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Understanding crystalline structures based on their chemical
bonding is growing in importance. In this context, chemical
bonding can be studied with the Crystal Orbital Hamilton
Population (COHP), allowing for quantifying interatomic bond
strength. Here we present a new set of tools to automate the
calculation of COHP and analyze the results. We use the
program packages VASP and LOBSTER, and the Python packages
atomate and pymatgen. The analysis produced by our tools
includes plots, a textual description, and key data in a machine-

readable format. To illustrate those capabilities, we have
selected simple test compounds (NaCl, GaN), the oxynitrides
BaTaO2N, CaTaO2N, and SrTaO2N, and the thermoelectric
material Yb14Mn1Sb11. We show correlations between bond
strengths and stabilities in the oxynitrides and the influence of
the Mn� Sb bonds on the magnetism in Yb14Mn1Sb11. Our
contribution enables high-throughput bonding analysis and will
facilitate the use of bonding information for machine learning
studies.

Introduction

The concept of chemical bonding plays a major role in
understanding both molecules and crystals and their
properties.[1,2] Chemical bonding in crystals can be studied using
various techniques based on electronic structure theory
methods. These techniques are usually divided into density-
based and orbital-based methods. For example, a widely used
density-based method is Bader analysis, based on electron
density topology analysis.[3,4] Bader analysis has been used in a
high-throughput manner.[5–7] In this paper, however, we will
focus on orbital-based methods, which are intrinsically quan-
tum-chemical approaches and have been shown to be
successful in understanding crystal structures in the past,[2,8–10]

and their automation. These orbital-based methods have the
advantage over the density-based approaches that bonding
and antibonding contributions directly fall off from the orbital
phases. Therefore, one arrives at a picture that better relates to
the chemist‘s orbital-based understanding of atoms and
molecules.[9]

An important orbital-based technique is Crystal Orbital
Hamilton Population (COHP),[11] a bond-weighted density of
states that provides information about bond energy and
covalency in crystals.[8] There are other bond indicators not
based on the Hamilton matrix but on the overlap matrix or
density matrix (Crystal Orbital Overlap Populations, COOP and
Crystal Orbital Bond Index, COBI).[12] The first one relates to
bond strengths and the second one to bond orders. In addition,
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there are also orbital-based indicators for the ionicity of
compounds.[12–14] We mention here in passing that no unique
definition of covalency and ionicity exists and that there are
several similar approaches in literature (e.g., density-based
ones,[4,15] approaches based on periodic energy decomposition
analysis[16]).

COHP has been used for about three decades to study all
kinds of compounds, for example, phase change materials,[17]

intermetallics,[18] magnetic materials,[19] and many other classes
of materials. Nowadays, these populations can also be derived
according to electronic structure theory calculations using the
projector augmented wave method. This is done by projecting
the original delocalized basis based on plane waves onto
atomic orbitals (e.g., Slater orbitals), as implemented, for
example, in the computer program LOBSTER.[20–23] LOBSTER is
also capable of computing COHPs, COOPs, COBIs, and many
other similar properties based on the information resulting
from the projection. In addition, Mulliken and Löwdin charges
and corresponding Madelung energies can be calculated.[12,14,24]

This procedure is illustrated in Figure 1. Here we use VASP as
the code for our electronic structure theory calculations.

To date, this type of projection has not been implemented
in any of the standard codes for electronic structure theory
based on plane waves (e.g., VASP,[25–27] Abinit,[28] or Quantum
Espresso[29]). Therefore, this type of bonding analysis is a multi-
step process involving at least two programs. New users not
only have to use and learn non-standard settings for the
electronic structure theory codes, but they must also learn to
use LOBSTER. Naturally, the users should also be aware of
fundamental quantum-chemical concepts not necessarily
taught in courses in quantum mechanics or computational
materials science. Hence, this usually involves a lot of training
for first-time users of the programs, a lot of manual work, and
possible errors and problems in interpretation. This limits the
practicality of this bonding analysis tool for high-throughput
calculations, although there have been some studies where
LOBSTER has been used for a larger number of compounds.[30]

Workflow-managing codes nowadays provide ways to automate

such complex calculations.[7,31,32] This has been done in the past
for several types of standard calculations (e.g., magnetic
ground-state calculations, defect calculations[7,33–36]). This auto-
mation is also directly related to the need for high-throughput
calculations and accurate computational data in materials
science for machine learning and data-driven material
discovery.[37–39]

For example, high-throughput bonding analysis could
provide further insight into important interactions within crystal
structures and provide opportunities to determine coordination
environments in crystal structures not only based on geometric
constraints but also on the electronic structure.[40,41] This has the
advantage that the relevance of neighbors can be evaluated
based on the integrated COHP (ICOHP) as a measure of bond
energy and hence a covalent bond strength. In purely geo-
metric approaches, the strength of covalent bonds can only be
evaluated indirectly using limits on bond lengths. Moreover,
some of these bond properties could serve as descriptors in
machine learning studies since the underlying bonding sit-
uation is expected to be causative for many materials’ proper-
ties. Recently, two such studies have been published.[30,42]

Here, we present an implementation of bonding analysis
based on the programs VASP and LOBSTER in a Python-based
workflow. We have automated this process using the programs
VASP, LOBSTER,[8,20–23] pymatgen,[43] custodian,[43] and atomate.[32]

This means that the entire bonding analysis workflow, leading
to an analysis text and a summary of key properties, can be
started with very little Python code. In addition to the computa-
tional workflow, we have also automated the analysis of
LOBSTER results. Without this automation, users must do this by
hand, and there is currently no unified strategy for doing so
unless the user is properly trained. Therefore, automating this
process will also help in standardizing the analysis of LOBSTER
results. This automation of the whole process will hopefully
lead to fewer errors in the future and less training being
required. We also expect that the automated analysis will
contribute to a much wider use of the tools and serve as a
starting point for more detailed and individual bonding analysis
by the user. In addition, high-throughput studies should now
be in reach for non-expert LOBSTER users.

To illustrate the capabilities of the code, we have tested it
on a range of binary and more complex materials: we use the
binaries NaCl, GaN, then the oxynitrides CaTaO2N, BaTaO2N,
SrTaO2N, and finally Yb14Mn1Sb11, where the bonding analysis is
performed fully automatically. In the case of the oxynitrides, we
also show how easily correlations with other material properties
can be derived based on the developed tools. We test the
correlation between the total energy of the systems and the
strongest ICOHP upon varying the anion order in these
perovskite systems. In addition, Yb14Mn1Sb11 illustrates the
potential of the code to identify important interactions for
magnetic properties and potential bonding-based driving forces
for properties in materials.

Figure 1. Illustration of the process of bonding analysis using the VASP and
LOBSTER tools. VASP is used to calculate a wave function using the projector-
augmented wave method. This calculation depends on the basis function
chosen in the later LOBSTER run. LOBSTER then projects this wave function
onto a basis set of atomic orbitals that must be adapted to the system at
hand, corresponding to a unitary transformation between a totally
delocalized and a localized representation. Then, LOBSTER calculates various
populations and charges based on these populations, which allows for
assessing the bonding situation in the compound. This is a multi-step
process whose steps are interdependent. We have now developed
automated tools to perform all the steps of this procedure and to ensure the
compatibility of the different steps.
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Results and Discussion

The workflow

The implemented workflow is shown in Figure 2.
The crystal structure is optimized in a first optional step (a).

This step is optional to ensure that structures of any origin can
be used as input for the subsequent COHP analysis.

The wave functions are then determined using DFT (b).
Special requirements for the DFT computation are considered
in this step. Due to the required projection from plane waves to
atomic orbitals, the DFT computation must include as many
bands as are required for the projection to atomic orbitals
performed by LOBSTER. The number of bands depends on the
structure and the basis used for the projection in LOBSTER. By
sheer mathematics, COHPs can only be computed if this
number is set correctly. Section 2 of Supporting Information
shows how to compute the minimum number of bands for
GaN. Because VASP and LOBSTER runs are so intertwined,
automation is critical. Step (b) is also one of the most time-
consuming steps in the overall bonding analysis workflow,
requiring extensive training for new users. Our procedure
ensures that users always choose the appropriate minimum
number of bands based on the specified basis. For the time
being, two basis sets (Koga and pbeVASPfit2015) can be used
to cover the whole periodic table, although only pbeVASP-
fit2015 includes additional orbitals important to the solid state
(e.g., 2p in metallic Be[21]). Some more trivial settings for the
DFT run must also be chosen. For example, DFT runs must be
performed without most of the symmetries to be compatible

with LOBSTER (VASP input: ISYM=0) as only time-reversal
symmetry is implemented in LOBSTER so far.

The next step is to test several atomic orbital bases for the
projection of the wave function in LOBSTER (c). Some LOBSTER
beginners trained in plane waves but lacking atomic-orbital
knowledge may overlook the need to thoroughly test the basis
for the projection. Here this is done systematically and all basis
functions possible in LOBSTER are exploited. We start with a
minimal basis consisting only of occupied valence orbitals in
the atomic ground state of each atom. This is determined using
the pseudopotential file of VASP. We then systematically add
unoccupied orbitals for each element and test all possible
combinations. This test is further constrained by the basis
functions currently available in LOBSTER.

Particular attention has been paid to the handling of the
large wavefunction files that are generated as they can become
a burden on storage on typical supercomputers, especially for
high-throughput studies. They can be automatically deleted.
The most important outputs of the VASP and LOBSTER runs will
be stored in a MongoDB database (d). For LOBSTER, this is the
information from the lobsterout file. Additionally, other output
files can be stored in the database as well.

In the last step (e), an automatic analysis of the LOBSTER
calculations typically with the lowest absolute charge spilling is
performed. This charge spilling indicates how much charge was
lost in the projection from the plane-wave wave function to the
atomic-orbital wave function and it is one of the most
important quality criteria for the projection; in principle, the
transformation is exact but small deviations may occur, just like
in DFT. If used in the “cation-anion” mode, the automated
analysis first detects cations and anions based on Mulliken
charges calculated using LOBSTER[44] and then identifies the
strongest cation-anion bond within the crystal structure based
on the integrated Crystal Orbital Hamilton populations
(ICOHPs). For the test systems shown below, only bonds with a
strength of at least 10% of the strongest cation-anion bond
were considered. This cutoff can be adjusted. In case all bonds
(not only cation-anion bonds) are considered in the analysis,
the ICOHP cutoff will typically be set to 10% of the strongest
bond.

To implement this workflow and simplify the bonding
analysis, we extended and created several Python packages.
Two new workflows are available in the atomate[28] workflow
library (see Figure S1 in the Supporting Information). The first
one is the workflow above. The second one relies only on a
predefined basis. This workflow should only be used if the
quality of the predefined basis has already been tested. The
concrete DFT workflows are implemented in atomate using the
workflow manager fireworks, the error handler custodian, and
the pymatgen library for material analysis. With atomate and the
other underlying Python packages, it is possible to perform
complex calculations mostly with VASP (e.g., band structure
calculations) on high-performance computers. All input files are
generated automatically.

To handle the input and output files, we have implemented
classes for almost every input and output file of LOBSTER in
pymatgen. Plotting classes for COHPs, COOPs, COBIs are now

Figure 2. This graphic illustrates the progress that has been made in this
work. Instead of creating all input files through custom scripts or by hand
and starting and evaluating calculations by hand, there is now a fully
automated workflow for the entire bonding analysis process using the VASP
and LOBSTER programs. This workflow can automatically create all input files,
start and monitor calculations. We have also developed tools to evaluate all
the results and create automatic output texts and dictionaries of the most
important bonding properties, which can be used to populate databases
and machine learn the data.
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available and there is an interface to the existing plotting
classes for densities of states and fatbands in pymatgen. New
classes have been developed to allow for the automatic analysis
of local environments based on orbital-based bonding analysis.

They connect to available tools for determining and
analyzing atomic environments in pymatgen (ChemEnv,[40]

localenv[41]). The bonds between atoms are determined based
on the magnitude of the ICOHP values. Comparisons with ideal
polyhedra are then made based on, for example, ChemEnv and
its implementation of continuous symmetry measures describ-
ing a distance to a shape.[40] In combination with localenv,[41]

structure graph objects and further information about the
neighboring atoms can be retrieved.

In order to perform hundreds to thousands of calculations
in parallel, error handling and validation are critical for high-
throughput studies. We have therefore also added new
implementations for validators in custodian, which must be
successfully passed. For example, this system checks whether
the main LOBSTER output file (lobsterout) has been created and
whether enough bands have been selected in the DFT run.
Also, a validator was added to check if the charge spilling is
reasonably low (<5%). We use the latter validator only when
exactly one set of basis functions is used for the LOBSTER
calculations. If different basis functions are tested in the
workflow, this check is not performed. Also, a job class has
been introduced to run LOBSTER jobs with custodian.

Two tutorials showing how to use these classes and
functions are available online.[45,46]

Parts of this implementation have been used in other
publications, for example, to understand defects and their
stability in photovoltaic materials or to benchmark a new
implementation in the LOBSTER program.[20,47] In the latter
study,[20] we identified the computational settings used in this
study that lead to very well converged LOBSTER results. These
and other details on the DFT and LOBSTER settings can be
found in the methods section of this paper.

The tools for automatically analyzing LOBSTER outputs are
implemented in the lobsterpy package. An overview of the
package can be found in Figure S1 in the Supporting
Information. The Analysis class takes care of the automatic
analysis of LOBSTER output and is the starting point for another
class called Description, which will provide automated text and
tools for automatic plotting. Detailed examples of COHP data
analysis are attached to the code repository corresponding to
this paper. By default, only cation-anion bonds are included in
the analysis. Especially for large compounds such as
Yb14Mn1Sb11, the automatic output otherwise provides too
much information for the user, since weak cation-cation
interactions are also present. An analysis of all bonds can be
enforced since there are compounds where cation-cation
interactions are responsible for the stability of a material and
the particular structure (e.g., Ge4Se3Te[48]). For very large
coordination environments (coordination number >13), only
the coordination number is determined, but not the environ-
ment, which is based on a limitation of ChemEnv. ChemEnv only
has reference polyhedra for coordination numbers �13 and
equal to 20.

Lobsterpy also offers a command-line interface that connects
and extends the plotting tools available in pymatgen. The user
can provide customized style sheets for the plots and apply an
additional Gaussian broadening. This is also possible for
automatic COHP plots. The automatic description can be
printed to the screen. A tutorial on lobsterpy can also be found
online.[49] This tutorial also includes information on runtimes for
VASP and Lobster runs.

Automatic Test of Best Basis and Projections

The LOBSTER workflow in atomate was run for several test
systems (NaCl, GaN, MTaO2N (M =Ba, Ca, Sr), Yb14Sb1Mn11). First,
we will discuss the resulting projections.

For most systems, only one basis is available (see Table 1)
since their constituting ions are in noble gas configuration (full
octet). For Yb14Mn1Sb11, we will test the influence of the 5d
orbital for Yb. This orbital would be unoccupied in a Yb atom
according to the corresponding pseudopotential file. Its use
reduces the absolute charge spilling by more than 1%. We will
discuss the influence on the results below and in the
Supporting Information. We explain why we are still choosing
the smaller basis set resulting in a slightly larger charge spilling.
For all systems tested here, the charge spilling is less than 3%,
indicating a very good projection. Note that a subsequent
Löwdin orthogonalization of the local basis automatically
carried out in LOBSTER assures that the entire Hilbert space is
recovered, so no electron density gets lost.

We assume that this automatic checking of the basis will
indeed ensure that users test the projections, rather than simply
choosing a basis that gives reasonable spilling under a certain
limit without further checking. We also hope that high-
throughput studies will allow us to develop further criteria for
the quality of a basis besides the absolute charge spilling.

We now discuss the results of the automatic analysis of the
output files.

Two illustrative examples: NaCl and GaN

We start with the analysis of two rather simple binary systems:
GaN and NaCl. We usually describe chemical bonds in crystalline
materials in terms of their metallic, covalent, and ionic

Table 1. Possible bases for our test systems.

Composition Basis 1 Basis 2

GaN Ga (4s, 4p, 3d), N (2s, 2p) –
NaCl Na (3s 3p), Cl (3s, 3p)
CaTaO2N Ca (3s, 3p, 4s), Ta (6s, 5p, 5d),

O (2s, 2p), N (2s, 2p)
SrTaO2N Sr (4s, 4p, 5s), Ta (6s, 5p, 5d),

O (2s, 2p), N (2s, 2p)
BaTaO2N Ba (5s, 5p, 6s), Ta (6s, 5p, 5d),

O (2s, 2p), N (2s, 2p)
Yb14Mn1Sb11 Yb (6s, 5p), Mn (3p, 3d, 4s), Sb

(5s, 5p)
Yb (6s, 5p, 5d), Mn (3p,
3d, 4s), Sb (5s, 5p)
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contributions. The Van Arkel-Ketelaar triangle represents the
different contributions for materials and allows us to map
materials according to the nature of their bonds.[1,50–52] COHP
provides a way to quantify covalent contributions. Madelung
energies are commonly used to quantify ionic contributions.
LOBSTER calculates these based on quantum-chemical Mulliken
or Löwdin charges rather than just based on formal oxidation
states. In the following, we will show that such information

about the bonding situation in crystals can be easily extracted
using our automation. We will also use this information on
covalency and ionicity to discuss the stability of the different
GaN and NaCl phases.

We start with the four most stable GaN phases available in
the Materials Project database[33] (see Table 2 and Figure 3 for
an illustration of the automated output from lobsterpy). These
four phases have been investigated by experimental and

Table 2. Comparison of total DFT energies per formula unit, Madelung energies calculated based on Mulliken charges, and sum of Ga� N ICOHPs. The
phases are referenced by the Material Project IDs (MP-ID). The lowest, i. e., most stabilizing values are highlighted in bold.

Com-
position

Phase
(MP-ID)

Total energies/formula
unit [eV]

Sum of Ga� N ICOHPs per Ga atom
(Covalency) [eV]

Shortest Ga� N
distance [Å]

Madelung energy per formula unit
(Ionicity) [eV]

GaN Wurtzite
(mp-804)

� 12.16 � 20.12 1.976 � 11.61

GaN Zinc-
blende
(mp-830)

� 12.15 � 20.20 1.970 � 10.85

GaN BN
(mp-
1007824)

� 11.46 � 18.75 1.854 � 15.11

GaN NaCl
(mp-
2853)

� 11.21 � 19.23 2.137 � 9.16

Figure 3. Illustration of the automatic output for four different GaN phases. The structures of the phases are depicted next the automatic COHP plots and the
text description. All Ga� N COHPs are nearly fully bonding except for small traces of anti-bonding interactions close to EFermi. The algorithm correctly recognizes
all coordination environments. In addition, the Madelung energies per unit cell are given. Table 1 shows the Madelung energies per formula unit of GaN. For
the COHP plots, a Gaussian smearing was used as the VASP version determined the band gap at the bottom of the band gap with the tetrahedron smearing
but not the Gaussian smearing. We expect that this will be fixed again in future versions of VASP. Furthermore, we manually adapted the energy range here
and restarted the LOBSTER run from the projection step. Very often, only states close to the Fermi energy EFermi are relevant for our bonding analysis and we
therefore have a different standard setting for the energy range in our automatic workflow.
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theoretical studies.[53] GaN is a well-known semiconducting
compound for optoelectronic applications and is therefore
expected to show significant covalent interactions.[54] Based on
COHPs, our code correctly recognizes all coordination environ-
ments. This is consistent with geometric evaluations based on
ChemEnv and its standard settings. ChemEnv compares coordi-
nation environments to ideal shapes.[40]

We now proceed to discuss the stability of the compounds
and what is effectively causing this. GaN in the wurtzite and
zincblende structures is predicted to be more stable than GaN
in NaCl structure type based on the DFT total energies, which is
consistent with our expectations. GaN in the BN structure type
lies between these extremes. We expected that the stabilization
of the zincblende and wurtzite structure type compared to the
NaCl structure type is due to a higher covalency as GaN is
semiconducting.[1] Indeed, we find that the more stable
compounds crystallizing in the wurtzite and zincblende types
have more covalent interactions than GaN crystallizing in the
NaCl structure type. This is indicated by the sum of Ga� N
ICOHPs per Ga atom (Table 2 and Figure 3) and it is also
connected to the Ga� N distances in the compounds. Ga in
wurtzite and zincblende structure type show much stronger
COHPs, especially for lower-lying states (mostly with contribu-
tions of N (2 s)). This is, of course, directly correlated to the
smaller distances in these compounds as, for example, the more
localized 2 s orbitals (around � 15 eV below the Fermi energy
EFermi) cannot overlap that easily with the Ga orbitals anymore.
The dispersion of the bands seems to be very similar in all four
compounds, which is a bit surprising. The total energy of GaN
in the BN structure, however, cannot be explained that easily
based on covalent contributions alone. The calculated Made-
lung energies suggest that there may be electrostatic stabiliza-
tion that could explain this energetic ordering. GaN in the BN
structure exhibits the most negative Madelung energy per
formula unit based on Mulliken charges of all four compounds.
The same tendency can be found based on Löwdin charges.

As shown in this simple example, correlations of DFT total
energies with covalent bond strengths or Madelung energies
can now be easily tested on a much larger scale to potentially
understand phase transitions based on bonding properties and
electrostatics.

We now turn to the analysis of simple but very ionic
systems - two NaCl phases. Here we do not expect covalency to
be the driving force for the stability of these compounds.
Nevertheless, it is possible to identify the correct coordination
environments in these phases based on the bond energy given
by COHP (Figure 4 for automated outputs).

For the binary ground-state structure of NaCl (mp-22862,
Figure 4 a), the code correctly recognizes the octahedral
coordination environment for Na+ and summarizes the mean
values for the ICOHPs. For the high-pressure phase of NaCl (mp-
22851, Figure 4 b), the cubic environment is correctly recog-
nized.

The differences from the ground-state structure of NaCl are
visible in the sum of ICOHP values (ICOHP_sum) and the mean
value of ICOHPs per bond (ICOHP_mean). The ground-state
structure of NaCl has a more negative value (i. e., it has stronger

covalent bonds). However, this value should be taken with
caution because NaCl is a comparatively ionic compound and
exhibits very small ICOHP values in general. In this case, the
electrostatics and calculated Madelung energies should lead to

Figure 4. Illustration of the outputs of our automatic analysis for two NaCl
phases and structure of NaCl in the ground-state structure (a) and the high-
pressure CsCl-type structure (b). Additionally, the machine-readable output
dictionaries for both phases are shown. Note that the automatic output
provides a counting scheme for the atoms that starts at 1 (similar to LOBSTER
outputs), but that the digits for sites within the dictionaries start at 0
(standard in Python).
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a much better understanding of the compound stability:
Indeed, the ground-state structure of NaCl also shows a more
negative Madelung energy than the high-pressure phase by
more than 0.3 eV per cell.

Two more advanced examples: oxynitrides and Yb14Mn1Sb11

Now, two more advanced examples will be discussed.
We first focus on the oxynitride compounds CaTaO2N,

SrTaO2N, and BaTaO2N, which crystallize in a perovskite-related
structure. The anion order in these compounds has been under
some debate in the past, and possible driving forces for certain
anion orders have been discussed.[55–57] We now automatically
analyze the importance of certain bonds for the anion order in
these compounds (Figure 5).

For this purpose, we vary the anion order of the systems in
a supercell with up to 2 formula units. This results in seven
different structural models per compound with different anion
orders. The energetically least and most favorable models and
automated Lobster analysis for these models are shown in
Figure 5 a and b. Based on our automated bonding analysis, we
can then easily correlate the total energy of the systems with
the strongest covalent interaction (Ta� N bond) in the systems
(Figure 5 c). We also see an anti-correlation with the bond
energies of the Ta� O bonds because the more covalent Ta� N
bonds strengthen at the expense of the Ta� O bonds (see
Figure S2 for the plots showing the anti-correlation). The
covalency of the Ta� N interactions is therefore crucial for the
anionic ordering of these oxynitrides. The Ca/Sr/Ba� O bonds
are too weak to be detected with our automated analysis and
the corresponding relative ICOHP cutoff (10% of the absolute
largest ICOHP). The ICOHPs help to focus on the most important
covalent interactions in our system, which could also be an
advantage for determining coordination environments com-
pared to purely geometric determinations of the latter.

Thanks to our automation tools, the whole bonding analysis
process can be performed with only a few lines of Python code,
as shown in the repository accompanying this paper. This
correlation between the strongest covalent interaction and the
total energy of the system has already been observed for the
oxynitride CaTaO2N.[55,56] This correlation has now been con-
firmed for SrTaO2N and BaTaO2N, which was to be expected
given the chemical similarity of the compounds. One now
arrives at such an analysis almost fully automatically.

As a final example, we show the analysis of a very large and
complex structure, namely that of the well-known thermo-
electric material Yb14Mn1Sb11.

[58] It has 104 atoms in the unit cell,
and such a bonding analysis by hand would require a lot of
manual work. Up to a distance limit of 6 Å (maximum
considered distance in our current implementation of the
workflow), more than 1400 bonds are found in this structure.
The band structure of the compound in the nonmagnetic state
has been recently studied.[59] Similarly, an analysis of the band
structure of Yb14Mg1Sb11 crystallizing in the same type of
structure, has been carried out.[60] The magnetism in Yb14MnSb11

has also already been studied both experimentally and

Figure 5. a) Structure as depicted with VESTA[58] and automatic analysis of
the conventional cell for CaTaO2N. We have enlarged the Ta environment.
The code is able to automatically determine relevant bonds, coordination
environments and average bond strengths (average ICOHPs); note that more
negative ICOHPs indicate stronger bonds. In this case, only the Ta� O and
Ta� N bonds were detected. Potential Ca/Sr/Ba� O and Ca/Sr/Ba� N bonds are
much less covalent and play a less important direct role for the material. This
information can then be easily correlated with other material properties
(e.g., total energies) to understand these properties based on bond
strengths. b) Structure of the most stable Ca/Sr/Br TaNO2 model including
up to 2 formula units. For a comparison of the structures in a and b in a
similar setting, see Figure S3 in the Supporting Information. c) A correlation
plot of the most important ICOHPs for this compound and the total energy
of the systems with different anion orders is shown. The correlation
coefficient r for the strongest covalent interaction (Ta� N) is always higher
than 0.95, indicating a significant correlation.
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theoretically.[61] From previous studies, we expect an influence
of the Mn� Sb bonds on the magnetism.

To investigate the influence of chemical bonding on
magnetism in this compound, we decided to compare COHPs
from non-magnetic and ferromagnetic runs. This type of
investigation was inspired by a study by Landrum and
Dronskowski on magnetism and driving forces for itinerant
magnetism based on chemical bonding.[19] We then performed
two static LOBSTER runs that differ in the magnetic model after
structural optimizations in the ferromagnetic setting. We
introduce magnetic moments on Mn only. We show the results
for the smaller basis set not including 5d orbitals in the main
text. A larger discussion why we chose these projections even
though the charge spilling is slightly larger can be found in the
Supporting Information. The choice of the basis functions for
Yb does however not influence the conclusions drawn for the
Mn� Sb bonds as shown below.

Similar to Perez et al.[59] in the nonmagnetic state, Yb, Mn,
and Sb states play an important role in the valence band of
Yb14Mn1Sb11. We find that both Yb� Sb and Mn� Sb bonds are
relevant cation-anion bonds in the structures. The bonds in the
“Sb3

7� ” are not considered in the standard automatic analysis of
LOBSTER output files. By default, this analysis focuses only on
cation-anion bonds to obtain a readable result even for very
large structures such as Yb14Mn1Sb11. However, it is possible to
enforce their analysis. The automatic text output and the
structure for the ferromagnetic setting are shown in Figure 6.

In the ferromagnetic setting with the basis including Yb-5d
orbitals, the octahedral environments are discovered for all four
crystallographically nonequivalent Yb atoms. In agreement with
this, the purely geometric tool ChemEnv,[40] based on Voronoian
analysis with distance and solid angle cutoffs and determination
of continuous symmetry measures, determines octahedral
environments for all four. SimplestChemEnvStrategy and a
standard relative solid angle cutoff of 0.3 were used. We have
visualized these Yb coordination environments in the Support-
ing Information (Figure S8). The determination of the tetrahe-
dral coordination environment for Mn agrees again well with
the geometric-based determination. Overall, the agreement
between the geometric and orbital-based determination of the
coordination environments is very good.

Upon analyzing the COHP diagrams with and without spin
polarization for Yb14Mn1Sb11 (Figure 6b), we indeed find an
influence of the Mn� Sb bonds on the magnetism as it has been
seen before:[61] strong antibonding Mn� Sb interactions are
discovered below the Fermi level for the calculation without
spin polarization. When spin polarization is turned on, the
antibonding interactions in one spin channel disappear com-
pletely and this spin channel now has fully bonding Mn� Sb
bonds. In the other spin channel, small antibonding Mn� Sb
interactions remain around the Fermi level. This finding agrees
well with the antibonding fingerprint for other ferromagnetic
compounds such as the transition metals, FeNi3, FePd3, and
MbSb, demonstrated by Landrum and Dronskowski.[19] In
contrast to the results of Landrum and Dronskowski, we do not
detect stronger Mn� Sb bonds for the ferromagnetic setting,
however. These bonds are slightly weaker than in the non-

magnetic setting. In our gedankenexperiment, however, we
find an “oxidation” of Mn when spin polarization in considered.
The Mulliken charges of Mn change dramatically from 0.40

Figure 6. a) Structure of Yb14Mn1Sb11 above the automatic text analysis of
the bonding situation in the compound. Yb shows octahedral environments
and Mn shows a tetrahedral environment. Ferromagnetism was considered
in these calculations. b) Here, the structure was optimized in a ferromagnetic
environment and the COHPs were calculated in a nonmagnetic and in a
ferromagnetic setting.
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(nonmagnetic) to 0.74 (ferromagnetic). This makes the Made-
lung energy much more negative with a change from � 999.7
to � 1045.61 eV. This could indicate additional electrostatic
stabilization for this compound in the ferromagnetic setting,
rather than the typical covalent stabilization observed for other
compounds such as α-Fe. These differences to the situation in
α-Fe with homopolar Fe� Fe bonds are not surprising as we
now observe this change in a heteropolar bond where Sb is
more electronegative than Mn and thereby captures some of
the electrons of Mn when spin-polarization is switched on.

Conclusion

This work simplifies bonding analysis by providing workflow
tools and tools for automated analysis. Prior to this study,
chemical bonding analysis based on orbitals was a task with
many manual steps and therefore error prone. We have
demonstrated our automation here using several test systems,
including the study of the anionic order of several oxynitrides
and the complex crystal structure of Yb14Mn1Sb11. Thanks to
automation, these calculations can now be performed in a
high-throughput manner. In addition, we have shown how the
tools allow correlating important bonding properties with other
material properties. We expect that these tools will facilitate the
search for new descriptors for machine learning of material
properties. Bader charges[62] or other information based on
electronic structure theory have already helped in such studies.
In addition, we hope that the tools will help to provide further
chemical understanding of materials.

The study also illustrates how much work is needed to
automate just one task in computational chemistry. Future
work will aim to include orbital-by-orbital analysis of bonds,
various indicators of covalency (ICOOP, ICOBI), and k-dependent
covalency in our automated analysis, which could be partic-
ularly useful for compounds with very steep bands. In addition,
pre-convergence steps with a smaller number of bands could
be included in our LOBSTER workflow to speed up calculations
and convergence of calculations, which is currently a problem
for compounds requiring a very large number of bands (such as
Yb14Mn1Sb11). Interfaces to other DFT codes could be devel-
oped.

Methods
For all materials considered in this study, DFT calculations based on
the PAW method[63,64] and the PBE approximation of the exchange
correlation functional[65] were performed. For optimization, we
relied on many of the default settings of the atomate package
imported via pymatgen from the MPRelaxSet. However, we chose
more precise optimization settings. We use an energy difference
criterion for the convergence of the electronic structure of 10� 6 eV,
and the structure is considered relaxed if the energy difference
between two consecutive steps is below a setting of 10� 5 eV. We
relied on the standard cutoff for the plane-wave energy of 520 eV.
In contrast to the MPRelaxSet in pymatgen, we used the VASP
pseudopotentials with version number 5.4, with the additional
difference that s-electrons are included in the valence of W. We

used 6000 k-points per reciprocal atom to ensure that the energies
for the defect phases of the oxynitrides converged well. We also
chose a Gaussian smearing for the optimization.

When calculating the wave function, the energy is converged until
it is less than 10� 6 eV. This stricter criterion, as opposed to the
default setting in the Materials Project, was necessary to ensure
that the wave functions were of sufficient quality. Otherwise, we
would sometimes have obtained different charge spillings for the
two spin channels of actually not magnetic compounds, which is
contrary to expectation and indicates problems with convergence
of the wave function. In addition, we considered time-reversal
symmetry in the VASP calculation and used 6000 k points per
reciprocal atom to ensure convergence of the LOBSTER results. The
number of bands is adjusted according to the largest basis available
in LOBSTER for the compound in question. The other parameters
are the established defaults for the Materials Project PBE calcu-
lations as implemented in MPRelaxSet. The entire implementation
of a generator for the input can be found in pymatgen and in
pymatgen.io.vasp.sets.LobsterSet. These settings were previously
determined to produce well-matched results when testing a new
implementation in LOBSTER for several hundred LOBSTER
calculations.[20]

The LOBSTER run itself was then based on the pbeVASPfit2015 basis
and fits the atomic basis to the selected POTCAR files. All standard
outputs of a LOBSTER run (i. e., information on Crystal Orbital
Hamilton Populations, Crystal Orbital Overlap Populations, Crystal
Orbital Bond Indices, projected density of states, Mulliken charges,
Löwdin charges, etc.) were calculated. For plotting the COHPs, we
added an additional Gaussian broadening as implemented in
lobsterpy.

To generate the different anion configurations of the perovskite
structures, we again relied on pymatgen, enumlib[66] and also on
symmetry identification based on spglib.[67]

The following program versions have been used: pymatgen
2022.2.1, atomate 1.0.3, LOBSTER 4.1.0, VASP 6.2.1 for the workflow.
The automatic analysis was done with lobsterpy 0.2.1.

Data and code availability: All data is available on zenodo.org. All
code is available under an open-source license. We also have a
github repository to reproduce the publication (https://github.com/
JaGeo/LobsterAutomation (Version 0.2.3), archived version:
10.5281/zenodo.6704163). This repository also includes information
on runtimes for VASP and Lobster runs.
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