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SUMMARY

The classical analysis model for agricultural field trials is based on the principles of experimental design –

randomization, replication and blocking – and it assumes independent residual effects. Accounting for any
existent spatial correlation as an add-on component may be beneficial, but it requires selection of a suitable spatial
model andmodification of classical tests of treatment contrasts. Using a sugar beet trial laid out in complete blocks
for illustration, it is shown that tests obtained with different modifications yield diverging results. Simulations were
performed to decide whether different test modifications lead to valid statistical inferences. For the spherical,
power and Gaussian models, each with six different values of the range parameter and without a nugget effect,
the suitability of the following modifications was studied: a generalization of the Satterthwaite method (1941), the
method of Kenward and Roger (1997), and the first-order corrected method described by Kenward and Roger
(2009). A second-order method described by Kenward and Roger (2009) is also discussed and detailed results are
provided as Supplemental Material (available at: http://journals.cambridge.org/AGS). Simulations were done for
experiments with 10 or 30 treatments in complete and incomplete block designs. Model selection was performed
using the corrected Akaike information criterion and likelihood-ratio tests. When simulation and analysis models
were identical, at least one of the modifications for the t-test guaranteed control of the nominal Type I error rate in
most cases. When the first-order method of Kenward and Roger was used, control of the t-test Type I error rate
was poor for 10 treatments but on average very good for 30 treatments, when considering the best-fitting models
for a given simulation setting. Results were not satisfactory for the F-test. The more pronounced the spatial
correlation, the more substantial was the gain in power compared to classical analysis. For experiments with
20 treatments or more, the recommendation is to select the best-fitting model and then use the first-order method
for t-tests. For F-tests, a randomization-based model with independent error effects should be used.

INTRODUCTION

The classical principles underlying the design of
agricultural field experiments are replication, rando-
mized allocation of treatments to experimental units
(plots) and blocking (Fisher 1935). In the case of one-
dimensional spatial trends, designs with complete or
incomplete blocks are common, depending on the soil
characteristics and the number of treatments tested.

The use of incomplete blocks is preferable to complete
blocks, when this allows a better control of the
experimental error, leading to more precise and
accurate treatment effect estimates as well as to a
gain in statistical power. It is well known that there is
usually a correlation of measurements taken on
spatially adjacent plots, the correlation decaying with
spatial distance among plots (Richter & Kroschewski
2012). Proper randomization ensures, however, that
regardless of any such spatial patterns classical
analysis procedures for designs with complete or
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incomplete blocks may proceed, assuming indepen-
dent residual effects (Yates 1939; Grondona & Cressie
1991; Zimmerman & Harville 1991). The model with
uncorrelated residual effects will henceforth be
referred to as the baseline model. To refer to the
baseline model, the abbreviation B-RCB is used for
complete blocks and B-IB for incomplete blocks.
Many authors have reported on studies showing that
inclusion of spatial correlations between plots as an
add-on component to a baseline model provides effi-
ciency gains (Grondona & Cressie 1991; Zimmerman
& Harville 1991; Brownie et al. 1993; Gilmour et al.
1997; Wu et al. 1998; Wu & Dutilleul 1999; Stroup
2002; Pilarczyk 2009; Müller et al. 2010; Richter &
Kroschewski 2012).

Both the baseline model and the extended model
with spatial add-on components can be written in
general form as the following mixed linear model:

y=Xβ + Zu+ e (1)

where β is p×1 vector of fixed effects, u is q×1
vector of random effects, e is n×1 vector of residual
effects and X and Z are the known design matrices
for fixed and random effects, respectively. The follow-
ing assumptions are made on random effects:
u*N(0, G), e*N(0, R) and Cov(u,e)=0, so that
Var(y)= ZGZ′+R=V.

For the baseline model the matrix R takes the form
R=σ2I, where I denotes the identity matrix. For the
spatial models considered in the present paper, the
covariances in R depend on spatial distances among
plots. In the present paper, it is assumed, moreover,
that spatial correlation does not depend on the
direction (isotropy). Observations from two plots with
Euclidean distance d>0 (measured between plot
centres) have covariance Cov(d )=σ2 f (d ). The spatial
covariance models considered here differ only in the
form of the function f (d ).

The use of spatial models entails two problems:

(i) When analysing a trial, the true underlying
covariance model is unknown. Thus, a well-fitting
model needs to be selected from a set of candidate
models using a suitable selection criterion.

(ii) To obtain valid tests for treatment comparisons, a
modification of classical test procedures is re-
quired. The following modifications are in com-
mon usage: the Satterthwaite method (henceforth
abbreviated as SW; Satterthwaite 1941; Giesbrecht
& Burns 1985; Fai & Cornelius 1996), the
Kenward–Roger method (KR; Kenward & Roger

1997), and the first-order Kenward–Roger method
(KR1; described by Kenward & Roger 2009;
referred to as the Prasad–Rao estimator in
Harville & Jeske (1992)). In addition, Kenward &
Roger (2009) described a second-order method,
henceforth denoted as KR2.

In the present investigation, the properties of Wald-
type F-tests will be analysed under the global null
hypothesis of no treatment effects and of Wald-type
t-tests for pairwise comparisons.

The global null hypothesis H0: L’β=0 with L’
a matrix of contrasts can be tested by

F = (L′β̂)′(L′(X ′V̂
−1
X)−L)−1L′β̂

rank(L) (2)

where V̂ is the restricted maximum-likelihood (REML)
estimate of V. When L’ is a single contrast vector, one
may also use

t = L′ β̂����������������
L′ (X ′ V̂

−1
X)−L

√ (3)

For a single pairwise contrast, L’ is a row vector
with zeros everywhere, except for the two treatments
being compared, which have coefficients –1 and +1.
For testing the global null hypothesis that all
t treatments have equal mean, L′ will have t–1 linearly
independent rows with pairwise contrasts. In general,
the following problems occur with these tests
(Kenward & Roger 1997, 2009; Schabenberger &
Pierce 2002):

. (X ′V̂
−1
X)− is not generally an unbiased estimator of

(X ′V−1X)−;
. (X ′V̂

−1
X)− underestimates the variance of β̂,

because the variance of the estimator of V is not
taken into account; and

. Test statistics in Eqns (2) and (3) follow an exact
F-distribution and an exact t-distribution only in
exceptional cases; in the majority of cases the
denominator degrees of freedom need to be suitably
approximated.

The SW method operates on (X ′V̂
−1
X)− where V̂ is

the REML estimate of V. It approximates the denomi-
nator degrees of freedom in Eqns (2) or (3) using the
method of moments. The KR, KR1 and KR2 methods
correct, in slightly different ways, the plug-in estimator
of (X ′V−1X)− and then use the corrected estimator
to approximate the denominator degrees of freedom.
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Problems (i) and (ii) arise frequently in experiments
with repeated measures in time or space (Piepho et al.
2004). Problem (ii) also occurs with experiments,
in which a more complex covariance structure results
from the randomization. For example, in split-plot and
strip-plot designs, where treatment contrasts involve
several variance components, it may be necessary to
approximate the error degrees of freedom, particularly
when missing data occur (Fai & Cornelius 1996; Spilke
et al. 2005). Studies by Kenward& Roger (1997, 2009),
Gomez et al. (2005) and Schaalje et al. (2002)
demonstrate that the validity of tests depends on
the method chosen, the underlying covariance model
and its parameter values, the parameterization of
the model and the sample size. When using a spatial
add-on component in the analysis of field trials,
however, the data structures are not directly compa-
rable, so that results of these studies do not apply. In
field trials, the option to fit a spatial correlation
structure does not follow from the randomization
theory, but it is justified by the commonly observed
similarity of adjacent plots across the whole trial field
or parts thereof, e.g. within blocks, due to biotic and
abiotic effects.
So far, little has been published on the control of the

Type I error and the power of the t- and F-tests using
the modifications in (ii) for spatial covariance struc-
tures in the context of field trials. For the spherical and
exponential models with different parameter values
and two trial designs with complete blocks, Hu et al.
(2006) showed by simulation that the SW method
generally yields more valid test results than the KR
method. In particular, when no nugget was present,
bias in estimates of standard errors of a difference
(S.E.D.) obtained by the KR method was substantial.
Spilke et al. (2010) simulated split-plot designs
assuming an exponential covariance model with
nugget effect and/or large-scale trend effects. Here,
the KR1 method outperformed the SW method. In
contrast to Hu et al. (2006), Spilke et al. (2010)
combined each simulated random field with a newly
randomized design, so that the results refer to an
average over all randomizations. The comparison
of the corrected Akaike information criterion (AICC;
Hurvich & Tsai 1989) and the Bayesian information
criterion (BIC, Schwarz 1978) as a selection criterion
did not lead to a clear preference of one criterion over
the other. Using AICC, Richter & Kroschewski (2012)
showed in simulated experiments with four and ten
treatments projected onto uniformity trial data, that
trial geometry, position of the trial area and the

randomization layout influence the outcome of
model selection. Properties of t- and F-tests were
analysed for several analysis models and models best-
fitting according to AICC, and using the SW or KR1
methods. As the true underlying covariance model
in the uniformity trials was not known, the causes of
the observed biases in S.E.D. and the partial lack of
Type I error control remained elusive.

The present paper reports results on an experiment
with sugar beet that illustrates the pros and cons
of using spatial add-on components in the analysis
and shows that the various modifications may yield
contrasting results, leaving the user with the problem
of identifying the best method. For this purpose,
simulations are required. Therefore, in the present
paper, problems (i) and (ii) were investigated by
simulation for experiments with 10 or 30 treatments
for typical dimensions of plots and complete and
incomplete blocks. The analyses only considered
models without nugget effect, because according to
simulations by Hu et al. (2006) models without nugget
may be problematic in terms of bias. Moreover, several
authors reported that inclusion of a nugget is often not
necessary for field trials (Besag & Kempton 1986;
Zimmerman & Harville 1991; Schabenberger & Pierce
2002; Richter & Kroschewski 2012). But other authors
reported analyses where addition of a nugget led to a
better model fit (Piepho & Williams 2010), suggesting
that the need of a nugget effect is data-dependent and
possibly dependent on the spatial covariance model.
Expanding on previous results in other publications,
the current analyses focused on the following issues:

. Assessment of bias of S.E.D. estimates and empirical
Type I error rate at a nominal significance level of
α=0·05 for t- and F-tests using the SW-, KR- and KR1
methods and considering all combinations of
simulation and analysis model.

. Performance of t- and F-tests for the best-fitting
models and discussion in relation to the chosen
model selection criterion.

. Power analysis assuming spatial models in com-
parison with models for designs with complete and
incomplete blocks. The latter comparison is of
particular interest, because with these designs the
model selection problem does not arise, unless
spatial model components are used.

Results on the KR2 method are also reported briefly.
More detailed results are presented in the Supple-
mental Material (available at: http://journals.cambridge.
org/AGS).
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EXAMPLE

A three-factorial sugar beet experiment was conducted
to assess the effects of variety (varieties 1–3),
N-fertilization (0, 80 and 120 kg N/ha) and a growth
enhancer (with and without) on corrected sugar yield
(t/ha). The experiment was laid out in four randomized
complete blocks. The plot size was 3×8m2. Only the
three central crop rows were harvested. The field
layout was a grid of four rows and 18 columns with
rows corresponding to blocks. This experiment was
analysed using the MIXED and GLIMMIX procedures
of the SAS System (Version 9.3 /SAS/STAT 12.1). The
following models were fitted (all with fixed block
effects): baseline model B-RCB and 12 spatial models
(isotropic and anisotropic models, with and without
nugget effect, with spatial correlations either confined
within blocks or extending across the whole exper-
iment) using the default starting values for the variance
parameters. For three models, numerical problems
occurred, because the iterative fitting algorithm did not
converge. The best-fitting model was the power model
without nugget effect and correlation extending across
the whole experiment (henceforth referred to as PM;
Fig. 1) with estimated parameters σ̂2 = 0·5342and ρ̂ =
0·7956. The AICC-value was 133·8, whereas that for
B-RCB was 139·9. A likelihood-ratio test (LRT) further
indicated a significantly better fit of the power model
(P<0·01). The power model was analysed with the
four approximation methods SW, KR, KR1 and KR2. In
the example, the approximated degrees of freedom of
KR, KR1 and KR2 were identical and different from
SW for F-tests. For the t-tests, there were no differences
in the degrees of freedom between methods (Tables 1
and 2). For all main effects and the interactions, an
F-test was performed. A t-test was only done for
varieties and fertilizer levels, because the growth
enhancer showed no effects and all interactions were
non-significant. The improved fit of the power model
compared with the baseline model meant that the
P-values of F- and t-tests (Tables 1 and 2) for several
effects were reduced. There are notable differences
between the four methods, so the user is left with the
problem of choice. This is particularly true for the
comparison of the second and third N-fertilizer
levels (N2 and N3), where the p-value was either
below or above the nominal significance level of 0·05.
Whether the use of spatial models for analysis can be
recommended and if so, which method of approxi-
mation is preferable depends on the degree of control
of the nominal significance level (often set at 0·05;

the same practice is followed in the present paper).
Assuming a satisfactory control of the Type I error rate,
a smaller P-value would correspond to a higher power
for a given comparison. Whether or not this is the case
cannot be decided based on a single experiment,
but requires extensive simulation.

SIMULATIONS

All simulations and analyses were performed with
SAS (Version 9.3/STAT 12.1). A complete overview on
the simulation and analysis models including the
used abbreviations is given in Fig. 1. Designs that are
commonly used in field trials were assumed, i.e. trials
with t=10 and 30 treatments with r=4 replicates. The
plot size was 2×8m2. Plots of a complete replicate
were located side-by-side in the same row of plots.
Replicates were arranged in separate rows, so that the
trial size was 20×32m2 or 60×32m2.

For the whole trial area, 10000 random fields were
simulated according to the baseline model and three
spatial models – spherical, Gaussian and power –

assuming a residual variance of σ2=200 throughout.
For each of the spatial models, six different values were
considered for the range parameters (Fig. 1), spanning
awide range of correlation structures. For theGaussian
model and designs with 10 or 30 treatments, different
maximum values of the range parameter (A+=10 and
A+=7, respectively) were selected, because for larger
values and given dimensions of the field and blocks the
variance–covariancematrix R to be used for simulating
the data either became non-positive definite or the
parameter estimation was associated with substantial
convergence problems.

The power model is equivalent to the exponential
model Cov(d )=σ2exp(–d/A+) with A+=–1/log(ρ),
when 0<ρ<1. Better convergence properties were
observed with the power model and so this was
preferred in simulations.

The following trial designs were projected onto
10000 simulated fields each:

. Designs with randomized complete blocks for t=10
and 30, each of which was randomized 10000
times.

. Resolvable incomplete block designs, generated
using CycDesigN 4·1 (Whitaker et al. 2009) and
randomized 10000 times. For t=10, an incomplete
block design with k=five plots per block and an
average efficiency factor of E=0·866 was generated;

1190 C. Richter et al.

https://doi.org/10.1017/S0021859614000823 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859614000823


for t=30 a design with k=5 (E=0·805) and a design
with k=10 (E=0·915) was constructed.

Every randomized plan was combined with a
random field, yielding 10000 simulated trials.
In all simulations, effects for the four complete

replicates were set to 8, 24, 40 and 56. For the
treatment effects, four variations to the simulation

scheme were considered, corresponding to the fol-
lowing objectives:

. (T10-H0) for t=10: all 45 treatment differences were
zero to analyse bias of S.E.D. estimates and control of
the nominal Type I error rate of t- and F-tests;

. (T10-HA) for t=10: three treatment effects were
zero and the others were 1·2, . . ., 8·4 (1·2), so that

Basis model

( )2 1 0σ ⋅ =d

Spherical model

( )
3

2 3 1
1 1

2 2
σ ⋅ − ⋅ + ⋅ ⋅ ≤

   
     

d d
d A

A A

Gaussian model

*2

2 
 
  

−

σ ⋅

d
A

e

Power model

2σ ⋅ ρd

Correlation Best
A* d = 2 d = 8      exp.*
(10 0·961 0·527 GM) †
(7 0·922 0·271 GM) †
5 0·852 0·077 GM/gm
4 0·779 0·018 gm
3 0·641 0 gm
2 0·368 0 gm
1 0·018 0 B-RCB

Designs and definition of treatment effects

Randomized complete block design (r = 4) with

t = 10 (T10-H0, T10-HA)

t = 30 (T30-H0, T30-HA)

Randomized incomplete block design (r = 4) with

t = 10 and k = 5 (T10-H0, T10-HA)

t = 30 and k = 5 and k = 10 (T30-H0, T30-HA)

Analysis models

Basis (complete block) B-RCB

Spherical (subject=intercept) SM ‡

Spherical (subject=block) sm ‡

Gaussian (subject=intercept) GM ‡

Gaussian (subject=block) gm ‡

Power (subject=intercept) PM ‡

Power (subject=block) pm ‡

Basis (complete block) B-RCB

Basis (incomplete block) B-IB §

Spherical (subject=intercept) SM ‡

Spherical (subject=block) sm ‡

Gaussian (subject=intercept) GM ‡

Gaussian (subject=block) gm ‡

Power (subject=intercept) PM ‡

Power (subject=block) pm ‡

Each with six range parameters

Correlation Best
A d = 2 d = 8 exp.*
600 0·995 0·980 SM
200 0·985 0·940 SM
20 0·850 0·443 SM
6 0·519 0 sm
4 0·313 0 sm
2·5 0·056 0 B-RCB

Correlation Best
ρ d = 2 d = 8      exp.*
0·98 0·960 0·851 PM
0·95 0·903 0·663 PM
0·90 0·810 0·430 PM
0·80 0·640 0·168 PM/pm
0·35 0·122 0 pm/B-RCB
0·20 0·040 0 B-RCB

Analysis models

Simulated spatial covariance structures Cov(d)

Fig. 1. Overview of simulation models and analysis models. r=number of replicates, t=number of treatments, k=number
of treatments per incomplete block. T10-H0, T10-HA, T30-H0, T30-HA definition of treatment effects (see text). * Expected
best-fitted analysis model. †A+=10 for 10 treatments; A+=7 for 30 treatments. ‡Analysed with SW, KR, KR1 and KR2.
§ Analysed with SW and KR=KR1=KR2.

Spatial correlations in agricultural field trials 1191

https://doi.org/10.1017/S0021859614000823 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859614000823


treatment differences were staggered according
to Δ=0, 1·2, . . ., 8·4 (1·2) for analysis of power;

. (T30-H0) for t=30: all 435 treatment differences
were zero with the same analysis aim as for (T10-
H0);

. (T30-HA) for t=30: with the chosen treatment
effects (7 times 0, 2 times 1·2, 2·4, 3·6 and 4·8, 3
times 6·0, 5 times 7·2 and 7 times 8·4), so that 59
treatment differences were equal to zero and 376
differences were staggered according to Δ=1·2, . . .,
8·4 (1·2) for assessments analogous to (T10-HA).

Each simulated trial with complete blocks was
analysed using a linear model with fixed effects for
treatment and replicate and random residual effects
following the baseline model as well as the Gaussian,
power and spherical models. For spatial models, two
alternatives were considered: correlation expanded
across the whole field (option subject= intercept in
SAS, yielding a single subject) or only across plots in
the same block (option subject=block, yielding
r=four subjects). Each of these analyses was done
by the SW, KR, KR1 and KR2 methods. Simulated
trials with incomplete blocks were analysed with the
same models. In addition, these data were analysed
using a model with fixed replicate and treatment
effects and a random effect for incomplete blocks
(Fig. 1, analysis model B-IB). This approach implied
that observations of the same block had a constant
covariance not depending on spatial distance, while
observations from different blocks were independent.
In this case, the covariance structure was intrinsically
linear (Kenward & Roger 2009), so that the KR, KR1
and KR2 methods yielded the same results. Analyses
with the SW, KR and KR1 methods were performed
using the MIXED procedure of the SAS System,
employing the REML-method without provision of
starting values or bounds for the variance parameters.
These three methods were also implemented in
the GLIMMIX procedure. The KR2 method was only
implemented in the GLIMMIX procedure. GLIMMIX
and MIXED employ different fitting algorithms
(GLIMMIX uses a quasi-Newton algorithm and
MIXED a ridge-stabilized Newton–Raphson algo-
rithm) and convergence criteria. The different algo-
rithms often yield identical results (for example in the
sugar beet experiment), but in some cases conver-
gence properties and results may differ. For a given
approximation method, neither a variation of conver-
gence criteria nor the selection of different fitting
algorithms led to identical results for both proceduresTa
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in all simulation runs. The main focus of the
present paper will be on the results obtained
with MIXED, because this procedure yielded
slightly better results in terms of bias of S.E.D. estimates
and the control of the nominal Type I error rate for
t-tests (checked for KR1). The direct comparison
of the KR2 and KR1 methods, controlling for
the optimization methods, was only possible in
GLIMMIX, which implements both methods. The
results of that comparison are reported here only
briefly. More details can be found in the Supplemental
Material (available at: http://journals.cambridge.org/
AGS).

For each simulated trial, the best-fitting model was
selected by AICC because Burnham & Anderson
(1998) recommended this criterion for trials with a
ratio between sample size and number of variance
parameters smaller than 40. For a larger ratio, the
AICC approaches the usual Akaike information
criterion (AIC; Akaike 1973). If the best-fitting model
was a spatial model, it was subsequently compared to
B-RCB by a LRT. When the best spatial model was
not significantly better than B-RCB according to a
LRT, the B-RCB model was selected as the best model.
Similarly, the B-RCB model was selected when no
spatial model converged. When several spatial
models had the same smallest AICC and were
significantly better than the baseline model by a
LRT, then the simulation model was virtually always
among the tied best models. In these cases, the
simulation model was declared as the best one. This
approach was modified only in case of a simulated
power model and a tied first rank for the power and
spherical models. Here, the spherical model was
selected as the best model, because the power model
frequently caused numerical problems in the sub-
sequent significance tests (for details see the Results
section). Thus, for every simulated experiment there
was a selected best analysis model that is independent
of the approximation method and hence of the
resulting parameter estimates and significance tests.
The number of times out of 10000 runs an analysis
model was selected as the best one for a given
simulation model under T10-H0 and T30-H0 was
determined.

Depending on the combination of simulation
and analysis model as well as on the approximation
method, therewas a varying number of simulation runs
with convergence problems, which were excluded
from final summaries. In addition, simulation runs
meeting at least one of the following conditions wereTa
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excluded: (i) The F-value for the global null hypothesis
tended to infinity, corresponding to a numerically
exact P-value of zero; (ii) for at least one treatment
comparison, the t-value was reported as plus or minus
infinity, meaning the S.E.D. was reported as an exact
zero; (iii) in the analysis according to PM or pm, the
estimate of ρ was close to ±1 (1− ρ̂

∣∣ ∣∣ , 10−4); and (iv)
the P-value of the F-test was nearly 1 (1–P<5×10−8).
In most of the excluded cases, more than one of these
conditions was met. The exclusion of these cases
meant that the assessment of bias of S.E.D. estimates as
well as of the empirical Type I error rates were based
on 10000 simulation runs or less. The total number of
runs among the 10000 that were used for final
assessment will be referred to as effective number
of runs.

The bias of S.E.D. estimates was assessed according
to

bias of s.e.d. (%) = (S.E.D.est − S.E.D.obs)/S.E.D.obs

× 100

where S.E.D.obs is the square root of the mean variance
of all estimated treatment differences and S.E.D.est the
square root of the mean-estimated variances of the
treatment differences, in both cases averaged over
all effective number of runs and all treatment
comparisons.

In addition, for every simulation model the bias of
the S.E.D. and the empirical Type I error rate for the best-
fitting model were assessed. Again, the effective
number of runs was 10000 or less.

For the t-test, the power analyses were conducted
under T10-HA and T30-HA, but are meaningful
only if the simulations under the corresponding null
hypothesis yielded control of the nominal Type I error
rate according to a binomial test. Thus, when the
empirical rejection rate was contained in the interval

k0·05+ 1·96×
�����������������������������

0·05× (1− 0·05)
effective number of runs

√
l, the con-

trol was considered to be satisfactory.

RESULTS

For trials laid out in complete or incomplete blocks,
analysis according to B-RCB or by spatial models
yielded similar results. Therefore, only results for
complete blocks are reported here in detail, while for
incomplete blocks only results for the B-IB model are
reported. The following results were obtained with the
MIXED procedure.

Agreement between simulation model and
best-fitting model

A model selection strategy is successful if the true
(simulated) model is correctly identified. Relative
merits of models with correlation extending across
the whole field and models with correlations restricted
within blocks were expected to depend on the
underlying range parameter and thus on the strength
of correlation. In particular, a transition to the
baseline model was expected for weak correlations
for d=2 (Fig. 1). Table 3 shows the relative frequen-
cy of selected models based on simulations for
T10-H0 and T30-H0 for trials with complete
blocks. For simulations under T10-HA and T30-HA,
the results were essentially identical (the maximum
deviation compared to Table 3 was 1·5%). Results for
trials with incomplete blocks are included in aggre-
gated form.

For the Gaussian model the agreement between
simulated and best-fitting model for t=10 and t=30
was good.When the true model was the power model,
then with t=10 models SM and sm were preferentially
selected, whereas for t=30 the PM and pm models
were selected more often. For the spherical model
with t=10 and A520, the frequency of correct
selections was modest. When the range parameter
was smaller, the model B-RCB was most frequently
selected. With t=30, correct selection occurred only
when A5200, while for a smaller range models PM
and gm and for A42·5 B-RCB were preferred in
model selection. All results agree in that with decreas-
ing covariance there was an increasing tendency to
favour the baseline model B-RCB. The baseline model
itself was correctly selected in 96% (t=10) and 97%
(t=30) of the cases. Overall, the Gaussian model was
more often selected correctly than the power and
spherical models.

For incomplete blocks and a model choice between
B-RCB, B-IB and spatial models, the B-IB model was
rarely selected. For t=30 the proportion was some-
what higher for k=5 than for k=10, because a constant
covariance is a more realistic assumption for smaller
blocks.

When there was only a choice between B-RCB
and B-IB and simulation was with incomplete
blocks, then model fit with B-IB was generally
better when correlations are strong. This finding
was particularly true for t=30 and was more pro-
nounced with k=5 than with k=10 (results not
shown).
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Bias of estimated standard error of a difference

Table 4 shows that the bias of S.E.D. estimates
depended on the combination of simulation and
analysis model, the value of the range parameter, the
number of treatments and the method for adjusting t-
and F-tests (SW, KR and KR1). Results for the range
parameter values not shown in Table 4 followed the
same trend.
When simulation and analysis model agreed,

a relatively small bias was expected. But the current
results show that this was not generally the case:

. For the spherical model and analysis according
to SM and sm, for all A520 the bias was minimal.
As A decreased, bias became increasingly negative
for SM. For t=30 and SM results were less
favourable than for t=10. When analysing accord-
ing to sm with t=10, the negative tendencies were
milder than for SM, and for t=30 starting from A44
a bias was practically non-existent. For SW, KR and
KR1 biases were comparable in magnitude.

. For the Gaussian model, biases for t=30 were
considerably smaller than for t=10 most of the time.
With t=10, SW entailed slight negative biases,
while for KR1 the bias was slightly positive. The
results for GM and gm were very similar.

. The power model in conjunction with KR showed
extreme biases, more severely so for t=10 than for
t=30. For t=30, the differences between SW and
KR1 were minor.

Some noteworthy results when simulation and
analysis model did not coincide are now discussed
briefly:

. In general, only a small bias was observed for t=10
with KR1 and for t=30 with all three methods in
case of weak correlation. This was not the case for
analysis according to SM (t=10 and 30) and sm
(t=10).

. When the true model was spherical or the power
model and analysis was done by GM, results were
very similar. The negative bias with strong correla-
tions became smaller with decreasing correlation for
all three methods, and with KR turned positive or
vanished altogether, as it did with KR1. With large
correlations, bias for t=30 was more pronounced
than with t=10. Analysis by gm yielded nearly
identical results as GM.

. When analysing the spherical model with models
PM or pm, biases showed similar values as with the
simulated power model.

. For the Gaussian model, severe positive biases
occurred for range parameter values A+5 4 and
analysis by SM, sm, PM or pm with all methods.

. For incomplete block designs, analyses by spatial
models yielded similar results as for complete
block designs. When analysing by B-IB combined
with SW, the bias ranged from –2·2 to –0·26% and
with KR (= KR1) it ranged from –0·4 to 0·9% (results
not shown).

. For the analysis according to B-RCB, the bias was
between –0·5 and +0·4% for all simulation models
(results not shown).

Control of the nominal Type I error rate for t- and
F-tests

The biases reported in Table 4 are marked when the
nominal Type I error rate was controlled according to
the binomial test. The maximum of the effective
number of runs on which the binomial test was
based was 10000 and for T10-H0 the minimum
number was 1911 (SW and KR1) and 1139 (KR),
respectively, and for T30-H0 the minimum was 6859
(SW and KR1) and 1691 (KR), respectively. The largest
numbers of runs that did not converge or were
excluded according to the criteria (i)–(iv) occurred
when the analysis was done according to PM or pm,
regardless of the simulation model.

When the bias of the S.E.D. estimate was small, the
empirical Type I error rate tended to be controlled at
the nominal level. Negative bias in S.E.D. tended to be
associated with liberal Type I error rates, and similarly,
positive bias in S.E.D. was associated with conservative
Type I error rates. The association between bias
in S.E.D. and Type I error rates is apparent from
Table 4. When simulation and analysis models
coincided, there was almost always (the spherical
model was an exception) one approximation that
guaranteed control of the Type I error rate of t-test.
For the F-test, error control was obviously more
problematic than with the t-test (Table 4). There was
no case where the F-test controlled the nominal level,
but the t-test did not.

In Figs 2 and 3, empirical Type I error rates are
depicted for t=30 for the t-and F-tests based on trials
with complete blocks. The F-test consistently showed
stronger departures from the nominal level than the t-
test. Results for KR1 are now considered in detail. For
t=30 the t-test was most conservative with a rejection
rate of 0·001 (bias of S.E.D. 66·7%), and most liberal
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Table 3. Best-fitting models according to AICC and LRT (%) in 10000 runs of each simulation model. Bold faced= largest observed percentage,
grey= largest expected percentage according to Fig. 1. Empty cells represent a percentage of 0%

Simulation
model t Range

Complete block designs Incomplete block designs

k=5 k=10

Analysis models

B-RCB SM sm GM gm PM pm B-RCB B-IB
Σ spatial
models B-RCB B-IB

Σ spatial
models

Spherical 10 600 4·8 53·7 14·8 6·2 2·6 12·4 5·5 3·9 3·0 93·1
200 4·6 53·4 14·9 6·2 2·7 12·8 5·4 4·0 3·1 92·9
20 5·2 47·9 18·3 6·9 3·2 12·7 5·8 3·9 3·2 92·9
6 28·7 4·9 18·7 12·2 19·2 7·9 8·4 25·8 5·2 69·0
4 67·5 1·0 6·3 5·2 11·7 4·6 3·7 62·4 6·6 31·0
2·5 94·0 0·2 1·2 0·8 1·9 1·0 0·9 90·0 4·5 5·5

30 600 53·4 3·7 0·1 38·9 3·9 100·0 100·0
200 51·9 3·7 0·1 40·5 3·8 100·0 100·0
20 8·0 16·3 0·2 0·1 65·8 9·6 100·0 100·0
6 0·3 7·8 15·1 37·3 18·0 21·5 0·2 0·6 99·2 0·4 0·4 99·2
4 21·9 0·2 2·8 50·4 12·6 12·1 19·4 5·5 75·1 19·8 3·6 76·6
2·5 92·2 4·0 1·7 2·1 85·4 7·7 6·9 86·3 6·2 7·5

Gaussian 10 10 92·1 7·9 100·0
5 0·1 55·4 44·5 100·0
4 0·1 1·5 1·6 48·8 47·8 0·1 0·1 0·1 0·1 99·8
3 4·0 5·2 9·6 35·7 40·9 2·0 2·6 3·6 1·1 95·3
2 56·8 1·5 8·5 7·7 15·2 5·6 4·7 52·3 6·5 41·2
1 95·5 0·1 0·9 0·6 1·4 0·8 0·7 91·9 3·9 4·2

30 7 87·1 12·9 100·0 100·0
5 61·2 38·8 100·0 100·0
4 52·8 47·2 100·0 100·0
3 1·4 48·1 49·1 0·6 0·8 100·0 100·0
2 9·7 0·7 6·2 57·6 13·3 12·5 8·4 3·2 88·4 8·7 2·1 89·2
1 95·8 2·2 0·9 1·1 89·8 6·4 3·8 90·3 5·5 4·2
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with a rejection rate of 0·131 (bias of S.E.D. –21·6%).
For the F-test, the rejection rate ranged between 0 and
0·6292.

For t=10 the empirical Type I error rates of the
t-test ranged from 0·001 (bias equal to 87·6%) to 0·095
(bias equal to –14·4%) and for the F-test from 0 to
0·198.

Independently of the simulation model, analysis by
the B-RCB model using a t-test controlled the Type I
error for both t=10 and 30. The same was true for the
F-test and t=30, while for t=10, this was only the case
for weaker correlations (Table 5). For higher corre-
lation the tests were conservative. Analysis of incom-
plete block designs according to B-IB generally
resulted in good control of the nominal Type I error
rate for the t-test with KR (=KR1) (Table 5). For the
F-test with t=10, this tended to be the case for
intermediate correlation, while good control was
generally achieved for t=30.

The following section discusses to what degree the
best-fitting model controlled the Type I error rate and
will also investigate whether the same adjustment
method (SW, KR or KR1) can be used for all analysis
models. If one considers the three analysis models SM
(sm), GM (gm) and PM (pm) and the three methods
SW, KR and KR1, then there are 33=27 possible
choices for analysis. Checking all 27 possibilities, it
was found that with nearly all simulated cases the
Type I error rate was controlled well by the best-fitting
model, if for all analysis models the KR1 method was
used. In these analyses, the number of effective runs
under KR1 was equal or close to 10000 in all cases
(minimal effective number of runs was 9982 for t=30
and the power model with ρ=0·98). With t=10 and
simulation of the spherical or power model, the best-
fitting models showed slightly excessive Type I error
rates for both the t- and F-tests (Table 5). The maximum
error rates were obtained for intermediate correlations.
With the Gaussian model, better results were achieved
for the t-test, which, again, tended to become liberal
for intermediate correlations. The F-test showed both
liberal and conservative behaviour, and in no casewas
the Type I error rate controlled at the nominal level. For
t=30, Type I error control of the t-test was very good,
and only slightly liberal behaviour was observed for
spherical and power models when correlation was
intermediate, but this was not as pronounced as for
t=10. For the F-test, results for t=30 with the spherical
and powermodels were better than for t=10, but again
not fully satisfactory; results for the Gaussian model
were often worse.Po
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Table 4. Bias of estimates of mean standard error of a treatment difference (S.E.D.) (%) in designs with complete blocks for all combinations of simulation
and analysis model for selected values of range parameters. Control of the nominal Type I error rate with approximated denominator D.F. for t-test and
for t- and F-tests . Approximation based on Satterthwaite (1941) – SW, on Kenward & Roger (1997) – KR and on Kenward & Roger (2009) – KR1

* Range=10 for t=10; range=7 for t=30.
† x: bias>100%.
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Power analysis for t-test

Power analysis is reported in detail for t=30 and
KR1, because in this case therewas usually satisfactory
Type I error rate control when using the best-
fitting model (Fig. 4). When there was not a sufficient
control, power was computed using significance
thresholds derived from the simulations under the
null hypothesis (these cases are marked as ‘corrected’
in Fig. 4).
For B-RCB the power was generally the smallest

and it was the highest for the best-fitting model.
Analysis by B-IB was intermediate between these two
extremes, and power was higher for k=5 than for
k=10. The larger the spatial correlation, the more
marked was the power gain from spatial analysis and
also of an analysis by B-IB. Themost pronounced gains
were found when datawere simulated by the Gaussian
model, followed by the power and spherical models.
For t=10, in most cases only the corrected power
could be interpreted, because control of the Type I
error rate was not acceptable. The same ranking of
analysis models was found, but the differences were

smaller: the spatial models had slightly lower power
and B-RCB a slightly higher power than for t=30.

DISCUSSION

Role of rejection rules for simulation runs

The rejection rules used in the current analysis
became effective with varying frequency for the
different combinations of simulation and analysis
model as well as the approximation methods SW, KR
and KR1. In some cases, they had a pronounced effect
on the reduction of bias of S.E.D. estimates and the
Type I error control. It is useful to check for an obtained
model fit whether any of the criteria (i)–(iv) is met,
because these identify situations that are statistically
questionable. This can be illustrated for criterion (iv),
which played an important role for analyses by PM and
pm, when the estimate of ρ fell close to the boundary of
the parameter space. When ρ̂ is close to 1 in the power
model, this implies a strong correlation, while ρ̂ = 1
implies a confounding of the spatial component
with the block effect, corresponding to a lack of spatial

Fig. 2. Empirical Type I error rates of t-test with three adjusting methods (SW, KR and KR1) for t=30 treatments.

Spatial correlations in agricultural field trials 1199

https://doi.org/10.1017/S0021859614000823 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859614000823


correlation within blocks (Piepho et al. 2008). The
decision in favour of one of these two opposing
possibilities depends on the numerical precision, but
has contrasting interpretations. The effect of this
criterion was particularly important, when stronger
correlations were present and analysis was by PM or
pm with KR: For all simulation models the originally
observed bias was larger than 104% with the maximal
range, but dropped to values between 130 and 450%
for t =10 and 36 to 92% for t=30. Also with KR1
substantial bias reductions were observed. These
observations were the motivation to give preference
to sm or SM in case of a tied first rank between PM and
SM or between pm and sm according to AICC and LRT
(see the Section on simulations). These ties occurred
mostly when ρ̂ = 1. The current simulations did not
deviate from the default settings of the optimization
routines in order not to rule out a priori any potentially
critical cases that would otherwise have gone un-
noticed. When analysing by PM or pm, then indepen-
dently of the simulation model the criterion (iv) was
often in agreement with criteria (i)–(iii). Based on the

current results it can be recommended to impose the
boundary constraint ρ̂

∣∣ ∣∣,0·9999 during optimization
of the restricted log-likelihood.

In the current assessment of KR1, the effect of
replacing a best-fitting model that was excluded
according to our criteria with the best-fitting model
that passed all criteria was checked. Since there were
only 18 rejections, their replacement had virtually no
effect on the distribution of the best-fitting models.

Bias of estimates of standard errors of a difference
and of parameters of the covariance structure

The degree of positive or negative bias for S.E.D.
depends on the combination of simulation and
analysis model and on the value of the range
parameter. The most extreme biases occur when the
simulation model has specific features that cannot be
captured by the analysis model. Two such features will
be considered in more detail.

(1) While differences in bias are relatively small
between PM and pm as well as between GM and gm

Fig. 3. Empirical Type I error rates of F-test with three adjusting methods (SW, KR and KR1) for t=30 treatments.
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Table 5. Empirical Type I error rates for the best-fitting models using the KR1 method compared with analysis according to B-RCB and B-IB for all
simulation models. Bold faced: nominal Type I error rate of 0·05 not controlled according to binomial test

Simulation
model

t=10 t=30

Complete block designs
Incomplete block

designs Complete block designs Incomplete block designs

Analysis model

B-RCB
Best-fitting
model* B-IB k=5 B-RCB

Best-fitting
model* B-IB k=5 B-IB k=10

Range t-test F-test t-test F-test t-test† F-test† t-test F-test t-test F-test t-test† F-test† t-test† F-test†

Spherical 600 0·049 0·042 0·062 0·072 0·049 0·044 0·050 0·049 0·050 0·048 0·050 0·051 0·050 0·050
200 0·049 0·042 0·062 0·073 0·049 0·045 0·049 0·050 0·050 0·049 0·050 0·050 0·051 0·050
20 0·049 0·043 0·064 0·081 0·049 0·047 0·050 0·047 0·047 0·042 0·050 0·050 0·050 0·050
6 0·049 0·049 0·071 0·088 0·049 0·053 0·050 0·048 0·056 0·076 0·050 0·051 0·050 0·050
4 0·049 0·049 0·065 0·079 0·050 0·055 0·050 0·047 0·055 0·063 0·051 0·052 0·050 0·049

2·5 0·050 0·050 0·055 0·066 0·050 0·055 0·050 0·050 0·052 0·061 0·050 0·052 0·050 0·050

Gaussian 10/7‡ 0·046 0·039 0·047 0·042 0·047 0·042 0·050 0·051 0·050 0·021 0·051 0·048 0·050 0·044
5 0·048 0·041 0·046 0·032 0·048 0·042 0·050 0·049 0·050 0·022 0·051 0·050 0·049 0·043
4 0·049 0·045 0·046 0·028 0·047 0·044 0·050 0·050 0·049 0·021 0·050 0·048 0·050 0·049
3 0·049 0·047 0·054 0·044 0·049 0·046 0·050 0·051 0·050 0·024 0·050 0·048 0·050 0·051
2 0·049 0·050 0·067 0·082 0·050 0·053 0·050 0·047 0·054 0·056 0·051 0·051 0·050 0·055
1 0·050 0·050 0·054 0·063 0·050 0·055 0·050 0·050 0·051 0·058 0·050 0·052 0·050 0·050

Power 0·98 0·049 0·042 0·064 0·080 0·049 0·045 0·049 0·051 0·050 0·052 0·050 0·050 0·051 0·048
0·95 0·049 0·043 0·067 0·085 0·049 0·047 0·050 0·049 0·051 0·055 0·050 0·049 0·050 0·050
0·9 0·049 0·046 0·070 0·093 0·049 0·047 0·050 0·047 0·053 0·063 0·050 0·049 0·050 0·051
0·8 0·049 0·047 0·073 0·100 0·050 0·049 0·050 0·051 0·056 0·075 0·050 0·048 0·050 0·050

0·35 0·050 0·050 0·058 0·070 0·050 0·055 0·050 0·050 0·054 0·067 0·050 0·052 0·050 0·050
0·2 0·050 0·050 0·055 0·064 0·050 0·055 0·050 0·050 0·052 0·060 0·050 0·052 0·050 0·049

Basis 0·050 0·051 0·054 0·062 0·050 0·055 0·050 0·050 0·051 0·057 0·050 0·053 0·050 0·050

* Selected from the models B-RCB, SM, sm, GM, gm, PM and pm.
† Using the KR method (=KR1 method).
‡ Range=10 for t=10; range=7 for t=30.
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with all simulation models, the differences were more
marked between SM and sm in case of modest
correlation. In addition, when analysing by PM, pm,
GM, gm and sm, the bias tended to decrease with
decreasing correlation. This was not the case when
analysing by SM. These observed differences can be
explained as follows: Estimation by REML requires that
the first two partial derivates of the matrix V with
respect to the variance parameters exist. Kenward &
Roger (1997, 2009) pointed this out explicitly for KR,
KR1 and KR2. Differentiability holds for the Gaussian
and power models for distances d>0, but not for the
spherical model at d=A. Thus, biases and/or conver-
gence problems are to be expected for the spherical
model whenever the range A is smaller than the
maximal distance within a block or the whole
experiment. As is well known for the exponential
model (Zhang & Zimmerman 2005), the parameters of
the spherical model cannot be estimated without bias
and they cannot be meaningfully interpreted. Irvine
et al. (2007) showed for the exponential model that
the ratio of REML-estimators of the two parameters
is nearly unbiased with respect to the true ratio.

The current results showed the same for the spherical
model in the case of strong spatial correlation and
analysis according to SM or sm. This means that for
the exponential and spherical models the estimated
covariance function may be expanded or compressed
along the distance axis relative to the true covariance
function. When analysing by SM, a pronounced
expansion was observed, meaning that the critical
point d=A tended to be larger than the largest distance
within the trial area. But this did not allow represen-
tation of the weak correlations present for A46.
When analysing by sm, decreasing values of A led to
stronger compression, such that at A44 in more than
61% (t=10) and more than 97% (t=30) of simulation
runs, the range parameter was estimated as zero and
the estimate of σ2 was equal to that for B-RCB. Since
there is no bias for B-RCB, bias was also reduced for sm
compared with SM and bias vanishes for t=30. This
behaviour of SM and sm occurred irrespective of the
simulation model and the approximation method. In
order to also allow a transition to the baseline model
when using SM, it is useful to add a nugget effect. To
explore this point, a nugget for t=10 was exemplarily

Fig. 4. Power of the t-test as a function of treatment difference Δ for t=30 treatments. Analysis of simulated models
according to B-RCB, B-IB and best-fitting model using the KR1 method.
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added, simulating from the spherical and Gaussian
models with weak correlation and analysing according
to SM. Addition of the nugget substantially reduced
the bias for S.E.D., and with KR1 the t-test controlled the
nominal Type I error rate. When simulating from
the baseline model, for the F-test the empirical
rejection rate went down from 0·198 to 0·057. This
positive effect of inclusion of a nugget effect could
be demonstrated for analysis by SM only, and the
improvement seems to depend on the critical point
d=A and the dimensions of the experimental field.
In principle, one can generally include a nugget effect
σ2N in case of weak (or zero) correlations. The analysis
model would then be Cov(d )=σ2N + σ2 . f (d ) and
would coincide with the baseline model in case of
σ2=0. When correlation is high, presence of a nugget
effect often causes convergence problems.
The consistent estimation of the ratio of variance

and range parameters observed for the exponential
model by Irvine et al. (2007) could not be found for
the power model, because estimates ρ̂ 4 0 and ρ̂ = 1
frequently occurred, meaning that the estimated
covariance model did not always coincide with that
for the exponential model.
(2) In contrast to the other two models, the Gaussian

model has a point of inflexion, located at the spatial
distance dIP=A

+/
√
2. When analysing by either GM

or gm, the mean of observed estimates of A+ and σ2

and their ratio were close to the true values when
the correlation was high, whereas A+ was slightly
overestimated for weak correlations.
When data were generated from the power or

spherical models, both of which do not have a point
of inflexion, analysis by GM or gm shifted the inflexion
point in such a way, that dIP was within the smallest
distance between two plots, or nearly so. Even for
strong correlation the maximal estimated ranges were
smaller than the shortest distance to the neighbouring
block (8 m), such that results for GM and gm were
nearly identical. Estimates of σ2 were slightly above the
value obtained for the analysis according to B-RCB,
applying the equation σ̂2B−RCB = σ2 − Cov(d)CB, where
Cov(d)CB is the average covariance among plots in the
same complete block according to the simulation
model. The excess covariance compared to this
average covariance was captured by GM and gm,
leading to the negative bias observed.
Conversely, when data were simulated by the

Gaussian model, then with stronger correlation, the
models SM, sm, PM or pm were not able to represent
the sigmoidal shape of the covariance function. With

larger correlation this led to a high positive bias. With
A+<2·8 the value of dIP is smaller than 2. In this case,
biases were of the same order of magnitude as with
analysis of the spherical model by SM or sm and of the
power model by PM or pm when correlations were
comparable.

In comparison to the general tendencies, the
differences between the three approximations were
minor. Hu et al. (2006) compared the SW- and
KR-methods for specific contrasts exploiting the
correlation across the whole experimental field. In
accordance with the present results for the power
model, Hu et al. (2006) found that the exponential
model without nugget, combined with the KR method,
entailed biases of S.E.D.>100%. Similar results were
obtained for the spherical model without nugget,
which does not agreewith the current results. Based on
these findings, Hu et al. (2006) recommended the SW
method for models with and without nugget. Closer
scrutiny revealed that this discrepancy is due to the fact
that Hu et al. (2006) used the expected information
matrix (Fisher scoring), while in the current work the
observed information matrix (Newton–Raphson algor-
ithm) was used for maximizing the residual log-
likelihood. Hu et al. (2006) preferred Fisher scoring
because this led to better convergence behaviour
than the Newton–Raphson algorithm when their
simulation and analysis models contained a nugget
effect.

For the analysis by B-RCB and B-IB, a bias is virtually
non-existent, due to the averaging over 10000
randomizations, with the KR (=KR1=KR2 in this
case) showing slight advantages compared to SW.

Relation of model selection and control of Type I
error rate

Except for the spherical model where a nugget was
recommended, the Type I error rate of the t-test was
controlled by at least one of the three methods when
simulation and analysis model were the same. The fact
that this was also the case when the spatial correlation
was low and simulation and analysis model did not
agree can be explained by a frequent convergence of
these models to the baseline model. Scrutiny of the
best-fitting model showed in all cases, that the
empirical Type I error was largest for intermediate
values of the spatial correlation, sometimes even
significantly larger than the nominal rate of 0·05. In
view of this finding, the LRT was also considered for
model selection when models were nested, which
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favours the baseline model somewhat more often than
AICC. The expectation was that this would improve
Type I error control, but Table 5 shows that this was not
always the case. This raises the question if AICC should
be replaced with AIC or BIC. The penalty term of BIC is
defined as q × log(n), where q is the number of vari-
ance parameters and n is the ‘sample size’. In mixed
models it is not obvious, however, what the sample
size is, because observations are not stochastically
independent (Pauler 1998), and implementations in
software often use rather ad hoc definitions. For
example, when data are modelled to be independent
between blocks, then the MIXED procedure of SAS
sets n= r for the spatial models, where r is the number
of replicates, while for B-RCB it sets n=(t−1)(r−1),
where t is the number of treatments, as well as for
spatial models where correlation extends across
blocks. The current simulations show that with these
definitions, in almost all cases one of the models sm,
pm or gm was selected when using BIC for model
selection. Even when simulating from the baseline
model, this was not generally identified as the best-
fitting model, which adversely affected the empirical
Type I errors of the best-fitting model. The AIC tended
to favour spatial models more often than AICC.

As already reported by Richter & Kroschewski
(2012) for uniformity trials with t=10, the F-test did
not control the nominal level well.

Power analyses

With analysis according to B-RCB, the average
covariance within blocks is larger for t=10 than for
t=30 for all simulated spatial models, meaning that
σ̂2B−RCBwas smaller, on average, for t=10. Although the
error degrees of freedom for t=10 are smaller, the
power was larger than for t=30. Only when the spatial
correlation is weak (spherical model for A44,
Gaussian model for A+42, power model for
ρ40·35), do the larger degrees of freedom for t=30
lead to a slightly elevated power (+0·05) compared
with t=10.

Estimates of σ2 based on B-IB were approximately
equal to σ2 − Cov(d)IB as expected, where σ2=200
and Cov(d)IB is the mean covariance of plots in the
same incomplete block under the assumed simulation
model. From this it emerges that for t=30 power is
expected to be larger with k=5 than with k=10, and
that for B-IB power is generally larger than for B-RCB.
Comparing the ratio σ̂2B−IB/σ̂

2
B−RCBwith the efficiency of

the incomplete block design under study, one can
determine the point starting from which value of the
range parameter, for given σ2 and fixed plots and block
sizes and arrangements, a power gain is to be expected
from incomplete blocking as compared to complete
blocking. With the three incomplete block designs
considered in the present study, about the same
results were obtained, because efficiency factors do
not differ much. The correlations between neighbour-
ing plots (d=2) should be at least 0·52, 0·53 and 0·42,
which is relatively high. This corresponds to range
parameter values A56, A+52·5 and ρ50·65,
respectively. These values agree roughly with those
depicted in Fig. 4. When correlations become slightly
smaller, the spatial analyses are still at an advantage
compared with B-RCB and B-IB, but the edge is
marginal.

Standard errors of treatment means

Just as for treatment differences, treatment means are
also estimated without bias (Harville & Jeske 1992).
But there are often severe biases in the estimated S.E.M.
that are much larger than for S.E.D. Based on the current
simulation results, it may be assumed that while
estimates of S.E.D. benefit from the fact that estimates
of the ratio of covariance parameters are approxi-
mately unbiased, for S.E.M. the absolute values of the
parameter estimates are crucial, and these tend to be
more strongly biased. Only with simulation according
to the Gaussian model and analysis by GM or gm was
the bias small for S.E.M., because covariance-parameter
estimators are nearly unbiased. This means that
computation of confidence limits for treatment
means, as often found in the literature, is not to be
recommended, while confidence limits and tests for
differences are reliable.

Preliminary assessment of GLIMMIX compared with
MIXED and second-order Kenward–Roger method
compared with first-order Kenward–Roger method

Detailed results can be found in the Supplemental
Material (available at: http://http://journals.cambridge.
org/AGS): only a brief overview is given here. The
comparison of MIXED and GLIMMIX for KR1 showed
the influence of the numerical optimizationmethod on
convergence behaviour and results. The largest
difference was observed with simulation by the
Gaussian model for t=10 (A+=10) and t=30 (A+=7)
and analysis by GM and gm.WithMIXED and analysis
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by GM, a maximum of three runs did not converge,
while with GLIMMIX 54% (t=10) and 66% (t=30) of
all runs did not converge with the default settings;
similar behaviour was found for analysis by gm.
Despite these gross differences in the effective number
of runs, the bias for S.E.D. was comparable with both
procedures.With the other combinations of simulation
and analysis model the effective number of runs and
the calculated bias was more similar between both
procedures; in a few cases, however, differences in
bias estimates ranged up to 11·8% (t=30, simulation
by baseline model and analysis by sm). The reasonwas
that with analysis according to sm there was no
automatic transition to the baseline model for analysis
as with MIXED. In almost all instances where the bias
estimates differed bymore than 1%, the bias was larger
with GLIMMIX. Regarding the control of the nominal
Type I error rate with F- and t-tests, similar results were
obtained with GLIMMIX as those presented in Table 4
for t=10. With t=30 the control was slightly poorer
with GLIMMIX than with MIXED. The comparison of
KR1 and KR2 within GLIMMIX shows slight advan-
tages of KR2 in t-tests for t=10, but much less
favourable results in the F-test (instead of 13 combina-
tions of simulation and analysis model in case of KR1,
only for one combination was there a satisfactory
control of the Type I error rate). For t=30, results were
about the same with both procedures for the t-test,
whereas for the F-test the KR2 method was again
inferior.
The occasional differences in convergence behav-

iour between GLIMMIX and MIXED mean that
particularly in the case of stronger correlations,
different models were sometimes selected as best
models by GLIMMIX and by MIXED. Regarding the
Type I error control by KR1, both procedures yielded
quite similar results for the best-fitting model. Only in
the exceptional cases described above (simulation by
the Gaussian model, t=10 with A+=10 and t=30 with
A+=7) did use of GLIMMIX lead a conservative
empirical Type I error rate.
The comparison of KR1 and KR2 in GLIMMIX did

not suggest a clear advantage for KR2. This result is
somewhat unexpected, because Kenward & Roger
(2009) pointed out that the KR2 method is to be
preferred over the KR and KR1 method for nonlinear
covariance models, which includes spatial covariance
models. Further simulations comparing the KR1 and
KR2 methods are certainly needed to gain a broader
picture. Based on the current results, it is recom-
mended to use the KR1 method in MIXED.

CONCLUSIONS

Conclusions for the example

In the introductory sugar beet example the power
model PM was the best-fitting model among those
converging; the criteria (i)–(iv) did not hold for the
fitted PM model. In contrast to the simulations, the
‘true’model is not known here. It is therefore important
to make sure that the analysis strategy is such that the
best-fitting model controls the nominal Type I error
rate. This could be demonstrated for the t-test in case of
t=30 when using the KR1 method, while for t=10 the
tests tended to be on the liberal side. In the example
there were t=18 treatments. Hu et al. (2006) showed
for the SW and KR methods that even t=20 leads to a
notable improvement compared to t=10. It may
therefore be assumed that in the example, the control
of Type I error rate is also satisfactory for the t-test so
that results based on the KR1 method are reliable.
Often, pairwise t-tests are preceded by a global F-test.
But the F-test revealed relatively poor control of Type I
error when based on the best-fitting model, leaning
either to the liberal or the conservative side. It is
therefore advisable to perform such F-tests using the
baseline model (B-RCB) and switch to the best-fitting
spatial model only for the pairwise t-tests.

General remarks

The current results show that, independently of the
model for spatial correlation and the strength of
correlation, a randomized complete block design
and analysis according to B-RCB provide control of
the nominal Type I error for the t-test (for 10 and 30
treatments) and for the F-test (for 30 treatments). In case
of strong correlation and 10 treatments, the F-test tends
to be conservative. Similar results were found for
incomplete block designs and analysis by B-IB, the KR
method (=KR1=KR2 in this case) yielding slightly
better results than the SW method. When spatial
simulation and analysis model do not coincide, then
departures from the nominal Type I error rates may be
more marked depending on the method of adjustment,
which are larger for the F-test than for the t-test. For this
reason, the choice of model selection criterion as well
as the choice of candidate models is of paramount
importance. In contrast, it makes little difference
whether spatial correlation is modelled across the
whole experimental field or only for plots within the
same block (exceptions: SM and sm). When analysing
by SM or sm, it is recommended to check whether a
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nugget effect is needed. If the best-fitting model is
selected by AICC and LRT and the KR1method is used,
the nominal Type I error rate is well controlled most of
the time for the t-test in case of 30 treatments, while for
10 treatments both the t- and F-tests were on the liberal
side. The power analyses show that the gain from
spatial modelling can be substantial compared to a
baseline model with complete block effects in the case
of strong spatial correlation, and, to somewhat lesser
degree, also for a baseline model with incomplete
block effects. When correlations between neighbour-
ing plots were below 0·3, neither incomplete block
effects nor spatial models afforded any gain compared
to analysis based on a complete block model. In the
interpretation of results for incomplete blocks, it
should be kept in mind that no incomplete block
effects were simulated. The results show that incom-
plete block designs are capable of improving power
compared to complete blocks when there is spatial
correlation among plots.

In addition to the analyses considered in the present
paper for designs with incomplete blocks, one may, of
course, also combine random effects for incomplete
blocks with a spatial error model. Selected additional
simulations were performed (detailed results not
shown) to compare the combinedmodel with analyses
based on B-IB, a purely spatial model and B-RCB.With
stronger correlation, the combinedmodel was selected
as best in up to 10% of the cases based on AICC,
although no incomplete block effects were simulated.

Given that the true model is among the candidate
models, the current results suggest that in large trials
with a larger number of treatments, a t-test using the
KR1 method provides valid results for spatial models.
The uncertainty associated with model selection can
be alleviated somewhat by employing a more com-
prehensive class of spatial models, thus increasing the
chances that the true underlying model is close to at
least one of the candidate models. For example, the
Matérn model, which has an additional shape
parameter, provides additional flexibility, and it
encompasses the exponential and Gaussian models
as special cases (Matérn 1986; Haskard et al. 2007).
The convergence behaviour of this model may be
problematic, however, when no suitable starting
parameter values are supplied.

The current simulations indicate that in trials with a
smaller number of treatments there is a trend for tests to
be on the liberal side when a spatial model is assumed
in analysis. Based on the randomization theory, and
independently of the number of treatments, designs

with incomplete blocks and analysis by the baseline
model are a viable alternative that minimizes the
computational demand and yields valid tests in
conjunction with the KR (=KR1=KR2 in this case)
method, but at the cost of some loss in power,
particularly in case of a large number of treatments
and strong spatial correlation.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at http://journals.cambridge.org/AGS
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