a consequence, 0� E(t)� 1,

where 1 is the largest possible effect and 0 corresponds to no effect.

The overall scheme of the previously described agents and their interactions is shown in Fig

1B. The time evolution of the described populations subject to the described interplay can be

mathematically modeled by the following ODE system:

dVS

dt
¼ r1VS

zffl}|ffl{
proliferation

� cVSE
|fflfflffl{zfflfflffl}

to damaged

due to the drug

� a1VSE
|fflfflfflffl{zfflfflfflffl}

to persister

due to the drug

þbVP;
zfflfflffl}|fflfflffl{

from persister

ð1Þ
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dVD

dt
¼ cVSE

zfflffl}|fflffl{
from sensitive

� tVD;|fflfflffl{zfflfflffl}
death

ð2Þ

dVPI

dt
¼ a1VSE

zfflffl}|fflffl{
from sensitive

� VPI f ðEÞ; ð3Þ

dVP

dt
¼ VPI f ðEÞ� a2VPE

|fflfflfflffl{zfflfflfflffl}
to resistant

� bVP;|fflfflffl{zfflfflffl}
to sensitive

ð4Þ

dVR

dt
¼ r2VR

zffl}|ffl{
growth

þa2VPE;
zfflfflfflfflffl}|fflfflfflfflffl{
from persister

ð5Þ

dE
dt
¼ � lE; ð6Þ

where all variables and parameters have been previously described. The initial conditions for

Eqs (1–6) are VS(0) = VS0,VD(0) = VPI(0) = VP(0) = VR(0) = E(0) = 0, with VS0 being the value

of the first observation VO for each patient.

The activation function f(E) was chosen to reproduce the following biological behavior in

the simplest mathematical way: The exposure to TMZ promotes the transition of sensitive cells

to persisters, but it also leads the transformation of persisters in resistant cells; however, the

exposure to TMZ has to be reiterated for the last transition to happen, therefore, our model

must prevent recently created persister cells from changing to resistant in the same dose appli-

cation. In order to reproduce this, we consider an intermediate persister population and an

activation function that should be close to zero for large values of the effect E and positive for

low values of E to allow the transition from VPI to VP. Therefore, we used a classical sigmoid

pass function

f ðEÞ ¼ 7:5 1 � tanh
E � 0:01

0:01

� �� �
: ð7Þ

Notice that this modeling approach is restricted to the case of TMZ, which is administered

in pills, with no less than a day between subsequent administration, and has a half-life of

approximately 2 hours. Therefore, the use of an activation function would fail if we were con-

sidering a drug subject to continuous uptake over a prolonged time period. Additionally, it

would be possible to achieve this desired delay of transition times from VPI to VP by using a

series of intermediate compartments, VP0, VP1, . . ., VPn, VP, what would provide more general-

ity for the case of treatments that are administered continuously. See supporting information

S2 File for more details.

LGG patients imaging data

Longitudinal imaging data from histology confirmed LGG patients who had been treated with

TMZ were used to assess the goodness of fit of the ODE model, infer the values of the parame-

ters and analyze modifications in the treatment scheme.

Data were provided by three hospitals: Bern (Switzerland), Virgen Macarena (Seville,

Spain) and Virgen del Rocı́o (Seville, Spain). All patients signed informed consent and the
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study had been approved by the Institutional Review Boards of the hospitals. The authoriza-

tion codes were: 07.09.72 (Bern University Hospital), 2158-N-19 (Virgen Macarena University

Hospital) and 2158-N-19 (Virgen del Rocı́o University Hospital).

Data from a total of 91 patients were initially considered. Raw FLAIR 3D MRI studies of

patients from Virgen Macarena University Hospital and Virgen del Rocı́o University Hospital

was processed as explained below. Already processed volumetric longitudinal data from Bern

University were used.

Patients that showed evidence of acquired resistance to the treatment with TMZ were

included in the study. This was assessed as a volumetric regrowth under TMZ treatment after

a previous initial response to the treatment. Patients not responding to TMZ were excluded

from the study. Patients who underwent surgery or other interfering therapies in the period of

study were excluded.

A total of 7 patients with grade-II gliomas (all male; median age 49 years with range 37–59

years) were selected. The final cohort consisted of four patients with oligodendroglioma and

three patients with diffuse astrocytoma. Individual patient characteristics, longitudinal volu-

metric data and information related to TMZ treatment can be found in S1 File.

Tumor volume measurement

Patients from Virgen Macarena and Virgen del Rocı́o University Hospitals had fluid attenu-

ated inversion recovery (FLAIR) 3D MRI sequences available. Tumor volume calculation was

performed following the procedure described in [35]. Digital Imaging and Communications

in Medicine (DICOM) images were loaded into Matlab software (R2022b, The MathWorks,

Inc., Natick, Massachusetts) and were semi-automatically delineated using a gray-level thresh-

old to identify the tumor region. A slice by slice manual correction of each segmentation was

then done by a research team member (T.D.) under the supervision of an image expert with

six years of experience (J.P.B).

Once tumor regions were identified and delineated, the tumor volume was computed by

counting the number of voxels in the segmented tumor and multiplying by the individual

voxel volume. For comparison purposes, we also used the ellipsoid approximation method,

which uses three orthogonal linear measures in the tumor [36, 37]: the largest tumor diame-

ter D1 in the axial plane was measured and the second axis was selected perpendicular to it

(D2); the third measure was obtained as the largest diameter D3 in the sagittal, or equivalently,

coronal planes (see S1 Fig). The total tumor volume was obtained by applying the formula

V = (D1 × D2 × D3)/2. Volumetric growth data from MRI scans of patients in Bern Hospital

was obtained exclusively by the ellipsoid approximation by using diameters on successive T2/

FLAIR sequences.

The first methodology yields more precise volume measurements at the cost of a greater

time effort. For a fixed set of tumors, both methodologies were compared. An average differ-

ence of 18% was found, therefore, we used this value as the uncertainty in the segmentation

and used an 18% error bar for the volume data.

Modeling of the TMZ effect and pharmacokinetics

Peak TMZ concentration is reached about one hour after administration [33], what is very fast

compared to the time required to observe considerable tumor growth. Therefore, tumor size

can be considered to be constant between the time of drug administration and the time of

peak concentration. Thus, the time to reach peak concentration was considered instantaneous.

The evolution of volumes and drug concentration at the time tT,i of administration of a dose i,

PLOS COMPUTATIONAL BIOLOGY Overcoming resistance in LGG

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011208 November 20, 2023 7 / 29

https://doi.org/10.1371/journal.pcbi.1011208


with i = 1, 2, . . ., M, being M the total number of doses, was taken as

VSðtT;iÞ ¼ VSðt�T;iÞ; ð8Þ

VDðtT;iÞ ¼ VDðt�T;iÞ; ð9Þ

VPIðtT;iÞ ¼ VPIðt�T;iÞ; ð10Þ

VPðtT;iÞ ¼ VPðt�T;iÞ; ð11Þ

VRðtT;iÞ ¼ VRðt�T;iÞ; ð12Þ

EðtT;iÞ ¼ Eðt�T;iÞ þ E0; ð13Þ

with t�T;i being the time just before the administration of the i chemotherapeutic dose and

E0, the effect produced by the peak concentration of the given dose. TMZ is eliminated

with a mean half-life of t1/2 � 2 h [33], therefore, the corresponding clearance rate is

λ = 24�ln(2)/2 = 8.32 day−1.

Estimation of patient-specific parameters

The specific behavior of each patient was captured in our model by the parameters ρ1, ψ, α1, β,

τ, α2 and ρ2. LGGs, as other types of brain tumors, are characterized by a range of inter-patient

variability, therefore, different patients are expected to be represented by different individual

values of these parameters.

The specific set of values providing the better fit of each patient evolution and response to

TMZ was calculated by least mean squares. For each particular patient, we minimized the root

mean squared error between total tumor volume in the model (V(t) = VS(t) + VD(t) + VPI(t) +

VP(t) + VR(t)) and in the longitudinal data (VO,j at times tO,j, with j = 1, . . ., N being the conse-

cutive clinical observations). During this process we performed the fit of all the parameters

using the data of the overall volume evolution in time, that is, we did not distinguish different

regimes in which independent parameters could be identified. The fits were implemented as a

numerical optimization process. To ensure the robustness of the fit, several initial random

seeds within the prescribed bounds were used. This raises the probabilities that the result of

the optimization process is a global minimum (best fit), rather than a local minimum. From

those different fits corresponding to different seeds we selected the fit showing a smaller mean

squared error.

Further information from biological literature was used to constrain the values and rela-

tionships between parameters. It is known that one TMZ dose is enough to cause the emer-

gence of persisters [12], however, more than one dose is needed to give rise to fully resistant

cells. Under exposure to TMZ, the transition to the persister state from the sensitive cells is less

demanding than the full transition from persister to resistant. Therefore, we forced the rates of

generation of persistent and resistant cells to comply α2 < α1. As to the rate β at which persist-

ers return to sensitive, we set β = 0.1 d−1 after the preliminary fits yielded a value β� 0.1 d−1

for all the patients (see S3 File). This value is in full agreement with the persistent state duration

of glioblastoma cells obtained from in vitro and in vivo experiments [12, 13].

All calculations and simulations were performed in Python version 3.9.7 (Python Software

Fundation). The model was solved using the odeint function and fitted to the longitudinal
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volumetric data using the minimize function with the Nelder-Mead method [38]. Both func-

tions are included in version 1.7.1 of the SciPy package [39].

Evaluation of TMZ administration protocols tested on virtual clones of

patients

We intended to construct different TMZ application protocols that deferred the development

of resistance and led to potentially better overall survival (OS). Our rationale was reducing the

persister population and delaying the induction of resistance by spacing out the administration

of TMZ doses.

We tested the gain of OS of the new protocols in comparison to the standard protocol

(denoted as C28), which consists of cycles of 28 days with TMZ administration on days 1 to 5

and a break on days 6 to 28. The new protocols were organized in individual doses (ID) spaced

out in weeks for convenient clinical implementation. They were distinguished by the number

of days between each single doses. For instance, ID7 was a protocol in which the patient would

receive doses with a resting time of 7 days (Fig 2).

The effectiveness of the different ID protocols was tested on virtual copies of the patient,

characterized by their fitting parameters. Each ID protocol was simulated with the cumulative

number of TMZ doses received during its real treatment. The OS of the virtual patients was

defined as the time at which the simulated volume V(t) reached a critical value, which was set

randomly for each patient by sampling a Gaussian distribution with mean 280 cm3 [18] and

variance 20 cm3.

Generation of virtual patients

In our mathematical model, each patient is characterized by a set of parameter values that

includes initial tumor volume, patient-specific parameters, number of TMZ cycles received

and fatal volume. Therefore, virtual patients can be generated by randomly assigning these sets

of values using different statistical methods.

First, the pre-chemotherapy tumor volume distribution was determined. We measured the

volumetric data from MRI images of 32 patients at the time of diagnosis and determined the

empirical probability distribution that they follow using KernelDensity function with a

Fig 2. TMZ administration protocols. Each arrow represents an oral administration of TMZ. The C28 protocol (C for

cyclic) consists of a given number of cycles of one dose per day for 5 consecutive days, followed by 23 days of rest. The

ID protocol (ID for individual dose) consists of spacing the individual doses by a given number of weeks, in this

example one (ID7) or two (ID14).

https://doi.org/10.1371/journal.pcbi.1011208.g002
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gaussian kernel from Scikit-Learn Python package, version 0.24.2 [40]. The obtained empirical

distribution fitted is depicted in S2A Fig. Afterwards, the initial tumor volumes for virtual

patients were assigned by generating random values sampled from the empirical probability

distribution fitted from the real patients.

Similarly, to generate patient-specific parameters we first studied the correlation between

parameters of real patients (see Table 1). When strong dependencies among parameters

appeared (Spearman correlation coefficient rs > 0.75), they were translated to the generation

of virtual patients to have parameters generated to be as faithful as possible. We used linear

regression to model the relationships between correlated parameters and also explored multi-

variate regressions, but the latter were disregarded in favor of the more simple linear ones. We

used Cholesky decomposition to generate random values of the parameters following the lin-

ear model derived from the real data preserving the correlations inferred from patients.

The number of TMZ cycles administered to the virtual patients was first drawn from a dis-

crete normal distribution with a mean of 19 cycles and a variance of 7, excluding values lower

than 6 and higher than 34 to avoid unrealistic values (S2B Fig). This was done to reproduce the

same behavior of the real patients and avoid generating artificial comparisons. Later on, in

order to give rise to a protocol proposal, we carried out trials in which the number of doses

received by every patient was fixed and equal for every patient.

Inferring a precise statistical distribution for the fatal volume is complex due to the lack of

clinical data. Previous studies used the value of 280 cm3 [18]. Building on that information, we

drew the fatal volume from a normal distribution with a mean of 280 cm3 and a variance of 20

cm3 to add variability between virtual patients and account for the fact that tumor location

may impact the fatal volume (S2C Fig).

In silico clinical trials

We created in silico clinical trials in which the individuals were random virtual patients cre-

ated following the method described above. Different protocols of application of TMZ were

tested on large cohorts to identify a scheme that improves the OS of patients.

Each in silico clinical trial considered 100 patients per arm. In the first arm, the virtual

patients were treated by the traditional C28 protocol, while in the second arm, they received

an ID protocol consisting of individual doses spaced by rest days in periods of discrete weeks.

Each in silico clinical trial was launched with a different random seed. The simulation of each

virtual patient was started 30 days prior to the treatment initiation. The end point corresponds

to a death event, therefore the simulation stops when the tumor reaches the critical size.

To compare the difference in survival between different arms in the clinical trial, we used

the Kaplan-Meier estimator. Significance of the difference between survival curves was

Table 1. Patient-specific parameter values.

Patients VS proliferation ρ1 (×10−4) VR proliferation ρ2 (×10−3) VD death τ (×10−3) VS damage ψ (×10−1) VS! VPI α1 (×10−1) VP! VR α2 (×10−2)

1 12.2 5.54 5.82 9.79 5.13 8.9

2 6.65 1.98 2.09 2.9 2.2 4

3 12.6 4.35 2.89 5.33 3.5 6

4 8.26 10.2 8.9 3.96 4.98 9.9

5 6.24 1.796 1.69 1.9 2.55 5.3

6 9.4 7.25 9.64 3.9 2.68 7.5

7 5.7 1.73 2.57 3.5 3.88 7.2

Values for the different rates that parametrize the model for each fit presented on Fig 3. All units are in day−1.

https://doi.org/10.1371/journal.pcbi.1011208.t001
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evaluated with the log-rank test. Kaplan-Meier survival curves and log-rank test were realized

respectively with the function KaplanMeierFitter and logrank_test from the

lifelines Python package version 0.27.1 [41].

Results

ODE model describes the evolution of patients receiving TMZ treatment

We evaluated the capability of our model to fit the longitudinal tumor volumes of the seven

LGG patients who showed acquired TMZ resistance. Times from diagnosis and volumes can

be found in supporting information S1 File. Fits for each patient are depicted in Fig 3A–3G,

with the best fit parameter values presented in Table 1.

For each patient, we simulated the same chemotherapy treatment that the patient had ini-

tially received, namely a classic cyclic protocol C28 consisting of a single oral dose of TMZ

(consider as equal to E(tT,i) = 1 in the model) per day for 5 consecutive days, followed by 23

days of rest, for a given number of cycles depending on the patient, as it is used in clinical prac-

tice [42].

Three patients had additionally received radiotherapy: patients 1, 6 and 7. Patient 1 (Fig

3A) received radiotherapy after TMZ treatment had finished, thus not interfering with the fit.

The patient developed resistance to the TMZ treatment as evidenced by the lack of response to

the second administration of chemotherapy. The late application of the radiotherapy did not

interfere with our results on chemotherapy. Patient 6 (Fig 3F) received radiation therapy prior

to TMZ administration and right after diagnosis. It is difficult to quantify the precise effect of

radiotherapy, but its application being independent of chemotherapy, and the actual growth in

volume seen after its application for this specific patient, encouraged us to keep these data in

our cohort and focus only on the later chemotherapy treatment and regrowth with evident

resistance development. Patient 7 (Fig 3G) underwent a Stupp protocol consisting of concomi-

tant radiotherapy (2 Gy per fraction) and TMZ (considered as equal to E(tT, i) = 0.5 in the

model) for 6 weeks, every day of the week, except on weekends, followed by a classical cyclic

TMZ chemotherapy [43]. In order to follow the focus on TMZ administration we did not con-

sider within our modeling framework the—potentially important—effect of radiotherapy.

However, the model was able to fit well the last part of tumor evolution, where the effect of

radiotherapy is more likely to have vanished and the resistance acquisition to TMZ is more rel-

evant. For all other patients, fits were close to real data.

In addition to the data points from the patients data and the fit of the total volume provided

by our model, we also represent in Fig 3 the behavior of the individual compartments consid-

ered in the model. After each dose of TMZ, part of the sensitive population becomes damaged

and another part turns to the persistent state. Whereas the drug effect causes the delayed death

in the damaged cell compartment, it is also responsible for the transformation of persistent

cells into fully resistant when an additional dose is given. The persistent cells that do not trans-

form become sensitive again following an exponential decay.

Obtained parameter values represented in Table 1 allowed to mimic the observed macro-

scopic tumor growth and the emergence of TMZ resistance as described in Ref. [12]. Impor-

tantly, our mathematical model was robust and fitted the different dynamics observed with

values of the parameter within similar ranges for all patients.

Alternative protocols improved OS in virtual in silico twins

Using the set of parameters that best described the evolution of the patients, we created virtual

twins and applied different TMZ in silico protocols to evaluate their effect on the tumor

shrinkage. We qualitatively compared the effect of the new protocols with the classic C28
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Fig 3. The model describes the longitudinal evolution of the tumor volume. Fits of all patients longitudinal growth to the model

Eqs (1–6) obtained by minimizing the root mean square error between data and the model. These patients mainly received a cyclic

TMZ treatment (yellow background), some of them also received radiotherapy (red background) and one of them received both

(light brown). (A-F) Volumetric data were acquired by ellipsoidal approximation from the MRI images, error bars represent 18% of

error on tumor volume. (G) Volumetric data were acquired by precise semi-automatic segmentation and therefore no error bars

were included. Each volume associated to a cellular population of the model was represented by its own curve. Each dose induced

drives sensitive cells into either the damaged or the persister cell compartments. Without a supplementary dose, persister cells go

back to the sensitive phenotype. Whereas, with a supplementary dose, a small proportion of persistent cells become resistant. As the

simulation progresses, resistant cells become the majority and the tumor no longer responds to TMZ.

https://doi.org/10.1371/journal.pcbi.1011208.g003
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protocol. Fig 4 shows the simulation of virtual protocols on patient 3, doses applied individu-

ally with dosing intervals ranging from 7 to 98 days. In all the cases, 80 doses were given, what

corresponds to the number of doses the patient received during the C28 protocol.

These simulations show that longer rest periods between doses lead to improvements in

OS. However, as the interval between doses gets larger, the control over tumor growth is even-

tually lost. In particular, for patient 3 the treatment does not induce a tumor shrinkage when

the dose spacing reaches 42 days; at that point tumor growth is no longer controlled. Higher

tumor volumes are correlated with a bad prognosis [44], for instance because of an increased

of intracranial pressure [5] or higher risk of malignant transformation [45]. Also, in clinical

practice, tumor growth during treatment leads to its discontinuation. Consequently, with dos-

ing intervals of 42 days the protocol would not be suitable anymore.

Similar dynamics were observed for other patients (see S3 Fig), nevertheless, the loss of con-

trol thresholds for other patients, like patient 1 (S3A Fig) and patient 7 (S3G Fig), are higher.

Between all the patients, we found a mean rest period causing loss of control of 55 days, with a

standard deviation of 17.7 days. The threshold therefore depends on the specific patient. Since

the goal was to obtain a general protocol improving the outcome for all patients, any scheme

for which there is an increase in tumor volume for any single patient should be neglected. As a

consequence, we did not consider any ID protocol that spaced doses over 42 days.

Our results thus showed that spacing out each single dose between 7 and 42 days increases

both OS and tumor shrinkage for all selected patients of our dataset.

Fig 4. Effect of different time intervals between individual doses on tumor growth. Simulation of different experimental protocols consisting of

spacing each single dose by a given number of days, from 7 to 98. This patient received 80 doses of TMZ according to the classic cyclic protocol (black

line). The longer the interval between doses, the longer the time to reach fatal volume (OS). However, tumor control is lost from 42 days between each

dose. Error bars represent 18% of error. Inferior horizontal line shows minimum attained volume.

https://doi.org/10.1371/journal.pcbi.1011208.g004
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Generated cohorts of virtual patients extend the information from real

data

Pairwise correlation matrix of real patient parameters are shown in S4 Fig. Four pairs of

parameters were highly correlated (rs > 0.75): ρ1 and ψ (rs = 0.82), τ and ρ2 (rs = 0.79), α1 and

ψ (rs = 0.79), and α1 and α2 (rs = 0.95). We fitted the relationships between these variables by

linear models as seen in S4B1 Fig and used these to generate correlated parameters for the vir-

tual patients, which followed the relationships shown in S4B2 Fig.

Cohorts of virtual patients were created as described in the ‘Methods’ section by using ran-

dom parameters in the ranges of the parameters inferred from the real data and respecting the

observed correlations. The correlations of the parameters between virtual patients are depicted

in S4B2 Fig, where the similarity between real and virtual cohorts is apparent.

In silico clinical trials show that protocols with individually spaced doses

have an OS benefit

The results of the previous section show the effectiveness of spacing out individual doses. To

obtain stronger results, we implemented an in silico clinical study in which we set up different

experiments based on cohorts of virtual patients.

Using cohorts of 100 virtual patients per arm, we investigated ID protocols with the goal of

finding schemes with better OS than the standard C28. We studied ID schemes with a dosing

interval between doses of 7, 14, 21, 28, 35, and 42 days. Kaplan-Meier survival curves of repre-

sentative in silico clinical trials for the different ID protocols tested are shown in Fig 5. All ID

protocols showed a better survival than the C28 standard scheme.

To further substantiate our results, for each ID protocol, we simulated a total of 20 clinical

trials with 100 virtual patients per arm. To measure the survival gain, we computed the differ-

ence at the median between the survival curves of each arm. The difference of median survival

between the ID schemes for different rest periods with respect to the C28 are shown in Fig 6A.

Greater dosing intervals between doses lead to survival gains in the median between 5 months

for the ID7 to 27 months for ID42.

In simulations of ID treatments on virtual clones of real patients, the control of tumor

growth is lost when a certain number of weeks between each dose is exceeded. Therefore,

there is a trade-off between tumor shrinkage and overall survival. We performed a second

experiment consisting in simulating 500 patients under ID7 to ID42 protocols. For each

patient, we computed the difference between the post-treatment minimum tumor volume and

the volume at the beginning of the TMZ treatment. Results shown in Fig 6B demonstrate that

the larger the spacing between doses, the smaller the loss of volume.

In order to show that the conclusion drawn from the clinical trials is independent of the

fixed parameter β ruling the transition of persister cells back to the sensitive state, we per-

formed 4 new in silico clinical trials using four different values of β and using the comparison

between the ID21 protocol and the C28 protocol as a reference (S5 Fig). The results showed

that the previous conclusions hold for all the tested values of β, in the range [2 × 10−2, 1] day−1.

Moreover, we tested the dependency of the results on the shape of the switching function

between VPI and VP, ruled by a single parameter in the sigmoid curve. We ran two additional

in silico clinical trials of the ID21 protocol versus the C28 with two different shapes of the said

function (S6 Fig) and found no difference with the previous results.

To guarantee the safety of the proposed protocols, we established a new requirement on the

control of tumor volume: No virtual patient enrolled in the trial can experience loss of volume

control. Therefore, ID protocols in which at least one patient experienced loss of control were

neglected. This happened for protocols ID42 and ID35, for whose 20 respective clinical trials,
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there was at least one patient for which the volume could not be stabilized by the treatment.

Therefore, these two protocols were neglected.

Therefore, even though large dosing intervals might be beneficial for some cases, intermediate

spacings like ID14 and ID21 provide a better compromise between OS gain and reduction of

Fig 5. ID protocols have a better survival curve than the classic C28 protocol. Kaplan-Meier survival curves of four virtual clinical trials which

consisted of comparing C28 protocol with the administration of individual TMZ doses spaced by: (A) 7 days (ID7), (B) 14 days (ID14), (C) 21 days

(ID21), and (D) 28 days (ID28). Each arm consists of 100 virtual patients. TMZ treatment was initiated 30 days after the start of the simulation for all

patients. p-values were calculated using the log-rank test.

https://doi.org/10.1371/journal.pcbi.1011208.g005

Fig 6. Compromise between OS and tumor shrinkage. (A) Boxplot showing the survival gain (calculated at median of Kaplan-Meier curves) of

different ID protocols versus the C28 one. For each protocol, 20 clinical trials with 100 patients per arm were simulated. (B) Boxplot showing the

maximum volume loss when the time between individual doses is spaced from 7 to 42 days. For each protocol 500 patients were simulated.

https://doi.org/10.1371/journal.pcbi.1011208.g006
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tumor volume. These two protocols show safety in controlling tumor volume while at the same

time provide significant improvements in terms of overall survival. Additionally, they have the

advantage of their easy clinical implementation, since they propose giving a dose regularly every

two weeks, or every three weeks, respectively. As a consequence, we propose using ID14 or ID21

protocols for TMZ administration in LGG patients as a means of safely extending overall survival.

Individual dose protocols show superiority in virtual clinical trial with

fixed number of cycles

In the previous analysis we intended to get as close as possible to the real situation represented

by our patient’s dataset. Since every patient received a different number of cycles, we repro-

duced the same behavior in the in silico patients by generating virtual cases which received a

random number of total doses (within the data ranges). This number of doses was therefore

different for each patient.

However, demonstrating the efficacy of a proposal for a new standard by means of a clinical

trial would imply delivering a pre-fixed and equal number of cycles to every patient. Therefore,

we ran new clinical trials that fulfilled this criterion. For the ID14 and ID21 protocols, we set

two different clinical trials to compare them to the C28 standard. The first delivered a total

amount of 12 cycles to each of the virtual patients enrolled, while the second was based on a 24

cycles rationale.

The Kaplan-Meier curves of these trials (S7 Fig) show that the ID14 protocol entails a gain

of around a year in median overall survival, while the ID21 is able to provide a median survival

gain of 13.8 months for the study with 12 cycles and 15.2 months for the study with 24 cycles.

Clinical trials should enroll at least 40 patients per arm to demonstrate the

superiority of ID schemes

The computational results shown here need a validation on patients to confirm the results. It

would be desirable to minimize the number of patients enrolling a clinical trial. Therefore, we

calculated here the minimum number of patients required to prove the benefit of the proposed

ID14, ID21 and treatment schemes in a real clinical trial.

For each of the protocols ID14 and ID21, we organized 20 independent clinical trials with

10 patients per arm. The trials were repeated by gradually increasing the number by 10 patients

per arm each time until a total of 100 patients per arm. This gives an outlook of the potential

results from clinical trials. The goal was identifying the minimum number of patients for

which the trial gave a significant difference in survival between the virtual patients in the

groups. For the results of each of the clinical trial we evaluated their significance by the p-val-

ues of the log-rank test. Results are shown in Fig 7.

For ID14 protocol, 30 patients per arm produced a significant trial 95% of the times. With

40 patients per arm all trials were significant. In the case of ID21 protocol, 90% of the trials

were significant with 20 patients per arm, whereas with 30 or more patients per arm all were

significant. As a consequence, the minimum number of patients per arm to be completely sure

of proving the superiority of ID14 and ID21 protocols are, respectively, 40 and 30. Notice that

the enrollment of 80 patients with the desired characteristics might involve the initial consider-

ation of a higher number of patients of which many might be rejected.

Adaptive variations of ID protocols can be used to limit toxicity

The adaptation of the treatment schedule in a per-patient basis in order to avoid the emer-

gence of resistant phenotypes and to minimize side effects has been studied theoretically
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extensively in recent years [46]. The concept has proven useful in some sets of prostate cancer

patients [47] and is under testing for other cancer histologies [48]. This so-called adaptive ther-

apy is based on controlling the disease burden below a certain limit as assessed by a biomarker.

Once the disease burden is below the target value for the biomarker treatment is reduced or

even removed. When the disease markers are out of range treatment is restarted or adapted

dynamically. The simplest way of using this idea is implementing on/off treatment cycles

depending on the biomarker values.

We applied adaptive therapy to virtual patients simulated through the model (1)–(6). The

time between doses was set depending on each protocol (ID14, ID21) and the MRI screening

time was set to 90 days, as it is typically done in the clinical practice for LGG. The volume read-

ings obtained in the screening was used to implement therapeutic decisions in silico. If the

tumor volume was below a certain threshold, all doses until the next screening were spared.

No treatment was applied until, in subsequent screenings, the tumor volume was found to be

over the threshold chosen. In that case, the dosage schedule was resumed until the next screen-

ing. We show an example of the application of this therapy in Fig 8A. In the simulation shown

there, we compared the total tumor volume using the ID21 protocol and the one of the adap-

tive protocol. The respective cell subpopulations obtained when using the adaptive protocol

are depicted there. We also tested whether the screening time has a big influence on this spe-

cific case and found a low sensitivity to that parameter due to the small length relative to the

overall period where the therapy is activated/deactivated (S8 Fig).

To check if adaptive therapy resulted in an improvement of survival with respect to the con-

tinuous ID14 and ID21 protocols, we performed several virtual clinical trials with adaptive

therapy for different dosages and volumetric thresholds ranging from 30% to 80% of the initial

tumor volume (S9 and S10 Figs). The results of these virtual clinical trials showed that there is

no significant difference in terms of survival between using the ID protocols or their adaptive

variation (8(B)–8(C)). Therefore, skipping dosages by means of adaptive therapy can serve as a

way to limit toxicity and side effects of the treatment, while preserving the gain in survival

given by the ID protocols.

Discussion

In this work we studied the response of LGG to TMZ via a mathematical model of ODEs that

includes the acquisition of resistance to treatment through the recently discovered path of per-

sister cells [10, 14]. Our approach follows a trajectory of previous works based on similar

Fig 7. Required number of patients to prove the benefits of ID protocols. p-value matrices of (A) ID14 protocol

versus C28 protocol and (B) ID21 protocol versus C28 protocol. Each column represents an independent clinical trial

in which the number of patients was progressively increased. The probability of obtaining a significant trial applying

the ID14 protocol is 100% with 40 or more patients per arm. However, for the ID21 protocol, at least 30 patients per

arm are needed.

https://doi.org/10.1371/journal.pcbi.1011208.g007
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models for the description of LGG growth and response to treatment, as ODEs are the right

tool for the description of longitudinal time dynamics and the interaction of populations or

species. Ribba et al. proposed a model for tumor diameter growth in LGG that was based on

three evolving populations affected by the chemo and radiotherapy [19]. Their model was able

to describe size evolution, but did not consider the acquisition of resistance by cells exposed to

the drugs. Later on, Mazzocco et al. considered that dimension [49], while also including the

genetic characteristics of the patient [50]. On a different line, Badoual et al. focused on the role

of edema reduction to understand the delayed response of tumor volume to radiotherapy [51].

Ollier et al. studied the resistance to treatment induced by the therapy and tested their hypoth-

esis on a big cohort of 121 LGG patients [52]. Studying the acquisition of resistance in gliomas,

Trobia et al. introduced an ODE model which also accounted for the glia-neuron interaction

[53]. Pérez-Garcı́a et al. developed a new ODE model which successfully identified how

tumors showing a faster response to therapy are actually more aggressive [32], work that was

continued by Bogdańska et al., who provided a paradigm for probing tumor with TMZ [17,

Fig 8. Adaptive therapy joint with ID protocols may ameliorate the toxicity of the treatment while maintaining the survival gain. (A) Time

evolution of tumor volume for a virtual glioma patient undergoing TMZ under two different protocols. The black line corresponds to an ID21 protocol

where 50 doses are equally spaced in time. The time at the end of the dose is indicated with a vertical dotted orange line. The pink line corresponds to

the tumor volume with that same ID protocol but applying an adaptive variation. In this case, the patient is screened every 90 days (gray dashed lines).

During the next interval between screenings, the doses are only applied if the tumor volume is higher than a certain proportion (taken as the 80% here)

of the initial volume. The time periods when the doses are applied are indicated by a yellow background. (B) Results of the virtual clinical trial were

generated by comparing the ID14 protocol with its adaptive variation using a threshold of 50% of the initial tumor volume. (C) Results of the virtual

clinical trial were generated by comparing the ID21 protocol with its adaptive variation using a threshold of 50% of the initial tumor volume.

https://doi.org/10.1371/journal.pcbi.1011208.g008
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54]. Later on, Pérez-Garcı́a et al. proposed modified TMZ application protocols with the goal

of improving survival [18]. In particular, this last work did not include any feature regarding

the evolutionary dynamics of resistance acquisition; in that sense, it was based on a simpler

model which was unable to represent the details of the underlying biology. In contrast to the

mentioned works, our approach here includes the recently found biological principles of per-

sister cells as a path to resistance, as well as data from patients that had developed resistance

during the treatment with TMZ.

Resistance is a major problem in TMZ chemotherapy [55], and an understanding of the

mechanisms behind its acquisition may allow the adaptation of TMZ protocols to delay its

emergence. Here, we developed a simple mathematical model based on recent knowledge

about human persistent cancer cells (or persisters) [7, 12, 13] to describe the macroscopic evo-

lution of LGG and the acquisition of resistance to TMZ. The process of resistance to TMZ in

low-grade gliomas has been studied by mathematical models before [52, 56] but, to our knowl-

edge, no work has incorporated the intermediate persistent state during that process. In their

work, Ollier et al. [52] investigated the mechanism that best explains the origin of the resis-

tance to TMZ: acquired (due to epigenetic changes or genetic mutations on cells that are origi-

nally sensitive to treatment), or primary (due to the natural ability of the tumor cells to

become resistant). However, not all the included patients showed evidence of developing TMZ

resistance. Tumors are usually spatially heterogeneous and it cannot be excluded that primary

resistance may coexist with acquired resistance, but it seems that it is the latter that is behind

the emergence of TMZ resistance through TMZ induced mutations and hypermutations [4,

57–59]. Here we considered only this last hypothesis, which is in agreement with the research

considering persisters.

The development of TMZ resistance involves a complex interplay of numerous molecular

mechanisms. These include epigenetic mechanisms, such as the methylation of the CpG island

at the MGMT gene promoter, and also genetic mechanisms, such as the loss of function in

mismatch repair (MMR) genes, the overexpression of ATP-binding cassette (ABC) transport-

ers [60], or the activation of ataxia telangiectasia mutated kinase (ATM) [61, 62]. Other effects,

like gene regulators of autophagy as ATG9B, also have an effect in acquired TMZ resistance

[63], as does the vesicle-associated membrane protein 8 (VAMP8), which significantly

increases cell proliferation and TMZ-resistance [64], in agreement with our results regarding

ρ2 > ρ1. Moreover, MMR defects due to TMZ exposure have been found to lead to hypermuta-

tion in recurrent gliomas [65], which show a transformed genetic landscape as a consequence

of the treatment. Therefore, as a consequence of the multiple mechanisms involved in the

acquisition of TMZ resistance, and the fixed nature that many of them share, that phenome-

non must be irreversible. Taking together all these evidences, we chose to model the resistant

compartment VR as an irreversible state.

Our model was validated through imaging data of LGG patients which had shown acquisi-

tion of resistance to TMZ. Semi-automatic segmentation on high quality FLAIR MRI images

was used to obtain accurate longitudinal volumetric measurements. Indeed, accurate data

acquisition is necessary to know exactly when the growth dynamics of a tumor changes, what

is required to study the onset of resistance. The results from fits of volumetric growth to our

model showed a strong dependency among several parameters. These correlations had to be

taken into consideration for the generation of cohorts of virtual LGG patients. The correlation

between α1 and α2 is artificially induced by the constraint of α2 according to the value of α1.

Other relevant correlations appeared between ρ1 and ψ, and ρ2 and τ. This means that the

larger the growth rate of sensitive cells, the more of them transit to the damaged compartment

and the faster the damaged cells die, the faster the regrowth rate is. Thus, the mechanisms asso-

ciated with tumor response to therapy appear to be positively correlated with the sensitive
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population growth rate. This is in agreement with the fact that TMZ damages mainly dividing

cells [66]. Regarding the other parameter correlation, Pallud et al. [24] observed a worse prog-

nosis for low-grade glioma patients displaying faster tumor shrinkage after therapy. More

recently, Plaszczynski et al. reported a positive correlation between the proliferation rate and

the death term [67] what agrees with the correlations between ρ2 and τ found here. An interest-

ing feature obtained in our parameter fitting was that the value of the parameter β, related to

the time that persistent cells take to return to a sensitive state, is similar for all the patients.

This points to a characteristic biological time of the process of around 7 days. This value has

important consequences, as any treatment scheme intending to maximize the return of persist-

ers to the sensitive state should allow at least that amount of time between doses. As our results

confirm, protocols in which the TMZ doses are spaced two or three weeks improve the survival

of the patients by reducing the generation of resistance via that mechanism. Ideally, it would

be good to have a model describing the same biology with fewer parameters, especially taking

into account that the model has six free parameters and the patient with fewer data points has

eight follow-ups. However, such a model would not be able to describe equally well the rele-

vant underlying biology. Also, other patients have up to 15 data points and the model have

been shown to fit them reasonably well, what supports the validity of our method.

Regarding the growth models considered in our model for the resistant population VR, we

have chosen a proportional term that yields an exponential unbounded growth. Here, the pro-

liferation rate ρ2 is a net proliferation that accounts both for the intrinsic proliferation of the

population as well as the dead of resistant cells. As the balance between born cells and dying

cells is positive, the net proliferation ρ2 yields a positive growth term. Notice that growth limi-

tations could have been included in this equation, being the most traditional ways the addition

of a logistic term (1 − V/K) or a Gompertz term (log(K/V)). In both cases, these terms set a

limit to the overall size that the tumor can reach, and have the additional cost of introducing a

new parameter. Particularly, for the case of the logistic term, the results in the low volume

range remain unchanged as the term vanishes for low V/K. This poses the problem of identify-

ing the actual value of the carrying capacity K, as any arbitrarily big value of the parameter

would yield results identical to those of a model that does not include this term; therefore, our

model could be equivalently written in that way with unchanged results. Moreover, the litera-

ture analyzing the longitudinal growth of untreated LGG points to a continuously accelerating

growth [68, 69]. Thus, in agreement with the previous facts, we have disregarded the kind of

growth limitations discussed.

We used here a limited number of patients with the desired characteristics. We only

included biopsied patients in our study, in order to avoid the radical changes on volume in

patients that undergo partial or full resections. Besides, we only considered TMZ treatment

and neglected the role of radiotherapy, which is an important part of the clinical practice [43]

and could have a relevant effect in the evolution of our patients. The mathematical modeling

of combined chemotherapy and radiotherapy is still poorly understood and it is difficult to

estimate the individual impact of the two treatments when they occur at the same time as each

patient responds differently to these treatments [28, 70]. As future work, it would be interest-

ing to explore further the combined effect of chemotherapy and radiotherapy and propose

optimum combined protocols. Further analyses on additional patient datasets are required to

investigate whether tumor location, molecular type and combination of treatments may

impact treatment response or resistance mechanisms. Moreover, a higher number of patients

in the study would entail a better representation of the disease in our models.

When the model was validated through patient data, we studied how modified protocols of

treatment administration could improve the OS of patients by delaying the emergence of TMZ

resistance. We chose to study schemes in which the doses were given individually with variable

PLOS COMPUTATIONAL BIOLOGY Overcoming resistance in LGG

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011208 November 20, 2023 20 / 29

https://doi.org/10.1371/journal.pcbi.1011208


periods of rest between them. These periods were designed in multiples of weeks in order to

keep the protocol simple to implement. We simulated these schemes computationally on vir-

tual copies of the patients and on other synthetic patients to perform in silico clinical trials.

Our simulations showed that spacing individual doses in periods of 14 or 21 days, i.e. beyond

the persister characteristic lifetime (β), yield a good compromise between increasing OS and

controlling tumor growth. A small dependency of the survival gain with respect to the parame-

ter β can be seen (S5 Fig). For the sake of the sensitivity analysis, we used a wide range of

parameters that might not be found in real patients. However, if that was not the case, that

dependency of the survival gain on the parameter β would mean that the parameter could be

analyzed from anatomical pathology samples to use it as a biomarker discriminating patients

that would benefit more from ID protocols. In the study by Segura et al. [13] different time

intervals between individual doses of TMZ were tested in an in vivo model of slow-growing

glioblastoma. Compared to other protocols with lower dosing interval between individual

doses, 14-days periods showed a significant decrease in resistance markers and, importantly,

an increase in overall survival. They hypothesized that these results could be true for low-grade

gliomas, which are also slow growing tumors. Our results support their hypothesis using data

obtained directly from LGG patients. Also in comparison to their study our model was sub-

stantially simpler. Although some biological facts were similar, our more efficient computa-

tional approach allowed us to scan larger regions of the parameter space and perform a more

accurate parameter fitting.

Several types of adaptive therapy have been proposed potentially providing survival

improvements in different scenarios [47, 71, 72]. The simplest adaptive approach that can be

implemented is the treatment suspension while the value of a biomarker of the disease burden

is below a preset threshold. This may have a positive effect of reducing treatment-induced

resistance. LGG ID protocols would seem a good candidate for adaptive therapy, as they have

long times with continuous follow-up and are incurable by nature. The tumor volume as seen

in MRI could serve as a marker for the decision of cessation or resumption of the treatment.

We considered the application of adaptive therapy in combination with the previously dis-

cussed ID14 and ID21 protocols to check whether they could provide clinical benefits. To do

so, we simulated MRI screenings to check if the patients’ tumor volume was under a prede-

fined threshold. At imaging times where volumes are obtained, typically every three months,

dose administration would be stopped and later resumed whenever the volume exceeded such

threshold. Notice this kind of adaptive therapy would reduce the number of doses received by

the patient, and thus the side effects caused by the exposure to TMZ. The results of the virtual

clinical trials showed that this kind of therapeutic scheme did not reduce the survival benefit of

the ID protocols and can therefore be used to limit the toxicity of the treatment. Such simula-

tions show that, even when fatal tumor volumes were reached at almost the same time as in the

unaltered ID protocols, several dosages, and therefore toxicity, can be spared. A key idea

behind adaptive therapy is that there is a fitness cost to resistance, so that the therapy-sensitive

population can outcompete the therapy-resistant population in the absence of treatment.

Without this relationship, removing therapy does not control the resistant population due to

the model assumption that TMZ resistant cells gain fitness. Therefore, even though the adap-

tive variation may serve to limit toxicity, we do not see survival benefits of it within our model-

ing framework. In the future, it would be interesting to consider whether the emergence of

TMZ-resistant cells in LGG entails any fitness cost not described here that might justify a

regression of this population in the absence of treatment. Such an approach might discover

improvements in the adaptive therapy in terms of survival in addition to the limitation of tox-

icity shown here.
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Other in silico studies have suggested that spacing TMZ cycles or radiotherapy fractions

could increase overall survival [18, 73]. In Ref. [18] the authors suggest an alternative protocol

in which the cycles of TMZ are given in daily shots as usual, but are spaced out in time. They

also include an induction period consisting of five induction cycles. In the view of our current

modeling approach, supported by recent advances in the understanding of resistance acquisi-

tion, just as an approach would be detrimental for the patient in the sense that the initial

induction period would lead to a fast generation of resistant cells. Several evidences go in the

direction of our results suggesting a less frequent administration of doses. However, 21-day

intervals between individual doses of TMZ have never been tested in vivo and are still just a

theoretical proposal. These in silico results pave the way for potential future trials that may

result in improvements in the treatment of LGG patients. Our study suggests specific varia-

tions with an easy clinical implementation that could raise the efficacy of an approved drug

like TMZ. The clinical implication of an individual dose-spacing protocol for TMZ is twofold.

First, it delays the emergence of resistance by allowing time for persistent cells to return to a

sensitive state. For patients, this translates into increased overall survival, while maintaining

control over tumor growth. Second, reducing the frequency of TMZ dosing would reduce

treatment toxicity. The quality of life of patients would therefore be improved.

Our model also opens the way to personalized medicine of LGG patients. We identified a

general protocol that would be beneficial to all patients. Nevertheless, we can go further by

implementing a method able to find the optimal protocol according to patient individual

parameters. This would allow to take into account the heterogeneity of behaviors observed in

these tumors. Since low-grade gliomas are slow-growing tumors, there are often non-treat-

ment follow-up periods during which tumor volume measurements on MRI scans are avail-

able. Such measurements may allow model parameters to be well characterized and then used

to find personalized optimal protocols.

Conclusion

We developed a mathematical model of LGG growth and response to TMZ. We incorporated

persister cells, as path to chemotherapy resistance. The model was able to describe the volu-

metric evolution observed in routine MRIs of patients treated with TMZ and with evidences of

having acquired resistance. The values of the parameters that best described the evolution of

each patient were used to computationally test protocols of drug administration in which

doses are given individually with resting periods multiple of weeks between them. According

to our in silico results, the protocols with individual doses spaced by dosing intervals of 14 or

21 days would produce, in terms of OS and tumor reduction, the best treatment outcomes.

Adaptive approaches may lead to even lower toxicity but did not improve survival in silico.
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S1 Fig. Segmentation and ellipsoidal approximation. Axial (A), coronal (B) and sagittal (C)

slices of FLAIR 3D MRI study of patient 7 at the time of diagnosis. The blue mask indicates the

area delineated semi-automatically using a gray-level threshold. Above it, the white arrows

indicate the measure of the diameters used for the ellipsoidal approximation of tumor volume.

(D) 3D reconstruction of the segmented tumor.

(PDF)

S2 Fig. Statistical distribution used to construct the virtual patients. Statistical distribution

of initial tumor volume, number of TMZ doses and fatal volume used to construct the virtual
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patients.

(PDF)

S3 Fig. Effect of different time interval between individual doses on tumor growth. Simula-

tion of different experimental protocols consisting of spacing each single dose by a given num-

ber of days, from 7 to 98 (gradient lines). The longer the interval between doses, the longer the

OS. However, tumor control is lost after a certain number of days between each dose, depend-

ing on each patient. Error bar represent 20% of error.

(PDF)

S4 Fig. The strongest pairwise linear correlations are preserved in the virtual patients. (A1)

Correlation matrix between real patients parameters. The white stars represent significant cor-

relation (n = 7). (A2) Correlation matrix between virtual patients parameters (n = 200). (B1)

Linear regression model of correlated parameters of real patients (n = 7). (B2) Linear regres-

sion model of correlated parameters of virtual patients. Three of the four significant correla-

tions, the most biologically relevant, are preserved in virtual patients. Those correlations

appear to be linear relations.

(EPS)

S5 Fig. Effect of the parameter β on the results of the virtual clinical trial. Results of clinical

trials of the ID21 protocol against the C28 protocol with four different values of the fixed

parameter β. Kaplan-Meier curves are shown with the results in terms of survival of these clini-

cal trials. (A) β = 2 × 10−2 day−1. (B) β = 5 × 10−2 day−1. (C) β = 5 × 10−1 day−1. (D) β = 1 day−1.

(PDF)

S6 Fig. Effect of the switching function f(E) on the results of the virtual clinical trial.

Results of clinical trials of the ID21 protocol against the C28 protocol with two different values

of the fixed parameter that modifies the shape of the switching function between VPI and VP.

Kaplan-Meier curves are shown with the results in terms of survival of these clinical trials. (A)

f(E) = 1/2(1 − tanh((E − 0.05)/0.05)). (B) f(E) = 1/2(1 − tanh((E − 0.1)/0.1)).

(PDF)

S7 Fig. Results of clinical trials of the ID protocols with fixed number of cycles. Kaplan-

Meier curves showing the distribution of overall survival in virtual LGG patients undergoing

TMZ treatment with ID14 and ID21 protocols (individual doses given every 14 or 21 days)

against the classical C28 regime. Importantly, the number of drug cycles pre-set for all the vir-

tual patients enrolled in the trial is the same. (A) Results for ID14 with 12 cycles. (B) Results for

ID14 with 24 cycles. (C) Results for ID21 with 12 cycles. (D) Results for ID21 with 24 cycles.

(PDF)

S8 Fig. Additional simulations of adaptive therapy for an individual patient with different

screening times. Time evolution of tumor volume for a virtual glioma patient undergoing

TMZ under two different protocols. The black line corresponds to an ID21 protocol where 50

doses are equally spaced in time. The time at the end of the dose is indicated with a vertical

dotted orange line. The pink line corresponds to the tumor volume with that same ID protocol

but applying an adaptive variation. (A) The patient is screened every 30 days (gray dashed

lines). (B) The patient is screened every 180 days (gray dashed lines). In both cases the doses

are only applied during the next interval after the screenings if the tumor volume is higher

than a certain proportion (taken as the 80% here) of the initial volume. The time periods when

the doses are applied are indicated by a yellow background.

(PDF)
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S9 Fig. Results of virtual clinical trials comparing ID14 with their adaptive counterpart for

different values of the decision threshold. Kaplan-Meier curves showing the distribution of

overall survival in virtual LGG patients undergoing TMZ treatment with ID14 protocols (indi-

vidual doses given every 14 days) and their adaptive version (treatment interruption when the

volume in 90-days periodic screenings is below a certain fraction of the volume at diagnosis).

Six different trials were simulated for different values of the threshold deciding the administra-

tion of the treatment between 30% and 80%. The trials showed no significant difference

between the survival of patients with the ID protocol or its adaptive version.

(PDF)

S10 Fig. Results of virtual clinical trials comparing ID21 with their adaptive counterpart

for different values of the decision threshold. Kaplan-Meier curves showing the distribution

of overall survival in virtual LGG patients undergoing TMZ treatment with ID14 protocols

(individual doses given every 21 days) and their adaptive version (treatment interruption

when the volume in 90-days periodic screenings is below a certain fraction of the volume at

diagnosis). Six different trials were simulated for different values of the threshold deciding the

administration of the treatment between 30% and 80%. The trials showed no significant differ-

ence between the survival of patients with the ID protocol or its adaptive version.

(PDF)

S1 File. Patient population. Characteristics, MRIs dates, longitudinal volumetric data and

information related to treatment.

(XLSX)

S2 File. Activation function f ðEÞ. How it was determined.

(ZIP)

S3 File. Preliminary fits performed with the model. In later fits, the value β was fixed due to

the proximity of this parameter to β = 0.1 day−1 in all the studied cases. This file shows the

results of these preliminary fits and the values obtained for the parameters.

(PDF)
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