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Abstract
Let Ω ⊂ Rn be of finite Lebesgue measure and 1 < p < ∞. The grand Lebesgue space
Lp)(Ω) (cf. [IS92]) and the small Lebesgue space L(p(Ω) (cf. [Fio00]) are rearrangement
invariant Banach function spaces. The classical Lebesgue space Lp(Ω) is embedded in
Lp)(Ω), which again is embedded in every Lebesgue space Lp−ε(Ω), 0 < ε < p−1. Similarly,
Lp+ε(Ω), ε > 0 is embedded in the space L(p(Ω), which again is embedded in Lp(Ω).

We present a way to find their norms which are based on the decreasing rearrangement.
To get there, we define specific extrapolation and interpolation constructions and use them,
alone and in combination, in order to characterise the spaces. Finally, we compare them
to Lorentz-Zygmund spaces.
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Introduction

Let Ω ⊂ Rn be a set of finite Lebesgue measure, and let 1 < p < ∞. The norm of the
grand Lebesgue spaces Lp)(Ω) is given by

∥f |Lp)(Ω)∥ = sup
0<ε<p−1

ε
1
p−ε

(︄ˆ
Ω

|f(x)|p−ε dx
)︄ 1
p−ε

.

They were introduced by Iwaniec and Sbordone, cf. [IS92], and have proved to play an
important role in PDE theory (see e.g. [Sbo96], [FS98]). Their associate spaces, the small
Lebesgue spaces L(p′(Ω), 1/p + 1/p′ = 1, were found by Fiorenza, cf. [Fio00], and have
also found several applications (see e.g. [FR03]). Their norm is given by

∥g |L(p′(Ω)∥ = inf
g=
∑︁
k∈N

gk

∞∑︂
k=1

inf
0<ε<p−1

ε− 1
p−ε

(︄ˆ
Ω

|gk(x)|(p
′−ε)′

dx
)︄ 1

(p−ε)′

.

In this work, we will mainly prove the norms using the decreasing rearrangement that
were found by Fiorenza and Karadzhov in [FK04]. We try to present this result as directly
and completely as possible. It turns out that it holds for µ(Ω) = 1

∥f |Lp)(Ω)∥ ∼ sup
0<t<1

(1 − ln t)− 1
p

(︄ˆ 1

t

f ∗(s)p ds
)︄ 1
p

∥g |L(p(Ω)∥ ∼
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ t

0
g∗(s)p ds

)︄ 1
p dt
t
.

The grand and small Lebesgue spaces can in fact be seen as a model for far more general
classes of spaces. In [CF05], these spaces were generalised by replacing ε

1
p−ε in the definition

of the grand Lebesgue spaces by ε
θ
p−ε , θ > 0, and the authors in [CFG13] even consider a

more general function δ(ε) (analogously for the small Lebesgue spaces). It is also possible
to define grand Orlicz spaces as in [CFK08]. Or, the interpolation characterisations of
grand and small Lebesgue spaces could be used to define so called “abstract” grand and
small spaces, as conducted in [FK04].

Disregarding the other possibilities we confine ourselves to the model case. The thesis
is organised as follows: In Chapter 1, we first outline the framework of Banach function
spaces in which we operate (following [BS88]), then we recall some interpolation theory
basics that we will need (following [BL76]).



2 Introduction

Chapter 2 presents a historical overview on grand and small Lebesgue spaces and the
question of duality. Its statements are compiled from different papers.

An extrapolation technique taken from [CK14] is introduced in Chapter 3. It is used to
characterise the grand and small Lebesgue spaces as extrapolation spaces of the classical
Lebesgue spaces.

The inverse approach is presented in Chapter 4, where we combine extrapolation with
interpolation techniques (following [FK04]). We prove a range of statements that the
authors gathered from much more comprehensive theories of interpolation and extrapolation.
Especially, two theorems on the equivalence of interpolation and extrapolation are given
in the language of the extrapolation constructions of Chapter 3. This finally leads to the
already referenced norms which allow to compare the spaces with Lorentz-Zygmund spaces.
We show examples to prove that these embeddings are proper.



1. Preliminaries

1.1 Notation and general theory of Banach function
spaces

In this work we examine Banach function spaces on subsets Ω of Rn of finite Lebesgue
measure. Without loss of generality we can assume that |Ω| = µ(Ω) = 1. We write e.g.
Lp instead of Lp(Ω), Lp,q for Lp,q(Ω), and so on. Most of the time we use this notation
without recalling its meaning.

Furthermore, we consider the spaces in terms of equivalence classes, i.e. we identify f
and g if f(x) = g(x), x ∈ Ω, µ-almost everywhere. Since we follow the notation of Bennett
and Sharpley [BS88], all of these spaces are taken as subsets of M0(Ω), that is the space
containing all measurable functions on Ω that are finite µ-a.e.

We let a Banach function space X, according to [BS88], be determined by a Banach
function norm ρ : M+ → [0,∞], where M+ denotes the measurable functions with values
in [0,∞], through g ∈ X ⇐⇒ ρ(|g|) < ∞ for g ∈ M0. We quote the axioms that the
authors give for such ρ as we want to investigate specific spaces in this framework. Let χE
denote the characteristic function of a µ-measurable subset E of Ω. It holds for all f , g,
fn (n ∈ N) in M+:

(P1) ρ(f) = 0 ⇐⇒ f = 0 µ-a.e.
ρ(af) = aρ(f) for any a ≥ 0
ρ(f + g) ≤ ρ(f) + ρ(g)

(P2) g ≤ f µ-a.e. =⇒ ρ(g) ≤ ρ(f)

(P3) fn ↗ f µ-a.e. =⇒ ρ(fn) ↗ ρ(f)

(P4) µ(E) < ∞ =⇒ ρ(χE) < ∞ for any measurable E ⊂ Ω

(P5) µ(E) < ∞ =⇒ ∃cE > 0 :
´
E
f dµ ≤ cEρ(f) for any measurable E ⊂ Ω

We say that two expressions s(x) ≥ 0 and t(x) ≥ 0 are equivalent, say s ∼ t, if there are
constants c1, c2 > 0 such that for all x it holds s(x) ≤ c1t(x) and t(x) ≤ c2s(x). Sometimes,
we also write s(x) ≲ t(x) (or s(x) ≳ t(x) respectively) if only one inequality holds. By
X ↪→ Y , we denote that the Banach function space X is continuously embedded in Y , i.e.
∥f |Y ∥ ≲ ∥f |X∥ and x ⊂ Y . In that sense, X = Y means that X ↪→ Y and Y ↪→ X, i.e.
the norms of X and Y are equivalent.
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We restrict many definitions and propositions from the literature to the case 1 ≤ p ≤ ∞,
or even 1 < p < ∞. This is done as we do not need the more general case (the grand
and small Lebesgue spaces are usually defined for 1 < p < ∞ only) and in order to avoid
confusion, for example about the question on how to deal with quasi-Banach spaces.

The spaces Lp for 1 ≤ p ≤ ∞ denote the classical Lebesgue spaces containing all
measurable g with finite norm

∥f |Lp∥ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︄ˆ
Ω

|f(x)|p dx
)︄ 1
p

if 1 ≤ p < ∞

ess sup
x∈Ω

|f(x)| if p = ∞.

(1.1)

Since we assume |Ω| = 1 < ∞ in our setting, we have Lq ↪→ Lp for p < q. To see this, we
only need to apply Hölder’s inequality with r = q/p, i.e.

∥f |Lp∥ =
(︄ˆ

Ω
|f(x)|p dx

)︄ 1
p

≤
(︄ˆ

Ω
1 dx

)︄ q−p
p
(︄ˆ

Ω
|f(x)|q dx

)︄ 1
q

= ∥f |Lq∥. (1.2)

This computation also shows us that the norms of the embeddings between Lebesgue
spaces are uniformly bounded by 1.

We use a property shared by all the spaces considered here – that is the rearrangement
invariance. A Banach function space is said to be rearrangement invariant if its norm is
invariant under rearrangements. The decreasing rearrangement is defined as follows (cf.
[BS88]): Let the distribution function µf of a function f ∈ M0 be given by

µf (λ) = µ{x ∈ Ω : |f(x)| > λ} for λ ≥ 0. (1.3)

Then the decreasing rearrangement of f is defined to be

f ∗(t) = inf{λ ≥ 0 : µf (λ) ≤ t} for t ≥ 0 (1.4)

with the convention inf ∅ = ∞. Note that in our case, it holds µf(λ) ≤ |Ω| = 1 and
f ∗(t) = 0 for all t ≥ 1. Now, for 1 ≤ p < ∞ it holds

´
Ω |f(x)|p dx =

´ 1
0 f

∗(t)p dt, and for
p = ∞ it holds ess supΩ |f(x)| = f ∗(0) (cf. [BS88, Prop. II.1.8]).

Instead of the triangle inequality (P1) of the axioms for Banach function norms, a
quasinorm ρ satisfies a c-triangle inequality ρ(a + b) ≤ c[ρ(a) + ρ(b)] with c > 1. A
refinement of the scale of Lebesgue spaces due to (1.1) is given by the Lorentz spaces Lp,q,
1 < p < ∞, 1 ≤ q ≤ ∞, which are defined via the quasinorm

∥f |Lp,q∥ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ 1

0

[︂
t

1
pf ∗(t)

]︂q dt
t

)︄ 1
q

if 1 ≤ q < ∞

sup
0<t<1

t
1
pf ∗(t) if q = ∞.

(1.5)



Notation and general theory of Banach function spaces 5

For q = ∞, these spaces are also called Marcinkiewicz spaces or weak-Lp. If the parameters
p and q are in the given range, the above definition produces spaces that are rearrangement-
invariant Banach spaces, cf. [BS88, Theorem IV.4.6]. In this book, the authors also give a
proof for the embedding

Lp,q ↪→ Lp,r for 1 ≤ q ≤ r ≤ ∞, (1.6)

where the norms of inclusion are bounded by (p/q)(r−q)/rq if r < ∞, else by (p/q)1/q. They
also state that for |Ω| < ∞ (a part of this fact is proven in Chapter 2, another part in
Chapter 3)

Lr,s ↪→ Lp,q for any 1 < p < r < ∞, 1 ≤ q, s ≤ ∞. (1.7)

Another refinement of the Lp scale is given by the Zygmund spaces (cf. [BS88, Def.
6.11]) Lp(logL)a. Let 1 ≤ p < ∞ and −∞ < a < ∞ or p = ∞ and a ≥ 0. An equivalent
quasinorm on this spaces is given by

∥f |Lp(logL)a∥ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ 1

0
[(1 + |ln t|)af ∗(t)]p dt

)︄ 1
p

if 0 < p < ∞

sup
0<t<1

(1 + |ln t|)af ∗(t) if p = ∞.

(1.8)

A third and last refinement is given by the Lorentz-Zygmund spaces, that generalise
the Lorentz and Zygmund spaces. The space Lp,q(logL)a is for 1 < p < ∞, 1 ≤ q ≤ ∞
and −∞ < a < ∞ determined by the quasinorm

∥f |Lp,q(logL)a∥ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ 1

0

[︂
(1 + |ln t|)a t

1
p f ∗(t)

]︂q dt
t

)︄ 1
q

if 1 ≤ q < ∞

sup
0<t<1

(1 + |ln t|)a t
1
p f ∗(t) if q = ∞.

(1.9)

It holds Lp,q = Lp,q(logL)0 and Lp(logL)a = Lp,p(logL)a. Let 1 < p1, p2 < ∞, 1 ≤ q1, q2 ≤
∞ and −∞ < a1, a1 < ∞. We have the embeddings (cf. [BR80])

Lp1,q1(logL)a1 ↪→ Lp2,q2(logL)a2 if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p2 < p1

p1 = p2, q1 ≤ q2 and a1 ≥ a2

p1 = p2, q1 > q2 and a1 + 1
q1
> a2 + 1

q2
.

We now cite the basic principles on the associate and dual space from [BS88, Chapter
I]. Let X be a Banach function space. The associate space X ′ is given by all g ∈ M0 such
that the norm

∥g |X ′∥ = sup
{︄ˆ

Ω
|fg| dµ : f ∈ X, ∥f |X∥ ≤ 1

}︄
(1.10)
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is finite. This space itself is a Banach function space. In this case, Hölder’s inequality
holds for all f ∈ X and g ∈ X ′, i.e.

ˆ
Ω

|fg| dµ ≤ ∥f |X∥ ∥g |X ′∥.

Furthermore, it holds X ′′ = X (cf. [BS88, Theorem 2.7]). If X, Y are Banach function
spaces, then X ↪→ Y implies Y ′ ↪→ X ′. The associate space can be, roughly speaking,
identified with a subspace of the dual space X∗ of X (cf. [BS88, Theorem 2.9]), which is
the space of all linear continuous functionals L : X → R (or C). We can compare them by
the following considerations: f ∈ X is said to have absolutely continuous norm in X, if for
every sequence {En}∞

n=1 of subsets of Ω

χEn → 0µ-a.e =⇒ ∥fχEn |X∥ −−−→
n→∞

0. (1.11)

If all f ∈ X have absolutely continuous norm, then the space X is said to have absolutely
continuous norm. This is a necessary and sufficient condition such that the associate and
the dual space of X can be identified. If (X∗)∗ = X then X is said to be reflexive, what
holds if and only if both X and X ′ have absolutely continuous norm. As [BS88] do, we
denote by Xa the set of functions that have absolutely continuous norm in X, and by Xb

the closure of the set of bounded functions f with µ(supp f) < ∞ (i.e. L∞) relative to
the norm ∥· |X∥. It holds [BS88, Theorem I.3.11]

Xa ⊂ Xb ⊂ X. (1.12)

Let 1 < p < ∞ and 1/p + 1/p′ = 1 or p = 1 and p′ = ∞. Then the spaces Lp and
Lp′ are associate to each other. With the same notation and 1 < p < ∞, 1 ≤ q ≤ ∞,
−∞ < a < ∞, it holds (Lp,q(logL)a)′ = Lp′,q′(logL)−a (see e.g. [CFT04]). The quasinorms
(1.5), (1.8) and (1.9) become norms if we replace f ∗ by f ∗∗(s) = 1

s

´ s
0 f

∗(x) dx.

1.2 Interpolation

The grand and small Lebesgue spaces appear in the context of questions on the properties
of linear operators. A powerful tool to deal with such problems has been proved to be
interpolation theory. We can “interpolate” between two spaces on which we know the
properties of an operator T in such a way that these properties are carried over to the
interpolation space.

Here are the details: We mostly follow [BL76] unless otherwise specified. Let A0,
A1 be two Banach spaces. We call {A0, A1} an interpolation couple if there is a linear
Hausdorff space A with Ai ⊂ A, i = 0, 1. For such a couple let us define A0 + A1 as
consisting of all a ∈ A that can be represented as a = a0 + a1, ai ∈ Ai, i = 1, 2, with
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∥a0 |A0∥ + ∥a1 |A1∥ < ∞. Let its norm be given by

∥a |A0 + A1∥ := inf
a=a0+a1
ai∈Ai

∥a0 |A0∥ + ∥a1 |A1∥. (1.13)

Furthermore, we equip A0 ∩ A1 with the norm

∥a |A0 ∩ A1∥ := max( ∥a |A0∥, ∥a |A1∥). (1.14)

These spaces are Banach spaces too, cf. for example [BL76, Lemma 2.3.1]. Note that, if
A0 ↪→ A1, then A0 = A0 ∩ A1 and A1 = A0 + A1 (in the sense of equivalent norms).

Definition 1.1. Let {A0, A1} and {B0, B1} be interpolation couples. Then we denote by
L({A0, A1}, {B0, B1}) the set of all linear operators

T : A0 + A1 −→ B0 +B1 with Tk := T
⃓⃓⃓
Ak

∈ L(Ak, Bk), k = 0, 1. (1.15)

Throughout this work, we make use of the following common notations, but we do not
further refer to category theory.

Notation 1.2 (cf. [Tri95]). Let C1 denote the category that consists of the class of all
complex Banach spaces A,B, . . . as objects, and the sets L(A,B) as morphisms.

Let C2 denote the category that consists of the class of all interpolation couples
{A0, A1}, {B0, B1}, . . . as objects, and the sets L({A0, A1}, {B0, B1}) as morphisms.

A space A ∈ C1 is called interpolation space between A0 and A1, (A0, A1) ∈ C2, if

A0 ∩ A1 ↪→ A ↪→ A0 + A1 and T : A → A for all T ∈ L({A0, A1}).

An interpolation functor is a functor F : C2 → C1, such that F (A0, A1), F (B0, B1) are
interpolation spaces between (A0, A1), (B0, B1) ∈ C2 respectively, and F (T ) = T for all
T ∈ L({A0, A1}, {B0, B1}).

We consider two general families of interpolation functors, i.e. the K- and the J -method
of interpolation, also known as the real interpolation method. Let (A0, A1) ∈ C2 and t > 0.

K(t, a) := K(t, a;A0, A1) := inf
a=a0+a1
ai∈Ai

( ∥a0 |A0∥ + t ∥a1 |A1∥), a ∈ A0 + A1 (1.16)

J(t, a) := J(t, a;A0, A1) := max ( ∥a |A0∥, t ∥a |A1∥), a ∈ A0 ∩ A1 (1.17)

If it is clear from the context w.r.t. which couple (A0, A1) the functionals are considered,
then we frequently use the first notation that does not explicitly mention the couple.
K(t, a) and J(t, a) are positive and increasing functions of t, while K is concave and J is
convex ([BL76, Lemmas 3.1.1 & 3.2.1]). It is easy to see that for any t > 0 K(t, a) is an
equivalent norm on A0 + A1, and J(t, a) is an equivalent norm on A0 ∩ A1.
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For a ∈ A0 ∩ A1 and t > 0, s > 0, we have (cf. [BL76, Lemma 3.2.1])

J(t, a) ≤ max
(︃

1, t
s

)︃
J(s, a) and K(t, a) ≤ min

(︃
1, t
s

)︃
J(s, a). (1.18)

Let now 1 ≤ p ≤ ∞ and 0 < θ < 1 or p = ∞ and 0 ≤ θ ≤ 1. Then the space (A0, A1)K
θ,p

consists of all a ∈ A0 + A1 such that the norm

∥a | (A0, A1)K
θ,p∥ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ∞

0

[︂
t−θK(t, a)

]︂p dt
t

)︄ 1
p

if 1 ≤ p < ∞

sup
0<t<∞

t−θK(t, a) if p = ∞
(1.19)

is finite. The space (A0, A1)J
θ,p is defined as consisting of all a ∈ A0 + A1 that can be

represented as a =
´∞

0 u(t) dt
t

(convergent in A0 +A1) with u(t) ∈ A0 ∩A1, all t > 0, such
that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︄ˆ ∞

0

[︂
t−θJ(t, u(t))

]︂p dt
t

)︄ 1
p

if 1 ≤ p < ∞

sup
0<t<∞

t−θJ(t, u(t)) if p = ∞
(1.20)

is finite. Its norm is given by the infimum of (1.20) taken over all possible representations
a =
´∞

0 u(t) dt
t

. It is also possible to derive equivalent discrete norms for both spaces. For
the J -method, we have (cf. [BL76, Lemma 3.2.3])

∥a | (A0, A1)J
θ,p∥ ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf

a=Σνuν

(︄ ∞∑︂
ν=1

[︂
2−νθJ(2ν , a)

]︂p)︄ 1
p

if 1 ≤ p < ∞

inf
a=Σνuν

sup
ν

2−νθJ(2ν , a) if p = ∞.

(1.21)

As the K-functional is a norm on A0 + A1 and (A0, A1)K
θ,q ↪→ A0 + A1, it is clear that

it can be estimated by the norm of an interpolation space. More precisely, it holds:

Proposition 1.3 ([BL76, Theorem 3.1.2]). Let (A0, A1) ∈ C2, 0 < θ < 1 and 1 ≤ q ≤ ∞.
We have (with the convention ∞ 1

∞ = 1)

K(t, a) ≤ (θq)
1
q tθ ∥a | (A0, A1)K

θ,q∥. (1.22)

Proof. We follow the computation in [Har10]. With t−θq = θq
´∞
t
τ−θq dτ

τ
we have

t−θK(t, a) = (θq)
1
qK(t, a)

(︄ˆ ∞

t

τ−θq dτ
τ

)︄ 1
q

≤ (θq)
1
q

(︄ˆ ∞

t

τ−θqK(τ, a)q dτ
τ

)︄ 1
q

≤ (θq)
1
q ∥a | (A0, A1)K

θ,q∥.
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It turns out that the K- and J -method lead to the same interpolation spaces (in the
sense of equivalent norms), as Lemma 1.4 holds. Thus, it is common not to distinguish
between K- and J -interpolation spaces and also to omit the K or J in the designation.
However, many of our statements hold only for one of the methods as the norms are
equivalent, but not equal. Hence, we usually explicitly denote which method is meant,
except in those cases when the specific norm is not important for the statement.

Lemma 1.4 (The fundamental lemma of interpolation theory). Let a ∈ A0 +A1. Assume
that

lim
t→0

K(t, a) = lim
t→∞

K(t, a)
t

= 0. (1.23)

Then, for any ε > 0, there is a representation a = ∑︁
ν∈Z

uν (convergence in A0 + A1),
uν ∈ A0 ∩ A1, such that

J(2ν , uν) ≤ 3(1 + ε)K(2ν , a), ν ∈ Z.

Example 1.5 ([Har10]). We often deal with the interpolation and extrapolation of the
classical Lebesgue spaces. Here is the most basic example. Let 1 ≤ q ≤ ∞ and 0 < θ < 1.
Then it holds in the sense of equivalent norms

(L1, L∞)θ,q = L 1
1−θ ,q

.

We now cite a couple of statements that we frequently use: That are a simplified
reiteration theorem and a list of formulas for the K-functional.

Theorem 1.6 (Reiteration theorem [BL76, Theorem 3.5.3]). Let (A0, A1) ∈ C2, 0 < θi < 1,
i = 0, 1 and θ0 ̸= θ1. Then it holds for arbitrary 1 ≤ q, q0, q1 ≤ ∞ and 0 < η < 1(︃

(A0, A1)θ0,q0 , (A0, A1)θ1,q1

)︃
η,q

= (A0, A1)θ,q with θ = (1 − η)θ0 + ηθ1.

Theorem 1.7 (The Holmstedt formula [BL76, Theorem 3.6.1]). Let (A0, A1) ∈ C2. Let
0 ≤ θ0 < θ1 ≤ 1 and 1 ≤ q1, q2 ≤ ∞. Put λ = θ1 − θ0, and take Xj = (A0, A1)θj ,qj for
j = 0, 1. Then for all a ∈ A0 + A1 and t > 0 it holds (we put K(s, a) = K(s, a;A0, A1))

K(t, a;X0, X1) ∼
(︄ˆ t

1
λ

0

[︂
s−θ0K(s, a)

]︂q0 ds
s

)︄ 1
q0

+ t

(︄ˆ ∞

t
1
λ

[︂
s−θ1K(s, a)

]︂q1 ds
s

)︄ 1
q1
. (1.24)

Corollary 1.8 ([BL76, Corollary 3.6.2]). In the situation of the previous theorem, it holds
for all t > 0 and a ∈ A0 + A1

K(t, a;X0, A1) ∼ t

⎛⎜⎝ˆ t
1

1−θ0

0

[︂
s−θ0K(s, a;A0, A1)

]︂q0 ds
s

⎞⎟⎠
1
q0

(1.25)
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and

K(t, a;A0, X1) ∼ t

(︄ˆ ∞

t
1
θ1

[︂
s−θ1K(s, a;A0, A1)

]︂q1 ds
s

)︄ 1
q1
. (1.26)

Corollary 1.9. Let (A0, A1) ∈ C2. Then for all a ∈ A0 + A1 and t > 0

K(t, a) ∼
ˆ t

0
K(s, a) ds

s
+ t

ˆ ∞

t

K(s, a)
s

ds
s

(1.27)

∼
ˆ t

0
K(s, a) ds

s
(1.28)

∼ t

ˆ ∞

t

K(s, a)
s

ds
s
. (1.29)



2. Direct approaches to grand and
small Lebesgue spaces

This chapter is mainly intended as a historical overview of grand and small Lebesgue spaces,
restricting to those approaches that do not explicitly use interpolation or extrapolation
theory (this motivates the chapter’s title). After giving the definitions we compute some
equivalent norms, state basic properties and consider the question of duality. It is due to
this procedure that the statements below were compiled from different sources.

As the Lorentz spaces appear in some equivalent norms of our spaces, we start by
a short lemma comparing them with Lebesgue spaces. Similar statements are given in
[FK04, p. 663] and [ET96, Section 2.6.2, eq. (12)] (the latter includes a proof too).

Lemma 2.1. For 1 < p < ∞ and any 0 < ε < p− 1 it holds uniformly w.r.t. ε

c1 ∥g |Lp+ε∥ ≤ ∥g |Lp+ε,p∥ ≤ c2 ∥g |Lp+2ε∥ (2.1)

and for 0 < ε < p−1
2

c3 ∥g |Lp−2ε∥ ≤ ∥g |Lp−ε,p∥ ≤ c4 ∥g |Lp−ε∥. (2.2)

Proof. By the monotonicity of Lorentz spaces (1.6), we know that

∥g |Lp+ε∥ = ∥g |Lp+ε,p+ε∥ ≤
(︄
p+ ε

p

)︄ ε
p(p+ε)

∥g |Lp+ε,p∥ ≤ c−1
1 ∥g |Lp+ε,p∥

and ∥g |Lp−ε,p∥ ≤ ∥g |Lp−ε,p−ε∥ = ∥g |Lp−ε∥ = c4 ∥g |Lp−ε∥.

Since we have a finite measure space, i.e. |Ω| = 1, the Hölder inequality with r = p+2ε
p

and
r′ = p+2ε

2ε gives

∥g |Lp+ε,p∥ =
(︄ˆ 1

0

[︂
t

1
p+ε g∗(t)

]︂p dt
t

)︄ 1
p

≤
(︄ˆ 1

0
g∗(t)p+2ε dt

)︄ 1
p+2ε

(︄ˆ 1

0
t−

p+2ε
2(p+ε) dt

)︄ 2ε
p(p+2ε)

⏞ ⏟⏟ ⏞
≤c2, as 0< p+2ε

2(p+ε)<
3
4

= c2 ∥g |Lp+2ε∥.
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For r = p
p−2ε and r′ = p

2ε , it gives

∥g |Lp−2ε∥ =
(︄ˆ 1

0
g∗(t)p−2ε t

1
r

ε
p−ε · t−

1
r

ε
p−ε dt

)︄ 1
p−2ε

≤
(︄ˆ 1

0

[︂
t

1
p−ε g∗(t)

]︂p dt
t

)︄ 1
p
(︄ˆ 1

0
t−

p−2ε
2(p−ε) dt

)︄ 2ε
p(p−2ε)

⏞ ⏟⏟ ⏞
≤c−1

3 , as 0< p−2ε
2(p−ε)<

1
2

= c−1
3 ∥g |Lp−ε,p∥.

2.1 Grand Lebesgue spaces

Definition 2.2 (Grand Lebesgue spaces). Let for 1 < p < ∞ the space Lp) consist of all
g ∈ M0 such that the norm

∥g |Lp)∥ := sup
0<ε<p−1

ε
1
p−ε ∥g |Lp−ε∥ (2.3)

is finite.

Theorem 2.3. Let 1 < p < ∞. The space Lp) is a Banach function space.

Proof. We only show what is not trivial. Let f, g, fn (n ∈ N) be in M+.

(P1) ∥f + g |Lp)∥ ≤ sup
0<ε<p−1

ε
1
p−ε ( ∥f |Lp−ε∥ + ∥g |Lp−ε∥)

≤ sup
0<ε<p−1

ε
1
p−ε ∥f |Lp−ε∥ + sup

0<ε<p−1
ε

1
p−ε ∥g |Lp−ε∥.

(P2) g ≤ f µ-a.e. =⇒ ε
1
p−ε ∥g |Lp−ε∥ ≤ ε

1
p−ε ∥f |Lp−ε∥ for 0 < ε < p − 1 =⇒

∥g |Lp)∥ ≤ ∥f |Lp)∥.

(P3) Take 0 ≤ fn ↗ f µ-a.e. For every δ > 0 there exists 0 < εδ < p− 1 such that

∥f |Lp)∥ < ε
1

p−εδ
δ ∥f |Lp−εδ∥ + δ.

Since the p-norms are Banach norms, ∥fn |Lp−εδ∥ ↗ ∥f |Lp−εδ∥, hence there is nδ ∈ N
with ∥f |Lp−εδ∥ < ∥fn |Lp−εδ∥ + δ for all n ≥ nδ. With ε1/(p−ε) < p − 1, ε < p − 1, this
yields

∥f |Lp)∥ < ε
1

p−εδ
δ ∥fn |Lp−εδ∥ + δ ≤ ∥fn |Lp)∥ + δ

for all n ≥ nδ and it follows ∥fn |Lp)∥ ↗ ∥f |Lp)∥ by taking δ → 0.

These spaces were first introduced by [IS92], where the embedding properties of
Proposition 2.4 were proven and an application was given. It turned out that (roughly
speaking) the Jacobian J(x, f) = detDf(x) of a function f : Ω → Rn is locally integrable
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if Df belongs to Ln). This was already known for the weak-Lp and the Zygmund space
in the following embeddings, but the grand Lebesgue space was shown to be the biggest
space of functions having this property. The name grand Lebesgue space appears, to our
knowledge, in [Sbo96] for the first time in literature.

Proposition 2.4 (Basic embeddings). Let 1 < p < ∞. Then the following holds.

(i) Lp ↪→ Lp) ↪→ Lp−ε for any 0 < ε < p− 1

(ii) Lp ↪→ Lp,∞ ↪→ Lp)

(iii) Lp ↪→ Lp(logL)− 1
p
↪→ Lp)

Proof. We do not cite the direct proofs of (ii) and (iii) that can be found in [IS92], as they
are not difficult while at the same time using different approaches than we do, e.g. the
Orlicz norm for the Zygmund spaces. From our later characterisations of grand and small
Lebesgue spaces, the embeddings can be easily deduced, cf. Section 4.5. We only give the
argument for statement (i).

(i) By (1.2) we have ∥f |Lp)∥ ≤ sup
0<ε<p−1

ε
1
p−ε cΩ ∥f |Lp∥ ≤ cΩ,p ∥f |Lp∥. Secondly, for any

0 < ε < p− 1

∥f |Lp−ε∥ ∼ ε
1
p−ε ∥f |Lp−ε∥ ≤ sup

0<ε<p−1
ε

1
p−ε ∥f |Lp−ε∥ = ∥f |Lp)∥.

Example 2.5. We give an example for the first embedding of the previous proposition,
other examples follow in Section 4.5. Let Ω = (0, 1) be equipped with the Lebesgue
measure, 1 < p < ∞ and f(t) = t−

1
p .

(i) Then f(t) /∈ Lp, but f(t) ∈ Lp), because

ε
1
p−ε ∥f |Lp−ε∥ = ε

1
p−ε

(︃
p

ε

)︃ 1
p−ε

= p
1
p−ε < p for 0 < ε < p− 1.

(ii) Take En = (0, 1
n
) and fn = χEnf . Then

∥fn |Lp)∥ = sup
0<ε<p−1

ε
1
p−ε

(︃
p

ε

)︃ 1
p−ε

(︃ 1
n

)︃ ε
p(p−ε)

≥ exp lim
ε→0

ln p− ε
p

lnn
p− ε

= p
1
p > 0.

This shows, that f(t) = t−
1
p does not have absolutely continuous norm in Lp), as is

indicated in [Fio00, Prop. 3.6]. For this reason, we immediately have Proposition
2.6 below.

(iii) Take any sequence {fn}∞
n=1 with fn → f µ-a.e. and fn ∈ L∞. Then, there is an

interval (0, τn) ⊂ Ω where fn(t) ≤ 1
2t

− 1
p , hence f(t) − fn(t) ≥ 1

2t
− 1
p , 0 < t < τn.
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Therefore,

∥f − fn |Lp)∥ ≥ sup
0<ε<p−1

ε
1
p−ε

2

(︄ˆ τn

0
t−

p−ε
p dt

)︄ 1
p−ε

≥ p
1
p

2 > 0.

We conclude, that f /∈ Lbp).

Proposition 2.6. The space Lp) does not have absolutely continuous norm.

We use the following equivalent norms several times in the sequel, so we prove them
now. They are given without proof in [FK04].

Lemma 2.7. For any 0 < ε0 < min(1, p− 1), it holds

∥g |Lp)∥
(2.3)= sup

0<ε<p−1
ε

1
p−ε ∥g |Lp−ε∥ ∼ sup

0<ε<p−1
ε

1
p ∥g |Lp−ε∥ (2.4)

∼ sup
0<ε<ε0

ε
1
p ∥g |Lp−ε∥ (2.5)

∼ sup
0<ε<ε0

ε
1
p ∥g |Lp−ε,p∥. (2.6)

Proof. Consider
ε

1
p−ε

ε
1
p

= ε
1
p−ε− 1

p = ε
ε

p(p−ε) = exp
(︄

ε ln ε
p(p− ε)

)︄
. (2.7)

With ε ln(ε) −−→
ε→0

0, we see that ε ln ε is bounded from below and above on the interval
(0, p− 1). Therefore, the expression (2.7) is bounded from below and above as, while here
the bounds are bigger than 0. Thus we have ε

1
p−ε ∼ ε

1
p . This proves the equivalent norm

(2.4).
Take any 0 < ε0 < min(1, p− 1) and let q = p−1

ε0
, then

sup
0<ε<ε0

ε
1
p ∥g |Lp−ε∥ = sup

0<σ<p−1

(︄
σ

q

)︄ 1
p

∥g |Lp−σ
q
∥

p−σ
q
>p−σ
≥ c q− 1

p sup
0<σ<p−1

σ
1
p ∥g |Lp−σ∥ ∼ ∥g |Lp)∥

by the monotony of Lebesgue spaces (1.2). The reverse inequality is obvious and the norm
(2.5) is proven.

For the replacement of ∥· |Lp−ε∥ by ∥· |Lp−ε,p∥, we use the second formula of Lemma
2.1 and compute starting from (2.5)

∥g |Lp)∥ ∼ sup
0<ε<ε0/2

(2ε)
1
p ∥g |Lp−2ε∥

(2.2)
≤ c sup

0<ε<ε0/2
ε

1
p ∥g |Lp−ε,p∥ ≤ c sup

0<ε<ε0
ε

1
p ∥g |Lp−ε,p∥.

The reverse inequality follows immediately from (2.2) and the norm (2.6) is proven.
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2.2 Small Lebesgue spaces

Definition 2.8 (Small Lebesgue spaces). Let 1 < p < ∞ and 1/p+ 1/p′ = 1. The space
L(p contains all g ∈ M0 that can be represented as g = ∑︁

k∈N gk, gk ∈ M0 for k ∈ N, such
that the norm

∥g |L(p∥ := inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥gk |L(p′−ε)′∥. (2.8)

is finite.

Theorem 2.9. Let 1 < p < ∞. The space L(p is a Banach function space.

Proof. We only show what is not trivial. Let f, g be in M+.

(P1) First, for g = ∑︁
k gk and f = ∑︁

k fk, take h2k := gk and h2k−1 := fk for all k ∈ N,
hence h = g + f with h = ∑︁

n hn. Then

∞∑︂
n=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥hn |L(p′−ε)′∥ =

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥gk |L(p′−ε)′∥ +

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥fk |L(p′−ε)′∥.

Taking the infimum over all representations h = ∑︁
n hn implies

∥g + f |L(p∥ ≤
∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥gk |L(p′−ε)′∥ +

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥fk |L(p′−ε)′∥.

for any representation g = ∑︁
k gk and f = ∑︁

k fk. If we now also take the infima over all
those representations, it yields ∥g + f |L(p∥ ≤ ∥g |L(p∥ + ∥f |L(p∥.

Second, assume that ∥f |L(p∥ = 0. Then, for any δ > 0 there is a representation
f = ∑︁

k fk with
∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε⏞ ⏟⏟ ⏞

≥c1

∥fk |L(p′−ε)′∥⏞ ⏟⏟ ⏞
≥c2 ∥fk |L1∥

< δ.

Thus, it is f = 0 as L1 is a Banach function space and we have

∥f |L1∥ = ∥∑︁k fk |L1∥ ≤
∞∑︂
k=1

∥fk |L1∥ < c3δ.

(P2) By [Fio00, Lemma 2.1], for g ≤ f = ∑︁
k fk with fk ≥ 0, all k ∈ N, there is a

decomposition g = ∑︁
k gk with 0 ≤ gk ≤ fk, all k ∈ N (we omit the computation that proves

the statement, as it is fully given in the reference). Then it holds ∥g |L(p∥ ≤ ∥f |L(p∥ by

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥gk |L(p′−ε)′∥ ≤

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥fk |L(p′−ε)′∥.



16 2. Direct approaches to grand and small Lebesgue spaces

(P3) This is the proof of [Fio00, Corollary 2.8]. Consider gj ∈ M0 with 0 ≤ gj ↗ g

µ-a.e. and En ⊂ Ω chosen by En = {x ∈ Ω : g(x) ≥ n}. Then χEn −−−→
n→∞

0 µ-a.e. Set
Fn = Ω \ En, hence min(g, n) ≥ gχFn . Since g = gχFn + gχEn , it holds

∥g |L(p∥ = ∥gχFn + gχEn |L(p∥ ≤ ∥gχFn |L(p∥ + ∥gχEn |L(p∥

=⇒ ∥g |L(p∥ − ∥gχFn |L(p∥ ≤ ∥gχEn |L(p∥ −−−→
n→∞

0

where that last limit holds due to Proposition 2.10 that is proven below. Now, for any
ε > 0 there exists N ∈ N such that

∥g |L(p∥ − ε ≤ ∥gχFN |L(p∥ ≤ ∥min(g,N) |L(p∥
(P2)
≤ ∥g |L(p∥.

As min(g,N) ∈ L∞ ↪→ Lp+1, it holds min(gj, N) −−−→
j→∞

min(g,N) in Lp+1 by the dominated
convergence theorem, and hence in L(p, as Lp+1 ↪→ L(p. Therefore, there is J ∈ N such
that for all j ≥ J

∥g |L(p∥ − 2ε ≤ ∥min(g,N) |L(p∥ − ε ≤ ∥min(gj, N) |L(p∥ ≤ ∥gj |L(p∥ ≤ ∥g |L(p∥.

Proposition 2.10. The space L(p has absolutely continuous norm.

Proof. We follow the proof in [Fio00, Lemma 2.6] and show that (1.11) holds. Let En ⊂ Ω
with χEn −−−→

n→∞
0 µ-a.e., and let g ∈ L(p. Choose any decomposition g = ∑︁

k gk with

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′−ε ∥gk |L(p′−ε)′∥ < ∞.

Let ak,n := inf0<ε<p′−1 ε
− 1
p′−ε ∥χEngk |L(p′−ε)′∥ for all k, n ∈ N. Since ∑︁k ak,1 < ∞ and

ak,n −−−→
n→∞

0, all k ∈ N, it holds ∑︁k ak,n −−−→
n→∞

0. Therefore,

∥χEng |L(p∥ ≤
∞∑︂
k=1

ak,n −−−→
n→∞

0.

These spaces were first introduced in [Fio00] as associate spaces to Lp). To be precise,
in this paper the author uses the space given by Definition 2.8 as auxiliary space to define
the small Lebesgue space by consisting of all measurable functions such that

∥g |Lp)′∥ = sup
0≤ψ≤|g|
ψ∈L(p′

∥ψ |L(p′∥, 1 < p < ∞ and 1
p

+ 1
p′ = 1,

is finite. In [FR03], the authors prove the monotone convergence theorem for the spaces of
Definition 2.8. Making use of this fact, the equivalence of Lp)′ and L(p′ is explicitly shown
in [CF05].
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Theorem 2.11 (Monotone convergence theorem for L(p′ , [FR03, Theorem 2]). Let {fn}∞
n=1

be a monotone nondecreasing sequence in L(p′ with supn∈N ∥fn |L(p′∥ < ∞. For f =
supn∈N fn it holds

(i) f ∈ L(p′

(ii) fn ↗ f µ-a.e.

(iii) fn → f in L(p′.

Proof. The proof of the theorem is based on the idea that for fn ≤ fm and fm = ∑︁
k f

(k)
m ,

one can find a decomposition of fn such that f (k)
n ≤ f (k)

m for all k ∈ N (see also the proof
of Theorem 2.9). This permits to estimate ∥fm − fn |L(p′∥ by ∥fm |L(p′∥ − ∥fn |L(p′∥,
what becomes small as ∥fn |L(p′∥ is convergent. Some more precise work is needed in the
process to derive something like (roughly speaking)

( ∥f (k)
m |Lq∥q − ∥f (k)

n |Lq∥q)
1
q ≲ ∥f (k)

m |Lq∥ − ∥f (k)
n |Lq∥.

We leave out the details that are thoroughly given in [FR03].

The still somewhat complicated expression (2.8) can be motivated by the later on
proven Hölder inequality (2.12). Similar to Proposition 2.4, for ε > 0 it is easy to prove
that Lp+ε ↪→ L(p ↪→ Lp. We give more embeddings and examples in Section 4.5.

Just as for the grand Lebesgue spaces, we prove some equivalent norms that turn out
to be useful in the sequel.

Lemma 2.12 (Equivalent norms). For any 0 < ε0 < p′ − 1 and 1 < p < ∞, it holds

∥g |L(p∥ ∼ inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′ ∥gk |Lp+ε∥ (2.9)

∼ inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε∥ (2.10)

∼ inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε,p∥. (2.11)

Proof. The main steps of the proof are taken from [FK04, Lemma 3.1].
It holds ε− 1

p′−ε ∼ ε
− 1
p′ , as the boundedness of the expression (2.7) shows. Next, we

define γ(ε) by (p′ − ε)′ = p+ γ(ε), i.e. for 0 < ε < p′ − 1 we have

(p′ − ε)′ = p+ ε(p− 1)2

1 − ε(p− 1) =: p+ γ(ε) with γ(ε) ≥ ε(p− 1)2 =: cpε.

It does not hold γ ∼ ε, as [FK04] suggest. We rather have for any gk ∈ M0

inf
0<ε<p′−1

ε
− 1
p′ ∥gk |Lp+γ(ε)∥

(1.2)
≳ inf

0<ε<p′−1
ε

− 1
p′ ∥gk |Lp+cpε∥ ≳ inf

0<ε<p′−1
ε

− 1
p′ ∥gk |Lp+ε∥.
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The last step is clear if cp ≥ 1 by the embeddings of Lebesgue spaces (1.2). However, if
cp < 1, then we first replace the variable of the infimum by ε′ := cpε, which runs from 0 to
cp(p′ − 1), and the statement follows. On the other hand it holds with ε ≤ cp

−1γ(ε)

inf
0<ε<p′−1

ε
− 1
p′ ∥gk |Lp+γ(ε)∥ ≤ cp

1
p′ inf

0<ε<p′−1
γ(ε)− 1

p′ ∥gk |Lp+γ(ε)∥ ∼ inf
0<γ<∞

γ
− 1
p′ ∥gk |Lp+γ∥

≤ inf
0<γ<p′−1

γ
− 1
p′ ∥gk |Lp+γ∥.

This proves the norm (2.9).
Now we show that the choice of ε0 is arbitrary and hence that the limits of the infimum

can be exchanged with any 0 < ε0 < p′ − 1 instead of p′ − 1. Look at q = p′−1
ε0

. Obviously,
it holds

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε∥ ≥ inf

0<ε<p′−1
ε

− 1
p′ ∥gk |Lp+ε∥.

On the other hand,

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε∥ = inf

0<σ<qε0

(︄
σ

q

)︄− 1
p′

∥gk |Lp+σ
q
∥

(1.2)
≤ cΩ q

1
p′ inf

0<σ<p′−1
σ

− 1
p′ ∥gk |Lp+σ∥.

Therefore, inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε∥ ∼ inf

0<ε<p′−1
ε

− 1
p′ ∥gk |L(p′−ε)′∥.

It is left to prove the norm replacement of ∥· |Lp+ε∥ by ∥· |Lp+ε,p∥. Using Lemma 2.1,
(2.1) yields

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε,p∥ ≤ C inf

0<ε<ε0
ε

− 1
p′ ∥gk |Lp+2ε∥

= C · 2
1
p′ inf

0<ε<ε0
(2ε)− 1

p′ ∥gk |Lp+2ε∥

≤ C ′ inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε∥.

The second inequality follows immediately from Lemma 2.1.

2.3 Duality

Let us now come to the central statement of this chapter, that for 1/p + 1/p′ = 1 the
spaces Lp) and L(p′ are associate to each other. The proof follows the steps of [Fio00]
including the modifications indicated by [CF05]. Our aim is to show that the norm (2.3)
of Lp) is equal to the associate norm of L(p′ given by (1.10). After showing the Hölder
inequality, we prove the equality for special functions and then generalise to the whole
spaces. We also try to fix a problem that occurs in Fiorenza’s proof of our Lemma 2.14
when choosing the appropriate function g.
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Theorem 2.13 ([Fio00, Theorem 2.5]). Let 1 < p < ∞ and f ∈ Lp). Then the following
Hölder inequality holds

ˆ
Ω

|fg| dµ ≤ ∥f |Lp)∥ ∥g |L(p′∥ for 1
p

+ 1
p′ = 1. (2.12)

Proof. Let g = ∑︁
k gk be any decomposition with measurable gk, k ∈ N. Then it holds for

f ∈ Lp) and 0 < ε < p− 1
ˆ

Ω
|fgk| dµ ≤ ∥f |Lp−ε∥ ∥gk |L(p−ε)′∥

=
(︄
ε

ˆ
Ω

|f |p−ε dµ
)︄ 1
p−ε

· ε− 1
p−ε

(︄ˆ
Ω

|gk|(p−ε)′
dµ
)︄ 1

(p−ε)′

≤ ∥f |Lp)∥ · ε− 1
p−ε

(︄ˆ
Ω

|gk|(p−ε)′
dµ
)︄ 1

(p−ε)′

.

Here we can take the infimum over ε. Therefore
ˆ

Ω
|fg| dµ ≤

∞∑︂
k=1

ˆ
Ω

|fgk| dµ

≤
∞∑︂
k=1

inf
0<ε<p−1

ε− 1
(p−ε)

(︄ˆ
Ω

|gk|(p−ε)′
dµ
)︄ 1

(p−ε)′

∥f |Lp)∥

and (2.12) follows by again taking the infimum over all possible decompositions g =∑︁
k gk.

Lemma 2.14 ([Fio00, Lemma 2.9]). Let f ∈ L∞. Then there exists g ∈ L∞ such that
ˆ

Ω
|fg| dµ = ∥f |Lp)∥ ∥g |L(p′∥.

Proof. The inequality ≤ is an immediate consequence of Theorem 2.13. On the other
hand, as f ∈ L∞, ε

1
p−ε ∥f |Lp−ε∥ −−→

ε→0
0, hence there is 0 < σ ≤ p− 1 such that

∥f |Lp)∥ = sup
0<ε<p−1

ε
1
p−ε ∥f |Lp−ε∥ = σ

1
p−σ ∥f |Lp−σ∥.

If σ < p − 1, take g = f
p−σ

(p−σ)′ ∈ L∞. Else, take g ≡ 1. Then in the classical Hölder
inequality it holds in fact equality, i.e. (with the convention (p− σ)′ = ∞ for p− σ = 1)

ˆ
Ω

|fg| dµ = ∥f |Lp−σ∥ ∥g |L(p−σ)′∥.
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If σ < p− 1, then

∥f |Lp)∥ ∥g |L(p′∥ ≤ σ
1

p−σ ∥f |Lp−σ∥ · inf
0<ε<p−1

ε− 1
p−ε ∥g |L(p−ε)′∥

≤ σ
1

p−σ ∥f |Lp−σ∥ · σ− 1
p−σ ∥g |L(p−σ)′∥ =

ˆ
Ω

|fg| dµ.

Otherwise, it holds with g ≡ 1 and, thus, ∥g |L(p−ε)′∥ = 1

∥f |Lp)∥ ∥g |L(p′∥ ≤ σ
1

p−σ ∥f |Lp−σ∥ · inf
0<ε<p−1

ε− 1
p−ε ∥g |L(p−ε)′∥

≤ (p− 1) ∥f |L1∥ · lim
ε→p−1

ε− 1
p−ε

= (p− 1) ∥f |L1∥ · 1
p− 1 =

ˆ
Ω

|f | dµ =
ˆ

Ω
|fg| dµ.

Corollary 2.15. Let f ∈ Lp). Then

∥f |Lp)∥ = sup
{︄ˆ

Ω
|fg| dµ : g ∈ L(p′ , ∥g |L(p′∥ ≤ 1

}︄
. (2.13)

Proof. W.l.o.g., let f ≥ 0 µ-a.e. Let fn = min(f, n), hence fn ∈ L∞, 0 ≤ fn ↗ f and
∥fn |Lp)∥ ↗ ∥f |Lp)∥. Then by Lemma 2.14 we have gn ∈ L∞ for all n ∈ N, ∥gn |L(p′∥ = 1
(if not then divide gn by its norm in L(p′), such that

ˆ
Ω

|fngn| dµ = ∥fn |Lp)∥.

Now, for any δ > 0 there exists n ∈ N with ∥fn |Lp)∥ > ∥f |Lp)∥ − δ. Finally,

∥f |Lp)∥ − δ <

ˆ
Ω

|fngn| dµ ≤
ˆ

Ω
|fgn| dµ

and the statement is true as δ can be taken arbitrarily small.

Theorem 2.16 (Associate spaces [Fio00, Theorem 3.5]). The space Lp) is associate to
L(p′ and vice versa.

Proof. This is an immediate consequence of Corollary 2.15.

Corollary 2.17. The spaces Lp) and L(p are rearrangement invariant Banach spaces.

Proof. It is obvious from the definition that the grand Lebesgue spaces are rearrangement
invariant. Then the small Lebesgue spaces being its associate spaces are rearrangement
invariant too (cf. [BS88, Corollary II.4.4]).

Corollary 2.18. The spaces Lp) and L(p are not reflexive.

Proof. This is clear due to Proposition 2.6.



3. Extrapolation approach

Extrapolation spaces are, in a certain sense, constructions inverse to interpolation spaces:
whereas interpolation begins with two Banach spaces (A0, A1) ∈ C2 to construct a scale of
spaces Aθ ∈ C1, 0 < θ < 1, extrapolation begins with a scale to construct spaces A0 and
A1 that can be interpreted as its endpoints. The grand Lebesgue spaces are easy to derive
from such constructions, and the same is possible for the small Lebesgue spaces too. In
Chapter 4, this leads to some further norms for Lp) and L(p via the additional application
of interpolation techniques.

There is no standard framework of extrapolation, but a number of authors have
developed techniques. We mostly follow [CK14], but in the next chapter we also refer to
the more general theory of [KM05] that is based on [JM91], as this is the context in which
our final results appeared first in literature.

3.1 Abstract extrapolation spaces

Definition 3.1 (Compatible [CK14]). We call a family of Banach spaces {Yθ}θ∈Θ, Θ ⊂ [0, 1]
compatible if there are Y0, Y1 with

Y0 ↪→ Yθ ↪→ Yη ↪→ Y1 for 0 < θ < η < 1, θ, η ∈ Θ (3.1)

and the norms of inclusion between the spaces with indices in Θ ∩ (0, 1) are uniformly
bounded.

Definition 3.2. Let {Yθ}θ∈Θ be a family of compatible Banach spaces. Let 0 ≤ θ < 1
be such that for some ε > 0 it holds (θ, θ + ε] ⊂ Θ. Let 1 ≤ q ≤ ∞ and φ be a function
satisfying

(i) φ is monotone, positive and continuous
(ii) φ(t) ∼ φ(2t)

(iii)
(︄ˆ ε

0
φ(t)q dt

t

)︄ 1
q

< ∞ if q < ∞, else sup
0<t<ε

φ(t) < ∞.

(3.2)
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Then we define the space Yθ(log Y )+
φ,q as consisting of all b ∈ ⋂︁

η∈(θ,θ+ε]
Yη for which the

following norm is finite:

∥b |Yθ(log Y )+
φ,q∥ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ε

0
[φ(t) ∥b |Yθ+t∥]q dt

t

)︄ 1
q

if 1 ≤ q < ∞

sup
0<t<ε

φ(t) ∥b |Yθ+t∥ if q = ∞
(3.3)

Proposition 3.3 (Basic properties). In the situation of Definition 3.2 the following
statements concerning Yθ(log Y )+

φ,q hold:

(i) The choice of ε with (θ, θ + ε] ⊂ Θ is arbitrary.

(ii) For any θ < η ≤ θ + ε it holds Yθ(log Y )+
φ,q ↪→ Yη.

(iii) If θ ∈ Θ, θ > 0, then Yθ ↪→ Yθ(log Y )+
φ,q.

(iv) Take J ∈ N such that (θ, θ + 2−J ] ⊂ Θ. Then an equivalent norm on Yθ(log Y )+
φ,q is

given by

∥b |Yθ(log Y )+
φ,q∥ ∼

(︄ ∞∑︂
n=J

[︂
φ(2−n) ∥b |Yσn∥

]︂q)︄ 1
q

with σn := θ + 2−n. (3.4)

(v) Yθ(log Y )+
φ,q is a Banach space.

Proof. In [CK14], (ii) and (iv) are proven. Here we give the proofs for all statements.

(i) Let ε ≠ ε′ with (θ, θ + ε], (θ, θ + ε′] ⊂ Θ be given. W.l.o.g. ε < ε′. Let φ satisfy
condition (3.2) for ε′. Now prove the equivalence of the norms induced by ε and ε′ i.e.

(︄ˆ ε

0

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q

∼
(︄ˆ ε′

0

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q

.

The direction “≤” is obvious, for the other direction it holds with c being the uniform
boundary of the norms of inclusions according to Definition 3.1

(︄ˆ ε′

ε

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q
Yη1 ↪→Yη2
η1<η2

≤ c

(︄ˆ ε′

ε

[︂
φ(t) ∥b |Yθ+ε∥

]︂q dt
t

)︄ 1
q

≤ c ∥b |Yθ+ε∥
(︄ˆ ε′

0
φ(t)q dt

t

)︄ 1
q

∼ ∥b |Yθ+ε∥
(︄ˆ ε

0
φ(t)q dt

t

)︄ 1
q

≤ c

(︄ˆ ε

0

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q

.
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(ii) As the norms of inclusion in (3.1) are uniformly bounded, it holds ∥b |Yη∥ ≤ c ∥b |Yθ+t∥
for any t with 0 < t < η − θ. Let b ∈ Yθ(log Y )+

φ,q, then

∥b |Yη∥
(3.2)=

(︄ˆ η−θ

0
φ(t)q dt

t

)︄− 1
q

⏞ ⏟⏟ ⏞
:=c1>0

(︄ˆ η−θ

0

[︂
φ(t) ∥b |Yη∥⏞ ⏟⏟ ⏞

≤c ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q

≤ c2

(︄ˆ η−θ

0

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

)︄ 1
q

≤ c2 ∥b |Yθ(log Y )+
φ,q∥.

(iii) ∥b |Yθ(log Y )+
φ,q∥ ≤ c

(︄ˆ ε

0
[φ(t) ∥b |Yθ∥]q dt

t

)︄ 1
q

= c ∥b |Yθ∥
(︄ˆ ε

0
φ(t)q dt

t

)︄ 1
q

⏞ ⏟⏟ ⏞
<∞ by (3.2)

.

(iv) We can assume that 2−J < ε by (i). As φ(t) ∼ φ(2t), there are c1, c2 > 0 such that
for n ≥ J

c1φ(2−n) ≤ φ(t) ≤ c2φ(2−n) for 2−n−1 ≤ t ≤ 2−n.

Thus, we compute

∥b |Yθ(log Y )+
φ,q∥ =

⎛⎝ ∞∑︂
n=J

ˆ 2−n

2−n−1

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

+
ˆ ε

2−J

[︂
φ(t) ∥b |Yθ+t∥

]︂q dt
t

⎞⎠ 1
q

∼
(︄ ∞∑︂
n=J

[︂
φ(2−n) ∥b |Yσn∥

]︂q)︄ 1
q

.

(v) Take a Cauchy sequence {bn}n∈N in Yθ(log Y )+
φ,q and show that it converges in

Yθ(log Y )+
φ,q using the norm (3.4) with J as given there. Let δ > 0. Choose n0 ∈ N

by ∥bn − bm |Yθ(log Y )+
φ,q∥ < δ

2 for n,m ≥ n0.
Let j ≥ J and σj = θ + 2−j. By Yθ(log Y )+

φ,q ↪→ Yσj and the completeness of Yσj we
know that there is bj ∈ Yσj with bn −−−→

n→∞
bj. As Yσj ↪→ YσJ , it holds bj ∈ YσJ and all bj

are the same because of the uniqueness of the limits, hence b := bj, j ≥ J .
For j ≥ J , there exists m(j) ≥ n0 such that

∥b− bm |Yσj∥ <
δ

2c for m ≥ m(j) with c =
⎛⎝ ∞∑︂
j=J

φ(2−j)q
⎞⎠ 1

q

. (3.5)

The last expression is finite because of condition (3.2) and φ(t) ∼ φ(2t). Now for N > J

let mN = max
J≤j≤N

m(j). We calculate for n ≥ n0:

(︄
N∑︂
j=J

[︂
φ(t) ∥b− bn |Yσj∥

]︂q)︄ 1
q Mink.

q≥1=
⎛⎝ N∑︂
j=J

[︂
φ(t) ∥bmN − bn + b− bmN |Yσj∥

]︂q⎞⎠ 1
q
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≤

⎛⎝ N∑︂
j=J

[︂
φ(t) ∥bmN − bn |Yσj∥

]︂q⎞⎠ 1
q

⏞ ⏟⏟ ⏞
≤ ∥bmN−bn |Yθ(log Y )+

φ,q∥

+
(︄

N∑︂
j=J

[︂
φ(t) ∥b− bmN |Yσj∥⏞ ⏟⏟ ⏞

< δ
2c by (3.5)

]︂q)︄ 1
q

<
δ

2 + δ

2 = δ.

This estimate holds independent of the choice of N . If we now take N → ∞ this yields
∥b− bn |Yθ(log Y )+

φ,q∥ ≤ δ for n ≥ n0.

Definition 3.4. Let {Yθ}θ∈Θ be a family of compatible Banach spaces (cf. Definition 3.1).
Let 0 < θ ≤ 1 such that for some ε > 0 it holds [θ− ε, θ) ⊂ Θ. Let 1 ≤ q ≤ ∞ and ψ be a
function satisfying

(i) ψ is monotone, positive and continuous
(ii) ψ(t) ∼ ψ(2t)

(iii)
(︄ˆ ε

0
ψ(t)−q′ dt

t

)︄ 1
q′

< ∞ if q > 1, else sup
0<t<ε

ψ(t)−1 < ∞.

(3.6)

Then, we define the space Yθ(log Y )−
ψ,q as consisting of all b ∈ Y1 that can be represented

as b =
´ ε

0 w(t) dt
t

with w(t) ∈ Yθ−t such that
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ε

0
[ψ(t) ∥w(t) |Yθ−t∥]q dt

t

)︄ 1
q

if 1 ≤ q < ∞

sup
0<t<ε

ψ(t) ∥w(t) |Yθ−t∥ if q = ∞.

(3.7)

is finite. The norm ∥· |Yθ(log Y )−
ψ,q∥ is given by the infimum of (3.7) over all possible

representations of b.

Proposition 3.5 (Basic properties). In the situation of Definition 3.4 the following
statements concerning Yθ(log Y )−

ψ,q hold:

(i) The choice of ε with [θ − ε, θ) ⊂ Θ is arbitrary.

(ii) For any θ − ε ≤ η < θ it holds Yη ↪→ Yθ(log Y )−
ψ,q.

(iii) If θ ∈ Θ, θ < 1, then Yθ(log Y )−
ψ,q ↪→ Yθ.

(iv) Let J ∈ N with [θ−2−J , θ) ⊂ Θ be arbitrary. Then an equivalent norm on Yθ(log Y )−
ψ,q

is given by

∥b |Yθ(log Y )−
ψ,q∥ ∼ inf

b=
∑︁

bn

(︄ ∞∑︂
n=J

[︂
ψ(2−n) ∥bn |Yλn∥

]︂q)︄ 1
q

with λn := θ−2−n. (3.8)

(v) Yθ(log Y )−
ψ,q is a Banach space.
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Proof. The proofs of (i) to (iv) are similar to Proposition 3.3, (ii), (iii) and (iv) are also
proven in [CK14]. That is why we only prove (v).

(v) We use the fact that Yθ(log Y )−
ψ,q is complete if and only if (cf. [BL76, Lemma 2.2.1])

∞∑︂
n=1

∥bn |Yθ(log Y )−
ψ,q∥ < ∞

=⇒ ∃b ∈ Yθ(log Y )−
ψ,q : ∥b−∑︁

n≤m bn |Yθ(log Y )−
ψ,q∥ −−−→

m→∞
0.

Hence, take a sequence {bn}n∈N in Yθ(log Y )−
ψ,q with ∑︁n ∥bn |Yθ(log Y )−

ψ,q∥ < ∞. Choose
for n ∈ N decompositions bn = ∑︁

j b
j
n where j ≥ J and bjn ∈ Yλj with λj = θ − 2−j, such

that ⎛⎝ ∞∑︂
j=J

[︂
ψ(2−j) ∥bjn |Yλj∥

]︂q⎞⎠ 1
q

< ∥bn |Yθ(log Y )−
ψ,q∥ + 2−n. (3.9)

It follows that for any j ≥ J

∞∑︂
n=1

∥bjn |Yλj∥ ≤ 1
ψ(2−j)

(︄ ∞∑︂
n=1

∥bn |Yθ(log Y )−
ψ,q∥ + 2−n

)︄
< ∞

and hence, as Yλj is complete, there is bj ∈ Yλj with ∥bj −∑︁
n≤m b

j
n |Yλj∥ −−−→

m→∞
0. Set

b := ∑︁
j b

j. As it holds by the generalised Minkowski’s inequality for infinite series (cf.
[HLP99, p. 123]) for any m ∈ N

⎛⎝ ∞∑︂
j=J

[︂
ψ(2−j) ∥bj −∑︁

n≤m b
j
n |Yλj∥

]︂q⎞⎠ 1
q

≤

⎛⎝ ∞∑︂
j=J

[︄
ψ(2−j)

∞∑︂
n=m

∥bjn |Yλj∥
]︄q⎞⎠ 1

q

Mink.
≤

∞∑︂
n=m

⎛⎝ ∞∑︂
j=J

[︂
ψ(2−j) ∥bjn |Yλj∥

]︂q⎞⎠ 1
q (3.9)
< ∞

we conclude that

∥b−∑︁
n≤m bn |Yθ(log Y )−

ψ,q∥
inf
≤

⎛⎝ ∞∑︂
j=J

[︂
ψ(2−j) ∥bj −∑︁

n≤m b
j
n |Yλj∥

]︂q⎞⎠ 1
q

−−−→
m→∞

0.

The cases φ(t) = ta and ψ(t) = t−a respectively (a > 0) are of particular importance
in the following investigations. We write in these cases

Yθ(log Y )+
φ,q = Yθ(log Y )+

a,q and Yθ(log Y )−
ψ,q = Yθ(log Y )−

a,q. (3.10)

The nomenclature of the spaces Yθ(log Y )+
φ,q and Yθ(log Y )−

ψ,q can be seen from the Propo-
sitions 3.7 and 3.8 below, or even better from the earlier paper [CFT04] where similar
constructions were used: Finding equivalent norms for the Lorentz-Zygmund spaces
Lp,q(logL)a based on the Lp spaces only was the motivation to introduce these spaces.
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3.2 Examples

We now characterise specific spaces as abstract extrapolation spaces, these are the grand
and small Lebesgue spaces, but also the Zygmund spaces. Therefore, we extrapolate the
scale of Lebesgue spaces, but we also give a construction using Lorentz spaces. The former
allows us to extend statements about Lebesgue spaces to grand and small Lebesgue spaces.
The characterisation of Zygmund spaces is useful in order to compare them to the grand
and small Lebesgue spaces.

We start by a short lemma that is repeatedly used in the current and the next chapter,
whenever a supremum and a logarithm appear.

Lemma 3.6. Let 0 < p < ∞, 0 < ε0 < 1 and 0 < t < 1. It holds with constants depending
only on p and ε0

sup
0<ε<ε0

tεε
1
p ∼ (1 − ln t)− 1

p . (3.11)

Proof. We show that 1
sup tεpε ∼ (1 − ln t) with constants independent of t. For those t with

− 1
p ln t < ε0 it holds

1
sup

0<ε<ε0
tεpε

≤ − 1
t−

1
ln t 1

p ln t

= −ep ln t ≤ ep(1 − ln t),

whereas for − 1
p ln t ≥ ε0, for any 0 < ε < ε0 we have t ≥ exp

(︂
− 1
pε

)︂
and therefore

1
sup

0<ε<ε0
tεpε

≤ 1
sup

0<ε<ε0
exp(−1)ε = e

ε0
≤ e

ε0
(1 − ln t).

On the other hand, tc(1 − ln t) −−→
t→0

0 for any c > 0, and hence tc(1 − ln t) is bounded for
0 < t < 1 by c−1ec−1 (this is an easy calculation). Now with c = pε this finally yields

1 − ln t =
sup

0<ε<ε0
εtεp(1 − ln t)

sup
0<ε<ε0

tεpε
≤

sup
0<ε<ε0

ε(εp)−1eεp−1

sup
0<ε<ε0

tεpε
≤ p−1eε0p−1 1

sup
0<ε<ε0

tεpε
.

Extrapolation of Lebesgue spaces

In the following we set Θ = [0, 1] and Yθ = L 1
θ
(Ω) for θ ∈ Θ. This is a compatible family

of Banach spaces according to Definition 3.1, as we have already computed by (1.2).

Proposition 3.7. Let 1 < p ≤ ∞ and a > 0. Then it holds in the sense of equivalent
norms

Y 1
p
(log Y )+

a,p = Lp(logL)−a(Ω). (3.12)

Proof. The proof is taken from [ET96, Theorem 1, Sec. 2.6.2].
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Let 0 < ε < 1 − 1
p

and set 1
pt

= 1
p

+ t. We define an auxiliary norm by

∥f |Xp,a∥ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ε

0

[︂
ta ∥f |Lpt,p(Ω)∥

]︂p dt
t

)︄ 1
p

, p < ∞

sup
0<t<ε

ta ∥f |Lt−1,∞(Ω)∥, p = ∞.

(3.13)

The idea of the proof is to show that this norm is equivalent to both sides of (3.12),
beginning with ∥f |Xp,a∥ ∼ ∥f |Lp(logL)a∥.

We apply the definition of the Lorentz norm and Fubini to derive for p < ∞

∥f |Xp,a∥p
∥· |Lp,q∥=

ˆ ε

0
tap
ˆ 1

0
stpf ∗(s)p ds dt

t

Fubini=
ˆ 1

2

0
f ∗(s)p

ˆ ε

0
tap−1stp dt ds+

ˆ 1

1
2

f ∗(s)p
ˆ ε

0
tap−1stp dt⏞ ⏟⏟ ⏞

∼(1−ln s)−ap, as both
expressions are bounded
from below and above.

ds.

For the first part of the integral, we have

ˆ 1
2

0
f ∗(s)p

ˆ ε

0
tap−1stp dt ds τ=−p ln(s)·t=

ˆ 1
2

0
f ∗(s)p (−p ln s)−ap

ˆ −εp ln s

0
τap−1e−τ dτ ds.

As it holds (1 − ln s)−ap ∼ (− ln s)−ap for 0 < s < 1
2 and

0 < ca,p :=
ˆ εp ln 2

0
τap−1e−τ dτ ≤

ˆ −εp ln s

0
τap−1e−τ dτ −−→

s→0
Γ(ap) < ∞,

we conclude that ∥f |Xp,a∥ ∼ ∥f |Lp(logL)a∥. For p = ∞, we use Lemma 3.6 to see that

∥f |X∞,a∥ = sup
0<s<1

f ∗(s) sup
0<t<ε

tast

∼ sup
0<s<1

f ∗(s)(1 − ln s)−a = ∥f |L∞(logL)−a(Ω)∥.

To prove that ∥f |Xp,a∥ ∼ ∥f |Y 1
p
(log Y )+

a,p∥, note that pt = p − γt with p < γ < p2.
Therefore, we infer from Lemma 2.1 that

c1 ∥f |Lp2t(Ω)∥ ≤ ∥f |Lpt,p(Ω)∥ ≤ c2 ∥f |Lpt(Ω)∥.

We only state the extrapolation construction to get the Zygmund spaces with positive
second index. A proof is given in [ET96].
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Proposition 3.8. Let 1 ≤ p < ∞ and a > 0. Then it holds in the sense of equivalent
norms

Y 1
p
(log Y )−

a,p = Lp(logL)a(Ω). (3.14)

We now come to the representation of grand and small Lebesgue spaces by the spaces
Yθ(log Y )+

φ,q and Yθ(log Y )−
ψ,q. Recall that we extrapolate the family {L 1

θ
}0<θ<1.

Proposition 3.9 (The grand Lebesgue space as extrapolation space). Let 1 < p < ∞. It
holds, in the sense of equivalent norms,

Lp) = Y 1
p
(log Y )+

1
p
,∞. (3.15)

Proof. This equivalence is established in [FK04] and [CK14], while we stick to the argument
of the latter. We have

∥f |Y 1
p
(log Y )+

1
p
,∞∥ = sup

0<t< 1
p′

t
1
p ∥f |Y 1

p
+t∥ = sup

0<t< 1
p′

t
1
p ∥f |L(︂

1
p

+t
)︂−1∥

= sup
0<t< 1

p′

t
1
p ∥f |L

p− p2t
1+pt

∥.

Set ε(t) := p2t
1+pt , then ε : (0, p′−1) → (0, p − 1) and t(ε) = ε

p(p−ε) . By p − ε > 1 it holds
p < p(p− ε) < p2, therefore t

1
p ∼ ε

1
p . We replace the parameter and the limits and get

∥f |Y 1
p
(log Y )+

1
p
,∞∥ = sup

0<ε<p−1

(︄
ε

p(p− ε)

)︄ 1
p

∥f |Lp−ε∥

∼ sup
0<ε<p−1

ε
1
p ∥f |Lp−ε∥ ∼ ∥f |Lp)∥

as this is the norm (2.4) from Lemma 2.7.

Proposition 3.10 (The small Lebesgue space as extrapolation space). Let 1 < p < ∞
and 1

p
+ 1

p′ = 1. It holds, in the sense of equivalent norms,

L(p = Y 1
p
(log Y )−

1
p′ ,1
. (3.16)

Proof. Again, we follow the proof of [CK14]. We compare the norm (3.8) of Y 1
p
(log Y )−

1
p′ ,1

with the norm (2.9) of L(p. By

λn = 1
p

− 2−n =⇒ 1
λn

= p

1 − 2−np

we have

∥f |Y 1
p
(log Y )−

1
p′ ,1

∥ (3.8)∼ inf
f=
∑︁

fn

∞∑︂
n=J

2
n
p′ ∥fn |Yλn∥ = inf

f=
∑︁

fn

∞∑︂
n=J

2
n
p′ ∥fn |L p

1−2−np
∥. (3.17)
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Here, we let ε be defined by 1
λn

= p+ ε. We assume that J ∈ N is sufficiently large so that

ε = 2−np2

1 − 2−np
< p′ − 1 and 2−J <

1
p

for all n ≥ J. (3.18)

This is allowed, as it was stated in Lemma 3.5 that different J lead to equivalent norms,
given that J is big enough.

Let f be in Y 1
p
(log Y )−

1
p′ ,1

. It holds (2n)1/p′
≥ (p2ε−1)1/p′ , n ≥ J , by (3.18). Therefore,

we have for fn ∈ Lp+ε

2
n
p′ ∥fn |L p

1−2−np
∥ ≥ p

2
p′ ε

− 1
p′ ∥fn |Lp+ε∥ ≥ cp inf

0<ε<p′−1
ε

− 1
p′ ∥fn |Lp+ε∥

and by shifting the summation index in (3.17)

∥f |Y 1
p
(log Y )−

1
p′ ,1

∥
(3.17)
≥ cp inf

f=
∑︁

fk

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′ ∥fk |Lp+ε∥

(2.9)∼ ∥f |L(p∥.

Conversely, let f be in L(p. We can find a representation f = ∑︁
k∈N

gk and numbers
0 < εk < p′ − 1 with

∞∑︂
k=1

ε
− 1
p′

k ∥gk |Lp+εk∥ ≤ 2 inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<p′−1

ε
− 1
p′ ∥gk |Lp+ε∥. (3.19)

Now we assign the gk to the smallest spaces Yλn , n ≥ J , they belong to. Let In for n ≥ J

be the set of indices k such that⎧⎪⎨⎪⎩λn−1 <
1

p+εk
≤ λn =⇒ Yλn−1 ↪→ Lp+εk ↪→ Yλn if n > J

1
p+p′−1 <

1
p+εk

≤ λJ =⇒ Lp+εk ↪→ YλJ if n = J.
(3.20)

Then fn := ∑︁
k∈In gk ∈ Yλn , n ≥ J , because using the uniformly bounded (by c) inclusions

of the Lebesgue spaces and the fact that the ε−1/p′ are bounded from below yields

∥fn |Yλn∥ ≤
∑︂
k∈In

∥gk |Yλn∥ ≤ c
∑︂
k∈In

∥gk |Lp+εk∥ ≤ c′ ∥f |L(p∥ < ∞. (3.21)

Then it holds f = ∑︁
n≥J

fn. From (3.20) we see that for k ∈ In, n > J

εk <
1

λn−1
− p = 2−n+1p2

1 − 2−n+1p
≤ 2p2

1 − 2−Jp⏞ ⏟⏟ ⏞
=:c−p′

p,J <∞ by (3.18)

· 2−n =⇒ ε
− 1
p′

k > cp,J2
n
p′
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and εk
−1/p′

> (p′ − 1)−1/p′ for k ∈ IJ . This finally yields

∥f |L(p∥
(3.19)
≳

∞∑︂
n=J

2
n
p′
∑︂
k∈In

∥gk |Lp+εk∥
(3.21)
≳

∞∑︂
n=J

2
n
p′ ∥fn |Yλn∥ ≳ ∥f |Y 1

p
(log Y )−

1
p′ ,1

∥.

Extrapolation of Lorentz spaces

Now, in a last step, we extrapolate for 1 < p < ∞ the scale {Yθ}θ∈Θ, Θ = [0, 1], that is
given by Yθ = L 1

θ
,p for 0 < θ < 1 and Y0 = L∞, Y1 = L1. Then all Yθ are rearrangement

invariant Banach spaces according to [BS88, Theorem IV.4.6] (we avoid the spaces L∞,p

and L1,p as they do not have this property). At the same place it is claimed without proof
that Lr,p ↪→ Lq,p for 1 ≤ q < r ≤ ∞ if the underlying measure space is finite. We give a
proof here to guarantee that we can use the scale {Yθ}θ∈Θ for extrapolation. We have to
admit that the norms of the inclusions Y0 ↪→ Yθ and Yθ ↪→ Y1, θ ∈ Θ, are not uniformly
bounded. This could be of importance if we wanted to extrapolate at θ = 0, 1, as the
statements (iii) of Prop. 3.3 and 3.5 do not hold at the endpoints of the scale. In [CK14],
the stronger requirements needed to fix this problem are specified, while we omitted them
for the sake of simplicity. We do not want to extrapolate the scale of Lorentz spaces at
θ = 0, 1 and can ignore the upcoming problems.

Lemma 3.11. Let 1 < p < ∞ and the scale {Yθ}θ∈Θ, Θ = [0, 1] be defined as given above,
i.e. Yθ = L 1

θ
,p for 0 < θ < 1 and Y0 = L∞, Y1 = L1. This scale is a compatible family of

Banach spaces.

Proof. As the other inclusions are readily seen by (1.6) and (1.7), let us only show that
Lr,p ↪→ Lq,p for 1 < q < r < ∞ with norms of inclusions bounded uniformly w.r.t. q, r. It
holds 0 < 1

q
− 1

r
< 1, hence for t ≤ 1 we have t1/q =

(︂
t1/q−1/r

)︂
t1/r ≤ t1/r. This yields

∥f |Lq,p∥ ≤
(︄ˆ 1

0

[︂
t

1
r f ∗(t)

]︂p dt
t

)︄ 1
p

= ∥f |Lr,p∥.

Proposition 3.12 ([FK04]). Let 1 < p < ∞ and the scale {Yθ}θ∈Θ be as in Lemma 3.11.
It holds, in the sense of equivalent norms,

Lp) = Y 1
p
(log Y )+

1
p
,∞. (3.22)

Proof. This follows from the same argument as in the proof of Proposition 3.9, using the
norm (2.6) from Lemma 2.7.
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3.3 Compactness

The characterisation of grand and small Lebesgue spaces as extrapolation spaces allows us
to extend statements on compact embeddings of Lebesgue spaces. This shall be proven in
the following two theorems and applied afterwards to an example from [CK14].

By UX , we denote the closed unit ball in the Banach space X.

Theorem 3.13. Let X be a Banach space and {Yθ}θ∈Θ a compatible family of Banach
spaces. Let φ be satisfying condition (3.2) and θ, ε such that (θ, θ + ε] ⊂ Θ. If the linear
operator

T : X −→
⋂︂

θ<η≤θ+ε
Yη

is compact if taken as T : X −→ Yη for all θ < η ≤ θ + ε and satisfies

⎧⎪⎪⎨⎪⎪⎩
(︃ ∞∑︁
n=J

[φ(2−n) ∥T |X → Yσn∥]q
)︃ 1
q

< ∞ if 1 ≤ q < ∞

lim
n→∞

φ(2−n) ∥T |X → Yσn∥ = 0 if q = ∞
(3.23)

with σn = θ + 2−n, then T : X −→ Yθ(log Y )+
φ,q is compact.

Proof. The following proof is taken from [CK14]. For δ > 0 arbitrary, we show that there
is a δ-net for T (UX) in Yθ(log Y )+

φ,q. As (3.23) holds, there is N ≥ J with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︄

∞∑︁
n=N+1

[φ(2−n) ∥T |X → Yσn∥]q
)︄ 1
q

≤ δ
4 if 1 ≤ q < ∞

φ(2−n) ∥T |X → Yσn∥ ≤ δ
4 , n ≥ N if q = ∞.

(3.24)

As T : X −→ Yσn , n ≥ J is compact by assumption, we can find for arbitrary ε(δ, n) > 0
an ε(δ, n)-net for T (UX) in Yσn for all J ≤ n ≤ N , i.e. there exist finite sets W (δ, n) ⊂ Yσn

with

T (UX) ⊂
⋃︂

y∈W (δ,n)
ε(δ, n)UYσn + y with

⎧⎪⎨⎪⎩ε(δ, n) = δ
4φ(2−n)N1/q if 1 ≤ q < ∞

ε(δ, n) = δ
4φ(2−n) if q = ∞.

As allW (δ, n) are finite, there are finitely many possible choices Ci = {yn}Nn=J , yn ∈ W (δ, n).
Now for every Ci, look at the set

Di = T (UX) ∩
⋂︂

J≤n≤N
yn∈Ci

ε(δ, n)UYσn + yn.

As for all x ∈ UX and J ≤ n ≤ N , there is a yn ∈ W (δ, n) such that Tx ∈ ε(δ, n)UX + yn,
at least one Di contains Tx. Hence, not all of the Di are empty. If it is not empty, then
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choose one argument wi ∈ UX such that Twi ∈ Di and let W be the (finite) collection of
all those wi.

Now look at the Di containing Tx. As it is non-empty, there is wi ∈ W with wi ∈ Di.
Hence, Twi and Tx are both contained in ε(δ, n)UX + yn with yn ∈ Ci, J ≤ n ≤ N , for
one specific choice Ci. Therefore, it holds

∥Tx− Twi |Yσn∥ ≤ 2ε(δ, n), J ≤ n ≤ N. (3.25)

Therefore, putting Minkowski’s inequality, (3.24) and (3.25) together yields that W is the
wanted δ-net for T (UX), as for 1 ≤ q < ∞

∥Tx− Twi |Yθ(log Y )+
φ,q∥ =

(︄ ∞∑︂
n=J

[︂
φ(2−n) ∥Tx− Twi |Yσn∥

]︂q)︄ 1
q

2005/06/28ver : 1.3subfigpackage

≤
(︄

N∑︂
n=J

[︂
φ(2−n) ∥Tx− Twi |Yσn∥

]︂q)︄ 1
q

+
(︄ ∞∑︂
n=N+1

[︂
φ(2−n) ∥Tx− Twi |Yσn∥⏞ ⏟⏟ ⏞

≤ ∥Tx |Yσn∥+ ∥Twi |Yσn∥
≤ ∥T |X→Yσn∥+ ∥T |X→Yσn∥

]︂q)︄ 1
q

≤
(︄

N∑︂
n=J

[︂
φ(2−n) ∥Tx− Twi |Yσn∥

]︂q)︄ 1
q

⏞ ⏟⏟ ⏞
≤
(︃

N∑︁
n=J

[ δ2 N−1/q]q
)︃1/q

= δ
2

+2
⎛⎝ ∞∑︂
n=N+1

[︂
φ(2−n) ∥T |X → Yσn∥

]︂q⎞⎠ 1
q

⏞ ⏟⏟ ⏞
≤ δ

4

≤ δ

and for q = ∞

∥Tx− Twi |Yθ(log Y )+
φ,q∥ = sup

n≥J
φ(2−n) ∥Tx− Twi |Yσn∥ 2005/06/28ver : 1.3subfigpackage

≤ sup
J≤n≤N

φ(2−n) ∥Tx− Twi |Yσn∥⏞ ⏟⏟ ⏞
≤ δ

2

+ sup
n>N

φ(2−n) ∥Tx− Twi |Yσn∥⏞ ⏟⏟ ⏞
≤2 ∥T |X→Yσn∥

≤ δ

Theorem 3.14. Let X be a Banach space and {Yθ}θ∈Θ a compatible family of Banach
spaces. Let ψ be satisfying condition (3.6) and θ, ε such that [θ − ε, θ) ⊂ Θ. If

T : Y1 −→ X

is compact if restricted to T : Yη −→ X for all θ − ε ≤ η < θ and satisfies

⎧⎪⎪⎨⎪⎪⎩
(︃ ∞∑︁
n=J

[ψ−1(2−n) ∥T |Yλn → X∥]q
′
)︃ 1
q′
< ∞ if 1 < q ≤ ∞

lim
n→∞

ψ−1(2−n) ∥T |Yλn → X∥ = 0 if q = 1
(3.26)

with λn = θ − 2−n, then T : Yθ(log Y )−
ψ,q −→ X is compact.
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Proof. This proof is taken from [CK14] too. As (3.26) holds, for any δ > 0 there is N ≥ J

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︄

∞∑︁
n=N+1

[ψ−1(2−n) ∥T |Yλn → X∥]q
′
)︄ 1
q′

≤ δ
4 if 1 < q ≤ ∞

ψ−1(2−n) ∥T |Yσn → X∥ ≤ δ
4 , n ≥ N if q = 1.

(3.27)

Now choose arbitrary

{δn}Nn=J , δn > 0 with
N∑︂
n=J

δn = δ

2 . (3.28)

As T : Yλn −→ X is compact, let Vn for J ≤ n ≤ N be a finite δn-net for T (2ψ−1(2−n)UYλn )
and set V = ∑︁N

n=J Vn (which is finite as all Vn are finite).

Let now y ∈ Yθ(log Y )−
ψ,q and ∥y |Yθ(log Y )−

ψ,q∥ ≤ 1. Using the equivalent norm (3.8)
for Yθ(log Y )−

ψ,q with λn = θ− 2−n, there is a representation (with the obvious modification
for q = ∞)

y =
∞∑︂
n=J

yn, yn ∈ Yλn with
(︄ ∞∑︂
n=J

[︂
ψ(2−n) ∥yn |Yλn∥

]︂q)︄ 1
q

≤ 2.

By this choice it holds ∥yn |Yλn∥ ≤ 2ψ−1(2−n), all n ≥ J , hence yn ∈ 2ψ−1(2−n)UYλn .
Therefore, for J ≤ n ≤ N there is vn ∈ Vn with ∥Tyn − vn |X∥ ≤ δn by the choice of the
δn-net Vn. Now choose v ∈ V with v = ∑︁N

n=J vn.

Therefore, putting Minkowski’s inequality, (3.27), (3.28) and Hölder’s inequality to-
gether yields that V is the wanted δ-net for T (UYθ(log Y )−

ψ,q
), as for 1 < q ≤ ∞ it holds

(with the obvious modification for q = ∞)

∥Ty − v |X∥ = ∥
∞∑︂
n=J

Tyn −
N∑︂
n=J

vn |X∥ ≤ ∥
N∑︂
n=J

Tyn − vn |X∥ + ∥
∑︂
n>N

Tyn |X∥

≤
N∑︂
n=J

∥Tyn − vn |X∥⏞ ⏟⏟ ⏞
≤δn

+
∑︂
n>N

∥Tyn |X∥⏞ ⏟⏟ ⏞
≤ ∥T |Yλn→X∥ ∥yn |Yλn∥

ψ−1(2−n) · ψ(2−n)

≤ δ

2 +
(︄∑︂
n>N

[︂
ψ(2−n) ∥yn |Yλn∥

]︂q)︄ 1
q
(︄∑︂
n>N

[︂
ψ−1(2−n) ∥T |Yλn → X∥

]︂q′
)︄ 1
q′

≤ δ

2 + 2 · δ4 = δ

and for q = 1

∥Ty − v |X∥ = δ

2 +
(︄∑︂
n>N

ψ(2−n) ∥yn |Yλn∥
)︄(︄

sup
n>N

ψ−1(2−n) ∥T |Yλn → X∥
)︄

≤ δ

2 + 2 · δ4 = δ.
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Remark 3.15. If we take a bounded Ω ⊂ Rn, 1 ≤ p < n/k, k ∈ N, and set p∗ =
np/(n − kp), then for p ≤ q < p∗ the Sobolev space W k

p (Ω) is compactly embedded in
Lq. This is shown for example in [EE87]. From Theorem 3.13 and Proposition 3.9 we
immediately conclude that the embedding W k

p (Ω) ↪→ Lp∗)(Ω) is compact (cf. [CK14,
Corollary 4.3]).



4. Interpolation approach

The aim of this chapter is to characterise the grand and small Lebesgue spaces as interpo-
lation spaces. This requires some preparations which are made in Sections 4.1 and 4.2. We
start by introducing weighted interpolation spaces that are more general than the spaces
defined in Chapter 1.

4.1 Interpolation with weights

Definition 4.1 (Weighted interpolation spaces). Let (A0, A1) ∈ C2 and 1 ≤ p ≤ ∞. Let
w : (0,∞) → [0,∞) be a continuous weight with w ̸= 0. The space (A0, A1)K

w,p consists of
all a ∈ A0 + A1 such that the norm

∥a | (A0, A1)K
w,p∥ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ∞

0
[w(t)K(t, a;A0, A1)]p

dt
t

)︄ 1
p

if 1 ≤ p < ∞

sup
0<t<∞

w(t)K(t, a;A0, A1) if p = ∞

is finite. The space (A0, A1)J
w,p consists of all a ∈ A0 + A1 that can be represented by

a =
´∞

0 u(t) dt
t

, u(t) ∈ A0 ∩ A1, such that
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ∞

0
[w(t) J(t, u(t);A0, A1)]p

dt
t

)︄ 1
p

if 1 ≤ p < ∞

sup
0<t<∞

w(t) J(t, u(t);A0, A1) if p = ∞

is finite. The norm ∥· | (A0, A1)J
w,p∥ is given by the infimum of this expression taken over

all possible representations.

Obviously, for w(t) = t−θ, 0 < θ < 1, we have (A0, A1)w,q = (A0, A1)θ,q.
The weighted interpolation spaces have a couple of properties in common with the

classical Lions-Peetre spaces. Different approaches can be found in literature, an extensive
theory is given e.g. by [BMR01] or [Gus78], but even the question of equivalence between
the K and J method is more complex than what is dealt with here. We largely leave
open the question of what can be generally assumed about the weight w so that the
corresponding spaces have “good” properties. We state only some lemmas that we need in
the sequel.
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Lemma 4.2. Let (A0, A1) ∈ C2 and 1 ≤ q ≤ ∞. Let w : (0,∞) → [0,∞) be a continuous
weight.

(i) It holds for v : (0,∞) → [0,∞) with v(t) = t−1w(t−1)

(A0, A1)K
w,q = (A1, A0)K

v,q and (A0, A1)J
w,q = (A1, A0)J

v,q.

(ii) Let A1 ↪→ A0 and (︄ˆ ∞

0

[︂
min(1, t)w(t)

]︂q dt
t

)︄ 1
q

< ∞. (4.1)

Then for all f ∈ (A0, A1)K
w,q, it holds

∥f | (A0, A1)K
w,q∥ ∼

(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

. (4.2)

Proof. (i) It holdsK(t, a;A0, A1) = tK(t−1, a;A1, A0) and J(t, a;A0, A1) = tJ(t−1, a;A1, A0),
hence we compute for the K-method similarly to [BL76] (the proof for the J -method is
practically the same)

∥f | (A0, A1)K
w,q∥ =

(︄ˆ ∞

0

[︂
w(t)tK(t−1, a;A1, A0)

]︂q dt
t

)︄ 1
q

s=t−1
=

(︄ˆ ∞

0

[︂
w(s−1)s−1K(s, a;A1, A0)

]︂q ds
s

)︄ 1
q

= ∥f | (A1, A0)K
v,q∥.

(ii) The fact is stated in [FK04], a proof is outlined there as well. The first inequality is
obvious and holds with constant 1. For t ≥ 1, it holds K(t, f) ∼ ∥f |A0∥ uniformly w.r.t.
t as A1 ↪→ A0. Thereby

∥f | (A0, A1)K
w,q∥

Mink.
≤

(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

+
(︄ˆ ∞

1

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

(4.1)
≤

(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

+ c1 ∥f |A0∥

(4.1)=
(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

+ c2

(︄ˆ 1

0

[︂
t w(t)

]︂q dt
t

)︄ 1
q

∥f |A0∥

=
(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

+ c2

(︄ˆ 1

0

[︂
t w(t) ∥f |A0∥

]︂q dt
t

)︄ 1
q

. (4.3)
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Again, since A1 ↪→ A0, hence A0 = A0 +A1 (in the sense of equivalent norms), it holds for
t < 1

∥f |A0∥ ≤ c inf
f=f0+f1
fi∈Ai

∥f0 |A0∥ + ∥f1 |A1∥
t<1
≤ c

t
inf

f=f0+f1
fi∈Ai

∥f0 |A0∥ + t ∥f1 |A1∥ = c

t
K(t, f).

(4.4)
We conclude that

∥f | (A0, A1)K
w,q∥

(4.3) & (4.4)
≤

(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

+ c3

(︄ˆ 1

0

[︂
t w(t) t−1K(t, f)

]︂q dt
t

)︄ 1
q

≤ c4

(︄ˆ 1

0

[︂
w(t)K(t, f)

]︂q dt
t

)︄ 1
q

.

Lemma 4.3 (K-J equivalence: special case). Let (A0, A1) be a Banach pair. Let the
weight w : (0,∞) → [0,∞) be such that

w∗(s) :=
ˆ ∞

0
min

(︃
1, t
s

)︃
w(t) dt

t
< ∞ for s > 0. (4.5)

Let the weighted interpolation spaces be given as from Definition 4.1, then it holds, in the
sense of equivalent norms,

(A0, A1)K
w,1 = (A0, A1)J

w∗,1.

Proof. The fact is stated in [FK04, p. 659] without a proof.
Let a ∈ (A0, A1)J

w∗,1 with a =
´∞

0 u(t) dt
t

, u(t) ∈ A0 ∩ A1.

∥a | (A0, A1)K
w,1∥ =

ˆ ∞

0
K(t, a)w(t) dt

t
K is norm

≤
ˆ ∞

0
w(t)

ˆ ∞

0
K(s, u(s)) ds

s

dt
t

(1.18)
≤
ˆ ∞

0
w(t)

ˆ ∞

0
min

(︃
1, t
s

)︃
J(s, u(s)) ds

s

dt
t

Fubini=
ˆ ∞

0
J(s, u(s))

ˆ ∞

0
min

(︃
1, t
s

)︃
w(t) dt

t⏞ ⏟⏟ ⏞
=w∗(s)

ds
s

= ∥a | (A0, A1)J
w∗,1∥

Now let a ∈ (A0, A1)K
w,1. By the Holmstedt formula and the dominated convergence

theorem, it holds

K(t, a) (1.28)∼
ˆ t

0
K(s, a) ds

s
−−→
t→0

0 and K(t, a)
t

(1.29)∼
ˆ ∞

t

K(s, a)
s

ds
s

−−−→
t→∞

0.

Therefore, we can apply the fundamental lemma of interpolation theory, Lemma 1.4,
and obtain a representation a = ∑︁

j∈Z uj such that for any ε (note that w∗ from (4.5) is
monotonically decreasing)
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∥a | (A0, A1)J
w∗,1∥ =

ˆ ∞

0
J(s, u(s)) w∗(s) ds

s
=

∞∑︂
j=−∞

ˆ 2j+1

2j
J(s, u(s))⏞ ⏟⏟ ⏞
≤c1 J(2j ,uj)

w∗(s) ds
s

Fund. Lemma
≤ c3(1 + ε)

∞∑︂
j=−∞

K(2j, a) w∗(2j)

≤ c4(1 + ε)
ˆ ∞

0

ˆ ∞

0
K(s, a) min

(︃
1, t
s

)︃
w(t) dt

t

ds
s

Fubini= c4(1 + ε)
ˆ ∞

0

(︄ˆ t

0
K(s, a) ds

s
+ t

ˆ ∞

t

s−1 K(s, a) ds
s

)︄
w(t) dt

t
.

Here we apply the Holmstedt formula (1.27), that is
ˆ t

0
K(s, a) ds

s
+ t

ˆ ∞

t

s−1 K(s, a) ds
s

∼ K(t, a),

and derive ∥a | (A0, A1)J
w∗,1∥ ≤ c5 ∥a | (A0, A1)K

w,1∥.

In the subsequent characterisations of grand and small Lebesgue spaces, we use the
commonly known embeddings of interpolation spaces as they are given in [BL76]. However,
since we need the dependence on the parameter θ, we prove a couple of embeddings that
take this into account.

Lemma 4.4 ([BL76, Theorem 3.4.1]). Let (A0, A1) ∈ C2 and 0 < θ < 1. The constants in
the following inequalities are independent of θ.

(i) ∥a | (A0, A1)K
θ,∞∥ ≤ cpθ

1
p ∥a | (A0, A1)K

θ,p∥ for 1 ≤ p < ∞.

(ii) ∥a | (A0, A1)K
θ,q∥ ≤ cp,qθ

1
p

− 1
q ∥a | (A0, A1)K

θ,p∥ for 1 ≤ p < q < ∞.

Now, suppose that A1 ↪→ A0.

(iii) ∥a | (A0, A1)K
θ/2,1∥ ≤ cpθ

1
p

−1 ∥a | (A0, A1)K
θ,p∥ for 1 < p < ∞.

(iv) ∥a | (A0, A1)K
1−θ,p∥ ≤ cpθ

− 1
p ∥a | (A0, A1)K

1−θ/2,∞∥ for 1 < p < ∞ and 0 < θ < 1
2 .

Proof. In [BL76], the statements are proven without explicit constants. We modify the
proofs accordingly.

(i) ∥a | (A0, A1)K
θ,∞∥ = sup

0<t<∞
t−θK(t, a)

(1.22)
≤ (θp)

1
p ∥a | (A0, A1)K

θ,p∥

(ii) ∥a | (A0, A1)K
θ,q∥ =

(︄ˆ ∞

0

[︂
t−θK(t, a)

]︂q dt
t

)︄ 1
q

=
(︄ˆ ∞

0

[︂
t−θK(t, a)

]︂p [︂
t−θK(t, a)⏞ ⏟⏟ ⏞

(1.22)
≤ (θp)

1
p ∥a | (A0,A1)K

θ,p
∥

]︂q−p dt
t

)︄ 1
q

≤ (θp)
1
p

− 1
q ∥a | (A0, A1)K

θ,p∥
1− p

q ∥a | (A0, A1)K
θ,p∥

p
q .
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(iii) By A1 ↪→ A0 and the definition of the K functional, we have K(t, a) ≤ c1 ∥a |A0∥.
As A0 = A0 + A1 for any t > 0 (in the sense of equivalent norms) and K(1, a) is an
equivalent norm on A0 + A1, it holds ∥a |A0∥ ≤ c2 · K(1, a), and by (1.22) it holds
K(1, a) ≤ (θp)

1
p ∥a | (A0, A1)K

θ,p∥. Hence,

∥a | (A0, A1)K
θ/2,1∥ =

ˆ 1

0
t
θ
2 t−θK(t, a)⏞ ⏟⏟ ⏞

(1.22)
≤ (θp)

1
p ∥a | (A0,A1)K

θ,p
∥

dt
t

+
ˆ ∞

1
t−

θ
2 K(t, a)⏞ ⏟⏟ ⏞

≤cpθ
1
p ∥a | (A0,A1)K

θ,p
∥

dt
t

≤ c′
p θ

1
p ∥a | (A0, A1)K

θ,p∥
(︄ˆ 1

0
t
θ
2

dt
t⏞ ⏟⏟ ⏞

= 2
θ

+
ˆ ∞

1
t−

θ
2

dt
t⏞ ⏟⏟ ⏞

= 2
θ

)︄

= c′′
p θ

1
p

−1 ∥a | (A0, A1)K
θ,p∥.

(iv) Similarly to (iii), with c independent of θ we have K(t, a) ≤ c ∥a | (A0, A1)K
1−θ/2,∞∥

and compute

∥a | (A0, A1)K
1−θ,p∥ =

(︄ˆ 1

0

[︂
t
θ
2 t

θ
2 −1K(t, a)⏞ ⏟⏟ ⏞

≤ ∥a | (A0,A1)K
1−θ/2,∞∥

]︂p dt
t

+
ˆ ∞

1

[︂
tθ−1 K(t, a)⏞ ⏟⏟ ⏞

≤c ∥a | (A0,A1)K
1−θ/2,∞∥

]︂p dt
t

)︄ 1
p

≤ c′ ∥a | (A0, A1)K
1−θ/2,∞∥

(︄ˆ 1

0
t
θ
2p

dt
t

+
ˆ ∞

1
t(θ−1)p dt

t⏞ ⏟⏟ ⏞
= 1
p( 2

θ
+ 1

1−θ )

)︄ 1
p

.

Since 2 < 2−θ
1−θ < 3 for 0 < θ < 1

2 , the statement is proven as we have

(︃2
θ

+ 1
1 − θ

)︃ 1
p

=
(︄

1
θ

2 − θ

1 − θ

)︄ 1
p

∼ θ− 1
p .

4.2 Two theorems on the equivalence of interpolation
and extrapolation

In [KM05], the authors take effort to prove certain equivalence statements not only for
interpolation and extrapolation of Banach spaces, but of quasi-Banach spaces as well by
appending certain conditions. We omit all specifications needed for this purpose and limit
ourselves to a less general study that suffices for the spaces of Chapter 3.

Now that we want to extrapolate scales of interpolation spaces, we need to make sure
that the constructions Yθ(log Y )+

φ,q and Yθ(log Y )−
ψ,q are well-defined in such a case – this

corresponds to an adequate choice of the interval Θ such that the scales are compatible in
the sense of Definition 3.1.
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Lemma 4.5 (Compatibility of the K-interpolation scale). Let (A0, A1) ∈ C2 with A0 ↪→ A1,
and let 1 ≤ q ≤ ∞. Let Θ = [0, η)∪{1} with 0 < η < 1. The scale {Yθ}θ∈Θ, Yθ = (A0, A1)K

θ,q

for 0 < θ < η, Y0 = A0, Y1 = A1 is a compatible family of Banach spaces.

Proof. It is clear that for any θ0 < θ1 in Θ we have (cf. [BL76] for this fact)

A0 ↪→ (A0, A1)K
θ0,q ↪→ (A0, A1)K

θ1,q ↪→ A1.

Our aim is to prove that the embeddings between the interpolation spaces are uniformly
bounded. Let 0 < θ0 < θ1 < η. As A0 ↪→ A1, we have K(t, a) ∼ t ∥a |A1∥ for t ≤ 1.
Therefore it holds with c independent of θ0, θ1

∥a | (A0, A1)K
θ1,q∥

q =
ˆ 1

0

[︂
t−θ1 K(t, a)⏞ ⏟⏟ ⏞

≲t ∥a |A1∥

]︂q dt
t

+
ˆ ∞

1

[︂
t−θ1⏞⏟⏟⏞

=t−θ0 ·tθ0−θ1

K(t, a)
]︂q dt

t

≤ c ∥a |A1∥q
ˆ 1

0
tq(1−θ1) dt

t
+
ˆ ∞

1

[︂
t−θ0K(t, a)

]︂q dt
t

= c
1 − θ0

1 − θ1
· ∥a |A1∥q

ˆ 1

0
tq(1−θ0) dt

t
+
ˆ ∞

1

[︂
t−θ0K(t, a)

]︂q dt
t

≤ c
1

1 − η

ˆ 1

0

[︂
t−θ0K(t, a)

]︂q dt
t

+
ˆ ∞

1

[︂
t−θ0K(t, a)

]︂q dt
t

≤ c
1

1 − η

ˆ ∞

0

[︂
t−θ0K(t, a)

]︂q dt
t

= c
1

1 − η
∥a | (A0, A1)K

θ0,q∥
q.

Theorem 4.6 (Equivalence of abstract spaces and weighted interpolation). Let (A0, A1) ∈
C2 with A0 ↪→ A1 and 1 ≤ q ≤ ∞, and let 0 ≤ θ < 1. Choose η such that θ < η < 1. Let
{Yt}t∈Θ, Θ = [0, η) ∪ {1} be given by Yt = (A0, A1)K

t,q for 0 < t < η and Y0 = A0, Y1 = A1.
Let φ be a function satisfying condition (3.2), and let ε > 0 be such that (θ, θ+ ε] ⊂ Θ.

Define the weight w by

w(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(︄ˆ ε

0

[︂
t−(θ+s)φ(s)

]︂q ds
s

)︄ 1
q

if q < ∞

sup
0<s<ε

t−(θ+s)φ(s) if q = ∞
for t > 0. (4.6)

Then it holds w(t) < ∞ and, in the sense of equivalent norms,

Yθ(log Y )+
φ,q = (A0, A1)K

w,q.

Proof. The fact is stated in [KM05, p. 74] without proof. We prove the statement for
q < ∞, the other case follows by the same arguments. The weight w is finite, as φ satisfies
(3.2). It holds

∥f |Yθ(log Y )+
φ,q∥

Def. 3.2=
(︄ˆ ε

0

[︂
φ(s) ∥f | (A0, A1)K

θ+s,q∥
]︂q ds

s

)︄ 1
q
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K-method=
(︄ˆ ε

0
φ(s)q

ˆ ∞

0

[︂
t−(θ+s)K(t, f)

]︂q dt
t

ds
s

)︄ 1
q

Fubini=
(︄ˆ ∞

0
K(t, f)q

ˆ ε

0

[︂
t−(θ+s)φ(s)

]︂q ds
s

dt
t

)︄ 1
q

(4.6)=
(︄ˆ ∞

0
[w(t)K(t, f)]q dt

t

)︄ 1
q

.

Lemma 4.7 (Compatibility of the J -interpolation scale). Let (A0, A1) ∈ C2 with A0 ↪→ A1,
and let 1 ≤ q ≤ ∞. Let Θ = {0}∪(η, 1] with 0 < η < 1. The scale {Yθ}θ∈Θ, Yθ = (A0, A1)J

θ,q

for η < θ < 1, Y0 = A0, Y1 = A1 is a compatible family of Banach spaces.

Proof. As for the K scale, we only need to show that the embeddings are uniformly
bounded. It is readily seen that the discrete norm of (A0, A1)J

θ,q, 0 < θ < 1, is equivalent
to the continuous norm with constants independent of θ (cf. [BL76, Lemma 3.2.3]).

Let η < θ0 < θ1 < 1. As A0 ↪→ A1, we have J(t, a) ∼ ∥a |A0∥ for t ≤ 1 uniformly w.r.t.
t. Take any decomposition a = ∑︁

k∈Z uk, uk ∈ A0, and choose another decomposition
a = ∑︁

j∈Z vj by

vj =
0∑︂

k=−∞
uk if j = 0, vj = 0 if j < 0, vj = uj if j > 0.

Then we have with c independent of θ0, θ1

∥a | (A0, A1)J
θ1,q∥

q
inf
≤

∞∑︂
j=0

2−jθ1qJ(2j, vj)q
J is norm

≤
(︄ 0∑︂
k=−∞

J(1, uk)⏞ ⏟⏟ ⏞
≤c ∥a |A0∥

)︄q
+

∞∑︂
k=1

2−kθ1q⏞ ⏟⏟ ⏞
≤2−kθ0q

J(2k, uk)q

A0↪→A1
≤ c

(︄ 0∑︂
k=−∞

J(2k, uk)2−θ0k · 2θ0k

)︄q
+

∞∑︂
k=1

2−kθ0qJ(2k, uk)q

Hölder
≤ c

(︄ 0∑︂
k=−∞

2−kθ0qJ(2k, uk)q
)︄ (︄ 0∑︂

k=−∞
2kθ0q′

)︄ q
q′

⏞ ⏟⏟ ⏞
=
(︂

1
1−2−θ0q′

)︂ q
q′

+
∞∑︂
k=1

2−kθ0qJ(2k, uk)q

≤ c
(︃ 1

1 − 2−θ0q′

)︃ q
q′ ∞∑︂
k=−∞

2−kθ0qJ(2k, uk)q.

Notice that the decomposition a = ∑︁
j vj is appropriate, i.e. v0 ∈ A0, if the above right

hand side is finite. By taking the infimum over all possible decompositions a = ∑︁
k uk such

that this is the case, we conclude that

∥a | (A0, A1)J
θ1,q∥ ≤ c′

(︃ 1
1 − 2−ηq′

)︃ 1
q′

∥a | (A0, A1)J
θ0,q∥.
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Theorem 4.8 (Equivalence of abstract spaces and weighted interpolation). Let (A0, A1) ∈
C2 with A0 ↪→ A1 and 1 ≤ q ≤ ∞, and let 0 < θ ≤ 1. Choose η such that 0 < η < θ. Let
{Yt}t∈Θ, Θ = {0} ∪ (η, 1] be given by Yt = (A0, A1)J

t,q for η < t < 1 and Y0 = A0, Y1 = A1.

Let ψ be a function satisfying condition (3.6), and let ε > 0 be such that [θ− ε, θ) ⊂ Θ.
Define the weight w∗ by (set 1

q
+ 1

q′ = 1)

1
w∗(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ˆ ε

0

[︄
sθ−t

ψ(t)

]︄q′
dt
t

⎞⎠ 1
q′

if q > 1

sup
0<t<ε

sθ−t

ψ(t) if q = 1
for s > 0. (4.7)

Then it holds w∗(t) < ∞ and, in the sense of equivalent norms,

Yθ(log Y )−
ψ,q = (A0, A1)J

w∗,q.

Proof. We modify the proofs of Theorems 2.1, 2.2 and 2.3 in [KM05].

Let f ∈ Yθ(log Y )−
ψ,q. Select a decomposition f =

´ ε
0 g(t)

dt
t

with g(t) ∈ Yθ−t such that

(︄ˆ ε

0

[︂
ψ(t) ∥g(t) |Yθ−t∥

]︂q dt
t

)︄ 1
q

≤ 2 ∥f |Yθ(log Y )−
ψ,q∥.

Similarly, for any g(t) ∈ Yθ−t take v(t, s) ∈ A0 ∩ A1 with g(t) =
´∞

0 v(t, s) ds
s

such that

(︄ˆ ∞

0

[︂
st−θJ(s, v(t, s))

]︂q ds
s

)︄ 1
q

≤ 2 ∥g(t) | (A0, A1)J
θ−t,q∥.

Now let u(s) =
´ ε

0 v(t, s)
dt
t

, hence by the definitions and Fubini it holds f =
´∞

0 u(s) ds
s

.
It is seen below that J(s, u(s)) < ∞ and hence u(s) ∈ A0 ∩ A1 as J(s, ·) is an equivalent
norm on A0 ∩A1. For the same reason we know that the J-functional satisfies the triangle
inequality. Making use of this fact and then applying Hölder’s inequality yields

J(s, u(s)) ≤
ˆ ε

0
J(s, v(t, s)) dt

t
=
ˆ ε

0

ψ(t)
sθ−t J(s, v(t, s)) · s

θ−t

ψ(t)
dt
t

Hölder
≤

(︄ˆ ε

0

[︂
ψ(t)st−θJ(s, v(t, s))

]︂q dt
t

)︄ 1
q

⎛⎝ˆ ε

0

[︄
sθ−t

ψ(t)

]︄q′
dt
t

⎞⎠ 1
q′

⏞ ⏟⏟ ⏞
= 1
w∗(s)

.

We conclude that

∥f | (A0, A1)J
w∗,q∥ ≤

(︄ˆ ∞

0

ˆ ε

0

[︂
ψ(t)st−θJ(s, v(t, s))

]︂q dt
t

ds
s

)︄ 1
q
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Fubini=
⎛⎝ˆ ε

0
ψ(t)q

(︄ˆ ∞

0

[︂
st−θJ(s, v(t, s))

]︂q ds
s

)︄
⏞ ⏟⏟ ⏞

≤2 ∥g(t) | (A0,A1)J
θ−t,q∥q

dt
t

⎞⎠ 1
q

≤ 4 ∥f |Yθ(log Y )−
ψ,q∥.

As all of the above expressions are finite, we have J(s, u(s)) < ∞ and the decomposition
of f is chosen appropriately.

Now let f ∈ (A0, A1)J
w∗,q. Select a decomposition f =

´∞
0 u(s) ds

s
with u(s) ∈ A0 ∩ A1

such that (︄ˆ ∞

0
[w∗(s)J(s, u(s))]q ds

s

)︄ 1
q

≤ 2 ∥f | (A0, A1)J
w∗,q∥.

Let

ϕ(t, s) = w∗(s)sθ−t

ψ(t) for 0 < t < ε (4.8)

q>1=⇒
ˆ ε

0
ϕ(t, s)q′ dt

t
=
⎛⎝ˆ ε

0

[︄
sθ−t

ψ(t)

]︄q′
dt
t

⎞⎠−1⎛⎝ˆ ε

0

[︄
sθ−t

ψ(t)

]︄q′
dt
t

⎞⎠ = 1. (4.9)

For q = 1, note that ψ is continuous by (3.6) and therefore w∗ and ϕ are. Hence for q = 1
and 0 < c1 < 1 there is an interval I(s) ⊂ (0, ε), 0 < s < ∞, such that c1 ≤ ϕ(t, s) ≤ 1 for
t ∈ I(s). Let |I(s)| be the length of the interval I(s), then we define a partition of the
unity by

Φ(t, s) :=

⎧⎪⎨⎪⎩ϕ(t, s)q′ if q > 1
1

|I(s)|χI(s)(t) if q = 1
for (t, s) ∈ (0, ε) × (0,∞). (4.10)

Let g(t) =
´∞

0 Φ(t, s)u(s) ds
s

, then

f =
ˆ ∞

0
u(s) ds

s

(4.9)=
ˆ ∞

0

ˆ ε

0
Φ(t, s)u(s) dt

t

ds
s

Fubini=
ˆ ε

0
g(t) dt

t
.

In the course of the following computations it is seen that ∥g(t) | (A0, A1)J
θ−t,q∥ < ∞,

therefore g(t) ∈ Yθ−t. Now we have for 1 ≤ q < ∞ (the other case works the same way)

∥f |Yθ(log Y )−
ψ,q∥q

inf
≤
ˆ ε

0

[︂
ψ(t) ∥g(t) | (A0, A1)J

θ−t,q∥
]︂q dt

t
inf
≤
ˆ ε

0
ψ(t)q

ˆ ∞

0

[︂
st−θ J(s,Φ(t, s)u(s))⏞ ⏟⏟ ⏞

=Φ(t,s) J(s,u(s))

]︂q ds
s

dt
t

Fubini=
ˆ ∞

0
J(s, u(s))q

ˆ ε

0

[︂
ψ(t)st−θ⏞ ⏟⏟ ⏞

=w∗(s)
ϕ(t,s) by (4.8)

Φ(t, s)
]︂q dt

t

ds
s

=
ˆ ∞

0
[w∗(s)J(s, u(s))]q

ˆ ε

0

[︄
Φ(t, s)
ϕ(t, s)

]︄q dt
t

ds
s
. (4.11)
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Now for q > 1 we recall the formula (q′ − 1)q = q′, hence by (4.10) and (4.9) it holds
ˆ ε

0

[︄
Φ(t, s)
ϕ(t, s)

]︄q dt
t

=
ˆ ε

0
ϕ(t, s)(q′−1)q dt

t
=
ˆ ε

0
ϕ(t, s)q′ dt

t
= 1.

For q = 1, it holds
ˆ ε

0

[︄
Φ(t, s)
ϕ(t, s)

]︄q dt
t

= 1
|I(s)|

ˆ
I(s)

1
ϕ(t, s)

dt
t
<

1
c1
.

This yields

∥f |Yθ(log Y )−
ψ,q∥ ≤

(︄
1
c1

ˆ ∞

0
[w∗(s)J(s, u(s))]q ds

s

)︄ 1
q

≤ c2 ∥f | (A0, A1)J
w∗,q∥.

4.3 Grand Lebesgue spaces

We want to replace the scale used to obtain the grand Lebesgue space through extrapolation
by interpolation spaces, such that the assumptions of Theorem 4.6 are satisfied and we can
derive a norm using the non decreasing rearrangement f ∗. We need the following lemmas.

Lemma 4.9. It holds with constants independent of θ for 0 < θ < 1 and 1 ≤ q < p < ∞

(1 − θ)
1
p ∥f | (Lq, Lp)K

θ,p∥ ∼ ∥f |Lr,p∥ for 1
r

= 1 − θ

q
+ θ

p
. (4.12)

Proof. The proof is taken from [FK04].
Let η be given by 1

p
= 1−η

q
, then by Example 1.5 we have Lp = (Lq, L∞)K

η,p. Hence, we
can apply the Holmstedt formula (1.26) with q1 = p and θ1 = η,

K(t, a;Lq, Lp) ∼ t

(︄ˆ ∞

t
1
η

[︂
s−ηK(s, a;Lq, L∞)

]︂p ds
s

)︄ 1
p

.

Then

(1 − θ) ∥f | (Lq, Lp)K
θ,p∥p ∼ (1 − θ)

ˆ ∞

0
t(1−θ)p

ˆ ∞

t
1
η

[︂
s−ηK(s, f ;Lq, L∞)

]︂p ds
s

dt
t

Fubini= (1 − θ)
ˆ ∞

0

[︂
s−ηK(s, f ;Lq, L∞)

]︂p ˆ sη

0
t(1−θ)p dt

t⏞ ⏟⏟ ⏞
= 1
p(1−θ) s

ηp(1−θ)

ds
s

= 1
p

ˆ ∞

0

[︂
s−ηθK(s, f ;Lq, L∞)

]︂p ds
s

∼ ∥f | (Lq, L∞)K
ηθ,p∥p.
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For r given by 1
r

= 1−ηθ
q

we have (Lq, L∞)K
ηθ,p = Lr,p, and we see that

1
r

=
1 −

(︂
1 − q

p

)︂
θ

q
= 1 − θ

q
+ θ

p
.

Lemma 4.10. For any 0 < ε0 < min(1, p− 1) and 1 < p < ∞, it holds

∥f |Lp)∥ ∼ sup
0<ε<ε0

ε
1
p ∥f | (Lq, Lp)K

1−ε,∞∥. (4.13)

Proof. We follow the proof of [FK04].
Take Lemma 4.9 with 1 ≤ q < p, r = p − ε, 0 < ε < 1. Then we determine θ as in

(4.12) by
1

p− ε
= 1 − θ

q
+ θ

p
=⇒ θ =

(︄
1

p− ε
− 1
q

)︄(︄
pq

q − p

)︄
.

If we let 0 < η < 1 be given by η = 1 − q
p
, as it is done in the proof of Lemma 4.9, we

derive
θ = ε− ηp

(ε− p)η = 1 − 1 − η

(ε− p)η ε =: 1 − αε

where 1−η
pη

≤ α ≤ 1−η
(p−1)η and hence α ∼ 1 uniformly w.r.t. ε. Now, we use the norm (2.6)

and see by Lemma 4.9 that

∥g |Lp)∥ ∼ sup
0<ε<ε0

ε
1
p ∥g |Lp−ε,p∥ ∼ sup

0<ε<ε0
ε

2
p ∥g | (Lq, Lp)K

1−αε,p∥.

Lemma 4.4 (i) states that ε
1
p ∥g | (Lq, Lp)K

1−αε,p∥ ≥ cp,α ∥g | (Lq, Lp)K
1−αε,∞∥, hence

∥g |Lp)∥ ≳ sup
0<ε<ε0

ε
1
p ∥g | (Lq, Lp)K

1−αε,∞∥.

We know from Lemma 4.4 (iv) that ε
1
p ∥g | (Lq, Lp)K

1−αε,p∥ ≤ cp,α ∥g | (Lq, Lp)K
1−αε/2,∞∥,

hence on the other hand

∥g |Lp)∥
Lemma 4.4

≤ cp,α sup
0<ε<ε0

ε
1
p ∥g | (Lq, Lp)K

1−αε/2,∞∥

= 2
1
p cp,α sup

0<ε<ε0/2
ε

1
p ∥g | (Lq, Lp)K

1−αε,∞∥

≤ c′
p,α sup

0<ε<ε0
ε

1
p ∥g | (Lq, Lp)K

1−ε,∞∥.

This norm is essentially the norm of an extrapolation space where we have extrapolated
a scale of interpolation spaces. Therefore, we can now formulate the interpolation charac-
terisation for the grand Lebesgue spaces as follows using the equivalence of interpolation
and extrapolation.
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Theorem 4.11. Let 1 < p < ∞ and 1 ≤ q < p. Further, let 0 < ε0 < min(1, p − 1),
ε0 < η < 1 and Yθ = (Lp, Lq)K

θ,∞ for 0 < θ < η, Y0 = Lp and Y1 = Lq. Thus, {Yθ}θ∈Θ with
Θ = [0, η) ∪ {1} is a compatible family of Banach spaces by Lemma 4.5. It holds

Lp) = (Lq, Lp)K
w,∞ = Y0(log Y )+

1
p
,∞ (4.14)

(in the sense of equivalent norms) with

w(t) = sup
0<ε<ε0

tε−1ε
1
p . (4.15)

Proof. By Theorem 4.6 it holds

(Lp, Lq)K
v,∞ = Y0(log Y )+

1
p
,∞ for v(s) = sup

0<ε<ε0
t−εε

1
p .

From Lemma 4.2 (i) we know that (Lq, Lp)K
w,∞ = (Lp, Lq)K

v,∞ with

w(t) = t−1v(t−1) = sup
0<ε<ε0

tε−1ε
1
p

and the second equality in (4.14) is proven. We immediately get the first equality by

∥f |Y0(log Y )+
1
p
,∞∥ Def.= sup

0<ε<ε0
ε

1
p ∥f |Yε∥⏞ ⏟⏟ ⏞

= ∥f | (Lp,Lq)K
ε,∞∥

= ∥f | (Lq ,Lp)K
1−ε,∞∥

(4.13)= ∥f |Lp)∥.

Corollary 4.12. Let 1 < p < ∞ and 1 ≤ q < p.

(i) It holds in the sense of equivalent norms Lp) = (Lq, Lp)K
w,∞ for w(t) = t−1(1− ln t)− 1

p ,
0 < t < 1.

(ii) It holds

∥f |Lp)∥ ∼ sup
0<t<1

(1 − ln t)− 1
p

(︄ˆ 1

t

f ∗(s)p ds
)︄ 1
p

. (4.16)

(iii) For f ∗∗(s) := 1
s

´ s
0 f

∗(x) dx

∥f |Lp)∥ ∼ sup
0<t<1

(1 − ln t)− 1
p

(︄ˆ 1

t

f ∗∗(s)p ds
)︄ 1
p dt
t
. (4.17)

Proof. (i) Take w(t) from (4.15). It holds by Lemma 3.6

w(t) = t−1 sup
0<ε<ε0

tεε
1
p ∼ t−1(1 − ln t)− 1

p for 0 < t < 1.
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Since we have
ˆ ∞

0
min(1, t)w(t) dt

t
∼
ˆ 1

0
(1 − ln t)− 1

p
dt
t

+
ˆ ∞

1
tε0−1 dt

t
< ∞,

we derive from Lemma 4.2 that we need to consider w(t) only for 0 < t < 1, hence it holds

∥f |Lp)∥ ∼ sup
0<t<∞

w(t)K(t, f ;Lq, Lp) ∼ sup
0<t<1

w(t)K(t, f ;Lq, Lp)

∼ sup
0<t<1

t−1(1 − ln t)− 1
pK(t, f ;Lq, Lp). (4.18)

(ii) [FK04] give an argument that we present in detail. We take the following formula
that has been proven by Holmstedt, cf. [Hol70, Theorem 4.1]: Let 1 ≤ q < p ≤ ∞ and
1
α

= 1
q

− 1
p

(note that α > 1). Then (the upper border of the second integral is 1 as |Ω| = 1)

K(t, f ;Lq, Lp) ∼
(︄ˆ tα

0
f ∗(s)q ds

)︄ 1
q

+ t

(︄ˆ 1

tα
f ∗(s)p ds

)︄ 1
p

(4.19)

for 0 < t < 1. Write β = α−1 < 1. Take any 0 < ε < β(1 − 1/p). As in that case,
t−β+ε(1 − ln tβ)− 1

p is monotonically decreasing for 0 < t < 1, we have

t−β(1 − ln tβ)− 1
p

(︄ˆ t

0
f ∗(s)q ds

)︄ 1
q

= t−ε
(︄ˆ t

0

[︂
t−β+ε(1 − ln tβ)− 1

pf ∗(s)
]︂q

ds
)︄ 1
q

≤ t−ε
(︄ˆ t

0

[︂
s− 1

q
+ 1
p

+ε(1 − β ln s)− 1
pf ∗(s)

]︂q
ds
)︄ 1
q

= t−ε
(︄ˆ t

0

[︂
s

1
p (1 − β ln s)− 1

pf ∗(s)
]︂q
sqε

ds
s

)︄ 1
q

Hölder
≤ t−ε

(︄
sup

0<s<t
s

1
p (1 − β ln s)− 1

pf ∗(s)
)︄(︄ˆ t

0
sqε

ds
s

)︄ 1
q

⏞ ⏟⏟ ⏞
=( 1

qε)
1
q tε

≤ cq,ε sup
0<s<1

s
1
p (1 − β ln s)− 1

pf ∗(s) (4.20)

= cq,ε sup
0<s< 1

2

(2s)
1
p (1 − β ln 2s)− 1

pf ∗(2s).

Note that the expression (4.20) is in fact an equivalent quasinorm of the Lorentz-Zygmund
space Lp,∞(logL)− 1

p
. We use this later on, cf. Section 4.5. Now, by the monotonicity of

f ∗, it holds

f ∗(2s) = s− 1
p

(︄ˆ 2s

s

f ∗(2s)p dx
)︄ 1
p |Ω|=1

≤ s− 1
p

(︄ˆ 1

s

f ∗(x)p dx
)︄ 1
p

. (4.21)
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Therefore, by taking the supremum over the previous inequality and changing variables
tβ ↦→ t and sβ ↦→ s respectively, it holds

sup
0<t<1

t−1(1 − ln t)− 1
p

(︄ˆ tα

0
f ∗(s)q ds

)︄ 1
q

≤ cp,q,ε sup
0<s<1

(1 − ln s)− 1
p

(︄ˆ 1

sα
f ∗(x)p dx

)︄ 1
p

. (4.22)

Finally, we conclude by (4.18) and (4.19) that

∥f |Lp)∥ ∼ sup
0<t<1

t−1(1 − ln t)− 1
p

⎡⎣(︄ˆ tα

0
f ∗(s)q ds

)︄ 1
q

+ t

(︄ˆ 1

tα
f ∗(s)p ds

)︄ 1
p

⎤⎦
≥ sup

0<t<1
(1 − ln t)− 1

p

(︄ˆ 1

tα
f ∗(s)p ds

)︄ 1
p

and

∥f |Lp)∥ ≲ sup
0<t<1

t−1(1 − ln t)− 1
p

(︄ˆ tα

0
f ∗(s)q ds

)︄ 1
q

+ sup
0<t<1

(1 − ln t)− 1
p

(︄ˆ 1

tα
f ∗(s)p ds

)︄ 1
p

(4.22)
≲ sup

0<t<1
(1 − ln t)− 1

p

(︄ˆ 1

tα
f ∗(s)p ds

)︄ 1
p

.

(4.16) now follows, if we again change the variable in the supremum t ↦→ tβ, as with
constants depending only on β it holds (1 − β ln t)− 1

p ∼ (1 − ln t)− 1
p , 0 < t < 1.

(iii) We take the Holmstedt formula (1.24) for (A0, A1) = (L1, L∞) and X0 = Lq =
(L1, L∞)K

1/q′,q and X1 = Lp = (L1, L∞)K
1/p′,p. Then, we apply the formula (cf. [BL76,

Theorem 5.2.1])

K(t, f ;Lr, L∞) ∼
(︄ˆ tr

0
f ∗(s)r ds

)︄ 1
r

(4.23)

and derive the following formula that Holmstedt also used in his proof of (4.19) (cf. [Hol70,
eq. (4.5)]):

K(t, f ;Lq, Lp) ∼
(︄ˆ tα

0
f ∗∗(s)q ds

)︄ 1
q

+ t

(︄ˆ 1

tα
f ∗∗(s)p ds

)︄ 1
p

.

This is the same formula as (4.19), except that f ∗∗ is now in the place of f ∗. As f ∗∗ is
monotonically decreasing, just as f ∗ is, we can use the same reasoning as in (ii) to prove
the remaining norm (4.17).
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4.4 Small Lebesgue spaces

Before we can establish the main theorem of this section, which provides an interpolation
characterisation of small Lebesgue spaces, we need the following two lemmas, which give
us another norm for L(p.

Lemma 4.13. It holds with constants independent of 0 < θ < 1

θ
1
r ∥f | (Lr, L∞)K

θ,r∥ ∼ ∥f |Lq,r∥ for 1
q

= 1 − θ

r
. (4.24)

Proof. We again use formula (4.23). Now, by 1
q

= 1−θ
r

, we calculate directly:

θ · ∥f | (Lr, L∞)K
θ,r∥r

Def.= θ ·
ˆ ∞

0

[︂
t−θK(t, f ;Lr, L∞)

]︂r dt
t

(4.23)∼ θ ·
ˆ ∞

0
t−θr
ˆ tr

0
f ∗(s)r ds dt

t
=
ˆ ∞

0

ˆ tr

0
θt−θrf ∗(s)r ds dt

t

tr=τ∼
ˆ ∞

0

ˆ τ

0
θτ−θf ∗(s)r ds dτ

τ

Fubini=
ˆ ∞

0
f ∗(s)r

ˆ ∞

s

θτ−θ−1 dτ ds

=
ˆ ∞

0
s−θf ∗(s)r ds =

ˆ ∞

0
s1−θf ∗(s)r ds

s
1
q

= 1−θ
r=
ˆ ∞

0

[︂
s

1
q f ∗(s)

]︂r ds
s

= ∥f |Lq,r∥r

Lemma 4.14. For any 0 < ε0 < min(1, p′ − 1) and 1 < p < ∞, it holds

∥g |L(p∥ ∼ inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk | (Lp, L∞)J

ε,1∥. (4.25)

Proof. We follow the proof of [FK04].

Take Lemma 4.13 with r = p, q = p+ ε, 0 < ε < 1 and θ = 1 − p
p+ε = γε with γ ∼ 1.

It follows ∥gk |Lp+ε,p∥ ∼ ε
1
p ∥gk | (Lp, L∞)K

γε,p∥. Recalling the norm (2.11), we see that

∥g |L(p∥ ∼ inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk |Lp+ε,p∥ ∼ inf

g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

∥gk | (Lp, L∞)K
γε,p∥.

This needs to be compared with the norm (4.25).

For the first inequality, we show that with constants independent of ε it holds

ε
1
p ∥gk | (Lp, L∞)K

γε,p∥ ≲ ∥gk | (Lp, L∞)J
γε,1∥. (4.26)
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Let us start by

ε
1
p ∥gk | (Lp, L∞)K

γε,p∥
Lemma
4.4(ii)

≤ cγε
1
p ε1− 1

p ∥gk | (Lp, L∞)K
γε,1∥

= cγε ∥gk | (Lp, L∞)K
γε,1∥. (4.27)

We notice that in the proof of Lemma 4.3, none of the constants of the estimates depends
on the weight w. If we take w(t) = t−γε, then it holds according to (4.1)

w∗(s) = 1
s

ˆ s

0
t−γε+1 dt

t
+
ˆ ∞

s

t−γε
dt
t

= s−γε
(︄

1
γε

+ 1
1 − γε

)︄
< ∞.

Note that 0 < γε < 1
2 , therefore we have with constants independent of ε

1
γε

<
1

γε(1 − γε) <
2
γε

=⇒ w∗(s) ∼ ε−1t−γε.

We can apply Lemma 4.3 and conclude that with constants independent of ε

∥gk | (Lp, L∞)K
γε,1∥ ∼ ε−1 ∥gk | (Lp, L∞)J

γε,1∥. (4.28)

Putting (4.27) and (4.28) together, we get (4.26). We come to the second inequality. For
L∞ ↪→ Lp on finite measure spaces, it holds by Lemma 4.4 (iii)

∥gk | (Lp, L∞)K
γε/2,1∥ ≤ cp,γ ε

1
p

−1 ∥gk | (Lp, L∞)K
γε,p∥.

Combining this with (4.28) yields

inf
0<ε<ε0

∥gk | (Lp, L∞)J
γε,1∥ ≤ inf

0<ε<ε0/2
∥gk | (Lp, L∞)J

γε,1∥

= inf
0<ε<ε0

∥gk | (Lp, L∞)J
γε/2,1∥

(4.28)
≤ inf

0<ε<ε0
cp,γ ε

1
p ∥gk | (Lp, L∞)K

γε,p∥.

Theorem 4.15. For 1 < p < ∞, let 0 < ε0 < min(1, p′ − 1), 0 < η < 1 − ε0 and
Yθ = (L∞, Lp)J

θ,1 for η < θ < 1, Y0 = L∞ and Y1 = Lp. Thus, {Yθ}θ∈Θ with Θ = {0}∪(η, 1]
is a compatible family of Banach spaces by Lemma 4.7. It holds

L(p = (Lp, L∞)J
w∗,1 = Y1(log Y )−

1
p′ ,1

(4.29)

(in the sense of equivalent norms) with

1
w∗(t) = sup

0<ε<ε0
tεε

1
p′ . (4.30)
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Proof. From Theorem 4.8 we have

(L∞, Lp)J
v∗,1 = Y1(log Y )−

1
p′ ,1

with 1
v∗(s)

(4.7)= sup
0<ε<ε0

s1−ε

ε
− 1
p′
.

By Lemma 4.2 (i) it holds (Lp, L∞)J
w∗,q = (L∞, Lp)J

v∗,q with

1
w∗(t) = t

v∗(t−1) = sup
0<ε<ε0

t

t1−εε
− 1
p′

= sup
0<ε<ε0

tεε
1
p′

and the second equality of (4.29) is clear.
From now on we follow [FK04]. We have proven another norm in the previous Lemma

4.14. The remaining arguments are split it into two steps: First, we show L(p ⊂ (Lp, L∞)J
w∗,1,

and second, Y1(log Y )−
1
p′ ,1

⊂ L(p.
Let g ∈ L(p. We choose gk ∈ (Lp, L∞)J

εk,1, k ∈ N, with g = ∑︁
k gk and, thereby, εk such

that

∥g |L(p∥ ≳
1
2

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk | (Lp, L∞)J

ε,1∥ ≥ 1
4

∞∑︂
k=1

ε
− 1
p′

k ∥gk | (Lp, L∞)J
εk,1∥. (4.31)

Then take uνk ∈ Lp ∩ L∞, ν ∈ Z, with gk = ∑︁
ν uνk for all k and

∞∑︂
ν=−∞

2−νεkJ(2ν , uνk) ≤ 2 ∥gk | (Lp, L∞)J
εk,1∥. (4.32)

Let uν = ∑︁
k uνk. Then we compute

∥g | (Lp, L∞)J
w∗,1∥ ≤

∞∑︂
ν=−∞

w∗(2ν)J(2νuν)
J is norm

≤
∞∑︂

ν=−∞
w∗(2ν)

∞∑︂
k=1

J(2ν , uνk)

≤
∞∑︂

ν=−∞
w∗(2ν)

∞∑︂
k=1

J(2ν , uνk)
(︄
ε

− 1
p′

k 2−νεk sup
1≤m≤∞

ε
1
p′
m 2νεm

)︄

≤
∞∑︂

ν=−∞
w∗(2ν) sup

0<ε<ε0
ε

1
p′ 2νε⏞ ⏟⏟ ⏞

=1

∞∑︂
k=1

ε
− 1
p′

k 2−νεkJ(2ν , uνk)

=
∞∑︂
k=1

ε
− 1
p′

k

∞∑︂
ν=−∞

2−νεkJ(2ν , uνk)

(4.32)
≤ 2

∞∑︂
k=1

ε
− 1
p′

k ∥gk | (Lp, L∞)J
εk,1∥

(4.31)
≲ 8 ∥g |L(p∥.

Let g ∈ Y1(log Y )−
1
p′ ,1

. We use the norm (3.8) and have for any J with 2−J < ε0 (the
last step is only an index shift)

∥g |Y1(log Y )−
1
p′ ,1

∥ ∼ inf
g=
∑︁

gj

∞∑︂
j=J

2
j
p′ ∥gj | (L∞, Lp)J

1−2−j ,1⏞ ⏟⏟ ⏞
=(Lp,L∞)J

2−j ,1

∥
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≥ inf
g=
∑︁

gj

∞∑︂
j=J

inf
0<ε<ε0

ε
− 1
p′ ∥gj | (Lp, L∞)J

ε,1∥

= inf
g=
∑︁

gk

∞∑︂
k=1

inf
0<ε<ε0

ε
− 1
p′ ∥gk | (Lp, L∞)J

ε,1∥
(4.25)∼ ∥g |L(p∥.

Corollary 4.16. Let 1 < p < ∞.

(i) It holds L(p = (Lp, L∞)K
w,1 for w(t) = (1 − ln t)− 1

p , 0 < t < 1.

(ii) It holds

∥f |L(p∥ ∼
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ t

0
f ∗(s)p ds

)︄ 1
p dt
t
. (4.33)

(iii) For f ∗∗(s) := 1
s

´ s
0 f

∗(x) dx it holds also

∥f |L(p∥ ∼
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ t

0
f ∗∗(s)p ds

)︄ 1
p dt
t
. (4.34)

Proof. (i) As we stated in Lemma 4.2, we need to consider w(t) only for 0 < t < 1 as
L∞ ↪→ Lp and can choose the weight for t ≥ 1 arbitrarily provided that it satisfies (4.1).
Hence, assume throughout the proof that for 0 < ε0 < min(1, p′ − 1) as in Theorem 4.15

w(t) =

⎧⎪⎨⎪⎩(1 − ln t)− 1
p if 0 < t < 1

t−ε0 if t ≥ 1.
(4.35)

Then (4.1) holds as
ˆ ∞

0
min(1, t)w(t) dt

t
=
ˆ 1

0
(1 − ln t)− 1

p dt+
ˆ ∞

1
t−ε0

dt
t
< ∞.

By Theorem 4.3 it holds (Lp, L∞)K
w,1 = (Lp, L∞)J

w∗,1 with w∗(t) derived as in (4.5). We
compute w∗(s) starting from w of (4.35). First, consider the case 0 < s < 1.

w∗(s) =
ˆ ∞

0
min

(︃
1, t
s

)︃
w(t) dt

t

=
ˆ 1

0
min

(︃
1, t
s

)︃
(1 − ln t)− 1

p
dt
t

+
ˆ ∞

1
t−ε0

dt
t

x=1−ln t=
ˆ ∞

1
min

(︄
1, e

1−x

s

)︄
x− 1

p dx+ 1
ε0

=
ˆ 1−ln s

1
x− 1

p dx+ 1
s

ˆ ∞

1−ln s
e1−x x− 1

p dx+ 1
ε0

= p′(1 − ln s)
1
p′ − p′ + 1

s

ˆ ∞

1−ln s
e1−xx− 1

p dx+ 1
ε0
. (4.36)
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As
ˆ ∞

1−ln s
e1−2x dx ≲

ˆ ∞

1−ln s
e1−xx− 1

p dx ≲
ˆ ∞

1−ln s
e1−x dx

⇐⇒ s2

2 ≲
ˆ ∞

1−ln s
e1−xx− 1

p dx ≲ s,

we can divide (4.36) by p′ and have

(1 − ln s)
1
p′ −

(︄
1 − s

2p′ − 1
ε0

)︄
≲ w∗(s) ≲ (1 − ln s)

1
p′ −

(︄
1 − 1

p′ − 1
ε0

)︄

and therefore w∗(s) ∼ (1 − ln s)
1
p′ for 0 < s < 1. Now, if we replace p by p′ in Lemma 3.6,

we derive
w∗(s) ∼ 1

sup
0<ε<ε0

sε ε
1
p′
, 0 < s < 1.

On the other hand, for s ≥ 1 we have

w∗(s) = 1
s

ˆ 1

0
(1 − ln t)− 1

p dt+ 1
s

ˆ s

1
t−ε0 dt+

ˆ ∞

s

t−ε0
dt
t

= cp
s

+ 1
1 − ε0

s−ε0 − 1
1 − ε0

1
s

+ 1
ε0
s−ε0

=
(︃
c− 1

1 − ε0

)︃
s−1 + 1

ε0(1 − ε0)
s−ε0 ∼ s−ε0 ∼ 1

sup
0<ε<ε0

sε ε
1
p′
.

We conclude that w∗ is essentially the weight from Theorem 4.15, hence it holds in the
sense of equivalent norms L(p = (Lp, L∞)J

w∗,1 = (Lp, L∞)K
w,1.

(ii) Starting from the previous statement and the definition of interpolation spaces, we
see that

∥f |L(p∥ ∼
ˆ ∞

0
K(t, f ;Lp, L∞)w(t) dt

t
Lemma 4.2∼

ˆ 1

0
K(t, f ;Lp, L∞)w(t) dt

t

(4.23)∼
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ tp

0
f ∗(s)p ds

)︄ 1
p dt
t

tp=τ∼
ˆ 1

0
(1 − ln τ)− 1

p

(︄ˆ τ

0
f ∗(s)p ds

)︄ 1
p dτ
τ
.

(iii) We first use the monotonicity of f ∗(t) and estimate:
ˆ t

0
f ∗∗(s)p ds =

ˆ t

0

[︃1
s

ˆ s

0
f ∗(u)⏞ ⏟⏟ ⏞
≥f∗(s)

du
]︃p

ds ≥
ˆ t

0

[︃
f ∗(s) 1

s

ˆ s

0
du
]︃p

ds =
ˆ t

0
f ∗(s)p ds.
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For the other direction, we slightly modify the proof of Hardy´s inequality in [HLP99,
Theorem 327a]. Let n > 0, f ∗

n(s) := min(f ∗(s), n) and Fn(x) =
´ x

0 f
∗
n(s) ds, therefore

Fn(x) = O(x) for x → 0. We have
ˆ t

0

(︄
Fn(x)
x

)︄p
dx = − 1

p− 1

ˆ t

0
Fn(x)p d

dx(x1−p) dx

= −x1−pFn(x)p
p− 1

⃓⃓⃓⃓
⃓
t

0⏞ ⏟⏟ ⏞
≤0 as Fn(x)∼x, x→0

+ p

p− 1

ˆ t

0

(︄
Fn(x)
x

)︄p−1

f ∗
n(x) dx

≤ p

p− 1

ˆ t

0

(︄
Fn(x)
x

)︄p−1

f ∗
n(x) dx

Hölder
≤ p

p− 1

(︄ˆ t

0

[︄
Fn(x)
x

]︄p
dx
)︄ 1
p′
(︄ˆ t

0
f ∗
n(x)p dx

)︄ 1
p

.

Dividing by the second factor of the right hand side and raising the result to the power of
p yields ˆ t

0

(︄
Fn(x)
x

)︄p
dx ≤

(︄
p

p− 1

)︄p ˆ t

0
f ∗
n(x)p dx.

If we take n → ∞ here, we derive
ˆ t

0
f ∗∗(x)p dx =

ˆ t

0

(︄
1
x

ˆ x

0
f ∗(s) ds

)︄p
dx ≤

(︄
p

p− 1

)︄p ˆ t

0
f ∗(x)p dx.

Remark 4.17. As it has been indicated for the Lorentz-Zygmund spaces in Chapter 1,
the expressions (4.16) and (4.33) that use the decreasing rearrangement f ∗ are in fact
quasinorms. However, the expressions where f ∗ is replaced by f ∗∗ are norms.

4.5 Embeddings

As it has been indicated in Chapter 2, we use the now obtained quasinorms (4.16) and
(4.33) to give examples for the strict embeddings between the known spaces that are
intermediate spaces of Lp and Lp−ε or Lp+ε respectively, ε > 0 arbitrary.

Corollary 4.18 ([FK04, Remark 4.3]). Let 1 < p < ∞ and δ > 0. Then it holds

Lp,∞ ↪→ Lp) ↪→ Lp,∞(logL)− 1
p

(4.37)

Lp(logL)− 1
p
↪→ Lp) ↪→ Lp(logL)− 1

p
−δ. (4.38)

All of these spaces are embedded in Lp−ε for 0 < ε < p− 1, and Lp is embedded in each
one of them.
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Proof. (4.37) and (4.38) are stated without a proof (except for the fourth and last embed-
ding) in [FK04]. The embeddings between Lorentz-Zygmund spaces and Lebesgue spaces
have already been proven or can be seen easily. We refer to [BR80] for the details, e.g..

The second embedding of (4.37) is already shown in the proof of Corollary 4.12, as we
have estimated expression (4.20) via (4.21) by the norm (4.16). The first embedding is
the one that has already been stated in Proposition 2.4, we prove it as follows: For any
0 < t < 1 it holds

(1 − ln t)− 1
p

(︄ˆ 1

t

f ∗(s)p ds
)︄ 1
p

= (1 − ln t)− 1
p

(︄ˆ 1

t

[︂
f ∗(s)s

1
p

]︂p
s−1 ds

)︄ 1
p

Hölder
≤ (1 − ln t)− 1

p sup
t<s<1

f ∗(s)s
1
p

(︄ˆ 1

t

s−1 ds
)︄ 1
p

⏞ ⏟⏟ ⏞
=(− ln t)

1
p

=
(︄

− ln t
1 − ln t

)︄ 1
p

⏞ ⏟⏟ ⏞
<1

sup
0<s<1

f ∗(s)s
1
p ,

and by taking the supremum over all t we conclude that ∥f |Lp)∥ ≤ ∥f |Lp,∞∥.

For (4.38), consider first

∥f |Lp)∥ ∼ sup
0<t<1

(︄ˆ 1

t

[︂
(1 − ln t)− 1

pf ∗(s)
]︂p

ds
)︄ 1
p

≤ sup
0<t<1

(︄ˆ 1

t

[︂
(1 − ln s)− 1

pf ∗(s)
]︂p

ds
)︄ 1
p

=
(︄ˆ 1

0

[︂
(1 − ln s)− 1

pf ∗(s)
]︂p

ds
)︄ 1
p

= ∥f |Lp(logL)− 1
p
∥.

Second, we use the norm (2.6) and interpret ∥f |Lp−ε,p∥ as a function of ε in Lp,∞((0, ε0)),
which is continuously embedded in Lp/(1+pδ),p((0, ε)) for δ > 0 by (1.7). Finally, we apply
the equivalent norm (3.13) for the Zygmund spaces that we have already used in the proof
of Proposition 3.7. With 1

pε
= 1

p
+ ε, hence pε = p− γε with γ ∼ 1, this reads as

∥f |Lp)∥
(2.6)∼ sup

0<ε<ε0
ε

1
p ∥f |Lp−ε,p∥

(1.7)
≥ c

(︄ˆ ε0

0

[︂
ε

1
p

+δ ∥f |Lp−ε,p∥
]︂p dε

ε

)︄ 1
p

∼
(︄ˆ ε0

0

[︂
ε

1
p

+δ ∥f |Lpε,p∥
]︂p dε

ε

)︄ 1
p

(3.13)∼ ∥f |Lp(logL)− 1
p

−δ∥.
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Example 4.19. Let Ω = (0, 1) and 1 < p < ∞. The inclusions in Corollary 4.18 are sharp
as we show by the following examples. The first example is taken (with modifications)
from [Gre93, Example 2.3]. The examples (ii) to (iv) are taken from [FK04, Remark 4.4].

(i) We are looking for f1 ∈ Lp(logL)− 1
p

with f1 /∈ Lp,∞. By (4.38) we then know that
f1 ∈ Lp). Let us assume that for 0 < t < 1

f1(t) =
∞∑︂
k=1

akχEk with Ek = [mk+1,mk), ak > 0

where {mk}∞
k=1 is a monotone sequence of numbers in (0, 1) with mk −−−→

k→∞
0. We

choose mk and ak for k ≥ 1 by

mk = e1−k3 and ak =
(︄
k

mk

)︄ 1
p

.

Then
∥f1 |Lp,∞∥ = sup

0<t<1
t

1
pf1(t) ≥ lim

k→∞
mk

1
pak = lim

k→∞
k

1
p = ∞

and on the other hand, as (1 − ln t)−1 is monotonically increasing, it holds

∥f1 |Lp(logL)− 1
p
∥ =

(︄ˆ 1

0

f ∗
1 (t)p

1 − ln t dt
)︄ 1
p

=
(︄ ∞∑︂
k=1

ˆ mk

mk+1

f ∗
1 (t)p

1 − ln t dt
)︄ 1
p

≤
(︄ ∞∑︂
k=1

(mk −mk+1) · ak
p

1 − lnmk

)︄ 1
p

=
(︄ ∞∑︂
k=1

(1 − e−3k2−3k−1) · k
k3

)︄ 1
p

≤
(︄ ∞∑︂
k=1

1
k2

)︄ 1
p

< ∞.

We could also compute directly that

∥f1 |Lp)∥ = sup
0<t<1

(1 − ln t)− 1
p

(︄ˆ 1

t

f ∗
1 (s)p ds

)︄ 1
p

≤ sup
k∈N

(1 − lnmk)− 1
p

(︄ˆ 1

mk+1

f ∗
1 (s)p ds

)︄ 1
p

= sup
k∈N

(︃ 1
k3

)︃ 1
p

(︄
k∑︂

n=1

mn −mn+1

mn

· n
)︄ 1
p

≤ sup
k∈N

(︃ 1
k3

)︃ 1
p

(︄
k(k + 1)

2

)︄ 1
p

< ∞.

(ii) f2(t) = t−
1
p (1 − ln t)

1
p ∈ Lp,∞(logL)− 1

p
, but f2 /∈ Lp).

∥f2 |Lp,∞(logL)− 1
p
∥ = sup

0<t<1
t

1
p (1 − ln t)− 1

p t−
1
p (1 − ln t)

1
p = 1 < ∞
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∥f2 |Lp)∥ ≥ lim
t→0

(1 − ln t)− 1
p

(︄ˆ 1

t

(1 − ln s) ds
s

)︄ 1
p

= lim
t→0

(1 − ln t)
1
p = ∞

(iii) f3(t) = t−
1
p ∈ Lp), but f3 /∈ Lp(logL)− 1

p
as

∥f3 |Lp(logL)− 1
p
∥ =

(︄ˆ 1

0
(1 − ln t)−1 t−1 dt

)︄ 1
p
x=1−ln t=

(︄ˆ ∞

1

1
x

dx
)︄ 1
p

= ∞.

(iv) f4(t) = t−
1
p (1 − ln t)α, 0 < α < δ is in Lp(logL)− 1

p
−δ for δ > 0, but f4 /∈ Lp).

∥f4 |Lp(logL)− 1
p

−δ∥ =
(︄ˆ 1

0
(1 − ln t)−1−(δ−α)p dt

t

)︄ 1
p
x=1−ln t=

(︄ˆ ∞

1
x−(δ−α)p dx

x

)︄ 1
p

< ∞

∥f4 |Lp)∥ ≥ lim
t→0

(1 − ln t)− 1
p

(︄ˆ 1

t

(1 − ln s)αp ds
s

)︄ 1
p

∼ lim
t→0

(1 − ln t)α = ∞

Corollary 4.20 ([CK14] and [CF05]). Let 1 < p < ∞ and 0 < δ < min(1, p− 1). Then it
holds

Lp,1(logL) 1
p′
↪→ L(p ↪→ Lp,1 (4.39)

Lp(logL) 1
p′ +δ ↪→ L(p ↪→ Lp(logL) 1

p′
(4.40)

All of these spaces are embedded in Lp, whereas Lp+ε is embedded in each one of them for
ε > 0.

Proof. This can be seen from Corollary 4.18 by taking associate spaces and replacing p′

by p. The associate spaces of Lorentz-Zygmund spaces can be derived e.g. as the authors
in [CFT04] do.

Example 4.21. Let Ω = (0, 1) and 1 < p < ∞. We only give one simple example that does
not cover all embeddings in Corollary 4.20. For γ ≥ 0 we consider fγ(t) = t−

1
p (1− ln t)−1−γ

(cf. [CFG17, p. 678]). Then fγ ∈ L(p if and only if γ > 0, as

∥fγ |L(p∥ =
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ t

0
s−1 (1 − ln s)−p(1+γ) ds

)︄ 1
p dt
t

x=1−ln s=
ˆ 1

0
(1 − ln t)− 1

p

(︄ˆ ∞

1−ln t
x−p(1+γ) dx

)︄ 1
p dt
t

∼
ˆ 1

0
(1 − ln t)− 1

p (1 − ln t)−(1+γ)+ 1
p

dt
t

τ=1−ln t=
ˆ ∞

1
τ−γ dτ

τ
.
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At the same time fγ ∈ Lp(logL) 1
p′ +δ, δ > 0, if and only if γ > δ, as

∥fγ |Lp(logL) 1
p′ +δ∥ =

(︄ˆ 1

0
t−1(1 − ln t)−p+ p

p′ +p(δ−γ) dt
)︄ 1
p

=
(︄ˆ 1

0
(1 − ln t)−1+p(δ−γ) dt

t

)︄ 1
p
τ=1−ln t=

(︄ˆ ∞

1
τ p(δ−γ) dτ

τ

)︄ 1
p

Furthermore, f0 ∈ Lp, and fγ ∈ Lp,1(logL) 1
p′

if and only if γ > 1
p′ . For Lp(logL) 1

p′
and

Lp,1, we are in the same situation as for L(p, i.e. fγ is contained in these spaces if and only
if γ > 0 (we omit the computations, that are similar to the previous ones).
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