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Abstract 

Tropical dry forests are of great importance for climate regulation, harbour 
biodiversity and sustain the livelihood of millions of people. Deforestation and 
degradation pose a global threat to tropical dry forests, creating a pressing need for 
monitoring and understanding changes in these ecosystems. Research over the last 
decades has increased our understanding of tropical deforestation tremendously, but   
knowledge of the patterns, extent and drivers of forest degradation in tropical dry 
forests is lacking. The overarching goal of this thesis was to advance the current 
understanding of forest degradation in the Dry Chaco by means of remote sensing. 
Specifically, using the Landsat archive, I characterized the disturbance history of the 
remaining Argentine Dry Chaco forest over three decades, assessed spatial and 
temporal patterns of disturbance agents in general as well as in relation to natural and 
anthropogenic determinants, and investigated the long-term effect of different agents 
on forest structure. The results of my analysis show that over 30 years large areas of 
the Argentine Dry Chaco (about 8%) were affected by disturbances linked to a variety 
of agents. My findings reveal a strong anthropogenic link to most types of disturbances, 
while also suggesting complex indirect influence of precipitation patterns, with forest 
disturbances being particularly widespread during drought years. The analyses of 
temporal patterns of different agents reveals trends in land-use practices over time, 
with new land uses emerging, such as silvopastoral systems, and old practices such as 
logging, affecting a fairly stable share of areas every year. Findings on the long-term 
impact of forest disturbances indicate that for the most widespread disturbances, 
forest structure shows little or no recovery over three decades, which suggests forest 
degradation affecting large areas. This thesis demonstrates that satellite time series 
have a high potential for robust and consistent characterization of forest dynamics 
related to degradation also in tropical dry forests, despite the complex conditions that 
tropical dry forest represent.  The maps, approaches and knowledge resulting from this 
thesis contribute to a better understanding of forest degradation in the Dry Chaco and 
can inform management strategies leading to a more effective conservation of tropical 
dry forests. 
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Zusammenfassung 

Tropische Trockenwälder sind von großer Bedeutung für die Klimaregulierung, 
beherbergen biologische Vielfalt und sichern den Lebensunterhalt von Millionen von 
Menschen. Entwaldung und Degradation stellen eine globale Bedrohung für diese 
OÖ kosysteme dar, weshalb es dringend notwendig ist, Veränderungen in tropischen 
Trockenwäldern zu überwachen und zu verstehen. Während die Forschung der letzten 
Jahrzehnte unser Verständnis über die Abholzung von Tropenwäldern enorm erweitert 
hat, fehlt es an Wissen über die Muster, das Ausmaß und die Ursachen der Degradation 
tropischer Trockenwälder. Das übergreifende Ziel dieser Arbeit war es, das derzeitige 
Verständnis der Walddegradation im Gran Chaco anhand von Fernerkundung zu 
verbessern. Konkret habe ich mit Hilfe des Landsat-Archivs die Störungsgeschichte des 
verbleibenden argentinischen Gran Chaco-Waldes über drei Jahrzehnte hinweg 
charakterisiert, die räumlichen und zeitlichen Muster der Störungsfaktoren im 
Allgemeinen und in Bezug auf natürliche und anthropogene Faktoren bewertet und die 
langfristigen Auswirkungen verschiedener Faktoren auf die Waldstruktur untersucht. 
Die Ergebnisse meiner Analyse zeigen, dass über 30 Jahre hinweg große Gebiete des 
argentinischen Gran Chaco (etwa 8 %) von Störungen betroffen waren, die mit einer 
Vielzahl von Ursachen zusammenhängen. Meine Ergebnisse zeigen einen starken 
anthropogenen Zusammenhang der meisten Störungen, während sie auch auf einen 
komplexen indirekten Einfluss von Niederschlagsmustern hindeuten, wobei 
Waldstörungen in Dürrejahren besonders verbreitet sind. Die Analyse der zeitlichen 
Muster verschiedener Ursachen zeigt Trends in der Landnutzung im Laufe der Zeit, 
wobei neue Landnutzungsformen wie silvopastorale Systeme entstehen und alte 
Praktiken wie die Abholzung jedes Jahr einen relativ stabilen Anteil der Flächen 
betreffen. Die Ergebnisse zu den langfristigen Auswirkungen von Waldstörungen 
zeigen, dass sich die Waldstruktur bei den am weitesten verbreiteten Störungen über 
drei Jahrzehnte kaum oder gar nicht erholt, was auf eine großflächige Walddegradation 
schließen lässt. Insgesamt zeigt meine Arbeit, dass Satellitenbildzeitreihen ein hohes 
Potenzial für eine robuste und konsistente Charakterisierung von Walddynamiken im 
Zusammenhang mit der Degradation auch in tropischen Trockenwäldern haben, trotz 
der komplexen Bedingungen, die tropische Trockenwälder darstellen.  Die aus dieser 
Arbeit resultierenden Karten, Ansätze und Erkenntnisse tragen zu einem besseren 
Verständnis der Walddegradation im Gran Chaco bei und können als Grundlage für 
Managementstrategien dienen, die zu einem effektiveren Schutz tropischer 
Trockenwälder führen. 
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1 Forest loss and degradation 

Land use that has always sustained human societies represents today a major threat to 
the liveability of the Earth for humans and other species (Jaureguiberry et al., 2022; 
Steffen et al., 2015). Land use change and intensification, while increasing the short-
term supplies of material goods, are undermining many ecosystem services in the long 
run, even on regional and global scales (Foley et al., 2005). Agricultural expansion, in 
particular, is the main driver of forest loss (FAO, 2020). Besides directly impacting the 
livelihoods of millions of forest-dependant people living in poverty, forest loss has far-
reaching impacts that extend both to the regional scale, for example disrupting the 
Amazon hydrological cycle (Lovejoy and Nobre, 2018), and globally. Forest loss is one 
of the largest drivers of greenhouse gas emissions, biodiversity loss, and the 
degradation of ecosystem services (IPBES, 2019), ultimately contributing to climate 
change and affecting biosphere integrity (Rockström et al., 2009; Steffen et al., 2015). 

In addition to deforestation, there are many land-use practices that do not result in land 
use change but still modify forest biomass, stand structure, and species composition 
and can ultimately lead to degradation. Forest degradation is the process leading to the 
permanent deterioration in the density, composition or structure of forest cover 
(Grainger, 1993). These changes can have major impacts on ecosystem functioning, 
biodiversity (Barlow et al., 2016; Betts et al., 2017; Gibson et al., 2011), carbon storage 
(Baccini et al., 2017; Brienen et al., 2015; Pan et al., 2011) and ecosystem services 
(Watson et al., 2018), in turn threatening local livelihoods (Rozzi, 2012). The 
recognition of the impacts of forest degradation stimulated efforts to measure and 
quantify it. The push also came from the international mitigation mechanism Reduced 
Emissions from Deforestation and Forest Degradation (REDD+) adopted by the United 
Nations Framework Convention on Climate Change (UNFCCC) that requires estimates 
of changes in forest carbon stocks and emissions also arising from forest degradation. 
However, until today we still lack methods to reliably monitor forest degradation. This 
gap is related to the fact that defining forest degradation is in itself a major challenge, 
as degradation denotes the loss of forest values or characteristics that vary among 
stakeholders (Meyfroidt et al., 2022; Mitchell et al., 2017; Putz and Redford, 2010), and 
as a consequence, there is no unified and commonly-agreed definition (Sasaki and Putz, 
2009; Thompson et al., 2013). To this adds that degradation is more challenging to 
detect than deforestation and that it results from a number of land uses. 
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Although robust global estimations of forest degradation are lacking, studies conducted 
at the regional and biome scale reveal a concerning scenario. The extent and rate of 
forest degradation in the Brazilian Amazon was found to be equal to or greater than 
deforestation (Matricardi et al., 2020), potentially affecting up to 10% of all tropical 
moist forests (Vancutsem et al., 2021). Carbon loss from degradation exceeds carbon 
loss from deforestation in Brazilian Amazon (Qin et al., 2021). When accounting also 
for degradation, tropical forests are a net carbon source (Baccini et al., 2017). These 
data highlight the importance of integrating measures for reducing degradation in 
forest conservation and climate mitigation programs and understanding the drivers, 
extent and mechanisms of forest degradation better. 

2 Forest degradation in Tropical Dry Forests 

Tropical dry forests (TDF) make up roughly half of all world’s subtropical and tropical 
forests (Murphy and Lugo 1986) (1.1 billion ha when applying the UNEP-WCMC 
definition (FAO, 2019)). They are characterized by low annual rainfall (250-2000 mm) 
and a strong seasonality (Murphy and Lugo, 1986). TDF are heterogeneous ecosystems 
that can contain a variety of canopy types, including woodlands dominated by smaller 
trees and shrubs, woodlands with scattered large trees, savannas with scattered palm 
trees and shrublands (Baumann et al., 2018; House et al., 2003). Tropical dry forests 
harbour a unique biodiversity, including many endemic taxa (Banda-R et al., 2016; 
Mares, 1992; Pennington et al., 2018; Redford et al., 1990) and provide a wide range of 
ecosystem services that sustain the livelihoods of millions of people (FAO, 2019). Forest 
resources are especially important for poor people who depend on wood fuel, that is 
often the only affordable and accessible energy source for their daily cooking and 
heating (Wells et al., 2022). Furthermore, tropical dry forests are an important resource 
for construction materials and non-timber forest products, including fruits, vegetables, 
honey, resins, fibres, edible insects etc. (Blackie et al., 2014). 

TDF are under great pressure from a number of multiple and complex threats largely 
resulting from human activity (FAO, 2019; Miles et al., 2006; Murphy and Lugo, 1986; 
Sunderland et al., 2015). In particular, the conversion of forests due to agricultural 
expansion poses a threat to TDF that may even be at greater risk than tropical moist 
forests (Gillespie et al., 2012; Portillo-Quintero and Sánchez-Azofeifa, 2010) especially 
because they are weakly protected (Miles et al., 2006). Climate change is expected to 
worsen the situation with decreased rainfall and more frequent drought events (Siyum, 
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2020) that will affect TDF both directly and by altering the frequency, intensity and 
duration of disturbances (Dale et al., 2001). 

The resilience of remaining tropical dry forests in the face of these scenarios is 
challenged by widespread degradation and fragmentation (Sánchez-Azofeifa et al., 
2005) resulting from various human activities involving fires, logging, fuelwood 
collection, mining and forest grazing (Miles et al., 2006; Murdiyarso et al., 2008; Riggio 
et al., 2020; Sasaki and Putz, 2009). Firewood collection and charcoal production are 
by far the most important forest resources used in TDF (Murphy and Lugo, 1986; 
Schröder et al., 2021). Tree harvesting for charcoal production ranges along a 
continuum from selective cutting to clear cutting (Chidumayo and Gumbo, 2013) with 
consequences that go from the depletion of the desirable species to a permanent 
modification of forest structure. Commercial logging of valuable species or for saw 
wood and construction material frequently affect the structure and composition of TDF 
(Gobbi et al., 2022; Sánchez-Azofeifa et al., 2005). Wildfires are another major driver of 
degradation in TDF, especially as human activities altered fire regimes substantially. 
Fire is used to promote the regrowth of grasses in pastures, to burn waste, to convert 
forest into agricultural land and to facilitate the extraction of fuelwood and charcoal 
(Zak et al., 2004) and can easily escape to surrounding forest. Fires also exacerbate the 
impact of logging and fragmentation leading to the development of degraded secondary 
forests and scrubs. Free cattle grazing in the forest is an additional cause of degradation 
in TDF. Grazing pressure alters forest composition by favouring unpalatable species 
and inhibiting the recruitment of juvenile trees (Agarwala et al., 2016; Chaturvedi et al., 
2012; Dı́az et al., 2001; Sfair et al., 2018) and can lead to higher shrub cover but also 
bare soil exposure where heavy trampling compacts the soil. In addition to the direct 
causes of degradation, the recent agriculture expansion in tropical dry forests reduced 
forest availability or accessibility for forest-dwelling smallholders (del Giorgio et al., 
2021), therefore increasing pressure and degradation on forest remnants. 

In addition to anthropogenic activities, various disturbances from natural agents can 
contribute to forest degradation in TDF. Floods and drought can cause mortality of 
juveniles trees (Vieira and Scariot, 2006), but also increasing water stress makes 
impacts from other disturbances more severe (Chaturvedi et al., 2017), salinization, 
insects outbreaks, tropical storms can damage or kill trees, increase fragmentation 
leaving the remaining patches vulnerable and more susceptible to fires (Stan and 
Sanchez-Azofeifa, 2019). Many of these disturbances are increasing in frequency and 
intensity due to climate change.  
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Given the importance of TDF for livelihoods, biodiversity and climate regulation, it is 
critical to address and reverse the loss and degradation of these forests. However, 
despite the recognition that TDF are a severely threatened ecosystem dates back 
decades (Janzen, 1988; Murphy and Lugo, 1986), TDF have not yet attracted the same 
international and scientific attention as tropical moist forests. Although the scientific 
community has begun to bridge this gap (Pennington et al., 2018; Sunderland et al., 
2015), to date the number of publications on TDF are 3.6 times less than the number 
of articles focussing on tropical moist forests (Schröder et al., 2021). Consequently, our 
understanding of the extent, rate and impacts of TDF degradation remains limited, 
although robust figures would be needed to inform conservation actions. 

3 Opportunities and challenges for remote sensing application to TDF 
degradation monitoring 

The last decade has been an exciting period of rapid development in data availability, 
techniques and tools for remote sensing application to forest dynamics. Following the 
opening of the Landsat archive in 2008 (Woodcock et al., 2008), the wealth of 
information offered by satellite images led to impressive advancements in algorithms 
and approaches for forest monitoring (Wulder et al., 2012; Zhu et al., 2019), and this 
remains an active area of development, both in terms of methods and theory 
(Pasquarella et al., 2022). The opening of the Landsat archive marked only the 
beginning of a strong momentum for full, free and open access remote sensing data 
(Zhu et al., 2019). In 2015, ESA launched the first satellite of the Copernicus 
constellation, providing new imagery, including radar data, at high temporal and spatial 
resolution and committing from the start to open access policy. Parallel to this stark 
increase in data availability, the increased availability of cloud computing resources 
and platforms such Google Earth Engine enabled efficient running of computationally 
intensive algorithms for large-area mapping and monitoring (Pasquarella et al., 2022).  

 A large body of research revealed dynamics, patterns and extent of deforestation in 
many forest types (Hansen et al., 2013; Potapov et al., 2022; Turubanova et al., 2018). 
In contrast, we still lack robust figures on forest degradation. Forest degradation is 
more challenging to assess using remote sensing techniques as it occurs within forests, 
from processes that leave standing biomass and canopy cover (Matricardi et al., 2020) 
and are therefore more difficult to detect than full clearing related to deforestation. 
Furthermore, forest degradation is caused by an array of agents or drivers with 
complex spatial and temporal patterns and dynamics (Hirschmugl et al., 2017), 
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including the extraction of biomass below the canopy such as grazing, firewood and 
non-timber product extraction (Sfair et al., 2018) that are nearly undetectable with 
current conventional remote sensing techniques (Peres et al., 2006). 

Current remote sensing approaches for forest degradation monitoring can be divided 
into two main categories (Mitchell et al., 2017): (1) the detection of canopy cover 
change, and (2) the quantification of loss (or gain) in above-ground biomass (AGB), 
which the REDD+ scheme requires from countries in their emissions reporting. For 
accurate canopy cover change, especially small-scale and low-magnitude disturbances, 
dense time series are essential, and the Landsat time series have proved crucial, thanks 
to the unmatched temporal extent of its archive. Many algorithms use Landsat time 
series to detect changes by modelling each pixel's spectral time series as a sequence of 
linear segments bounded by breakpoints or vertices. Among the most popular 
algorithms that have been tested for monitoring forest disturbances and degradation 
are: Change Detection and Classification (CCDC) (Zhang et al., 2022; Zhu and Woodcock, 
2014), Landtrendr (Kennedy et al., 2010), and Breaks For Additive Seasonal and Trend 
(BFAST) (Verbesselt et al., 2012). Spectral Mixture Analysis (SMA) that isolates mixed 
fractions of vegetation, dead wood, soil and shade has also been used with promising 
results in time series approaches (Bullock et al., 2020a; Chen et al., 2021). Studies using 
these algorithms often aim at classifying a diversity of disturbances, but there are also 
studies focussing on one or few drivers of degradation, with logging and fires being the 
two most studied forest disturbances (Asner et al., 2009, 2005; Gao et al., 2020; 
Hethcoat et al., 2019). 

Besides disturbances, relevant indicators to assess and quantify forest degradation are 
obtained by modelling aboveground biomass (Bustamante et al., 2016) and forest 
structure (Rappaport et al., 2018; Thompson et al., 2013). Various studies 
demonstrated that multi-sensor approaches are best suited for biomass and forest 
structure mapping, in particular leveraging the sensitivity of LiDAR (i.e., light detection 
and ranging) and radar data to forest structural parameters, including tree height, 
volume and biomass  (Bourgoin et al., 2018; Milodowski et al., 2021; Shao and Zhang, 
2016). However, the overwhelming majority of studies has been done in the moist 
tropics. 

Adding to the above-mentioned challenges that degradation monitoring pose, TDF are 
extremely complex and heterogeneous, ranging from more open, savanna-like 
woodlands to closed-canopy forests (Dexter et al., 2018), which makes it hard to 
differentiate between natural open forest and degraded forest (Morales-Barquero et al., 
2015). For this reason, in such systems time series analysis is the optimal choice for 
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disturbance monitoring because by detecting disturbances and analysing vegetation 
temporal dynamics can  help distinguishing degraded forest from naturally open forest 
(Gao et al., 2020). The strong seasonality further complicates the detection of forest 
cover changes for algorithms that use very dense time series (Gao et al., 2021; Grogan 
et al., 2016), therefore algorithms that use annual time series might be a better choice, 
given that the phenology of the system is addressed in the construction of the annual 
time series. Additionally, tropical dry forests have long been inhabited and used and 
have recently become hotspot of large-scale agricultural expansion. As a consequence, 
a wide variety of land uses contribute to shaping forest structure, making it more 
difficult to design monitoring protocols to capture them all. Machine learning 
classification algorithms allow leveraging several metrics derived from time series 
segmentation of different indices, promising  better performances for disturbance 
detection and capturing of varied disturbances (Cohen et al., 2018; Schultz et al., 2016). 
Another major challenge resulting from forest heterogeneity and stand complexity is 
mapping AGB and forest structure. Here as well, the integration of optical and radar 
data proved to be effective to map sparser woody vegetation and address TDF 
challenges (Baumann et al., 2018; Pötzschner et al., 2022). In sum, remote sensing tools 
and techniques offer considerable potential for improving TDF change monitoring, and 
improving forest degradation estimates, yet, due to the lack of attention TDF received, 
we still lack both statistics on the extent of forest degradation and knowledge regarding 
the methods best suited for forest monitoring in these environments.  

4 Importance of agent attribution 

For a better characterization of forest change,+ an understanding of the agent of change 
or proximate cause is needed, and not just the quantification of the location changes 
(Kennedy et al., 2015; Shimizu et al., 2019). This is important for various reason: first, 
different agents impact forests in different ways and result in different long-term 
outcomes (Chazdon, 2003; Cole et al., 2014; Dale et al., 2001) and therefore 
characterization of the agent provides an indication of the ecological consequences of 
disturbances. Second, statistics on disturbance agent occurrences can support policy 
makers in developing informed management action. For example, which agent is the 
most widespread, how frequently does each disturbance agent manifest, or what are 
the spatial determinants of disturbances caused by one type of agent (e.g.  do fires more 
commonly escape through pastures or roads?). Lastly, an accurate assessment of the 
proximate causes of forest change can provide an insight to the underlying causes of 
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forest change (Shimizu et al., 2019) that could lead to effective policy actions (Finer et 
al., 2018). 

Remote sensing can assist characterizing agents of disturbances as a number of 
characteristics that can help distinguishing among agents can be retrieved from remote 
sensing data. As disturbances rarely affect singular pixels, focusing on disturbance 
patches is an approach suited for the classification of causal agents (Huo et al., 2019; 
Kennedy et al., 2015). Spectral characteristics of disturbances are very useful for 
characterizing agents (Schroeder et al., 2017) and, as for disturbance detections, the 
use of multiple indices have the potential of enhancing the agent discrimination (Cohen 
et al., 2018; Nguyen et al., 2018). In addition, disturbance patch characteristics, and 
their sizes and shapes can help distinguish between agents (Kennedy et al., 2015; 
Nguyen et al., 2018). However, the attribution of disturbance agents still present open 
challenges (Sebald et al., 2021; Shimizu et al., 2019) and how well it is possible to 
separate agents in TDF where many occur and overlap is not well known. Knowledge 
on the prevalence and dynamics of disturbance agents in TDF is essential to have a 
thorough understanding of the impacts of change and a critical first step to understand 
underlying drivers of forest degradation. 

5 Importance of studying post-disturbance developments 

A critical component of forest dynamics is the development of vegetation following 
disturbance. Anthropogenic and natural disturbances both play important roles in 
modifying forest structure and different disturbance agents differ substantially in their 
impact on forest canopy structure and biomass (Chazdon, 2003). Vegetation structure 
is a key feature that plays an important role in forest ecology. It influences carbon 
storage, surface energy balance, and ecosystem functioning, and thereby ecosystem 
services and biodiversity (Asner, 2013; White and Pickett, 1985). Knowledge of 
responses and recovery rates of TDF structure to past disturbances may help us 
understand the capacity of these ecosystems to respond to recent and future events 
(Cole et al., 2014) and inform conservation planning – to decide where to intervene 
with restoration actions. 

Studies exploring the links between disturbance agents and post-disturbance recovery 
have typically relied on field assessments (Chaturvedi et al., 2012; Colón and Lugo, 
2006; Loto and Bravo, 2020; Urquiza-Haas et al., 2007). While such studies have the 
advantage of typically detailed and high-quality plot-level data, they are laborious and 
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therefore limited to small areas. Moreover, understanding disturbance and recovery 
trajectories requires long-term assessment over time periods that exceed typical 
project runtimes and funding cycles. Remote sensing can remedy some of the 
drawbacks of field-based assessments, as satellite image time series allows for a 
detailed and retrospective characterization of disturbance and post-disturbance 
development across larger areas (Cohen et al., 2010; Griffiths et al., 2014; Hermosilla 
et al., 2019; Meng et al., 2021; Pflugmacher et al., 2012; Shimizu et al., 2022), yet not 
many studies use remote sensing to assess post-disturbance changes in forest 
structure, including  in TDF. 

Understanding the impact of human activities in TDF is very challenging, first because  
TDF are socio ecological systems (Kalaba, 2014; Quesada et al., 2009) and have been 
used for centuries, therefore the baseline is already a secondary forest. Second, because 
of the overlay of different disturbance events, we may not be able to clearly separate 
the vegetation response to a particular disturbance (Chazdon, 2003). Nonetheless, an 
effort to close this gap is needed, because information on the potential for recovery 
after disturbance and the time taken for it is essential to determine the system 
vulnerability to permanent degradation. Mapping and characterizing forest 
disturbances give us an important picture of changes in the forest canopy but only 
linking the history of disturbances with their long-term outcomes on forest structure 
can lead us to the understanding of pathways of forest degradation. 

6 The Argentine Dry Chaco 

I focused my work on the Argentinean section of the Gran Chaco dry forest (Figure I-1). 
The Gran Chaco is the largest remaining continuous tropical dry forest in the world 
(Olson et al., 2001), and the second largest forest in South America. The Chaco forest 
has been inhabited and used for centuries (Leake, 2016) and became in the last decades 
a global deforestation hotspot caused by agricultural expansion (Baumann et al., 2017; 
Hansen et al., 2013; Kuemmerle et al., 2017). Its long history of forest use resulted in 
widespread alteration and degradation of the remaining forests. However, processes 
and disturbances leading to forest degradation have never been quantified for larger 
regions in the Chaco, therefore the extent, trends and patterns of degradation remain 
poorly understood. 
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Figure I-1: Location of the Gran Chaco (top right) and of the study area, the Argentine Dry Chaco, in South 
America. 

The Chaco region is mostly flat, except for hilly areas in western and southwestern 
Chaco. Climate is characterized by strong seasonal variations, with dry winters and hot 
and rainy summers. Average temperature varies across the area, with mean annual 
temperature increasing from south to north, varying from 18 to 21°C, and maximum 
temperatures of up to 48°C (Minetti, 1999). Similarly, rainfall varies across the area, 
ranging from 1000 mm to less than 450 mm. Soils are mainly mollisols and alfisols, 
formed from fluvial and aeolian deposits (Panigatti, 2010). 

The vegetation of the Dry Chaco consists of a mosaic of forests, woodlands, scrubs, 
savannas and grasslands. A peculiar feature of the vegetation of the Chaco consists of 
the dominance by species of the arboreal genus Schinopsis S. lorentzii (“quebracho 
colorado”) and S. hankeana (“horco quebracho”). Other characteristic tree species are 
Gonopterodendron sarmientoi (“palo santo”), Aspidosperma quebracho-blanco 
(“quebracho blanco”) and Prosopis spp. and  Neltuma spp. (“algarrobo”) (Prado, 1993). 
The shrub layer of the Chaco is dominated by Vachellia, Mimosa, Neltuma and 
Strombocarpa, and in the driest south-western section cacti Opuntia and Cereus are 
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abundant. Forests sometimes intermix with natural grasslands and savannas 
characterized by grasses Elionorus muticus or Spartina argentinensis (Bucher, 1982). 

The Chaco forests have a stratified and long history of use, characterized by various 
phases and actors. Following Morello et al. (2005), these stages of forest use can be 
identified: first and until today, various indigenous communities inhabit the Chaco 
forests. Their livelihoods consist of extensive forms of subsistence agriculture, hunting 
and gathering, and the widespread use of nontimber forest products (Leake, 2016).  
Around a century ago, descendants of Europeans (Criollos) settled in the area, where 
they live practicing extensive cattle ranching, wood collection, small scale agriculture, 
hunting, and charcoal production. At the beginning of the 20th century, the 
development of the railway system and the need for wire fencing triggered a high 
demand for timber that drove major logging activities targeting hardwood species. 
Around the same time, European forestry production companies established an 
industrial activity based on extraction of tannin from tannin-rich quebrachos trees 
(Schinopsis lorentzii) and essential oil extracts from rosewood (Gonopterodendron 
sarmientoi). In the 1920s and 1930s, cultivation of cotton became prominent in the 
region. A phase of exploration for oil in the 70s led to the opening of a network of 
prospecting roads that simplified the extraction of natural products, invasion of exotics, 
and access for livestock (Tálamo and Caziani, 2003). Finally, during the past decades, 
the agricultural system in the Chaco has become dominated by large-scale farms for 
commodity production, mainly beef and soybeans, both for domestic and, increasingly, 
for international markets (le Polain de Waroux et al., 2018). Today, crop fields and 
pastures on farms cover several thousand hectares (Baumann et al., 2016), and are 
highly mechanized, involving the use of agrochemicals and herbicides. All these forest 
uses resulted in substantial changes in forest structure and composition. Guided by the 
relevant literature on forest degradation available for the Chaco, in the following 
section I will illustrate land-use practices that can lead to degradation and their long-
term outcomes on forest structure. This will help construct a first understanding of 
pathways of degradation that I summarize in the conceptual scheme in Figure I-2. 

A key cause of degradation is related to traditional livestock management. Extensive 
cattle ranching is one of the main activities of smallholders living in the forest, locally 
referred to as Criollos (i.e. of European descent) (Levers et al., 2021). Livestock, 
primarily cattle and goats, freely graze and browse in the forest around homesteads 
(“puestos”), returning for water (Gasparri, 2016). The grazing pressure alters the 
herbaceous/woody vegetation dynamic by favouring shrubs (Adamoli et al., 1990), 
thus leading to the virtual elimination of grasses and resulting in the dominance of 



Chapter I 

12 
 

shrubs and small trees (Torrella and Adámoli, 2005). Hence, vegetation shows 
gradients of complexity, diversity and biomass decreasing away from the homestead 
(Adamoli et al., 1990; Macchi and Grau, 2012). Where livestock trampling is intense, 
soil compaction cause bare soil exposure (Tálamo and Caziani, 2003).  

Selective logging is another activity significantly contributing to forest degradation in 
the Argentinean Dry Chaco. There are two types of logging practices: first, selective 
logging of valuable species, such as "quebracho colorado" (Schinopsis lorentzii) for 
fence posts and railroad beams, and “palo santo” (Gonopterodendron sarmientoi) for 
fine furniture, floors, and essential oils, which has occurred for nearly a century. 
Second, less selective logging of hardwood species (e.g., S. lorentzii, Aspidosperma 
quebracho-blanco, Ziziphus mistol, Caesalpinia paraguariensis, Acacia furcatispina) 
occurs for charcoal production (Rueda et al., 2015; Tálamo et al., 2020). Unsustainable 
historical logging practices resulted in a reduction in average canopy height (Gobbi et 
al., 2022) and a simplification of forest structure and composition with a shift to shrub-
dominated communities (Torrella and Adámoli, 2005). 

Anthropogenic fires are an additional driver of degradation. Fire is used to promote 
grass regrowth in pastures, burn waste, convert forest into agricultural land 
(Bachmann et al., 2007), and facilitate the extraction of fuelwood and charcoal (Zak et 
al., 2004). In combination with overgrazing and logging, unmanaged fires have led to 
the development of secondary forests and scrubs known as “fachinales” and 
“peladares” (Cabido et al., 2003).  

Additionally, I have included in the conceptual scheme in Figure I-2 forest structural 
changes related to the establishment and management of silvopastures. In silvopastoral 
systems part of the canopy is retained, in contrast to pure pasture systems. 
Silvopastures have become widespread after the passing of the Forest Law, as this land 
use, presented as a way to reconcile food production with important ecosystem 
services (Fernandez et al., 2020) is allowed in areas where full conversion became 
prohibited. However, the regular management interventions carried out to prevent 
shrub encroachment (e.g., roller chopping, controlled burns) affect the trees, leading to 
a decline in tree density in the long term (Fernandez et al., 2020; Marquez et al., 2022).  

Besides these practices and agents directly impacting forest structure, other land uses 
indirectly affect the remaining forests. In particular, the recent agriculture expansion 
led to land acquisition, privatization and conversion, resulting in reduced forest 
availability or accessibility for forest-dwelling small-holders (del Giorgio et al., 2021; 
Vallejos et al., 2020), who often lack recognized property rights (Goldfarb and van der 
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Haar, 2015; Vallejos et al., 2015). This concentrates their activities and forest resource 
extraction in the remnant patches, thus increasing pressure on forest and degradation 
(Cotroneo et al., 2021). 

 

Figure I-2: Conceptual scheme of the degradation pathways related to different land-use practices. The 
grey boxes point to the thesis chapter of dedicated to the analysis of the highlighted components. 

A body of work has studied the causes and effects of forest disturbances and 
degradation in the Chaco using field-based assessments (Cotroneo et al., 2018; 
Fernandez et al., 2020; Macchi and Grau, 2012), aerial photographs (Adamoli et al., 
1990), unpiloted aerial vehicles (UAV) (Gobbi et al., 2022) and participatory 
approaches (Cotroneo et al., 2021). Post-disturbance vegetation development 
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following different disturbances has been assessed through field-based studies (Loto 
and Bravo, 2020; Tálamo et al., 2020; Tálamo and Caziani, 2003) and ground-based 
LiDAR (Ferraina et al., 2022). A few studies used satellite imagery to investigate 
degradation related to “puestos” (Grau et al., 2008), fire patterns (Argañaraz et al., 
2015; Chen et al., 2013; Fischer et al., 2012) and charcoal production (Rueda et al., 
2015). However, the extent, timing and agents of forest disturbances have never been 
mapped and quantified for the entire Argentine Dry Chaco. 

7 Research questions and objectives  

The overarching goal of my thesis was to advance the current understanding of forest 
degradation in the Dry Chaco by means of remote sensing. To this purpose, I assessed 
the agents, patterns, and outcomes of forest disturbances. My research was guided by 
three main research questions, and each of the three research chapters contributes to 
answering these questions by focusing on specific research objectives. 

 

Research Question 1: How can forest disturbances in the Dry Chaco be reliably 
characterized based on the Landsat image archives? 

A variety of land-use activities that alter forest structure and biomass can lead to 
declining productivity, canopy cover, and stand complexity. An important step toward 
understanding forest degradation is thus the monitoring and characterization of 
disturbances in forest canopies caused by degradation drivers such as selective logging 
or anthropogenic fires. However, capturing disturbances and characterizing their agent 
are both challenging. Approaches for analysing long time series of images provide 
opportunities to improve the detection and mapping of forest disturbances and their 
respective agents. Yet, such methods have not been tested for mapping disturbances 
and forest degradation across a large TDF area. 

The specific objectives related to Research Question 1 were as follows: 

• Objective 1.1: Assess the usefulness of a range of Landsat-based spectral 
indices and time periods over which metrics are calculated to capture forest 
disturbances in TDF (Chapter II). 

• Objective 1.2: Characterize forest disturbance agents based on Landsat-derived 
metrics (Chapter III). 
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In Chapter II, I compared the performance of a suite of Landsat-derived spectral indices 
and seasonal windows, and of different classification approaches (single index models 
versus ensemble) to capture disturbances in the Dry Chaco. Specifically, I built annual 
time series of Landsat-derived indices to which I applied temporal segmentation to 
extract disturbance metrics per pixel. These metrics were then used in a random forests 
classifier to map disturbances for each spectral index, as well as for the ensemble of all 
indices. I evaluated the performance of the different models. 

In Chapter III, I attributed agents to the disturbances identified in Chapter II using 
Landsat-derived spectral-temporal metrics and shape metrics describing disturbance 
patches. In particular, I identified disturbance patches from a pixel-level disturbance 
map produced in Chapter II. Based on these patches, I calculated shape metrics and 
summarized spectral-temporal metrics per patch. I then used these metrics in a 
random forest classifier to attribute disturbance agents to each disturbance patch. 

 

Research Question 2: What are the spatial and temporal patterns of forest disturbances 
across the Chaco and due to different agents? 

Land-use activities leading to forest degradation in the Argentinean Dry Chaco vary in 
space and time. Understanding forest disturbance agents and their relationship with 
natural and anthropogenic determinants can help link disturbance patterns, agents and 
actor groups as a basis for disturbance management. Because information on the 
spatial and temporal patterns of forests disturbances is sparse, linking land-use 
practices and degradation remains a challenge.   

The specific objectives related to Research Question 2 were: 

• Objective 2.1: Assess the extent and temporal patterns of forest disturbances 
across the Argentine Dry Chaco (Chapter II). 

• Objective 2.2: Assess the prevalence and dynamics of different disturbance 
agents in the period from 1990 to 2017 in the Argentine Dry Chaco (Chapter 
III).  

• Objective 2.3: Assess the relationship of different disturbances agents to 
anthropogenic features in the Chaco landscape (Chapter III). 

In Chapter II, I estimated yearly disturbed area between 1990 and 2017 based on an 
independent set of reference locations and used these estimates to investigate the 
relationship between rainfall and disturbances. 
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In Chapter III, I analysed the share of disturbed areas attributed to each disturbance 
agent in absolute terms and over time. To assess the relationship of different 
disturbance agents to anthropogenic features, I then compared the disturbances to 
land-cover maps to assess whether some disturbance types were more common close 
to agricultural fields, forest smallholder homesteads, and roads. 

 

Research Question 3: What are the outcomes of different disturbance types and histories 
on current forest structure? 

 A wide range of human activities produce disturbances that result in varying ecological 
responses, but information on how these disturbances impact structure and 
functioning of forest ecosystems or how forests develop following different types of 
disturbances, is limited. This results in a lack of knowledge regarding the long-term 
effects of disturbances on forest structure, as well as which of these effects indicate 
recovery as opposed to forest degradation.  

The specific objective related to Research Question 3 was: 

• Objective 3.1: Assess how post-disturbance trajectories of forest structure 

vary across disturbance agents (Chapter IV). 

In Chapter IV, I determined how different disturbance types and histories relate to 
current forest structure variables. Specifically, I combined the disturbance dataset 
created in Chapter II and III, with dataset of fractional tree and shrub cover and 
aboveground biomass in a Bayesian multilevel framework to understand the impact of 
different disturbance types and histories relate to current forest structure. 

8 Thesis structure 

This thesis consists of five chapters: the introduction (Chapter I), three research papers 
(Chapters II-IV), representing individual studies that contribute to answering the 
overarching research questions and objectives described above, and a synthesis 
chapter (Chapter V) that summarizes the main results of the research papers, 
synthesizes overarching findings, and provides an outlook on potential applications 
and future research directions. The three research chapters were written as stand-
alone publications, and all have been published in international peer-reviewed journals 
as follows: 
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Chapter II:  Characterizing forest disturbances across the Argentine Dry Chaco based 
on Landsat time series. International Journal of Applied Earth 
Observations and Geoinformation (2021).  
Teresa De Marzo, Dirk Pflugmacher, Matthias Baumann, Eric F. Lambin, 
Nestor Ignacio Gasparri and Tobias Kuemmerle. 

Chapter III:  Agents of Forest Disturbance in the Argentine Dry Chaco. Remote sensing 
(2022). 
Teresa De Marzo, Nestor Ignacio Gasparri, Eric F. Lambin and Tobias 
Kuemmerle. 

Chapter IV:  Linking disturbance history to current forest structure to assess the 
impact of disturbances in tropical dry forests. Forest Ecology and 
Management (2023). 
Teresa De Marzo, Marie Pratzer, Matthias Baumann, Nestor Ignacio 
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Abstract  

Forest loss in the tropics affects large areas, but whereas full forest conversions are 
routinely assessed, forest degradation patters remain often unclear. This is particularly 
so for the world’s tropical dry forests, where remote sensing of forest disturbances is 
challenging due to high canopy complexity, strong phenology and climate variability, 
and diverse degradation drivers. Here, we used the full depth of the Landsat archive 
and devised an approach to detect disturbances related to forest degradation across 
the entire Argentine Dry Chaco (about 489,000 km²) over a 30-year timespan. We used 
annual time series of different spectral indices, summarized for three seasonal 
windows, and applied LandTrendr to temporally segment each time series. The 
resulting pixel-level forest disturbance metrics then served as input for a Random 
Forests classification which we used to produce an area-wide disturbance map, and 
associated yearly area estimates of disturbed forest. Finally, we evaluated disturbance 
trends in relation to climate and soil conditions. Our best model produced a 
disturbance map with an overall accuracy of 79%, with a balanced error distribution. 
A total of 8% (24,877 ± 860 km2) of the remaining forest in the Argentine Dry Chaco 
have been affected by forest disturbances between 1990 and 2017. Diverse spatial 
patterns of forest disturbances indicate a variety of agents driving disturbances. We 
also found the disturbed area to vary strongly between years, with larger areas being 
disturbed during drought years. Our approach shows that it is possible to robustly map 
forest disturbances in tropical dry forests using Landsat time series, and demonstrates 
the value of ensemble approaches to capture spectrally-complex and heterogeneous 
land-change processes. For the Chaco, a global deforestation hotspot, our analyses 
provide the first Landsat-based assessment of forest disturbance in remaining forests, 
highlighting the need to better consider such disturbances in assessments of carbon 
budgets and biodiversity change. 

Keywords: Ensemble classification, Forest degradation, LandTrendr, Trajectory 
analyses, Tropical dry forests, Random Forests. 
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1 Introduction 

Tropical dry forests (TDF) are widespread but typically receive less attention in 
research and policy-making than moist rainforests (Miles et al., 2006; Schröder et al., 
2021). This is unfortunate, as many TDF regions today contain little forest cover due to 
the historically widespread conversion of forest to agriculture. Where sizable areas of 
TDF still exist, they are typically under substantial conversion pressure (Miles et al., 
2006; Portillo-Quintero and Sánchez-Azofeifa, 2010). Moreover, even those forests that 
are spared from conversion are under high, and often rising, human influence, as a 
range of land-use activities lead to forest degradation within them (Sánchez-Azofeifa et 
al., 2005). These activities include selective logging, fuelwood collection, charcoal 
production, mining, forest grazing and anthropogenic fires (Miles et al., 2006; 
Murdiyarso et al., 2008; Sasaki and Putz, 2009; Schneibel et al., 2017b). Understanding 
how such land-use activities contribute to tropical dry forest degradation is therefore 
important, given the critical ecological state of many TDF. 

Forest degradation is the process leading to the permanent deterioration in the density, 
composition or structure of forest canopies (Grainger, 1993). These changes can have 
widespread and major impacts on ecosystem functioning, biodiversity and ecosystem 
services (Watson et al., 2018). For instance, degraded forests store and sequester less 
carbon (Pan et al., 2011) and sustain less biodiversity (Betts et al., 2017; Gibson et al., 
2011) than undegraded forests, and forest degradation might threaten indigenous 
communities that depend on intact forests (Rozzi, 2012). Monitoring forest condition 
and uncovering drivers of forest degradation is therefore important to understand the 
wider social-ecological implications of degradation, particularly considering that 
degradation is a widespread phenomenon in the tropics (Asner et al., 2005; Pearson et 
al., 2017). Having accurate estimates of forest degradation is furthermore needed to 
inform and implement global and national climate mitigation initiatives, such as the 
United Nation's (UN) Reducing Emissions from Deforestation and Forest Degradation 
(REDD+) programme (Goetz et al., 2015). Nonetheless, we still lack robust information 
on the extent of degraded forests, mainly due to the conceptual and technical challenges 
related to detecting and mapping degradation (Da Ponte et al., 2015; Sasaki and Putz, 
2009). 

Degradation is typically assumed to be caused by an increase in anthropogenic 
disturbance (Lambin, 1999). A wide range of land-use activities that disturb forest 
structure and biomass can lead to declining productivity, canopy cover and stand 
complexity (Grainger, 1993). An important step to understand forest degradation is 



Chapter II 

22 
 

therefore the reliable monitoring of disturbances in forest canopies that are the result 
of degradation drivers, such as selective logging or anthropogenic fires (Hethcoat et al., 
2019; Hirschmugl et al., 2014; Matricardi et al., 2010; Souza et al., 2005). Detecting such 
canopy disturbances in tropical forests with remote sensing can be challenging though, 
as disturbances have diverse impacts on forest structure, leave varying tree cover, and 
occur in diverse patch sizes, ranging from individual trees taken out to large forest fires. 
Moreover, some disturbances disappear quickly as forests recover, while others last for 
a long time (Hirschmugl et al., 2014). Because many forest disturbances associated 
with forest degradation result in subtle and gradual canopy changes, they can easily be 
confused with phenology or natural fluctuations in forest condition, for instance due to 
varying rainfall (Cohen et al., 2010; Lambin, 1999). The latter is particularly important 
for TDF regions, which experience marked interannual climate variability (Murphy and 
Lugo, 1986). Robust monitoring of forest degradation in TDF therefore requires 
appropriate methodologies to deal with this complexity, but such methodologies are 
overall missing. This translates into a paucity of knowledge on degradation trends in 
TDF (Morales-Barquero et al., 2015; Sánchez-Azofeifa et al., 2005; Sánchez-Azofeifa and 
Portillo-Quintero, 2011). 

Analysing long time series of images can provide a quasi-continuous history of forest 
disturbance and regeneration (Da Ponte et al., 2015). Such long, decadal time series are 
thus potentially well-suited to capture forest degradation trends. With its open data 
policy and long time span, the Landsat archive provides time series at spatial resolution 
fine enough to monitor forest degradation (Woodcock et al., 2020). In addition, many 
algorithms have been developed to automatize forest-disturbance assessments, such 
as the Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr; 
Kennedy et al., 2010), the Breaks for Additive Season and Trend (BFAST; Verbesselt et 
al., 2010), the Continuous Change Detection and Classification (CCDC; Zhu and 
Woodcock, 2014), or the Vegetation Regeneration and Disturbance Estimates through 
Time (VeRDET; Hughes et al., 2017) algorithms. Application of these algorithms has 
recently also moved from using time series of individual indices (e.g., band 5, NDVI, 
NBR) towards employing ensembles approaches that have considerable potential for 
capturing disturbances (Bullock et al., 2019; Cohen et al., 2018; Healey et al., 2018; 
Schultz et al., 2016). Two types of ensemble approaches have been tested: spectral 
ensemble approaches, where individual disturbance-detection runs are done for 
different spectral bands or indices using one algorithm, and then a classifier derives the 
final disturbance product (Cohen et al., 2018; Wang et al., 2019), or an algorithm 
ensemble approach, where the output from multiple disturbance-detection algorithms 
is used to feed the classification (Healey et al., 2018; Hislop et al., 2019; Saxena et al., 



Characterizing forest disturbances  

23 
 

2018). While these studies show that ensemble techniques can produce more accurate 
forest disturbance maps, such approaches have not been tested to map disturbances 
and forest degradation for a large TDF area. 

One TDF region where trends and patterns of forest degradation remain poorly 
understood is the South American Gran Chaco. Here, alongside the massive and 
relatively well-understood conversion of forest to agriculture that has happened since 
the 1990s (Baumann et al., 2017; Gasparri and Grau, 2009; Grau et al., 2005; Piquer-
Rodrı́guez et al., 2018), a variety of land uses inside remaining forests cause forest 
degradation (Adamoli et al., 1990; Bachmann et al., 2007; Bucher and Huszar, 1999; 
Cabido et al., 2018; Grau et al., 2008; Torrella and Adámoli, 2005). However, the extent, 
severity, and timing of forest disturbances potentially associated with degradation have 
never been quantified for larger regions in the Chaco. Better information about the 
broad-scale patterns of forest condition would be important, as forests continue to be 
lost at alarming rates. 

Focussing on the entire Argentine Dry Chaco (489,000 km²), our goal was to identify 
rates and patterns of forest disturbances in remaining Chaco forests. Specifically, our 
objectives were to: 

1. assess the usefulness of a range of Landsat-based spectral indices and time 
periods over which metrics are calculated to capture forest disturbances in TDF.  

2. map forest disturbances potentially related to forest degradation across the 
entire Argentinean Dry Chaco. 

3. assess the extent and spatiotemporal patterns of forest disturbance across the 
Dry Chaco, generally and in relation to rainfall and soil patterns. 

2 Study area 

The Gran Chaco is the largest remaining continuous tropical dry forest of the world 
(Olson et al., 2001). We focus on 489,000 km2 study area in the Dry Chaco in northern 
Argentina, which was covered by about 370,000 km2 of forest at the beginning of our 
study period in 1987. Climate in the Dry Chaco is strongly seasonal, with a distinct dry 
season between May and September, and a hot, rainy season from November to April. 
Annual rainfall ranges from 1,200 mm in the east to 450 mm in the west and the average 
temperature is around 22 °C (Minetti, 1999). The area is characterized by flat terrain, 
except for the west and southwest where hilly terrain prevails. Vegetation consists of a 
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mosaic of xerophytic forests, open woodlands, scrubs, savannas and grasslands. 
Characteristic tree species belong to the generum Schinopsis, in particular S. balansae 
(“Quebracho colorado chaqueño”), S. quebracho-colorado (“Quebracho colorado”), S. 
hankeana (“Horco quebracho”). Also forests of Bulnesia sarmentoi (“Palo santo”) are 
characteristic and those dominated by Aspidosperma quebracho-blanco (“Quebracho 
blanco”). Trees of Prosopis spp. (“Algarrobos”) are also very common. The shrub layer 
is dominated by species of the genus Acacia, Mimosa, Prosopis, Celtis, and cacti Opuntia 
and Cereus. Some savannas are also present, dominated by grasses Elionorus muticus 
or Spartina argentinensis, and palm savannas of Copernicia alba. (Bucher, 1982; Cabido 
et al., 2018; Prado, 1993). 

During the last decades, the Chaco experienced dramatic forest loss caused by 
agricultural expansion (Fehlenberg et al., 2017; Gasparri and Grau, 2009). In addition, 
several land-use activities lead to forest degradation. Logging, charcoal production, 
fires and overgrazing are the main drivers of degradation. Logging can be related to the 
production of firewood, fence poles, tannin or charcoal (Bachmann et al., 2007; Rueda 
et al., 2015), typically leading to the extraction of large trees (e.g., Schinopsis lorentzii 
and Aspidosperma quebracho-blanco). Because logging historically has often been 
unsustainable, a simplification of forest structure and composition, and a shift to shrub-
dominated communities has happened in many places in the Chaco (Torrella and 
Adámoli, 2005). Fire, although a natural and ecologically important disturbance agent 
in the region (Adamoli et al., 1990), is another key driver of forest degradation 
(Bachmann et al., 2007). Fire is used to promote the regrowth of grasses on pastures, 
to burn waste on fields, and to convert forest into agricultural land (Bachmann et al., 
2007). In all these cases, fires can escape to nearby forest, causing degradation. 
Likewise, fire is often used as a management tool to clear the shrub layer and to 
facilitate the extraction of partly burnt trees for fuelwood and charcoal (Zak et al., 
2004). Finally, forest grazing exerts considerable pressure on forest in the Chaco. Forest 
grazing is a traditional management practice related to small-scale cattle ranching that 
largely affects the forest (Grau et al., 2008; Macchi and Grau, 2012). Grazing pressure 
alters the herbaceous/woody vegetation dynamic by favouring shrubs (Adamoli et al., 
1990) leading to the virtual elimination of grasses and a dominance of shrubs and small 
trees (Torrella and Adámoli, 2005). 
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3 Data and Methods 

Our methodology consisted of four main steps (Figure II-1). In step 1, we built annual 
time series of Landsat-derived indices to which we then, in step 2, applied temporal 
segmentation to extract disturbance metrics per pixel. In a third step, we used a random 
forests classifier, trained with an extensive reference dataset, to map disturbances for 
each spectral index, as well as for the ensemble of all indices. In our final and fourth 
step, we used the best-performing model and associated disturbance map to estimate 
yearly disturbed areas using an unbiased estimator based on an independent set of 
reference points. 

 

 

Figure II-1: Workflow of our analysis to map disturbances related to degradation in the tropical dry 
forest of the Argentine Gran Chaco. 

3.1 Annual composites of spectral indices  

In the first step, we derived consistent time series of a range of spectral-temporal 
metrics based on all available Landsat imagery. To do that, we collected all available 



Chapter II 

26 
 

Landsat TM, ETM+ and OLI images for the period 1987-2017 as Collection 1 Tier 1 
surface reflectance data in Google Earth Engine. These data are atmospherically 
corrected, have the lowest geo-registration errors and come with a pixel Quality 
Assessment (QA) band based on CFMask (Foga et al., 2017). We masked out all clouds 
and cloud shadows using the respective QA band values and applied the coefficients by 
Roy et al. (2016) for cross-calibration of SR-values between OLI and ETM+ data. We 
also calculated a set of spectral indices, specifically the Tasselled Cap Wetness (TCW, 
Kauth and Thomas, 1976), the Normalized Burn Ratio (NBR, Key and Benson, 2003), 
and the Normalized Difference Moisture Index (NDMI, Gao, 1996). We then subdivided 
for each year of our study period the yearly image collection into three seasonal image 
collections (February-April, May-July, August-October), and calculated for each period 
the medoid (Flood, 2013) of our spectral indices. The choice of these intervals resulted 
from consideration about the phenology of our system: we targeted at the beginning of 
the dry season (May-July) because this is the time when herbaceous vegetation is dry, 
but trees have not shed their leaves yet. However, this period is also is also 
phenologically dynamic, which makes trend analyses more sensitive to false 
disturbance detections, depending on data availability. Therefore, we decided to also 
test the interval before and after (February-April and August-October) when vegetation 
phenology is relatively stable. This resulted in a set of 9 annual medoid time stacks (i.e., 
3 indices x 3 seasons), which served as input for the LandTrendr segmentation. We 
masked all index stacks to exclude areas that had not been forest in our study period 
using a forest mask from the onset of our study period (Baumann et al., 2017). 

3.2 Disturbance metrics 

We then applied LandTrendr, as implemented in Google Earth Engine, to each of our 
nine stacks (Kennedy et al., 2018). LandTrendr is a temporal segmentation algorithm 
that fits spectral trajectories on a pixel-per-pixel basis, using regression methods and 
point-to-point fitting across the annual time series of values (Kennedy et al., 2010). 
LandTrendr works by iteratively identifying a set of vertices and then fitting linear 
segments between them in order to obtain a continuous trajectory through the time 
series (see Kennedy et al., 2010 for details). The result of this procedure is a simplified, 
piece-wise representation of the annual time series. Based on these time series, a 
number of metrics can be derived, such as the number and length (in years) of 
segments, their slope, and the years corresponding to segment vertices. 

LandTrendr requires tuning several parameters (Table II-1). We did this by visually 
inspecting samples at exemplary regions where key disturbance processes, including 
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selective logging and fire, were known to occur. These exemplary regions were derived 
from the literature, pointed out by local experts (including co-authors with 10+ years 
of field experience in the Chaco) or identified on very high-resolution images on Google 
Earth. We visually evaluated how different parameters changed the trajectory fitting 
for these exemplary regions, and chose the parameter combination that across samples 
visually resulted in the best time series segmentations (Table II-1).Thus, this 
segmentation procedure resulted in a distinct set of disturbance metrics for each of the 
nine annual time series (in Figure II-2 examples of the TCW segmentation). We selected 
the following metrics describing the segment with the highest magnitude (in the 
direction of forest loss): (1) the index value for the year before the beginning of the 
disturbance (hereafter: prevalue), (2) the delta of the values of the index between the 
beginning and end of the disturbance (magnitude) and (3) the segment duration 
(duration). We did not apply a threshold filter for the disturbance magnitude (e.g., to 
disregard low magnitude disturbances). As such, the disturbance metrics included 
gradual as well as abrupt disturbances (and noise) at this step in our analyses. 

Table II-1: Values used for LandTrendr parametrization on Google Earth Engine. 

Parameter  Value 
maxSegments 6 
spikeThreshold 0.9 
vertexCountOvershoot  3 
preventOneYearRecovery true 
recoveryThreshold 0.25 
pvalThreshold 0.05 
bestModelProportion 0.75 
minObservationsNeeded 6 
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Figure II-2: Three examples of land-use practices leading to forest disturbances, as seen in very-high-
resolution satellite images in Google Earth (left), as well as in time series of Tasselled Cap Wetness (TCW) 
medoids calculated over May-July (right; original annual values in green, values fitted with LandTrendr 
in yellow). A) logging for charcoal production (note that the charcoal kiln is also visible); B) selective 
logging of valuable tree species; C) fire. 

3.3 Disturbance mapping 

In our third step, we used our LandTrendr disturbance metrics as input for our forest 
disturbance classification. To generate the training/validation dataset, we used a 
stratified sampling design where we first trained an initial random forests classifier 
with an opportunistically collected training sample and then we used the disturbance 
magnitude class of this initial classification as strata for our sampling. We did this to 
ensure that our training/validation dataset contained the full range of disturbance 
magnitudes and a range of different disturbance severities. We then randomly sampled 
80 samples per strata (= 800 samples in total). We then used the visualization and data 
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collection tool TimeSync (Cohen et al. 2010) to interpret the temporal trajectories at 
the sample locations. TimeSync facilitates visual interpretation of temporal dynamics 
in time series, allowing the simultaneous visualization of: (a) Landsat image chips of 
an area of interest around the target pixel, (b) spectral properties of the pixel time 
series plotted as a trajectory across time, and (c) very-high-resolution imagery 
available in Google Earth. A total of 781 samples were successfully interpreted, where 
377 samples represented disturbances at any point in time and 404 samples 
represented undisturbed areas (19 samples were discarded as they were inconclusive). 
We then combined our training data together with the LandTrendr disturbance metrics 
(i.e., prevalue, magnitude, and duration) in a random forest classification scheme 
(Breiman, 2001). We refer to this procedure as secondary classification (Cohen et al., 
2018; Wang et al., 2019). All classifications were based on the outputs of 500 decision 
trees. 

To evaluate how the choice of the seasonal window and vegetation index influenced 
detection accuracy, we build separate random forests classification models for each of 
the nine index-season combinations, as well as one ensemble model based on all nine 
predictor sets (3 disturbance metrics x 9 combinations = 27 variables). We evaluated 
the classification performance for all 10 classification models following the good 
practices for accuracy assessment suggested by Olofsson et al. (2014). We used the out-
of-bag (OOB) random forest prediction to generate confusion matrices and estimate 
the overall accuracy and the omission and commission errors. Because random forests 
takes a bootstrap sample for every tree, the out-of-bag samples can be used for an 
unbiased estimate of accuracy (Breiman, 2001) In remote sensing studies, resampling 
techniques are increasingly used to estimate map accuracy, whereas accuracies 
estimated from single hold-out test datasets are likely to suffer from large variances 
(Lyons et al., 2018). Finally, we used the best-performing model to generate our final, 
binary disturbance map (disturbed vs. undisturbed forest). 

 

3.4 Estimating the area of annually disturbed forest 

Our ensemble approach provides a consensus map of disturbance happening at any 
point in our time period, but does not directly yield information on the year of 
disturbance. To assign a disturbance year to the ensemble map, we used the 
disturbance year from the LandTrendr segmentation of the best-performing individual 
disturbance model (i.e., the best performing spectral index and seasonal window). 
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Since we were interested in forest disturbance, but not the permanent conversion from 
forest to agriculture, we masked converted areas from our analysis using the map by 
Baumann et al. (2017). Therefore, for all subsequent analyses, our map did not include 
converted areas (i.e., areas cleared and followed by agricultural land use), but only 
forest disturbances happening inside forests, thus forest changes that did not result in 
a change of the land use. We hence attributed the year of disturbance from the best 
single model to all disturbed pixels of the map resulting from the ensemble 
classification. We did this only for disturbances occurring after 1989, as disturbance 
detection in the first two years of time series is typically unreliable (Cohen et al., 2017). 

To estimate the area that was disturbed in each year between 1990 and 2017, we again 
followed best-practice guidelines (Olofsson et al., 2014) and estimated the area based 
on an independent set of reference locations. We collected a second stratified random 
sample because the size of our first reference sample was not sufficiently large to 
estimate disturbed area annually, using the disturbance years in the final (best) 
disturbance map as strata, using 30 points per strata (= a total of 840 samples as there 
were 28 years in our times series where disturbance can occur). Each sample was 
interpreted with TimeSync, labelling the year of disturbance. We then used an unbiased 
stratified estimator to adjust for possible sampling bias and calculated unbiased area 
estimates and associated confidence intervals for each year between 1990 and 2017 
(Olofsson et al., 2014; Stehman, 2013). 

3.5 Comparison with environmental variables 

To further assess disturbance patterns, we investigated the relationship between 
rainfall and soils on the one hand, and disturbances on the other. To assess the 
relationship of rainfall and disturbance over time, we used the Climate Hazards Group 
InfraRed Precipitation with Stations data (CHIRPS) time series, which blends infrared 
geostationary satellite observations with in situ station observations to produce 
monthly grids of precipitation (Funk et al., 2014). We calculated total annual 
precipitation, averaged across the study region, and compared this time series with our 
time series of disturbed forest area. We fitted a linear regression, using total disturbed 
area as response and average annual precipitation as explanatory variable, and derived 
residuals. 

To explore this relationship further in space, we used the Standardized Precipitation 
Index (SPI) (Mckee et al., 1993) derived from CHIRPS data and compared it with our 
map of disturbances. SPI values are expressed in standard deviations by which the 
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observed anomaly deviates from the long-term mean. Positive SPI values indicate wet 
conditions and negative values indicate dry conditions. SPI time series based on 
CHIRPS data were found to accurately reproduce the occurrence and spatial patterns 
of wet and dry conditions in Central-Western Argentina (Rivera et al., 2019) and in 
southern South America (Penalba and Rivera, 2015). We created SPI maps using the 
Climate Engine tool (Huntington et al., 2017) using a 10-month time-scale (covering 
the 9 months for which we calculated our spectral-temporal metrics, plus one month 
before). In addition, we also compared total disturbances with general (average) 
rainfall patterns by summarizing disturbance for 100-mm-rainfall classes, ranging 
from 200 mm to 1300 mm. Finally, we summarized disturbances for soil classes using 
a soil map from the Argentine Instituto Nacional de Tecnología Agropecuaria (INTA). 

4 Results 

All nine models that we tested for detecting forest disturbances, based on three 
disturbance metrics derived for one of the combinations of vegetation indices (NDMI, 
TCW, NBR) and temporal windows (fall, winter, spring), yielded moderate to high 
detection accuracies. Overall accuracies for individual indices and seasons ranged from 
65.7% (NDMI, Feb-Apr) to 75.4% (TCW, May-Jul), with an average accuracy of 71.3 % 
(Table 2). Model performance was generally highest for TCW-based models and lowest 
for NDMI-based models. There was also a clear pattern in terms of seasons, with 
composites derived for May-July generally resulting in higher accuracies than 
composites from other time periods, regardless of the specific index. Validating these 
models showed that our disturbance detection generally yielded balanced error 
distributions, with commission errors ranging between 31.9% (TCW, May-Jul) and 
43.4% (NDMI, Feb-Apr), and omission errors ranging between 30.5% (TCW, May-Jul) 
and 48.4% (NDMI, Feb-Apr). Uncertainty was lower for the undisturbed class, with 
commission errors ranging between 19.7% (TCW, May-Jul) and 29.2% (NDMI, Feb-
Apr), and omission errors ranging between 20.8% (TCW, May-Jul) and 25.2% (NDMI, 
Feb-Apr). 

Combining all indices in an ensemble model outperformed any single-index model. The 
ensemble classification model, using all 27 variables (3 indices x 3 seasons x 3 
disturbance metrics), had the highest overall accuracy (79%) as well as the lowest 
commission error (27.3% for the disturbed class, 17.5% for the undisturbed class) and 
omission error (27.4% for the disturbed class, 17.4% for the undisturbed class) 
compared to the models based on disturbance metrics from a single index and season 
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classifications. Furthermore, the ensemble model also had the most balanced 
distribution of commission and omission errors, which were almost equal within both 
the disturbed class (around 27%) and the undisturbed class (around 17%). We also 
explored if LandTrendr results among individual metrics varied more for samples 
incorrectly classified versus those correctly classified, but found no difference (results 
not shown. 

Table II-2: Overall accuracy, omission and commission errors of the disturbance detection. The detection 
of disturbances was based on random forest classifications of LandTrendr-based disturbance metrics, 
derived for nine combinations of three spectral indices (Tasseled Cap Wetness, Normalized Burn Ratio 
and Normalized Difference Moisture Index) and three time intervals, as well as an ensemble model over 
all these variables. 

 
Index/season model Overall accuracy (%) Class errors (%) 

   
Disturbed  Undisturbed 

      Commission Omission Commission Omission 

 TCW_Feb_Apr 73.0 35.2 33.0 21.5 23.2 

 
TCW_May_Jul 75.4 31.9 30.5 19.7 20.8 

 
TCW_Aug_Oct 72.6 35.3 34.7 22.3 22.7 

 
NBR_Feb_Apr 69.0 39.2 42.4 26.1 23.7 

 
NBR_May_Jul 71.8 35.2 39.5 24.2 20.9 

 
NBR_Aug_Oct 71.2 36.1 39.9 24.5 21.6 

 
NDMI_Feb_Apr 65.7 43.4 48.4 29.2 25.2 

 
NDMI_May_Jul 69.4 37.8 45.2 26.8 21.2 

 
NDMI_Aug_Oct 66.4 42.4 47.8 27.9 24.6 

       

 
Ensemble model 78.7 27.3 27.4 17.5 17.4 

 

The final disturbance map, showing disturbed vs. undisturbed areas, highlighted 
distinct spatial patterns across the Argentine Dry Chaco (Figure II-3). Disturbances 
between 1990 and 2017 were generally more widespread at the interfaces of larger 
forested and non-forested patches (e.g., in the southernmost section of the study area 
corresponding to the province of San Luis), inside fragmented forest patches (e.g., in 
the south-western part of Chaco province, eastern side of Santiago del Estero province, 
north-eastern part of Córdoba province), as well as close to water bodies such as major 
rivers (e.g., the Pilcomayo river in the north of Formosa, or along the Rı́o Dulce in 
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Santiago del Estero). In contrast, large, continuous patches of remaining forest appear 
less affected by disturbance, particularly in the southwest of the study region 
(provinces of San Luis, San Juan and western La Rioja) and in the north-western Chaco 
province. Provinces of Córdoba, Santiago del Estero and Catamarca showed the highest 
disturbance rates (respectively 13%, 12% and 11%). Examining the disturbance map 
also show distinct and diverse spatial patterns of detected disturbances from larger, 
continuous patches (e.g., Figure II-3, A) to more dispersed and irregular patterns (e.g., 
Figure II-3, B), pointing to diverse disturbance agents. 

Taking a closer look at the timing of disturbance, based on the best-performing model 
for any combination of spectral index and season (i.e., TCW, May-July) provided further 
insights into the spatiotemporal patterns of forest disturbance across the Argentine 
Chaco (Figure II-3). Larger disturbance patches occurred predominately in the 
beginning of our observation period, in the 1990s, with several large, irregularly 
shaped patches (e.g., at the border between La Rioja and Córdoba provinces and in 
central Santiago del Estero). More recently, disturbances patches became generally 
smaller and had more geometrical shapes (indicated in our map by warmer colours, 
Figure II-3). Such disturbances occurred mainly close to existing agricultural fields, for 
example at the southern border between Salta and Chaco provinces and in the north-
western part of Cordoba and south-western Catamarca. In addition, clear overall 
spatiotemporal patterns were visible with disturbances more prevalent in the south in 
the early 1990s, but progressively moving towards the more interior Chaco over time.  
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Figure II-3: Year of detection of disturbances map produced by merging the disturbance map from the 
ensemble model and the best single index model (TCW, May-July.) 

The estimated annual area of forest disturbances, based on an independent set of 
ground truth points not used in model training, showed a variable pattern over time 
(Figure II-4, B). On average, about 888 km2 (standard deviation = 581 km2) of the 
remaining forest in 2018 was disturbed over time, yet this varied in magnitude from 
year to year. Highest disturbed areas occurred in 1995, 2004, 2009 and 2013 with more 
than 1,500 km2 of disturbed areas, with a remarkable peak in 2013 when 2,647 km2 
were disturbed (95% confidence interval = ±488 km2). Conversely, we found very small 
areas of disturbance for the years 1990 to 1993, 1998, 2002 and 2014 to 2016 (all <500 
km2), with the lowest area estimated for 1990 (48 ±42 km2). The total area of disturbed 
forest across our entire study period was 24,877 ± 860 km2. 

Comparing the temporal patterns of disturbed area with precipitation time series 
revealed synced patterns (Figure II-4) between estimated annual disturbed area (panel 
B) and cumulative annual precipitation (panel A). In particular, peaks in the 
disturbance time series typically corresponded to years with particularly low 
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precipitation (e.g., in 1995 and 2013). Conversely, the three years with highest rainfall 
(1991, 2002, and 2015) had very low levels of disturbed areas (all below 400 km2). 
However, plotting the residuals of a simple linear regression model (Figure II-5) 
between annual disturbed area and annual precipitation may suggest that the effect of 
precipitation on forest disturbances was not consistent over time (Figure II-4, panel C). 
The coefficient of determination also corroborates that precipitation alone does not 
explain disturbed area (R2= 0.41). 

 

Figure II-4: Comparison between disturbances and annual precipitation patterns. A) annual 
precipitation sums derived from CHIRPS data. B) annual disturbance area estimated from Landsat 
composites. C) residuals between the observed (Landsat) and predicted disturbed area (predicted based 
on a linear regression between observed area and precipitations, see Figure II-5). 
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Figure II-5: Linear regression model fitted to annual precipitation sums derived from CHIRPS data and 
annual disturbance area estimated from Landsat composites. 

Comparing the spatial disturbance patterns with maps of drought indices (SPI; 
Figure II-6) provided further insights into the relationship between precipitation and 
disturbances. The drought indices revealed a remarkably high spatial variability, with 
hotspots occurring in distinct regions of the Argentine Dry Chaco (e.g., 1995, 2004 and 
2013, when rainfall was lowest). For instance, drought hotspots in 1995 occurred in 
the central and southern part of the study area, whereas the northern part of the study 
region was hit hardest in 2013. Interestingly, some of these spatial patterns were also 
reflected in the disturbance maps (Figure II-6, lower row), with regions with relatively 
high disturbance densities occurring where drought impacts were particularly high in 
a given year. Yet, disturbances also occur in areas not affected by drought. 
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Figure II-6: Spatial comparison between drought impact and disturbance patterns for the years 1995 
(left), 2004 (centre), and 2013 (right). A) Standardized Precipitation Index maps based on CHIRPS data; 
B) disturbance density maps. These three years had particularly low rainfall and large disturbed areas. 

Finally, summarizing disturbances along a gradient of average rainfall over the entire 
observation period (1990-2017) showed clear association of disturbance with average 
rainfall in our study region (Figure II-7). In absolute terms, disturbed areas followed a 
clearly hump-shaped distribution, with largest forest disturbance areas found at 
average rainfall around 700 mm (Figure II-7, A), where also forest cover in the Dry 
Chaco is still the highest. Putting the disturbed area in relation to the remaining forest 
extent in these rainfall zones showed that highest disturbance rates occurred above 
500 mm (constantly above 8-10% across the entire observation period). At lower 
average rainfall, disturbance rates were much lower (<4%). In terms of soil types, 



Chapter II 

38 
 

disturbed areas were highest in Mollisols (Figure II-7, C), with Alfisols and Mollisols 
having the highest disturbance rates (around 9%). Generally, disturbance rates varied 
less in relation to soil types than in relation to average precipitation patterns. 

 

 

Figure II-7: Forest disturbances between 1990 and 2017 in the Argentine Dry Chaco in relation to 
average annual precipitation rainfall gradient and soil types. A) Total disturbed area (24,877 km2) by 
average precipitation zone; B) Percentage of forest disturbed over total forest area by average 
precipitation zone; C) Total disturbed area by soil type; D) Percentage of forest disturbed by soil type. 

5 Discussion 

Tropical dry forests experience high human pressure, but monitoring forest 
degradation in these systems is challenging due to high canopy complexity, strong 
phenology, high climate variability, and diverse degradation drivers. Making full use of 
the opportunities that the Landsat archive provides, we here provide an assessment of 
forest degradation in the Dry Chaco, a large tropical dry forest region (489,000 km2), 
over a 30-year time span using dense Landsat time series, temporal segmentation, and 
an ensemble disturbance detection algorithm. Methodologically, our study showed that 
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forest disturbances associated with forest degradation can be mapped reliably and that 
a multispectral ensemble approach is preferable to time series analyses based on 
individual spectral indices. Thematically, our study yielded three main insights. First, 
we found major areas (about 25,000 km², 8% of the study region) of the remaining 
forests in the Argentine Dry Chaco have been disturbed since 1990, suggesting 
degradation is a widespread phenomenon that deserves more attention in discussions 
of environmental sustainability in the Chaco. Second, we found diverse spatial patterns 
of forest disturbances, which appear to be driven by different disturbance agents, 
including both natural (e.g., drought) and anthropogenic ones (e.g., logging, agricultural 
fires). This suggests disturbance attribution is central for understanding the drivers 
and impacts of forest degradation. Third, we found a clear association between forest 
disturbance and precipitation. Temporally, forest disturbance was particularly 
widespread during drought years. Our disturbance maps suggest a possible link of 
drought and increased fire activities can explain this pattern. Spatially, forest 
disturbance was most widespread in areas with average rainfall around 700 mm 
(Figure II-6, A). These are areas that are too dry for cropping, and therefore still contain 
considerable shares of forest, yet are inhabited by more people than the even drier 
parts of the Chaco. Together, this can explain the hump-shaped disturbance distribution 
we find. More generally, our analyses suggest that an improved degradation monitoring 
is urgently needed in the world’s tropical dry forests. Our approach based on the 
Landsat archives and trajectory analyses, both readily implemented in Google Earth 
Engine, are promising for scaling up monitoring efforts. 

Our study demonstrates the feasibility of mapping disturbances robustly across a large 
tropical and subtropical dry forest. Our overall accuracy (about 79%) is comparable to 
the only other study adopting a similar approach for a tropical dry forest (Wang et al. 
(2019). In this study a spectral ensemble was used to map disturbances in different 
forest types in Mato Grosso, yielding an overall accuracy of about 83% for the tropical 
dry forest area assessed (a much smaller area than in our study). Likewise, our overall 
accuracies are comparable to those obtained in moist tropical forests, such as in Brazil, 
Ethiopia and Vietnam (Schultz et al., 2016). All of this further attests to the robustness 
of our approach. However, it should be noted that the Chaco is relatively homogeneous 
in terms of topography (Bucher, 1982) and transferring our approach to 
topographically more complex woodlands, such as in Central America or Colombia, 
might therefore bring new challenges due to complexity arising from illumination 
differences. 
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Our study adds to growing evidence that a multispectral ensemble approach 
outperforms traditional algorithms for disturbance detection. The ensemble 
performed better than any single index with improved classification accuracy and error 
balance, a finding consistent with studies by Cohen et al. (2018), Schultz et al. (2016) 
and Wang et al. (2019). In terms of the performance of single indices, our study 
suggests that particularly the Tasseled Cap Wetness component has considerable 
potential for advancing degradation monitoring in tropical dry forests. This index 
outperformed all other indices in our change detection model comparison, in line with 
prior work on different forest types (Cohen et al., 2018; Czerwinski et al., 2014; DeVries 
et al., 2016). For tropical dry forests, Grogan et al. (2015) found TCW to be best-
performing for monitoring forest disturbances, while other studies found NDMI (the 
least-performing index in our case) or NBR to be useful for detecting disturbances 
(Schneibel et al., 2017b; Smith et al., 2019). This diversity of findings, not always from 
studies that compared across multiple indices, further highlights a strength of an 
ensemble approach, which does not force an a priori selection of a specific spectral 
metric. Given the diversity of disturbance signatures we found in our case, using 
multiple spectral indices in an ensemble approach might also provide opportunities to 
capture this diversity (as different indices might detect different disturbances best), 
though quantifying this requires further work. 

Our assessment of disturbed areas indicates that a large share, about 8% (= 24,877 ± 
860 km²) of the forests spared so far from agricultural conversion were affected by 
forest disturbances in the period 1990-2017. This area represents roughly one third of 
the area that was converted to agriculture during that time. For instance, forest 
conversion to agriculture in our study area in the period 1985 to 2013 amounted to 
74,351 km² (Baumann et al., 2017). These forest losses are associated with globally-
relevant carbon emissions (Baldassini et al., 2020; Baumann et al., 2017; Gasparri et al., 
2008) and biodiversity loss (Romero-Muñoz et al., 2020, 2019b; Semper-Pascual et al., 
2020, 2018). Yet all impact assessments so far have exclusively focused on full forest 
conversion, as ours is to the best of our knowledge the first study quantifying the extent 
of forest disturbance within remaining forests. As a result, a key finding of our work is 
that, unfortunately, the strong environmental impacts of forest loss and transformation 
reported for the Chaco (Barral et al., 2020; Baumann et al., 2017; Piquer-Rodrı́guez et 
al., 2015) still represent a substantial underestimation of the real impacts, and simple 
forest vs non-forest maps might heavily overestimate the quality of the remaining 
Chaco forests. Impact assessments must therefore urgently include forest-degradation 
indicators, such as the extent and severity of disturbances that we derive here. This 
seems particularly relevant for assessments of Reducing Emissions from Deforestation 
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and forest Degradation (REDD+) implementation, particularly when setting baselines 
against which to measure reduction in forest conversion and degradation. These 
baselines do so far not consider degradation footprints and extent (SAyDS, 2019), 
which is to a large extent due to missing disturbance maps prior to our study. 

Although we did not attempt here to differentiate between disturbance agents, both the 
shape and context of disturbance patterns hint to the processes causing disturbances. 
For example, irregular, continuous patches might be attributable to fires (e.g., 
Figure II-3, C). Such patches often occurred next to agricultural fields, suggesting that 
post-harvest burns and fires escaping to nearby forests are a major driver of forest 
disturbance in the Chaco. In contrast, we found many large, rectangular patches of 
disturbed forest (e.g., Figure II-3, A) – typically in areas where the agricultural frontiers 
are advancing (le Polain de Waroux et al., 2018). This can be interpreted as evidence 
for forest clearing with the intention to establish agriculture, but this intention was 
never realized. As a result, forests were only cleared partially and/or cleared areas 
were abandoned with subsequent woodland recovery, a pattern so far not documented 
for the Chaco. In addition to these larger disturbance patches, we found many small 
disturbances (e.g., Figure II-3, B) which appear to be related to selective logging or 
charcoal production (Rueda et al., 2015). Finally, linear disturbances were frequent, 
likely due to the construction or maintenance of forest roads. In sum, the spatial 
features of disturbance suggest diverse disturbance agents, and combining our data 
with ancillary data on these agents would be a beneficial follow-up step that can 
provide insights into the underlying causes and possible policy responses of forest 
degradation (Finer et al., 2018).  

A key finding of our work was a possible link between the forest disturbance and 
drought years, with the largest area of disturbance corresponded to the most extreme 
droughts in our study area (Figure II-5). Similar patterns were found in the Amazon, 
possibly due to drought-related fires (Bullock et al. 2020). This link has been suggested 
for the Chaco too (Argañaraz et al., 2015; Fischer et al., 2012), and is further 
corroborated by our work as we found fire-like disturbance patterns particularly in 
drought years and particularly in areas highlighted in the SPI maps as drought hotspots 
(Figure II-5). We speculate that fires are more likely to occur and escape (e.g., when 
fields are burned), and likely larger, during drought years. However, droughts impact 
forest also directly (Corlett, 2016) and our analyses suggest that particularly forests 
along rivers are susceptible to drought impacts, possibly because these forest are more 
dependent on water resources and vulnerable to water stress. 
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Focussing on the link between disturbance and average rainfall across the Chaco, our 
results suggest the majority of disturbances occurred around 700 mm annual 
precipitation. This is perhaps not surprising, as this precipitation amount represents 
the lower limit for major crops (e.g. soybean, maize) in the Chaco (Grau et al., 2005), 
and thus deforestation occurs mainly in areas with higher precipitation (Zak et al., 
2008). Several processes suggest this could be changing in the future. First, the 
silvopastoral cattle ranching systems mentioned above are economically feasible at 
precipitation levels below 700 mm and we already find evidence for their expansion 
(Peri et al., 2017). Second, new soybean strains that can tolerate drier climates are 
being developed, and this would likely shift the deforestation frontiers in major ways 
(Leguizamón, 2014). That the bulk of the forest disturbances in the remaining forest 
occurred in relatively wet areas (i.e. between 500 mm and 1200 mm) can likely be 
explained by the higher presence of people (both farmers and forest smallholders) in 
these, relatively-speaking, more favourable areas compared to the driest parts of the 
Chaco. Also, this pattern might be explained by the lower availability or quality of forest 
resources in extremely dry areas, where some valuable species disappear and 
vegetation grows slower and less high (Powell et al., 2018; Prado, 1993). 

While our methodology resulted in relatively high detection probability and an overall 
robust forest disturbances map across a large region, three limitations need to be 
mentioned. First, our classification was based on training and validation data that were 
visually interpreted from Landsat image trajectories and very high-resolution images 
on Google Earth. Subtle disturbances (e.g., selective logging) are not easy to identify in 
such a way and might be missed. This suggests our estimate of forest disturbance is 
likely conservative. Second, and related to this, our disturbance map does not capture 
the impact of forest grazing on forest understory, which is a key driver of forest 
degradation in the Chaco (Adamoli et al., 1990; Bucher and Huszar, 1999; Torrella and 
Adámoli, 2005). Combining our approach with approaches that use radar or lidar data 
(Dubayah et al., 2020) may help to monitor such more subtle disturbances in the future. 
It is also worth mentioning that by considering only disturbances and not recovery, our 
map gives a partial picture of forest dynamics. Taking into account regrowth would be 
important for carbon budget estimates. However, both in the context of forest 
degradation and for carbon accounting, assessing recovery would require separating 
trees and shrubs, as the latter often dominates in recovering forests that had contained 
tall trees before they were disturbed. Our segments are based on spectral recovery only 
and do therfore not readily separate shrub from tree cover. Interpreting them as forest 
recovery could therefore hide ongoing degradation, which is why we refrain from 
showing them here. Lastly, we cannot rule out a systematic bias in the finding of higher 
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disturbances found in dry years. Detection, however, could be both positively biased 
(e.g., better detectability due to lower cloud cover) or negatively biased (e.g., less 
contrast between vegetation and background). Generally, we are convinced our 
estimates in dry years are reliable, because cloud cover is lowest and image availability 
very good for dry seasons across our observation period. 

In this study, we demonstrated the benefit of a Landsat-based, spectral ensemble 
approach to map forest disturbances in tropical dry forests. Most elements of our 
approach are implemented in Google Earth Engine, providing considerable potential 
for upscaling and thus for degradation-related forest disturbance monitoring. Our 
study highlights that such monitoring is important and timely, given the rapid pace at 
which tropical dry forests around the globe are disappearing, and the so far overlooked 
extent of disturbances related to degradation in our case. The Gran Chaco is a global 
hotspot of deforestation (Hansen et al., 2013), and our work suggests this is still an 
underestimation of the real impact of land use on forest loss and transformation. 
Stepping up forest disturbance monitoring in tropical dry forests is urgently needed to 
better understand carbon emissions and biodiversity loss associated with forest loss – 
and to identify effective strategies to mitigate these losses. 
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Abstract 

Forest degradation in the tropics is a widespread, yet poorly understood phenomenon. 
This is particularly so for tropical and subtropical dry forests, where a variety of 
disturbances, both natural and anthropogenic, affect forest canopies. Addressing forest 
degradation thus requires a spatially-explicit understanding of the causes of 
disturbances. Here, we apply an approach for attributing agents of forest disturbance 
across large areas of tropical dry forests, based on Landsat image time series. Focusing 
on the 489,000 km² Argentine Dry Chaco, we derived metrics on the spectral 
characteristics and shape of disturbance patches. We then used these metrics in a 
random forests classification framework to estimate the area of logging, fire, partial 
clearing, riparian changes, and drought. Our results highlight that partial clearing was 
the most widespread type of forest disturbance in 1990-2017, extending over 5,520 
km² (± 407 km²), followed by fire (4,562 ± 388 km²) and logging (3,891± 341 km²). 
Our analyses also reveal marked trends over time, with partial clearing generally 
becoming more prevalent, whereas fires declined. Comparing the spatial patterns of 
different disturbance types against accessibility indicators showed that fire and logging 
prevalence was higher closer to fields, while smallholder homesteads were associated 
with less burning. Roads were, surprisingly, not associated with clear trends in 
disturbance prevalence. To our knowledge, this is the first attribution of disturbances 
agents in tropical dry forests based on satellite-based indicators. While our study 
reveals remaining uncertainties in this attribution process, our framework has 
considerable potential for monitoring tropical dry forest disturbances at scale. Tropical 
dry forests in South America, Africa and Southeast Asia are some of the fastest 
disappearing ecosystems on the planet, and a more robust monitoring of forest 
degradation in these regions is urgently needed. 

Keywords: Disturbance agents; Disturbance regimes; Forest degradation; Landsat 
time series; Land use; LandTrendr; Tropical dry forests. 
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1 Introduction 

Tropical and Subtropical Dry Forests (hereafter: dry forests or TDF) occur on all 
continents and are among the most threatened ecosystems globally (Miles et al., 2006; 
Sunderland et al., 2015). Many TDF are deforestation hotspots, due to the expansion 
and intensification of different forms of agriculture and forest use (Hasnat and Hossain, 
2020). At the same time, TDF remain weakly protected in many regions (Miles et al., 
2006). TDF harbor unique biodiversity, including a great number of endemic 
taxa(Banda-R et al., 2016; Mares, 1992; Redford et al., 1990), and support the livelihood 
of many million people (Byron and Arnold, 1999; Newton et al., 2020). Understanding 
patterns, drivers and outcomes of forest changes in TDF is therefore important. Despite 
this, TDF have received far less attention than tropical rainforests. Available studies 
have mostly focused on agricultural expansion and deforestation, while the status of 
those forests that are spared from conversion is unclear. 

Processes related to forest degradation remain weakly understood, although forest 
degradation likely affects large tracts of TDF (Siyum, 2020). The consequences of forest 
degradation are also significant. For example, forest degradation contributes in major 
ways to carbon emissions (Chidumayo, 2013; Pearson et al., 2017; Sedano et al., 2016) 
and increases forests’ susceptibility to fires and droughts (Cochrane, 2003; Matricardi 
et al., 2010). Fires also exacerbate the impact of logging and fragmentation on 
biodiversity, and can eventually lead to a shift in forest state, including a simplification 
of forest structure, domination by shrubs and pioneer species, loss of important 
ecological functions, or increase in invasive species (Veldman et al., 2009). A better 
monitoring of forest degradation in TDF is thus key to improve our understanding of 
their status and threats, and to inform conservation and land-use planning. 

A variety of disturbances have an impact on TDF and can be linked to degradation. 
These disturbances include both natural ones (e.g., drought, fires, storm events, floods) 
and anthropogenic ones (e.g., selective logging of valuable timber, logging for fuelwood 
collection or charcoal, mining, forest grazing, shifting cultivation) (Miles et al., 2006; 
Murdiyarso et al., 2008; Sasaki and Putz, 2009; Schneibel et al., 2017a). Disturbance 
agents can be natural processes or anthropogenic activities (e.g., natural fires vs. fire 
used as a management tool). Depending on the disturbance characteristics, different 
post-disturbance development trajectories can unfold, from full recovery to 
degradation cascades when disturbance frequency is high (Vieira and Scariot, 2006). 
Thus, to understand forest changes and their impacts, it is important to identify and 
attribute disturbance agents to mapped areas of forest disturbances. 
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The recent rapid developments in satellite image access, algorithms, and computing 
power now allow to map forest disturbance at high spatial and temporal resolutions, 
and across large extents (Zhu, 2017). Although most applications have so far focused 
on boreal, temperate or tropical moist forest ecosystems, the mapping of forest 
disturbances in TDF has only recently received increasing attention (De Marzo et al., 
2021; Gao et al., 2021; Grogan et al., 2016; Hamunyela et al., 2016; Reiche et al., 2017; 
Smith et al., 2019). A research frontier remains in the attribution of disturbance agents, 
for TDF and forest disturbance generally (Sebald et al., 2021; Shimizu et al., 2019). A 
promising approach is to derive spectral-temporal metrics from Landsat time series 
segmentation, and then using these metrics in machine-learning algorithms to identify 
and map disturbance types or agents (Kennedy et al., 2015; Nguyen et al., 2018; Oeser 
et al., 2017; Senf and Seidl, 2021; Shimizu et al., 2017). For example, the spectral 
magnitude, duration, rate of change, or spectral values before and after the disturbance 
all can help differentiate disturbance agents such as fires, selective logging, clear-fell, 
storms, or insects (Huo et al., 2019; Nguyen et al., 2018; Senf et al., 2015; Senf and Seidl, 
2021). Likewise, metrics describing the spectral recovery of the signal can be 
informative (Schroeder et al., 2017) For example, the gap caused by a cut single tree or 
single skid trail might disappear quickly, while the scar of a forest fire might take 
decades to fade. The segmentation algorithm LandTrendr (Kennedy et al., 2010) has 
been extensively tested for describing such spectral-temporal characteristics of 
disturbances (Cohen et al., 2018; Kennedy et al., 2012; Main-Knorn et al., 2013; 
Schneibel et al., 2017b; Senf et al., 2017) and is implemented in Google Earth Engine, 
allowing for its wide application (Kennedy et al., 2018). However, the capability of 
LandTrendr to identify disturbance agents in TDF has so far not been tested. 

In addition to the spectral-temporal properties of disturbances, the spatial 
characteristics of disturbance patches provide an additional source of information for 
characterizing disturbance agents. Disturbance events, both natural and 
anthropogenic, typically affect areas larger than a single pixel, making the disturbance 
patch a useful unit to study (Kennedy et al., 2015; Shimizu et al., 2017). Once 
disturbance patches are identified, their sizes and shapes can be derived to help 
distinguish agents (Nguyen et al., 2018; Schroeder et al., 2017). For example, clear-
cutting often results in geometrically shaped, large patches of tree loss, fire scars are 
large and irregularly shaped; and selective logging produces small disturbance patches. 
Once disturbances have been attributed to agents, analyses of their spatial 
determinants can provide insights into what drives disturbance regimes (Kumar et al., 
2014). Most TDF have been inhabited and used over long periods of time and a variety 
of actors operate, use and shape these forests today (Blackie et al., 2014; Sunderland et 
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al., 2015; Sunderlin et al., 2008). For example, where forest fires occur predominantly 
inside large forest patches, they could be part of natural disturbance dynamics or a 
result of indigenous and management practices, whereas fires adjacent to agricultural 
fields or settlements are likely of different origin (Cano-Crespo et al., 2015). 
Understanding relationships between forest disturbance agents and spatial 
determinants thus help to link disturbance patterns, agents and actor groups as a basis 
for disturbance management. 

Here, we employed a methodology to detect and map disturbance agents in tropical dry 
forests based on satellite-based metrics. We applied this approach to the entire 
Argentine Dry Chaco, a vast region with a long history of forest use and degradation 
(Cabido et al., 2018). Forest conversion has been a key land change recently in the 
Argentine Dry Chaco, mainly due to the expansion of agribusinesses. However, the 
status of, and recent trends in forest condition of remaining, still sizeable dry forests in 
this region are unclear. Existing studies point to considerable forest degradation (Grau 
et al., 2008; Macchi and Grau, 2012; Rueda et al., 2015), as evidenced by woody cover 
decreasing close to fields, smallholder homesteads, and roads (Baumann et al., 2018). 
However, the prevalence and spatial patterns of the main disturbance agents have 
never been analysed in the Chaco. 

Building on a temporally- and spatially-detailed mapping of forest disturbance across 
the entire Argentine Dry Chaco from our own previous research (De Marzo et al., 2021), 
here we aimed at identifying major disturbances agents in this system. Specifically, we 
combined multiple metrics describing disturbances spectrally and spatially into a 
random forests classifier to identify disturbance agents at the patch level. We then 
compared the identified disturbance agents to a range of features associated with key 
land-use actors potentially driving disturbance patterns. Specifically, we asked: 

1. What was the prevalence of different disturbance agents in the period 1990 to 
2017 in the Argentine Dry Chaco?  

2. What were the dynamics of different types of forest disturbances in this time 
period? 

3. How do different disturbances agents relate to anthropogenic features in the 
Chaco landscape, namely agricultural fields, forest smallholder homesteads and 
roads? 
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2 Study area 

The Gran Chaco in South America is among the largest remaining continuous tropical 
dry forest of the world (Olson et al., 2001). The majority of the ecoregion is located in 
northern Argentina, where it covers an area of 489,000 km2. The Argentine Chaco 
stretches through a mostly flat terrain characterized by a strongly seasonal climate, 
with average temperature around 22 °C. The cooler, dry season is between May and 
September, and the hot, wet season from November to April. Annual rainfall decreases 
from east to west from 1,200mm to 450mm in the centre of the region, with an again 
westward increase closer to the Andes as result of the orographic effect (Minetti 1999). 
Vegetation consists of a mosaic of xerophytic forests, open woodlands, scrubs, 
savannas, and grasslands. Characteristic tree species belong to the generum Schinopsis, 
in particular S. balansae (“Quebracho colorado chaqueño”), S. quebracho-colorado 
(“Quebracho colorado”), S. hankeana (“Horco quebracho”). Also, Chaco forests include 
Bulnesia sarmentoi (“Palo santo”), Aspidosperma quebracho-blanco (“Quebracho 
blanco”), and Prosopis spp. (“Algarrobo”). The shrub layer of the Chaco is dominated by 
Acacia, Mimosa, Prosopis, and Celtis, as well as the cacti Opuntia and Cereus. Forests 
sometimes intermix with natural grasslands and savannas, dominated by the grasses 
Elionorus musitcus or Spartina argentinensis. Finally, palm savannas with the palm 
Copernicia alba can occur in wetter parts of the Chaco (Bucher, 1982; Cabido et al., 
2018; Prado, 1993). 

Until recently, the Chaco was largely forested. Beginning in the 1980s, but especially in 
the 2000s, large-scale conversion of the Chaco’s forests to agriculture occurred 
(Gasparri and Grau, 2009; Vallejos et al., 2015) leaving about 72% forest cover today 
for the Chaco as a whole (Baumann et al., 2022). Most of the remaining Chaco forest is 
used, with many regions considered degraded due to historically unsustainable 
exploitation. This resulted in a substantial simplification of forest structure and 
composition, with a loss of trees in the upper layer, loss of the herb layer or shrub 
encroachment (Torrella and Adámoli, 2005). Furthermore, the expansion of industrial 
agricultural also caused an intensification of forest use, worsening forest degradation 
(Cotroneo et al., 2021). Different land-use activities have contributed to the 
degradation of the Chaco forest. First, the tannin and wood industry has targeted 
valuable tree species such as Quebracho Colorado, Palosanto and Algarrobo, leading to 
extractive logging for timber across wide swaths of the Argentine Chaco (Torrella and 
Adámoli, 2005). Second, much logging is linked to charcoal production, a common 
economic activity of poorer rural people (Krapovickas et al., 2016; Rueda et al., 2015). 
Third, the Chaco harbours many forest smallholders, locally referred to as ‘puesteros’ 
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or ‘criollos’, who live inside the forest and use the surroundings of their homesteads for 
sustenance (e.g., fuelwood collection, timber for construction) (Levers et al., 2021). The 
livestock of these smallholders typically roam freely around homesteads and has 
considerable impact on forest structure (Adamoli et al., 1990). Fourth, crop field and 
pasture management techniques in areas where forest was replaced by agriculture 
include the use of fire, which can spread into the surrounding forest. The prevalence, 
frequency and spatial patterns of these anthropogenic disturbances, however, remains 
weakly understood at the regional scale. The same is true for natural disturbances, 
which include natural fires, droughts or flooding (Bachmann et al., 2007; Bucher, 1982; 
Kunst, 2011). 

3 Materials and Methods 

Our overall workflow (Figure III-1) consisted of four steps. First, we derived spectral-
temporal metrics at the pixel level from the temporal segmentation of time series of 
Tasseled Cap Wetness and Normalized Burn Ratio composites. Second, we identified 
disturbance patches from a pixel-level disturbance map. Based on these patches we 
calculated shape metrics and summarized the spectral-temporal metrics per patch. 
Third, we used these metrics in a random forest classifier to attribute disturbance 
agents to each disturbance patch. Finally, we assessed the spatial relationships of 
disturbance agents with anthropogenic features in the Chaco landscape, specifically 
agricultural fields, forest-smallholders homesteads and roads. 
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Figure III-1: Overall workflow of the research methodology employed to identify and map disturbance 
agents in the Argentine Dry Chaco. 

3.1 Forest disturbance map 

We used a detailed forest disturbance map (Figure III-2) for the Argentine Dry Chaco 
for the period 1990-2017 at 30m resolution (De Marzo et al., 2021). The map was 
produced using all available Landsat imagery and a time series change detection 
methodology. Specifically, our methodology was based on calculating annual image 
composites of a set of spectral indices (i.e., Tasselled Cap Wetness - TCW, the 
Normalized Burn Ratio - NBR, and the Normalized Difference Moisture Index - NDMI) 
and then using trajectory analyses per pixel to identify disturbance years, as well as 
disturbance metrics. We then used an ensemble classification across these composites 
to derive a consensus disturbance map for all areas that were forested in 2017. The 
final map showing the location and timing of forest disturbances was rigorously 
validated following best-practice accuracy assessment protocols, using independent 
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reference data. This disturbance map had an overall accuracy of about 79% and a user’s 
accuracy of the disturbance class of 73% (De Marzo et al., 2021). This map focuses on 
forest disturbances not deforestation. In other words, we investigated forest loss that 
did not result in a change of land use. All deforested areas (i.e., forest areas cleared and 
converted to agricultural land use) were masked. 

 

Figure III-2: Disturbance map for the Argentine Dry Chaco showing the timing of individual disturbed 
pixels.  

3.2 Spectral-temporal metrics 

As a first step to further characterize disturbances, we calculated spectral-temporal 
metrics at the pixel level using the temporal segmentation algorithm LandTrendr 
(Kennedy et al., 2010). LandTrendr fits simplified trajectories by first iteratively 
identifying a set of vertices (i.e., breakpoints) in the time series of a spectral index, and 
then fitting linear segments between these vertices (see (Kennedy et al., 2010) for 
details). Consistent with our prior work, and to match the forest disturbance maps 
described above, we derived time series from all available Landsat TM, ETM+ and OLI 
images for the period 1987–2017 as Collection 1 Tier 1 surface reflectance data. Pre-
processing consisted of clouds and cloud shadow masking and harmonization of 
surface reflectance values between OLI and ETM+ sensors (Roy et al., 2016). For a more 
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detailed description of the data and preprocessing, we refer to (De Marzo et al., 2021). 
We did this based on annual Tasselled Cap Wetness composites, as it was the single 
best-performing index for disturbance detection in the Chaco in our prior work (De 
Marzo et al., 2021) and has been used for discriminating disturbance agents elsewhere 
(Senf et al., 2015; Shimizu et al., 2017). From the resulting fitted segments, a number of 
metrics that characterize change over time can be derived – e.g., the length and 
numbers of segments, spectral values at the beginning and end of segments, values and 
sign of the spectral change along segments. We derived those metrics using the same 
settings and parameters used to produce the forest disturbance map (De Marzo et al., 
2021). In other words, we used the same segments and timing of disturbance to ensure 
agreement of the datasets. Individual disturbance types might be better captured by 
different spectral indices, and using more than one index could therefore improve 
disturbance agent attribution. Specifically, the Normalized Burn Ratio (NBR) could be 
useful for attributing fire as an agent. We therefore also extracted NBR values for our 
disturbances and pre- and post-disturbance segments. We did this based on the TCW 
LandTrendr fitting procedure to obtain a comparable dataset (i.e., a fitted time series 
with vertices matching the vertex timing identified from TCW time series 
segmentation), with two spectral dimensions (TCW and NBR), as suggested by 
Kennedy et al. (Kennedy et al., 2015). From these fitted time series, we derived metrics 
describing the state prior to the disturbance (i.e., spectral value in the year before the 
disturbance), the disturbance magnitude and duration, the state after the disturbance 
(i.e., post-disturbance spectral value), and the magnitude and duration of the post-
disturbance segment (i.e., indicating recovery trajectories). 

3.3 Identifying and characterizing disturbance patches 

To identify disturbance patches from our pixel-based disturbance map (De Marzo et al., 
2021) we aggregated spatially-adjacent, disturbed pixels into patches using an 8-
neighbor adjacency rule and a minimum mapping unit of 1ha (11 pixels). We assume 
in all subsequent analyses, that adjacent disturbance pixels can be attributed to the 
same disturbance agent. Based on these patches, we then calculated the following 
spatial metrics per patch in Google Earth Engine: patch area, patch perimeter, 
perimeter-area ratio, and the fractal dimension index. The latter reflects shape 
complexity across a range of spatial scales and was calculated as described in 
(McGarigal et al., 2012). Next, we summarized the spectral-temporal predictor 
variables per disturbance patch by calculating average and standard deviation metric 
values, yielding a patch-based dataset of 22 metrics (18 spectral-temporal and 4 spatial 
metrics; Table III-1). 
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Table III-1: Predictor variables calculated for each disturbance patch used for random forests modeling 
of disturbance agents. 

Patch-based metric Variable (# metrics) Description 

Spectral-temporal 
metrics 

  

Pre-disturbance Prevalue (2) 

Mean of the spectral value 
before the disturbance of 
Tasselled Cap Wetness (TCW) 
and Normalized Burn Ratio 
(NBR) 

Disturbance Magnitude (4) 

Mean and STDV of the spectral 
magnitude (difference between 
spectral values at the end and 
beginning of the disturbance 
segment) of TCW and NBR 

 Relative magnitude (2) 
Mean of the ratio between 
Magnitude and Prevalue TCW 
and NBR 

 Duration (1) 

Mean of the duration in years 
of the disturbance segment 
(same for TCW and NBR time 
series)  

Post-disturbance Endvalue (2) 
Mean of the spectral value at 
the end of the disturbance of 
TCW and NBR 

Recovery Magnitude (4) 

Mean and STDV of the 
difference between spectral 
values at the end and 
beginning of the recovery 
segment TCW and NBR 

 Duration (1) 
Mean of the duration in years 
of the recovery segment (same 
for TCW and NBR time series) 

Spatial metrics   

 Area (1) Patch area 

 Perimeter (1) Patch perimeter 

 Perimeter/area (1) Ratio between patch perimeter 
and area 

 Fractal index (1) Patch fractal index  
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3.4 Disturbance attribution 

To attribute each disturbance patch to its disturbance agent, we used a random forests 
classification. Based on the literature on forest disturbance and degradation in the 
Chaco, our extensive field knowledge from the region, as well as an initial scoping 
exercise where we examined disturbance patches in high-resolution imagery in Google 
Earth, we sought to attribute disturbance patches to one out of five possible agents: (1) 
logging, (2) fire, (3) partial clearing, (4) riparian changes, and (5) drought. To train our 
attribution algorithm, we collected 308 training patches across the study area (i.e., 70 
logging, 70 fire, 77 partial clearing, 40 riparian changes, and 51 drought patches), 
where disturbance agents had been observed in the field and/or where disturbance 
agents could be clearly identified in Google Earth imagery. 

“Logging” included selective logging for timber and logging for fuelwood collection or 
charcoal production. These activities typically leave a characteristic signature of a maze 
of irregular skid trails inside the forests, which can be easily identified on high-
resolution imagery (Figure III-3). The “fire” category included any fire (natural or 
anthropogenic) occurring inside forests. Fires are easily recognizable by the 
irregularly-shaped patches, often an elongated shape in the north-south direction (due 
to the prevailing wind directions in the Chaco), and the spectrally-distinct signal of 
burned areas in the year of the fire. Our agent class “partial clearing” contained areas 
of forest where part of the canopy was removed as agriculture expanded. Partial 
clearing can occur because: (1) the conversion from forest to an agricultural field or 
pasture was initiated but never completed; (2) forests was converted but then 
abandoned, with subsequent forest regrowth; or (3) forest was converted to 
silvopastures, where some of the canopy is left on pastures. The agent class “riparian” 
refers to situations where the meandering of rivers in the Chaco (i.e., the Salado, Dulce, 
Pilcomayo and Bermejo rivers) leads to the erosion of riverbanks and therefore the 
degradation of riparian forests found on them. Given the highly dynamic fluvial systems 
in the Chaco, this can be common (Prieto and Rojas, 2015a). Finally, our agent “drought” 
included areas where a severe rainfall deficit leads to a disturbance signal as the vitality 
and productivity of the canopy is reduced in the drought and subsequent years. 
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Figure III-3: Examples of different disturbance agents as seen on very high-resolution images from 
Google Earth. Top row: forests prior to the disturbance; Bottom row: post-disturbance situations. 
Columns: Partial clearing (in the example a silvopasture field); Fire; Logging; Riparian change (in the 
example, the Bermejo river. Note how mutable the river meanders are). 

We used our set of patch-level metrics together with our training data to train a random 
forests classifier (RF, Breiman, 2001) to assign disturbance agents per patch. Random 
forests are a non-parametric classifier that consist of many individual decision trees 
that together determine class attribution. Individual decision trees are built using a 
bootstrap aggregation technique (i.e., bagging), which randomly samples a subset from 
the full training dataset to derive a tree, resulting in a ‘forest’ of many different decision 
trees. This has the advantage of reducing overfitting problems. Random forests 
classifiers are a powerful tool for remote sensing classifications generally, and 
particularly for attributing disturbance agents (Kennedy et al., 2015; Nguyen et al., 
2018; Shimizu et al., 2017). Here, we applied the algorithm at the patch level, assigning 
one of the five agents to each patch. Our classification was based on 500 decision trees. 

We validated our resulting disturbance agent map with a pixel-based accuracy 
assessment. We used a two-stage sampling strategy. First, we randomly sampled 
patches form a list of all patches, stratified by disturbance agent. Because our 
disturbance agents resulting in differently sized patches (e.g., fire had typically large 
patches), this ensured representation of all agent types and a diversity of patch sizes in 
our sample. Moreover, reliable labelling of disturbed pixels to agents requires 
considering patch context (i.e., size and shape of patches) and sampling patches 
randomly as a first step thus avoids bias. Second, we further sampled 70 pixels per 
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stratum with a minimum distance of 100m between them. We then inspected each pixel 
visually on-screen in: (1) high-resolution Google Earth imagery, and (2) Landsat images 
time series of raw spectral and TCW using the Time series app in Google Earth Engine 
(https://github.com/jdbcode/ee-rgb-timeseries). We labelled the disturbance agent 
corresponding to the disturbance that occurred in the year indicated by our 
disturbance map (De Marzo et al., 2021). In other words, in case of multiple disturbance 
per pixel, we assigned the agent based on the year of detection (i.e., dominant 
disturbance) and in case of multi-year disturbances we assigned the dominant year for 
the entire patch. This allowed to assign a disturbance agent to each pixel. In total, we 
could label 326 pixels. We then used this reference dataset to calculate a confusion 
matrix, from which we estimated area estimates as well as overall and class-wise 
accuracies, using the estimator for stratified random sampling, following best-practice 
protocols (Olofsson et al., 2014; Stehman, 2013). 

3.5 Analysing disturbances in relation to agricultural fields, homesteads and 
roads 

To further understand the distribution of disturbance agents in space and time, we 
carried out a number of geospatial analyses. First, we analysed the share of disturbed 
areas attributed to our different disturbance agents over time, based on our 
disturbance agent map. This resulted in trend graphs per agent. Second, we compared 
our disturbances to land-cover maps to assess whether some disturbance types were 
more common close to agricultural fields. As agriculture has been expanding rapidly 
into forests in the Argentine Chaco over our observation period, this required us to 
match the timing of each disturbance with an agricultural map from that time period. 
To do so, we used a time series of land-cover maps in 5-year intervals (1990, 1995, 
2000, 2005, 2010, and 2015) based on Landsat satellite imagery ((Baumann et al., 
2017). We then calculated 500m buffers up to a maximum distance of 4,000m around 
fields and summarized the area of disturbance patches by agent and buffer. This 
allowed to assess the distribution of disturbance agents relative to the distance to 
agricultural land. 

Third, we compared our disturbance agent map to a dataset of locations of forest-
smallholder homesteads, obtained by screen-digitalizing about 24,000 individual 
homesteads from Landsat and Google Earth very-high resolution imagery for our entire 
study region (Levers et al., 2021). This database includes temporal information, 
specifically on which homesteads where persistent over the time period 1985-2015, 
and which homesteads disappeared or emerged (and when). Using the same procedure 

https://github.com/jdbcode/ee-rgb-timeseries
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as above, we summarized areas of disturbances by agent around buffers surrounding 
homesteads (i.e., considering which homesteads were present when the disturbance 
had taken place). 

Finally, we analysed disturbance agents relative to the distance to roads. We used a time 
series of road networks for the years 1995, 2000, 2005, 2010, 2015, reconstructed from 
OpenStreetMap data, historical road atlases, and historical imagery in Google Earth. 
Our dataset contained all major paved and unpaved roads. We then derived areas of 
disturbances by agent in relation to distance, again considering when roads were 
constructed. 

Table III-2: Anthropogenic features in the Chaco landscape used for the analysis the spatial distribution 
of disturbance agents. 

Variable  Source Reference 

Distance to agricultural 
fields 

Land-cover maps for the years 
1990, 1995, 2000, 2005, 2010, and 
2015 

Baumann et al., 
2017) 

Distance to smallholders 
homesteads 

Homesteads screen digitalization 
based on the Landsat archive and 
very-high-resolution imagery in 
Google Earth 

(Levers et al., 
2021) 

Distance to roads Road network for the years 1995, 
2000, 2005, 2010, 2015 

openstreetmap.or
g, (Romero-Muñoz 
et al., 2020) 

4 Results 

4.1 Prevalence and estimated areas of different disturbance agents 

Our best random forests model of disturbance agents had an area-adjusted overall 
accuracy of 56.6%. Class-wise user’s accuracies where highest for partial clearing 
(85.5%), followed by fire (64.3%), whereas user’s accuracy was lower for drought and 
logging (60.9% and 36.5%, respectively). Riparian changes had the lowest accuracies 
(20.0%). In terms of producer’s accuracy, the class fire was most reliable (70.6%), 
although there was some confusion, particularly with logging. Partial clearing had a 
producer’s accuracy of 48.9%, with pixels misclassified with all other classes (Table 
III-3). Logging pixels were mostly misclassified with riparian and fire. For the drought 
class, a number of reference pixels were attributed to logging in our classification. The 
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class riparian changes had again the lowest accuracy (38.5%). Generally, our accuracy 
assessment revealed a fairly even error distributions (i.e., between user’s and 
producer’s accuracies). We used the model to generate our disturbance agent map 
(Figure III-4). 

Table III-3: Population error matrix showing the estimated percentage of pixels attributed to each agent 
class in the reference (columns) and by the model predictions (rows) and the estimated user’s and 
producer’s accuracies per disturbance agent class with the relative standard error. 

  Observed  

 
 Partial 

clearing Fire Logging Riparian Drought 
User’s 

accurac
y 

Pr
ed

ic
te

d 

Partial 
clearing 16.1 1.4 1.1 0.0 0.3 85.5  

(± 4.3) 

Fire 5.4 21.9 4.9 0.0 1.9 64.3  
(± 5.8) 

Logging 6.9 6.0 10.6 1.8 3.7 36.5  
(± 6.1) 

Riparian 2.2 1.1 1.8 1.5 0.7 20.0  
(± 5.2) 

Drought 2.3 0.7 0.7 0.5 6.5 60.9  
(± 6.1) 

 Producer’s 
accuracy 

48.9  
(± 3.6) 

70.6  
(± 4.2) 

55.6  
(± 6.3) 

38.5  
(± 11.3) 

49.4  
(± 6.5)  

 

 Although our classification of disturbance agents contained, as can be expected, 
considerable uncertainty, it is important to note that our area estimates are associated 
with narrow confidence intervals (Figure III-5). These area estimates, derived using 
independent reference data, revealed that partial clearing, a disturbance associated 
with the wave of agricultural expansion in the region, was most widespread 
disturbance agent (Figure III-5), covering 5476 ± 789 km². The second most-
widespread agent was fire (5171 ± 843 km²) followed by logging (3176± 785 km²). 
Smaller areas were affected by drought (2189 ± 566 km²) and the least widespread 
disturbance agent was riparian changes (635 ± 170 km²). In total, disturbances that 
can be clearly attributed to natural causes (i.e., drought and riparian changes) 
accounted for 17% of the disturbed area (2824 ± 898 km²), whereas disturbance 
agents that can be clearly attributed to anthropogenic activities (i.e., partial clearing 
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and logging) accounted for 52% of the disturbed area (8652 ± 1574 km²). Note that 
fires could be both, of natural or anthropogenic origin. 

 

Figure III-4: Map of forest disturbance agents for the Argentine Dry Chaco. Insets show examples for the 
five disturbance agents identified in our analyses (Google Earth Imagery as background). 

 

 

Figure III-5: Area estimates including uncertainty range (i.e., confidence intervals) for five major forest 
disturbance agents for the Argentine Chaco for the period 1990 to 2017. 
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4.2 Trends in disturbance agents 

Summarizing disturbance agents over time showed interesting trends (Figure III-6). 
Analyzing trends in absolute agent distribution (i.e., based on map estimates; 
Figure III-6, A) revealed that the partial clearing, a disturbance connected to 
agricultural expansion, was overall not very widespread (<70 km²/year) until the mid-
2000s, when it abruptly increased 2- to 4-fold, with a maximum area of 285 km² in 
2004. Logging was relatively widespread in the period 1992-1997 (around 190 
km²/year), then lower in 1998-2003, yet much more widespread between 2004 and 
2013 (around 330 km²/year). The highest area of logging occurred in 2013. Areas 
affected by fire fluctuated more heavily, with peaks around 1995 (1090 km² in 1995, 
666 km² in 1996) and 2004 (608 km² in 2004 and 420 km² in 2005). Minimum fire 
years where 1990 (only 1 km²) and 2015-2017 (3-9 km²). Drought was overall a not 
very widespread disturbance agent, with drought-affected areas particularly prevalent 
in 1993, 2000, 2005, and 2012-2013. 

 

Figure III-6: Disturbance areas by year, and areas proportion of the five agents by year. 

Assessing the relative share of disturbance agents over time showed clear trends in 
disturbance importance (Figure III-6, B). Most importantly, the share of partial clearing 
steadily increased, with shares rising from <10% in the early 1990s to >40% after 2010. 
The share of fire decreased over time in contrast, yet with major fluctuations over our 
observation period. Fire-prone periods were in 1994 to 1996 (between 47% to 74%), 
2003-2004 (around 45%) and 2009-2010 (around 26%), whereas fire became less 
important in the Argentine Dry Chaco after 2015. Logging prevalence stayed relatively 
stable, with shares around 30%, although the area of Chaco forest declined 
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substantially over our observation period. According to our map, drought prevalence 
was higher in the early years of our study period, as well as in 2000-2013. 

4.3 Disturbance agents in relation to anthropogenic features 

Analysing the spatial patterns of our disturbance agents in relation to anthropogenic 
features, specifically agricultural fields, smallholder homestead and roads, revealed 
interesting trends away from these features (Figure III-7). Trends were overall fairly 
similar across disturbance agents (columns in Figure III-7) and within specific 
anthropogenic features (rows in Figure III-7). In terms of agricultural fields, we found 
the clearest patterns, with all disturbances declining away from fields. For partial 
clearing and fire, we found an initial increase away from fields, with peaks of these 
disturbances about 1 km away from fields. These patterns were different when 
analysing disturbances in relation to smallholder homesteads. Here, we found an initial 
increase of disturbances, particularly for partial clearing and fire, with a peak around 
1-2km, but a much more gradual decline further away. These patterns were similar for 
partial clearing, fire, and logging, which however differ from the patterns found for 
riparian changes and drought (less decline away from smallholder homesteads than for 
the other agents, Figure III-7, middle row). For roads, we found similar patterns with 
smallholder homesteads, with an initial peak at 1-2 km and a subsequent gradual 
decline. Again, this pattern was clearer for anthropogenic compared to natural 
disturbance agents (Figure III-7). 
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Figure III-7: Disturbance agents in relation to distance to agricultural fields, smallholders homesteads 
and roads.  

5 Discussion 

Understanding the agents of forest disturbances is important for avoiding and 
addressing forest degradation, biodiversity loss and climate change. This is particularly 
so for the world’s widespread, often threatened, but frequently neglected tropical and 
subtropical dry forests. Using Landsat time series and a patch-based classification 
framework, we here reconstruct the prevalence and dynamics of five forest disturbance 
agents over a 30-year time span across the entire Argentine Dry Chaco, a vast dry forest 
region (489,000 km2) and global deforestation hotspot. This suggested that multiple, 
cooccurring disturbance agents contribute to forest degradation trends in the Chaco. 
Specifically, our main findings were, first, that partial clearing was the most widespread 
disturbance agent, pointing to a so far largely overlooked outcome of agricultural 
expansion processes. Second, fire and logging affected sizeable areas of the remaining 
forests, with most fires likely of anthropogenic origin, pointing to an urgent need for 
fire management strategies to preserve the remaining Dry Chaco forest. Third, most 
disturbances, particularly fire and logging, decreasing markedly away from agricultural 
areas (i.e., crop fields and pastures), highlighting so far undocumented edge effects and 
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an indirect outcome of the recent agricultural expansion wave. Finally, we demonstrate 
a considerable impact of forest smallholders on disturbance prevalence, but also that 
this impact is spatially restricted to the vicinity of their farms. More generally, our study 
highlights that an improved degradation monitoring of disturbance agents is needed to 
sustainably manage dry forests, in the Chaco and elsewhere. Our approach based on 
readily available Landsat archives is promising for improving understanding of the 
links between disturbance patterns and actors. 

Partial clearing was the most widespread disturbance agent we identified, and the 
prevalence of partial disturbances increased particularly after 2000. Two factors can 
explain this finding. First, partial clearing likely includes forests that were initially 
cleared for agriculture, but later abandoned, allowing the regrowth of a secondary 
forest. Initial clearing may be carried out to ensure land claims, yet sometimes farmers 
might not be able to afford establishing agriculture subsequently, agricultural 
operations fail, or the initial clearing is carried out for speculation purposes (i.e., to re-
sell cleared land). The Argentine Forest Law (Law 26.331, Ministerio de Agricultura 
Ganaderı́a y Pesca, 2015) was discussed and finally implemented in 2007, enacting 
considerable land-use restrictions over large areas of forests. Many land owners might 
have converted forest in fear of not being able to do so later, which likely led many 
situations where land was not put to use due to the reasons outlined above. Second, 
silvopastures, where part of the canopy is retained on pastures, became widespread 
after the passing of the Forest Law, as this land use was still allowed in areas where full 
conversion became prohibited. This incentivized silvopastures (Fernandez et al., 2020) 
which is likely captured in our partial clearing class. Generally, the strong increase of 
partial clearings we found for the 2000s corresponds well with other findings 
(Baumann et al., 2017; Vallejos et al., 2015) that highlight an acceleration of forest loss 
due to the agriculture boom in this period.  

Fire was the second most important disturbance agent. Although natural fires can 
occur, most of fires in the Argentine Chaco result from human ignition source (Bravo et 
al., 2010; Kunst, 2011). Fire is used for vegetation clearing and as a management tool 
to control shrub encroachment and to promote grass growth on pastures (Boletta et al., 
2006; Tálamo and Caziani, 2003). Where fire is used for management, fire can easily 
spread into neighbouring forests, especially in dry years, and affect very large areas 
(Fischer et al., 2012). Indeed, some of the largest patches in our disturbance map were 
due to fires (i.e., of the ten largest patches, eight were attributed to fires, with areas 
ranging between 35 km2 and 660 km2). A link between fire and drought has been 
suggested by prior studies for the Chaco (Argañaraz et al., 2015; Fischer et al., 2012) 
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and South America more generally (Di Bella et al., 2006), and indeed the two peak fire 
years we found in our analysis were also years of documented severe drought (1995 
and 2004, Figure III-6). Interestingly, fire seems to be a better way to map drought 
impact than our drought class, as the extremely dry years in 1995 and 2004 were 
captured in our time series of fire-affected area, but less so in our drought-affected 
areas. Overall though, fire prevalence in the Chaco’s forests decreased over time, which 
might represent higher levels of control of fires, particularly in areas where cropping 
takes place and farmers are investing in fire prevention/restriction (Di Bella et al., 
2006). Likewise, declining fire can be explained by less (full) conversion of forests to 
agriculture, as fire has historically been used for clearing land, but this is no longer 
compatible with land-use restrictions that require keeping part of the canopy.  

Logging was the third most-widespread disturbance type we found, with a fairly 
constant share of forest affected over our study period. Logging can be related to the 
harvesting of valuable timber, production of firewood, fence poles, tannin or charcoal 
and these activities relate to different actors ranging from wood industries to 
smallholders using the selling of forest product as a safety net during economically 
hard times (Krapovickas et al., 2016). The large area affected by this disturbance type, 
and the fact that logging activities remained important despite major forest losses and 
an ‘agriculturization’ of the region, highlights the importance of considering logging in 
assessments of forest integrity, pressure on biodiversity, or emission assessments – 
which has so far not been possible due to a lack of spatially-detailed and area-wide 
maps. We note that our estimates of logging are likely conservative, as logging normally 
affects smaller patches and we had a minimum mapping unit of 1ha. 

Our disturbance attribution was less reliable for the natural disturbances of riparian-
change and drought. Disturbances due to meandering rivers are important, but a 
locally, restricted phenomena, and therefore do not cover a large area. Integrating our 
disturbance analyses with an assessment of changes in water surface would likely 
increase the reliability of this class in major ways. Drought-related disturbance also 
affect a smaller area, however, it must be noted that our analysis likely does not capture 
all drought-related vegetation stress on Chaco forests. Mapping drought impact was not 
our main objective, and we therefore see this class mainly as separating out strong 
drought impacts to avoid confusion with other disturbance agents. A more complete 
assessment of drought impact on vegetation would likely benefit from a temporally 
more resolved time series (e.g., MODIS time series). Interestingly, many of our mapped 
drought disturbances were found in paleochannels, indicate that vegetation occurring 
on these sandy soils is likely more sensitive to drought.  
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A striking pattern we observed was the decreasing disturbance prevalence away from 
agriculture. For partial clearing, this is an expected trend as distance to prior 
deforestation has the highest explanatory power for new land clearance (Volante et al., 
2016). The distinct initial increase in partial clearing prevalence away from fields is 
likely related to the average distance between fields, in between there is still some 
forest in the form of narrow forest stripes left to prevent wind erosion (“cortinas”), 
which are often degraded (but overall cover a small area). Fire as well as logging 
decrease strongly away from fields, particularly beyond 1 km. This likely reflects 
accessibility of forest, relevant for extractive activities but also as a predictor of human 
activities and thus human ignition. Furthermore, where fires are used for management 
purposes, they can escape into adjacent forests, as highlighted above.  

We also found marked effects of smallholder homesteads in relation to disturbance 
prevalence. The decreasing partial clearing closer to smallholder homesteads likely 
indicates that homesteads persist only they have sizeable forests in the surrounding, 
with many homesteads abandoned as industrialized agriculture expands around them 
(Levers et al., 2021). Fire occurrence was lower closer to homesteads, on the one hand 
because of higher fire control, on the other hand likely because livestock reduces woody 
cover and herbaceous fuel loads in the close surrounding of homesteads (Baumann et 
al., 2018; Macchi and Grau, 2012). This might also explain the increase in logging 
further away from homesteads, as wood availability should increase further away. We 
note that we found similar, though somewhat less conclusive patters for distances to 
roads in line with prior work (Baumann et al., 2018), which can be explained by roads 
being a less clear indicator of human presence than settlements. Yet, this might also 
point to shortcomings in our road dataset, which was perhaps too coarse (mainly paved 
roads only) and did not include small roads opened for the purpose of logging or 
(historically) oil prospecting (Tálamo and Caziani, 2003). Our findings on the 
relationship of disturbances to anthropogenic features are based on analysis of the 
whole area, while different context might result in local difference. For example, the 
collection of firewood is influenced by household income and access to forestland and 
therefore varies in different regions (Krapovickas et al., 2016). Charcoal ovens are 
concentrated in some provinces and rare in others (Rueda et al., 2015). Pastures, where 
fire is used as a management tool, prevails over crops in drier areas (Baldi et al., 2015). 
These factors might produce different local patterns of disturbances prevalence in 
relation to anthropogenic features. 

Our analyses yielded robust area estimates and maps of disturbance agents, yet also 
highlighted the challenges of accurately attributing disturbance agents. The level of 
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accuracy we achieved was comparable to other studies. For example, we obtained 
user’s accuracies of 77.0% for disturbances caused by partial clearing and 46% for our 
logging class, comparable to a harvest disturbance accuracy of 68% for Central Europe 
(Sebald et al., 2021), or between 63% and 87% for the USA (Schroeder et al., 2017). 
Our fire class had a user’s accuracy of 59.3%, which is lower what is often reported 
from other biomes (i.e., the Boreal), although fire mapping is easier there (Hermosilla 
et al., 2015). Interestingly, we did not find any study that provides robust error 
estimates for disturbance agents in dry forests, limiting comparability, and we found 
no study at all independently evaluating the performance of riparian change 
disturbances or drought (typically included in classes like “other” (Nguyen et al., 2018) 
or “stress” (Schroeder et al., 2017), with widely varying error estimates, such as 29%-
88% in the latter study). These highlights the complexity of disturbances agent 
attribution in tropical dry forest, and the urgent need for more studies in this biome. In 
our case, confusion was highest among partial clearing, fire and logging, disturbances 
that in reality blend on the ground as they are all connected to both the deforestation 
process and to management (e.g., silvopastures, charcoal production). Better 
understanding agent complexes (i.e., co-occurring or sequential disturbances) would 
therefore be a useful next step. A deeper consideration of landscape context (Sebald et 
al., 2021) could help in this regard, in addition to the spectral-temporal and patch shape 
metrics we used here. 

Although our methodology resulted in a reliable disturbance agent attribution and 
robust area estimates for these agents across a large region, a few limitations need to 
be mentioned. First, we carried out the most comprehensive attribution of disturbance 
agents so far for the Chaco or any dry forest region, but we could not find reliable 
reference data for some disturbance types that are consequently not identified here. 
These might include, disturbance due to salinization (Maertens et al., n.d.), insect 
disturbance, or herbicide drift due to heavy pesticide use on some crops (i.e., soybean, 
cotton). Second, we applied a minimum mapping unit of 11 pixels, equalling 
approximately 1ha. This helped to remove scattered, small patches many of which likely 
represent misclassification, but we cannot rule out that this not also filtered out some 
disturbance types connected to very small patches, such as logging, more than others, 
such as fire. Third, our disturbance map likely is a conservative estimated as we did not 
map low-severity disturbances (De Marzo et al., 2021) and our map does not capture 
sub-canopy disturbances, such as forest grazing and resulting forest understory 
degradation, a common process of forest degradation in the Chaco. Fourth, our 
disturbance map had by itself some level of uncertainty (see De Marzo et al., 2021) that 
are not fully captured in the accuracies metrics we report here, as these only capture 
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the reliability of the agent attribution. However, our disturbance map had very 
balanced omission and commission errors, and we therefore do not expect uncertainty 
in disturbance detection to strongly affect our disturbance agent area estimates. 

6 Conclusion 

Going beyond only mapping forest conversion in tropical and subtropical dry forests to 
more deeply consider forest disturbance and forest degradation is urgently needed to 
better understand human pressure on these systems. Remote sensing is an essential 
tool for deforestation monitoring, and should be a key tool for assessing disturbance 
and more subtle changes in these forests as well, but has so far not been widely used 
for this purpose. In this study, we demonstrated the benefit of the unique Landsat 
archive to assess and map, at high spatial and temporal resolution, different forest 
disturbance agents and to separate anthropogenic from natural disturbances for the 
entire Argentine Dry Chaco. A number of studies focused on mapping or quantifying 
conversion of forest to agriculture [e.g., 56,57,72], and a few investigated changes in the 
remaining forests, such as degradation (Grau et al., 2008), logging (Rueda et al., 2015), 
fires (Argañaraz et al., 2015) in regions of the Chaco. However, this is, to our knowledge, 
the first forest disturbance agent attribution for the whole Argentine Dry Chaco. Given 
that our workflow is implemented in Google Earth Engine, there is considerable 
potential for consistent, repetitive forest disturbance monitoring, as well as for 
upscaling to larger areas – given appropriate training and validation data can be 
gathered. Thus, our workflow can be a start for a monitoring tool supporting land 
managers, planners, and policymakers. Thematically, our work suggests that a large 
proportion of the forest so far spared from deforestation is affected by anthropogenic 
disturbances, related to a diversity of land-use actors. This highlights the need to better 
capture and address forest degradation in order to maintain ecological integrity. Forest 
degradation as an important group of processes should not be neglected in tropical dry 
forests undergoing deforestation due to the expansion of commodity agriculture, such 
as the Chaco. 
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Abstract  

Tropical dry forests are widespread, harbour vast amounts of carbon and unique 
biodiversity, and underpin the livelihoods of millions. A variety of natural and 
anthropogenic disturbances affect tropical dry forest canopy, yet our understanding of 
how these disturbances impact on forest structure and ecosystem functioning, and how 
forests develop after different disturbances, is partial. This translates into knowledge 
gaps regarding long-term outcomes of disturbances on forest structure as well as which 
of these outcomes signify recovery vs forest degradation. Here, we use a rich dataset of 
remotely-sensed, high-resolution forest indicators in a multilevel Bayesian regression 
framework to understand the effect of different disturbance agents (partial clearing, 
fire, logging, drought and riparian changes) on aboveground biomass, and woody cover 
in the Argentine Dry Chaco. Our models show that post-disturbance trajectories of 
forest structural indicators differ markedly among different disturbance agents. For 
example, riparian changes affected biomass most strongly but had the fastest recovery, 
whereas logging had a generally lower impact and mostly affected tree cover, but 
recovery was slow or never occurred. Importantly, even three decades after the 
disturbance event, woody cover and biomass exhibited higher values for natural 
disturbances compared to anthropogenic disturbances. Furthermore, anthropogenic 
disturbances had slower recovery rates than natural disturbances. Overall, our 
approach shows the potential of remote-sensing indicators and space-for-time 
substitution to unravel the diverse vegetation response of different disturbance agents. 
Given the high and rising human pressure on dry forests in the Chaco and globally, our 
findings also show the long-lasting effects that anthropogenic disturbances have on 
these valuable forests. 

Keywords: Above-ground biomass, Woody cover, Bayesian multilevel models, Dry 
Chaco, Forest degradation  

  



  Linking disturbance history to forest structure 

73 
 

1 Introduction 

Tropical dry forests (TDF) are widespread, but have received much less attention than 
tropical humid forests in research, policy-making and the wider public (Miles et al., 
2006; Schröder et al., 2021). This is unfortunate, as tropical dry forests harbour high 
and unique biodiversity (Banda-R et al., 2016; Pennington et al., 2018; Powers et al., 
2018; Redford et al., 1990), are globally important carbon stocks, and provide a myriad 
of ecosystem services to local communities (Blackie et al., 2014). Yet, these forests are 
under substantial pressure from agricultural expansion, timber extraction, charcoal 
production, livestock grazing and infrastructure development (Baumann et al., 2022). 
As a result, TDF in many regions have been disappearing or are now heavily degraded, 
making the protection and restoration of remaining dry forests a global priority 
(Banda-R et al., 2016; Kuemmerle et al., 2017; Miles et al., 2006). 

Forest disturbances can substantially alter the structure and composition of remaining 
forests (Agarwala et al., 2016; Fajardo et al., 2013; Villela et al., 2006). These 
disturbances include, for example: selective logging of valuable timber; logging for 
fuelwood or charcoal production; small-scale clearing for mining; livestock production 
in forests or silvopastoral systems (Fajardo et al., 2013; Miles et al., 2006; Murdiyarso 
et al., 2008; Sánchez-Romero et al., 2021; Sasaki and Putz, 2009). In addition, tropical 
dry forest frequently experience natural disturbances, including fires, storm events, 
flood events or droughts, all of which substantially affect tropical dry forest canopies 
(Chazdon, 2003). Both anthropogenic and natural disturbances play major roles in 
reshaping forest structure and ecosystem functioning, affecting carbon storage and 
sequestration, as well as moisture recycling and, in turn ecosystems services and 
biodiversity (Asner, 2013; White and Pickett, 1985). What remains unclear is how 
different types of forest disturbances affect structural parameters directly, and how 
forest structures may recover over time. 

This is not a trivial task, as different disturbances affect forest structure and 
composition in different ways (Frolking et al., 2009), therefore potentially leading to 
different post-disturbance development trajectories and different long-term outcomes 
in forest structure (Giovanini et al., 2013; Urquiza-Haas et al., 2007). For example, 
selective logging typically targets valuable species and larger trees, while logging for 
fuelwood or for charcoal production targets trees less selectively in terms of species or 
age groups (Rueda et al., 2015). In addition, the natural complexity and heterogeneity 
of tropical dry forests, containing more closed-canopy or open forests, coupled with 
specific disturbance agents, can lead to multiple post-disturbance pathways that might 
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result in different outcomes. For instance, the removal of trees can lead to shrub 
encroachment where livestock is allowed to enter forests, or even semi-open 
shrublands with low vegetation cover, and bare soil exposure,  where overgrazing is 
heavy (i.e., due to animal trampling) (Gobbi et al., 2022). Given that these outcomes will 
have very different effects on ecosystem functioning, it is important to understand how 
disturbance alters forest structure. 

Furthermore, post-disturbance forest recovery can differ between natural versus 
anthropogenic disturbances (Chazdon, 2003). Namely, recovery after a natural 
disturbance (e.g., a storm event) differs from succession on abandoned fields or 
pastures in terms of species composition. This is due to differences in seed banks, lack 
of dispersing fauna in landscapes that underwent extensive deforestation, or the 
overabundance of seed predators in such landscape (Janzen, 1990). Likewise, the speed 
of forest regrowth can vary considerably among disturbance types: in general, forest 
structure and composition can recover relatively rapidly following disturbances that 
impact mainly forest canopies, such as storms or drought, while recovery is 
considerably slower following disturbances that heavily impact soils, such as ploughing 
or bull-dozing (Chazdon, 2003). Despite these differences in post-disturbance recovery 
and the strong implications these differences should have for tropical dry forest 
ecology and biodiversity (Jara-Guerrero et al., 2021; Yuan et al., 2018), our 
understanding of post-disturbance dynamics in tropical dry forest is weak (Quesada et 
al., 2009). In particular, it remains unclear whether forest recover differently after 
disturbances depending on the type of disturbance. This is problematic as slower 
recovery or a permanent change in forest structure leads to a reduction in ecological 
functioning which can signal forest degradation (Grainger, 1993; Schröder et al., 2021; 
Siyum, 2020). Better understanding potential links between disturbance and post-
disturbance recovery across different disturbance agents would thus be beneficial, but 
we are unaware of any study in TDF that has done so. 

One barrier for assessing post-disturbance recovery trajectories is typically the lack of 
repeated measurements of forest structure. Existing studies exploring the links 
between disturbance agents and post-disturbance recovery have typically relied on 
field assessments (Chaturvedi et al., 2012; Colón and Lugo, 2006; Loto and Bravo, 2020; 
Urquiza-Haas et al., 2007), which come with the trade-offs of being laborious and hence 
often limited in their spatial extent and/or their number of plots. Overcoming this 
limitation requires approaches that can characterize the structural composition of TDF 
across larger areas at high accuracy and spatial detail, while at the same time allowing 
to understand change over long time periods. Remote sensing is an excellent 
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methodology to remedy some of the drawbacks of field-based assessments to allow for 
spatially consistent assessments, as satellite imagery allow for a detailed and 
retrospective characterization of disturbance and post-disturbance development 
across larger areas and back in time (Hermosilla et al., 2019; Meng et al., 2021; Shimizu 
et al., 2022). Forest disturbance detection itself is now fairly operational, thanks to 
open access to high-resolution satellite image archives extending back to the 1980s, 
new algorithms, and ever-increasing cloud-processing capabilities (Banskota et al., 
2014; Frazier et al., 2014; Pasquarella et al., 2022; Wulder et al., 2012; Zhu, 2017). 
Disturbances and disturbance agents can be robustly characterized thanks to temporal 
segmentation algorithms and machine-learning methods (De Marzo et al., 2022; 
Kennedy et al., 2015; Nguyen et al., 2018; Shimizu et al., 2017; Zhang et al., 2022). In 
addition, multi-sensor approaches allow to reliably characterize forest structural 
composition, including biomass or fractional woody cover (Baumann et al., 2018; 
Bourgoin et al., 2018; Pötzschner et al., 2022; Shao and Zhang, 2016).  

A challenge for understanding post-disturbance recovery trajectories, however, is a 
lack of longitudinal data on forest disturbances and structure. For example, while 
optical remote sensing data (e.g., Landsat, which is often used to detect forest 
disturbance) reach back to the 1980 s, radar or Lidar data from (e.g., Sentinel-1 or GEDI, 
which can be used to describe structural parameters) became only available recently. 
As a result, quantify changes in forest structure over time with repeat measurements 
at the same sites is often not possible. Space-for-time substitution can help to fill this 
gap (Blois et al., 2013; Pickett, 1989). Such space-for-time approaches seek to 
overcome missing repeated measurements by inferring on past trajectories from 
contemporary spatial patterns, by comparing contemporary data from different sites 
(e.g., in terms of forest structure) at different times since an event has happened (e.g., 
a forest fire) (Blois et al., 2013). Thus, space-for-time comparisons may allow to 
combine detailed reconstructions of historical forest disturbances with 
characterizations of contemporary forest structure to assess post-disturbance changes 
in forest structure in tropical dry forests. To our knowledge, no study has applied such 
an approach in any TDF so far. 

We focused here on the Argentine Dry Chaco, a global deforestation hotspot and a TDF 
region with a long history of forest use, resulting in widespread degradation of 
remaining forests (Adamoli et al., 1990; Cotroneo et al., 2021; Torrella and Adámoli, 
2005). Forest degradation in the Chaco is the result of processes connected to 
agricultural expansion in the region (e.g., escaping fire used for managing pastures, 
knock-on effects of pesticide application), as well as to a diversity of forest uses, some 
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of which are traditional for the region (e.g., selective logging, fuelwood collection, 
charcoal production), whereas others have emerged only recently (e.g., silvopastoral 
ranching). This diversity makes the Argentine Dry Chaco a very interesting case to 
assess forest disturbances and post-disturbance recovery. In previous work, we 
mapped forest disturbance extent, timing and agents for the time period 1990 to 2017 
(De Marzo et al., 2022, 2021), fractional tree and shrub cover for the year 2015 
(Baumann et al., 2018) and aboveground biomass for the year 2019 (Pötzschner et al., 
2022) at high spatial and temporal resolution. Building on these datasets, we here use 
a Bayesian multilevel framework to understand how different disturbance types and 
histories relate to current forest structure. Specifically, we asked the following research 
questions: 

1. How does contemporary forest structure vary in relation to the time since 
disturbance across different disturbance agents? 

2. How do post-disturbance trajectories vary across disturbance agents?  

2 Study area 

Our study area encompasses the entire Argentine Dry Chaco, covering around 489,000 
km2 (Figure IV-1). The region is mostly flat except for the more hilly western and 
southwestern Chaco. Climate is characterized by strong seasonal variations, with dry 
winters and hot and rainy summers. Average temperature varies across the area, with 
mean annual temperature increasing from south to north, varying from 18 to 21°C, and 
maximum temperatures of up to 48°C (Rubı́ Bianchi and Cravero, 2010). Similarly, 
rainfall varies across the area, ranging from 800 mm in the northeastern and 
northwestern Argentine Chaco, to less than 450 mm in the centre and southwest of the 
region. Soils are mainly mollisols and alfisols, formed by fluvial and aeolian deposits 
(Panigatti, 2010). 

The natural vegetation of the Dry Chaco consists of xerophytic forests, open woodlands, 
scrubs, savannas and grasslands. Dominant tree species are Schinopsis lorentzii 
(“Quebracho colorado”), Aspidosperma quebracho-blanco (“Quebracho blanco”) and 
Gonopterodendron sarmentoi (“Palo santo”) and fabacea (Prosopis Spp., Neltuma spp. 
and Strombocarpa spp.) are also very common. The shrub layer is dominated by species 
of the genus Vachellia, Mimosa, Neltuma, Strombocarpa, and Celtis, as well as cacti of the 
genus Opuntia and Cereus. Vast saline areas exists that are covered by halophytic scrubs 
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dominated by Allenrolfea spp. and Heterostachys spp. Savannas are also present, 
dominated by the grasses Elionorus muticus or Spartina argentinensis (Bucher, 1982).   

 

 

Figure IV-1: Location of the study area, the Argentine Dry Chaco, in South America, and distribution of 
disturbances (1990-2017) by agent. 

Natural disturbances in the dry Chaco include droughts (Murgida et al., 2014), flooding 
(Prieto and Rojas, 2015b) and some rare natural fires (Fischer et al., 2012; Kunst, 
2011). Moreover, forests in the Argentine Dry Chaco have a long history of use, resulting 
in substantial changes in forest structure and composition (Torrella and Adámoli, 
2005). Two types of logging are carried out in our study area. First, selective logging of 
valuable species has occurred for close to a century, in particular of quebracho colorado 
for fence posts and railroad beams, as well as of palo santo for fine furniture, floors, and 
essential oils. Second, less selective logging of hardwood species (e.g., S. lorentzii, 
Aspidosperma quebracho-blanco, Ziziphus mistol, Libidibia paraguariensis, Acacia 
furcatispina) occurs for charcoal production (Tálamo et al., 2020). Relatedly, the 
Argentine Dry Chaco is inhabited by large numbers of forest-dependent people, 
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including Indigenous communities as well as ‘criollo’ settlers living in homesteads 
inside the forest (Levers et al., 2021). Particularly the latter have considerable impact 
on Chaco forests, logging for fuelwood and construction material, and allowing their 
livestock (i.e., mostly cattle and goats) to graze and browse freely around homesteads. 
As a result, forest degradation is widespread around homesteads, characterized by a 
general loss of larger trees and a dominance of shrubs with defence mechanisms 
against herbivory (Adamoli et al., 1990; Macchi and Grau, 2012). 

Anthropogenic fires are an additional driver of degradation. Fire is used to promote the 
regrowth of grasses in pastures, to burn waste, to convert forest into agricultural land 
(Bachmann et al., 2007) and to facilitate the extraction of fuelwood and charcoal (Zak 
et al., 2004). In combination with overgrazing and logging, unmanaged fires led to the 
development of secondary forests and scrubs (“fachinales” and “peladares”) (Cabido et 
al., 2003). Significantly, the recent agribusiness expansion has led to a number of social-
ecological changes that have fostered the regrowth of secondary forests (Grau et al., 
2008), including (1) rural-urban migration and the abandonment of smallholder 
agriculture (Matteucci et al., 2016), (2) conflicts over land and tenure insecurity 
(Seghezzo et al., 2017) that have resulted in some plots being abandoned after only a 
few years of cultivation (Basualdo et al., 2019), and (3) soil erosion and salinization 
that forced farmers to abandon the land (Boletta et al., 2006).  

3 Methods 

3.1 Variable selection and dataset used 

We used a comprehensive forest disturbance dataset, including the timing and agents 
of disturbance, for the Argentine Dry Chaco from our own previous work (De Marzo et 
al., 2022, 2021). Our maps, produced using Landsat TM/ETM+OLI time series, covered 
the period 1990 to 2017 at 30-m spatial resolution, providing detailed information 
about forest disturbances at annual temporal resolution. Specifically, these maps 
contain (a) information about the location, extent and timing of forest disturbances, 
and (b) information on one of five disturbance agents (i.e., logging, fire, partial clearing, 
riparian changes, and drought). Logging includes selective logging for fuelwood and 
charcoal production. Fire includes any natural or anthropogenic fire occurring inside 
forests. Partial clearing refers to incomplete canopy removal, because of establishing 
silvopastures or because of incomplete deforestation (Pendrill et al., 2022). Riparian 
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changes are disturbances due to meandering rivers, and droughts refers to areas where 
rainfall deficits substantially affected forest vitality (De Marzo et al., 2022). 

To characterize contemporary forest structure, we used a map of aboveground biomass 
at 231-m resolution for the year 2019 (hereafter: AGB map, Pötzschner et al., 2022) 
and maps of tree cover (TC) and shrub cover (SC) at 30 m resolution (Baumann et al., 
2018) updated for the year 2019. These variables served as response variables in our 
statistical analysis (see next section). The AGB map was obtained combining optical 
(MODIS) and radar (Sentinel-1) time series and an extensive ground dataset of forest 
inventory plots. Tree cover and shrub cover maps were produced making use of all 
available Landsat-8 optical and Sentinel-1 synthetic aperture radar (SAR) images and 
a large training dataset digitized from very-high resolution imagery. 

In addition, we used a suite of control variables for other factors potentially influencing 
forest structure, including environmental conditions (total annual precipitation) and 
land-use history (distance to railroads). The former is essential as vegetation structure 
in the Chaco is strongly influenced by precipitation; we calculated total annual 
precipitation using the Climate Hazards Group InfraRed Precipitation with Stations 
data (CHIRPS) time series (Funk et al., 2014). Concerning the latter, current forest 
structure might be influenced by historical land use from before our monitoring period 
(Bourgoin et al., 2021). Hence we chose distance to railways as a proxy for accessibility 
and historical land use; at the beginning of the 20th century the need of wood for the 
construction of railway sleepers drove intensive logging of Quebracho colorado 
(Schinopsis lorentzii) trees in close proximity to railways (Natenzon and Olivera, 1994; 
Zak et al., 2004). The railroad was later abandoned, but as a result of the unsustainable 
extraction, tree cover today is still lower closer to railways (Baumann et al., 2018). 
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3.2 Statistical analysis 

 

 

Figure IV-2: Workflow of our analysis to investigate the effects of the time since disturbance on variables 
related to forest structure for different disturbance agents. The model formulas indicate that we assume 
both the intercept and the effect of TSD to vary across agents, while Precip and RailDist are assumed to 
have a constant effect across agents. 

The main steps and components of our analysis are illustrated in Figure IV-2. First, we 
generated a stratified random sample consisting of 100 points per combination of 
disturbance timing and agent (100 samples per agent per year), resulting in a total of 
14,000 points. We then calculated the time since disturbance (TSD) as [2019 minus the 
year of disturbance] (since the above-ground biomass and fractional woody cover maps 
were produced for the year 2019). Next, we extracted for each point a total of three 
dependent variables (i.e., AGB, TC and SC), as well as a suite of other factors that we 
hypothesized to control the location of forest disturbance (i.e., precipitation and 
distance to railroads). We discarded samples with missing values resulting in a final 
sample of 11,144 samples to use for our models.  

To relate forest disturbance and forest structural variables, we adopted a multilevel 
Bayesian analysis framework (van de Schoot et al., 2021). Multilevel (also referred to 
as hierarchical or mixed-effects) Bayesian methods allow for handling and modelling 
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dependency structure in the data, such as measurements taken at the same time, yet 
grouped by different levels (Bürkner, 2017). They are particularly suitable for 
investigating disturbance events (Giovanini et al., 2013; Koutecký et al., 2022; 
McMahon et al., 2009; Seidl et al., 2011). In our case, we used a multilevel model to 
investigate how different disturbance agents diversify the relationship between time 
since disturbances and our structural variables. Therefore, we fitted a multilevel 
regression model with varying effects among five agents of disturbances (partial 
clearing, fire, logging, riparian changes and drought) for each of the response variables 
of our interest (i.e., separate models for AGB, TC, and SC). We further added logarithmic 
terms to enable the model to fit non-linear relationships of time since disturbance and 
our structural variables, representing non-linear recovery patterns. 

One advantage of Bayesian models is the flexibility in choosing an outcome distribution 
for the response variable that incorporates our knowledge about the data. To model 
tree cover, we specified a zero-inflated Beta distribution as likelihood function for the 
outcome. As our response variable was continuously distributed between 0 and 1, as 
well as zero-inflated, this probability distribution is appropriate for matching data 
features to model assumptions. To model shrub cover, which is also continuously 
distributed between 0 and 1, we specified a Beta distribution, and aboveground 
biomass is modelled based on a Gaussian likelihood function. We ran the models using 
the R package brms (version 2.17.0, Bürkner, 2017). We drew from the posterior 
distribution using Monte Carlo Markov Chain sampling to explore model estimations. 
Two sampling chains ran for 2,000 iterations with a warm-up period of 500 iterations 
for each model, thereby yielding 3000 samples for each parameter coefficient. We 
assessed convergence using the Gelman-Rubin statistic (𝑅𝑅�) and visual inspection of the 
trace plots regarding stationarity, mixing and convergence (van de Schoot et al., 2021). 
To assess the model predictive performance, we used posterior predictive checks (i.e., 
we compare simulated data from the model with a random draw of the observed data). 

4 Results 

Our models indicated that generally all forest structure variables (TC, SC, AGB) had 
increasing values with increasingly older disturbances. However, there was 
considerable variation in post-disturbance trajectories, both among structural metrics 
and among the different disturbance agents we assessed (Figure IV-3). Post-
disturbance trends showed the most marked difference in trends in above-ground 
biomass (AGB). Importantly, initial values short after disturbance already differed 
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markedly between agents, with lower values for riparian changes, fire and partial 
clearing, and higher AGB values for logging and drought. Riparian change had the 
fastest regeneration trajectory, as highlighted by the steepest slope in our space-for-
time comparison. Fire, drought and partial clearing also showed considerable 
regrowth. This was different for logging, where we did not find a clear effect of time 
since disturbance on AGB values (the 95% credibility interval of the slope estimate 
include 0, Table SI IV-1). After three decades since disturbance, the values for plots 
affected by strictly natural disturbances (drought and riparian changes) were generally 
higher than the AGB of anthropogenic disturbances (i.e., partial clearing and logging). 

In the case of the tree cover (TC) model, the agent-related trend curves between TC and 
time since disturbance mostly differed in terms of intercepts, while rates of change 
were overall very similar. As the trend curves for different disturbance agents showed 
(Figure IV-3), initial values were the highest for drought disturbances followed by 
riparian changes, logging, partial clearing and fires. Slopes did not differ strongly, but 
were somewhat steeper for partial clearing followed by riparian change and fire, and 
somewhat lower for drought and logging disturbances (Table SI IV-1). 

The shrub cover (SC) model showed similar patterns as the AGB model, with higher SC 
values right after the disturbance for drought and logging, and lower SC values right 
after disturbances for fire, partial clearing, and riparian changes. Fire and partial 
clearing curves almost perfectly overlapped. Riparian change recovered fastest in 
terms of shrub cover, as indicated by the highest positive slope we found for this 
disturbance agent. This was followed by drought and partial clearing as well as fire. 
Logging had again the slowest rate of regrowth among all disturbance agents. For plots 
that were disturbed in the early 1990s, shrub cover values are higher for the 
disturbances due to drought and riparian changes, and lower for logging, fire and 
partial clearing (Table SI IV-2). 
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Figure IV-3: Estimated mean agent-level conditional effect of the time since disturbance on A) tree cover 
(TC); B) shrub cover (SC); C) above-ground biomass (AGB). Shaded area represents the 95% credible 
intervals around mean values. 

Our modelling setup worked well in predicting our response variables (TC, SC, and 
AGB): the sampling process worked well as values of 𝑅𝑅 �were close to one for all 
parameters; quantities of interest suggest that the chain has converged to the 
stationary distribution; and trace plots indicate good mixing (Van de Schoot et al., 
2014). To assess the power of our models in predicting the response variables, we 
compared the posterior predictive distribution to the distribution of the observed data. 
These two distributions were well aligned (Figure IV-4), indicating that all models were 
robust in predicting the response variables. Moreover, our analytical framework was 
robust; the choice of precipitation and distance to railroads proved to be good 
predictors of our response variables and therefore suitable controlling variables. As we 
assumed, precipitation and distance to railroads had a consistent positive effect (Table 
IV-1), suggesting these are good predictors for our response variables. 

Table IV-1: Model summary statistics for Precipitation (Precip) and distance to railroads (RailDist). 
Parameters are summarized using mean (estimate) and standard error (SE) of the posterior distribution. 

Model Parameter  Estimate SE 

TC RailDist 0.51 0.0003 

Precip 0.51 0.0005 

SC RailDist 0.51 0.002 

Precip 0.52 0.0003 

AGB RailDist 2.80 0.27 

Precip 6.30 0.28 
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Figure IV-4: Comparison of the posterior predictive distributions (light blue line) and the observed data 
distribution (dark blue) for the tree cover (TC, left), shrub cover (SC, centre) and aboveground biomass 
(AGB, right) models. The alignment between the observation and posterior predictive distribution 
curves suggests good model performance in terms of explaining the data. 

5 Discussion 

Tropical dry forests have high social-ecological value yet, in many parts of the world, 
these forests are under high and rising human pressure. Forest disturbances affect 
forest cover and structure in these systems; but how diverse types of disturbance 
determine the long-term outcome in terms of forest structure remains weakly 
understood. Using a rich dataset on forest disturbances histories as well as a range of 
forest structure indicators in a Bayesian multilevel regression framework, we assessed 
post-disturbance forest structure for five disturbance agents across the Argentine Dry 
Chaco. Our space-for-time approach to understand 30 years of post-disturbance 
histories provided three main insights. First, post-disturbance forest structure differed 
markedly among disturbance agents, which can be explained well by the nature of the 
disturbance and suggests different outcomes of disturbance agents for ecological 
functioning more generally. Second, anthropogenic and natural disturbances showed 
highly different disturbance outcomes, with anthropogenic disturbances leading to 
lower woody cover and biomass compared to natural disturbances. Third, disturbances 
connected to logging and partial clearing had slower regrowth rates for tree and shrub 
cover, and almost no recovery regarding biomass, suggesting a process of forest 
degradation. Given that all types of disturbance we assessed are widespread in the 
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Chaco  (De Marzo et al., 2022) disturbances likely occurred also before the start of our 
time series (1987), much of the remaining forests in this region are likely in degraded 
states. More generally, our study highlights how satellite-based indicators can further 
our understanding of post-disturbance vegetation structure and recovery, thereby 
providing information needed to sustainably manage tropical dry forests, in the Chaco 
and elsewhere. 

Post-disturbance forest structure differed markedly among disturbance agents, both in 
terms of magnitude and regrowth trajectories. The differences we found are in line with 
prior knowledge about how different agents impact on different aspects of forest 
structure (Ferraina et al., 2022; Loto and Bravo, 2020; Tálamo and Caziani, 2003). For 
example, many partial clearings we identified in the Argentinean Chaco may represent 
areas that were deforested with the intention to secure land or prepare land for resale, 
which then may never happened (Baumann et al., 2022; Pendrill et al., 2022; Seghezzo 
et al., 2011). This would explain the increase across all structural parameters in our 
analysis for this disturbance type. Likewise, partial clearings may represent 
silvopastoral systems, (Fernandez et al., 2020), but such pastures where the shrub layer 
is removed are not yet common, as our results also suggest. Similarly, logging reduces 
mainly tree cover and larger shrubs, thus biomass. Logging often happens in harvesting 
cycles, slowing down regrowth (Figure IV-3). Conversely, particularly the region’s 
shrubs may recover faster and are more tolerant to drought (Jaureguiberry and Dı́az, 
2015), which fits to our results with relatively shorter recovery time for shrub cover 
than for tree cover (Figure IV-3). Finally, disturbance due to riparian changes can be 
strong, as reflected in the low values of shrub cover and biomass after the disturbance 
(Figure IV-3). Both shrub cover and biomass showed fast recovery, but never reached a 
plateau, suggesting that while shrub regeneration is swift on the exposed riverbanks 
following such disturbances that provide good conditions for colonizer species due to 
the deposited nutrient-rich sediment (Puhakka et al., 1992), returning to pre-
disturbance conditions may need longer. Surprisingly, we found relatively high values 
of tree cover after riparian changes, which might indicate that larger trees can 
withstand temporary flooding and inundation. 

The difference in post-disturbance trends of forest structural indicators reveal that the 
considered agents have different impacts on vegetation structure, and possibly on 
other components influencing vegetation regrowth (e.g., soil, seed banks - see Chazdon, 
2003). Forest disturbances can influence species distributions, community 
composition, and ecosystem processes (Ghazoul, 2002; Turner, 2010). For example, 
logging has been shown to promote alien grass invasion (Veldman et al., 2009) or 
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change vertebrate and invertebrate populations (Ghazoul, 2002; Shahabuddin and 
Kumar, 2006). Intense fires cause nutrient losses that likely require a century to recover 
(Kauffman et al., 1993). Therefore, although we cannot assess this directly with our 
remote-sensing indicators, the strong differences in post-disturbance changes we find 
are likely an indication of lasting differences in a range of ecological functions. 

Our second main finding was that post-disturbance forest structure and regrowth 
differed substantially between anthropogenic and natural disturbances. Even three 
decades after the disturbance events, natural disturbances (i.e., drought and riparian 
changes) had higher contemporary values in all three forest structural variables we 
measured. Three factors might explain this finding. First, natural disturbances (e.g., 
droughts) are frequent in tropical dry forests, with many species adapted to these 
disturbance (i.e., drought tolerance), indicating high resilience to and recovery 
potential of TDF from these disturbances (Stan and Sanchez-Azofeifa, 2019). Second, in 
some cases, sites affected by natural disturbances might provide better conditions for 
regrowth (e.g., seed dispersal is often a major limitation in areas experiencing 
anthropogenic disturbances (Turner et al., 1997; Wijdeven and Kuzee, 2000)), allowing 
for faster regrowth. Finally, natural disturbances might impact sites less frequently, and 
some anthropogenic disturbances might be persistent, particularly near human 
settlements (Lhoest et al., 2020; Popradit et al., 2015). For example, we found regrowth 
rates of above-ground biomass to be slowest for logging and partial clearing, which 
might reflect multiple anthropogenic interventions (e.g., continued logging), or other 
overlapping disturbances (e.g., overgrazing by livestock). Generally, these findings are 
well in line with other studies from tropical environments finding vegetation in moist 
forests to recover faster after natural disturbances than after anthropogenic 
disturbances (Cole et al., 2014). 

Fire is a disturbance that cannot be easily classified as anthropogenic or natural in the 
Chaco. Few natural fires are documented, yet many species in the Chaco and other dry 
forest exhibit adaptions to fire (Bravo et al., 2014; Kunst, 2011). However, the use of 
fire has a long history in the Chaco as well (e.g., by indigenous people to establish open 
areas for hunting – the term ‘Chaco’ itself refers to such open hunting grounds). Today, 
fires occur almost exclusively through human actions: fire escaping into nearby forests 
when fire is used for ‘cleaning’ pastures from old vegetation and shrubs (Kunst, 2011); 
the use of fire for clearing land to establish agriculture; or accidental ignitions near 
human settlements (Bachmann et al., 2007). Moreover, forests in the Argentinean 
Chaco are heavily used for smallholder cattle grazing (Levers et al., 2021). This favours 
grazing adapted shrubs (e.g., Prosopis spp.) and results in a denser shrub layer than in 
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natural, ungrazed forests (Adamoli et al., 1990), leading to higher fuel loads and 
therefore likely more severe fires in such used forest. Furthermore, fire is often used in 
such situations to control shrub encroachment (Kunst, 2011). Our models revealed a 
generally strong impact of fires on the woody vegetation of the Chaco, with slow 
regrowth of particularly shrubs (Figure IV-3). This is in line with prior, field-based work 
(Adamoli et al., 1990; Kunst et al., 2012; Tálamo and Caziani, 2003), suggesting that 
burned area are mainly colonized by herbs, facilitating subsequent fire outbreaks. 
Given the high initial impact of fire on this component, values after three decades 
remain low (Figure IV-3), revealing the long-lasting effects of fires in this region. 

Partial clearing had among the strongest and the most persistent impacts on forest 
structure, in particular biomass which did not recover much, but also with regards to 
shrub cover which showed overall lowest values after disturbance. It includes the 
establishment and management of silvopastures, where a major share of the canopy is 
removed and where regular management intervention are performed to prevent shrub 
encroachment (e.g., roller chopping, controlled burns). Moreover, trees in silvopastoral 
systems recover little over time (Kunst et al., 2012; Marquez et al., 2022; Steinaker et 
al., 2016), or even decline (Fernandez et al., 2020). Partial clearings also may involve 
areas where forest was cleared partly or fully for agriculture, but that were eventually 
not used, possibly due to failed investments, land tenure conflicts, or because the 
clearing was in first place due to land speculation (Pendrill et al., 2022) and became 
abandoned (De Marzo et al., 2022). This might be a widespread process in the Chaco 
(Baumann et al., 2022), but how post-abandonment regeneration takes places is 
unknown. Nonetheless, given the large size of agricultural plots and the removal of the 
entire vegetation with bulldozers during deforestation (Matteucci et al., 2016), 
regeneration can be expected to be slow in such situations (Chazdon, 2003).  

Logging stands out for the very slow recovery of all forest structural variables. Wood 
harvesting, including of small trees (typical for charcoal and firewood production) 
should lower forest canopy height and move the system gradually towards semi-open 
systems (Gobbi et al., 2022) and this could be reflected in our trajectories. However, it 
is also common that overgrazing happens in logged sites, due to the traditional 
extensive cattle ranching leading to shrub encroachment and, in turn, dense shrub 
cover (Adamoli et al., 1990; Gobbi et al., 2022). This does not seem to be captured by 
our results, where shrub cover remains low following disturbance. The slow regrowth 
patterns we found can be explained by two factors. First, logging, particularly for 
charcoal or fuelwood, is a continuous activity and sites are often not left to rest 
(Figure IV-3). Second, the negative impact of wood extraction and logging road 
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construction might simply outweigh the positive effects of tree removal on the shrub 
layer (e.g., more light availability; Tálamo et al., 2020). 

We used the most detailed and fine-scale data available for describing forest 
disturbance and structure in the Chaco and our Bayesian multi-level model of agent-
related effects on forest structure performed well. Nevertheless, a few limitations need 
to be discussed. First, our results rely on the accuracy of the satellite-based maps of 
disturbance: AGB, TC and SC. These maps are of high quality, but as with any remote-
sensing analyses, contain remaining uncertainty (see Baumann et al., 2018; De Marzo 
et al., 2022, 2021; Pötzschner et al., 2022). Second, it must be noted that our 
disturbance maps covered the time span from 1990 to 2017, while the TC, SC and AGB 
maps were produced for 2019. Therefore, our model could miss the effect of 
disturbance affecting our sample plots during 2018 and 2019. Third, we were unable 
to control for multiple, sequential disturbances by different agents at the same site, 
such as fire or logging, but due to the nature of our data we were limited to analysing 
the first recorded disturbance. Based on our knowledge of the system as well as the 
literature, we hypothesize that slower regrowth rates are indeed sometimes related to 
recurrent disturbances, but we could not investigate this here. Fourth, disturbance 
intensity influences post-disturbance forest structure and recovery (Kennard et al., 
2002; Tálamo et al., 2020), as does the proximity of disturbed patches to other forest 
patches (Chazdon, 2003; Ioki et al., 2022). Both might be worth investigating further. 
Finally, our space-for-time approach allowed to assess relative recovery of a site 
compared to other disturbed sites over a 30 year time frame. We caution that this 
should not be interpreted as recovery compared to a natural (undisturbed) situation, 
as we neither had pre-disturbance forest structure data nor would it be easy to identify 
truly undisturbed forests in the Chaco, given the long land-use history and 
environmental heterogeneity of the region. 

Better understanding forest degradation in the world’s tropical dry forests is important 
as it is becoming increasingly clear that in addition to the major waves of forest 
conversion to agriculture, dry forests are under immense pressure. Clearer awareness 
of where and how forest disturbances impact on forest structure is important in this 
context, and investigating post-disturbance vegetation development is a useful 
approach. Our study for the Argentinean Chaco highlights the potential of remote 
sensing indicators and space-for-time approaches to unravel the long-term impacts of 
anthropogenic versus natural disturbances. In prior work, we have shown that large 
areas of forest in the Gran Chaco are affected by a wide range of both anthropogenic 
and natural disturbances (De Marzo et al., 2022, 2021). Here, we show that these 
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disturbances have diverse and long-lasting impacts on forest biomass and structure, 
and that forests recovery fairly slowly, particularly from logging and fires. This 
highlights an urgent need for disturbance management: by limiting areas where forest 
grazing leads to fuel accumulation and to more intense fires; by preventing fire used for 
managing pastures to ‘escape’ into nearby forests; and by shifting to sustainable logging 
schemes that maintain forest structure in the long term. More generally, routinely 
assessing forest structure and post-disturbance vegetation development is urgently 
needed to better understand the status of the dry Chaco and other tropical dry forests, 
and thus for an enhanced knowledge of the long term impacts of human pressure on 
these systems and their capacity to recover. 
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Supplementary Information 

Text SI IV-1: Specifying prior distribution  

The prior distributions for the unknown coefficients were optimized in an iterative 
process of prior predictive checks, i.e., predicting the data only based on the chosen 
priors, and subsequently adjusting those prior distributions to yield realistic 
predictions based on information obtained from sampling diagnostics and predictive 
checks. In this way, we derived weakly informative priors that were on one hand, 
regularizing enough to facilitate model convergence, and on the other hand, resulted in 
plausible predictive simulations while not restricting the outcome distribution in a 
biasing way. Consequentially, priors for the effect of the predictor variables Precip, 
RailDist and TSD, were chosen as normally distributed, centred on 0 with a standard 
deviation of 0.1 for all three models. For the mean of the outcome distribution (Beta 
distribution for TC and SC; Gaussian distribution for AGB), each disturbance agent was 
given a unique intercept issued from a Gaussian distribution centred on 0 with a 
standard deviation of 0.2. The prior distribution for the probability for zero-responses 
predicted by a Bernoulli distribution as part of the zero-inflated TC model was defined 
by a logistic distribution with mean 0 and standard deviation 0.1. The Gaussian ABG 
model as well as all distributions of varying intercepts and slopes had exponentially 
distributed prior standard deviations, thus restricting the range of possible values to 
positive ones. Internally, the covariance, i.e., correlation between varying intercepts 
and slopes was modelled by a multivariate normal distribution with an uninformative 
correlation prior representing flat covariance assumptions. 

Table SI IV-1: Model summary statistics for the tree cover model.  

Parameters are summarized using mean (estimate) and standard error (SE) of the 
posterior distribution as well as central 95% credible intervals. Note that all numbers 
are given in model scale (untransformed logit/log scale). 
 

Parameter Estimate SE Q2.5 Q97.5 R-hat 

Regression coefficients      

b_Intercept -2.12 0.17 -2.36 -1.63 1.00 

b_tsd 0.12 0.03 0.06 0.20 1.00 

b_RailDist 0.06 0.01 0.04 0.07 1.00 

b_Precip 0.04 0.01 0.03 0.06 1.00 

sd_Agent__Intercept 0.27 0.20 0.08 0.81 1.01 

sd_Agent__tsd 0.06 0.04 0.01 0.16 1.01 
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cor_Agent__Intercept__tsd -0.49 0.45 -0.98 0.63 1.00 
phi 9.08 0.13 8.84 9.34 1.00 
zi 0.06 0.00 0.05 0.06 1.00 

Agent-level effects      

r_Agent[Partial.Clearing,Intercept] -0.23 0.19 -0.74 0.03 1.00 

r_Agent[Fire,Intercept] -0.23 0.18 -0.74 0.02 1.00 

r_Agent[Logging,Intercept] -0.04 0.18 -0.54 0.23 1.00 

r_Agent[Riparian,Intercept] -0.04 0.18 -0.52 0.23 1.00 

r_Agent[Drought,Intercept] 0.12 0.18 -0.35 0.40 1.00 

r_Agent[Partial.Clearing,tsd] 0.04 0.04 -0.04 0.12 1.00 

r_Agent[Fire,tsd] 0.01 0.04 -0.08 0.09 1.00 

r_Agent[Logging,tsd] -0.03 0.04 -0.12 0.04 1.00 

r_Agent[Riparian,tsd] 0.01 0.04 -0.08 0.08 1.00 

r_Agent[Drought,tsd] -0.04 0.04 -0.13 0.02 1.00 

 
 

Table SI IV-2: Model summary statistics for the shrub cover model. 

Parameter Estimate SE Q2.5 Q97.5 R-hat 

Regression coefficients      

b_Intercept -2.52 0.06 -2.64 -2.36 1.01 

b_tsd 0.11 0.02 0.07 0.15 1.00 

b_RailDist 0.07 0.00 0.06 0.08 1.00 

b_Precip 0.04 0.00 0.03 0.05 1.00 

sd_Agent__Intercept 0.13 0.08 0.04 0.35 1.01 

sd_Agent__tsd 0.03 0.02 0.01 0.09 1.01 

cor_Agent__Intercept__tsd -0.45 0.42 -0.96 0.59 1.00 

phi 61.97 0.87 60.27 63.64 1.00 

Agent-level effects      

r_Agent[Partial.Clearing,Intercept] -0.03 0.07 -0.19 0.10 1.00 
r_Agent[Fire,Intercept] -0.06 0.07 -0.23 0.06 1.00 
r_Agent[Logging,Intercept] 0.04 0.07 -0.12 0.17 1.00 
r_Agent[Riparian,Intercept] -0.12 0.08 -0.31 0.01 1.00 
r_Agent[Drought,Intercept] 0.05 0.07 -0.11 0.18 1.00 
r_Agent[Partial.Clearing,tsd] -0.01 0.02 -0.06 0.02 1.00 
r_Agent[Fire,tsd] 0.00 0.02 -0.05 0.04 1.00 
r_Agent[Logging,tsd] -0.02 0.02 -0.07 0.01 1.00 
r_Agent[Riparian,tsd] 0.03 0.02 -0.01 0.08 1.00 
r_Agent[Drought,tsd] 0.00 0.02 -0.05 0.03 1.00 
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Table SI IV-3: Model summary statistics for the above-ground biomass model. 

Parameter Estimate SE Q2.5 Q97.5 R-hat 

Regression coefficients      

b_Intercept -0.01 1.36 -2.69 2.65 1.00 

b_tsd 0.01 0.49 -0.94 0.97 1.00 

b_RailDist 6.30 0.28 5.74 6.84 1.00 

b_Precip 2.80 0.27 2.29 3.33 1.00 

sd_Agent__Intercept 55.27 18.02 31.30 101.24 1.00 

sd_Agent__tsd 8.71 3.41 4.38 17.53 1.00 

cor_Agent__Intercept__tsd 0.47 0.32 -0.31 0.89 1.00 

sigma 33.14 0.22 32.71 33.57 1.00 

Agent-level effects      

r_Agent[Partial.Clearing,Intercept] 49.09 2.84 43.47 54.56 1.00 
r_Agent[Fire,Intercept] 34.54 3.11 28.59 40.53 1.00 
r_Agent[Logging,Intercept] 62.62 2.91 56.89 68.43 1.00 

r_Agent[Riparian,Intercept] 36.79 3.38 30.13 43.40 1.00 

r_Agent[Drought,Intercept] 61.96 2.84 56.42 67.63 1.00 

r_Agent[Partial.Clearing,tsd] 3.31 1.06 1.26 5.42 1.00 

r_Agent[Fire,tsd] 9.08 1.15 6.90 11.35 1.00 

r_Agent[Logging,tsd] 0.89 1.08 -1.24 2.95 1.00 

r_Agent[Riparian,tsd] 10.15 1.24 7.70 12.57 1.00 

r_Agent[Drought,tsd] 4.70 1.06 2.61 6.78 1.00 
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1 Summary and conclusions 

Deforestation and degradation pose a global threat to tropical forests, particularly 
tropical dry forests, which are often overlooked in research, policymaking, and public 
attention. But while we have increasingly accurate data and maps on deforestation, we 
still lack assessments on degradation, largely due to the challenges associated with 
degradation monitoring. This not only limits our understanding but also weakens 
conservation actions, forcing policymakers to make decisions without taking 
degradation into account. Remote sensing techniques have a great potential for 
assisting our understanding of forest changes, and recent time series analysis 
algorithms and protocols allow for reliable mapping of forest disturbances. However, 
these have been mostly tested and used in moist forests, limiting our knowledge of 
changes in tropical dry forests, and of methods suitable for monitoring them. 
Furthermore, monitoring disturbances is just the initial step in assessing degradation. 
A central challenge is developing approaches that allow to move further disturbances 
assessment towards a deeper understanding of pathways leading to forest degradation.  

My thesis contributes towards the overarching goal of advancing the current 
understanding of forest degradation in the Dry Chaco by means of remote sensing. 
Specifically, I (1) tested remote sensing tools for disturbances detection and agent 
classification in the Chaco; (2) assessed spatial and temporal patterns of disturbances 
in general and in relation to natural and anthropogenic determinants; (3) modelled 
post-disturbance vegetation structure trajectories for the different agents to better 
understand impacts of different agents and assess recovery or degradation trajectories.  

In Chapter II, I mapped forest disturbances in remaining Chaco forests using Landsat-
based spectral-temporal metrics and assessed their rates and patterns. In Chapter III, I 
further characterized disturbances by identifying their agents and assessed their 
temporal dynamic and their spatial relation to anthropogenic features. In Chapter IV, I 
built on the reconstruction of disturbance history from the first two chapters to model 
the relation between forest structural variables and time since disturbance across the 
identified agents to understand the impact of different disturbance on contemporary 
forest structure and biomass. Overall, this thesis contributes to answering each of the 
main research questions. 
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Research Question 1: How can forest disturbances in the Dry Chaco be reliably 
characterized based on the Landsat image archives? 

The results of the first two research chapters (Chapters II and III) demonstrate that 
spectral-temporal metrics derived from Landsat time series offer a reliable approach 
for mapping and characterizing disturbances related to degradation in the Dry Chaco. 
The use of spectral-temporal metrics in a random forest classification scheme allowed 
for the reconstruction of disturbance history for the entire Argentine Dry Chaco, and 
the identification of the relative disturbance agents. In Chapter II, I showed that the 
Tasseled Cap Wetness component has, among single indices, the highest potential for 
advancing degradation monitoring in tropical dry forests. However, I also found that a 
multispectral ensemble approach outperforms the single-index modelling approach for 
disturbance detection, demonstrating that multiple indices have better potential for 
capturing disturbances.    

In Chapter III, I adopted a patch-based classification approach and integrated spectral 
variables related to disturbances and spectral recovery with variables describing patch 
shape for classifying agents of disturbances. With this approach I could distinguish 
among five natural and anthropogenic disturbance agents. My analyses yielded robust 
area estimates and maps while also revealing challenges with regard to accurately 
attributing disturbance agents, highlighting the complexity of disturbance agent 
attribution in tropical dry forests. 

 

Research Question 2: What are the spatial and temporal patterns of forest disturbances 
across the Chaco and due to different agents? 

In Chapters II and III, I described spatial and temporal patterns of disturbances in 
general and in relation to environmental variables and anthropogenic determinants. In 
Chapter II, I found that disturbances affected 8% of the remaining Chaco forest between 
1990 and 2017, with large annual variations in the affected area. Forest disturbances 
were particularly widespread during drought years, revealing an association between 
forest disturbance and precipitation.  The analysis in Chapter III revealed that the Chaco 
forests are affected by a wide range of anthropogenic and natural disturbances. I found 
that partial clearing was the most widespread type of forest disturbance, uncovering 
two phenomena: the agriculture-driven deforestation resulting in abandoned fields 
(Pendrill et al., 2022) and the expansion of silvopastural systems (Fernandez et al., 
2020). Fires were also widespread, pointing to an urgent need for fire management 
strategies to preserve the remaining Dry Chaco forests. Regarding temporal trends, I 
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found an increase in partial clearing, as expected given the general increase in forest 
loss in the same period (Baumann et al., 2017; Vallejos et al., 2015) and the 
incentivization of silvopastoral systems. Fires showed large annual variability, being in 
some years the agent responsible for the largest affected areas. Interestingly, logging 
remained relatively constant during the study period, pointing at the fact that this is an 
important agent of pressure for the Chaco forests, even in the context of the expansion 
of large-scale agriculture and rural depopulation. In Chapter III, I also found that all 
disturbances strongly decrease further away from agricultural fields, likely reflecting 
that established fields grant accessibility to forest, relevant for extractive activities but 
also predictor of other human activities. Taken together, these results reveal that 
disturbances are widespread in the Chaco and suggest a strong anthropogenic link to 
most types of disturbances, including fire. These findings also highlight the importance 
of quantifying the extent of the different types of forest disturbances for both better 
assessing their impacts and guiding management actions. 

 

Research Question 3: What are the outcomes of different disturbance types and histories 
on current forest structure? 

In Chapter VI, I showed that the post-disturbance forest structure differed markedly 
among disturbance agents, likely denoting different ecological outcomes resulting from 
the different agents. Disturbances connected to logging and partial clearing exhibited 
particularly slow regrowth, suggesting they might result in forest degradation. In 
particular, my analysis revealed differences in the long-term outcomes of 
anthropogenic versus natural disturbances, with anthropogenic disturbances leading 
to lower woody cover and biomass compared to natural disturbances, stressing the 
need for measures to reduce impacts of land-use practices on forests. 

2 Crosscutting insights  

In addition to answering the thesis’s main research questions, more general insights 
emerged from my research chapters, that are relevant to the overarching goal of my 
thesis: advancing the current understanding of forest degradation in the Dry Chaco by 
means of remote sensing. Specifically, my research contributed three cross-cutting 
insights: 

First, by assessing agents, patterns and outcomes of forest disturbances, my work led 
to an increased understanding of threats and challenges to forest persistence and 



Synthesis 

97 
 

resilience. Previous research largely focused on mapping of disturbances only; a 
growing but still small body of studies on attributing agents of disturbances; few 
studies linked disturbance history to current biomass and forest structure. This work 
provides a more comprehensive assessment of the proximate drivers, how important 
and widespread they are, which are their spatial determinants and how they impact 
the forests in the long-term. The analysis of Chapter III demonstrates that untangling 
of the diverse agents of disturbance is critical to both understanding the prevalence of 
each agent and how it evolved over time. This revealed that logging is a constant forest 
use in the Chaco context, that partial clearing is increasingly important and that fires 
have wide variation. Furthermore, categorizing agents was a key step for discerning 
their distinct impact on forest cover and therefore uncovering trajectories that likely 
point to degradation, which I did in Chapter IV.  The approach of reconstructing 
pathways of degradation through remote sensing has the potential of upscaling studies 
that otherwise need labour-intensive local field data. 

Second, coupling the assessment of long-term outcomes of forest disturbances of 
Chapter IV with the prevalence of disturbance agents assessed in Chapter III revealed 
a worrisome picture. In fact, fires and logging, which are among the most widespread 
disturbances, showed a particularly slow forest regrowth and long-lasting effects on 
forest structure. These results suggest that much of the forest structure of the area 
disturbed during the three decades of my analysis might still manifest effects of old 
disturbance or be bound to remain affected for longer if no restoration interventions 
are made. Furthermore, logging showed fairly constant contribution to yearly 
disturbance affected area and, while area affected by fires show a decline towards the 
end of my study period, it was only a transient reduction, and the following years larger 
areas of Argentina were affected by fire (Bonfanti and Sánchez, 2021) and forest loss 
due to fires is generally increasing in the region (Romero-Muñoz et al., 2019a; 
Tyukavina et al., 2022). This suggests that the contribution of these impactful agents is 
possibly only increasing if not staying constant and, with the long-lasting effect they 
have on forests, forest degradation is also headed for expansion. 

A third insight regards the links and the multiple interactions of drought with other 
natural and anthropogenic disturbances.  In Chapter II, I found a strong link between 
annual disturbed area and drought and speculate that this is a consequence of a larger 
burned area, as fires are more likely to occur and spread during drought years. The 
findings of Chapter III confirm this hypothesis, uncovering large areas affected by fires 
in the very dry years and in the following one (1995, 1996, 2004, 2005). However, these 
findings also reveal that fires are not the only agent underlying the drought-
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disturbance link. For instance, the peak in disturbed area of 2013, a year characterized 
by severe drought (Chapter II), is not the consequence of an exceptionally large area 
affected by fires (Chapter III), but rather of a combination of the other disturbances, 
including a larger-than-usual area affected by logging. A possible explanation is that 
drought causes critical economic struggle for forest dependent people, by increasing 
pest incidence, exacerbating summer overgrazing, winter forage deficit, causing deaths 
of lambs and goatlings and, as a consequence, leads to heavy logging to offset lower 
income (Cotroneo et al., 2021). While these connections need to be further investigated, 
they warn us about the indirect impacts of droughts. Results from Chapter IV show that 
the direct impacts of natural disturbances on forests, especially drought, are light and 
short-lived in comparison with impacts of anthropogenic disturbances. However, 
understanding its indirect impacts (e.g., more logging) is important for designing 
prevention measures against additional forest degradation in a world going toward 
more extreme droughts. 

3 Implications for forest conservation  

The findings of this thesis highlight key implications for the conservation and 
management of the Dry Chaco and other tropical dry forests. In general, they point to 
the overlooked extent of disturbances in the remaining Chaco forest and provide a 
broader understanding of the human impact on dry forests, that can be useful for 
expanding assessments of threats to wildlife. More specifically, this assessment sheds 
light on the extent and long-term consequences of different disturbance agents, calling 
for necessary management action. Finally, and more holistically, my study reveals 
complex interactions amongst agents — relating to different local actors — which need 
to be taken into account for effective conservation. 

My work provides the first-ever forest disturbance maps for the Argentine Dry Chaco. 
These maps uncovered major areas affected by disturbances, highlighting the 
overlooked nature of degradation in the Chaco, and suggesting that degradation is a 
widespread phenomenon, deserving more attention. My maps can be used for a better 
assessment of the availability of quality habitats for wildlife (Romero-Muñoz et al., 
2021, 2020). So far, these assessments could only build on forest loss maps, which 
might lead to heavily underestimating the human impact on biodiversity.  

Accordingly, Chapter III and IV indicate that fires pose a serious threat to the Chaco 
forest, being the second most widespread disturbance and having lasting effects on 
forest structure. This highlights an urgent need for fire management: for example, 
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planning interventions to reduce fuel accumulation that causes more intense fires; or 
by limiting fires used for managing pastures, to prevent escapes into nearby forests. In 
addition, my analysis reveals large areas of forest affected by logging and that forest 
structure after logging areas show almost no recovery. This suggests the need for active 
restoration measures and the promotion of sustainable logging schemes that maintain 
forest structure in the long term, like selective harvesting of rapidly regenerating 
species (Wells et al., 2022). 

Highlighted above are suggestions for necessary action towards the management of 
specific, singular threats. However, taking a step back, what emerges is the 
interconnected nature of forest disturbances and degradation. My results contribute to 
a broader body of literature on degradation pathways in the Chaco, from which we get 
a glance of complex and interconnected dynamics: grazing affects biomass 
accumulation by promoting shrubs (Adamoli et al., 1990); biomass accumulation cause 
fires to be more intense, therefore impactful, particularly in dry years; and drought also 
affects peoples’ livelihoods that turn to logging as a safety net to sustain themselves 
(Cotroneo et al., 2021; Krapovickas et al., 2016). At the same time, people have less 
access to forests (del Giorgio et al., 2021; Levers et al., 2021) which intensifies the 
pressure on remaining forest (Vallejos et al., 2020). All this suggests a spiral of forest 
degradation and impoverishment. While my results provide evidence, in part, of this 
interconnected dynamic, other components need further investigation to be clarified. 
Nonetheless, they suggest that forest management actions that only focus on 
controlling fires or logging would miss the point. To address forest degradation, these 
entangled processes need to be taken into account.  Moreover, addressing the needs of 
forest-dependent communities in rural areas, securing equitable access to ecosystem 
services, and increasing their adaptive capacity and resilience (Vallejos et al., 2020), 
can make forest conservation more  effective and just. 

4 Future research and outlook 

This thesis improves the understanding of the temporal and spatial forest changes 
linked to degradation. In the course of this work, several interesting questions emerged 
that are beyond the scope of this thesis, but can point the way for future research. 

The Landsat archive potential for assessing long-term forest changes is unmatched, 
however Landsat imagery capacity to detect small-scale disturbances, for example, 
those caused by low intensity selective logging, is limited. Consequently, the areas 
affected by disturbances are likely still underestimated. Open challenges remain  
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regarding agent attribution: agent classification accuracy is affected by the overlapping 
footprint of some disturbances, like heavy logging and clearing or fires and partial 
clearing. Further research in refining and methods for disturbance detection and agent 
attribution could explore radar and lidar data. Data products from lidar sensors, such 
as the spaceborne Global Ecosystem Dynamics Investigation (GEDI) data, which 
captures three-dimensional canopy structures, could further improve the detectability 
of forest disturbances or the monitoring of carbon stock changes (Goetz et al., 2022; 
Potapov et al., 2021).  

 The contribution of forest grazing to forest degradation in the Chaco remains an open 
question. The literature of the Chaco forest shows that extensive cattle grazing is a 
significant contributor to forest degradation in the Chaco, but also points at different 
effects on the forest structure: one leading to open forest due to heavy trampling and 
the other leading to closed shrubland due to the ecological advantage shrubs gain from 
grass removals (Adamoli et al., 1990; Gobbi et al., 2022). It is unclear to what extent 
these two processes are active in the Chaco, how much forest is affected and how they 
interact with other disturbances. Since grazing  occurs under the canopy,  it mostly 
belongs to the category of forest disturbances that are almost undetectable with 
current remote sensing techniques, and so far no one has tried to close this gap (Gao et 
al., 2020). However, because dry forests are relatively open, it might be possible to 
detect changes in species composition (i.e., increased shrub cover in the understory 
due to grazing) by monitoring changes in the phenological signal since distinct plant 
species have distinct phenology (Helman, 2018) or again by using lidar that is highly 
sensitive to sub-canopy. Developing approaches to monitor livestock-related changes 
in the forest would be critical for a system like the Chaco, as well as other dry forests 
where extensive cattle grazing is widespread and has a significant impact on forest 
structure and ecosystem services (Agarwala et al., 2016; Jara-Guerrero et al., 2021; 
Sfair et al., 2018).  

Another question that arises from my findings concerns the interaction between 
drought and disturbances. As previously described, larger disturbed areas in drought 
years can be attributed to a combination of larger burned areas in some cases and more 
logging in others. These results account for droughts as annual events. However, in 
Chapter II, I investigated where drought had impacts by mapping precipitation 
anomalies. This spatial analysis revealed that different areas were affected by drought 
in different periods: in 1995, and in 2004 drought hit the centre and south of my study 
area, while in 2013 it affected the north quite severely. Interestingly, in the former two 
years, large areas were affected by fires, while in 2013, the peak in disturbed area 
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resulted from different agents, including logging and drought itself. Whether this is a 
coincidence, or it hides ecological or social differences between the two areas remains 
an open question and answering it might increase our understanding of the forest and 
potentially reveal peculiar vulnerabilities of the areas important for conservation 
planning. 

Furthermore, a natural extension of this work would involve investigating the links 
between the agents of disturbances I found to different land-use actors, as well as 
underlying drivers of these disturbances. TDF are socio-ecological systems, therefore 
understanding transformation by human activities in these systems requires not only 
the analysis of impacts on ecosystems, but also an analysis of the social processes that 
drive decision-making and how perceptions of their environment affect forest 
management decisions (Quesada et al., 2009). In the Argentinean Dry Chaco, key actors 
include big landholder, capitalized medium-sized producers, entrepreneur producers, 
small-scale producers and forest-dwelling smallholders, as well as indigenous people 
(Gasparri, 2016). These actors practice a diverse set of land-use practices, but how 
these actors relate to trends in forest degradation is debated (Grau et al., 2008; 
Matteucci et al., 2016) and has never been comprehensively analysed. In my work I 
shed light on the relationship of disturbances to some spatial determinants that can be 
related to some actors. Future studies could assess the direct and, importantly, the 
indirect contributions of different actors to forest degradation. Loss of entitlement to 
natural resources leads to ecological marginalization of the poor (Lambin et al., 2003). 
Smallholders find themselves in ecological fragile areas because they have been 
expelled by large farmers. While making use of the surrounding forest for sustaining 
their livelihoods, they intensify the degradation of natural resources, which in turn 
feeds back the level of poverty, creating a poverty trap (Barrett, 2008; Vallejos et al., 
2019). Top-down conservation policies only directed at banning forest uses that 
directly cause degradation will be ineffective: driving ‘underground’ resource 
extraction, thus losing regulatory control, and unfair: making the livelihoods of many 
people illegal (Wells et al., 2022). Only a thorough understanding and consideration of 
the indirect and underlying drivers of forest degradation can form the basis of just and 
effective policies for halting forest degradation.  
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