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— Estive lendo um dia um filósofo, sabe. Uma vez segui um conselho dele e deu certo. 

Era mais ou menos isso: é só quando esquecemos de todos os nossos conhecimentos é 

que começamos a saber. 

Clarice Lispector – 1969: Uma Aprendizagem ou O Livro dos Prazeres 
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Summary 

Humans do not only depend on living nature, we are part of it. Still, human actions are 

causing the sixth mass extinction of species, with irreversible changes to the ecosystem and all 

the essential contributions biodiversity provides us. While much of the lost biodiversity has not 

been described by scientists yet, we continue to lose new species at impressive rates. To sustain 

the dominant social-economic system existing today, direct and indirect actions were taken, 

including unsustainable development, intense landcover change and increasing rates of carbon 

emission, with inevitable environmental degradation. Still, a joint effort of governments, 

academia, and civil society warns about the risks and threats to biodiversity and other human 

societies, in case the scenario does not change. While projections for future climate indicate an 

increase in temperature and a decrease in precipitation rates for most areas in the world, 

regionally and locally this scenario might differ, as well as the impacts on the associated 

biodiversity. Moreover, extreme climatic events such as floods, hurricanes, droughts and 

temperature extremes will become more often and intense. Simultaneously, humans also altered 

about three-quarters of the globe’s land surface, mainly through agricultural land use changes, 

such as transitions to cropland or pasture/ rangeland. Climate and land use alterations disrupt 

ecosystems, but the expected effects on biodiversity are not completely understood. Expected 

effects may vary from species extinctions, the spread of diseases, changes in species physiology, 

abundance and growth, shifts in species interactions, and space use by the species, among 

others. However, the effects will vary according to the ecosystem type, the species involved, and 

the resilience of both to changes.  

 In my first chapter, I compile a large dataset for vertebrate assemblages in the Amazon 

forest. Known for its extensive biodiversity, the Amazon forest, as well as tropical forests in 

general, remains relatively understudied when compared to ecosystems in higher latitudes in the 

world. For this reason, a collaborative effort between researchers was fundamental to make this 

database available. The database englobes camera trap data from mammals, birds and reptile 

species. In that way, I believe I took a small but important step further in the direction of filling 

the gap in biodiversity information for the Amazon forest and creating new opportunities to study 
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biodiversity changes in this biome. And that was my aim with my second chapter. Using the 

dataset compiled in chapter one, in chapter two I investigated the effects of human modifications 

on vertebrate communities in the Amazon, and the results were impressive: even within the 

gradient of low to moderate human modification, we detected a decrease in the richness of 

vertebrate species. This raises a red flag for the vulnerability of species under our current 

scenario of changes in climate and land use. Moreover, it opens new doors to investigate the 

mechanisms underlying the change in species richness. 

 Understanding the human-nature relationship is a critical step to informing decision-

making and support the development of environmental and conservation policies. Living nature 

provides humans with both positive and negative contributions that are critical for our existence, 

including food provision, water purification, disease transmission, control of pests, among others. 

Because the functioning of the ecosystems involves complex processes and interactions of 

different species, understanding the relationship between biodiversity change and the 

contribution of biodiversity to the provision of nature’s contribution to people (NCP) is a 

challenge. In my third chapter, I propose a macroecological framework that integrates 

biodiversity models and energy flux theory to link biodiversity, ecosystem function and NCP. This 

novel approach allows the incorporation of different aspects (such as species interactions and 

environmental data) to evaluate biodiversity-based NCP. Moreover, despite the flexibility of this 

framework, when trying to apply it to belowground ecosystems, I identified the gap for my last 

and fourth chapter: the need for abundance data or models to predict abundance data for 

belowground invertebrates. In that way, I worked to aggregate data from different parts of the 

world that were sampled using similar methods, so I could develop a biodiversity model to predict 

species abundance based on their body mass. Additionally, I also used the compiled database to 

explore the effects of environmental conditions on the community-abundance distribution of the 

communities.  
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Zusammenfassung 

Wir Menschen sind nicht nur von der Natur abhängig, wir sind auch ein Teil von ihr. 

Dennoch verursachen wir durch unser Handeln das sechste Massensterben von Arten mit damit 

einhergehenden irreversiblen Veränderungen des Ökosystems und all der wichtigen 

Dienstleistungen, die die biologische Vielfalt für uns zur Verfügung stellt. Obwohl ein Großteil 

der Artenvielfalt von den Wissenschaftlern noch nicht einmal beschrieben wurde, verlieren wir 

weiterhin in beeindruckendem Tempo neue Arten. Um unser heute vorherrschendes 

sozioökonomisches System aufrechtzuerhalten, wurden direkte und indirekte Maßnahmen 

ergriffen, die unweigerlich zu einer Verschlechterung der Umwelt führen, darunter eine nicht 

nachhaltige Entwicklung, intensive Landnutzungsveränderung und zunehmende 

Kohlenstoffemissionen. Allerdings warnt eine gemeinsame Initiative von Regierungen, 

Wissenschaft und Zivilgesellschaft vor den Risiken und Bedrohungen für die biologische Vielfalt 

und der Gesellschaft für den Fall, dass sich die aktuelle Situation nicht ändert. Die Prognosen 

für das künftige Klima deuten auf einen Temperaturanstieg und einen Rückgang der 

Niederschlagsmengen in den meisten Gebieten der Welt hin, doch könnte dieses Szenario 

regional und lokal unterschiedlich ausfallen, ebenso wie die Auswirkungen auf die damit 

verbundene Artenvielfalt. Außerdem werden extreme klimatische Ereignisse wie 

Überschwemmungen, Wirbelstürme, Dürren und Temperaturextreme häufiger und intensiver 

auftreten. Gleichzeitig hat der Mensch etwa drei Viertel der Landoberfläche der Erde verändert, 

vor allem durch die veränderte landwirtschaftliche Nutzung, z. B. durch die Umwandlung in 

Ackerland oder Weideland. Klima- und Landnutzungsänderungen stören die Ökosysteme, aber 

die zu erwartenden Auswirkungen auf die biologische Vielfalt sind nicht vollständig bekannt. Zu 

den erwarteten Auswirkungen gehören u. a. das Aussterben von Arten, die Ausbreitung von 

Krankheiten, Veränderungen in der Physiologie, der Anzahl und den Wachstumsraten von 

Arten, Verschiebungen bei den Interaktionen zwischen den Arten und der Raumnutzung durch 

die Arten. Die Auswirkungen werden jedoch je nach Art des Ökosystems, der beteiligten Arten 

und der Widerstandsfähigkeit beider gegenüber Veränderungen variieren. 
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Im ersten Kapitel meiner Doktorarbeit trage ich einen großen Datensatz für 

Wirbeltiergruppen im Amazonaswald zusammen. Der Amazonaswald, der für seine große 

Artenvielfalt bekannt ist, sowie tropische Wälder im Allgemeinen sind im Vergleich zu 

Ökosystemen in höheren Breitengraden der Welt noch relativ wenig erforscht. Aus diesem 

Grund war eine enge Zusammenarbeit zwischen Forschern auf diesem Gebiet von 

grundlegender Bedeutung, um diese Datenbank verfügbar zu machen. Die Datenbank beruht 

auf den Daten von Kamerafallen, mit Hilfe derer Säugetiere, Vögel und Reptilienarten 

beobachtet werden können. Ich glaube, dass ich auf diese Weise einen kleinen, aber wichtigen 

Schritt in Richtung Schließung der Lücke bei den Informationen über die biologische Vielfalt des 

Amazonaswaldes gemacht habe. Dies schafft auch neue Möglichkeiten zur Untersuchung der 

Veränderungen der biologischen Vielfalt in diesem Biotop, was das Ziel des zweiten Kapitels 

meiner Doktorarbeit war. Auf der Grundlage des in Kapitel eins zusammengestellten 

Datensatzes untersuchte ich dort die Auswirkungen menschlicher Eingriffe auf 

Wirbeltiergemeinschaften im Amazonasgebiet, und die Ergebnisse waren beeindruckend: 

Selbst innerhalb des Gradienten von geringer bis mäßiger menschlicher Beeinflussung stellten 

wir einen Rückgang der Vielfalt an Wirbeltierarten fest. Dies ist ein Warnsignal für die 

Verwundbarkeit von Arten gegenüber dem derzeitigen Szenario von Klima- und 

Landnutzungsänderungen. Außerdem eröffnet es neue Möglichkeiten, die Mechanismen zu 

untersuchen, die der Veränderung des Artenreichtums zugrunde liegen. 

Das Verständnis der Beziehung zwischen Mensch und Natur ist ein wichtiger Schritt zur 

Entscheidungsfindung und zur Unterstützung der Entwicklung von Umwelt- und 

Naturschutzmaßnahmen. Die Natur liefert dem Menschen sowohl positive als auch negative 

Beiträge, die für unsere Existenz von entscheidender Bedeutung sind, wie z. B. die 

Bereitstellung von Nahrungsmitteln, die Reinigung von Wasser, die Übertragung von 

Krankheiten, die Bekämpfung von Schädlingen usw. Da das Funktionieren der Ökosysteme auf 

komplexen Prozessen und Interaktionen verschiedener Arten beruht, ist es eine große 

Herausforderung, die Beziehung zwischen der Veränderung der biologischen Vielfalt und diesen 

Ökosystemleistungen zu verstehen. Im dritten Kapitel meiner Doktorarbeit stelle ich einen 

makroökologischen Ansatz vor, der Biodiversitätsmodelle und Energieflusstheorie integriert, 
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um Biodiversität, Ökosystemfunktion und Ökosystemleistungen miteinander zu verbinden. 

Dieser neuartige Ansatz ermöglicht die Einbeziehung verschiedener Aspekte (z. B. Interaktionen 

zwischen Arten oder Umweltdaten) in die Evaluierung biodiversitätsbasierter 

Ökosystemleistungen. Trotz der Flexibilität dieses Ansatzes habe ich bei dem Versuch, ihn auf 

unterirdische Ökosysteme anzuwenden, eine Lücke identifiziert, die ich im vierten Kapitel 

meiner Doktorarbeit versuche zu schließen: Das Fehlen von Abundanz-Daten oder Modellen zur 

Vorhersage von Abundanzen im Boden lebender Wirbelloser. So habe ich Daten aus 

verschiedenen Teilen der Welt zusammengetragen, die mit ähnlichen Methoden erhoben 

wurden, um ein Biodiversitätsmodell zu entwickeln, mit dem sich die Abundanz von Arten auf 

der Grundlage ihrer Körpermasse vorhersagen lässt. Außerdem nutzte ich die 

zusammengestellte Datenbank, um die Auswirkungen von Umweltbedingungen auf die 

Abundanz-Verteilung innerhalb von Lebensgemeinschaften zu untersuchen. 
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General Introduction 

1. How the Anthropocene shaped the Earth-System               

All organisms can change (intentionally or not) the environmental conditions in their 

surroundings. However, humans have been changing Earth so intensely and permanently, that 

this new epoch, which began at some point in the mid-20th century, is identified as the 

“Anthropocene” (Waters et al. 2016). Even a new sphere of Earth has been formed — the 

“Technosphere” — encompassing all technical systems and infrastructures created by humans, 

from automated agriculture and transportation systems (e.g. roads and highways) to 

atmospheric pollution and deforestation (Renn 2020). Although we clearly see these human-

Earth-system interactions nowadays, a much earlier human activity with a significant impact on 

nature might probably be associated with megafaunal extinctions during the Pleistocene so that 

the low diversity of large mammals we observe today in some areas of the globe might be a 

consequence of past human action (Sandom et al. 2014). Moreover, food production associated 

with agriculture led to a dramatic landcover change about 6,000 years ago. Since then, changes 

started to reach higher proportions and cover larger spatial scales. Increasing urbanism, followed 

by European colonialism were also important drivers of the global extent of human effects that 

we see today (Roberts et al. 2023). Furthermore, the changes in climate and land use we observe 

are shaping biodiversity and impacting the functioning of ecosystems, with severe consequences 

for the delivery of nature’s contributions to people (NCP). Within the next pages, we will 

understand how those changings are taking place. 

To start this journey, I believe it is important to first clarify how and why human society 

changed and continues changing the environment. Lands are vital for the provision of resources 

(food, energy, shelter, fibers) and other contributions from nature to human societies. During 

the Anthropocene, more than 50% of Earth’s land had been modified for human use, with 

consequent impacts also for areas distant from the ones directly affected (Hooke et al. 2012). It 

is estimated that, by the year 2000, 12 and 22% of the Earth's ice-free land surface were covered 

by cropland and pasture, respectively (Ramankutty et al. 2008). Most reliable data quantifying 

past land use are from 1950-on and show that the main drivers of land use change include 
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tropical deforestation, reforestation, dryland degradation, agricultural intensification, and 

urbanization, among others (Ruddiman 2013, van Vliet et al. 2016). Although land use is essential 

for meeting human needs, we have to discuss the negative consequences associated with the 

extreme changes in land cover. We are witnessing a substantial decrease in global air quality, 

with significant impacts on the local and global climate (Heald and Spracklen 2015). Food security 

and land productivity might be affected by accelerated soil erosion caused by land modifications 

such as deforestation, overgrazing, tillage and unsuitable agricultural practices (Borrelli et al. 

2013). Moreover, biogeochemistry (natural cycles, e.g. carbon cycle), biogeophysics, biodiversity 

and the climate of our planet are affected (Hurtt et al. 2020). 

Simultaneously with land cover, the climate is also being impacted by human actions. 

Changes in the climate naturally occur over geological eras, but especially over the last 50 years, 

humans are the dominant influence on climate change (Benner et al. 2021). This fast change is 

mainly related to the burning of fossil fuels and deforestation, which have released an enormous 

amount of greenhouse gases (such as carbon dioxide) into the atmosphere, increasing the global 

average temperature (Houghton et al. 2001). Although this process became popularly known as 

“global warming”, the climatic changes involved are much more complex and the increasing 

temperature is only one of the consequences. Natural climatic events such as the El Niño and the 

North Atlantic Oscillation, which affect precipitation and temperature rates globally, are 

presenting unusual behaviors, apparently linked to global warming (Trenberth and Hoar 1997, 

Hoerling et al. 2001). With increased temperatures, loss of snow and ice volume cause ice-albedo 

feedback, which makes the planet darker and causes changes in ocean circulation (Karl & 

Trenberth, 2003). In general, depending on the region, increased intensity of droughts, wildfires, 

or heavy precipitation events might occur (Begum et al. 2022). Moreover, scientists are worried 

that we might be close to achieving a climatic tipping point: when a critical threshold is achieved 

and self-perpetuate without a turnback, causing substantial Earth system impacts. A joint 

international effort aims to keep the global mean surface temperature increase between 1.5-

2.0℃ within the next decades, but this might be enough to put us at risk of triggering some 

climate tipping points around the globe (McKay et al. 2022). Together, human-induced changes 
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in climate and land cover are shaping Earth-System drastically (Figure 1), but what are the 

consequences of these changes for biodiversity?  

 

Figure 1: Land cover and climate changes are two important drivers of alterations to the Earth 

System during the Anthropocene, and will be further investigated in this thesis. Source: Nesialoo 

Creator and Kamin Ginkae from Noum Project. 

 

2. What are the impacts on biodiversity 

 Earth biodiversity encompasses all living organisms, at all levels of organizations, humans 

included. Although for me as an ecologist it seems clear that biodiversity matters, it is possible 

to look at its importance through multiple lenses. From economic (e.g. harvesting of fish and 

timber) to recreational (e.g. hiking or bird watching) and cultural values (expression of identity 

and spirituality), biodiversity provides us with multiple contributions. Moreover, biodiversity is 

essential for the healthy functioning of the ecosystem, which provides us oxygen, clean water, 
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pollination of plants, and control of pests, among other contributions which humans deeply 

depend on. As we maintain our biodiversity, we support our ecosystems to keep working, 

especially under the context of environmental changes we are observing today. For those 

reasons, scientists are working on increasing the monitoring of biodiversity, as well as 

investigating species' responses to ongoing changes. Change in biodiversity is a topic of great 

debate among specialists, with most studies showing a global trend of decline of species 

populations, while some researchers believe there is no mean global change, or even a positive 

one (Leung et al. 2020, van Klink et al. 2020, Murali et al. 2022). Furthermore, it seems that global 

patterns in biodiversity change are highly dependent on regional and local environmental 

conditions, and detecting these trends on global scale is a complicated challenge (Valdez et al. 

2023). Still, any conclusions in this respect should be taken carefully, especially due to the various 

bias existing in the available datasets used for the analysis. As an important example, the scarcity 

of biodiversity data for tropical regions in comparison to higher latitude ones (e.g. Figure 2) 

undermines most predictions for global biodiversity trends (Collen et al. 2008).  
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Figure 2: Example extracted from van Klink et al. (2020) showing the bias on the availability of 

biodiversity data. Any trends observed are driven by North America and European regions, with 

almost no information from tropical ecosystems. Source: Klink et al. (2020), figure 1. 

 

Tropical forests are not only critical for Earth's biodiversity but also for regulating the 

global climate and maintaining local well-being and livelihoods. These forests are highly dynamic 

systems, that changed intensively across ecological and evolutionary timescales, but the ongoing 

alterations in the forests' structure and composition during the Anthropocene might have 

profound and determinant effects on the fate of tropical forest biodiversity and functioning 

(Malhi et al. 2014). The main threats to these forests include an intense process of fragmentation 
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of the forest (driven by agriculture expansion, timber and wood extraction), unsustainable 

defaunation, wildfires and changes in the climate (e.g. altered temperature and precipitation 

patterns, increased CO₂ concentration) (Malhi et al. 2014, Lapola et al. 2023). One of the first 

steps to investigate trends in biodiversity is to have adequate data on hand but, for tropical areas 

such as the Amazon, this might be a major challenge. Although access to data is advancing, we 

are still far from having tropical biodiversity monitored, with data still fragmented and scarce. As 

I experienced myself during fieldwork expeditions in the Amazon forest, many regions can be 

remote, logistically challenging and expensive, or subjected to local economic and social conflicts, 

which makes it very difficult to develop scientific work. However, I believe we can stay optimistic 

about the data access. More and more researchers are working together to compile, standardize 

and share biodiversity data, making it freely available. That was my inspiration when I initiated 

my research chapters, and helping to fill this lack of information about biodiversity in tropical 

forests by compiling existing data for vertebrate species in the Amazon forest was my aim when 

developing chapter 1. For the Amazon, existing data on vertebrates is often neither published 

nor accessible, which makes the work of compiling and standardizing it highly valuable, and 

allows future researchers to work with it too. Furthermore, the scarcity of biodiversity data for 

vertebrate species reduces our understanding of how this group respond to forest degradation 

in the Amazon. 

Beyond detecting changes in biodiversity on different spatial and temporal scales, it is 

crucial to understand what are the drivers of these changes. Biodiversity data englobes different 

types of information about specimens in an ecosystem (e.g. species identification, morphological 

or genetic data) and allows us to access the impacts of human actions on ecosystems and identify 

the main threats to the species (Figure 3). This information is essential and can be used in studies 

to both predict species responses to human changes, as well as to mitigate future impacts on 

biodiversity and ecosystem functionality. For the Amazon, the largest tropical forest, 

anthropogenic disturbances were mostly studied through the impact of deforestation, and it is 

only recently that other types of human disturbances (such as selective logging, fire and extreme 

droughts) began to be considered. Although we might expect forest disturbances to increase the 

negative impact of forest degradation on biodiversity, there are only a few studies so far 
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measuring that on the Amazon-biome scale (e.g. see Bogoni et al. 2020), mainly due to scarcity 

of data for the area. While deforestation and human actions affect most species, within 

vertebrates, some species are more susceptible than others. For example, jaguars (Panthera 

onca) tend to avoid unforested/ deforested areas, while the lowland tapir (Tapirus terrestris) 

appears to be tolerant to some habitat degradation, but to avoid burned areas (Quintero et al. 

2023). Forest-dependent species seem to avoid crossing roads, with consequent negative 

impacts for those species, that might have their habitat, feeding behaviors, and even population 

parameters (e.g. age structure and gender) changed by the presence of roads (Pinto et al. 2020). 

Such alterations in the occurrence and/ or presence of the species directly reflect on the local 

species richness of an area, a metric that is commonly used in ecology to analyze changes in 

biodiversity. Importantly, vertebrate species play an essential role in ecosystem functioning (for 

example as seed predators, dispersers, or top-down control on herbivores), so it is critical to 

comprehend how human actions impact vertebrate biodiversity. Therefore, by investigating 

changes in vertebrate species richness across a gradient of human modification in the Amazon, 

in chapter 2, I aim to understand the consequences of these changes on a biome scale and for a 

large assemblage of vertebrates.  
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Figure 3: Biodiversity data can be used to understand the impacts of human changes on 

ecosystems. Source: Tom Fricker, Nesialoo Creator and Kamin Ginkae from Noum Project. 

 

3. Assessing the consequences for ecosystem functioning and Nature’s 

contribution to people  

So far, we have navigated around some of the human changes on the Earth System, and 

how that affect biodiversity. My next and final step is to investigate how anthropogenic changes 

reflect on entire ecosystems' functionality, directly impacting the contributions we have from 

nature. For an ecosystem to maintain life, numerous physical, chemical and biological processes 

must continuously occur. In ecology, those processes are known as ecosystem functions, and 

some examples are the flow of nutrients and energy through a food chain, the cycling of nutrients 

in nature, net primary productivity (the amount of biomass produced by primary producers), 

herbivore control, among many others. A more practical example is the role of carnivores 

predating on herbivore species and regulating their populations, therefore avoiding the 

overexploitation of plants. Although there is a clear relationship between biodiversity and 

ecosystem functions, the exact mechanisms driving this relationship are rooted in complex 

interactions between species and, of course, which species are present in the ecosystem 

(Cardinale et al. 2006). If climate and land use changes are impacting biodiversity, it is expected 

that there will be consequences on the functioning of the ecosystems. In fact, the loss of 

ecological interactions seems to affect ecosystem functionality in faster rates then the loss of 

species, which emphasizes the importance of understanding all components of biodiversity 

change (Valiente-Banuet et al. 2015). In order to survive the environmental changes, species are 

moving to other locations, which causes shifts in their distributions, and leads to new biotic 

interactions (Pecl et al. 2017). Species responses may vary, but relative abundances, habitat use 

and distribution are usually affected, as well as predation and competition dynamics, herbivory 

and other interactions (Williams et al. 2008, Pecl et al. 2017).  

The effect of human impact on the disruptions of ecological interactions and ecosystem 

functions is now well documented. From previous experiences with megafauna, we know that 
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large-scale extinctions might significantly restructure plant communities and alter seed 

dispersion and nutrient availability (Janzen and Martin 1982, Gill et al. 2009, Doughty et al. 2013). 

More recently, in the last decades, human-induced climate change is causing a shift in the spatial 

distribution of plant and animal species worldwide, with species moving to colder areas and 

disrupting key interactions among species (Pecl et al. 2017). Furthermore, for belowground 

communities, changes in land cover might also impact soil animal biomass, with an uneven loss 

within size classes and trophic levels, causing shifts in soil communities and threatening 

ecosystem functioning (Potapov et al. 2019, Yin et al. 2020). From below-ground to aboveground 

ecosystems, species are threatened, and the impacts can be alarming. The loss of biodiversity we 

are witnessing today, besides affecting the functioning of the ecosystems, has cascade effects on 

our society, by negatively impacting the supply of goods and services by nature.  

Nature’s contributions to people are all the positive and negative contributions of nature 

(from organisms to entire ecosystems) to human society and quality of life. Those contributions 

include: i) regulation processes (e.g. pest control and access to fresh air and potable water), ii) 

material goods (e.g. provision of food and energy resources), iii) non-material values (e.g. 

learning and inspiring experiences, support of identities) (Brauman et al. 2019). Since 1970, NCP 

related to the production of goods (such as food, medicine and fiber) had an increase in their 

provision (although there is a decrease in the long-term ability of nature to continue providing 

those), while the other NCP are experiencing a decline in their potential capacity, caused by 

changes in land use and climate (Brauman et al. 2019). For example, the increasing demand for 

food caused a shift from extensive to intensive agriculture in many countries, which indeed 

increased food production, but with the cost of biodiversity losses, increased pest pressure, soil 

erosion and pollution of water bodies (Rehman et al. 2022). However, not only terrestrial 

ecosystems are threatened. In marine ecosystems, the warming of the ocean is disrupting 

nutrient cycles and depleting biodiversity (e.g. by changing the abundance and distribution of 

species), and directly impacting the provision of NCP related to harvesting fish (Smale et al. 2019). 

The link between biodiversity and the provision of NCP is complex and remains a 

challenge to be tackled (Figure 4), which hinders our ability to estimate the capacity of an 

ecosystem to provide NCP. Most approaches to estimating NCP capacity are based on biophysical 
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data, for example, land cover, soil properties, and climate, or apply at local or regional spatial 

scales (Isbell et al. 2017, Verhagen et al. 2017, Brauman et al. 2019, Le Provost et al. 2022). 

However, to properly capture the components of biodiversity that are relevant for biodiversity-

based NCP, it is essential to include both biotic (e.g. species presence, abundance and 

interactions) and abiotic (e.g. land use type, temperature, precipitation) data in the approach, 

since ecological interactions vary along environmental conditions. On chapter 3, we propose a 

new framework that integrates biodiversity, ecosystem functioning and NCP, to evaluate the 

capacity to provide NCP through a macroecological perspective. The key to integrating them is to 

use tools available from food web ecology associated with biodiversity models. In an ecosystem, 

the existing species are connected by feeding links that are described by a flux of energy between 

the different trophic levels (Barnes et al. 2018). One way to estimate NCP is by quantifying those 

energy fluxes and associating them with ecosystem functions that can be used as indicators for 

NCP (Barnes et al. 2018). For that, predicting species abundance, distribution and interactions 

through biodiversity models becomes an intermediate and essential step. For example, to access 

the NCP related to pest control in an agricultural field, we could quantify the total amount of 

energy to all predator species (pest control) consuming the pest. In this case, mapping the 

network topology and accessing species occurrence and respective abundances is necessary to 

evaluate the fluxes. 

Although this approach is flexible and possible to be applied to different organisms, 

ecosystem types, and scales (temporal and spatial), I came across a limitation when trying to 

apply it to below-ground communities. The main step in this framework is to estimate energy 

fluxes, and for that, we need access to biodiversity data, including species abundance. While for 

vertebrate species there are biodiversity model options available to estimate species abundance 

(Santini et al. 2018, 2022), such models were not developed so far for invertebrate species. To 

fill this gap, in chapter 4 I generated an allometric model to assess the abundance of soil 

invertebrates for large-scale projections. Abundance is a metric commonly used in ecology to 

measure biodiversity and consists of the total number of individuals per species found in a given 

area. In general, the species' body size is the most important biological predictor to estimate 

species abundance, due to the higher metabolic demand larger species have in comparison to 
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smaller ones (White et al. 2007, Santini et al. 2018). This body size-abundance relationship 

follows a negative three-quarter power law and is very consistent across all living organisms 

(Damuth 1981, 1987, Allen et al. 2002). However, environmental conditions and the availability 

of resources also play a role and should be considered when estimating species abundance 

(Santini, 2018, 2022). For below-ground invertebrates, it is expected that edaphic conditions, 

together with land use intensity, affect species abundance (Johnston and Sibly 2020). For 

example, higher soil temperature increases species' metabolic demand (especially smaller ones) 

and consequently their resource uptake. When this higher demand for resources cannot be 

supported, a decline in population abundance is expected, which might be problematic 

considering the future projections of global warming. Overall, our abundance model can be used 

in future research, to predict the impacts of human change on soil communities, as well as 

integrated with our framework proposed in chapter 3, to investigate the impacts on NCP 

provided by soil ecosystems. 
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Figure 4: The link between biodiversity, ecosystem functioning and NCP provision is complex and 

challenging to disentangle. Moreover, it is an important step to understand their relationship with 

human societies and respective changes in Earth System. Source: Louise O’Connor, Nesialoo 

Creator, Kamin Ginkae and nareerat jaikaew from Noun Project. 

 

Study outline 

As a Brazilian researcher who spent four years working in the Amazon forest, I wanted to 

dedicate part of my doctoral research to study the human impacts on this biome I am passionate 

about, and on (some of) the species I had the opportunity to see in the field. Moreover, I was 

intrigued by how changes impact from below to aboveground communities, also affecting the 

functioning of ecosystems and the NCP they provide. Thus, I decided to focus my study on the 

effects of human modifications on vertebrate species in the Amazon biome. During the 

development of the research, two challenges triggered new questions that led me to the two 

final chapters of this thesis: first, there are no tools developed so far to evaluate NCP produced 

through the contribution of biodiversity, and, second, there is no biodiversity model to predict 

the abundance of invertebrate species, which hinders the possibility of assessing NCP for 

belowground ecosystems using the framework we propose.   

In Chapter 1, I compiled and standardized a database containing camera trap records 

from the Amazon forest. The complete database includes 317 species gathered from 43 surveys 

developed in eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname 

and Venezuela). Due to its extension, the Amazon forest comprises a great variability of 

environmental conditions and ecosystem types, which differ in relation to the level of resilience 

to human alterations, and land-use intensity it is subjected to. Camera traps that photograph 

animals as they pass by sensors are an efficient and less invasive method to monitor biodiversity 

over relatively large areas. By summarizing this data, which aggregates a series of information on 

a local level, I want to answer ecological questions on an Amazonian level (which is the aim of 

Chapter 2). Moreover, it is possible to use this database to estimate species diversity, occupancy 
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and relative abundance, as well as to understand how vertebrate species respond to different 

gradients of temperature, precipitation, and human pressure on an Amazon level.  

In Chapter 2, I use the camera trap data compiled in Chapter 1 to investigate the impacts 

human modifications on terrestrial landscapes have on the richness of vertebrate species across 

the Amazon forest. In this biome, forest degradation acts on many fronts, from selective logging, 

edge effects, fires and extreme drought at regional scales, to deforestation at continental/ global 

scales. Within this context, I found that vertebrate species richness tends to decrease with 

increasing human modifications in the Amazon. Moreover, the complex biogeographical history 

of the area also explains the high heterogeneity, species diversity and richness across the Amazon 

forest. Therefore, we highlight that increasing anthropogenic threats in the Amazon forest might 

decrease vertebrate species richness in a way that, preventing further deforestation and 

disturbances became critical for preserving biodiversity and the associated ecological processes.   

In Chapter 3, I conceptualize an innovative framework to evaluate and map the provision 

of NCP over long temporal and large spatial scales. By using this framework, it will be possible to 

determine how NCP might be affected by future changes in climate and land use. The advantage 

of this approach is that it offers the potential to explore different time and spatial scales, address 

species interactions, and incorporate climatic and land use variables. With a case study, I showed 

how the workflow can be applied using data from terrestrial vertebrates in the European 

continent. I chose an agricultural rodent pest and demonstrated how to evaluate pest control 

provided by vertebrate predators on this vole species (Microtus arvalis) across the continent. By 

integrating approaches from food web ecology and macroecological modeling of biodiversity, we 

gain access to trophic interactions and, ultimately, can monitor and predict NCP’ capacity under 

different climatic conditions.  

In Chapter 4, I synthesized the so-far largest dataset on abundances and body masses in 

soil invertebrate communities across different continents, using the same methodologies across 

all sites. Thus, I developed an allometric model to predict species abundances based on species 

traits, environmental conditions and resource availability (productivity). In addition, I tested the 

influence of climatic and edaphic variables on the local body mass-density relationship of the 
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communities. Decreasing precipitation and increasing temperatures (measured by local soil 

temperature and water content on the soil) alter the slopes of the body mass-abundance 

relationship in soil communities, which means that we might expect a shift in the biomass 

distribution of soil invertebrates, from smaller to larger species in the areas studied. Considering 

the future climatic scenarios for many global regions, this alteration in biomass might have 

several implications for the functioning of ecosystems. Moreover, due to the association 

between species biomass and the flux of energy in the communities, the models we provide can 

be integrated into food-web approaches, with great potential for predicting the community-level 

consequences of future warming and drought.  
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Research chapters   

Overview 
 

Chapter 1: AMAZONIA CAMTRAP: A dataset of mammal, bird, and reptile species recorded 

with camera traps in the Amazon forest 

Bibliographic information: Antunes A.C., Montanarin A., Gräbin D.M., Monteiro E.C., Pinho F.F., 

Alvarenga G.C., Ahumada J., et al. 2022. “AMAZONIACAMTRAP: A Data Set of Mammal, Bird, 

and Reptile Species Recorded with Camera Traps in the Amazon Forest.” Ecology 103(9): e3738. 

Available from: https://doi.org/10.1002/ecy.3738 

Short summary: In the first chapter, I organized and standardized camera trap records from 

different Amazon regions to compile a data set of inventories of mammal, bird, and reptile 

species ever assembled for the area. The complete data set comprises 154,123 records of 317 

species. The information detailed in this data paper opens up opportunities for new ecological 

studies at different spatial and temporal scales. 

Chapter 2: Human modifications in terrestrial lands decrease vertebrate species richness 

across the Amazon forest 

Bibliographic information: Ana Carolina Antunes, Benoit Gauzens, Emilio Berti, Fabricio 

Beggiato Baccaro, Ulrich Brose (in prep.). Human modifications in terrestrial lands decrease 

vertebrate species richness across the Amazon forest. 

Short summary: In the second chapter, I analyzed data from chapter 1 to evaluate how human 

landscape modifications impact vertebrate species richness. In total, I considered 3798 camera 

trap stations, almost 81,580 occurrence records from 301 species (193 birds, 141 mammals and 

13 reptiles). The results showed that, within the gradient of low to moderate human 

modification observed in our study areas in the Amazon forest, increasing human modification 

results in decreasing species richness.  

Chapter 3: Linking biodiversity and nature’s contributions to people (NCP): a macroecological 

energy flux perspective 
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Bibliographic information: Antunes A.C., Emilio Berti, Ulrich Brose, Hirt M.R., Karger D.N., 

O’Connor L.M.J., Pollock L. Thuiller, W., Gauzens, B. (under review on Trends in Ecology & 

Evolution). Human modifications in terrestrial lands decrease vertebrate species richness across 

the Amazon forest. 

Short summary: In the third chapter, I propose a framework that combines biodiversity models 

with food web energy flux approaches to evaluate and map NCP at large spatio-temporal 

scales. While energy fluxes traditionally links biodiversity to NCP locally, biodiversity models 

permit to extend these predictions across extensive spatial and temporal scales. Moreover, this 

framework addresses ecological interactions, and incorporate climatic and land use variables. 

Chapter 4: Environmental drivers of local abundance–mass scaling in soil animal communities 

Bibliographic information: Antunes A.C., Gauzens B., Brose U., Potapov A.M., Jochum M., 

Santini L., Eisenhauer N., Ferlian O., Cesarz S., Scheu S., Hirt M.R. Environmental drivers of local 

abundance–mass scaling in soil animal communities. Oikos 2022(2): e09735. Available from: 

https://doi.org/10.1111/oik.09735 

Short summary: In the fourth chapter, I compiled a dataset comprising 155 invertebrate soil–

animal communities across four countries (Canada, Germany, Indonesia, USA), all sampled 

using the same methodology. I developed an allometric model to predict species abundances 

based on species traits, environmental conditions and resource availability (productivity). In 

addition, I showed that soil temperature and water content in the soil have positive and 

negative net effects, respectively, on soil communities. 

  



26 
 

Chapter 1: AMAZONIA CAMTRAP: A dataset of mammal, bird, and reptile 

species recorded with camera traps in the Amazon forest 
 

Manuscript No. 1 

Manuscript title: AMAZONIA CAMTRAP: A dataset of mammal, bird, and reptile species 

recorded with camera traps in the Amazon forest 

Authors: Antunes A.C., Montanarin A., Gräbin D.M., Monteiro E.C., Pinho F.F., Alvarenga G.C., 

Ahumada J., et al. 

Bibliographic information: Antunes A.C., Montanarin A., Gräbin D.M., Monteiro E.C., Pinho F.F., 
Alvarenga G.C., Ahumada J., et al. 2022. “AMAZONIACAMTRAP: A Data Set of Mammal, Bird, and 
Reptile Species Recorded with Camera Traps in the Amazon Forest.” Ecology 103(9): e3738. 
Available from: https://doi.org/10.1002/ecy.3738 

The candidate is (Please tick the appropriate box.) 

◼ First author,  Co-first author, ◼ Corresponding author,  Co-author. 

Status: published  

Authors’ contributions (in %) to the given categories of the publication  

 

Author Conceptual Data analysis Writing the 
manuscript 

Provision of material 
(data) 

Ana Carolina 
Antunes 

35% 30% 80% 2% 

Anelise Montanarin 15% 5% 5% 2% 

Diogo Gräbin 15% 5% 5% 2% 

Erison Monteiro 15% 30% 5% 2% 

Guilherme 
Alvarenga 

15% 30% 5% 2% 

Others 5% 0% 0% 90% 

Total: 100% 100% 100% 100% 

 

 

 

  



27 
 



28 
 



29 
 



30 
 



31 
 



32 
 



33 
 



34 
 



35 
 

 

For data paper publications in Ecology, the main text is added as a 

supplementary material. Therefore, the main text of chapter 1 can be found in 

the Appendix A of this thesis.  
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ABSTRACT 

The Amazon forest is recognized for its high biological diversity, responsible for the 

provision of critical ecosystem services. Despite its importance, its biodiversity is currently 

threatened by increasing rates of deforestation and forest degradation. Large-scale studies 

investigating the impact of human modifications on vertebrate species are still scarce, therefore, 

we analyzed data from an extensive database compiled for the Amazon forest to evaluate how 

human landscape modifications impact vertebrate species richness. In total, we considered data 

from 3798 camera trap stations, almost 81,580 occurrence records from 301 species (193 birds, 

141 mammals and 13 reptiles). Our results showed that, within the gradient of low to moderate 

human modification observed in our study areas, increasing human modification results in 

decreasing species richness. We also highlighted that biogeographical differences, captured by 

the random effects in our model, explain a large proportion of the variation in species richness 

across our sites. Moreover, our findings contribute to understanding the influences of human-

induced changes in vertebrate assemblages and reinforce the need for more research to 

investigate the mechanisms underlying this change in species richness.  
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INTRODUCTION 

Species richness is declining at the global scale due to anthropogenic actions and climate 

change (Ceballos et al. 2015). Still, there is no consistent pattern of biodiversity change at the 

regional and local scales, where trends in species richness vary substantially (Blowes et al. 2019, 

Chase et al. 2019). Human activities directly impact biodiversity on many fronts, altering species 

physiology (Somero 2012), population traits (Zheng et al. 2023), interactions (Tylianakis et al. 

2007, Geslin et al. 2013), temporal and spatial behavioral patterns (Veldhuis et al. 2019, Hirt et 

al. 2021), thus leading to changes in their occurrences, densities and distributions (Barlow et al. 

2016, Santini and Isaac 2021, Antunes et al. 2022a). Hence, it is crucial to understand the drivers 

and consequences of these disturbances so that it is possible to develop ecological models to 

describe and/or predict biodiversity responses to the threats, and the necessary conservation 

policies to mitigate them.  

Within the tropics, the Amazon forest hosts a remarkable share of the world's 

biodiversity, with high numbers of endemic species and more groups being described by 

scientists daily (Science Panel for the Amazon 2021). This biome is the world’s most diverse 

rainforest and the primary source of species lineages in the Neotropics (Antonelli et al. 2018). 

The outstanding species richness found today is a consequence of Amazonia's complex 

biogeographic history, mainly a combination of the long existence of lowland tropical forests, and 

their historical disturbances (Antonelli et al. 2010, Rocha and Kaefer 2019). Nevertheless, this 

biodiversity is currently threatened by human expansion, and the forest might be close to 

achieving a tipping point, where the Amazon forest might switch to an ecosystem similar to the 

savannah, with devastating climatic and social consequences at local and regional scales (Wuyts 

et al. 2018, Amigo 2020).   

Forest degradation in the Amazon acts at several scales and is associated with different 

factors (Silva et al. 2022). Agricultural expansion is the major driver of regional deforestation and 

is usually associated with infrastructure activities such as forest clear-cut, roads, logging and 

burning, causing significant losses to animal communities (Franco-Solís and Montanía 2021, 

Lapola et al. 2023). From local to regional scales, human-induced disturbances such as edge 
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effects, selective logging, fires and extreme drought threaten species, which may respond 

differently depending on their functional characteristics (Peres et al. 2010, Albert et al. 2023, 

Lapola et al. 2023). At continental scales, deforestation and climatic changes cause long-term 

impacts on the terrestrial carbon cycle, ecosystem functions and services provided by the species 

(Malhi et al. 2008, Albert et al. 2023). In general, land use alterations induced by anthropogenic 

actions disturb multitrophic processes by reducing species biomass and richness, triggering 

cascading effects through biotic interactions, with increasing effects at higher trophic levels 

(Barnes et al. 2017). Therefore, assessing species at high trophic levels and with large body sizes, 

such as vertebrate species, which are often most affected by external stressors, is critical to 

understanding the ecosystem health of the Amazon forest. 

While most studies have focused on the impacts of anthropogenic modifications on 

Amazon biodiversity for restricted taxonomic groups or at local scales (but see Peres and Lake 

2003, Quintero et al. 2023), we aim to understand what are the consequences of these changes 

at a subcontinental scale and for a large assemblage of vertebrate species. More specifically, we 

developed a subcontinental-scale analysis (macro-scale), comparing data from defined regional 

areas (meso-scale) to investigate the effects of human modifications on the vertebrate species 

richness across the Amazon forest. We used a comprehensive camera trap dataset compiled for 

the Amazon forest (Antunes et al. 2022b) to analyze the impact of human modifications on 

terrestrial landscapes across the meso-regions defined.  

 

METHOD 

 

Dataset 

Camera traps are a consistent method to detect terrestrial vertebrates (Rovero et al. 

2010). In this study, we used the largest camera trap database currently available for the Amazon 

Forest (available from Antunes et al. 2022, at: https://doi.org/10.5281/zenodo.6325578). The 

database compiles 43 datasets and comprises 154,123 records of birds, mammals and reptile 
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species, recorded by camera traps from 2001 to 2020. The final dataset comprises the spatial 

range of the original database inside the Amazon forest limits (RAISG, Rede Amazónica de 

Información Socioambiental Georreferenciada 2020) (Fig. 1). From flooded forests such as igapós 

and várzeas to upland forests, our samples are widely spread across different forest and land use 

types. We filtered the original data to keep only the studies developed on the ground floor (e.g. 

no canopy sampling), and designed to sample community data (e.g. we excluded studies strictly 

focused on single species). 

 

Fig. 1: Distribution of the clusters and blocks along the study area. Small purple polygons represent the 

clusters and orange polygons the blocks. 

 

Prior to the analysis, we implemented a two-step approach to prepare the data. Step I: to 

account for large-scale biogeographical variation that might influence species richness across our 

sites, we defined unique regions at a macro-scale, in which we aggregated all camera trap 
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stations present (hereafter: blocks). For that, we combined the camera locations in regions, by 

grouping the camera trap stations based on their geographic coordinates, and generated 30 

blocks using k-means clustering in QGIS 3.6 (Figure 1). The blocks define macro-scale regions for 

which macroecological and biogeographical processes may influence species composition more 

homogeneously. In step II, to assess species richness at a finer spatial scale, within each block, 

we defined a mesoscale spatial level (hereafter: clusters). We manually defined clusters within 

the blocks by grouping each camera trap within the blocks. In total, we generated 115 clusters, 

in which we aggregated species richness data on a meso-scale, from the grouped camera trap 

stations, to reduce associated errors in species detection compared to individual camera-level 

analysis. Clusters represent our sampling units, and all our variables were calculated at the cluster 

level. 

 

Estimation of species richness 

The sampling effort is the total sum of the days across all cameras that were operational 

in a cluster. Since the number of observed species was dependent on the sampling effort, we 

rarefied all estimates of species richness to the smallest sampling effort. The rarefied species 

richness was estimated (hereafter referred to as “species richness”) for each cluster using 

sample-based rarefaction curves with the rarefy function (vegan package ver. 2.6-4) (Oksanen et 

al. 2022) in R (Fig. 2).  We discarded 7 clusters that were within the lower sampling effort 10% 

quantile, and 2 outlier clusters that recorded less than 6 species in total, a very low level of 

species richness compared to the others (mean species richness considering all clusters was 

24.6±15). The results obtained without removing the 9 outliers are shown in the Supplementary 

Information (SI1) and are overall consistent with what is obtained with the selected dataset. As 

a final step, we removed 13 clusters (and respective blocks) located outside the Amazon forest 

limits (RAISG 2020) so that, for the subsequent analysis, we used 20 blocks and 93 clusters.  
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Fig. 2: Species accumulation curve of terrestrial vertebrate assemblages across the clusters. The lines 

represent the cumulative number of species as a function of the records sampled. The dashed line 

represents the cut-off at the sample size of the smallest sample (12 registers).  

 

Human-modification  

We used human modification data from (Kennedy et al. 2019) at a 1-km resolution. They 

developed a continuous metric based on 13 anthropogenic stressors and their estimated impacts 

on the landscape. Five major categories of human activity are considered: human settlement 

(population density and built-up areas), electrical infrastructure (powerlines, nighttime lights), 

agriculture (cropland and livestock), mining and energy productions (mining, oil wells, wind 

turbines), and road transportation (major and minor roads, two tracks and railroads) (Kennedy 

et al. 2019). The median and mean from 2016 and 2014, respectively, were used to capture each 

stressor (for more details, see Kennedy et al. 2019). Values range from 0.00 to 1.00, with four 

modification classes: “low” (0.00 ≤ HMc ≤ 0.10), “moderate” (0.10 < HMc ≤ 0.40), “high” (0.40 < 
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HMc ≤ 0.70), and “very high” (0.70 < HMc ≤ 1.0). For each cluster, we created the minimum convex 

polygon (hulls) including all camera trap stations, so that we can define unique regions and 

extract the human modification data. For each convex hull, we extracted the mean value of 

human modification based on all 1-km² resolution pixels. 

 

Statistical analyses 

 To evaluate if human modifications impact species richness across the clusters, we used 

a Linear Mixed Effect Model that relates species richness for each cluster to the human 

modification variable. The block ID was assigned as a random intercept effect, to account for 

macroecological and biogeographical processes that may act across the whole studied area. To 

assess if the size of the defined clusters has an effect on the relationship between human impact 

and species richness, we also tested two additional statistical models that include the area of the 

clusters. Still, the area did not have a significant effect after a model comparison, and the most 

parsimonious model included only human impacts. It is likely that, after the rarefaction 

procedure, any biases associated with the cluster size were also corrected (for details, see 

Supplementary Information - SI2). All statistical analyses were performed using R ver. 4.0.0. We 

used lme4 ver. 1.1-28 (Bates et al. 2015) to perform the Linear Mixed-Effects Model. 

 

RESULTS 

  In total, we analyzed data from 3798 camera trap stations, totaling almost 81,580 

occurrence records for 301 species (193 birds, 141 mammals and 13 reptiles). The final data 

source used in the analysis is available as Supplementary Information (S3). The resulting values 

for human modification within the 93 clusters analyzed ranged from 0.0009 to 0.33 (Fig. 3), within 

the “low” and “moderate” classes defined by Kennedy et al. (2019).  
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Fig. 3: Distribution of human modification values across the sites (clusters). Frequency of distribution of 

human modification data with quantiles and median (black line). 

 

 

The main stressors are the presence of human settlements (especially dense human 

population), and agriculture (mainly livestock). Most of the clusters with higher values of human 

modification are located in the area commonly known as the “arc of deforestation”, a crescent 

shape belt along the southern and eastern borders of the forest (Fearnside 2017) (Fig. 4). 

Deforestation in this area is mainly related to the expansion of soy cultivation and extensive 

livestock ranching, in a way that the landscape is mainly covered with pasture (Santos et al. 2021). 

Within the clusters located in the southeastern Peruvian Amazon bordering Brazil and Bolivia, 

forest cover is being lost mostly to the expansion of agriculture, mining, and the development of 

urban areas and roads network (Sánchez-Cuervo et al. 2020).  

Fig. 4: Map showing species richness in the clusters across the gradient of land human modification. The 

circles represent the 93 clusters used in the analysis and are sized proportionally to the rarefied species 



45 
 

richness. Red areas indicate the human modification gradient within the limits of the Amazon forest (RAISG 

2020).  

 

The general relationship between species richness and human modification is illustrated 

in Fig. 5. Our model reveals linear decreases in species richness with increasing human 

modification (Table 1). The model also shows that there is variation in species richness among 

blocks. Mean species richness ranged from 3.77 to 9.07.  
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Fig. 5: Relationship between species richness and human modifications (log10). Each point represents one 

cluster across the blocks (different colors) (y = 8.1 - 1.6x, R² = 0.12) along the Amazon forest. The grey area 

represents the 95% confidence interval. 

 

 

 

Table 1: Summary of the parameter estimates and random effect of the Mixed-Effect Model for species 

richness prediction.  
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 Species richness (rarefied) 

Predictors Estimates CI p 

(Intercept) 5.77  4.82 – 6.72 <0.001 

Human impact [log10] -0.78 -1.41 – -0.14  0.017 

Random Effects        

SD 0.89 – 1.25     

SD blocks 0.12 – 1.07     

N blocks 20     

Marginal R² / Conditional R² 0.076 / 0.327   

 

 

DISCUSSION 

 In this study we examined the effect of human disturbances on vertebrate communities 

across the Amazon forest. We found that even in areas within a gradient of low to moderate 

human modification, increasing human modification decreases vertebrate species richness, with 

individual differences in the mean richness across blocks. This finding complements other studies 

that show that anthropogenic processes directly impact species distribution, abundance and site 

use patterns (Li et al. 2022, Quintero et al. 2023). Under critical ranges of habitat loss and 

fragmentation, such as in the moderate class observed, shifts in biodiversity and the provision of 

ecosystem services are expected (Dobson et al. 2006, Kennedy et al. 2019). Therefore, we 
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highlight that increasing anthropogenic threats in the Amazon forest tend to decrease vertebrate 

species richness in a way that preventing further deforestation and disturbances is critical for 

preserving biodiversity and the associated ecological processes.  

Kennedy et al. (2018) provided a global measurement of human modification to terrestrial 

land based on multiple stressors and estimated that 52% of the lands are now in a state of 

moderate modification. Our study areas were classified within low to moderate levels of human 

modification. Besides deforestation, moderate levels of human modification also include other 

anthropogenic disturbances such as fires, timber extraction and edge effects have been 

intensified in the last decades, reducing the number of species (Lapola et al. 2023). This is 

aggravated by habitat fragmentation, where species richness in isolated forest fragments 

changes accordingly to the size of the fragment, with smaller patches usually harboring a limited 

number of species (Michalski and Peres 2007). The presence of roads, even narrow ones, also 

negatively impacts species richness and abundance, disrupting movement patterns and isolating 

sub-populations, with amphibians and reptile species being more affected, followed by mammals 

and birds (Pinto et al. 2020). In that way, the local fauna can take many decades to recover after 

a disturbance, a threat especially to the many rare species occurring in the tropics (Ferraz et al. 

2003, Peres et al. 2010). When impacted species become too small to support viable populations, 

they are likely to face extinction in the long term (Allan et al. 2019). 

Substantial changes in species richness may also result from a substantial reorganization 

of ecosystem structure and dynamics, altering ecosystem processes and flux of energy and 

material (Brown et al. 2001). Vertebrate species might develop behavior mechanisms such as 

altered temporal and spatial patterns in response to human disturbances (e.g. human presence, 

movement barriers such as roads), leading to increased co-occurrence and rewiring of species 

interactions (Gilbert et al. 2022, Thu et al. 2022). Alterations on site-use patterns are species-

specific (e.g., some species avoid urban areas or areas affected by fire or vegetation cover loss) 

and usually related to changes in the availability of food resources and shelter, with some species 

more susceptible to habitat degradation than others (Quintero et al. 2023). Our study sites are 

located in areas with low to moderate levels of human modification, where forest degradation is 

an important driver of biodiversity loss, with large negative effects on species of high 
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conservation and functional value (Barlow et al. 2016). Moreover, degraded areas have larger 

spatial extensions than deforested areas, in a way that different types of disturbances must be 

considered jointly when studying anthropogenic impacts on biodiversity in the Amazon forest 

(Silva et al. 2022, Lapola et al. 2023). 

Biogeographical differences, captured by the random effects, also explain a relatively 

large proportion of the variation in species richness across sites in the Amazon. The east-western 

gradient of species richness, from the Andes foot downstream the Amazon River Amazonian, is 

a known biogeographical pattern in the Amazon (Sales et al. 2017). Although the intrinsic 

mechanisms driving these processes are complex and still debated (Gomes & Kaefer, 2019, 

Antonelli et al. 2010), historical biogeography helps us understand the high heterogeneity, 

species diversity and richness across the Amazon forest. Important processes happening 

throughout the geological times including Andean uplift, riverine barriers, vegetation shifts, but 

also domestication and different habitat gradients, seem to have contributed to the current 

species distribution and richness patterns across the Amazon forest (Gomes & Kaefer, 2019). 

Besides climatic factors (e.g. temperature and precipitation), soil and river characteristics are 

important determinants of the forest structure and dynamics (e.g. vegetation type and 

associated biota) (Quesada et al. 2012, Hofhansl et al. 2020). Across our study area, each block is 

likely subjected to different conditions, which explain the variation in species richness, and 

reinforces the complexity of these ecosystems' functionality. Despite these differences, we still 

see a subcontinental-scale impact of human modifications on species richness across the Amazon 

forest. This opens new venues to investigate how these variations on macro-scale conditions 

interact with different human disturbances and affect species diversity.    

 

CONCLUSION 

Areas with a low degree of human impact are expected to hold high biodiversity levels 

and resilient ecological functions. Nevertheless, our findings point to a threat to biodiversity due 

to a reduction in species richness, even in areas under low to moderate gradients of human 

modifications, with possible cascading impacts on ecosystem functionality and provision of 



50 
 

ecosystem services. Furthermore, as a next step to understand how human actions affect 

biodiversity, we need to disentangle the contribution of the different disturbances and 

investigate the main drivers of this lower richness of vertebrate species across different regions 

of the Amazon. Although species richness should not be used as a unique metric to analyze 

changes in biodiversity, it can be associated with other information (e.g. species turnover indices, 

relative abundance distributions) to capture dominance and identify shifts in communities over 

time (Hillebrand et al. 2017), improving our assess to biodiversity changes across the space and 

time. As the Amazon might be close to reaching an irreversible tipping point, preventing further 

forest degradation is a pressing need. Moreover, practical broad-scale conservation actions 

involve the prevention and punishment of illegal activities such as logging and mining, but also 

the support of the global community.  
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Abstract  

 Linking biodiversity and the provision of nature’s contribution to people (NCP) remains a 

challenge. This hinders our ability to properly cope with the decline in biodiversity and the 

provision of NCP under global climate and land use changes. Here, we propose a framework that 

combines biodiversity models with food web energy flux approaches to evaluate and map NCP 

at large spatio-temporal scales. While energy fluxes traditionally links biodiversity to NCP locally, 
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biodiversity models permit to extend these predictions across extensive spatial and temporal 

scales. Importantly, this novel approach has the potential to assess the vulnerability of NCP to 

the climate crisis and support the development of multiscale mitigation policies.   

 

Current trends in evaluating Nature’s contributions to people (NCP) 

Nature’s contributions to people (see Glossary) (e.g., plant pollination, carbon 

sequestration, food provision, and water purification) are highly sensitive to changes in 

biodiversity due to species invasion, extreme and long-term climatic changes, and anthropogenic 

disturbances [1,2]. Uncertainty about the future of NCP resulting from biodiversity change and 

their importance to human societies worldwide requires reliable models capable of predicting 

future NCP changes at large spatial scales [3,4]. Due to the complexity of processes and 

interactions that determine ecosystem functioning in response to biodiversity change [5], most 

approaches that aim to assess NCP provision are often very context-specific (but see [4,6]) and 

usually applied at regional spatial scales [7,8]. This hinders progress toward estimating the 

capacity to provide different types of NCP across larger spatial scales and highly dynamic 

landscapes, with changing species compositions of communities [9,10]. Although useful tools for 

assessing NCP have been developed over the last 20 years, they mostly rely on statistical 

modeling using biophysical (e.g. land cover, soil properties, climate, [11]), social or species-based 

(e.g. [12]) data [13]. In this way, most NCP produced by biophysical processes and anthropogenic 

assets can be assessed and quantified, while valuable NCP produced through specific 

components of biodiversity are not adequately captured, remaining highly uncertain [4]. As an 

example, a critical and well-studied service, pollination, is often estimated at the global scale in 

terms of the area of habitat suitable for pollinators around crops or by correlations with 

pollinator diversity and abundance [14]. In contrast, pollination in nature is the outcome of a set 

of ecological interactions between pollinator and plant communities. It can be measured through 

the amount and quality of pollen on the stigma [14], or the number and diversity of pollinators  

[15,16], nevertheless these measurements are usually restricted to local spatial scales [17]. 

Similarly, biodiversity underpins the provision of many essential NCP (e.g. fruit and seed 
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dispersion, crop damage, pollination, and pathogen control), but the complexity of its 

relationships with NCP requires consideration of the species interactions that determine 

ecosystem functions to predict future NCP responses to changes in biodiversity (but see [4,6]).  

Integrating biodiversity forecasts into NCP at large spatial scales is a complex challenge 

that should be properly addressed, and directly associating declines in biodiversity with the lower 

provision of ecosystem services may lead to biases in spatial conservation planning, e.g., by 

overlooking species interactions or underestimating the contribution of common species [17–

19]. At the same time, changes in land use in different landscapes directly influence ecosystems, 

species composition and interactions, making it difficult to quantify the biodiversity-NCP 

relationship [20,21]. Some initiatives propose approaches to integrate biodiversity into NCP, but 

those focus on conservation purposes and assess a limited number of NCP (e.g. [22,23]). Here, 

we introduce an approach to integrate biodiversity data and species interactions into models, 

estimating NCP at macroecological scales -e.g. for continental or global analyses- using allometric 

scaling laws (Box 1, Figure 1). This approach can integrate future predictions from biodiversity 

scenarios, enabling forecasting of the future of NCP on a global scale. It will prove particularly 

useful for quantifying how NCP respond to environmental and anthropogenic drivers across long 

temporal and large spatial scales, as well as for assessing the vulnerability of NCP to the climate 

crisis and supporting the development of multiscale environmental policies [7].  

Linking biodiversity to NCP: lessons from local scales  

Biodiversity plays a central role in regulating the fluxes of energy and matter that 

determine ecosystem functions and ultimately NCP [24]. Energy fluxes represent the amount of 

energy flowing through the links connecting species and trophic levels and describe the energetic 

structure of communities [25]. These trophic links can be used as proxies to quantify multiple 

NCP driven by trophic interactions (Box 2), due to their direct relationship to ecosystem functions 

[25]. Thus, understanding how to calculate fluxes of energy opens up new opportunities for 

better evaluation and predictions of NCP. For example, by quantifying all energy fluxes between 

an agricultural pest species and its predators, we can assess the strength of pest control in an 

ecosystem. In a broader sense, energy fluxes provide an opportunity to link ecosystem 
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functioning and NCP evaluation with food-web ecology, which addresses the underlying network 

of species interactions [26]. Factors such as the sensitivity of food webs to disturbances (network 

stability), and limitations on the transfer of biomass within trophic levels have a massive influence 

on the functionality of the ecosystem and should be considered when predicting future scenarios 

for NCP [26]. Despite its potential applications, this framework is tailored to estimate energy 

fluxes only at small spatial scales, typically for areas where experiments or individual 

measurements (e.g. species metabolic rates, species abundance) can be performed. Moreover, 

this framework relies on a set of ecological variables that are often accessible to ecologists locally: 

the list of occurring species, species biomasses and body masses, and the set of trophic 

interactions between the taxa of the focal community. However, for regional or continental 

scales, these input data can’t be experimentally sampled, which hinders the application of this 

energy-flux framework to predicting macroecological NCP. There are, instead, alternative ways 

to predict these variables needed for flux calculations at macroecological scales. Here, we 

propose a method for applying this approach at larger scales, where most conservation efforts 

take place.  

Scaling up local estimations of NCP: biodiversity models as valuable tools 

To evaluate energy fluxes and associate them with NCP at large spatial scales, a few 

challenges related to data acquisition must be overcome (see Box 1 for details): the low 

availability of data on species abundance and the identification and establishment of the trophic 

links. Despite significant gaps in biodiversity knowledge (e.g. for many tropical regions), 

significant progress has been made in predicting current and future species ranges and 

distributions. These biodiversity models (i.e. here referred to as any model that predicts 

biodiversity data, like abundance, interactions, distribution) can fill in gaps in biodiversity data, 

providing a comprehensive representation of biodiversity, and their predictive capabilities 

(including species occurrence, abundance, traits and interactions) at regional, continental and 

global scales are becoming better and more precise [27]. Three types of biodiversity models are 

needed to scale up local estimations of NCP through fluxes: species distribution models, 

abundance models and interaction models. Distribution (predicting species occurrences) and 
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abundance (predicting species abundance) models generate predictions in plots, communities, 

or grid cells as a function of a set of environmental covariates. These predictions can be 

extrapolated across space (e.g. to make a map) or time (e.g. project forward for the climate or 

land-use scenarios). Interaction models that predict the interactions between species, essential 

data for building the network topologies across space, are traditionally based on traits such as 

body mass [28] and recently started to incorporate abiotic variables [29,30]. Species interaction 

data can also be retrieved from global databases (e.g. Globi [31] or GATEWAy v.1.0 for trophic 

interactions [32]) containing information on various ecosystems and interaction types. While 

these databases may not document all the potential interactions of any given species, they 

provide a first and easily accessible source of data. Finally, algorithmic methods can reconstruct 

the missing parts of a network as soon as a reasonable amount of links were primarily identified 

[33–35]. A detailed protocol to infer species links for terrestrial ecosystems can be found in [36]. 

Together, these biodiversity models provide the information needed to calculate fluxes and 

therefore allow us to integrate biotic (e.g. species interactions, species distributions) and abiotic 

(e.g. environmental variables) factors into a spatially explicit assessment of NCP. Moreover, we 

can apply this framework also across different time scales, for example, to predict future 

scenarios of NCP under different climatic and land use conditions. 

The potential to integrate biodiversity models and energy fluxes   

Global estimation of NCP remains quite coarse when compared to the advances made in 

evaluating biodiversity data at the same scale. By combining biodiversity information with energy 

fluxes, we expand our ability to predict NCP for the vast majority of areas where data is missing. 

As an example, abundance measurements, needed to evaluate the flux of energy between 

species, are usually rare and sparse [37], but trait-based biodiversity models are being developed 

to estimate average population abundances [38–40] and can account for bioclimatic/ biophysical 

factors, making their use with species distribution models highly consistent. A key advantage of 

this integration is that the resulting flux calculation connects NCP to biodiversity and local 

environmental conditions through a predictive framework based on accessible biological and 

biophysical information. In our case study (Box 3) we focus on trophic links, but similar workflows 
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can be developed for NCP resulting from non-trophic interactions (see Box 2). This approach can 

be implemented starting from a local grid cell (local ecological network), up to regional and 

continental scales. Besides exploring different time and spatial scales, the inclusion of species 

interactions, which can drastically alter NCP provision [26], allows circumventing a limitation 

from current studies. Factors such as invasive species and their interactions, responses of 

ecological networks to climatic conditions, species interactions within assemblages through time, 

and many others are crucial and should be considered. 

Our approach also creates a bridge to the large set of theoretical methods offered by food 

web ecology that can be incorporated to further test the effect of various perturbations. It is, for 

instance, relatively straightforward to estimate how communities would respond to punctual 

disturbances (pulse perturbations) by calculating the resilience of the community based on the 

fluxes [41] or to assess the robustness of the estimated functions of species extinctions [42]. The 

loss of a species can trigger secondary extinctions, critically affecting not only the ecosystem 

functionality but also the robustness of the NCP provided [43]. The approach could also be used 

to anticipate and prioritize conservation actions by identifying key species supporting the entire 

future or present communities [44]. As such, the food web framework underlying our 

macroecological projection of NCP provides a valuable tool to connect theoretical ecology and 

conservation planning.   

Opportunities for future scenarios 

 Over the past 50 years, most NCP have declined globally as a consequence of climate and 

land use alterations [17]. The integration of macroecological models (e.g. species distribution 

models) with energy flux modeling allows us to disentangle the long-term impacts of these 

alterations on the capacity to provide NCP and to project future scenarios. Although different 

future scenarios for climate and land use change are projected in macroecological models, we 

tend to overlook projections for NCP [45]. Our framework enables the integration of projections 

of environmental conditions to estimate what the future of NCP will be in a global context. For 

instance, increasing temperatures consistently impact local abundances of species [46], 

ecological network structure and trophic interactions [47,48]. Simultaneously, land-use change 
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is causing a general decline in the abundance, diversity, and health of species and ecosystems 

[49]. Together, land use and climate change are thus likely to be key drivers of variety, quantity 

and spatial distribution of NCP throughout time. Pollination contribution, for example, is facing a 

decline due to factors such as land-use change, pesticides, invasive species and climate change 

[50].    

At local spatial and short temporal scales, impacts of human activities on biodiversity are 

usually associated with a decrease in ecosystem functions and stability, therefore reducing the 

provision of important NCP. Due to cascading effects, those impacts might increase at larger 

spatial and longer temporal scales, leading to complex cross-scale interactions [7]. In that way, 

the relationship between biodiversity, ecosystem functioning and NCP across different scales 

must be better understood to avoid poor forecasts of future supplies of NCP [7]. By using energy 

flux to access NCP, it is possible to monitor and predict the sources of changes (both in space and 

time), while disentangling the influence of ecological processes e.g. secondary extinctions and 

invasion of species. 

Concluding Remarks 

Quantifying NCP on large spatial and long temporal scales is an urgent matter and, to 

address that, a detailed understanding of the relationship between biodiversity, ecosystem 

functioning and NCP is needed. Here, we propose an applied framework to integrate biodiversity 

models and energy fluxes approaches, to improve our abilities to evaluate NCP through a 

macroecological perspective. This approach allows accounting for both biotic (e.g. species 

presence and interactions) and abiotic (e.g. environmental characteristics) factors when 

estimating NCP. We also show examples of how this integration opens new venues to address 

unresolved questions (see Outstanding Questions), as well as to improve conservation policies, 

by helping us identify and predict future scenarios for areas of NCP provision.  
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Box 1: General workflow  

Our workflow is divided into 7 steps: 

Step 1: Obtain the metaweb with potential species interactions. 

Step 2: Obtain species distributions for the study area. 

Step 3: Predict species density for each grid cell of the region of interest. 

Step 4: Obtain the local ecological network by subsetting the metaweb based on estimated 

species occurrences. 

Step 5: Calculate energy flux across the ecological network using species metabolic rates. 

Step 6: Associate fluxes of energy and/or species densities to NCP. 

 

The local network must be known to estimate fluxes. In general, local networks are 

obtained by subsetting the species list and interactions that occur within the region of interest, 

i.e. the metaweb. For the species list, different sources are available and can be used (e.g. IUCN 

- https://www.iucnredlist.org, GBIF - https://www.gbif.org). The metawebs can be obtained 

directly from primary sources (e.g., TETRAEU - [51]) or by extracting from aggregated databases 

(e.g., GLOBI - [31]) the interactions for the taxonomic groups and the region of interest (Step 1). 

In order to subset the metaweb, local species occurrences need to be estimated from their large-

scale distributions. Geographic limits based on expert opinion can be used to achieve this, 

possibly combined with species distribution models using occurrence data to further improve 

accuracy (Step 2). To calculate energy fluxes, and hence evaluate NCP, it is necessary to build 

predictive models for species abundance in order to obtain local estimates of species’ biomasses. 

In contrast to estimations based on small-scale experiments, data such as species’ biomasses and 

distribution can be derived at macroecological scales only through modeling. In particular, 

species’ biomass, which can be predicted using species’ body mass and environmental conditions  
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[39,40] (Step 3). Local networks are assigned by combining the metaweb of species interactions 

with the occurrence of species on the grid cell (Step 4). Fluxes throughout the network are 

calculated based on species' metabolic rates (using allometric regressions) and biomasses. Fluxes 

of energy can be calculated for single species or an entire trophic level (e.g. herbivores or species 

feeding on specific prey), depending on the NCP of interest (Step 5). The NCP to be evaluated 

should be associated with an individual flux of energy or summed network fluxes. By summing 

all fluxes of energy across the grid cells we evaluate NCP across large spatial scales (Step 6).    

Box 2: Energy fluxes to NCP 

A diversity of contributions delivered by nature to people can be directly related to 

individual energy fluxes or to summed network fluxes. Associating NCP to specific trophic links is 

straight forward and it is a way to determine the amount of energy necessary for the ecosystem 

to sustain the contribution from nature. To illustrate how NCP can be associated with energy 

fluxes in ecological networks webs, we identified and listed a few examples in Table 1: 

 

NCP Link indicator (sum of energy fluxes) 

Pollination plant - pollinator  

Seed dispersal seed - disperser  

Pest regulation pest - predator  

Species invasion invasive species - resource  

Disease control (vector-control) vector - predator 

Fish production prey - fish  
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Carcass removal abundance of scavengers 

Hunting abundance of hunted species  

Nutrient cycling (mineralization) assimilation efficiency per link 

Nutrient cycling (decomposition) influx to decomposers 

Carbon sequestration  metabolic demand of species 

Table 1. Potential associations between NCP and trophic links in ecological networks. 

Box 3: Case study: control of an agricultural pest in Europe  

To demonstrate how the workflow described in the previous section can be applied, we 

show how to derive energy fluxes for vertebrates in Europe and, from this, how to obtain access 

to pest control provided by vertebrate predators on a vole species (Microtus arvalis) across the 

continent. The species checklist as well as the network topology for European vertebrates was 

obtained from the TETRA-EU database [51]. To obtain local communities, we used species 

distribution ranges from Maiorano et al. 2013 (which combined species’ extent of occurrence 

with their habitat requirements). To estimate species biomass density, we used a 

macroecological model similar to the one developed by Santini et al. [40]. We trained this model 

on the TetraDENSITY database [37] using as predictors macro-climatic (i.e. precipitation, 

temperature, primary productivity) and species-specific variables (i.e. body mass and phylogeny) 

to estimate species biomass densities locally. Climatic variables were obtained from CHELSA [52], 

whereas species body mass was from [53–55].  

Using the network topology and the species’ density predictions from the species 

distribution models, we obtained, for each pixel, the local network as well as the local densities 

of species. From this, we settled metabolic losses using allometric equations [56] and estimated 
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energy fluxes using the R package fluxweb [41]. From the matrix describing the fluxes among 

species, we then evaluated the NCP of interest. Pest control was calculated as the (standardized 

by mass) sum of all influxes (vole-predators) from each pixel (Figure I). More details about each 

step of the workflow for this case study can be found in Supplementary Material. Analyses were 

performed in the R programming language [57], with the code being available at: 

https://github.com. 

 

Figure I. Agricultural pest (Common Vole - Microtus arvalis) control contribution provided by 

vertebrate species mapped across the European continent. Map of the top-down pressure 

(associated with pest control) on M. arvalis, a rodent pest for agricultural fields across Europe. 
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Outstanding Questions  

1. How do NCP capacity change across spatial scales? 

2. How will NCP capacity be impacted in future scenarios, under climatic and land use 

alterations? 

3. Which NCP provision we are overlooking because we don’t properly consider biodiversity 

data when estimating it? 

4. What are the consequences of diversity loss or gain to different NCP provisions? Do 

cascading effects on energy fluxes across ecological networks play a role in determining 

NCP?  

5. How can we best integrate biodiversity and NCP capacity into conservation plans? 

Glossary  

Abundance models: predictive models to estimate population abundance of species. Mostly 

based on species' body mass, such models can also include species' biological traits and 

environmental conditions. 

Food-web theory: area from ecology that describes the trophic links between species in an 

ecosystem, defined by the flow of energy between different trophic levels. 

Interaction models: Models that use species traits (e.g. body mass, diet) and abiotic variables to 

predict the existence of interactions between species.  

Metaweb: an ecological network containing all the species that occur within the study area and 

all of their potential interactions. 

Nature’s contributions to people (NCP): all the positive and negative contributions of nature to 

people`s quality of life. There are 18 categories of NCP used in IPBES assessment. 

Network topology: Structure of a network that connects links and nodes. In ecology, species 

usually represent the nodes that are connected through the links (e.g. energy links). 

Species distribution models: Models to predict or infer species distribution patterns across 

spatial scales, accounting for biotic (e.g. species interactions) and abiotic (e.g. environmental) 

factors.  

Trophic links: feeding interactions between species in an ecological network.  



72 
 

 

Figure 1: How biodiversity models and food web tools can be integrated to access the provision 

of NCP at macroecological scales. Macroecological models and food web theory tools use 

different input data. The integration of these approaches allows the evaluation of NCP capacity, 

through the identification of relevant taxa or interactions between species, and their association 

with specific NCP. Moreover, the use of this approach can be applied to conservation planning 

and future predictions in terms of vulnerabilities of NCP capacities. 
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Chapter 4: Environmental drivers of local abundance–mass scaling in soil 

animal communities 
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General Discussion 

Humans shaped the Earth System and will continue altering the landscape, climate, 

biodiversity, the functioning of ecosystems and, ultimately, NCP provided. In my thesis, I dive 

into this theme and fill gaps in biodiversity data accessibility, knowledge of the consequences of 

human-induced modifications on biodiversity, evaluation of NCP capacities provided by 

biodiversity contribution, and availability of abundance data for invertebrates. In the first 

chapter of this thesis, I contribute to filling the gap on the scarcity of biodiversity data for the 

tropics, more specifically, by compiling camera trap data for the Amazon forest. Although 

tropical forests harbor the greatest species richness in the globe, biodiversity data is mostly 

concentrated in higher latitude regions (Collen et al. 2008). This disparity between tropical and 

temperate regions is mainly accounted for by insufficient funding, the absence of adequate 

infrastructure and equipment and political or social conflicts. Unfortunately, the lack of such 

data compromises the efficiency to describe biodiversity changes in the tropics, with serious 

implications for conservation. It is not uncommon that existing data are inaccessible, or 

available only in the form of theses or technical reports. In that way, collaborative approaches 

with local scientists are the best alternative to explore this type of information. The compilation 

of the dataset provided in chapter 1 involved a collaboration between more than 150 

researchers from 122 institutions and encompasses data from eight countries. This massive 

effort resulted in the compilation of the so far largest camera trap dataset for the Amazon 

forest. The database comprises data from 317 species (185 birds, 119 mammals and 13 

reptiles), and most part of the surveys (59%) were conducted in Brazil. The dataset provides 

basic information about vertebrate species' presence, number of registers and other important 

details (e.g. presence of bait to attract species, sampling effort, camera trap brand and model), 

and can be used to investigate species responses to different variables (e.g. temperature, 

precipitation, or human pressure) on an Amazon scale.  

 Vertebrate species are key contributors to the ecosystem's functioning, and their loss 

might cause cascading effects. Therefore, in chapter 2, I use the data compiled in chapter 1 to 

study how anthropogenic impacts on the land affect species richness in the Amazon forest. 
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Species richness is a metric frequently used to measure biodiversity change, and can also be 

used in association with other community data (e.g. turnover of species) to identify shifts in 

communities over time, improving the mechanistic understanding of how biodiversity is 

changing. Given that the Amazon is well preserved in comparison to other areas of the globe, 

one might expect that its biodiversity has not yet been impacted by human actions. However, 

the analysis of our data shows that, for vertebrate communities, even low to moderate levels of 

human modifications have a significant negative impact on the richness of species. A few 

mechanisms are known to regulate species richness, including the availability of energy (limiting 

resources) in the system, which for many vertebrate species means plant availability (or 

vegetation cover), and a regional species pool to provide for potential species exchange and 

settlement (Brown et al. 2001). Together with deforestation, other anthropogenic disturbances 

are important drivers of land cover change in the Amazon forest, such as edge effects, timber 

extraction, fires and extreme droughts (Lapola et al. 2023). Moreover, increasing habitat 

fragmentation can lead to the isolation of systems, for example, patches of forests completely 

isolated by agricultural fields, that species are not able to cross. The size of these isolated 

fragments influences the richness of species, with smaller fragments able to shelter a limited 

number of species (Michalski and Peres 2007). Altogether, these human-induced modifications 

are leading to a decrease in vertebrate species richness, yet, it is important to mention here 

another result I found in my analysis: the relevance of biogeographical differences across the 

Amazon. There is a known east-western Amazon pattern on the gradient of species richness 

(Sales et al. 2017) that can be explained by different processes happening throughout the 

geological times, for example, the uplift of the Andes and barriers created by the rivers. The 

mechanistic explanation for this is complex and still debated, therefore this opens new doors 

for future studies to disentangle the relationships between macroecological patterns and 

human disturbances, and their impacts on biodiversity.  

 While in chapter 2 I focus on the threat human actions represent for biodiversity, in the 

third chapter I moved forward to comprehend human influences on the functioning of 

ecosystems and the associated NCP. For this, I needed to establish a link between biodiversity 

change, ecosystem functions and NCP. In chapter 3, I propose a new framework that integrates 
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different fields of Ecology (food web ecology, energy flux approaches and biodiversity 

modeling) to link biodiversity data and NCP capacity. The concept is based mainly on using 

specific ecosystem functions as proxies to access NCP. For example, seed dispersion is an 

essential NCP provided by many species, and it can be associated with the feeding link between 

the plant species (seed) and the predator (seed disperser) while also considering how abundant 

they are in the system. Once the link or proxy is defined, the next step is to quantify it. For that, 

we use metabolic theory to evaluate the amount of energy needed to support that ecosystem 

function, or, in other words, we calculate the energy flux through the links connecting species 

and trophic levels. Fluxes of energy are calculated based on the energy demand (metabolism) 

of the community or species, combined with the efficiency of resource assimilation and loss of 

energy to predation. Additionally, species' body size and environmental temperature are 

important information since smaller body sizes and higher temperatures increase the metabolic 

demand. Finally, the abundance of individuals is also needed to upscale the energy demand 

evaluation from species to community and ecosystems-level.  

As I mentioned earlier in this thesis, the availability of biodiversity data is not 

homogeneous, therefore in many cases, the input data to proceed with the approach may 

become challenging to acquire. In the previous example of seed dispersion, data on the 

occurrence and abundance of the species, as well as the presence of interaction between plant-

disperser is essential. In this case, if part of the data is not available, biodiversity models should 

be used to fill the gaps and predict missing biodiversity data (Pollock et al. 2020). In this 

chapter, I suggest 3 types of models that might be needed to estimate NCP through fluxes: 

species distribution models, abundance models and interaction models. Moreover, I provide a 

case study to illustrate how to apply the framework. The example evaluates and maps the 

biological control of the agricultural pest (common vole, Microtus arvalis) provided by 

vertebrate species in Europe, using as a proxy the top-down pressure of the predators on the 

prey (M. arvalis). Thus, this conceptual framework has the potential to explore different time 

and spatial scales, address species interactions, and incorporate climatic and land use variables, 

while assessing the vulnerability of NCP capacity to the anthropogenic crisis. Moreover, it might 

be a valuable tool connecting theoretical ecology and conservation planning. 
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When developing the framework, I realized that, although flexible and possible to apply 

to different contexts, for invertebrate communities, input abundance data could be hard to 

access. For vertebrate species, despite the scarcity of data on species abundance, allometric 

models were developed and can be used to fill gaps where there is no data available (Santini et 

al. 2018, 2022). For invertebrate species, those models were not developed until the moment. 

In chapter 4, I compiled a large dataset for invertebrate species and developed an allometric 

model to predict species abundance. The methods used to sample the individuals were 

consistent across the different studies compiled and, the final database comprises 

comprehensive belowground invertebrate communities, from four countries (Canada, 

Germany, Indonesia and the USA). Since abundance data may vary according to the 

methodology used, using standardized methods was important to guarantee that the results 

were comparable. Moreover, a large range of body sizes was examined, from meso to 

macrofauna species (0.000267 mg ─ Liochthonius sp. (Brachychthoniidae), Indonesia ─ to 6055 

mg ─ Lumbricus terrestris (Lumbricidae), Germany. Although body size is a known trait to drive 

species abundance (due to its relationship with species metabolism, as explained earlier), I 

fitted a model that also includes other important variables that are known to affect the 

abundance of soil fauna, such as soil temperature, precipitation, land-use intensity, soil pH, the 

carbon content in the soil, and other edaphic properties. 

Species traits (e.g. body size) and environmental conditions play an important role in 

determining species abundance. In Ecology, body size-abundance relationships have been 

extensively studied, and follow a general pattern across communities in which smaller species 

will be more abundant, while larger ones tend to be less abundant (Damuth 1981, 1987, Allen 

et al. 2002). However, this pattern is not so clear within communities, where the relationship 

varies and can show the opposite trend (White et al. 2007). In chapter 4, I used the compiled 

database also to explore how environmental and edaphic properties influence the body-mass 

abundance relationship and, consequently, the distribution of abundance between invertebrate 

soil communities. I was excited to notice that, following the theoretical expectations, the 

average abundance-mass scaling slope across our soil communities was -0.75. Yet, as I also 

expected, there was a considerable variation within the slope values across the 155 
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communities studied (ranging between -1.23 and -0.29). Respectively, soil temperature and 

water content in the soil (a variable related to precipitation rate) have positive and negative 

effects on the belowground communities we analyzed, mainly mediated by changes in local 

edaphic conditions (soil pH and the content of carbon in the soil). Temperature positively 

affects the slope of the relationship, which can be translated as an increase in the abundance of 

larger species and a decrease in smaller ones under increasing temperatures. The explanation 

for this is possibly associated with the metabolic demand of the species, and their energy 

requirements, which increase under higher temperatures, impacting smaller species strongly in 

comparison to larger ones (Johnston and Sibly 2018, 2020). The water content in the soil 

directly influences the pH of the soil and the carbon content, important factors known to drive 

the abundance of soil animals (Johnston and Sibly 2020). For example, because of their 

physiological adaptations, larger species are usually restricted to less acidic soils, with pH values 

above 3.5. Moreover, besides gaining access to a model that predicts invertebrate abundances, 

in the last chapter of my thesis, I also explore how variation in soil-climatic variables might shift 

the distribution of abundances across size classes in belowground invertebrate communities.  

Considering the current scenario of climate and land use change we are witnessing, I 

believe the research I present in this thesis can help address the mechanisms species are 

developing to survive these changes. The use of biodiversity data is essential to understand the 

drivers of biodiversity loss, but also to estimate changes in biodiversity-related NCP capacity, as 

it serves as the primary information source to estimate energy fluxes. Nevertheless, these data 

might not be always available, so biodiversity models (e.g. allometric models to estimate 

species abundance) are highly valuable. Overall, I explore and move forward to better 

understand the effects human actions have on biodiversity, ecosystem functioning and the 

provision of NCP, from belowground to aboveground ecosystems. 
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Outlook 

Biodiversity has many positive effects on the provision and maintenance of ecosystem 

functions. Although the scenario might be alarming, there are still alternatives to prevent 

further loss of biodiversity and deeper impacts on the provision of NCP. As I outlined previously 

in this thesis, a big challenge when studying changes in biodiversity is exactly the lack or scarcity 

of biodiversity data for specific areas of the globe and taxonomic groups. Thereby, I aim to 

continue working on filling this gap in my future research, either by compiling existing datasets 

or organizing and implementing fieldwork campaigns to sample new areas. The Amazon 

Camtrap (first chapter of this thesis) is part of a bigger initiative that I greatly admire and would 

be happy to help expand in the future. In Brazil, the Cerrado is a vast tropical and subtropical 

savannah biome that is deeply threatened by land use change (mainly agriculture and pasture). 

Considering that this is a global biodiversity hotspot, this ecosystem remains understudied in 

terms of biodiversity change and potential human impacts on ecosystem functioning. In this 

context, compiling available data for the biome would be a great advance. A deep literature 

search and a net of collaborations between researchers in the area would allow for gathering 

valuable data on community composition and distribution of plant and/ or animal species and 

allow a deeper understanding of how biodiversity changes. Moreover, with standardized 

biodiversity data from the Amazon forest and Cerrado, large spatial-scale analyses could be 

developed, for example by comparing the vulnerabilities of the two biomes to climate and land 

use change. I would be very interested in analyzing biodiversity dynamics and, using the 

framework proposed here, investigate how it reflects the potential to supply NCP across space 

and biomes. 

 As I have proposed a new framework to evaluate biodiversity-related NCP supply, 

another next step is to apply this approach to real scenarios. There are many possibilities to do 

that, but the one I am already involved with is the European scenario. In the study case 

developed for my third chapter, I evaluated biocontrol through predation over agricultural 

fields in the European continent. I would first like to improve this measurement, for example by 

considering only the agricultural areas for the energy fluxes calculation. Although the species 

M. arvalis is common to almost the entire continent, they are considered pests only where the 



94 
 

land is covered by agriculture. Furthermore, I will include forecast predictions for the supply of 

this pest control-NCP, by re-calculating the associated energy fluxes considering different future 

predictions of climatic scenarios for Europe. By comparing present and future predictions for 

this NCP supply, we access how environmental conditions might affect pest control by 

vertebrate species, and identify areas at higher risk of the NCP not being delivered. By 

identifying the areas, I would be curious to disentangle the mechanisms driving the decrease in 

the supply of pest control in specific regions. For example, it could be driven by alterations in 

the density relation between predator and prey, or by the direct effect of environmental 

changes (such as temperature and precipitation) on the food supply of the prey (M. arvalis). 

Moreover, this NCP framework in a general way can generate information related to the 

vulnerability of NCP supply, and help identify areas to be considered as priorities for 

conservation.  

 In my thesis, I analyze some of the influence human actions have on biodiversity and 

propose a way to evaluate and link the changes in biodiversity to ecosystem functionality and 

the capacity of an ecosystem to provide biodiversity-related NCP. Elucidating the threats to 

biodiversity together with its ecological implications is an essential step to cope with 

conservation challenges and reshape human effects on the Earth System. However, generating 

information has to be part of a larger initiative. Conservation ecology and biodiversity 

preservation involve a broader context and many different actors, including civil society, 

stakeholders, and policymakers. When nature is seen only as an explorable natural resource, 

biodiversity becomes commodified. Therefore, a deep civilizational change, with coordinated 

international action, is crucial to overcome the obstacles of global change (Fernandes, 2020). As 

a Latin American woman ecologist, I believe giving voice and autonomy to “minorities” and 

underrepresented groups is also part of the solution. In that way, I’m glad to see several 

initiatives recognizing the need for a more inclusive system. For example, the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), a 

joint global effort by governments, academia, and civil society emphasizes the importance of 

incorporating local and indigenous knowledge into environmental assessment frameworks, 

environmental governance and associated policies. Sustainable pathways vary according to the 
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regional context (which reinforces the need for inclusive participation of different actors), and 

providing information on each context (for example by compiling biodiversity data or evaluating 

critical NCP) is key to moving forward with conservation actions. 
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Supplementary information 1 

In order to show that the results obtained without removing the 9 outliers are overall consistent 
with what is obtained with the selected dataset, we re-ran our analysis with the outliers. The 
rarefied species richness was estimated and the cut-off at the sample size of the smallest sample 
was equal to 8 registers. 

 
Even when we keep the outliers, we still see a negative trend on species richness. 
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The result from the Linear Mixed Effect Model relating species richness to human 
modification shows a significative negative relationship, with lower species richness across the 
gradient of landscaper modification. 

 

  

  rarefied 

Predictors Estimates CI p 

(Intercept) 4.51 3.90 – 5.12 <0.001 

human [log10] -0.48 -0.87 – -0.09 0.016 

Random Effects 

σ2 0.54 

τ00 blocks 0.37 

ICC 0.41 

N blocks 22 

Observations 102 

Marginal R2 / Conditional R2 0.059 / 0.444 
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Supplementary information 2 

 

We here assess the effect of cluster sizes on the relationship between human pressure 
and species richness. We can see that there is no direct correlation between cluster area and the 
estimated species richness after the rarefaction procedure: 

 

 
 
This result is mostly explained by the relationship between cluster size and the sampling 

effort associated to clusters: 
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As such, this result suggests that the rarefaction procedure done on the effort was also 
correcting potential biases associated to cluster size. We investigate that further by comparing 
incorporating cluster size in our statistical models. We considered two new statistical models: an 
additive model in which the potential interaction between area and human modification is not 
considered, and one including this interaction effect. In all models (including the one with human 
modification only, variables were re-scaled). 

 
First, model with interaction: 

inter.n <- lmer(rarefied ~ log.human*log.area + (1 | blocks), data = res.normalised) 
tab_model(inter.n) 

  rarefied 

Predictors Estimates CI p 

(Intercept) 5.17 4.85 – 5.49 <0.001 

log human -0.25 -0.44 – -0.05 0.014 

log area 0.13 -0.07 – 0.32 0.205 

log human × log area -0.10 -0.31 – 0.11 0.357 

Random Effects 
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σ2 0.54 

τ00 blocks 0.38 

ICC 0.41 

N blocks 22 

Observations 102 

Marginal R2 / Conditional R2 0.072 / 0.457 

 
Then model without interaction: 

add.n <- lmer(rarefied ~ log.human+log.area + (1 | blocks), data = res.normalised) 
tab_model(add.n) 

  

  rarefied 

Predictors Estimates CI p 

(Intercept) 5.17 4.85 – 5.50 <0.001 

log human -0.24 -0.44 – -0.05 0.015 

log area 0.12 -0.08 – 0.31 0.231 

Random Effects 

σ2 0.53 

τ00 blocks 0.39 

ICC 0.42 

N blocks 22 

Observations 102 

Marginal R2 / Conditional R2 0.062 / 0.457 

 

and model with human impact only: 
 
 
rand.n <- lmer(rarefied ~ log.human + (1 | blocks), data = res.normalised) 
tab_model(rand.n) 
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  rarefied 

Predictors Estimates CI p 

(Intercept) 5.20 4.88 – 5.51 <0.001 

log human -0.24 -0.44 – -0.04 0.016 

Random Effects 

σ2 0.54 

τ00 blocks 0.37 

ICC 0.41 

N blocks 22 

Observations 102 

Marginal R2 / Conditional R2 0.059 / 0.444 

  

Now if we compare the different models using AIC and BIC criteria: 
 

AIC(rand.n, add.n, inter.n) 

##         df      AIC 
## rand.n   4 264.3682 
## add.n    5 267.7234 
## inter.n  6 271.5198 

BIC(rand.n, add.n, inter.n) 

##         df      BIC 
## rand.n   4 274.8681 
## add.n    5 280.8483 
## inter.n  6 287.2697 

 

We can see that in both cases the most parsimonious model is the one with human impact 
only, confirming the conclusion from the visual inspection of the data 
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Supplementary information 2 

 

blocks cluster effort richness human rarefied area 

2 4 56 7 0.132887 3.771042 2557486 
2 2 73 27 0.014225 8.000634 49434911 
2 3 73 29 0.011334 8.765209 1.43E+08 
3 6 248 21 0.124871 4.617978 20469504 
3 7 273 22 0.069982 3.783087 32657289 
4 9 2110 50 0.086004 6.992809 2.39E+08 
5 10 1797 33 0.078951 7.620677 6.61E+08 
6 15 49 14 0.14235 6.702008 19210363 
6 16 105 19 0.258363 6.414591 3.18E+08 
6 14 251 27 0.306364 7.34758 1.16E+08 
6 11 453 8 0.093884 4.085272 6.5E+08 
6 13 7110 52 0.280536 7.744743 1.31E+08 
7 17 39 19 0.181539 7.033049 113281.6 
9 23 46 14 0.049287 6.724071 1.16E+08 
9 24 170 19 0.037977 7.9495 1.07E+08 
10 26 30 18 0.021737 7.963035 1037236 
10 27 30 20 0.028982 8.121198 865416.3 
10 28 30 15 0.033796 7.661364 565185.3 
10 29 30 21 0.021816 8.837227 1716600 
10 30 30 14 0.023148 8.371078 2557438 
10 31 30 21 0.01808 7.246838 48797562 
10 38 30 16 0.039649 8.513297 319402.9 
10 39 30 13 0.005005 7.404839 841268.5 
10 42 30 17 0.017965 7.864121 130590.2 
10 45 30 11 0.007982 8.137513 311982.5 
10 47 30 17 0.023245 7.03606 610624.4 
10 49 30 18 0.019398 7.495318 714073.4 
10 50 30 17 0.016043 6.394792 874788.7 
10 51 30 15 0.018216 6.574193 717241 
10 43 31 19 0.013552 6.224465 76437.43 
10 44 31 15 0.010776 6.874702 946530.1 
10 34 40 17 0.01517 7.324483 44898791 
10 46 44 13 0.016327 8.602609 1653516 
10 48 62 16 0.022593 6.50492 598658.4 
10 32 81 17 0.018568 7.183148 386294.9 
10 37 90 21 0.037941 9.075254 5679220 
10 33 106 21 0.019544 8.089382 585117.3 
10 36 107 22 0.039524 6.987773 41334185 
10 35 109 22 0.02274 7.966621 53676749 
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10 41 128 28 0.023942 6.87873 20588090 
10 40 324 31 0.047305 7.606104 1.7E+08 
11 55 38 34 0.013577 8.33188 27357498 
11 56 93 24 0.035867 7.811895 46985952 
11 54 491 40 0.025056 8.845284 58480333 
11 53 752 27 0.038114 7.924691 78206791 
13 69 79 19 0.167606 4.194946 18251712 
13 65 91 13 0.086668 5.918077 2771908 
13 62 114 34 0.101749 7.257762 49575197 
13 66 119 24 0.069622 7.685565 1.94E+08 
13 68 162 34 0.041656 8.954252 30287142 
13 67 211 60 0.140179 7.346528 2.06E+08 
13 64 1061 99 0.085772 8.518143 9.4E+08 
16 76 638 18 0.105016 3.878214 774029.7 
17 77 31 10 0.135958 6.167142 227266.2 
17 78 60 8 0.027153 5.730376 3.36E+08 
18 79 60 12 0.030432 6.99417 1.96E+08 
18 82 60 13 0.017645 5.162118 4.63E+08 
18 83 60 22 0.009623 5.230755 9035107 
18 84 60 22 0.028254 6.408742 7910576 
18 85 60 24 0.002766 7.303547 7012792 
19 89 84 18 0.073118 7.328139 15340129 
19 90 110 20 0.07663 6.425463 75403839 
19 86 203 46 0.067486 8.023233 5.07E+08 
19 91 247 39 0.082201 5.427049 4.88E+08 
19 87 670 73 0.028228 8.850595 2.59E+08 
19 88 991 77 0.018724 8.763923 5.02E+08 
20 92 1537 45 0.031394 6.202612 2.18E+08 
20 93 2625 57 0.015054 6.678912 2.36E+08 
23 102 102 23 0.046194 7.179477 10138525 
23 103 159 29 0.045331 7.994232 11921622 
23 101 229 28 0.051975 7.772732 42430147 
23 100 406 33 0.047581 8.292598 79435245 
23 104 936 13 0.029712 6.370681 29341006 
24 105 181 29 0.024402 7.488868 1.03E+08 
24 108 247 34 0.020948 7.296291 1.29E+08 
24 107 324 29 0.022677 7.675219 3.21E+08 
24 106 911 35 0.021838 6.313682 3.32E+08 
26 114 33.2 23 0.042946 7.540217 184025.9 
26 117 110 26 0.003018 7.135804 78034070 
26 112 120 18 0.042802 7.741545 56711050 
26 116 167 36 0.025307 8.710139 1.03E+08 
26 113 170 19 0.028533 7.427602 69513625 
26 115 180 31 0.254903 6.28833 30679843 
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27 120 392 26 0.003212 6.743232 15778807 
27 119 529 28 0.004705 7.328038 16108287 
27 121 534 26 0.026157 7.488231 16289950 
27 122 753 19 0.026558 6.972735 15304123 
27 123 998 27 0.013952 6.643067 16923691 
27 124 1236 30 0.005111 6.772426 13932758 
30 129 30 5 0.223381 5 41306730 
30 131 60 15 0.268387 6.070269 19675576 
30 128 81 21 0.104173 3.983702 1.97E+08 
30 127 1546 26 0.167685 6.957596 33541864 
 

Metadata: 

blocks Blocks ID 
cluster Cluster ID 
effort Camera trap/ night 
richness Sampled species richness per cluster 
human Human modification gradient  
rarefied Rarefied species richness per cluster 
area Area of the cluster in m² 
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Supplementary Material  

Network topology 

Our study area contained the whole of continental Europe and was divided into 395,219 

equal-area cells (pixels) of 10 x 10 km2. We obtained the network topology for European 

vertebrates from the TETRA-EU database (S Maiorano et al. 2020). TETRA-EU already provides 

the checklist of native or naturalized vertebrate species in Europe and their predator-prey 

interactions. During preliminary analyses, we detected several pixels for which flux calculation 

failed, most likely due to trophic loops i.e., in the local network. Therefore, every time we 

encountered a cycle in the local network, we randomly removed one of the two links involved in 

the cycle. 

Species distributions 

We extracted the distributions of the species occurring in the study area from (S Maiorano 

et al. 2013). These distributions were obtained by combining the extent of occurrence for each 

species with their habitat requirements. Species distributions were mapped in a regular grid of 

300 m resolution, where cells had values of zero for unsuitable habitat, one for marginal habitat 

(habitat where the species can be present, but does not persist in the absence of primary habitat) 

and two for primary habitat. Here, we treated the primary habitat only as ‘suitable habitat’, which 

provides a better prediction of the actual species distribution (S Ficetola et al. 2015). We upscaled 

distribution maps to a 10 × 10 km equal-size area grid (ETRS89). We considered the species 

potentially present in a 10 × 10 km cell if the grid cell contained at least one suitable habitat.  

Species biomass density 
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To estimate species biomass densities (D), we employed a model similar to the one 

developed by (S Santini et al. 2018b). In particular, we fitted vertebrate densities using the 

TetraDENSITY database (S Santini et al. 2018a), after keeping only records within Europe, and, as 

predictors, species body mass, net primary productivity (NPP), precipitation seasonality (PCV), 

temperature, and taxonomic order. As some species didn’t have body mass information, we 

performed a multiple imputation by chained equation using the package mice (S van Buuren and 

Groothuis-Oudshoorn 2011) and the taxonomic family and order as covariates. All chains had 

similar mean and standard deviation, the influence of missing data on estimate uncertainty was 

low (0.077), and the average relative efficiency was high (0.993), all indicating robust 

imputations. NPP, PCV, and temperature were obtained from the CHELSA database (S Karger et 

al. 2017), using the normalized difference vegetation index (NDVI), the precipitation coefficient 

of variation, and the average annual temperature averaged from 1981-2005. Body mass of 

species was obtained from (S Trochet et al. 2014, S Wilman et al. 2014, S Slavenko et al. 2016). 

We also included as predictors the quadratic terms of body mass, NPP, and PCV, as these were 

shown to play an important role in determining vertebrate densities (S Santini et al. 2018b).  

From the full model, we used a multi-model averaging approach using the package 

MuMIn (S “Barton, K. (2022) MuMIn 1.46.0: Multi-Model Inference. R package version. 

https://CRAN.R-project.org/package=MuMIn” n.d.). In particular, we averaged coefficient 

estimates across all models that had ΔAIC ≤ 2 from the best model; we used the full average, i.e. 

including a coefficient as zero when it was not present in a model, as conditional average can 

lead to overestimates of model parameters (S Grueber et al. 2011). Each taxonomic class (i.e. 

birds, mammals, reptiles, and amphibians) was modeled separately, resulting in four total sets of 
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averaged estimates that were used to predict vertebrate densities in Europe. Importantly, we 

also mapped where linear models extrapolated in geographic space, which can be used as a proxy 

for the confidence we have in our results (Fig. S1). We used these models to estimate the biomass 

density for all European vertebrates in the study area. A potential issue here is inaccuracies in 

the density estimates originating from extrapolation outside the body mass range of the linear 

models. Moreover, as some taxonomic orders were present in TETRA-EU, but not in 

TetraDENSITY (e.g. Chiroptera), our models lacked coefficient estimates for such orders. To solve 

this problem, we calculated these coefficients as the average across all other taxonomic orders 

that were available; despite solving the practical computational issues, we acknowledge that this 

approach may introduce several biases in the calculation of fluxes. 
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Figure S1: Extrapolations from the linear models used to estimate densities of vertebrate species, 

mapped across the European continent. 

We then used the geographic distribution of species as obtained from (S Maiorano et al. 

2013), which combines the extent of occurrence of each species with their habitat requirements. 

In particular, we upscaled the original data from 1x1km2 to our resolution of 10x10km2; to each 

upscaled cell, we assigned a new value that was computed as the fraction (F) of the cells where 

the species occurred at the higher resolution. This layer was then used in two ways: on one side, 

it was converted to a binary occurrence distribution for the species, i.e. we assumed the species 

was present if F > 0; on the other, we weighted the expected species densities (calculate at 

10x10km2) by the fraction of area that was suitable, hence correcting species densities for the 

fraction of suitable area: D = D · F. 

Taxonomic harmonization 

As original sources for taxonomic names were different across datasets, we harmonized 

the species names against a common taxonomic backbone. As datasets comprised multiple 

taxonomic groups and had regional to global scope, we chose GBIF, a multi-taxa, global 

backbone, to harmonize taxonomic names (S Grenié et al. 2022). GBIF was accessed through 

package rgbif (3.6.0) in December 2021. We first appended all taxonomic names from all datasets 

into one list of 25,688 unique species names, which were then queried in GBIF to obtain the 

accepted taxonomic name. When the first iteration on GBIF (using name_backbone()) did not 

return an accepted name, we ran a second step (using name_usage()) where we used the GBIF 
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key for the taxonomic name to query the database. A total of 2,243 species names were re-

assigned, including changes in taxonomic families. 
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Supporting Information – S1 
Table S1: description of sampling methods in each site 

Site 
Location 

Group Sampling 
method 

Number 
of plots 

Area 
per plot 
m2 

Soil core Sampling 
date 

Body mass 
estimation 

USA, 
Canada 

Macrofauna litter 
sieving, 
hand 
sorting 

80 
 

0.5 NA 2016 - 
2017 

length-mass 
regressions from 
Wardhaugh 2013, 
Sohlström et al. 
2018   

USA, 
Canada 

Mesofauna 1 soil 
core, 
heat-
extraction  

80 0.00196 5cm 
diameter, 
10 cm 
depth 

2016 - 
2017 

length–mass 
regressions for 
specific taxa from 
Mercer et al. 2001 

Germany Macrofauna 2 soil 
cores, 
heat-
extraction 

48  20cm 
diameter, 
two 
samples 
per plot 

2008 - 
2011 

measured or 
estimated with 
mass-length 
regressions from 
Ehnes et al. 2014 

Germany Macrofauna litter 
sieving, 
mustard 
extraction 

48 0.25 NA 2008 - 
2011 

measured or 
estimated with 
mass-length 
regressions from 
Ehnes et al. 2014 

Germany Mesofauna 2 soil 
cores, 
heat-
extraction 

48  5cm 
diameter, 
two 
samples 
per plot 

2008 - 
2011 

measured or 
estimated with 
mass-length 
regressions from 
Ehnes et al. 2014 

Indonesia  Mesofauna 2 soil 
cores, 
heat-
extraction 

32 0.0256 litter + 
5cm depth 

2013 length-mass 
regressions were 
used for 
Collembola: dry 
weight (Peterson 
1975)  

Indonesia  Macrofauna litter 
sieving, 
heat-
extraction 

32 3 NA 2012 length-body mass 
regressions were 
used to estimate 
spp body mass 
(Sohlström et al. 
2018) 
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Supporting Information – S2 

Additional environmental variables descriptors 

In order to explore the effect of additional environmental and edaphic variables on our analysis, 

we extracted the human footprint index based on data on human pressures at 1 km² resolution 

(from 1993 and 2009) (Venter et al. 2016). Current global scale land-change classifications were 

extracted from van Asselen and Verburg (2012) at a 5-arcminute resolution (Table S2). Original 

land-use maps were converted to numerical data, following Pouzols et al. (2014) and Eitelberg 

(2018), with values imputation for the missing categories (Table 1 - S2). Other environmental 

variables were available from the respective projects for each community: litter layer was 

measured (cm) and weighted (g/m2); carbon and nitrogen content were measured in the soil (dry 

weight), and used to calculate C: N ratio. We used the georeferences of the communities’ location 

and study years in a 0.05 degrees unit to extract NDVI (from 2000 to 2018) (MOD13C2 Series – 

Didan, 2015). 
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Table S2: Current global scale land-change classifications were extracted from Van Asselen & 

Verburg (2012) and Eitelberg (2018) 

Land System 
Pouzols et al. 
(2014)  

Eitelberg 
(2018) Imputation 

Final intensity 
value 

Cropland; extensive, few livestock 0.4 0.4  0.4 
Cropland; extensive, bovines, goats & 
sheep  0.4  0.4 
Cropland; extensive, pigs & poultry   0.45 0.45 
Cropland; medium intensive, few 
livestock 0.3 0.3  0.3 
Cropland; medium intensive, bovines, 
goats & sheep  0.3  0.3 
Cropland; medium intensive, pigs & 
poultry   0.35 0.35 
Cropland; intensive, few livestock 0.2 0.2  0.2 
Cropland; intensive, bovines, goats & 
sheep  0.2  0.2 
Cropland; intensive, pigs & poultry   0.25 0.25 
Mosaic cropland and grassland; bovines, 
goats & sheep  0.8  0.8 
Mosaic cropland and grassland; pigs & 
poultry   0.85 0.85 
Mosaic cropland (ext.) and grassland; 
few livestock 0.7 0.7  0.7 
Mosaic cropland (med. int.) and 
grassland; few livestock 0.6 0.6  0.6 
Mosaic cropland (int.) and grassland; few 
livestock 0.5 0.5  0.5 
Mosaic cropland and forest; pigs & 
poultry   0.55 0.55 
Mosaic cropland (ext.) and forest; few 
livestock 0.7 0.7  0.7 
Mosaic cropland (med. int.) and forest; 
few livestock 0.6 0.6  0.6 
Mosaic cropland (int.) and forest; few 
livestock 0.5 0.5  0.5 
Dense forest 1 1  1 
Open forest, few livestock 0.9 0.9  0.9 
Open forest, pigs & poultry   0.95 0.95 



169 
 

 

  

Mosaic grassland and forest 1 1  1 
Mosaic grassland and bare 1 1  1 
Grassland, natural 1 1  1 
Grassland, few livestock 0.9 0.9  0.9 
Grassland, bovines, goats & sheep  0.9  0.9 
Bare 0.1 1  1 
Bare, few livestock 0.9 0.9  0.9 
Peri-urban & villages 0.1 0.1  0.1 
Urban 0.1 0  0 
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Supporting Information – S3 

To evaluate if additional environmental variables affect body mass-abundance relationships 

across local communities, we used Linear Mixed Effects Models that relate the previously 

evaluated slopes of the body mass-abundance relationship for each soil animal community to the 

local community’s body mass range and environmental variables (soil temperature, precipitation, 

land-use intensity, soil pH, human footprint index, the carbon content in the soil, litter layer mass 

and depth, C: N rate in the soil, water content in the soil). Based on a correlation analysis of all 

environmental variables, we removed NDVI from the model due to its high correlation with soil 

temperature. The mixed-modeling approach was used to account for potential spatial 

autocorrelation by using the corGaus function from nlme package (Pinheiro et al. 2020), which 

required the use of a randomly parameterized dummy variable as a random effect (note that the 

corGaus function is only available for mixed-effects models that require a random effect 

variable). Each of the independent variables was added as a linear term, without interactions. 

We started with the full model comprising all independent variables and selected the best-fitting 

model by the ‘dredge’ function of the MuMIn package (Barton 2022), using the Bayesian 

information criterion (BIC) for model comparison (ΔBIC <2).  

The two most supported models (ΔBIC <2) were used to generate model-averaged estimates of 

the parameters using the ‘model.avg’ function from the MuMIn package. Model-averaged 

estimates from the top models (ΔBIC <2) included the body-mass range, water content in the soil, 

soil carbon content and temperature. This final model reveals linear increases in the slope with 

increasing body-mass range, soil temperature and water content and decreases with increasing 
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soil carbon content (Table 1 - S3). The general relationships between the slopes and the variables 

selected in the final model were illustrated in Figure 1 (S3).  

 

Table S3: Summary of the parameter estimates of the final Mixed-Effect Model (conditional 

average) for slope prediction. Estimates, standard errors and p-value for the Z-statistic are 

indicated.  

 

Predictors Estimates Std. Error Pr(>|z|) 

(Intercept) -0.63931 0.15688 4.72 x 10-5 

log body mass range 0.10926 0.01452 < 2 x 10-16 

log carbon content -0.16443 0.03951 3.61 x 10-5 

log soil temperature 0.13989 0.05617 0.0135 

soil pH 0.03220 0.01321 0.0156 
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Figure S3: Relationships between the slopes of the body mass-abundance relationship in the 

communities in each location (colored symbols) with A. mean soil temperature (log10),(y = -0.81 + 

0.051x, R² = 0.0063), B. soil pH, (y = -0.79 + 0.0066x, R² = 0.0015), C. body mass range of the 

communities (log10), (y = -0.68 + 0.13x, R² = 0.35), D. soil carbon content (log10), (y = -0.56 - 0.24x, 

R² = 0.18) and E. water content in the soil (% fresh weight), (y = -0.71 – 0.0017x, R² = 0.0014).  
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Supporting Information – S4 

To describe general body mass-abundance relationships across communities, we fitted a linear 

model pooling the abundance and mass data of the species for all sites. We ran a linear regression 

of the dependence of each species log10 abundance on the log10 body mass and edaphic variables 

(soil temperature, precipitation, land-use intensity, soil pH, human footprint index, the carbon 

content in the soil, litter layer mass and depth, C: N rate in the soil, water content in the soil). 

Based on a correlation analysis of all environmental variables, we removed NDVI from the model 

due to its high correlation with soil temperature. Each of the independent variables was added 

as a linear term, without interactions. We started with the full model comprising all independent 

variables and selected the best-fitting model by the ‘dredge’ function of the MuMIn package 

(Barton 2022), using the Bayesian information criterion (BIC) for model comparison (ΔBIC <2).  

The two most supported models (ΔBIC <2) were used to generate model-averaged estimates of 

the parameters using the ‘model.avg’ function from the MuMIn package. Model-averaged 

estimates from the top models (ΔBIC <2) included body mass, human footprint index, land-use 

intensity, litter layer depth, soil temperature, soil pH and water content in the soil). This final 

model reveals linear increases in the species abundance with increasing human footprint index 

and land-use intensity and decreases with increasing species body mass, litter layer depth, soil 

temperature, soil pH and water content in the soil (Table 2 - S2). Our model can be used in future 

predictions to assess the abundance of soil species for large-scale projections. 
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Table S4: Summary of the parameter estimates of the final Mixed-Effect Model for species 
abundances prediction. Estimates, standard errors and p-value for the Z-statistic are indicated.  
 

Predictors Estimates Std Error Pr(>|z|) 

(Intercept) 1.882579 0.124495 < 2 x 10-16  

human footprint index 0.006876 0.001473 3.07 x 10-6 

land-use intensity 0.246828 0.038845 < 2 x 10-16 

litter layer depth -0.020904 0.006052 0.000553 

log soil temperature -2.818322 0.050278 < 2 x 10-16 

log body mass -0.743859 0.006296 < 2 x 10-16 

soil pH -0.090023 0.011250 < 2 x 10-16 

log water content   -0.162260 0.058978 0.005945 
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Supporting Information – S5 

To evaluate how the body-mass range of the communities varies along the gradient of 

temperature, we ran linear regressions of the dependence of A. log10 minimum body mass (g), B. 

log10 maximum body mass (g) and C. log10 body-mass range (g) (difference between maximum 

and minimum body masses) on soil temperature (°C) for each of the 155 communities using the 

lm function in R (R Core Team, 2020).  
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Figure S5: Relationships between the soil temperature (log10) in each location (colored symbols) 

with A. minimum body mass (log10) (y = -4.4 – 1.3x, R² = 0.63) B. maximum body mass (log10) (y = 

0.12 – 0.83x, R² = 0.078) and C. body mass range (log10) (y = 0.12 – 0.83x, R² = 0.078) in each 

community. 
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