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Abstract

Educational and psychological testing is an important cornerstone of modern educational

systems. As examinations and assessments are often used to control access to educational

programs and to assess successful participation in an educational program, their fairness and

validity is of great importance. A controversially discussed aspect of standardized tests is

setting time limits on tests and how this practice can result in test speededness. Indeed,

different perspectives on whether tests should be speeded and whether speed should be seen

as a part of measured constructs exist. Regardless of these perspectives, being able to delib-

erately control the speededness of tests is desirable. If a test is intended to be speeded, test

designers should be able to deliberately control the degree of speededness. If a test intended

to be unspeeded but a time limit is set out of practical considerations, test designers should

be able to provide an unspeeded test administration for all test-takers. If multiple, parallel

test forms are used interchangeably, test designers must be able to guarantee an equal degree

of speededness on all test forms.

For these purposes, van der Linden (2011a, 2011b) proposed an approach to control the

speededness of tests in automated test assembly (ATA) using mixed integer linear program-

ming and a lognormal response time model. The approach can be used in fixed-form linear

tests, computer-adaptive testing as well as multi-stage testing and is relevant for high- as well

as low-stakes assessments. However, the approach by van der Linden (2011a, 2011b) has an

important limitation, in that it is restricted to the two-parameter lognormal response time

model which assumes equal speed sensitivities (i.e., factor loadings) across items. This thesis

demonstrates that otherwise parallel test forms with differential speed sensitivities are indeed

unfair for specific test-takers. Furthermore, an extension of the van der Linden approach is

introduced, which incorporates speed sensitivities in ATA. Additionally, test speededness can

undermine the fairness of a test if identical but differently ordered test forms are used. To

prevent that the score of test-takers depends on whether easy or difficult items are located

at the end of a test form, it is proposed that the same, most time intensive items should be

placed at the end of all test forms. Currently, there is a lack of designated software imple-

mentations and guides on response time modeling and ATA. Therefore, the thesis provides

introductions and tutorials on using the R package eatATA for ATA and using Stan and rstan

for Bayesian hierarchical response time modeling. Finally, the thesis discusses alternatives,

practical implications, and limitations of the proposed approaches and provides an outlook

on future related research topics.
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Zusammenfassung

Prüfungen und Tests sind wichtige Eckpfeiler moderner Bildungssysteme. Da Prüfungen und

Tests häufig dazu dienen, den Zugang zu Bildungsprogrammen zu steuern und die Grund-

lage zur Abschlussvergabe am Ende von Bildungsprogrammen bilden, ist ihre Fairness und

Validität von größter Bedeutung. Ein kontrovers diskutierter Aspekt standardisierter Tests

ist die Verwendung von Zeitlimits und die Frage, inwiefern Zeitlimits zu Zeitdruck aufseiten

von Testteilnehmenden führen können. In der Tat wird innerhalb der psychometrischen

Forschung kontrovers diskutiert, ob Tests unter Zeitdruck administriert werden sollten und ob

die Testbearbeitungs-Geschwindigkeit als Teil der gemessenen Konstrukte betrachtet werden

sollte. Unabhängig von diesen Überlegungen sollten Testentwickler:innen in die Lage versetzt

werden, den Zeitdruck einer Testadministrationen bewusst gestalten zu können. Wenn ein

Test eine substanzielle Speed-Komponente haben sollte, sollten Testentwickler:innen in der

Lage sein, den Grad des Zeitdrucks zu steuern. Wenn ein Test keine Speed-Komponente

haben sollte, aber aus praktischen Erwägungen ein Zeitlimit gesetzt wird, sollten Testent-

wickler:innen sicherstellen können, dass keine Testteilnehmenden unter Zeitdruck arbeiten

müssen. Wenn unterschiedliche, parallele Testhefte verwendet werden, sollten Testentwick-

ler:innen in der Lage sein, für alle Testhefte ein gleiches Maß an Zeitdruck zu gewährleisten.

Zu diesem Zweck schlägt van der Linden (2011a, 2011b) einen Ansatz zur Kontrolle

des Zeitdrucks von Tests in der automatisierten Testhefterstellung (ATA) unter Verwendung

von Mixed Integer Linear Programming (MILP) und eines lognormalen Antwortzeitmodells

vor. Der Ansatz kann bei konventionellen linearen Tests, bei computeradaptiven Tests sowie

bei multi-stage Tests verwendet werden und ist sowohl für low-stakes als auch high-stakes

Tests relevant. Der Ansatz von van der Linden (2011a, 2011b) hat jedoch eine zentrale

Limitation: Er ist auf das zwei-parametrische lognormale Antwortzeitmodell beschränkt,

das gleiche Geschwindigkeits-Sensitivitäten (d.h. Faktorladungen) für alle Items annimmt.

Diese Arbeit zeigt, dass ansonsten parallele Testhefte mit unterschiedlichen Geschwindigkeits-

Sensitivitäten für bestimmte Testteilnehmende tatsächlich unfair sind. Darüber hinaus wird

eine Erweiterung des van der Linden-Ansatzes vorgestellt, die unterschiedliche Geschwindigkeits-

Sensitivitäten von Items in ATA berücksichtigt. Zusätzlich kann Zeitdruck ein wichtiges

Fairness-Problem darstellen, wenn Testhefte mit identischen, aber unterschiedlich angeord-

neten Items verwendet werden. Um zu verhindern, dass die Punktzahl der Testteilnehmenden

davon abhängt, ob sich leichte oder schwierige Items am Ende eines Testhefts befinden, wird

vorgeschlagen, dass die zeitintensivsten Items am Ende aller Testhefte platziert werden soll-
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ten. Derzeit gibt es einen Mangel an spezifischen Software-Implementationen und Leitfäden

zur Antwortzeitmodellierung und ATA. Daher bietet die Arbeit Anleitungen zur Verwendung

des R-Pakets eatATA für ATA und zur Verwendung von Stan und rstan für Bayesianische

hierarchische Antwortzeitmodellierung. Abschließend werden Alternativen, praktische Impli-

kationen und Grenzen der vorgeschlagenen Ansätze diskutiert und Vorschläge für zukünftige

Forschungsthemen gemacht.
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1 Theoretical Background

Educational and psychological achievement tests are among the cornerstones of modern ed-

ucational systems. Throughout their school careers, students are tested on a regular basis

to monitor their abilities and knowledge gains. This assessment practice continues in voca-

tional or higher educational programs. In these contexts, assessments can serve a variety of

purposes: First, achievement tests are used by teachers, institutions, and organizations to

measure whether applicants have the required skill set or knowledge to attend an educational

program or work in a specific profession. Examples of such assessments include college ad-

mission tests and assessment centers used in applicant selection. Second, achievement tests

are used to assess whether someone has attended an educational program successfully, for

instance licensing or university exams. Such assessments are frequently referred to as summa-

tive assessments (Dixson & Worrell, 2016; Dolin et al., 2018). Third, formative assessments

are important tools for teachers and trainers to monitor and aid learning processes (Dixson &

Worrell, 2016; Dolin et al., 2018). Finally, assessments are used on the institutional or policy

level, for example to evaluate and compare the success of different educational systems. Due

to this variety of purposes, measuring cognitive ability and achievement has always played a

major role in the history of psychometrics and – by extension – in the history of psychological

and educational sciences (Jones & Thissen, 2006).

According to the Standards for Educational and Psychological Testing by the Ameri-

can Educational Research Association et al. (2014), the three fundamental requirements for

achievement tests are validity, reliability, and fairness. However, in practical administrations,

the validity, reliability, and fairness of an assessment can be threatened for a multitude of

reasons, even if the test itself is perfectly designed. For instance, test-takers may cheat on

assessments (Bernardi et al., 2008), test-takers may not fully engage with the test due to

lack of motivation (Wise & DeMars, 2005), or a test administration may be disturbed due

to external factors such as a fire alarm. Another such threat, especially for the validity and

fairness of assessments, stems from the use of time limits and speededness (Y. Lu & Sireci,

2007). Almost all formalized assessments use time limits to guarantee comparable testing

conditions for test-takers and out of practical considerations. However, if a time limit is set,

this means that some test-takers may not have sufficient time to work on the assessment to

their fullest ability while other, faster test-takers do have ample time. The term test speed-

edness refers to the phenomenon that a test-taker would have performed better on a test,

would they have been given more time (Cintron, 2021).
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To illustrate how speededness can threaten the validity and fairness of an assessment

consider the following two examples: First, assume a foreign language teacher constructs a

test to assess the language skills of a class they have just been assigned to. The teacher

tries to cover various aspects of language skills, such as reading fluency, spelling, grammar,

and vocabulary. As the teacher only has weekly one-hour lessons with the class, the teacher

administers the test in one of these one-hour lessons. During test administration, some

students easily finish within the time limit. However, some students struggle to finish on

time, especially those with slow reading speed. Inadvertently and without bad intentions,

the teacher has created a test which is speeded for some test-takers. Instead of measuring

students’ foreign language skills, the test measures whether students are able to answer foreign

language questions in a rapid fashion. If a student scores low on the spelling section of the

test, this could mean that either (a) they have poor spelling or (b) they were working too

slowly on the test. Therefore, the assessment cannot be considered valid for its intended

purpose, due to its speededness.

Second, assume a university which uses an admission test to determine which applicants

are suited to attend a study program. The university seeks to measure whether potential

students can solve math problems efficiently in a limited amount of time. To prevent students

from collaborating or copying answers from other students, the university administers two

different test forms A and B with distinct item sets but of comparable difficulty. However,

the test forms differ in terms of their workload, meaning that test form A contains items with

less reading material and test form B contains items with more reading material. Especially

for slower reading students it is now of substantial importance whether they are assigned test

form A or B, as test form B penalizes them stronger for being slow than test form A. Even

though the test forms are equivalent regarding difficulty, they cannot be considered fair due

to test speededness. For slow but able students, university admission depends on which test

form they are randomly assigned.

These examples illustrate that controlling the speededness of a test is crucial for the

construction of fair and valid tests. Indeed, there exist substantial amounts of research on

statistical methods for detecting whether tests are speeded and on statistical methods for

how psychometric properties of tests can be maintained when a test is speeded (Cintron,

2021). In contrast, the number of publications on how the speededness of an assessment can

actually be controlled and under which circumstances speededness may be harmful to the

validity and fairness of an assessment is small. One of the only approaches feasible for a wide
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variety of assessment contexts is the approach presented by van der Linden (2011a, 2011b).

Yet, even this approach is limited as it makes the rather strict and unconventional assumption

of equal speed sensitivities (factor loadings) across items and it is therefore unclear, whether

the proposed approach is appropriate for practical applications.

Furthermore, fairness issues related to test speededness can also arise in different ways.

For instance, in high-stakes testing, equivalent test forms are often used to prevent cheating

(Smith et al., 2004). These test forms should not yield different results for the same test-

taker. However, equivalence on the test form level may not be sufficient in such scenarios as

speededness is often expected to affect specific parts of the test (i.e., the later parts of the

test) more so than others (Mollenkopf, 1950). Already Leary and Dorans (1985) noted that

in such circumstances certain item orders may be more beneficial for test-takers than others.

Yet, research on item ordering and speededness has stagnated in the last centuries and no

applicable solution to the problem is available.

To address the aforementioned research gaps, this thesis builds on the work of van der

Linden (2011a, 2011b) as well as Leary and Dorans (1985) and makes the following contri-

butions: It (a) illustrates shortcomings of the current state-of-the-art approach by van der

Linden (2011a, 2011b) for controlling speededness in practical applications, (b) presents a

generalization of the approach suggested by van der Linden (2011a, 2011b) to overcome these

shortcomings, (c) shows that differently ordered but otherwise identical test forms can be un-

fair if speededness is present, (d) presents easy to implement approaches for dealing with the

effects of item order due to speededness, and (e) provides statistical software and guidance

for implementations of all presented methods for practitioners.

To increase readability, all of the substantial research work in this thesis focuses on specific

assessment contexts, mainly on fixed-form linear high-stakes assessments. In such assessment

contexts, impact of speededness on fairness and validity is often most pronounced. However,

controlling speededness and the effects of speededness is relevant in nearly all assessment

contexts. The thesis starts with describing general testing standards, which assessments have

to adhere to, and their relationship to speededness. Then, the contexts in and for which

assessments are used and why speededness is relevant for almost all of them are discussed.

Next, general approaches for (automatically) assembling tests from item pools are described,

which will subsequently be applied to incorporating speededness controls. This is followed

by a discussion of different response time modeling concepts. Response time modeling not

only serves as the basis for controlling speededness when assembling tests but also as the
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foundation for understanding the concept of speededness in the first place. Then, the concept

of the speed-ability trade-off is discussed and a formal definition of speededness is provided.

A detailed overview of the existing research on controlling speededness in assessments is

given, including the current shortcomings. From this, the research questions of this thesis are

derived. In the main body of this thesis, three substantial research works and two tutorial

papers, which make the discussed methods accessible for practitioners and applied researchers,

are presented. The thesis provides a summary and critical discussion of the research work

and closes with an outlook for future research on the topic.

1.1 Achievement Testing

In this thesis, the terms assessment and test will be used interchangeably. It is assumed that

assessments generally seek to measure a unidimensional latent (i.e., not directly measurable)

construct. The term achievement refers to the fact that in most educational assessments this

latent construct refers to a latent ability, such as knowledge or skills that can be acquired.

This thesis will focus mainly on educational achievement testing, but all presented approaches

and discussions are applicable to other psychological testing applications such as intelligence

testing or aptitude testing as well. For general overviews on psychological testing and its

applications see, for example, Kaplan and Saccuzzo (2017) or Murphy and Davidshofer (2005).

1.1.1 Fairness and Validity

The Standards for Educational and Psychological Testing by the American Educational Re-

search Association et al. (2014), from now on simply referred to as the testing standards, list

three concepts as the foundation of high-quality assessments: (1) validity, (2) reliability/pre-

cision and errors of measurement, and (3) fairness. This section will focus on the concepts of

fairness and validity, as these are the concepts most directly affected by the speededness of

an assessment1.

The term validity refers to the fact that there should be empirical evidence justifying

the use and interpretation of test scores, for example for pass/fail decisions or selection for

educational programs (American Educational Research Association et al., 2014)2. McDon-

ald (2013, p. 133) describes validity as follows: “A test score is valid to the extent that it

measures the attribute of the respondents that it is employed to measure, in the popula-

1Some researchers argue that strict time limits have a strong impact on the reliability of achievement tests
as well (Gernsbacher et al., 2020), yet this discussion is beyond the scope of this thesis.

2For a broader, historical overview on the topic of validity, see also Tiffin-Richards and Pant (2017).
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tion(s) in which it is used.” Messick (1993) argues that the two major threats to validity

are construct-irrelevant variance and construct under-representation. The testing standards

describe construct-irrelevant variance as “[...] processes that are extraneous to the test’s

intended purpose” (American Educational Research Association et al., 2014, p. 12). Ex-

amples of such construct-irrelevant variance can be (un)familiarity with specific item types,

varying testing conditions due to online-administered tests, or test-takers being affected by

strict time limits used for power tests for practical reasons. Construct under-representation

refers to a test that “[...] fails to include important dimensions or facets of the construct”

(Messick, 1993, p. 9). Examples of tests with construct under-representation could be a

language assessment that measures only reading skills and no oral or writing skills, a test for

mathematical literacy only focusing on geometry, or a speeded test for reading fluency whose

time limit is too lenient, thereby failing to detect differences in reading speed.

The concept of fairness relates to the fact that all test-takers should have equal oppor-

tunity to display their ability in an assessment (American Educational Research Association

et al., 2014). Kingston and Kramer (2013, p. 193) describe fairness as follows: “[Fairness]

means there must be no construct irrelevant variance associated with being a member of a

definable subgroup.” The fairness of an assessment is threatened, if a certain subpopulation

is favored in the assessment, for example due to familiarity with the assessment framework

and item types, compared to other subpopulations. Speededness can be a substantial threat

to the fairness of assessments as (a) certain subpopulations may have higher working speeds

than other subpopulations and (b) interchangeably used test forms may contain different

amounts of workload.

It is apparent that the concept of fairness is strongly connected to the concept of validity.

Indeed, if an assessment is not fair it can never be considered valid. However, fairness is not

a sufficient condition for validity, meaning that an assessment can be fair but still not be

valid.

1.1.2 Stakes for Test-Takers

To understand the relevance of speededness, it is essential to consider the different contexts

in which achievement tests are used. One of the most basic classification criteria is the stakes

for test-takers associated with an assessment. The term low-stakes assessment refers to as-

sessments which have little to no consequences for test-takers on the individual level (Rios,

2021). Examples include educational large-scale assessments such as the Programme of In-
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ternational Student Assessment (PISA; OECD, 2016b), the Programme for the International

Assessment of Adult Competencies (PIAAC; OECD, 2013), the Progress in International

Reading Study (PIRLS; Martin et al., 2017), or the Trends in International Mathematics

and Science Study (TIMSS; Martin et al., 2020). These assessments usually focus on results

on the group level (e.g., country) and aim at monitoring and comparing educational sys-

tems (Kirsch et al., 2013). Other examples of low-stakes assessments are assessments used

by teachers to inform and improve their teaching, such as the German Vergleichsarbeiten

(comparative performance tests, VERA; Ophoff & Cramer, 2022; Pant, 2013).

The term high-stakes assessment refers to assessments with substantial consequences for

test-takers on the individual level (Rios, 2021). Such consequences are, for instance, admission

to educational programs, selection for a job, or certification after concluding an educational

program. Examples of such assessments are school or university exams, language proficiency

tests like the Test of English as a Foreign Language (TOEFL; Educational Testing Service,

2020), or college admission tests like the Graduate Record Examinations (GRE; Davey &

Lee, 2011) or the SAT 3 (formerly known as the Scholastic Aptitude or Scholastic Assessment

Test; College Board, 2015).

These different stakes4 have strong implications for how test-takers approach an assess-

ment and what potential sources of construct-irrelevant variance must be considered by test

designers and administrators. Test-takers can be expected to be much more extrinsically

motivated in high-stakes assessments than in low-stakes assessments and thus to perform

substantially better (Cole & Osterlind, 2008; Rios, 2021; Steedle & Grochowalski, 2017; Wise

& DeMars, 2005; Wolf & Smith, 1995). Low test motivation is known to be connected to

low test-taker effort, showing in increased item omissions and rapid guessing (Wise & Gao,

2017) or even quitting the assessment (Pools, 2022; Ulitzsch et al., 2020). In low-stakes

assessments, low test-taking effort is therefore frequently considered a substantial source of

construct-irrelevant variance. In contrast, high-stakes assessments even motivate test-takers

to specifically prepare for the assessment (Devine-Eller, 2012). This can, for example, en-

tail studying for an exam or attending a preparation course for a standardized assessment

like the TOEFL test. For recent overviews on test preparation for standardized high-stakes

3The term SAT is no longer used as an abbreviation but as the full name of the assessment.
4The terms high and low-stakes solely refer to the stakes for test-takers. Low-stakes assessments usually

also have stakeholders who have great interest in the results of assessments. For instance, teachers who seek
to improve their teaching or policy makers who seek to evaluate their policies have an interest in valid and
fair measurement. Furthermore, financial benefits can depend on the results of low-stakes assessments, such
as teacher salary depending on student performance (teacher performance pay; Podgursky & Springer, 2007)
or educational institution funds depending on accountability programs (Cole & Osterlind, 2008).
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assessments see the works of Kim (2021) and Powers (2017). Unfortunately, cheating is a

prevalent threat in high-stakes assessments and can hence be considered a relevant source

of construct-irrelevant variance in this context (Bernardi et al., 2008; Chirumamilla et al.,

2020). Other sources of construct-irrelevant variance, such as familiarity with item types or

speededness due to strict time limits, are however potential sources of construct-irrelevant

variance in all assessment contexts.

1.1.3 Standardization

Independent of their stakes, educational achievement tests can also vary greatly in their degree

of standardization. For example, college admission tests or language proficiency tests, such as

TOEFL, employ professionally developed and maintained item pools as well as standardized

procedures for assembling equivalent test forms, which have to conform to numerous specifica-

tions (Armstrong et al., 2005; College Board, 2015; Educational Testing Service, 2010). They

aim to ensure that assessments are comparable within an assessment cycle but also between

assessment cycles (e.g., across years). In contrast, school or university examinations often

have a much lower degree of standardization due to limited budgets and resources (Elton,

2004; Frey et al., 2020). In such contexts, the person teaching a class or course will typically

also be the person designing and administering the test. Comparability across assessment

cycles is achieved based on expert judgments, not via explicit psychometric modeling, and

quality control is much less strict. This means, for example, that items are used without

any pretesting or external expert validation (Frey et al., 2020). An even lesser degree of

standardization can be found in formative assessments whose main goal is to inform teachers

and students about learning progress. For this purpose, informal assessments are commonly

utilized, such as quizzes or question-and-answer sessions (Dixson & Worrell, 2016; Dolin et

al., 2018). From a validity and fairness perspective, however, speededness is relevant for all

of these assessments. In this thesis, the term assessment practitioner therefore refers to a

wide range of persons, from professional test designers and administrators to school teachers

or university lecturers.

1.1.4 Measurement Models

A common challenge for achievement assessments is that these assessments are designed

to measure constructs which are not directly observable, so called latent constructs. An

additional challenge is finding measurement models that are flexible enough to accustom
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simple assessment contexts (e.g., a single test form used on a specific sample) or complex

assessment contexts (e.g., a variety of test forms used on different subpopulations on various

occasions). Item Response Theory (IRT) models haven been developed for this purpose.

IRT models conceptualize responses as outcomes of random processes determined by item

and person parameters (van der Linden, 2005). In achievement tests, responses to items are

frequently dichotomous, meaning that items can be answered either correctly or incorrectly.

One of the most popular IRT models for dichotomous items is the two-parameter logistic

(2PL) model. In the 2PL model, the probability P (yik = 1) of a person i = 1, ...., n answering

an item k = 1, ..., j correctly, is given by

P (yik = 1|θi, ak, b′k) =
exp(ak(θi − b′k))

1 + exp(ak(θi − b′k))
. (1)

θi denotes the ability parameter associated with a person taking the test, indicating their

unidimensional latent ability level. Parameters ak and b′k are item parameters, with b′k being

a difficulty parameter and ak being a discrimination parameter. It should be noted that the

2PL model can also be written as

P (yik = 1|θi, ak, bk) =
exp(akθi − bk)

1 + exp(akθi − bk)
. (2)

While the two models are interchangeable, the meanings of the difficulty parameters b′k

and bk differ between Equation 2 and 1, as bk = akb
′
k (de Ayala, 2022; Fox, 2019). Throughout

this thesis, if not stated explicitly otherwise, the term 2PL model will refer to Equation 2. A

special case of the 2PL model is the one-parameter logistic (1PL) model, which is conceptually

equivalent to the Rasch model (Rasch, 1960). In this model, all discrimination parameters

ak are fixed to 1. Thus, the model assumes that all items discriminate equally between test-

takers with different ability levels. In the 1PL model, the probability P (yik = 1) of a person

i answering an item k correctly, is given by

P (yik = 1|θi, bk) =
exp(θi − bk)

1 + exp(θi − bk)
. (3)

Regardless of the specific measurement model, the parameter of interest in achievement

testing is usually the person ability parameter θi. See, for example, the work of de Ayala

(2022) for an extensive and general overview of the IRT literature and research. For a more

historical perspective, including comparisons of IRT to classical test theory, see also van der

Linden (2005). It should be noted that numerous extensions of the presented models, such
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as the three-parameter logistic model (for modeling a guessing probability) or the general-

ized partial credit model (for modeling partial credit on items) exist (de Ayala, 2022). All

approaches for controlling speededness presented later in this thesis are, however, applicable

independent of the specific IRT models used.

An important, universal feature of IRT is that the information provided by an item for

the ability estimation of a test-taker can be quantified. The item information function (IIF)

is derived from the more general Fisher information and in the 2PL framework is defined for

an item k and ability level θ as (e.g., de Ayala, 2022; DeMars, 2010):

Ik(θ) = a2kPk(θ)(1− Pk(θ)). (4)

Pk(θ) refers to the probability of a correct response for item k given θ under the 2PL model.

Equation 4 illustrates that the IIF is determined by two aspects: (a) the discriminative power

of the item, expressed by its discrimination parameter ak, and (b) the probability to solve

an item correctly Pk(θ) multiplied by its inverse probability. The latter term is largest if the

probability of a correct answer is Pk(θ) = 0.5, so if bk = θi. On an aggregate level, the test

information function (TIF) is the sum of all IIFs of the items k = 1, ..., j in a test:

I(θ) =

j∑︂
k=1

Ik(θ). (5)

The TIF is a frequently used statistic of interest when designing a test. For instance, if a

test is used as a licensing exam, test forms should be highly informative around the cut score

used for pass/fail decisions. Alternative statistics, such as the test characteristic curve, exist

(e.g., Debeer et al., 2017). However, all later presented approaches for controlling speededness

are independent of any other design features or requirements of a test. As controlling the

speededness of a test is part of the assembly of the test, the following section provides a short

overview on the general topic of test assembly.

1.2 Test Assembly

The testing standards describe the design and development of a test consisting of four phases

(American Educational Research Association et al., 2014):

1. Development and evaluation of the test specifications

2. Development, tryout, and evaluation of items
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3. Assembly and evaluation of new test forms

4. Development, procedures, and materials for administration and scoring.

This section focuses on step (3), and more specifically on the assembly of new test forms,

as in this step the workload of a test is determined and important decisions regarding its

speededness are made. The term test assembly describes the process of assembling items

from an item pool to one or multiple test forms. Usually, test assembly is a complex process

as there are specific requirements test forms have to adhere to (see step (1), the development

and evaluation of the test specifications). These test specifications usually cover a broad

range of requirements and include content, format, and psychometric specifications, such

as representation of subdomains within a test form, desired test length of a test form, or

average difficulty of a test form (American Educational Research Association et al., 2014).

Step (2) above illustrates that items are ideally tested in form of pre-tests (also termed pilot

tests or pilot studies) before they are used in the actual test administration, also termed the

operational test.

1.2.1 Parallel Test Forms

The complexity of test assembly procedures varies greatly between assessment contexts. For

instance, in university examinations, it is common that test designers develop just enough

items for a single test form. In extreme cases, there is basically no test assembly procedure

required, as the single assembled test form simply equals the complete item pool. In edu-

cational large-scale assessments, multiple test forms are typically assembled within multiple

matrix booklet designs to ensure broad content coverage (Gonzalez & Rutkowski, 2010). In

these cases, test forms differ in the tested (sub-)domains but still should be equivalent in many

aspects, such as test length or average difficulty, so that test-takers have a comparable testing

experience regardless of the specific test form they are randomly assigned to. In standardized

high-stakes assessments, multiple test forms are mainly used to increase test security. If iden-

tical test forms were used for all test-takers, test-takers could copy answers from each other

or collaborate during a test administration (Bernardi et al., 2008; Chirumamilla et al., 2020;

Smith et al., 2004). Furthermore, such assessments are usually offered repeatedly. Different

test forms make it harder for test-takers to share relevant test content with future test-takers

and are therefore crucial to the integrity (and fairness) of such assessments (Kippel, 1985;

van der Linden, 2022). Such test forms consisting of distinct item sets are referred to as

nonoverlapping test forms (Belov & Chen, 2014). However, in high-stakes assessments, test
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forms have to be exchangeable, as tests should be comparable on the individual level across

test forms and testing occasions.

Equivalent test forms which can be used interchangeably are also referred to as parallel. As

illustrated above, the degree of required parallelism can vary from application to application.

Historically, parallel test forms were defined by equal true scores and error variances across

test forms. Lord (1980) refers to such test forms as strictly parallel. In the context of IRT,

Samejima (1977) proposed the differentiation of strongly parallel test forms with parallel

item pairs in contrast to weakly parallel test forms, which are parallel regarding their TIF.

Samejima (1977) argues that weakly parallel test forms suffice for practical applications. The

testing standards (American Educational Research Association et al., 2014, p. 35) describe

parallel test forms as “[...] designed to have the same general distribution of content and

item formats, the same administrative procedures and at least approximately the same score

means and standard deviations in some specified population [...].” This definition illustrates

that a variety of aspects have to be considered for evaluating whether test forms are parallel.

Furthermore, different assessment applications can require different degrees of parallelism.

For instance, in standardized high-stakes assessments, test forms are usually assembled with

great care from sufficiently large item pools (e.g., College Board, 2015) to guarantee fair and

truly exchangeable test forms.

Several different practical approaches to test assembly exist. Test form assembly can be

performed in one step, with test forms being directly assembled from an item pool. Alterna-

tively, the test assembly procedure can consist of multiple steps. For instance, in a first step,

blocks are assembled from an item pool and, in a second step, test forms are assembled from

these blocks (van der Linden, 2005). Such a two-step test assembly procedure is frequently

applied in large-scale assessments (e.g., Kuhn & Kiefer, 2015; OECD, 2016b). For simplicity

and readability reasons, this thesis focuses on test forms being assembled from items only.

However, all reasoning and implications apply to multi-step procedures as well and respective

extensions are rather straightforward.

1.2.2 Degree of Adaptivity

The traditional approach in achievement testing is to use pre-assembled, fixed-form linear

tests (Luecht & Sireci, 2011; van der Linden & Glas, 2010a). This means that test forms are

assembled a priori and then administered to test-takers. During administration, every test

form is fixed. This assessment mode is rooted in the era of paper-based assessment, where
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any form of on-the-fly modification of a test was at least cumbersome if not impossible. The

advancement of computer-based assessment has also led to an advancement of more adaptive

testing modes. In computerized adaptive testing (CAT), a provisional ability estimation is

performed after every item and the next item is selected based on the current ability estimate,

thereby increasing measurement precision (van der Linden & Glas, 2010a). This procedure

makes use of the fact that items are differentially informative given a specific (provisional)

ability level. However, in CAT, it can be challenging to control item exposure (i.e., how often

is a single item used across test-takers) and further test specifications such as content domains

or item type distributions across test-takers. A popular alternative to CAT is therefore multi-

stage testing (MST), in which modules consisting of sets of items, are pre-assembled and

administered depending on the performance of test-takers on prior modules (Yan et al., 2016;

Zenisky et al., 2010). All mentioned assessment modes (fixed-form linear tests, CAT, MST)

are used in both high- and low-stakes contexts. For instance, in high-stakes testing, the SAT

and TOEFL use fixed-form linear tests (College Board, 2015; Educational Testing Service,

2020), the revised GRE uses MST (Davey & Lee, 2011) but previously used CAT (Bridgeman

& Cline, 2004). In low-stakes testing, PISA and PIAAC have been using MST designs in

the recent past (OECD, 2013, 2019b), while TIMSS and PIRLS have been using fixed-form

linear tests (Martin et al., 2017, 2020).

Regardless of the degree of adaptivity of an assessment, the final test form(s) should

usually conform to test specifications. Therefore, test assembly is a relevant challenge in

all three assessment modes: In MST, modules consisting of multiple items are usually pre-

assembled while having to meet specific requirements (Yan et al., 2016). Often, modules

of the same stage are targeted at different ability levels and therefore should have different

test information functions but should otherwise be parallel (regarding, e.g., length, content

coverage, and item formats). In the CAT framework, meeting complex test specifications is

more challenging. An elegant approach for dealing with complex test specifications in CAT is

the shadow-test approach (STA). In the shadow-test framework, a full test assembly method

is performed after each administered item which results in a test form satisfying all relevant

test constraints. From this full test form the most informative item is selected. Through

this iterative procedure, it can be guaranteed that the final test form fulfills all required test

specifications as well (van der Linden & Reese, 1998).

The substantial research works of this thesis will focus on fixed-form linear tests, as the

extension of the respective test assembly procedures to MST or CAT using the STA framework
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is rather straightforward. The relevance of controlling speededness for MST and CAT will

be discussed in later parts of this thesis (see Chapter 7).

1.2.3 Conventional/Manual Test Assembly

Originally, test forms were assembled manually using trial and error approaches, as for ex-

ample described in van der Linden (2005). This means that test administrators created an

overview of the item pool, for example using a spreadsheet, and manually assigned items to

different test forms. By trying out different solutions, test administrators ruled out options

and searched for the optimal (or a practically sufficient) solution. Such an approach can be

feasible for small test assembly problems (e.g., assembling a test form of 20 items from an

item pool of 60 items) but will quickly reach its limitations for more complex test assem-

bly problems (e.g., creating multiple parallel test forms from a large item pool). Although

large-scale testing programs have used manual test assembly procedures in the past for more

complex test assembly problems as well, as no other approaches were available or out of

habit, such procedures are typically very time-consuming and are likely to yield suboptimal

solutions (Armstrong et al., 2005).

1.2.4 Automated Test Assembly

Automated test assembly (ATA) refers to approaches which use computer algorithms to solve

test assembly problems. For example, Theunissen (1985) was the first to suggest using linear

programming for this purpose. Since then, automated test assembly approaches have evolved

steadily. The work of van der Linden (2005) on how to use mixed integer linear programming

(MILP) for ATA provides researchers with extended theoretical guidance on these methods.

The general idea is that test specifications can be translated into mathematical constraints

and an objective function in the form of equations and inequalities. The term constraints

refers to an implementation using explicit cut-offs or equalities. The term objective function

refers to the fact that for this specification no strict cut-off is set, but a minimization or

maximization criterion is defined. In the following, frequently used constraints and objective

functions are discussed. The respective decision variables used in these (in-)equations are

usually binary (0 or 1), indicating whether an item is included in a test form. Decision

variables can be denoted as xkf for item k and test form f .
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xkf =

⎧⎪⎨⎪⎩
1 if item k is selected in test form f

0 if item k is not selected in test form f.

(6)

In his work, van der Linden (2005) categorizes constraints into quantitative, categorical,

and logical constraints. Examples for quantitative constraints include specifying the esti-

mated average test time for the test, the total number of items in the test or a minimum test

information function the test is supposed to have. Specifying the minimum TIF (Tθ) as the

sum of the item information functions Ik(θ) at ability level θ can be formulated as

j∑︂
k=1

Ik(θ)xkf >= Tθ. (7)

Examples for categorical constraints include the distribution of items types or items be-

longing to specific subdomains across test forms. For instance, assuring that the number of

items of the subset Vc (e.g., multiple-choice items) is below the maximum nmax
c and above

the minimum nmin
c in test form f can be written as:

∑︂
k∈Vc

xkf <= nmax
c (8)

∑︂
k∈Vc

xkf >= nmin
c (9)

It should be noted that in practice, categorical constraints can easily be transformed

into quantitative constraints if the grouping factor is translated into a set of dummy coded

variables and these 0-1 variables are then used in quantitative constraints. For instance, if

dk is a dichotomous variable indicating whether item k is a multiple-choice item (dk = 1) or

not (dk = 0), Equations 8 and 9 can be written as:

j∑︂
k=1

dkxkf <= nmax
c (10)

j∑︂
k=1

dkxkf >= nmin
c (11)

Logical constraints refer to the conditional selection of items. Examples of these are cases

of exclusion (e.g., item 1 and item 2 cannot be in the same test form f) and inclusions (e.g.,

if item 1 is included in a test form, item 2 has to be also included). Exclusions, also called
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enemy items, can, for instance, be due to items containing the solution to other items and

can be written as

x1f + x2f <= 1. (12)

Equation 12 enforces that either none of the two items (x1f = 0 and x2f = 0) or maximally

one of the items (x1f = 1 or x2f = 1) is included in the test form f , but not both of them.

In contrast, inclusions, also called friend items, can occur due to a shared stimulus and can

be written as

x1f − x2f = 0. (13)

Equation 13 is only satisfied if both items are in the test form (x1f = 1 and x2f = 1) or

none of the items is in the test form (x1f = 0 and x2f = 0). Note that logical constrains can

be reformulated into quantitative constraints comparable to categorical constraints via the

use of dichotomous indicator variables.

Besides these quantitative, categorical, and logical constraints, usually a single objective

function is formulated in ATA. Examples of common objective functions include maximization

of the TIF, minimization of test length or testing time, or minimization of the difference of

the TIF between multiple test forms. Formulating the maximization of the TIF at ability

level θ, for example, would be expressed as

maximize

j∑︂
k=1

Ik(θ)xkf . (14)

A common challenge in practical applications is the decision, which test specification

should be implemented as the objective function and which test specifications should be im-

plemented as constraints. Almost all test specifications can be approximated both by fixed

constraints or an objective function. For instance, the TIF can be either maximized or con-

strained directly to a high level. Unfortunately, there is no easy answer to this dilemma.

Some practitioners may prefer to implement more than one test specification as an objective

function, because frequently multiple test specifications are not strict (in-)equalities but “as

good as possible” requirements. However, this would lead to a multi-objective optimiza-

tion problem. Unfortunately, multi-objective optimization problems are notoriously difficult

to implement and often require conceptual compromises (van der Linden, 2005; Veldkamp,

1999).
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In general, as the computational power of computers has long surpassed the computational

power of the human brain with regard to combinatorial optimization, the convenience and

elegance of ATA procedures versus manual test assembly is apparent. However, there are

still limitations to the accessibility and usability of ATA approaches. While the works of

van der Linden (2005) and Kuhn and Kiefer (2015) provide in-depth theoretical guidance on

ATA, resources on practical implementations such as software tutorials are still scarce. An

overview of programs that are in principle suitable for ATA implementations can be found

in Donoghue (2015). It seems that the only existing tutorial on software implementations of

ATA can be found in Diao and van der Linden (2011). However, Diao and van der Linden

(2011) illustrate how ATA approaches can be implemented via a lpSolver-API R package,

which is not specifically designed for ATA and whose usability is arguably sub-optimal. It

can be argued that the lack of designated ATA-software and the lack of tutorials for ATA

implementation is a substantial burden for assessment practitioners who want to use ATA

for their test assembly.

Besides ATA, the second prerequisite for controlling the speededness of tests is response

time modeling. Therefore, the next section provides a short overview on response time

modeling in general.

1.3 Response Time Modeling

The concept of measuring response times on cognitive tests and thereby modeling an un-

derlying speed factor dates back to the beginnings of experimental psychology (e.g., Baxter,

1941). For detailed, historical reviews, see also Schnipke and Scrams (2002), Luce (1986), Lee

and Chen (2011), van der Linden (2009a), as well as Kyllonen and Zu (2016). In the recent

past, response time modeling has gained a lot of traction in the psychometric literature, as

response times are more easily and unobtrusively available in computer-based assessments

than they were in paper-based assessments. Computer-based assessments (CBA), sometimes

also termed technology-based assessments (TBA), refer to assessments which are administered

on computers, such as laptops, desktop computers, or tablets (Csapó et al., 2012; Kröhne &

Goldhammer, 2018). Computer-based assessments have a variety of advantages compared to

paper-based assessments, for instance the possibility to measure new domains or subdomains

such as information and communication technology literacy or reading in technology-rich

environments (Csapó et al., 2012). Another great advantage is that process data, such as

response times, can be automatically tracked in the background via the assessment system
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without additional proctoring or asking test-takers to track their own response times (Kröhne

& Goldhammer, 2018).

In the literature, competing definitions of response times exist (van Rijn & Sinharay,

2023). For instance, assessments such as PISA or PIAAC define response times as time spent

on an item (e.g., Goldhammer et al., 2020; OECD, 2022); others define response times as

the time a test-taker spends on an item until the final response is made (e.g., Kröhne &

Goldhammer, 2018; Li et al., 2017). Frequently, psychometric literature on response time

modeling does not address this issue at all. For reasons of simplicity and because in practice,

researchers often depend on what kind of data is made available in public use files, throughout

this thesis it is assumed that response times are available from assessments and represent

exactly the time a test-taker has taken to work on an item. A further discussion on this topic

is provided in Chapter 7.

Through the advancement of CBA in the last decades, response times are now more

easily available, fostering not only research utilizing response times but also their practical

use in data analyses or assessment design. For instance, response times are used as additional

information to score omitted responses (Weeks et al., 2016) or to differentiate between test-

takers who ran out of time and test-takers who quit the assessment ahead of time (Pools,

2022; Ulitzsch et al., 2020). Another important application is the use of response times from

pre-testing for controlling the speededness of test forms during test assembly (van der Linden,

2005, 2011a, 2011b). A recent review of the psychometric response time modeling literature

can be found in De Boeck and Jeon (2019). The authors divide response time models into four

categories: (a) pure response time models with response times being the sole end variable,

(b) joint models with response times and responses as end variables, (c) dependency models,

which are joint models but include dependencies beyond latent relationships, and (d) response

times as covariate models. In this thesis, the focus will be on (a) pure response time models

and (b) joint response and response time models, as these model types are utilized by van der

Linden (2011a, 2011b) for controlling the speededness of test forms. Models belonging to the

family of (c) dependency models will, however, be covered in Chapter 5 and their relevance

for controlling speededness will be discussed in Chapter 7.

1.3.1 Lognormal Response Time Model

The lognormal response time model by van der Linden (2006) is one of the most popular

response time models in the literature (e.g., van Rijn & Sinharay, 2023). It is a pure response
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time model as categorized by De Boeck and Jeon (2019). In general, the lognormal distribu-

tion is frequently used in response time modeling as response times are truncated at 0 (i.e.,

negative response times are impossible). The lognormal model by van der Linden (2006)

assumes that response times are lognormally distributed and that the lognormal response

times lnRTik for persons denoted as i = 1, ...., n and items denoted as k = 1, ..., j follow the

measurement model

lnRTik = λk − ζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (15)

In the model, λk represents the time intensity or workload of an item. ζi represents the

person speed parameter, indicating how fast a person works on the assessment. σ2ϵk is an item-

specific residual variance. Throughout this thesis, this model is termed the two-parameter

lognormal (2PLN) model, as it contains two item-specific parameters (time intensity and

residual variance). It should be noted that the 2PLN model is a purely descriptive model,

which implies that it makes no assumptions regarding the processes leading to response

times. In contrast, other response time models, such as race models or diffusion models,

make stronger assumptions about the specific underlying processes leading to response times

(De Boeck & Jeon, 2019).

Figure 1: Illustration of the Two-Parameter Lognormal Model by van der Linden (2006).
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Readers familiar with confirmatory factor analysis (CFA) or structural equation modeling

(SEM) will note that the 2PLN model equals a linear one-factor model for the log-transformed

response times with freely estimated intercepts and residual variances, but omitted factor

loadings (see also, Molenaar, Tuerlinckx, & van der Maas, 2015b; van Rijn & Sinharay,

2023). An exemplary illustration of the 2PLN model as a CFA model with five items can be

18



seen in Figure 1. By relating the original lognormal model to confirmatory factor analysis,

it becomes apparent that the 2PLN model makes a rather unconventional assumption: In

omitting the item-specific factor loadings, the model implicitly assumes that all items have

equal factor loadings (fixed to 1). For instance, Ranger and Ortner (2012a, p. 133) write:

“[...] the model of van der Linden (2006) contains a restriction of the different [factor loading]

parameters to the same value. [...] such constraints are unusual in factor analysis [...]” While

such an assumption is sometimes used in CFA, for instance under the term τ -equivalence

(Brown, 2006), this assumption is expected to be empirically tested and justified, or should

at least be stated explicitly. Therefore, a logical generalization of the 2PLN model is adding

freely estimated factor loadings. The first researchers to propose such a generalization were

Fox et al. (2007), Klein Entink, Fox, and van der Linden (2009) and Ranger and Ortner

(2012a). The resulting measurement model can be written as

lnRTik = λk − ϕkζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (16)

Thereby, ϕk represents the speed sensitivity of an item, indicating how sensitive an item

is to differences in speed between test-takers. Throughout this thesis, this model is termed

the three-parameter lognormal (3PLN) model, as it contains three item parameters (time

intensity, speed sensitivity, residual variance). An exemplary illustration of the 3PLN model

with five items can be seen in Figure 2. In-depth explanations and comparisons of the 2PLN

and the 3PLN model can be found in Chapter 2. It should be noted that even though the

2PLN model makes a rather unconventional, often untested assumption, the model is used in

many contexts such as the joint modeling of responses and response times (van der Linden,

2007), the modeling of missing responses (Pohl et al., 2019; Ulitzsch et al., 2019b, 2020),

the identification of aberrant response behavior such as item pre-knowledge (Kasli et al.,

2022; Man & Harring, 2020; Man et al., 2018; van der Linden & Guo, 2008), or the control

of speededness during test assembly of fixed-form tests (van der Linden, 2011a, 2011b) as

well as the administration of CAT (van der Linden & Xiong, 2013). Yet, this assumption is

frequently neither explicitly stated or questioned, nor empirically tested.

1.3.2 Hierarchical Framework

For the specific purpose of controlling speededness, it can be argued that pure response time

models are sufficient (van der Linden, 2011a, 2011b). However, to foster a better conceptual

understanding of the speed-ability relationship and because the interplay of speed and ability
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Figure 2: Illustration of the Three-Parameter Lognormal Model.
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is often relevant in practical applications (e.g., the time intensity of items correlates with the

difficulty of items), joint models are required which model responses and response times si-

multaneously. For this specific purpose, and because a joint estimation of both constructs can

aid model and parameter estimation (van der Linden et al., 2010), van der Linden (2007) pro-

posed a joint, hierarchical framework for ability and speed. In this thesis, joint models will be

mainly used to generate plausible simulation conditions for the evaluation of approaches for

controlling speededness. Central assumptions of the hierarchical framework include multivari-

ate normal joint item and person parameter distributions and local stochastic independence

of manifest responses and response times given this latent structure. Beyond that, various

measurement models for ability and speed can be used within the hierarchical framework.

Common choices for the respective measurement models for responses and response times

are the 2PL and the 3PLN model (e.g., Debelak et al., 2014; Goldhammer & Klein Entink,

2011; Scherer et al., 2015). Mathematically, the resulting joint person parameter distribution

of the hierarchical framework with the 2PL and the 3PLN model can be written as

(θi, ζi) ∼ N (µP ,ΣP ). (17)

ΣP denotes the covariance structure of the person parameters. Note that the joint item

parameter distribution depends on the parameterization of the respective measurement mod-

els. Again, for the 2PL and 3PLN model case it can be written as

(ak, bk, λk, ϕk) ∼ N (µI ,ΣI). (18)
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ΣI denotes the covariance structure of the item parameters. The latent structure of the

hierarchical framework using these two specific measurement models can be seen in Figure 3.

Figure 3: Structure of the Hierarchical Response Time Model Using the 2PL and 3PLN
Measurement Models, Extended from Klein Entink, Kuhn, et al., 2009.
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The introduced hierarchical framework is indeed very flexible. The model can be extended

or modified in various directions, for example by using cognitive diagnostic modeling5 (CDM)

instead of IRT models (Huang, 2019), by using mixture components (e.g., Ulitzsch et al., 2022;

C. Wang et al., 2018) or explicitly modeling residual relationships (e.g., Bolsinova, de Boeck,

& Tijmstra, 2017). A common alternative that has been frequently used in the literature is

the substitution of the 3PLN with the 2PLN model as the response time measurement model.

The resulting common item parameter distribution with the 2PL and 2PLN model can be

denoted as

(ak, bk, λk) ∼ N (µI ,ΣI). (19)

Multiple studies have compared the fit of hierarchical frameworks using the 2PLN model

with hierarchical frameworks using the 3PLN model on empirical data, indicating superior fit

of the latter (Debelak et al., 2014; Goldhammer & Klein Entink, 2011; Scherer et al., 2015).

Further model comparisons are performed and reported in Chapters 2 and 3. Unfortunately,

while pure response time models such as the 2PLN or 3PLN model are rather straightfor-

ward to implement in standard statistical software, the implementation of the hierarchical

framework and further extensions of it are not.
5For an introduction to CDMs, see, for instance, de la Torre (2011).
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1.4 Speed-Ability Trade-Off

One of the main reasons to model ability and speed simultaneously is to investigate their

relationship. The speed-ability trade-off (SAbT) is a concept dating back to the earliest days

of psychological science (e.g., Henmon, 1911; Spearman, 1927). Back then, experimental

researchers investigated the assumption that test-takers work with increased accuracy if they

invest more time into a task. If they invest less time, their accuracy displayed on the task

decreases. As already Spearman (1927, p. 250) noted: “[...] any increase in speed at a mental

operation tends towards a decrease in its goodness, whilst inversely a greater goodness can

always be attained by some sacrifice of speed.” For an extensive historical overview, see

the work of Heitz (2014). Indeed, the notion of working with greater accuracy when given

more time seems almost trivial. It is not only a well-researched phenomenon among humans

(e.g., Goldhammer & Kröhne, 2014; Wickelgren, 1977) but even among animals, such as bees

(Chittka et al., 2003), ants (Franks et al., 2003), monkeys (Heitz & Schall, 2012), or rats

(Kaneko et al., 2006).

Goldhammer (2015) provides an in-depth overview on the topic focusing on the area of

psychological and educational testing. He differentiates between the speed-accuracy trade-off

investigated in experimental research, which focuses on manifest accuracy, and the speed-

ability trade-off, with ability being a latent construct, as is usually the case in achievement

testing. Furthermore, Tijmstra and Bolsinova (2021) argue that the described conceptual-

izations of speed always refer to a response or working speed, not to an inherent cognitive

speed. Speed-accuracy and speed-ability trade-offs are typically assumed to follow a curvi-

linear relationship (H. Chen et al., 2018; Goldhammer, 2015). For the purpose of this thesis,

the specific shape of the speed-ability trade-off is irrelevant. However, it is assumed that

the speed-ability relationship is monotonically decreasing (i.e., with an increase in speed,

ability always decreases or remains constant but never increases) and from a certain point

on, additional time does not lead to an increase in accuracy. For an exemplary depiction of

a curvilinear speed-ability trade-off as discussed in Goldhammer (2015) see Figure 4.

The described SAbT is a within-person phenomenon (Goldhammer, 2015). This means

that, for example, if a person is able to freely choose their working speed for a task or

assessment, this person effectively decides where on their individual SAbT curve they want

to be working on (ideally guided by the test settings, such as time limits and instructions)6.

It can be assumed that persons may vary in different aspects of their SAbT, for instance their

6However, person characteristics or situational aspects, such as regulatory focus may play a role as well
(Förster et al., 2003).
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Figure 4: Conceptual Illustration of the Speed-Ability Trade-Off as Described in Goldhammer
(2015).

slope (i.e., how strongly does the ability level drop off for a person if their working speed level is

increased), their intercept (i.e., what is a person’s maximum ability/ability ceiling if they work

sufficiently slowly), or the speed level at which ability converges asymptotically against 0 (i.e.,

chance level) (Bolsinova & Tijmstra, 2015; Goldhammer et al., 2017; Tijmstra & Bolsinova,

2018). Regardless, test designers must be aware that different test-takers may simply choose

different locations on their individual SAbT curves, independent of how they differ in their

ability and speed-ability trade-off. In practice, two persons with very different SAbTs can still

work with identical speed and ability, if their SAbTs cross at that specific point. On the other

hand, two persons with identical SAbTs can choose very different speed levels to work within

an assessment. This also explains why it can be assumed that, conceptually, the within-

person SAbT is supposed to be stable (slower means more accurate), yet the between-person

relationship between speed and ability empirically shows great variation between assessments,

with correlations being sometimes positive, negative, or zero (Tijmstra & Bolsinova, 2021).

In the field of experimental psychology, various techniques have been used to experimen-

tally vary the speed-accuracy trade-off within persons (Heitz, 2014; Wickelgren, 1977). These

include verbal instructions (instructing study participants to work fast and/or accurate, e.g.,

Howell & Kreidler, 1963), payoffs (rewarding/penalizing study participants for fast and cor-

rect/incorrect responses, e.g., Swensson & Edwards, 1971), the response-signal paradigm
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(study participants have to respond immediately after a signal is given, e.g., Goldhammer &

Kröhne, 2014) and deadlines (setting time limits on tasks, e.g., Pachella & Pew, 1968). In

the context of educational and psychological testing, the common practice of setting fixed

time limits on tests roughly equals the deadlines-method from experimental psychology7.

1.5 Speededness

Although everyone who has taken a test with a time limit has probably an intuitive under-

standing of the concept of speededness, a formal definition is required. Historically, tests

have been categorized as pure speed or as pure power tests. Following Spearman (1927, p.

252), to measure ability, tests must be used “in which ample time is allowed, so that speed

has little or no scope” and to measure speed, tests must be used “in which the time allowed

is too brief for any but the fastest subjects to reach the end, so that here speed becomes of

vital importance.” According to Gulliksen (1950, p. 230), pure speed tests are tests “[...]

composed of items so easy that the subjects never give the wrong answer to any of them. The

answers are correct as far as the subject has gone in the test. However, the test contains so

many items that no one finishes it in the time allowed.” In contrast, “[...] in a pure power test

all the items are attempted so that the score on the test depends entirely upon the number

of items that are answered, and answered incorrectly.”

However, in reality, almost all standardized assessments use a fixed time limit and are a

mixture of speed and power tests (Goldhammer, 2015; Rindler, 1979). This was already noted

by Gulliksen (1950, p. 230): “At present most tests are a composite in unknown proportions

of speed and power, which makes the development of appropriate theorems in test theory

more difficult than for the pure type tests.” While some researchers argue that power tests

should avoid time limits at all costs (Gernsbacher et al., 2020), most tests underlie practical

considerations, such as limited facility availability, test administrator availability, or cost

constraints (Sireci & Botha, 2020), requiring test administrators to use time limits. However,

this means that the measured construct can no longer be referred to as a pure, “maximum”

ability as it represents a compound measure of ability and speed (e.g., Wilhelm & Schulze,

2002). This is an issue, as research indicates that speed and ability are not the same construct

(e.g., Partchev et al., 2011). For an extensive, historical overview on the matter (focusing

mainly on cognitive abilities), see, for example, Carroll (1993). However, assessment and test

designers differ in the extent to which they see speed as a nuisance factor or as a substantial

7Which does not mean that test-takers adhere to this manipulation of speed but may still work slower or
faster than the time limit requires them to work.
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and desirable part of the measured construct. The following section discusses scenarios in

which speed is seen as a nuisance factor and in which speed is seen as a substantial part of

the construct and argues that the control of speededness is vital for both scenarios.

1.5.1 Speed as a Nuisance Factor

Frequently, the ability dimension, which is to be measured, is seen as a “pure” ability dimen-

sion, free of the influence of speed. Such a view is closely related to the concept of pure power

tests referred to by Spearman (1927) and Gulliksen (1950). Examples of assessments that

conceptualize speed as a nuisance factor could be classroom assessments that are supposed

to inform teachers whether students have understood the material from the last few lessons.

Similarly, a university admission test for a psychology master program could seek to deter-

mine whether potential students have basic statistical knowledge, irrespective of whether they

can reproduce it in a fast or slow manner.

If in such instances speededness is involuntarily introduced through practical time limits,

and test-takers do not have sufficient time to answer all items to their fullest ability, they

are faced with a decision: Either they (a) work slowly and carefully and not reach the end

of the test, (b) work slowly but omit items to reach the end of the test in time, or (c) work

faster but less carefully. Of course, combinations of these “pure” decisions are possible and

there is research on how these decisions may be made in real tests, such as when the answer

mode switches from solution to rapid guessing behavior (Schnipke & Scrams, 1997). It is

apparent that all these aforementioned options reduce the number of correct answers of a

test-taker and are counterproductive to a valid and fair measurement of “pure ability”. In

fact, the influence of speed can be seen as construct-irrelevant variance or multidimensionality

(de Ayala, 2022; Y. Lu & Sireci, 2007). If a test aims to measure whether test-takers can

perform a task independent of time constraints, speededness will threaten the overall validity

of the test. If test-takers work at different speed levels, the test may have fairness issues, as

some test-takers have enough time to finish the task and others do not (Kane, 2020). Kane

(2020) refers to the difference between hypothetical unlimited-time scores and the actual,

time-limited scores as time-limit errors.

A specific concern for test administrators is the fact that the speededness of a test can

affect whole subpopulations differently. For instance, language proficiency influences reading

speed, thereby leading to higher risks of speededness for non-native speakers on a test for

mathematical literacy (Ercikan et al., 2020). Research on gender differences, for example, has
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shown that time limits affect male and female test-takers differently (Steinmayr & Spinath,

2019; Stoevenbelt et al., 2022; Voyer, 2011). Similar evidence exists for different cultures

or ethnic backgrounds (Evans & Reilly, 1972; Knapp, 1960; Lawrence, 1993; Sehmitt &

Dorans, 1990). Such findings are supported by research indicating that pacing behavior may

vary across countries or ethnical backgrounds (Lee & Haberman, 2016; Llabre & Froman,

1987). It is therefore evident that, if speed is seen as a nuisance factor, test designers must

ensure that assessments provide all test-takers with sufficient time to be not speeded, both

for fairness and validity reasons.

1.5.2 Speed as a Substantial Part of the Construct

In contrast, some achievement constructs are a mixture of both speed and power (Kane,

2020; Mollenkopf, 1960). They are neither only trivial tasks which should be completed

at maximum speed (i.e., a pure speed test) nor difficult tasks which can be completed at

any amount of time (i.e., a pure power test), but difficult tasks that should be completed

in limited amounts of time. Kane (2020) calls these assessments time-sensitive performance

tests. Tijmstra and Bolsinova (2018) refer to ability measured under deliberate time pressure

as a target ability displayed at a specific target speed level.

Examples of such assessments are situational performance tests, such as in-basket tests,

in which prioritization of work is one of the key skills being measured (Mollenkopf, 1960).

Other examples could be tests of reading literacy, in which time efficient processing of reading

material is relevant. In such scenarios it is important that the degree of speededness in the

assessment is deliberately and carefully chosen, as any deviation will change the composition

of the measured construct. Indeed, if a test is accidentally unspeeded while speed should be

a part of the construct being measured, test designers are constructing a test with construct

under-representation. Therefore, it can be argued that the control of the speededness of a

test is vital regardless of whether speed is seen as a nuisance parameter or as a substantial

part of the measured construct.

1.5.3 Defining and Measuring Speededness

Despite the substantial amount of research on the topic, no commonly accepted method to

determine if or to which degree a test is speeded has been established. Recent and com-

prehensive reviews on the topic of speededness have been published by Cintron (2021) and

Jurich (2020). The historically most widely accepted rule set for determining whether a test
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is speeded appears to be the so called Swineford Guidelines (Swineford, 1956, 1974). The

Swineford Guidelines state that if (1) all examinees reach at least 75% of the items and (2)

at least 80% of the examinees reach all of the items, a test can be considered not speeded.

The definition explicitly contains the statement that a substantial part of the population (up

to 20%) may not reach the end of a test, in fact may not finish up to 25% of the test, and

the test is still considered not speeded. Therefore, already Swineford (1974, p. 9) noted that

“these are arbitrary criteria and should not, of course, be too strictly applied.” Swineford

also noted that practical considerations play a major role in using this definition: “[If enough

time for all test-takers to finish the test would be given,] the test supervisors would be faced

with the problem of a restless group, eager to get away from the examination room.” Other

common definitions of test speededness include: “Speededness refers to the situation where

the time limits on a standardized test do not allow substantial numbers of examinees to fully

consider all test items” (Y. Lu & Sireci, 2007, p. 29); “A test is speeded when some portion

of the test-taking population does not have sufficient time to attempt every item in the test

within the allocated time” (Bejar, 1985, p. 1); “The larger the proportion of items examinees

lack time to attempt, the greater is the speededness of the particular test” (Rindler, 1979, p.

261).

However, these historical speededness definitions have a common pitfall: If a test is

speeded, one would expect smart and experienced test-takers to work with the appropri-

ate level of speed, instead of omitting items, rapid guessing, or not reaching the end of the

test. Tijmstra and Bolsinova (2018) refer to such an “ideal” speed level as a target speed

level. Unfortunately, under most historical speededness definitions, a test administration

would not be considered speeded if a test-taker adjusts their level of speed appropriately, as

these speededness definitions (and speededness measurement models based on them) rely on

the aforementioned symptoms of speededness. More precisely, these definitions and models

rely on test-takers who do not deal with test speededness in an ideal way.

Finally, a central weakness of past speededness definitions is that speededness is seen as

a property of the test. However, asking whether a test is speeded is in some sense like asking

whether a test has a high average score or is reliable. With IRT, psychometricians have

moved past the notion that expected average scores or reliability are intrinsic to a test but

instead a function of ability (Samejima, 1977). Similarly, van der Linden (2011a, 2011b) was

the first to propose a definition which moved passed this notion regarding speededness: He

defines speededness as an interaction of the time limit of a test, the speed of the test-taker
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and the workload of a test. This means that speededness is not a fixed property of the test

but must be seen in relation to the properties of the test-taker. Therefore, this speededness

definition of van der Linden (2011a, 2011b) is adopted throughout this thesis.

Unfortunately, this definition still does not provide researchers with an appropriate tool

for measuring speededness. Yet, even if the speededness of an assessment for a specific

test-taker could be measured after the test administration, it remains unclear how negative

impacts of speededness could be remedied by statistical means (Tijmstra & Bolsinova, 2018).

As Mollenkopf (1960, pp.228-229) already noted, explicitly referring to speededness: “And

let me anticipate myself here a bit by saying that no statistical adjustment of the scores after

the fact can control the problem, because this is like trying to catch the bees after the hive is

upset. The proper thing to do, it seems to me, is to take steps to prevent luck from making

any significant difference in the scores.” When discussing research designs, Light et al. (1990,

p. viii) once noted: “You can’t fix by analysis what you bungled by design.” It can be argued

that this statement is equally true for designing assessments. Therefore, this thesis focuses

on how speededness can be controlled during the design and assembly of tests.

1.6 Controlling Speededness in Test Assembly

In almost all testing contexts and regardless of whether speed is seen as a nuisance factor

or a substantial part of the measured construct, being able to control the speededness of a

test is of crucial importance. Controlling speededness is also crucial if multiple, parallel test

forms are assembled. In such cases, differential speededness can lead to unfair results based

on assignment of specific test forms, as the more speeded test form is then more difficult than

a less speeded test form.

Controlling speededness in test assembly in general and ATA in particular has received

only limited attention in the literature so far. The testing standards state that “For a test

that has a time limit, test development research should examine the degree to which scores

include a speed component and should evaluate the appropriateness of that component, given

the domain the test is designed to measure” (American Educational Research Association et

al., 2014, p. 90). However, it is not only unclear (a) how such a speed component should be

identified but also (b) how the appropriate speed component can be deliberately chosen.

An intuitive approach to controlling speededness in ATA is constraining the expected

test times directly, for example based on mean item response times from pilot studies. Such

an approach is, for instance, discussed by van der Linden (2005). Similar approaches using
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mean, median, or standard deviation of response times are also discussed by Scrams and

Smith (2010) as referenced in Lee and Chen (2011). However, these approaches are rooted in

classical speededness definitions and ignore that test-takers usually work with very different

working speeds. Beyond these basic approaches, van der Linden (2011a, 2011b) was the first

to suggest a formal approach based on response time modeling. As was already mentioned

above, this approach is also unique in that speededness is seen relative to a test-taker’s speed.

1.6.1 van der Linden Approach

The approach by van der Linden (2011a, 2011b) is based on the 2PLN model for response

times (van der Linden, 2006). The lognormal model is assumed for the item response time

distributions conditional on a specific speed level. In addition, the approach takes advantage

of the fact that the total test time distribution can be described by its cumulants, even

though there is no known functional form of this distribution. More specifically, because

the cumulants of the test time distribution are the sums of the cumulants of the item time

distributions in the test, MILP constraints can be formulated for the cumulants of the test

time distribution. As such, this approach can be used to set time limits on tests (van der

Linden, 2011a) as well as to control the speededness of tests in ATA (van der Linden, 2011b).

Based on Equation 15, van der Linden (2011b) suggests that the total test time can

be sufficiently approximated as a lognormal distribution. In addition, when the first two

cumulants of the test time distribution are set, a corresponding lognormal distribution can

be found. The first two cumulants (i.e., mean and variance) of the lognormal distribution for

item k assuming the 2PLN model are defined as:

E(RTk|ζ) = exp

(︄
λk − ζ +

σ2ϵk
2

)︄
(20)

Var(RTk|ζ) = exp
(︁
2λk − 2ζ + σ2ϵk

)︁ (︁
exp(σ2ϵk)− 1

)︁
(21)

In his approach van der Linden (2011a, 2011b) also makes use of the following reparam-

eterization, factoring out speed level ζ8:

qk = exp(λk +
σ2ϵk
2

) (22)

8For a more intuitive implementation and further explanations on the approach of van der Linden (2011a,
2011b), see Chapter 4.
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rk = exp(2λk + σ2ϵk)(exp(σ
2
ϵk
)− 1) (23)

Parameters qk and rk can then be used to formulate quantitative constraints in the ATA

framework. Using target value Tq (e.g., from an existing test form) and allowed deviation δq

gives:

j∑︂
k=1

qkfxkf <= Tq + δq (24)

j∑︂
k=1

qkfxkf >= Tq + δq (25)

The same applies for the constraints of rk:

j∑︂
k=1

rkfxkf <= Tr + δr (26)

j∑︂
k=1

rkfxkf >= Tr + δr (27)

Subsequently, van der Linden and Xiong (2013) extended his proposed approach for fixed-

linear form testing to the shadow-test approach in the CAT framework. A potential appli-

cation to MST seems straightforward. However, only a few studies have built on the ideas

of or critically investigated the approach by van der Linden (2011b) so far. Finkelman et al.

(2020) use the approach by van der Linden (2011b) to apply it to the CDM framework.

Huang (2019) applies the approach to CDM-CAT. Veldkamp et al. (2017) focus on using the

3PLN model to constrain mean expected response time via ATA in the mixture modeling

framework. Mixture modeling is frequently applied in response time modeling, as test-takers

often quantitatively differ in their working speed, both between (some test-takers give their

full effort, some only rapid guess) and within test-takers (some test-takers may adjust their

working speed at the end of the test due to strict time-limits; Fox & Marianti, 2016).

As stated above, controlling the speededness of test forms during test assembly is one

of the applications in which the 2PLN model has frequently been used without questioning

the rather unconventional assumption of the 2PLN model of equal factor loadings (i.e., equal

speed sensitivities) of items. It is both unclear (a) if using the restricted 2PLN model can be

justified even if it does not hold in empirical applications and (b) how the 3PLN model could

be used instead of the 2PLN model in test assembly. Furthermore, van der Linden (2011a,
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2011b) focuses in his work on controlling the speededness on the level of test forms. Unfortu-

nately, there are scenarios where such an approach is not sufficient, such as assessments that

use parallel test forms with different item orderings under speededness conditions.

1.7 Parallel Test Forms and Differential Effects of Speededness

In high-stakes tests, it is common practice to use multiple, parallel test forms to increase test

security (Bernardi et al., 2008; Chirumamilla et al., 2020; Smith et al., 2004). Based on the

arguments presented so far, it is obvious that such test forms should be parallel regarding

speededness to prevent test forms from being differentially speeded and therefore unfair.

However, an argument can be made that it is not sufficient to control speededness on the test

form level to guarantee fair test forms.

It is a common assumption when statistically modeling test speededness that speededness

does not affect all parts of a test equally. Instead, it is assumed that later parts of the test

are disproportionately stronger affected than early parts of the test. Practically, this means

that test-takers are expected to start working with a slower than optimal working speed so

they have to speed up at a later point in the test or not reach the end of the test (Mollenkopf,

1950). This assumption is frequently made and tested in mixture-modeling approaches which,

for instance, model a switch in response behavior from solution to rapid guessing behavior

(e.g., Goegebeur et al., 2008; Schnipke & Scrams, 1997; Yamamoto, 1995). Furthermore,

in the literature, speededness is frequently regarded as a potential source of conditional

dependencies. In this line of research, speededness is assumed to lead to local stochastic

dependencies between items at the end of the test due to test-takers running out of time

(e.g., Douglas et al., 1998; Yen, 1993).

Therefore, it can be assumed that item order and the speededness of a test administration

can interact. If a test-taker runs out of time on five easy items at the end of the test, this

will have a different effect compared to the test-taker running out of time on three difficult

(and more time intensive) items instead. Already in the 1960s, researchers voiced their

concerns that the effects of speededness may depend on the characteristics of items placed

at the end of a test. Therefore, Sax and Cromack (1966) argue that test designers should

order items in ascending order of difficulty. Similar concerns are raised by Leary and Dorans

(1985) and Lawrence (1993). Oshima (1994) investigated the effect of running out of time

at the end of a test on item and person parameter estimation. For this, he also included

various item orders (random, easy-to-hard) and found substantial effects of speededness on
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accuracy of parameter estimation. However, Oshima focused primarily on item parameter

estimation and not so much on bias in person parameter estimation. This thesis argues that

the impact on person parameter estimation could be much more impactful and substantial.

The issue of differential effects of speededness due to different item orderings should therefore

be investigated to assess whether it is indeed a major concern for the fairness of high-stakes

tests.

1.8 Aims and Scope of the Present Work

It is apparent that controlling speededness when assembling test forms is crucial for the design

of valid and fair assessments. To this day, a substantial number of studies on how to determine

the degree of speededness of a test has been published (Cintron, 2021). However, there is little

research on the topic of preemptively controlling the degree of speededness of an assessment.

While van der Linden (2011a, 2011b) presents promising approaches for doing so, this work

has important limitations. Van der Linden’s approach focuses on using the 2PLN model,

which makes a restrictive assumption regarding the speed sensitivity of items, as described

above. Furthermore, even if test forms are perfectly controlled regarding speededness, test

speededness can still interact with item order when multiple test forms are used. The goal

of this thesis is to pinpoint weaknesses in the existing approaches for controlling speededness

and to expand them beyond their limitations. Finally, even if approaches exist, this does not

mean that they are applicable for assessment practitioners with limited technical experience

and time resources. Therefore, this thesis explicitly aims at providing software as well as

software tutorials for assessment practitioners enabling the implementation of the suggested

approaches and procedures. An overview of the content of the present thesis can be seen in

Figure 5. Chapters 2, 5, and 6, focus on laying the foundation for controlling speededness,

namely response time modeling (Chapters 2 & 5) and automated test assembly (Chapter

6). Chapters 2 and 3 deal with controlling speededness and Chapter 4 deals with potential

consequences of speededness on the fairness of assessments.

More precisely, Chapter 2 focuses on response time modeling and the differences between

the 2PLN and the 3PLN model. In the literature, there is some confusion around the pa-

rameterization of the lognormal response time model. One goal of the Chapter is to provide

detailed explanations on the conceptual meaning of the different parameters of the model, fo-

cusing on speed sensitivity ϕ and residual variance σ2ϵ . Another goal is to investigate how the

2PLN and 3PLN model perform in empirical situations. Finally, the main aim of the Chapter
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Figure 5: Overview of the Conducted Research.

is to investigate if using the 2PLN model even though the 3PLN model were appropriate can

impair the fairness of multiple test forms in the context of high-stakes testing. Chapter 3

builds on the ideas of Chapter 2 and investigates how the ATA framework of van der Linden

(2011b), which uses the 2PLN model, can be generalized to the 3PLN model. Furthermore,

the goal is to provide hands-on software solutions for practitioners who want to control the

speededness of assessments in practice. Chapter 4 shifts the focus to the consequences of

speededness, focusing on high-stakes tests in higher-education, such as university exams, in

which multiple test forms with identical items but varied item orders are used. The Chapter

illustrates that, if a test is speeded, varying item orders can have a substantial impact on

test scores, even if the different test forms are otherwise completely identical. Furthermore,

this Chapter seeks to give hands-on advice on how such effects can be mitigated in practical

assessment situations.

Implementation of joint response time models in standard statistical software is currently

sparse and challenging but can be essential for understanding the speed-ability relationship.

Therefore, Chapter 5 provides an in-depth guide on how various response-time modeling

approaches within the flexible, hierarchical framework of van der Linden (2007) can be im-

plemented in the general purpose Bayesian estimation software Stan (Carpenter et al., 2017).

Chapter 6, in contrast, focuses on the implementation of ATA methods in the statistical

programming environment R. While extensive theoretical explanations on ATA (e.g., van der
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Linden, 2005) and a small tutorial on ATA using lpSolve (Diao & van der Linden, 2011) ex-

ist, it is still very cumbersome for researchers to implement ATA in practice. The R package

eatATA (Becker, Debeer, Sachse, & Weirich, 2021) aims at closing this gap, by providing an

accessible user interface for general ATA methods. In Chapter 6, the focus is on introducing

the eatATA package and providing guidance on how to use it for general ATA purposes.

Chapter 7 provides a summary of the presented research findings. Important limitations of

the findings are discussed and an outlook on future research topics is given.
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Abstract: In high-stakes testing, often multiple test forms are used and a common time

limit is enforced. Test fairness requires that ability estimates must not depend on the admin-

istration of a specific test form. Such a requirement may be violated if speededness differs

between test forms. We investigated the impact of not taking speed sensitivity into account

on the comparability of test forms regarding speededness and ability estimation. We com-

pared the lognormal measurement model for response times by van der Linden (2006) with

its extension by Klein Entink et al. (2009), which includes a speed sensitivity parameter. An

empirical data example was used to show that the extended model can fit the data better

than the model without speed sensitivity parameters. A simulation was conducted, which

showed that test forms with different average speed sensitivity yielded substantial different

ability estimates for slow test-takers, especially for test-takers with high ability. We therefore

recommend the use of the extended lognormal model for response times for the calibration

of item pools in high-stakes testing situations. Limitations to the proposed approach and

further research questions are discussed.

35

https://doi.org/10.1177/01466216211008530
https://doi.org/10.1177/01466216211008530
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1 Theoretical Background

In high-stakes assessments like college administration tests (e.g. SAT; College Board (2015))

or language proficiency tests (e.g. TOEFL; Educational Testing Service (2020)), important

consequences result from test scores, such as admission to university or other educational

programs. The high-stakes connected to the test outcome have important implications for

the design and analysis of the respective tests. First, in order to increase test security, often

multiple parallel test forms are used. This prevents cheating during testing sessions with

multiple test-takers and sharing knowledge about the test by former test-takers (Luecht &

Sireci, 2011). Second, for reasons of fairness, testing conditions are standardized across test-

takers and test occasions. For instance, the time limit for the test is equal regardless of the

test form. Third, due to the high-stakes, test-takers are often assumed to be highly motivated.

Therefore, missing responses are commonly considered informative, that is, they are scored as

incorrect responses. This scoring rule is communicated to test-takers, to prevent test-takers

from strategically not responding to items they feel unable to provide a correct response to.

Ignoring missing values as a scoring rule could incentivize test-takers to omit these items and

thereby lead to biased and unfair ability estimates.

When multiple tests forms are used, they are often required to be parallel, which in the

strict sense means that for every test taker, the test forms have the same true score and the

same error variance (Lord & Novick, 1968, p. 48). Within an IRT framework where maximum

likelihood is used to estimate ability, the expected ability estimate E(θ̂) as well as the expected

standard error E(ˆ︃SEθ) for all test-takers should be independent of the administered test

form z, which corresponds to so-called weak parallelism (Samejima, 1977). When missing

responses are scored as incorrect, differences in the speededness of the test forms can violate

this requirement9. Imagine one test taker, working at a specific speed, and a test with two

test forms A and B that only differ in their expected testing time for the specific test taker.

The time limit for the test administration is 60 minutes and the expected total response

time of the test taker on test form A is 60 minutes but 70 minutes on test form B. When

confronted with test form B, the test taker has to choose from three strategies:

a) Work with the identical speed as on test form A and not reach the end of the test,

b) work with the identical speed as on test form A and omit items, or

c) work with increased speed and respond to all items in time.

9given that ability and speed are distinct constructs, which appears to be a reasonable assumption (e.g.,
van der Linden, 2009a).
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Missing responses resulting from (a) and (b) are scored as incorrect. Working with increased

speed (c) usually leads to decreased accuracy (cf. the within-person speed-accuracy trade-off;

Goldhammer, 2015). Hence, all strategies will result in a lower expected ability estimate on

test form B compared to test form A. Combinations of the three strategies are also plausible

but will have similar consequences on the ability estimate.

The example illustrates that the speededness of a test is an interaction of the time intensity

of its items, the time limit set on the test and the exerted working speed of the test taker

(van der Linden, 2011b). As the speed level usually varies between persons, the degree of

speededness of a test can also be expected to vary between persons. A fast and proficient test

taker will score higher on a test with a time limit than an equally proficient but slower test

taker that has to engage in one of the above described strategies to deal with the insufficient

time available. Consequently, however, the measured latent construct is no longer a pure

ability measure, but a composite measure of speed and ability. Whether this is seen as a

conceptual property of the test or a byproduct of the testing conditions differs. In this paper

we make no assumptions on the nature of speed differences between persons and to which

degree they should affect ability measurement in high-stakes testing10. Instead, we focus on

how to hold the level of speededness constant across all test forms within each individual test

taker.

In the following section, we briefly outline the typical test assembly process and analysis

that is commonly performed to obtain individual ability estimates in high-stakes assessments.

Based on this, we describe the state-of-the-art approach to prevent differentially speeded test

forms, which uses latent response time modeling. We explain an important shortcoming of

this model and discuss a common model extension that mitigates this shortcoming.

2.1.1 Assessment Framework

Test Assembly. The common process of creating multiple parallel test forms contains of

the following steps (College Board, 2015; van der Linden, 2005): (1) developing items, (2)

using items on a piloting sample (Piloting) (3) item parameter estimation (Calibration), (4)

assembly of items from an item pool to parallel test forms (Test Assembly). Criteria for

the assembly of tests, besides test speededness, include the test information function, com-

parability of content, and similar distribution of item types (van der Linden, 2005). Due

to the emergence of computer administered testing, balancing speededness has become sub-

10For a discussion of this issue see, for example, the work of Tijmstra and Bolsinova (2018).
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stantially easier. In this paper we assume that response times are available from a computer

administered piloting study.

Ability Estimation. For the estimation of latent abilities an often-used choice is the 2PL

model. As already described, we assume that missing responses are scored as incorrect.

Throughout this paper, we adopt the notation of Fox (2010), denoting items as k = 1, ..., j

and persons as i = 1, ...., n, with correct responses denoted as yik = 1. In the 2PL model, the

probability to solve an item k correctly can be denoted as

P (yik = 1|θi, ak, bk) =
exp(akθi − bk)

1 + exp(akθi − bk)
. (28)

2.1.2 Balancing Speededness

Several strategies have been proposed to balance speededness across the test forms of a test

administration, for example using observed response times from a piloting study (e.g., van

der Linden, 2005). In the following section, we discuss the current state-of-the-art approach,

which uses a latent measurement model for response times.

Lognormal Measurement Model. Recently, van der Linden (2011b) proposed the use

of a lognormal latent measurement model for response times (van der Linden, 2006) for bal-

ancing speededness across test forms. The model assumes responses times to be lognormally

distributed and parameterizes these lognormal response times lnRTik as

lnRTik = λk − ζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (29)

λk represents the time intensity of a specific item, while ζi represents the average speed

with which a person works (person speed parameter). In addition, an item-specific residual

variance σ2ϵk is estimated. As the model is parameterized with two item specific parameters,

we refer to it as the two-parameter lognormal (2PLN) model. In his paper, van der Linden

(2011a) proposed controlling the expected testing time, conditionally on the speed parameter,

according to the 2PLN model. He showed that this approach performed better than using

observed response times to balance speededness across test forms (van der Linden, 2011b),

as it for example also controls for differing variances in response times between items.

Speed Discrimination. According to the 2PLN model, items can have different inter-

cept parameters λk and different residual variances σ2ϵk . Furthermore, van der Linden (2006)
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introduced the inverse of the residual variance as the discrimination parameter αk:

αk =
1

σ2ϵk
. (30)

αk thereby represents the precision of the response time distribution (Molenaar, Tuer-

linckx, & van der Maas, 2015a). In this manuscript, however, to avoid confusion, we will only

refer to the residual variance, and not to its inverse. Compared to models from confirmatory

factor analysis, the 2PLN model resembles a tau-equivalent measurement model (Brown,

2006, pp. 236–252) for log response times. This means the model lacks a slope parameter and

therefore, speaking in terms of more generalized models, assumes that the slope parameter is

equal across all items or indicators. This equals the assumption that items with equal resid-

ual variances correlate all equally strong with the measured latent construct. Conceptually

speaking for response time modeling, this means that the 2PLN model assumes that items

do not differ in their sensitivity to speed differences across persons.

In this paper, however, we will argue that items can differ in the extent to which they are

sensitive to speed differences, and that this variability across items needs to be taken into

account when assembling test forms that should have equal speededness for each test taker.

In the next section, we will discuss an extension of the lognormal measurement model for

response times which allows differences in speed sensitivity across items.

Extension of the Lognormal Measurement Model. Klein Entink, Fox, and van der

Linden (2009) proposed an extension of the 2PLN model which we call the three-parameter

lognormal (3PLN) model. It introduces a slope parameter ϕk. This measurement model re-

sembles a congeneric measurement model for log-transformed response times in confirmatory

factor analysis (Brown, 2006, pp. 236–252):

lnRTik = λk − ϕkζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (31)

Conceptually, the parameter ϕk allows for individual items being more sensitive to speed

differences between test-takers than other items. To avoid confusion with the αk parameter

that van der Linden (2006) labels as a discrimination parameter in the 2PLN model, we will

use the term speed sensitivity to refer to ϕk throughout this paper.

Difference between the 2PLN and the 3PLN model. There has been some con-

fusion around the 2PLN and the 3PLN model and the meaning of their respective item
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parameters in the literature11. It is important to note that the 2PLN and the 3PLN models

are not equivalent formulations of the same model. This can be illustrated by comparing the

model implicit correlations between the response times of two items k and l of the 2PLN and

the 3PLN model. For the 2PLN model this correlation is defined as

ρRTk,RTl
=

[︂
exp

(︂
σ2ζ

)︂
− 1
]︂

√︃(︂
exp(σ2ϵk + σ2ζ )− 1

)︂(︂
exp(σ2ϵl + σ2ζ )− 1

)︂ . (32)

In contrast, for the 3PLN model this correlation is defined as

ρRTk,RTl
=

[︂
exp

(︂
ϕkϕlσ

2
ζ

)︂
− 1
]︂

√︃(︂
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︂(︂
exp(σ2ϵl + ϕ2l σ

2
ζ )− 1

)︂ . (33)

For the derivation of both formulas see Appendix A.1. For a similar remark on the model

implicit covariances of the response times of two items, see Fox and Marianti (2016).

To illustrate the difference between the residual variance and the speed sensitivity pa-

rameter, Figure 6 shows response time distributions conditional on two different speed levels

(ζ1 = 1, ζ2 = −1) for four different items. The left side of the figure shows the distributions

for items with a high residual variance σ2ϵk = 1.00, the right side for items with a low residual

variance, σ2ϵk = 0.33. Furthermore, the upper half of the figure depicts the distributions for

items with low speed sensitivity, ϕk = 0.3, the lower half items with high speed sensitivity,

ϕk = 1. The graphs illustrate how the residual variance controls the broadness of the distri-

butions (and is strongly connected to the concept of reliability), while ϕk controls how far the

medians of the response time distributions differ between persons with differing speed levels.

An identical figure for the log transformed response times can be seen in Appendix A.2.

As an illustration of the conceptual meaning of the speed sensitivity of items, consider

the following two hypothetical math items with equal time intensity (e.g., λ1 = λ2 = 4).

The first item embeds a simple task in a long text; the second item has no text to read, but

requires a lengthy calculation. It seems plausible to assume that the second item is more

sensitive to working speed specific to math items (e.g., ϕ1 = 0.7), because the calculation

is longer. In contrast, the first item could be less sensitive to mathematical working speed,

because the response time mostly depends on the reading speed (ϕ2 = 0.3) . As reading and

mathematical literacy are assumed to be distinct constructs, this is plausibly also the case for

11This may be caused by the labeling of the inverse of the residual variance as a discrimination parameter,
which is usually a term used for slope parameters. For example, Bertling and Weeks (2018) cite van der Linden
(2006) but introduce the model with αk as a slope parameter instead of the inverse of the residual variance.
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Figure 6: Conditional Response Time Distributions for a Fast Speed Level with ζ1 = 1
(Black Line) and a Slow Speed Level with ζ2 = −1 (Grey Line) on Four Different Items, all
with λk = 4. Dashed Lines Indicate the Medians of the Corresponding Distributions.
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reading and mathematical speed. The consequences for the Response Time Characteristic

Curve, as also described in Fox (2010), can be seen in Appendix A.3. These two items would

not lead to differences in response times for medium speed levels (ζk = 0) but to substantial

differences for slow (ζk = -1) and fast test-takers (ζk = 1), with differences increasing with

increasing deviation from ζk = 0. For a test-taker with ζi = −1 the expected response times

of the two example items are 73.70 and 109.95 seconds. As time pressure usually only occurs

for slow participants, generally only differences in response times for slow but not for fast

participants will be relevant for the estimation of ability in educational assessments.

Hierarchical Framework. For model estimation in the context of test assembly, van der

Linden (2011a) proposed embedding the lognormal latent measurement model for response

times in a hierarchical framework (van der Linden, 2007). The resulting model assumes two

latent dimensions, ability and speed, with common item and person parameter distributions.

Conditional on these joint distributions, the model assumes independently distributed re-

sponses and response times. The framework benefits the estimation of the two dimensions,

especially if the two dimensions are correlated (van der Linden et al., 2010). The joint person

parameter distribution with either the 2PLN or the 3PLN model is a multivariate normal
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distribution with

(θi, ζi) ∼ N (µP ,ΣP ). (34)

The joint item parameter distribution with the 2PLN model together with a 2PL model

for ability is also a multivariate normal distribution12 with

(ak, bk, λk) ∼ N (µI ,ΣI). (35)

The joint item parameter distribution with the 3PLN model together with a 2PL model

for ability also includes ϕk:

(ak, bk, λk, ϕk) ∼ N (µI ,ΣI). (36)

2.1.3 Research Questions

The questions arise, whether

� the hierarchical framework with the 3PLN model as a measurement model for response

times fits empirical response time data better than the hierarchical framework with the

2PLN model and, if this is the case,

� what the consequences would be for ability estimation in high-stakes assessments.

To our knowledge, hierarchical frameworks with the 2PLN model and the 3PLN model have

not yet been compared using data from educational competence tests. Moreover, there have

only been a few comparisons using empirical data at all, so far focusing on intelligence tests

(Goldhammer & Klein Entink, 2011), complex problem solving tasks (Scherer et al., 2015),

and mental rotation tasks (Debelak et al., 2014). In all three studies the framework with the

3PLN model showed better fit than the framework with the 2PLN model according to the DIC

(Spiegelhalter et al., 2002). In addition, the hierarchical framework with the 3PLN model has

been applied to non-educational vocational credentialing high-stakes data (Fox & Marianti,

2017) and low-stakes data of chess tasks (Fox & Marianti, 2016). In both cases substantial

variance in the speed sensitivity parameter was found across the items. The aforementioned

studies provide general evidence for the relevance of the proposed model extension. However,

12Note that van der Linden (2006) also includes the inverse of the residual variance σ2
ϵk in the joint item

parameter distribution. For better comparability with the 3PLN model in the hierarchical framework we
slightly modify the joint item parameter distribution by assuming a univariate distributed item specific residual
variance, independent from the distribution of the other item parameters (see, for example, also Pohl et al.,
2019).
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they do not focus on educational assessment data. Therefore, we conducted an empirical data

analysis, in which we applied and compared the hierarchical framework with the 2PLN model

and the 3PLN model to data from an educational assessment, to investigate whether items

differ in their speed sensitivity. This analysis is discussed in the “Empirical Data Analysis”

section below.

If the appropriateness of the model extension indeed holds in educational competence

testing and items vary in their speed sensitivity, those differences may also accumulate over

test forms of educational high-stakes assessments. This could result in test forms that, despite

having equal time intensities and similar average observed response times, differ in their

sensitivity to speed differences and therefore in their conditional distributions of expected

testing times. Especially the substantial differences in expected response times for slow

test-takers would be important, as they could lead to differences in ability estimates across

test forms. In the section “Simulation Study”, we investigate and describe the possible

consequences of unbalanced test forms on ability estimation using simulated data from test

forms with item properties as found in the empirical example.

2.2 Empirical Data Analysis

2.2.1 Data Description

For the empirical data analysis, we used data from the 2015 Programme of International Stu-

dent Assessment (PISA, OECD, 2016b), for which responses and response times on item level

are publicly available. The competences measured by PISA resemble competences that are

often assessed in high-stakes educational assessments. Note that it is not uncommon to cali-

brate items for a high-stakes context based on data from low-stakes conditions, when piloting

in high-stakes conditions is cumbersome or impossible (e.g. College Board, 2015; Educational

Testing Service, 2020). In those situations, it is implicitly assumed that items function simi-

larly in low- and high-stakes conditions. In that sense, the results of this empirical low-stakes

data analysis also have implications for high-stakes assessments. The Canadian subsample

was chosen because it is the largest among the 72 countries participating in PISA.

To avoid substantial numbers of missing responses by design, we analyzed test booklets

separately and included only the test-takers who had worked on the respective booklet. In

PISA 2015, every test form consisted of four booklets and booklets were assembled to a

whole of 66 different test forms in the computer administered version. Returning to items

within a booklet was only possible within the items sharing a common stimulus and otherwise
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prohibited. Response times were accumulated across multiple visits of the same item (OECD,

2016b, pp. 45–47). We analyzed all math booklets used in the assessment (named “M01”

- “M05” and “M06ab”), which appeared each in overall eight different test forms, at every

position twice. For simplicity, we dichotomized all polytomous items, scoring fully correct

responses as correct and partially incorrect responses as incorrect. This resulted in data sets

of 10 to 12 dichotomous items and 1863 to 1929 persons.

2.2.2 Methods

The software JAGS (Plummer, 2017) together with the R package rjags (Plummer, 2016)

was used for model estimation. We used the hierarchical framework with both the 2PLN

and the 3PLN model to analyze the data set. In the actual analysis of the PISA data

set, omitted responses are scored incorrect and number of not reached responses is used as a

manifest variable in the background model for the plausible value generation (OECD, 2016b).

Because the aim of this empirical example is the unbiased estimation of item parameters (as

in an actual pilot study for a high-stakes assessment), all missing responses were treated as

if the items were not administered to the corresponding persons, which is the recommended

practice for estimating item parameters (Finch, 2008).

Model estimation. Priors were uninformative and chosen in correspondence to Fox (2010)

and Pohl et al. (2019). An inverse Wishart distribution was used as a hyperprior for the

distribution of the three (bk, ak, λk) or respectively four item parameters (bk, ak, λk, ϕk).

Further information on the prior distributions can be seen in Appendix A.4. The DIC was

calculated and compared between the two models to assess model fit (Spiegelhalter et al.,

2002). The posterior distributions of the speed sensitivity parameters and their mean and

standard deviation were investigated.

2.2.3 Results

Inspections of the MCMC chains were conducted using the R packages coda (Plummer et al.,

2006) and rjags. Trace plots indicate good convergence for all parameters in both models in

all data sets. The point estimates of the univariate potential scale reduction factors (Gelman

& Rubin, 1992) for all parameters in all booklets were below 1.03 (95% upper confidence

interval limits at or below 1.10) and below 1.05 (95% upper confidence interval limits at

or below 1.19), for the framework with respectively the 2PLN and the 3PLN model. This

indicates satisfactory convergence (Gelman & Shirley, 2011). The correlation of the person
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ability and person speed parameter ranged between rθiζi = −.62 in booklet “M01” and

rθiζi = −.49 in booklet “M02”, indicating a medium negative relationship between ability

and speed. Similar results have been reported and are often explained by the fact that test-

takers need more time if they actually solve an item (Debelak et al., 2014; Goldhammer &

Klein Entink, 2011; Scherer et al., 2015). If test-takers are not able to solve an item, they

may guess and move on to the next item.

Regarding model fit, DIC indicated better fit with the 3PLN model as a measurement

model for all booklets (Appendix A.5). Table 1 shows the statistics for the resulting speed

sensitivities for all booklets. The mean of speed sensitivitiesMϕk
within booklets ranged from

to 0.37 to 0.47, while SDϕk
ranged from 0.32 to 0.36. The 95% Highest Posterior Density

(HPD) interval for the standard deviation SD(ϕk) excluded 0 for all booklets. These findings

provide evidence that there was substantial variation in the speed sensitivity across items in

the empirical data.

Table 1: Descriptive Statistics of Item Speed Sensitivity within all Math Booklets.

Booklet M(ϕ) SD(ϕ) 95 % HPD Min(ϕ) Max(ϕ) rϕ,b rϕ,a rϕ,λ
M01 0.40 0.34 [0.20, 0.47] 0.15 0.75 0.28 -0.09 0.21
M02 0.37 0.36 [0.21, 0.52] 0.14 0.57 0.19 0.12 0.16
M03 0.39 0.33 [0.20, 0.46] 0.29 0.53 0.13 0.02 0.08
M04 0.42 0.34 [0.20, 0.46] 0.18 0.67 0.27 0.28 0.16
M05 0.44 0.32 [0.19, 0.44] 0.25 0.66 0.21 -0.01 0.18
M06ab 0.47 0.35 [0.21, 0.48] 0.19 0.69 0.30 0.26 0.19

Note: Descriptive statistics for speed sensitivity, including its mean M(ϕk), stan-
dard deviation SD(ϕk), the HPD interval for the standard deviation SD(ϕk), Mini-
mum (Min(ϕk) and Maximum (Max(ϕk), and correlations of speed sensitivity with
the other item parameters.

We also investigated the correlations of the speed sensitivities with other item parame-

ters. Table 1 displays the means of the posterior distributions of these correlations. Speed

sensitivity correlated low but consistently over all booklets with the time intensity parameter

λk and difficulty parameter bk. There was more variation across booklets in the correlation

with the discrimination parameter ak, but correlations were still small or close to zero. The

small correlations imply that the speed sensitivity parameter is largely independent from the

other item parameters and would not be indirectly balanced if the other item parameters

were balanced between test forms.
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2.3 Simulation Study

2.3.1 Design

The performed empirical data analyses illustrate that it is plausible to assume differences

between items regarding their speed sensitivity. Therefore, the question arises, how the

fairness of test forms is affected if this speed sensitivity is not controlled for between test forms.

Based on the findings and parameters distributions in the empirical analyses, a simulation

study was conducted to investigate how differences in speed sensitivity across test forms

affect ability estimates. The simulation study reflects the operational phase of a high-stakes

assessments in which item properties are known from prior piloting and the sole interest

lies in person parameter estimation. We created three test forms, each with 30 items. The

item parameters for the first test form were drawn from a multivariate normal distribution.

Means, variances and covariances of the item parameters were set to be in accordance with

the results obtained from the empirical data analysis (see Appendix A.6). ϕk and ak were

truncated at 0. If an item parameter draw included any ϕk and ak smaller than 0, all item

parameters were drawn again for this replication. The residual variance of the log response

times was drawn from a univariate normal distribution with σ2ϵk ∼ N (µ = 0.2, σ2 = 0.1), also

truncated at 0. The first test form, with µ(ϕk) = 0.3 is referred to as the low speed sensitivity

test form. A second and third test form were created with identical item parameters but

shifts in their average speed sensitivity, resulting in a medium speed sensitivity test form

with µ(ϕk) = 0.4 and a high speed sensitivity test form with µ(ϕk) = 0.7. The difference in

speed sensitivity between the first and second test form reflects a common difference between

booklets, which can also be found in the empirical example. Therefore, the comparison

between these booklets can be used to determine expected bias even if only a few test forms

are assembled. The difference between the first and third test form reflects a more extreme

but not implausible case13. This condition was chosen to illustrate the theoretically possible

impact of differing speed sensitivities and potential bias if a large number of test forms is

assembled. Person parameters were chosen to enable conclusions about the effect of the two

differing test forms on all possible combinations of speed and ability. Therefore, we sampled

500 ability parameters from θi ∼ N (0, 1) and combined these with four different levels of

speed, ζi = [−1;−0.5; 0.5; 1]. This resulted in a complete sample of n = 2000 test-takers

across the four speed subgroups. We simulated responses and response times of the complete

13In the empirical example, SD(ϕk) within booklets was around 0.35 and the range across booklets for ϕk

was 0.6.

46



sample working on both test forms according to the hierarchical framework with the 3PLN

and the 2PL model. We set the time limit to 65 minutes (3900 seconds) to introduce a

reasonable amount of not reached items into the simulation. Overall, 500 replications were

conducted.

2.3.2 Methods

Person abilities were estimated according to the 2PL model, with known item parameters

using the weighted likelihood estimator (WLE) (Warm, 1989) via the R package TAM (Ro-

bitzsch et al., 2017). Not reached items were scored as incorrect. This approach reflects a

high-stakes assessment, in which item parameters are obtained from a previously conducted

calibration study and ability estimation is the focus (without specifically considering speed

in the estimation). We compared numbers of not reached items and estimated ability for the

four different speed groups between the three test forms.

2.3.3 Results

As can be predicted from the response time measurement model in Equation 31 and the

response time characteristic curves described in the introduction, differences in cumulative

response times between the three test forms were most severe for the fastest and slowest

participants (Table 2)14. The fastest subgroup was much faster than the time limit of 3900

seconds, with means of 1310.08 seconds and 1953.53 seconds for the high and the low speed

sensitivity test forms. In contrast, the slowest subgroup working on the high speed sensitivity

test form was, on average, substantially slower than the time limit, with a mean of 5419.48

seconds. In the faster subgroups, the differences in testing time did not result in different

numbers of not reached items, because for all test forms the testing times were well below the

time limit. For the slowest participants, however, the medium and high speed sensitivity test

form led to substantially more not reached items than the low speed sensitivity test form.

Detailed numbers for items not reached on average can be seen in Table 3 and are depicted

in Appendix A.7 for a single replication.

These differences in number of not reached items also resulted in differences in ability

estimates, mainly for the slowest subgroup. For them, the average difference in ability es-

timation between the test forms with low and medium speed sensitivity was 0.09 and 0.51

between the test forms with low and high speed sensitivity. Higher average speed sensitivity

14Table 2 contains mean statistics across all replications, while standard deviation for the identical statistics
across replications can be found in Appendix A.8
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Table 2: Test Statistics per Test Form and per Speed Group, Averaged Across All Replica-
tions.

Test Form ζi M(RT ) SD(RT ) M(mis) SD(mis) cor(θ̂, θ) RMSE M(∆θ)

low ϕ slowest 3636.44 371.73 0.02 0.04 0.90 0.47 -0.04
low ϕ slow 3102.47 313.97 0.00 0.01 0.91 0.45 -0.00
low ϕ fast 2275.08 228.36 0.00 0.00 0.91 0.45 -0.00
low ϕ fastest 1953.53 195.04 0.00 0.00 0.91 0.45 -0.00
medium ϕ slowest 4019.63 410.14 0.06 0.07 0.89 0.51 -0.12
medium ϕ slow 3261.12 329.52 0.00 0.02 0.91 0.46 -0.01
medium ϕ fast 2163.99 217.06 0.00 0.00 0.91 0.45 -0.00
medium ϕ fastest 1767.68 176.80 0.00 0.00 0.91 0.45 -0.00
high ϕ slowest 5424.72 553.29 0.29 0.08 0.82 0.83 -0.55
high ϕ slow 3788.69 382.56 0.03 0.06 0.90 0.48 -0.06
high ϕ fast 1862.25 186.12 0.00 0.00 0.91 0.45 -0.00
high ϕ fastest 1310.08 130.71 0.00 0.00 0.91 0.45 -0.00

Note: Descriptive statistics are depicted for mean cumulative response times M(RT ) and the
corresponding standard deviation SD(RT ), mean proportion of missings M(mis), the correspond-
ing standard deviation SD(mis), correlation between true and estimated ability cor(θ, θ), root
mean square error (RMSE) and average difference between true and estimated ability M(∆θ)

resulted in substantially lower ability estimates. A difference of 0.51 in the ability logit for

a test taker with a true ability θi = 0 is equal to a drop from the 50th ability percentile to

the 32th ability percentile. However, differences in ability estimation were not homogeneous

within the slowest subgroup. Especially slow participants with high ability had substantially

different ability estimates depending on the test form (see the upper left graph in Figure 7).

Average differences in ability estimation were also calculated for the quantile including only

the 25% most able test-takers, resulting in differences in ability estimation of 0.15 between

the low and medium and 0.78 between the low and high speed sensitive test forms. This

was to be expected, because for slow but high ability test-takers there are many not-reached

items (scored as incorrect) that they could have answered correctly under sufficient time

conditions. This is not the case for slow and low ability test-takers, for which only minor

differences in estimated abilities across the test forms occurred. Furthermore, differences in

speed sensitivities between test forms resulted in higher root mean square errors (RMSE)

and lower correlations between estimated and true ability parameters (see Table 2) for more

speed sensitive test forms.

To conclude, the simulation shows that differences in speed sensitivity between test forms

can lead to substantial differences in ability estimates especially for slow and able test-takers.

This finding is independent from whether speed is seen as a nuisance parameter or part of the

construct to be measured. Furthermore, if speed is seen as a nuisance parameter, the high
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Figure 7: True and Estimated Ability for the Low and High Speed Sensitivity Test Form,
Across the Four Subgroups. Results Shown for a Randomly Selected Single Replication.
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speed sensitivity test forms lead to a more biased and less precise ability measurement. If

speed is seen as a substantial part of the construct to be measured, differences between true

and estimated ability are in fact desirable for slow test-takers, however should be identical

across test forms.

2.4 Discussion

High-stakes assessments often require multiple test forms with equal speededness at the level

of the test taker. So far, the use of average response times and the use of the lognormal

measurement model for response time model by van der Linden (2006) have been proposed

as strategies to control speededness across test forms (van der Linden, 2011b). We compared

the 2PLN model to the extension of the 3PLN model by Klein Entink, Fox, and van der

Linden (2009), which introduces a speed sensitivity parameter into the measurement model.

We investigated which measurement model, embedded in the hierarchical framework by van

der Linden (2007) fits empirical competence data better. Indeed, the 3PLN model showed

better model fit and the estimated speed sensitivity parameters varied substantially across

items. This implies that balancing test forms using either observed response times or the item

parameters from the 2PLN model can lead to unbalanced speed sensitivity across test forms.

Moreover, our simulation study shows that when missing responses are treated as incorrect
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(a standard practice in high-stakes assessments) differences in speed sensitivity between test

forms can lead to severe differences in ability estimation. Especially slow test-takers with a

high ability were affected, because they had increased numbers of not reached items in the

test forms that had higher speed sensitivities.

The issue of differential speed sensitivity can also be illustrated from an alternative per-

spective: As stated before, we assume that high-stakes tests usually are speeded power tests

and therefore that the ability measured in the test is a composite measure of ability and

speed. However, this composition changes between test forms if the test forms differ in their

speed sensitivity. If a test form has a high speed sensitivity and a time limit induces time

pressure for a certain speed level, the proportion of speed in the composite measure can be

considered quite high. If in the same scenario a test form has low speed sensitivity, however,

the proportion of speed in the composite measure for this test form will be rather low. We

argue that the influence of speed on the ability estimation has to be the same across test

forms within each speed level.

2.4.1 Practical Implications

We draw the following conclusions regarding the practice of assembling test forms for ed-

ucational high-stakes assessments: Right now, the use of the hierarchical framework with

the 2PLN model is the state-of-the-art approach when balancing test forms. However, our

findings suggest that only when

� the hierarchical framework with the 2PLN model proves to better fit the data than the

framework with the 3PLN model (e.g., using DIC) or

� the 3PLN model shows low variation in the speed sensitivity parameter across items,

this approach should be considered sufficient. In cases where the framework with the 3PLN

model shows better model fit and items differ in their speed sensitivity, using only the hier-

archical framework with the 2PLN model could lead to unfair testing situations. To be more

precise, the ability estimates and the rank order of test-takers could heavily depend on the

administered test form, especially for slower test-takers. Instead, the hierarchical framework

with the 3PLN model should be used when calibrating the items and not only the average

testing time, but also the sensitivity to speed differences should be balanced across test forms.

Another common alternative for the assembly of fair test forms is the approach of as-

sembling unspeeded test forms. Because in most educational assessments speed is a nuisance
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parameter that is conceptually not part of the construct being measured, this strategy seems

promising. However, our results and results from previous studies (e.g., van der Linden &

Xiong, 2013) indicate that this approach might be unfeasible because there are generally

large differences in the time that test-takers require to respond to all items in an assessment

(see Table 2). Assuring that even the slowest test-takers can work without time pressure

would imply a time limit that is far too generous for fast test-takers and problematic both

from an economical as well as from a motivational perspective. Furthermore, our results have

important implications for determining the speededness of a test: So far, often experimental

methods using different time limits or different numbers of items in the same time limit have

been used (e.g. Bridgeman, Cline, & Hessinger, 2004; Bridgeman, Trapani, & Curley, 2004;

Harik et al., 2018). But while for the majority of the test-takers more generous time limits

might only have a small impact on the demonstrated ability, different time limits can still

substantially affect the slowest part of the population. This effect can only be disentangled

by explicitly modeling speed. If differences in ability estimation for different time limits are

averaged over all test-takers or calculated for different ability levels, the degree of speeded-

ness of the test for slow test-takers could be severely underestimated. Therefore, tests that

have been examined using the aforementioned experimental methods could have been falsely

classified as unspeeded.

2.4.2 Limitations

There are a number of limitations to our study: First, our real data analysis is based on

low-stakes data while implications are mainly relevant for high-stakes assessments. However,

similar analyses on (non-educational) high-stakes data have reported similar findings (Fox &

Marianti, 2017). In addition, it is not uncommon that pilot studies for item pool calibra-

tions are conducted under low-stakes conditions. Furthermore, we do not conclude that the

hierarchical framework with the 3PLN model will always demonstrate better model fit than

the framework with the 2PLN model for item pools of high-stakes assessments. Rather, we

argue that the assumption of equal speed sensitivity across items should be tested, just like

the assumption of equal factor loadings should be tested in confirmatory factor analysis or

structural equation modeling (Brown, 2006).

A second limitation relates to a general limitation of the hierarchical framework, namely

the assumption of stationarity (van der Linden, 2007). The model assumes that given the

common distribution of the person and item parameters, residuals between responses and
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response times are independent. The assumption is for example violated if participants

substantially speed up or slow down during the test. This could happen in high-stakes

assessments with a time limit, if test-takers speed up when they feel they are running out of

time. However, for test assembly purposes only item parameters and their relations across

items are of interest. If position effects are controlled for (similar to controlling for position

effects of ability item parameters estimation; e.g., Gonzalez & Rutkowski, 2010)) speeding

up might only affect the precision of item parameter estimation. Avoiding speeding up seems

easiest, if items were piloted in low-stakes settings.

A third limitation is that our study deals with a specific violation of the assumptions of

the 2PLN model. In the past, assumptions of the hierarchical framework using the 2PLN or

3PLN model for response times have been critically reviewed using empirical data analyses

(Bolsinova & Tijmstra, 2018; Entink et al., 2009; Fox & Marianti, 2016; Ranger & Ortner,

2012b). Criticism includes violations of the assumption of lognormally distributed response

times and the stationarity assumption mentioned above. Although the lognormal distribution

has been the standard for modeling response times in educational assessments, future research

could explore alternatives, possibly also embedded in the hierarchical framework.

2.4.3 Outlook

In the past, automated test assembly procedures (ATA) have been developed to enable the

assembly of multiple test forms from large item pools under various constraints (van der

Linden, 2005). These methods are already frequently used in practice (Luecht & Sireci, 2011).

To enable the use of the 2PLN model in ATA, van der Linden (2011a, 2011b) reparameterized

the model. Future research should investigate how the 3PLN model can be used best in

automated test assembly and if a similar reparameterization approach might be feasible.

The 3PLN model could also be useful to determine the speededness of assessments under

various time constraints for different test taker populations without having to experimentally

investigate all possible combinations. This would especially be valuable for determining

test accommodations for students with disabilities (Lovett, 2010). Furthermore, while the

current paper focuses on fixed-test forms, our findings can also be applied to computerized

adaptive testing or multistage testing. Studies have shown that differential speededness of

test forms is an even greater challenge in these settings (van der Linden & Xiong, 2013).

Investigating, whether the 3PLN model could contribute to the fairness of these assessments,

seems worthwhile as well.
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Abstract: When designing or modifying a test, an important challenge is controlling the

speededness of a test. In 2011, van der Linden (2011a, 2011b) proposed using a lognormal

response time model, more specifically the two-parameter lognormal model, and automated

test assembly (ATA) via mixed integer linear programming to achieve this. However, this

approach has a severe limitation, in that the two-parameter lognormal model lacks a slope

parameter. This means that the model assumes that all items are equally speed sensitive.

From a conceptual perspective, this assumption seems very restrictive. Furthermore, various

other empirical studies and new data analyses performed by us show that this assumption

almost never holds in practice.

To overcome this shortcoming, we bring together the already frequently used three-

parameter lognormal model for response time, which contains a slope parameter, and the

ATA approach for controlling speededness by van der Linden. Using multiple empirically-

based illustrations the proposed extension is illustrated, including complete and documented

R code. Both the original van der Linden approach and our newly proposed approach are

available to practitioners in the freely available R package eatATA.
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3.1 Theoretical Background

The term test speededness refers to test-takers running out of time on a test. There exist a

variety of definitions of the term speededness (for comprehensive overviews, see Cintron, 2021;

Jurich, 2020). In this paper we follow van der Linden (2011b), who defines speededness as

the interaction of the workload of a test, the working speed of a test-taker and the time limit

of a test. If a test is speeded for a test-taker, this means that the test-taker cannot answer

to all presented items or that the test-taker has to increase their working speed, thereby

decreasing their displayed accuracy. The latter process is a well-researched phenomenon

called the speed-accuracy trade-off (e.g., Goldhammer, 2015).

For over 90 years, speededness has now been critically discussed in the psychometric

literature. Already Spearman (1927) noted that to measure ability, tests must be used “[...]

in which ample time is allowed, so that speed has little or no scope.” In so called power

tests, the speed of a test-taker is seen as a nuisance parameter (Goldhammer, 2015; van

der Linden, 2017). In such a context, speededness of a test is seen as a threat to its validity

because test-takers do not have sufficient time to show their true ability (Y. Lu & Sireci, 2007).

Furthermore, speededness can be seen as a major threat to the fairness of assessments, since

research has shown that speededness can affect different subgroups, such as ethnic groups

or gender groups, differently (e.g., Evans & Reilly, 1972; Steinmayr & Spinath, 2019). In

other assessment contexts, the speed of the test-taker might be seen as a substantial part of

the construct being measured, for example in assessments which asses prioritization skills of

test-takers (Kane, 2020) or the efficiency of reading component skills (Goldhammer et al.,

2021). In such instances, the speededness of a test should be deliberately chosen to prevent

construct-underrepresentation or construct-overrepresentation. In his work, van der Linden

(2017) refers to test-taker speed in such assessments as an intentional parameter.

In practice, controlling the speededness of an assessment can be relevant for various rea-

sons (van der Linden, 2011b). For instance, practitioners may want to create a test with a

predetermined level of speededness or try to determine the appropriate testing accommoda-

tions for test-takers with special educational needs. Another common application emerges

through the need for multiple but parallel test forms. In high-stakes tests, such as college

administration tests, multiple forms of the same test are used to prevent copying answers

or sharing test content with future test-takers (College Board, 2015). In low-stakes testing,

such as the Programme of International Student Assessment (PISA, OECD, 2019a), multiple

test forms are used as part of multiple matrix sampling designs to enable the use of large
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item numbers while keeping the workload for individual test-takers manageable (Gonzalez &

Rutkowski, 2010). Often, an important requirement for parallel test forms, regardless of the

specific context, is that all test forms should be equally speeded.

Numerous studies exist which focus on the detection of speededness (for excellent extensive

overviews see, Cintron, 2021; Jurich, 2020) and on how to overcome problematic consequences

of speededness, such as bias in item parameter estimates (e.g., Bolt et al., 2002; Jin & Wang,

2014; Meyer, 2010; Oshima, 1994; Wollack et al., 2003)15. However, to our knowledge there

exists little research that is concerned with how speededness can be controlled in advance

when designing a test. We argue that controlling the speededness of a test beforehand is at

least as important as dealing with the consequences of speededness during the analyses of

an assessment. As already Light et al. (1990) noted: “You can’t fix by analysis what you

bungled by design.” While Light et al. (1990) refer to the design of research studies in their

work, we think that this sentiment is equally true for the design and assembly of tests.

One of the few approaches for controlling speededness during test assembly has been

presented by van der Linden (2011b), who argues that the speededness of a test can be

deliberately set for a specific speed level via changing either the time limit or the workload

of a test. Based on this, he proposes a test design approach using a lognormal response time

model in combination with mixed integer linear programming for automated test assembly.

However, this approach is currently limited to a restricted, two-parameter lognormal response

time model without a slope parameter. The two-parameter lognormal response time model

makes a strong assumption regarding the speed sensitivity of all items, constraining them

to be equal. A straightforward extension of the two-parameter lognormal response time

model, namely the three-parameter lognormal response time model, already exists (Fox et

al., 2007; Klein Entink, Fox, & van der Linden, 2009; Ranger & Ortner, 2012a). Indeed,

empirical evidence suggests that the assumption of the two-parameter lognormal model that

all items are equally speed sensitive seems to be unrealistic in practice (Becker, Debeer,

Weirich, & Goldhammer, 2021). Furthermore, Becker, Debeer, Weirich, and Goldhammer

(2021) have shown that ignoring differing speed sensitivities in test assembly can lead to

severe fairness issues. Based on their findings, Becker, Debeer, Weirich, and Goldhammer

(2021, p. 420) suggest: “Future research should investigate how the 3PLN model can be used

best in automated test assembly and whether a similar reparameterization approach might be

feasible.” Therefore, in this paper, we generalize the approach of van der Linden (2011b) for

15Note that there is a natural overlap between these two aspects, i.e. approaches correcting for speededness
have to detect if and for whom an assessment is speeded.
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controlling speededness in automated test assembly for the well-established three-parameter

lognormal response time model.

In the remainder of this paper, we first give a brief overview on automated test assembly

via mixed integer linear programming, followed by a short summary of the approach by van

der Linden (2011b). We then discuss the limitation of the two-parameter lognormal response

time model. Based on this, we present our new contribution, how the approach of van der

Linden (2011b) can be generalized to incorporate the three-parameter lognormal response

time model within ATA to control the speededness of a test. The usefulness of our proposed

approach is illustrated using various exemplary use cases based on the illustrative examples

in the work of van der Linden (2011b).

3.2 ATA via MILP

Automated test assembly (ATA) refers to the use of computer algorithms to create test forms

with specific test specifications (van der Linden, 2005). Oftentimes, mixed integer linear pro-

gramming (MILP) is used for this purpose. Detailed explanations on general concepts can be

found in van der Linden (2005), detailed illustrations on how to use MILP for ATA in practice

can, for example, be found in Diao and van der Linden (2011) and Becker, Debeer, Sachse,

and Weirich (2021). The general idea is to translate test specifications into mathematical

constraints. More specifically, linear combinations of item values can be either constrained or

optimized. For instance, the number of items can be constrained, while at the same time the

test information function (TIF; the sum of item information function values) for a specific

ability level is maximized.

Note that all item properties which are used in the constrains have to be known at the

moment of test assembly and are assumed to be stable within the operational administration

of the test. This means that all approaches using response times to control speededness in

ATA assume that response times are available from a pilot study conducted under similar

conditions and with a comparable sample as the operational test.

3.3 van der Linden Approach

Before the work of van der Linden (2011b), in order to constrain the speededness of a test,

typically constraints were formulated with respect to the observed average test time (a linear

combination of the observed average item response times; Cintron, 2021; van der Linden,

2005). However, when constraining the average test time, implicitly speededness is viewed
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as a test property, neglecting that test-takers usually differ in their working speeds when

responding to a test (van der Linden, 2011b). In addition, tests with equal average test times

can still have large differences in the distribution of the test times. Therefore, van der Linden

(2011b) proposed an MILP based approach that goes beyond mere average response times,

consisting of the following steps: (1) assuming and estimating a lognormal response time

model for the item response times (van der Linden, 2006), (2) computing the cumulants

of the lognormal response time distributions (i.e., mean and variance) on item level, (3)

approximating the total test time distribution based on two cumulants of the total test time

distribution, because the sum of the item-wise cumulants are equal to the cumulants of the

total test time distribution, and (4) constraining the sum of these cumulants in the MILP

model. Using this approach, the total test time distribution can be constrained, and as such,

the degree of speededness of a test can explicitly be controlled for different speed levels. In

the following, we will illustrate and discuss the different aspects of this method in detail.

3.3.1 Lognormal Response Time Modeling

In response time modeling, using lognormal distributions and more specifically, using the

lognormal response time model (e.g., Fox et al., 2007; Klein Entink, Fox, & van der Linden,

2009; Ranger & Ortner, 2012a; van der Linden, 2006) is a popular choice (De Boeck & Jeon,

2019). A commonly used measurement model for lognormal response times lnRTik, denoting

items as k = 1, ..., j and persons as i = 1, ...., n, can be written as

lnRTik = λk − ϕkζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (37)

In Equation 37, λk is typically referred to as the item time intensity parameter, ϕk is

referred to as a speed sensitivity parameter, σ2ϵk can be seen as the item specific residual

variance, and the person parameter ζi is interpreted as the test taker’s speed. Because the

model contains three item parameters, we refer to this model as the three-parameter lognormal

(3PLN) model. The 3PLN model corresponds to a one-factor model from confirmatory

factor analysis with freely estimated intercepts (item time intensities), factor loadings (speed

sensitivities) and item specific residual variances16.

A common simplification of the 3PLN model is achieved by fixing all speed sensitivities

ϕ to one (van der Linden, 2006). The resulting measurement model can then be written as

16For analogies and translations between lognormal response time modeling and linear factor modeling see
also the work of Molenaar, Tuerlinckx, and van der Maas (2015b).
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lnRTik = λk − ζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (38)

Because the resulting model contains two item parameters, we refer to this model as

the two-parameter lognormal (2PLN) model. The 2PLN model corresponds to a one-factor

model from confirmatory factor analysis with freely estimated intercept parameters (item

time intensities) and item specific residual variances but factor loadings (speed sensitivities)

fixed to one. For detailed descriptions of the properties and conceptual meanings of the item

parameters we refer readers to the work of Becker, Debeer, Weirich, and Goldhammer (2021).

It should be noted that, as the lognormal response time model is basically a one-factor model,

both the 3PLN and 2PLN model can easily be estimated by any CFA software such as lavaan

or Mplus (e.g., Rosseel, 2012).

3.3.2 Cumulants of the 2PLN Model

In his work on controlling speededness during test assembly, van der Linden (2011a, 2011b)

made use of the restricted lognormal response time model, the 2PLN model. As van der

Linden (2011a) showed, according to Equation 38 the first two cumulants of the response

time distribution for a specific speed level ζ and item k are:

E(RTk|ζ) = exp

(︄
λk − ζ +

σ2ϵk
2

)︄
(39)

Var(RTk|ζ) = exp
(︁
2λk − 2ζ + σ2ϵk

)︁ (︁
exp(σ2ϵk)− 1

)︁
(40)

Equation 39 gives the first cumulant of the response time distribution, which is also the mean,

and first moment about the origin. Equation 40 gives the second cumulant, which is also the

variance and the second central moment.

Like the assumed lognormal response time distributions, the cumulants in Equations

39 and 40 depend on speed parameter ζ. However, because the ζ terms are constant in

both equations, they could be factored out for all items, regardless of the respective item

parameters (van der Linden, 2011a). This also implies that when two items have equal

expected response times for a specific speed parameter ζ (i.e., equal first cumulants), they

have equal expected response times for all possible person speed levels. This also holds for

the second cumulant (i.e., the variance).

58



3.3.3 Cumulants of the Test Time Distribution

A central assumption of the lognormal response time model is local stochastic independence

of response times given the latent measurement model. This means that for each test taker

the residual response times ϵk are independent of each other. It is well known that the

combination (i.e., the convolution) of independent normal distributions is also a normally

distributed variable. The convolution of independent lognormal distributions is, however,

intractable (van der Linden, 2011b). Therefore, it is typically impossible to analytically

formulate the total test time distribution for a specific test taker, even when the test is a

combination of items following the lognormal model with known item parameters. However,

for convolutions of independent random variables, it has been established that the cumulants

of the convolution are the simple sum of the cumulants of the independent random variables

(Kotz et al., 2005). Consequently, the sum of the first cumulants (Equation 39) of the

response time distributions of items within a test is equal to the first cumulant of the test

time distribution, the sum of the second cumulants (Equation 40) of the item response times

is equal to the second cumulant of the test time distribution, and so on. Formally, for the

total number of j items this gives:

E(RTtot|ζ) =
j∑︂

k=1

E(RTk|ζ) (41)

Var(RTtot|ζ) =
j∑︂

k=1

Var(RTk|ζ) (42)

As E(RTk|ζ) and Var(RTk|ζ) are conditional on a specific speed level ζ, so are E(RTtot|ζ)

and Var(RTtot|ζ). As the cumulants of the total test time distribution are linear combinations

of the cumulants of the item response time distributions, the cumulants of the total test time

distribution can be constrained in MILP models to perform ATA. For instance, upper and

lower bounds for the cumulants can be formulated. For the sum of the first two cumulants

of the total test time distribution, this can be formulated as:

j∑︂
k=1

E(RTk|ζ) <= Tmean + δmean (43)

j∑︂
k=1

E(RTk|ζ) >= Tmean − δmean (44)
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j∑︂
k=1

Var(RTk|ζ) <= Tvar + δvar (45)

j∑︂
k=1

Var(RTk|ζ) >= Tvar − δvar (46)

Tmean and Tvar are the respective target values for the mean and variance of the total test

response time distribution. δmean and δvar are the respective tolerance values, denoting how

far a test form can deviate from the given target value. Equations 43 and 44 denote the upper

and lower bound for the mean of the total test time distribution and Equations 45 and 46

denote the upper and lower bound for the variance of the total test time distribution. If these

constraints are implemented within the MILP framework, only solutions will be considered

that satisfy the test specifications regarding speededness.

Following the work of Fenton (1960) and Kotz et al. (2005), van der Linden (2011a) delin-

eated that the unknown shape of the test time distribution can be sufficiently approximated

using a lognormal distribution via its respective cumulants. Furthermore, he illustrated in an

empirical example that constraining only the first two cumulants from Equation 39 and 40 is

often sufficient for controlling the speededness of a test in practice. In his work, van der Lin-

den (2011b) demonstrated that the presented approach is indeed very useful for controlling

the speededness of a test. He illustrated that the approach can be used to create equally

speeded test forms, deliberately change the level of speededness of a test, or to change other

test properties while keeping speededness constant.

It should be noted that the procedure presented above slightly deviates from the work of

van der Linden (2011b), who defines new parameters (called qk and rk) to factor out speed

level ζ and uses these parameters for formulating constraints in ATA. This approach is sen-

sible, for example, if test forms are assembled parallel to an existing test form. However,

frequently test specifications are specific to a certain speed level, as, for example, test ad-

ministrators want slow test-takers to have a specific probability for finishing the test in time.

In such instances, constraining the cumulants of the total test time distribution directly is a

more direct and intuitive approach for test administrators for controlling the speededness of a

test. From a practical stand point, both procedures are interchangeable and lead to identical

results.
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3.3.4 Alternative Approaches for Controlling Speededness

To this date, there exist very few studies that build up on or extend these ideas of van der

Linden (2011b). A recent review by Jurich (2020) on test speededness does not include any

publications published after the work of van der Linden (2011b). Most of the existing studies

focus on computerized adaptive testing instead of fixed form linear tests (e.g., Cheng et al.,

2017; Fan et al., 2012; Finkelman et al., 2014; van der Linden & Xiong, 2013; Veldkamp,

2016). Finkelman et al. (2020) extended the approach to linear tests which use cognitive

diagnostic modeling (CDMs). To our knowledge, only a single study makes use of the more

general 3PLN model, namely the study by Veldkamp et al. (2017). However, Veldkamp et

al. (2017) focus on mixture models and only use the first cumulant of the total test time

distribution, instead of incorporating the variance of the response time distribution as well.

In a recent review on measuring speededness, Cintron (2021) also explicitly notes the lack of

approaches for measuring and controlling speededness, which stands in stark contrast to a

great variety of response time models developed in the recent years.

3.4 Limitation of the van der Linden Approach

The approach proposed by van der Linden (2011b) has great advantages over approaches

using observed average response times. However, the approach still has a major shortcoming:

It is currently restricted to the 2PLN model and has not been generalized to the 3PLN

model. In contrast to the 3PLN model, the 2PLN model assumes that items do not differ in

the extent their response time distribution is sensitive to speed differences across test-takers

on top of time intensity effects. From a practical perspective, this is an important limitation,

as this assumption of the 2PLN model does seem to rarely hold in practice. In fact, in

each of the empirical applications (which we are aware of), in which the 2PLN model has

been compared to the 3PLN model, the 3PLN model has shown superior model fit (Becker,

Debeer, Weirich, & Goldhammer, 2021; Debelak et al., 2014; Goldhammer & Klein Entink,

2011; Scherer et al., 2015) based on the DIC (Spiegelhalter et al., 2002).

Therefore, in this paper, we generalize the approach by van der Linden (2011b) to the

3PLN model. In the following, we reformulate Equations 39 and 40 to include the additional

item parameter and elaborate on practical consequences of the generalization. Then, we

illustrate how the new approach can be used in ATA practice.
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3.5 Generalization to the 3PLN model

3.5.1 Cumulants of the 3PLN model

If items are no longer assumed to be equally speed sensitive, the derivation of the cumulants

of the response time distribution has to be adapted. As a generalization of the work of

van der Linden (2011a, 2011b), we delineate the following equations for the cumulants of the

3PLN response time model:

E(RTk|ζ) = exp

(︄
λk − ϕkζ +

σ2ϵk
2

)︄
(47)

Var(RTk|ζ) = exp
(︁
2λk − 2ϕkζ + σ2ϵk

)︁ (︁
exp(σ2ϵk)− 1

)︁
(48)

Note that, in contrast to Equations 39 and 40, where ζ can be factored out, this is not

the case in Equations 47 and 48, where ζ is weighted by the speed sensitivity parameter

ϕk. This leads to a procedural advantage of the 2PLN model over the 3PLN model: As

mentioned above, if we assume that all items are equally speed sensitive and if speededness

is controlled for one speed level ζ, speededness is equally controlled for all other potential

speed levels. This is not the case if items have different speed sensitivities. Under such

circumstances, items may lead to similar response time distributions for one speed level,

but differing response time distributions for other speed levels (Becker, Debeer, Weirich, &

Goldhammer, 2021). This implies that separate constraints have to be introduced if a test is

supposed to be parallel for multiple speed levels.

It should be noted, as the 2PLN model is a special case of the 3PLN model, the cumulants

calculation for the 2PLN model is also a special case of the cumulant calculation for the 3PLN

model. If the speed sensitivity is fixed to ϕk = 1, Equations 47 and 48 simplify to Equations

39 and 40. A special case occurs if speed level ζ = 0 is used, in which case Equations 47 and

48 yield identical results as Equations 39 and 40.

3.5.2 Cumulants of the Test Time Distribution

As in the 2PLN model, responses are assumed to be independent given the latent factor

structure in the 3PLN model. Therefore, the sum across the first cumulants of the item

response time distributions in a test still equals the first cumulant of the test response time

(this is true for all cumulants) (e.g., Fenton, 1960; Kotz et al., 2005). Hence, Equations 41 and

42 hold for the 3PLN model as well. Furthermore, the constraints suitable for implementing
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test time specifications according to the 3PLN model are identical to Equations 43 - 46.

However, if speededness should be controlled for multiple speed levels, constraints must

be formulated for multiple speed levels. This requirement is plausible, for example, if an

assessment makes use of multiple, parallel test forms, which are randomly assigned to test-

takers. This means that Equation 47 and 48 must be applied for multiple ζ values. In

practice, this means that test developers are calculating the expected response time mean

and variance for different speed levels. Furthermore, constraints according to Equations 43 -

46 must be formulated for all of these speed levels.

3.5.3 Computational Implementation

In the past, implementing ATA via MILP procedures in practice was not trivial. For example,

Diao and van der Linden (2011) suggest using a lpSolve API directly via R for ATA. To lower

the learning curve for test designers and practitioners we have developed the eatATA R

package, which provides a more intuitive user interface. Furthermore, extensive resources for

how to implement ATA problems in eatATA exist (Becker, Debeer, Sachse, & Weirich, 2021).

eatATA currently provides access to various free and commercial solvers, namely GLPK,

lpSolve, Symphony, and Gurobi. We have added both our newly developed approach, as well

as the original approach by van der Linden (2011b) to the eatATA package for calculating

the mean and variance of the expected response time distribution. Equation 39 and 40 are

implemented in the getMean2PLN() and getVar2PLN() functions, and Equations 47 and 48

are implemented in the getMean3PLN() and getVar3PLN() functions. It should be noted

again that the approach by van der Linden (2011b) is a special case of our newly developed

approach with all ϕk = 1. As eatATA is a general tool for ATA, the specific constraints as

suggested in Equation 43 - 46 can be implemented like any other quantitative constraints, for

instance using the itemValuesDeviationConstraint() function. Figure 8 illustrates how

our newly proposed approach would be implemented to control speededness for multiple test

forms (n forms) for two separate speed levels, a slow (ζ = −1) and a fast one (ζ = 1). In the

example code, test forms are constrained to arbitrary target values and the deviation from the

target value is set relative to the respective target values, resulting in δmean = 0.1Tmean and

δvar = 0.1Tvar. Constraints are formulated for an item pool contained within a data.frame

called items.

To illustrate the feasibility and effectiveness of the proposed approach for controlling

speededness we present three use cases, which correspond to the use cases presented in van
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Figure 8: Example Code for Implementing our Proposed Approach for Controlling Speeded-
ness via the 3PLN Model.

# Computing the cumulants
means_3PLN <- getMean3PLN(lambda = items$lambda , phi = items$phi ,

zeta = c(1, -1), sdEpsi = items$sdEpsi)
vars_3PLN <- getVar3PLN(lambda = items$lambda , phi = items$phi ,

zeta = c(1, -1), sdEpsi = items$sdEpsi)

# constraints for zeta = -1
constr_mean_slow <- itemValuesDeviationConstraint(nForms = n_forms ,

itemValues = means_3PLN[, "zeta=-1"],
targetValue = 300, allowedDeviation = 0.1,
itemIDs = items$ID , relative = TRUE)

constr_var_slow <- itemValuesDeviationConstraint(nForms = n_forms ,
itemValues = vars_3PLN[, "zeta=-1"],
targetValue = 2000, allowedDeviation = 0.1,
itemIDs = items$ID , relative = TRUE)

# constraints for zeta = 1
constr_mean_fast <- itemValuesDeviationConstraint(nForms = n_forms ,

itemValues = means_3PLN[, "zeta=1"],
targetValue = 30, allowedDeviation = 0.1,
itemIDs = items$ID , relative = TRUE)

constr_var_fast <- itemValuesDeviationConstraint(nForms = n_forms ,
itemValues = vars_3PLN[, "zeta=1"],
targetValue = 200, allowedDeviation = 0.1,
itemIDs = items$ID , relative = TRUE)

der Linden (2011b): (1) Creating parallel test forms, (2) modifying a test form while keeping

its speededness constant, and (3) changing the level of speededness of a test form, all based

on the same simulated item pool.

3.6 Illustrative Examples

3.6.1 Item Pool

In his study, van der Linden (2011b) utilized an empirical item pool of the Law School

Admission Test (LSAT) with simulated response time model parameters, with a total size

of 756 items. An operational test form containing 78 items was initially assembled from the

item pool. As the LSAT item pool is not publicly available (nor is any other comparable

high-stakes assessment item pool), we simulate an item pool of identical size based on data

from the Canadian Programme of International Student Assessment (PISA) 2018 math data.

The PISA study is an educational large-scale assessment and provides one of the few publicly

available data sets including achievement data on item level with raw responses and response

times (OECD, 2019a)17. The data set is openly available at https://www.oecd.org/pisa/

data/2018database/.

To obtain realistic hyperparameters for the illustrative examples and to illustrate that the

17While the LSAT and PISA assessments obviously differ in many regards, the PISA data set is only used to
generate plausible hyperparameters for the draw of item parameters. Note that both van der Linden (2011b)
and we base our illustrative examples on an item pool with simulated response time model parameters.
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Table 3: Model Comparisons between Hierarchical Frameworks using the 2PLN and 3PLN
Model as Response Time Measurement Model.

Booklet WAIC 2PLN WAIC 3PLN ˆ︂elpdloo 2PLN ˆ︂elpdloo 3PLN ∆( ˆ︂elpdloo)
1 72315.55 71104.90 -36208.81 -35600.97 -607.84 (52.46)
2 73004.52 71157.95 -36579.43 -35647.11 -932.31 (61.16)
3 66316.32 65659.20 -33210.17 -32873.13 -337.04 (37.34)
4 84661.87 83607.63 -42498.40 -41918.61 -579.79 (53.25)
5 77113.19 76306.04 -38708.59 -38281.20 -427.39 (42.25)
6 63972.26 62911.83 -32056.92 -31518.43 -538.49 (51.57)

Note: Model comparisons are conducted using the Widely Applicable Information Cri-
terion (WAIC) and Leave One Out (LOO) cross validation. For LOO, the expected log

pointwise predictive density is used ( ˆ︂elpdloo) and differences as well as standard errors for
the differences are reported.

assumption of the 2PLN model of equal speed sensitivities does usually not hold in practice,

a joint hierarchical response and response time model (van der Linden, 2007) is estimated

via the general purpose Bayesian estimation software Stan (Carpenter et al., 2017) and its R

interface rstan (Stan Development Team, 2021). For model estimation, we use the default

options set by rstan, with 4 chains, 2000 iterations each and a burn-in of 1000 iterations.

Model specifications adopt the recommendations by König et al. (2023) with hierarchical prior

specifications and informative or weakly informative priors aiding estimation stability. For

instance, for covariance matrices, a separation strategy is utilized, with Cauchy distributions

as a prior for standard deviations and an LKJ prior distribution for the Cholesky factor of the

correlation matrix. To investigate whether data simulation should be performed according

to the 2PLN or 3PLN model, model comparisons between hierarchical frameworks using

the 2PLN and the 3PLN model are conducted. Model comparisons are performed for all

Canadian math booklets using the Widely Applicable Information Criterion (WAIC) and the

expected log pointwise predictive density of the leave one out cross validation ( ˆ︂elpdloo; Vehtari

et al., 2017) provided via the R package loo (Vehtari et al., 2019). An overview of the model

comparisons for all booklets can be found in Table 3. Smaller values of WAIC and larger

values of ˆ︂elpdloo indicate better model fit. Both WAIC and ˆ︂elpdloo as well as standard errors

for the differences in ˆ︂elpdloo indicate consistent and substantial better fit for the 3PLN model.

Based on these findings, we draw item parameters and simulate response times according

to the 3PLN model for all illustrative examples. The hyperparameter distribution for the

item pool is based on the analyses of a randomly selected Canadian PISA 2018 math booklet

(booklet 3) and can be seen in Table 4. Based on this hyperparameter distribution, 756 items

with item parameters conforming to a 2PL IRT model and 3PLN model are drawn. These
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item parameters are treated as known without uncertainty from a pilot study.

From the simulated item pool containing 756 items, a test form is assembled consisting

of 78 items, which maximizes the test information function (TIF) at ability level θ = 0. The

resulting TIF is TIFexisting = 122.49. We refer to this test form as the existing test form.

The complete Stan and R code for the estimation of the joint hierarchical model as well as

the R code for all illustrative examples can be seen in the Online Supplement available at

https://osf.io/ktgrf/. The complete code for the empirical data estimation can be found in

the subfolder empirical data estimation. The simulation of the item pool and assembly

of the existing test form can be found in the syntax file 0 item pool generation.R.

Table 4: Means, Standard Deviations and Correlation Matrix of the Item Parameters in the
Hierarchical Estimated Model Using a Canadian PISA 2018 Math Booklet.

Parameter M SD a b ϕ

a 1.23 0.42
b -0.28 1.32 0.71
ϕ 0.35 0.06 0.00 0.44
λ 4.39 0.23 0.00 0.10 0.61

Note: Item Discrimination (a), Item Difficulty (b), Item Speed Sensitivity
(ϕ), and Item Time Intensity (λ).

3.6.2 Illustration 1a: Additional Test Form

A common test assembly use case is to have multiple, parallel test forms. In accordance with

van der Linden’s first example, we also assemble an additional, parallel test form from the

remaining item pool, for instance if the goal was to offer test-takers a second test administra-

tion. The newly assembled test form should conform to the following test specifications: (a)

it should consist of 78 items, (b) its test information function should be as similar as possible

to the existing test form at ability level θ = 0, (c) there should be no item overlap between

the existing and new test form, and (d) it should be comparable regarding its speededness,

as well. To implement the test specifications, the item information function values (IIFs)

at θ = 0 are calculated. For obtaining comparable TIFs, a minimax objective function is

utilized. The number of items in the new test form is constrained to be exactly 78.

To control the speededness of the newly assembled test form, we utilize our newly de-

veloped approach: First, the mean and variance of the item response time distributions are

calculated for speed level ζi = −1 using Equations 47 and 48. The below average speed level

is chosen, as speededness of a test is mostly relevant for slow test-takers, as faster test-takers

often have enough time to finish test-forms with differing levels of speededness (Becker, De-
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beer, Weirich, & Goldhammer, 2021). The speededness constraints are then implemented

using the mean and variance of the total test time distribution of the existing test form as

target values. A relative tolerance is implemented, meaning that δmean = 0.0001Tmean and

δvar = 0.0001Tvar
18.

To illustrate that the approach proposed by van der Linden (2011b) is no longer suitable

if items follow the 3PLN model and have differing speed sensitivities, we also assemble a

parallel test form using van der Linden’s approach using the 2PLN model. We therefore

calculate the first two cumulants of the item response time distribution using Equations 39

and 40. Note that this means that the respective target values based on the existing test

form also vary between the 2PLN and the 3PLN approach.

All other aspects of the implementation of speededness constraints remain the same.

After assembling the test forms, item response times are simulated according to the 3PLN

model for speed level ζ = −1 with n = 100, 000 and accumulated on test level. The full R

code for this illustration can be seen in the syntax named 1 single parallel testforms.R.

Implementation of the ATA procedure is done via the eatATA R-package using the GLPK

solver.

Results. As controlling speededness is the main focus of the illustration, we focus on results

regarding test time in this section. Figure 9 depicts the resulting total test time distributions

for speed level ζ = −1 for both the existing test form and the newly assembled form using our

proposed approach based on the 3PLN model. The almost identical distributions illustrate

that the proposed approach is indeed suitable for creating a parallel test form regarding

speededness and that the first two cumulants of the response time distribution are indeed

sufficient for its approximation.

In contrast, Figure 10 depicts the resulting total test time distributions for both the

existing test form and the newly assembled form using the original van der Linden approach

based on the 2PLN model (i.e., all speed sensitivities were set to ϕk = 1). The distributions

are clearly distinct, which illustrates that this approach is no longer suitable, if the 3PLN

model was used as the response time model for estimation. This is also reflected in the means

of the total test time distributions, which differ 209.03 seconds (E(RTk)existing = 9351.59 vs.

E(RTk)2PLN = 9560.62). Note that this is expected, as the cumulants of the item response

time distributions and therefore also the target values are calculated incorrectly according

to the 2PLN model, even though the data (and our response time simulation) follow the

18In contrast, van der Linden (2011b) uses an absolute tolerance of 0.01.
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Figure 9: Total Test Time Distributions for Speed Level ζ = −1 for Two Test Forms
Assembled According to Our Proposed Approach.
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3PLN model. One could therefore argue that this difference between test forms reflects the

under-parameterization of the response time modeling according to the 2PLN model.

Regarding optimization of the TIF it should be noted that by the initial maximization

for the existing test form depletes the resulting item pool of the most informative items.

Therefore, any consecutively assembled test forms do not have access to the most informative

items in the original item pool, with the maximum available TIF for a 78-item test form being

TIF = 81.10. For both approaches, minimizing the difference of the TIF in comparison to

the existing test form was comparable. The TIFs for the newly generated test forms were

TIF2PLN = 80.78 and TIF3PLN = 80.37 respectively.

3.6.3 Illustration 1b: Additional Test Form with Multiple Speed Levels

A convenient property of the approach presented by van der Linden (2011b) is that controlling

speededness is independent of the respective speed levels. As there are no speed sensitivities

(i.e., all speed sensitivity parameters are fixed to one), ζ can simply be factored out of

Equations 39 and 40. For the less restrictive 3PLN model including freely estimated speed

sensitivities, test forms might be parallel for a specific speed level, but might not be parallel

for a different speed level. If equal speededness for multiple speed levels is desired, this can

be implemented via additional sets of constraints.

To illustrate this, we use essentially the same assembly problem as in Illustration 1a but
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Figure 10: Total Test Time Distributions for Speed Level ζ = −1 for Two Test Forms
Assembled According to van der Linden’s Approach.
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focus on multiple speed levels for controlling speededness. The resulting test specifications

are: (a) the test form should contain exactly 78 items, (b) TIF should be as similar as possible

to the existing test form, (c) there should be no item overlap between the existing and new

test form, and (d) speededness should be identical to the existing test form both for fast

and slow test-takers. In a naive approach, we utilize the same constraints as formulated

in Illustration 1a, thereby ignoring all speed levels other than ζ = −1. Additionally, we

implement an assembly approach which controls for speededness at speed levels ζ = [1,−1].

Constraints for speed level ζ = 1 are formulated as they are formulated for speed level ζ = −1,

comparable to the illustration in Figure 8.

Consequently, we now inspect the consequences for two different speed levels ζ = [1,−1]

as well, so for a slow and a fast speed level. We leave the relative tolerance at 0.0001 for

the mean and increase it to 0.01 for the variance of the total test time distribution due to

initial infeasibility issues given the item pool. After assembling the test forms, item response

times are simulated according to the 3PLN model for the two speed levels ζ = [1,−1] with

n = 100, 000 and accumulated on test level. The full R code for this illustration can be seen

in the syntax 1b single parallel testforms multi zetas.R in the online supplement.

Results. Figure 11 shows the resulting test time distributions if only speededness for one

speed level is controlled. On the right side we see a similar picture as in Figure 9. We
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controlled speededness for speed level ζ = −1, therefore the response times distributions

for this speed level overlap almost perfectly. However, the left graph depicting the response

time distribution for speed level ζ = 1 illustrates what we mentioned before: If test forms

are parallel regarding speededness for one speed level, this is not necessarily the case for

all other speed levels. Parallelism of the test time distributions for other speed levels will

depend on whether test time distributions for similar speed levels have been controlled for.

Otherwise, parallelism for speed levels will be rather random. Indeed, in our examples the

two distributions are clearly shifted.

Figure 11: Total Test Time Distributions for Two Speed Levels for Two Test Forms As-
sembled While Constraining Time Required for One Speed Level (ζ = −1).
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Note. The left plot contains the distributions for the fast speed level ζ = 1, the right plot contains
the distributions for the slow speed level ζ = −1, for which the speededness was constrained.

In contrast, Figure 12 shows the resulting test time distributions if time required for

the two speed levels ζ = [1,−1] is controlled. Both response time distributions overlap

almost perfectly. For both approaches, minimizing the difference of the TIF in comparison

to the existing test form was satisfactory. The TIFs for the newly generated test forms

were TIF = 77.61 for the test form with controlled speededness for two speed levels and

TIF = 80.51 for the test form with controlled speededness for one speed level.

3.6.4 Illustration 2: Changed Test Form, Identical Speededness

Another common use case for controlling the speededness of a test form is when specific

properties of a test should be changed, while others should remain constant. For example, it

could be desirable to have a shorter test form which is especially informative for high-ability
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Figure 12: Total Test Time Distributions for Two Speed Levels for Two Test Forms As-
sembled While Constraining Time Required for Two Speed Levels (ζ = [−1; 1]).
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Note. The left plot contains the distributions for the fast speed level ζ = 1, the right plot contains
the distributions for the slow speed level ζ = −1.

test-takers. Therefore, similar to the second example in van der Linden (2011b), we modify

the existing test form by shifting the target value of θ, at which the TIF should be maximized,

by 1.2. Furthermore, the test form is shortened from 78 to 69 items as in van der Linden

(2011b). As this use case is not about creating an additional test form but modifying an

existing test form, item overlap to the existing test form is not prohibited. The resulting

test specifications are: (a) the test form should contain exactly 69 items, (b) TIF should be

maximized at θ = 1.2, and (c) speededness should be identical to the existing test form for

slow test-takers.

For this purpose, speededness is constrained to be the same between the old and new test

form via the proposed approach. This means that comparable to Illustration 1a, the target

mean and variance of the response time distribution are calculated using the getMean3PLN()

and getVar3PLN() functions for speed level ζ = −1. The sum of these item means and

variances are then constrained and the same tolerance is used as in Illustrations 1a and

1b. The full R code for this illustration can be seen in the online supplement syntax

2 changed test form.R.

Results. The modified test form is indeed substantially more informative for ability level

θ = 1.2 (original test form: TIFθ=1.2 = 28.81; newly assembled test form: TIFθ=1.2 =

116.73). Meanwhile, the total test time distribution is held constant with the specified 3PLN
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constraints, as Figure 13 illustrates.

Figure 13: Total Test Time Distributions for Speed Level ζ = −1 for an Initial Test Form
with Maximized TIF at θ = 0 and a Newly Assembled Test Form with Maximized TIF at
θ = 1.2 While Holding Speededness Constant for ζ = −1 Using the Proposed 3PLN Approach.
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3.6.5 Illustration 3: Changed Speededness

Another scenario described by van der Linden (2011b) is that properties of a test form should

all remain constant (including the number of items in the test form) while its speededness

is modified. For example, test-takers might have complained about excessive levels of speed-

edness and we want to reduce the amount of time pressure of a test. This use case is in

line with the third example in van der Linden (2011b). To reduce the level of speededness

while leaving the time limit untouched, we shift the target speed by ∆ = −0.5, meaning the

test time distribution of the new test form at ζ = −1.5 should be the same as the test time

distribution of the existing test form at ζ = −1 19. This means that test-takers have now

to cope with less workload than in the initial test form even though the number of items in

the test form remains the same. Practically speaking, this means that less time intensive

items have to be selected for the new test form. The resulting test specifications are: (a) the

test form should contain exactly 78 items, (b) TIFs should be as similar as possible to the

existing test form, and (c) speededness should be shifted as described. The full R code for

this illustration can be seen in the online supplement syntax 3 changed speededness.R.

19This is a smaller shift as in van der Linden (2011b) (∆ = 1), but the idea remains the same.
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Results. Figure 14 shows three test time distributions: the test time distribution of the

original test form at speed level ζ = −1 and the test time distributions of the newly assembled

test form at speed levels ζ = −1 and ζ = −1.5. And indeed, as Figure 14 indicates, the 3PLN

approach is also suitable for modifying the level of speededness of an existing test form. The

test time distributions of the initial test form at ζ = −1 and of the modified test form at

ζ = −1.5 overlap almost perfectly. This means that very slow test-takers (ζ = −1.5) now

need as much time on the newly assembled test form as slow test-takers (ζ = −1) initially

needed on the existing test form. Moreover, the distribution on the left indicates the test

time distribution of the modified test form for test-takers at ζ = −1. This illustrates that

slow test-takers (ζ = −1) now require less time compared to the initial test form.

Test information function changes from the existing test form from TIFexisting = 122.49

to TIFnew = 110.67.

Figure 14: Total Test Time Distributions for the Initial Test Form for Speed Level ζi = −1
and the Newly Assembled Test Form with Shifted Speededness for Speed Levels ζ = −1 and
ζ = −1.5.
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3.7 Discussion

Controlling the degree of speededness of a test is a frequent challenge in educational and

psychological testing. In 2011, van der Linden (2011b) proposed an innovative approach

for controlling the speededness of a test, emphasizing that speededness is defined by the

interaction of the workload of a test, the time limit which is set and the working speed

of a test-taker. However, since then, almost no further developments have been made in

the area of controlling speededness for fixed form tests. To this date, the approach by van
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der Linden (2011b) is limited to the 2PLN model as a response time measurement model.

Meanwhile, empirical evidence has accumulated that the 2PLN model is probably too strict

in most applications and instead the 3PLN model should be preferred. Therefore, we have

generalized the framework of van der Linden (2011b) to the 3PLN model and illustrated its

usefulness in various use cases.

It should be emphasized that our proposed approach for using the 3PLN model to control

speededness is in no way more difficult or demanding for practitioners wanting to control

speededness in their test(s) than the approach by van der Linden using the 2PLN model.

Estimation of the 3PLN model, just as the 2PLN model, can be implemented using stan-

dard statistical software for confirmatory factor analysis models, like the R-package lavaan

(Rosseel, 2012). Hierarchical implementation, which can aid measurement on the response

and response time side (van der Linden, 2007; van der Linden et al., 2010), can be im-

plemented using, for example, the R-package LNIRT (Fox et al., 2021) or general purpose

Bayesian estimation software such as Stan (Carpenter et al., 2017). For an extensive tutorial

on Bayesian hierarchical response time modeling using Stan, see König et al. (2023). Alter-

natively, the hierarchical framework can also be translated to a frequentist factor analysis

framework, as illustrated by Molenaar, Tuerlinckx, and van der Maas (2015b). Furthermore,

Liu et al. (2022) have proposed using machine learning approaches for model estimation in

the IRT framework. The calculation of the cumulants of the expected response time distri-

bution for both models as well as the full ATA procedure can be performed using the eatATA

package.

If, however, the 2PLN model is used when the 3PLN model would be appropriate, issues

regarding the speededness of an assembled test form can arise at two different occasions: (1)

If the 2PLN model is estimated while estimation of the 3PLN model would be appropriate,

estimates of model parameters will be biased. (2) If differences in speed sensitivities are

ignored, target values and the cumulants of the test time distribution will be calculated

incorrectly. Our first use case illustrated, that indeed incorrect calculation of the cumulants

of the response time distributions and of the target values leads to issues regarding the

speededness of test forms.

Furthermore, this theoretical approach of controlling the speededness of tests is not re-

stricted to the mentioned lognormal response time models. These lognormal models have

very convenient properties and are some of the most popular response time models in psy-

chometrics (De Boeck & Jeon, 2019). Nevertheless, if there are other response time models
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for which total test time distributions can be calculated or sufficiently approximated based on

model parameters, these could be used instead. In addition, the proposed approach and the

described implications are not only relevant for fixed-form linear tests but also for controlling

speededness in multi-stage testing or computer-adaptive testing. In adaptive testing contexts

speededness can be of even greater concern, as the difficulty of items is often correlated with

their time intensity (Bridgeman & Cline, 2004; van der Linden, 2009b). Fortunately, our

proposed approach is not only feasible for fixed-form linear tests but also for the assembly

of modules in multi-stage testing as well as computer-adaptive testing via the shadow-test

framework, as well (van der Linden & Xiong, 2013).

3.7.1 Practical Considerations

There are a few practical considerations for test designers and administrators when constrain-

ing the speededness of test forms. First, in the 3PLN approach, test administrators have to

choose for which speed level(s) speededness should be controlled, similar to how the TIF

is set for specific ability levels. Choosing the appropriate speed levels for which to control

speededness for depends on the application. If, for example, speed is seen as a nuisance pa-

rameter and the test forms should not be speeded for any test-taker, it is sufficient to control

speededness for a (very) slow speed level. If speed is seen as an intentional parameter, re-

quirements might vary: If a single test-form is assembled, a single speed level might be used

as a target speed level (i.e., as the optimum, desired speed level). If multiple test forms are

assembled, the minimum requirement from a fairness perspective is that all test forms have

to be parallel for all speed levels who are prone to running out of time.

Second, in our study we have assumed that item parameters are known without uncer-

tainty from a pilot study. However, from a practical perspective, it is not trivial how a pilot

study should be designed to accurately estimate unbiased item parameters. On one hand,

one could argue that testing conditions for item piloting and the operational testing phase

should correspond. This could help to ensure that item properties (i.e., parameters) do not

change under different conditions. If, for example, test-takers are less motivated in a low-

stakes piloting setting compared to a high-stakes operational setting, item time intensities

might get underestimated if test-takers work on items less thoroughly in the piloting phase.

On the other hand, however, one might argue that pilot studies should try to exterminate

external influences such as speededness, decreasing effort, or fatigue from item parameter

estimation. This is an issue as most analysis models assume that test-takers work with
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constant ability and speed throughout a (pilot) test. Research on item position effects has

shown that indeed fatigue, decreasing effort, and speededness can have a negative impact on

item parameter estimation (Debeer & Janssen, 2013; Oshima, 1994; Weirich et al., 2017).

The following measures could help to reduce the influence of fatigue, decreasing effort, and

speededness on item parameter estimates: (a) test-takers should be given sufficient time on

the pilot test, (b) the pilot test should be sufficiently short so test-takers do not experience

fatigue or a decrease in effort, (c) item positions could be balanced in the pilot test design

so effects on item properties are averaged across item positions, and (d) models, which take

item position effects or varying speed levels into account could be used for the estimation of

item parameters (e.g., Fox & Marianti, 2016).

Note, however, that these challenges regarding piloting conditions are neither specific to

our proposed approach for controlling speededness nor specific to controlling speededness in

general. These challenges arise whenever item properties are estimated or used based on a

pilot study. For instance, if test-takers speed up during a pilot test due to time constraints

and time intensity is underestimated for items positioned at the end of the pilot test, it is

likely that the difficulty of items is overestimated in such cases as well.

A third practical consideration relates to parameter uncertainty. Even if ideal piloting

conditions are created, item parameters are still estimated with uncertainty. This uncer-

tainty, however, is rarely reflected in ATA approaches. To counter these issues, Veldkamp

et al. (2013) proposed incorporating the uncertainty in item parameter estimation via robust

automated test assembly. Furthermore, Veldkamp (2016) proposed using robust ATA when

minimizing test time in computerized adaptive testing. Future research could look into how

robust ATA might be a sensible extension to our proposed approach.

3.7.2 Conclusion

Being able to control the speededness of one or multiple test forms is important for the

fairness and validity of assessments. In this manuscript, we have introduced a generalization

of the approach for controlling speededness by van der Linden (2011b) which allows for

incorporating differing speed sensitivities. We have implemented both our approach and the

approach by van der Linden (2011b) in the freely available R package eatATA. Furthermore,

we have illustrated in multiple practical use cases the feasibility of our approach and how the

original approach by van der Linden (2011b) falls short if items indeed vary regarding their

speed sensitivity. For assessment practitioners, who want to utilize the presented approaches
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for controlling speededness in test assembly, our illustrative examples and online supplement

should provide all required tools to do so.
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Abstract: A common approach to increase test security in higher educational high-stakes

testing is the use of different test forms with identical items but different item orders. The

effects of such varied item orders are relatively well studied, but findings have generally

been mixed. When multiple test forms with different item orders are used, we argue that the

moderating role of speededness on item order effects cannot be neglected as missing responses

are commonly scored as incorrect in high-stakes testing. If test-takers run out of time while

not giving answers to easy items at the end of the test, they are penalized stronger than if

instead they were unable to provide answers to difficult items. Using an illustrative real-data

example of a speeded test, we show that the potential consequences of ignoring item order

can be substantial with respect to test fairness. Our proposed solution consists of using a

fixed item order across forms from the point at which the test may become speeded for some

students. In this approach, the most time-intensive items are placed at the end of the test.

A simulation based on real data of two university exams from psychology students illustrates

the usefulness of this approach.
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In higher educational high-stakes tests like college exams, important challenges are test

fairness and test security. To assure test fairness, it is popular practice to set a common time

limit for all test-takers and to score missing responses as incorrect, to prevent test-takers from

choosing a specific set of items to respond to. With regard to test security, a major concern

is cheating and more specifically, test-takers copying answers from other test-takers, the most

popular cheating practice in crowded class room situations (Chirumamilla et al., 2020). A

common approach to prevent this behavior is to create multiple test forms with rearranged

item orders and to provide neighboring test-takers with differentially ordered forms (e.g.,

Monk & Stallings, 1970). This strategy is assumed to limit the probability that neighboring

test-takers are simultaneously working on the same items, thereby making answer-copying

difficult (Davis, 2017; Vander Schee, 2013). Other methods that prevent answer-copying,

like test forms with distinct item sets or computer adaptive testing, exist (van der Linden,

2005) but typically require larger item pools, pretesting items, and/or computer-based test

administrations. However, these requirements are often impossible to meet in conventional

higher educational testing.

If multiple test forms with different item orderings are used, the resulting test scores

should not depend on the ordering of the items. Or, as Lord (1980, p. 195) writes, ”[...] it

must be a matter of indifference to applicants at every given ability level [...] whether they

are to take test x or test y”. A test cannot be considered a fair test, if the test score of an

individual would be different given an alternative test form.

In this paper, we investigate how different item orderings can affect test performance for

test-takers and therefore violate principles of test fairness. First, we give a brief overview

of the research on item order effects. Then, we introduce a modeling framework which

allows us to jointly model ability and speed. Based on this framework, we introduce the

concept of speededness and discuss why speededness may have been (partly) overlooked when

explaining item order effects. Furthermore, test-takers can act in different manners when

facing speededness constraints on a test. Using the concept of test-wiseness, we discuss these

differences and explain how test-wiseness influences the relationship between speededness and

test fairness. An empirical example of a speeded test is used to demonstrate how different

item orderings can lead to unfair test forms. Finally, we propose a simple, heuristic approach

to prevent unfair effects of item ordering and illustrate its effectiveness based on a short

simulation study.
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4.1 Theoretical Background

The question whether item order can be rearranged without affecting the fairness of a test has

been extensively discussed in the literature. Leary and Dorans (1985) provide an exhaustive

overview of the research before 1985, whereas L. Wang (2019) provides a more recent, but

smaller overview. Most studies have focused on whether overall test difficulty varies if items

are sorted (a) in random order, (b) Easy-Hard, (c) Hard-Easy, or (d) ordered according to

content (topical ordering). Note that all specific orderings (such as b-d) can also result from

random ordering. Therefore, even if test administrators plan to use random item orderings,

they have to ensure that any possible differential impact on test scores due to item order is

avoided.

Leary and Dorans (1985) state that sorting by difficulty usually has an effect on test scores

if the test is administered under a time limit, with Hard-Easy leading to the lowest scores.

They offer the explanation that in the Hard-Easy conditions “[...] when an examination is

administered under strict time constraints, some examinees could be at a disadvantage as

a result of spending time on hard items early in the test that they could more profitably

have spent on easy items near the end.” For a similar explanation see also Sax and Cromack

(1966), who conclude that “[...] test constructors have a responsibility of arranging items in

ascending order of difficulty if tests are lengthy or time limits restricted.”20

Overall, however, the literature is inconclusive regarding the relation between item or-

derings and test difficulty: Leary and Dorans (1985) report contradicting findings; a meta-

analysis by Aamodt and McShane (1992) reports small but significant effects; some more

recent studies find no effects (Chidomere, 1989; Davis, 2017; Neely et al., 1994; Perlini et

al., 1998; Vander Schee, 2013) while other recent studies do find difficulty differences across

different item orderings (H. Chen, 2012; Pettit et al., 1986; Russell et al., 2003; Togo, 2002).

Although not aimed to explain these mixed results, studies have explored different aspects

that can play a role in the relation between item order and test performance. For instance,

the role of test anxiety, either as a moderator (if test anxiety is viewed as a trait, H. Chen,

2012) or a mediator (if test anxiety is viewed as a state, McKeachie et al., 1955) has been

investigated. Further, the impact of topically ordered items on ease of memory retrieval has

been studied (Pettit et al., 1986; Togo, 2002). In this paper, however, we focus on the role of

test speededness. More specifically, we address the hypothesis stated by Leary and Dorans

20Note that this would not be the case if missing responses were not scored as incorrect. For example, in
large-scale low-stakes assessments there is a vivid discussion revolving around alternative scoring or modeling
techniques (e.g., Rose et al., 2017). However, due to reasons of test fairness these approaches are hardly
applicable to high-stakes testing.
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(1985) and Sax and Cromack (1966) above: If a test is administered under time constraints,

different item orderings can substantially and differentially affect the test scores of individuals

as it leads to test-takers distributing their time on items differently. Furthermore, we believe

that this mechanism could (partly) explain the mixed findings regarding item order effects

in the literature. In the following section, we illustrate how speededness can be defined and

how likely it is to occur. For this, we first introduce a modeling framework that allows us to

quantify ability and speed as latent constructs.

4.1.1 Modeling Framework

To investigate the effects of item ordering and speededness on test performance, a joint model

for speed and ability is required. Note that we model responses and response times at the

level of the item, and not at the level of the complete test. A convenient choice for the

item response model is the Rasch model (Rasch, 1960). The Rasch model assumes that

the probability of giving a correct response depends on a person parameter θi i = 1, ...., n,

representing the person’s ability (ability parameter) and an item parameter bk k = 1, ..., j,

representing the difficulty of the item (difficulty parameter):

P (yik = 1|θi, bk) =
exp(θi − bk)

1 + exp(θi − bk)
. (49)

A useful property of the model is the fact that sum scores per person or item are sufficient

statistics for the ability and difficulty parameters, respectively. This means that the number

of correctly answered items by a person can function as a proxy for ability (number-correct

scoring, a scoring approach that is very common for university exams). We use the terms

test score and ability estimate interchangeably in this paper.

The most common model for modeling response times in cognitive testing situations

is the lognormal model by van der Linden (2006), which assumes that response times are

lognormally distributed. The model can be written as

lnRTik = λk − ζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (50)

The item time intensity in the model is represented by λk, the person speed parameter is

represented by ζi. Note that both parameters often have substantial correlations with their

ability counterparts (item difficulty and person ability) but are indeed separate parameters.

ϵik represents an item and person specific residual which is normally distributed with mean
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0 and an item specific variance σ2ϵk . The joint hierarchical framework by van der Linden

(2007) assumes joint multivariate normal item and person parameter distributions for the

two dimensions ability and speed and allows the simultaneous estimation of both models.

4.1.2 Speededness

In his work, van der Linden (2011b) formally defines test speededness as an interaction of

the time limit of a test, the amount of work a test requires and the working speed of the test-

taker. This means a test is speeded for a test-taker if, given his/her optimal working speed, the

person would run out of time before answering to all items. A useful concept for understanding

test speededness is the so-called within-person speed-accuracy trade-off (Goldhammer, 2015).

The trade-off refers to the fact that the accuracy or effective ability of a person (meaning the

ability a person is able to show given a certain speed level) increases with increased amounts

of time spent by the person on an item (see Figure 15). This increase has an upper bound:

From a certain point on, additional time will not lead to more accurate answers. However,

research in the area of response time modeling has shown that the speed distributions in test-

taker samples are usually rather broad (van der Linden & Xiong, 2013), meaning that the

working speed levels demonstrated by test-takers differ substantially. Meanwhile, practical

constraints (e.g., limited space at universities) almost always require test administrators to

use a fixed time limit in higher educational testing. Therefore, constructing unspeeded tests

(so-called “pure power tests”) in the context of higher educational high-stakes testing is

practically impossible (Goldhammer, 2015). Instead, most tests can be considered a mixture,

where at least for a small proportion of the testing population a certain level of speededness

occurs on the test.

When test-takers experience test speededness (i.e., they run out of time while working

on a test), they are confronted with the following three options: (a) omit items, (b) increase

working speed and decrease accuracy, and (c) not reach the end of the test. An extreme

form of (b) would, for example, be rapid guessing. In the context of number-right scoring,

(a) is seen to be less favorable than (b) or (c), because, for example, guessing is expected to

be not very time consuming while it still substantially increases the probability of a higher

score (Millman et al., 1965). In high-stakes assessments, indeed omission rates are rather

low and decreasing with increasing test experience of test-takers (Gafni & Melamed, 1994).

In practice, for test-takers with an initial slow working speed, often a mixture of (b) from

a certain point (Bolt et al., 2002; Goegebeur et al., 2008) and (c) would be expected. As
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Figure 15: Speed Accuracy Trade-Off as Illustrated by Goldhammer (2015).

missing responses are usually scored incorrect in high-stakes assessments, all options (a) to

(c) are reflected in lower test scores for test-takers that work under time pressure. Decisions

of test-takers on which behavior to choose relate to the concept of test-wiseness.

4.1.3 Test-Wiseness

Millman et al. (1965) define test-wiseness as “[...] a subject’s capacity to utilize the char-

acteristics and formats of the test and/or the test taking situation to receive a high score.”

They emphasize that the construct is usually logically independent of the actual measured

construct. Therefore, it is commonly seen as a source of construct-irrelevant variance in

the measured scores (Rogers & Yang, 1996). Furthermore, research has shown that test-

wiseness is often unevenly distributed across subgroups, for example across different ethical

backgrounds (Ellis & Ryan, 2003), and depends on the cultural match of the test-taker and

the test (Melikyan et al., 2019). Therefore, test administrators often seek to minimize the

influence of test-wiseness or specific test preparations on test scores, for example by giving

clear instructions on the test or choosing item types less connected to test-wiseness and test

preparation (Powers, 1985; Powers & Rock, 1999).

A focal part of test-wiseness are time-using strategies (Millman et al., 1965). If a test

is speeded for a test-taker, the test-taker has to allocate the available time in a way to

maximize the expected score. This means that test-takers should identify and work on items

that they are likely to answer correctly and for example guess on difficult items. Researchers
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have hypothesized that time-strategies might be culture-dependent, meaning the concept of

speeded tests may be more prevalent in certain cultures than in others (Melikyan et al., 2021).

It is apparent that the ordering of items determines the requirement for time-using strategies:

For example, if items are sorted hard to easy, test-takers have to actively decide to spend

less time on the initial items of the test. If items are sorted easy to hard, this decision is not

required.

4.1.4 Consequences of Different Item Orders under Speededness

The introduced frameworks can be used to illustrate theoretical implications of different item

orderings if a test is speeded: If a test-taker does not respond to all items at the end of a test

or works with decreased accuracy, this negatively affects the person’s test scores. How much

the scores are affected, however, depends on the properties of the items that are not-reached

or on which a higher speed was used, as already noted by Leary and Dorans (1985). Consider

an example where a test-taker works linearly with a constant and insufficient working speed

on a test with a fixed time limit (i.e., only option (c) occurs). In Table 5, such an example is

illustrated with not-reached items crossed out. The penalty for such a test taking behavior is

much more severe on test form A, where three easy items are not-reached, than on test form

B, where one hard item is not-reached. Note that such an effect is independent of specific

item formats.

Table 5: Two Reversely Ordered Test Forms with Item Difficulties bk and Expected Response
Times for a Specific Speed Level ζi.

Test form A Test form B
b RT b RT

Item 1 -0.1 10 1.2 60
Item 2 0.5 10 -0.6 30
Item 3 -0.2 20 -0.2 20
Item 4 -0.6 30 0.5 10
Item 5 1.2 60 -0.1 10

While it seems plausible to assume that most test-takers would speed up at the end of test

form B in a realistic scenario, differences in the test scores would still occur between the two

test forms. Obviously, it seems wisest for test-takers to distribute their time to items in an

adaptive fashion and to use (informed) guessing on difficult items (Dodeen, 2008; Millman et

al., 1965). However, the test forms in Table 5 penalize lack of speed and time-using strategies

very differently, namely: Both are much more important on test form B than on test form

A. Note that test-wiseness also might vary strongly between assessment contexts: For some
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higher educational assessments, like TOEFL, GRE, ACT, or SAT test-takers and teachers

sometimes spend considerable resources on preparation, for example trying to increase test-

takers’ test-wiseness (Gulek, 2003; Kulik et al., 1984), with studies showing mixed findings

but in general positive effects (Kulik et al., 1984). However, in the context of university

exams, this may be less common.

The impact of different item orderings on test scores depends on the following factors:

(a) the time limit of the test, (b) the working speed of the test-taker, (c) the time intensity

of items at the end of the test, and (d) the difficulty of items at the end of the test. Factors

(a) and (b) determine the general level of speededness of the test independent of the specific

item ordering. Factor (c) determines the number of items the person will not reach or work

with a decreased accuracy on, depending on the specific item ordering. Finally, factor (d)

determines the impact of not-reached items or decreased accuracy at the end of the test.

4.2 Illustrative Example

To illustrate potential problems of different item orderings in speeded tests, we use data

from an experimental administration of a high-stakes quantitative reasoning test. The data

were collected as part of a study with various experimental conditions (van Rijn et al.,

2021). Participants were voluntary test-takers who wanted to prepare for the operational

test and thus can be expected to be highly motivated. The overall correlation between

the experimentally and later operationally measured ability was r = .82. The assessment

contained 20 multiple-choice items. We analyze data from the conditions with a total time

limit of 35 minutes. Feedback after every item was given to half of the students, but did not

count towards the timing data. Item order was completely random for every test-taker. The

data set consisted of 418 test-takers, of which 298 reported to be female and 119 reported to

be male. The mean age in the sample was M = 26.93 (SD = 5.97). In total, 17 test-takers

were excluded from the analysis due to aborted test sessions (15 cases) and technical problems

(2 cases).

4.2.1 Is the Assessment Speeded?

To investigate whether the assessment is speeded, we investigated number of not-reached

items and performance decline coupled with speeding up at the end of the test. Skipping

unanswered items was prevented within the assessment software. Of the 401 test-takers in

the data set, 5.0% did not reach the end of the test (i.e. they ran out of time before answering
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to all items).

To investigate speeding up at the end of the test, we identified test-takers, who used

almost all of the time available for the assessment. 127 of the 401 test-takers (31.7%) used

more than 30 minutes. These test-takers are referred to as slow test-takers, whereas the other

test-takers are referred to as fast test-takers. In addition, for each test-taker, we split the

test in two parts according to the item order: The first 15 items and the last five items.

We compared the response accuracy and the response times in the first and last part using

proportion tests and median tests, respectively. Proportion correct were compared for the

subset of slow test-takers including and excluding test-takers with not-reached items, as well

as for fast test-takers. For both subsets of slow test-takers, on the first fifteen positions, the

items are answered correctly more often (all slow test-takers: mean difference = 0.064, p =

.009; slow test-takers without not reached items: mean difference = 0.065, p = .009). For

fast test-takers, this difference is not meaningful (mean difference = 0.011, p = .517). The

slow test-takers also take more time to answer to these items (median difference = 11.775,

p = .001), while fast test-takers do not (median difference = 2.07, p = .10). Scatter plots

with proportion correct and median response time on item level can be seen in Appendix B.1

Figures 38 and 39.

These findings indicate that for a substantial number of test-takers the assessment was

speeded. These test-takers performed better on the items at the beginning of the test than

on the items at the end of the test. This was partially due to not-reached items but also due

to taking less time on the items at the end of the test which resulted in decreased accuracy.

4.2.2 What are the Potential Consequences?

To illustrate the potential consequences of different item orderings, we simulated data for

the slowest test-takers in the sample. First, we estimated a joint response and response time

model. Based on the estimated parameters, we simulated responses and response times and

implemented different item orderings. The goal was to compare differences in sum scores

within the test-takers for different item orderings.

Data Simulation. We used the R package LNIRT (Fox et al., 2021) to estimate a joint

hierarchical framework for responses and response times with the above described models.

The estimated person and item parameters were used to simulate responses and response

times for the seven slowest test-takers. Note that responses and response times were also

simulated for items that were originally not-reached for specific test-takers. We then applied
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different orderings of items to illustrate maximum potential bias between differently ordered

test forms: (a) sorting items by increasing time intensity (“Short-Long”), (b) sorting items

by decreasing time intensity (“Long-Short”), (c) sorting items by increasing difficulty (“Easy-

Hard”), (d) sorting items by decreasing difficulty (“Hard-Easy”). These orderings were chosen

to illustrate maximally unfair ordered test forms. Response times were then accumulated. If

the cumulative response times exceeded the time limit of 35 minutes, the items were scored as

incorrect (in a real exam, these items would have been not-reached). We then compared the

resulting sum scores for the test-takers across the differently ordered test forms. Note that

this approach simulates data with a constant working speed. In real life it seems plausible

to assume that some test-takers would compensate running out of time by speeding up.

However, as mentioned earlier, such behavior would also result in lower test scores due to

decreased accuracy.

Table 6: Simulated Test Scores for Different Item Orderings for Seven Different Test-Takers
with Different Speed (ζ) and Ability Levels (θ) of one Randomly Chosen Replication.

ζ θ Short-Long Long-Short Easy-Hard Hard-Easy range(Σ)

-0.78 -0.87 5 1 5 2 4
-0.76 -0.83 3 3 3 3 0
-0.59 -0.02 7 5 8 4 4
-0.83 0.10 10 8 11 8 3
-0.64 -0.74 7 5 8 3 5
-0.59 -0.95 9 9 10 8 2
-0.58 -0.57 6 3 8 3 5

Note: Different item orderings means items were sorted in increasing or de-
creasing order by the respective item parameter time intensity (Short-Long
or Long-Short) or difficulty (Easy-Hard or Hard-Easy). Columns contain the
resulting test scores and column range(Σ) the maximum difference between
these columns.

Results. Table 6 illustrates that different item orderings can indeed lead to substantially

different test results. For example, one of the most extreme results occurs for the person in

row five: On the test form with items sorted by increasing difficulty b the person achieves a

sum score of 8, while on the test form with items sorted by decreasing difficulty b the person

achieves a sum score of 3.

As the simulated responses and response times can vary substantially due to the proba-

bilistic simulation process, we conducted 100 replications. The complete results can be seen

in Appendix B.2. For each of the seven test-takers the average range in sum scores between

test forms across replications was greater than 2.5. The maximum difference across replica-
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tions was between 6 and 10. These are substantial differences for a test with 20 items. Note

that we chose the most extreme item orderings possible in this illustrative example. However,

if different versions of a test are created by ordering items randomly, these extreme orderings

are also possible.

4.3 Proposed Solutions

In this paper, we are proposing two solutions to avoid item position effects in higher edu-

cational assessments. First, a certain number of items at the end can be fixed in constant

ordering across test forms. This prevents differential effects of item ordering at the end of

a test, as test-takers run out of time on identical items. While some may argue that this

reduces test security, we would argue that at the end of a test, test-takers are less likely to

work on the same item compared to the beginning of the test, because test-takers work at

different speed levels. Obviously, it is not trivial to decide how many items or which portion

of the test should have identical ordering at the end of the test forms. If too few items are

chosen, test-takers might run out of time before the section is reached. If too many items are

chosen, test security is lowered for no good reason. This can be seen as a security-fairness

trade-off.

The effectiveness of the proposed approach can be enhanced by choosing to place the

most time intensive items at the end of the test. By doing this, it becomes more unlikely

that effects of speededness occur before the fixed set of items is reached. To investigate

the effectiveness of the proposed approaches we conducted a simulation study with realistic

conditions for a higher educational exam.

4.4 Simulation Study

For the simulation study, hyper-parameters were used from the analyses of two psychology

exams (organizational and social psychology) at a Dutch university. Hence, the simulated

data is representative for the high-stakes higher educational testing context. Both exams

contained 25 multiple-choice items and one open-answer item administered under a time

limit of 40 minutes. The exams were conducted on computers in an online assessment setting

and taken by 527 first-year psychology students. Students were not allowed to review items

and all items were presented in a random order to the students. Responses and response times

to all multiple-choice items were available for analysis, while item order was not. We analyzed

the data using the R package LNIRT. As the results were very similar for both exams, we only
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report the results of the organizational psychology exam below. The hyper-parameters of

the item and person parameter distributions are depicted in Appendix B.3 Table 17. The

estimated correlation between item difficulty and time intensity was r = 0.62. The estimated

correlation between speed and ability was r = 0.24.

4.4.1 Design

In the simulation, we used the illustrated hyper-parameters to create a realistic test con-

taining 40 items. In each of the conditions, two test forms were created. We conducted the

simulation study to answer the following questions: (a) Are the proposed approaches effective

in preventing unfair effects of different item orders? (b) What are the effects if the number

of items with fixed positions at the end of the test forms is too low? (c) What are the effects

if time intensity is not known before the assessment and must be (imperfectly) predicted?

We varied two experimental factors: The number of items with fixed positions at the end

of the test (three levels: [0; 5; 10]) and the selection and ordering of these items (three levels:

[random; based on an item time intensity covariate21; based on true item time intensity]).

Because the second factor is irrelevant when the number of items with fixed positions is equal

to zero, this resulted in overall seven conditions.

To observe a variety of speed and ability levels, person parameters were created as a grid:

Speed levels were [−0.6,−0.4,−0.2, 0] and ability levels were [−1, 0, 1]. These values were

chosen because effects of speededness are relevant across all ability levels, but mainly relevant

for slower test-takers. The grid also represents the width of possible person parameters

according to Appendix B.3 Table 17. The time limit was set at 40 minutes. Responses and

response times were created according to the Rasch model and the log-normal response time

model (cf. above). Test scores were calculated. In total, 1000 replications were conducted.

The complete R code for the simulation can be accessed here: https://osf.io/d97b5/?view

only=804fc3db7aab466e8cb358c6f7c7fa8c.

4.4.2 Results

To analyze unfairness of the test forms we compared test scores between the two test forms for

all conditions and replications. In Table 7, the average and the maximum difference between

the test scores on the test forms are depicted for all seven conditions. Note that the table

only contains the results for the slowest but most able test-takers. The table illustrates that

21Empirical mean correlation with true item time intensity of r = .61
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there can be considerable differences between two test forms with exactly the same items but

different item orderings, if no measures are taken, with M(∆) = 0.90. The table can also

be used to answer the research questions stated above: (a) Indeed, the proposed measures

reduce differences between test forms. In the condition with the strongest control measures

(ten items fixed, sorting based on time intensity), there are almost no differences between test

forms on average, with M(∆) = 0.19. In fact, the simulation indicates that even imperfect

measures serve the purpose of reducing effects of different item orderings, albeit less strongly.

(b) If there are only five items fixed, which are sorted based on time intensity, the resulting

mean difference between test forms is M(∆) = 0.43. (c) If the sorting occurs based on a

covariate of time intensity, the resulting mean difference between test forms is M(∆) = 0.22.

This indicates that number of items held constant is more important than quality of the time

intensity prediction22.

Table 7: Results of the Simulation Study: Mean (M(∆)) and Maximum Difference (Max(∆))
between the Test Scores for the Two Identical Test Forms with Different Item Orderings.

Fixed Positions Ordering Items with Fixed Positions M(∆) Max(∆)

0 Random 0.90 4.08
5 Random 0.69 2.98
10 Random 0.32 1.36
5 Based on covariate 0.58 2.46
10 Based on covariate 0.22 1.07
5 Based on time intensity 0.43 1.90
10 Based on time intensity 0.19 0.68

Note: Item ordering was either completely random (0 items constant), or random with either
the last five or ten items fixed. The constant items were either picked randomly or the most
time intensive items (’Based on Time Intensity’) or presumably most time intensive items were
fixed (’Based on Covariate’).

Complete results for all person parameter combinations can be seen in the Appendix

B.3 Figures 40 and 41 for mean and maximum differences across replications, respectively.

Results for the other person parameter combinations are comparable, albeit decreasing with

increasing speed (test-takers run out of time less early) and decreasing ability (test-takers are

less punished for not answering to items as they would have had a lesser chance of answering

them correctly anyway).

22Note that the maximum differences in sum scores between the test forms in Table 7 are less pronounced
than in Appendix B.2 despite the longer test forms. This is due to the fact that for Appendix B.2 item orders
have been specifically chosen to be as unfair as possible (e.g. Short-Long vs. Long-Short). Furthermore,
in Table 7 results are aggregated across multiple test-takers while in Appendix B.2 results are depicted for
individual test-takers.
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4.5 Discussion

In the past, there have been various studies on whether different item orderings in higher

educational testing are an adequate measure to increase test security or a potential source

of unfairness. In a small illustration using quantitative reasoning data, we have shown that

speededness plays a neglected but important role in the matter: When a test is speeded it

becomes important to consider which items are placed at the end of a test, as these items are

more likely to be not reached or test-takers allocate less time on them than on items at the

beginning of the test. Furthermore, using the data set we illustrated how speededness can be

detected by investigating missing responses and item position effects. To prevent such unfair

test forms, we proposed two straightforward measures to prevent effects of item ordering in

speeded higher educational tests: Fixing the last items across test forms and additionally

picking the most time intensive items for these positions. In a simulation study based on

data of Dutch university psychology exams, we illustrated that these approaches are indeed

suitable to prevent unfair test forms regarding item ordering.

4.5.1 Practical Recommendations

From a practical point of view, the question arises how large the proportion with constant

ordering at the end of a test should be and how time intensive items can be identified. In

an ideal world, this should be determined be pretesting the test and determining the level

of speededness. This could be done by using similar measures as in the illustrative example

above or more complex modeling techniques such as change point analyses (Bolt et al., 2002;

Goegebeur et al., 2008) However, a lot of higher educational exams and tests do neither have

the opportunity to allow for extensive item pretesting without compromising test security

nor have the required resources.

Hence, in many realistic settings, test administrators will have to rely on some assumptions

and heuristics: Based on our analyses, we argue that holding one fourth of the items at the

end of the test constant is a reasonable measure. Thereby test security is still not severely

threatened but this proportion covers the part of the test on which changes to test taking

behavior might be likely to occur. Note that the requirement of items held constant depends

on the discrepancy between time intensities: If a single, very time intensive item takes up

one fourth of the testing time for most test-takers, it might be sufficient just to put this

single item at the end of the test. Moreover, if item difficulty and item time intensity are

expected to be highly correlated, items that are anticipated to be difficult can be chosen for
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positions at the end of the test. Time intensity can also be expected to depend strongly

on item type; open-answer items or elaborate constructed-response items can be expected

to be almost always more time intensive than multiple-choice items. Finally, it should be

noted that assigning time intensive items to the last item positions across test forms has the

positive side effect of reducing the general influence of test-wiseness on test scores.

4.5.2 Alternative Approaches

Of course, there are also different (but more complex) approaches to prevent problems re-

garding item order effects: Item time limits could be set to reduce differential effects of

speededness (Goldhammer, 2015), as they prevent test-takers to distribute their time un-

wisely on the test. Furthermore, van der Linden and Xiong (2013) proposed a useful ap-

proach to control speededness in the framework of computer adaptive testing. While these

approaches seem theoretically promising, they would often pose a substantial modification to

higher educational assessment practice and require computer-based testing.

Alternatively, there is a wide range of psychometric models which aim at disentangling

speed and ability. Even if effects of different item orderings have occurred, these models

could be used to prevent bias in ability estimation (e.g., Pohl et al., 2019; Rose et al.,

2017). However, most of these models were designed for use in low-stakes assessments and

might be prone to gaming (e.g., test-takers purposely not reaching the end of the test).

Furthermore, they require the availability of response times for analyses, which are only

available in computer-based testing.

It is noteworthy that in some contexts, test forms are created with no item overlap (e.g.,

different administrations of the GRE or TOEFL). In such situations, often approaches known

as automated test assembly are used to create parallel test forms (van der Linden, 2005).

However, when such test forms are used, having exactly the same items fixed at the end of a

test is impossible, as these test forms do not share the same items. Some of the mentioned

approaches above (item time limits, CAT) may be able to solve the problem of unfair test

forms due to different items at the end of test forms. However, the additional administration

conditions that are required for these approaches may not be feasible in all testing situations

where multiple test forms are assembled. Further research could investigate how fair test

forms can be assembled in the context of test time limits and differences in speed between

the test-takers.
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4.5.3 Conclusion

Although impact of item ordering on test fairness has been a topic of research for more than

50 year, the role of test speededness has been largely left unaddressed. In this paper, we have

shown that especially when test-takers work under substantial time pressure and run out of

time at the end of the test, item order plays a crucial role. Large differences in the expected

test score are created between test forms that are supposed to be equivalent. To mitigate

this issue, we have proposed two measures which keep the advantage of different item orders

(increasing test security) while preventing unfair test forms: Keeping a certain number of,

ideally time intensive, items constant at the end of a test. We believe that these measures

can be easily implemented in practice and thereby help create fair test forms in the context

of higher educational testing.
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Abstract: Response time modeling is developing rapidly in the field of psychometrics, and

its use is growing in psychology. In most applications, models for response times are modeled

jointly with models for responses, thereby stabilizing estimation of response parameters and

enabling research on a variety of novel substantive research questions. Bayesian estimation

techniques facilitate estimation of response time models. Implementations of these models

in standard statistical software, however, are still sparse. In this accessible tutorial, we dis-

cuss one of the most common response time models, the log normal response time model,

embedded in the hierarchical framework by van der Linden (2007). We provide detailed guid-

ance on how to specify and estimate this model in a Bayesian hierarchical context. One of

the strengths of the presented model is its flexibility, which allows to adapt and extend the

model according to researchers’ needs and hypotheses on response behavior. We illustrate

this based on three recent model extensions: (a) application to non-cognitive data incor-

porating the distance-difficulty hypothesis, (b) modeling conditional dependencies between

response times and responses, and (c) identifying differences in response behavior via mixture

modeling. This tutorial gives non-specialist and applied researchers a better understanding

of the use and utility of response time models, showcases how these models can easily be
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adapted and extended, and contributes to a growing use of these models to answer novel

substantive research questions in both non-cognitive and cognitive contexts.
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5.1 Introduction

The rise of computer-based assessments is accompanied by the opportunity to record ad-

ditional information on test-taking behavior, such as response times, mouse movements,

keystrokes, or clickstreams, to name just a few. Out of these, response times have received by

far the most attention in psychological, psychometric, and methodological research. Response

times are usually defined as time on task (how much time was spent on an item in total; e.g.,

OECD, 2016a). They can help obtaining more precise ability estimates (van der Linden et

al., 2010) and support addressing substantive research questions related to how test-takers

allocate their time (e.g., Naumann & Goldhammer, 2017). Other applications of response

time analyses include the assembly of equivalent test forms while keeping speededness parallel

(van der Linden, 2011b), the detection of aberrant test behavior due to fraudulent behav-

ior or malfunctioning items (van der Linden & Guo, 2008), or detecting disengagement in

low-stakes assessments (Ulitzsch et al., 2019a, 2020).

Response time analysis has a rich history in other fields such as experimental psychology,

dating back multiple centuries (Craigmile et al., 2010; Luce, 1986; Vandekerckhove et al.,

2011). Nonetheless, most response time models are quite recent developments (i.e. within the

last 10-20 years) in the psychometric literature that are rarely used in substantive or applied

research. A potential reason is that the models and methods, especially their latest extensions,

are not straightforward to implement in standard statistical software (e.g. R, SPSS, or Stata).

This is further aggravated by the fact that most recent advances in psychometric response

time modeling utilize Bayesian hierarchical modeling.

In this accessible expert tutorial, we aim at providing guidance to non-specialists and

applied researchers on how to specify and estimate one of the most popular response time

models and three recent model extensions in a Bayesian hierarchical context. We first give

a brief overview over the response time literature in general. We then focus on the three-

parameter lognormal model for response times by Klein Entink, Fox, and van der Linden

(2009) and show how this response time model can be jointly estimated with common item

response theory (IRT) models for item responses in the hierarchical framework by van der

Linden (2007). Second, we give detailed step-by-step instructions on its specification and

estimation within a Bayesian hierarchical modeling approach. Third, we show how to extend

the basic hierarchical framework to model (a) the distance-difficulty hypothesis in the context

of non-cognitive data (Ferrando & Lorenzo-Seva, 2007), (b) conditional dependence between

response times and accuracy (Bolsinova, de Boeck, & Tijmstra, 2017), and (c) qualitative dif-
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ferences in response behavior based on a mixture modeling approach (Ulitzsch et al., 2019a),

thereby showcasing the framework’s flexibility in adjusting to researchers’ needs.

5.1.1 Response Time Modeling

For historical reviews of the response time literature see Schnipke and Scrams (2002), Lee and

Chen (2011), van der Linden (2009a), as well as Kyllonen and Zu (2016). The latest review

is provided by De Boeck and Jeon (2019). De Boeck and Jeon (2019) classify the existing

response time models into four categories: (a) response time models (with response times

being the sole depended variable), (b) joint models (with an additional depended variable,

most commonly response accuracy), (c) dependency models (in which joint models are ex-

tended to accommodate residual dependencies), and (d) response times as a covariate models

(response times are used to predict another variable, e.g. accuracy).

This tutorial focuses on joint models and dependency models, which currently are receiv-

ing the most attention in the psychometric literature23. According to De Boeck and Jeon

(2019), there are three different families of joint response time models: members of the gen-

eralized linear item response theory modeling framework (B-GLIRT, Molenaar, Tuerlinckx,

& van der Maas, 2015b), diffusion models, and race models. Furthermore, there is a research

line of enriching cognitive diagnostic models (CDM) with response time data (Zhan et al.,

2018). It is important to note that CDMs, diffusion models, and race models are process mod-

els, which means that they aim at explaining the processes that lead to different responses

and response times. In contrast, the B-GLIRT model family consists of purely descriptive

measurement models (De Boeck & Jeon, 2019). The most popular joint model is, by far,

the hierarchical model by van der Linden (2007). It can be subsumed under the B-GLIRT

family (Molenaar, Tuerlinckx, & van der Maas, 2015b) and is arguably the most widely used

response time modeling framework (De Boeck & Jeon, 2019).

5.1.2 The Hierarchical Framework by van der Linden (2007)

For simultaneous modeling of response times and item responses, van der Linden (2007) pro-

poses a hierarchical framework, which basically resembles a two-dimensional latent factor

model with common multivariate item and person parameter distributions. A central char-

acteristic of the framework is its “plug and play” approach, where the component models

23Note that response time models are often contained within joint models; therefore, if researchers are able
to implement joint models, implementing response time models without the response counterpart becomes
trivial.
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are open to flexible adaptation. The framework has frequently been applied to address sub-

stantive research questions (e.g., Debelak et al., 2014; Goldhammer & Klein Entink, 2011;

Scherer et al., 2015) and has been subject to various extensions and modifications. Examples

for these are models that take residual dependencies between responses and response times

into account (e.g., Bolsinova, 2016), allow for varying speed and accuracy throughout the

test (e.g., Fox & Marianti, 2016; Molenaar et al., 2016), or aim at detecting and modeling

differences in response processes, for instance aberrant response behavior (van der Linden &

Guo, 2008) such as rapid guessing behavior (Ulitzsch et al., 2019a; C. Wang & Xu, 2015).

In its original form, the framework consists of three components. The first two components

are the measurement models specified for item responses and the associated response times.

The third component consists of the joint distributions for the parameters of the measurement

models. In the following, we introduce the framework in a Bayesian hierarchical context with

a two-parameter logistic (2PL) IRT model for responses and the three-parameter lognormal

(3PLN) model for response times as two widely employed measurement models for either

type of data.

The First Component: The Two-Parameter Logistic Model for Item Responses.

The 2PL IRT model is one of the most commonly used measurement models for the response

model in the hierarchical framework. In the 2PL model applied in a cognitive context, the

probability of person i, i = 1, ..., I, to solve item k, k = 1, ...,K, correctly can be written as:

P (yik = 1|θi, ak, bk) =
exp(ak(θi − bk))

1 + exp(ak(θi − bk))
, (51)

with θi denoting person i’s ability, and ak and bk giving item k’s item discrimination and

item difficulty, respectively. For detailed information on general concepts of IRT and the 2PL

model in particular, see, for example, de Ayala (2022).

The Second Component: The Three-Parameter Lognormal Model for Response

Times. For response times, measurement models based on the lognormal distribution are

often used, since response times are non-negative and positively skewed (Schnipke & Scrams,

1997)24. The 3PLN response time model by Klein Entink, Fox, and van der Linden (2009)

(see also Ranger & Ortner, 2012a) is a simple generalization of the two-parameter lognormal

24There are alternative distributions that can be used to model response times, such as the gamma distri-
bution, the ex-Gaussian distribution, or the Weibull distribution (for a brief overview, see De Boeck & Jeon,
2019). Nevertheless, it has been shown that lognormal models oftentimes provide the best fit, compared to
models based on other distributions (Schnipke & Scrams, 2002)
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response time model by van der Linden (2006). In the 3PLN model, response times RTik are

assumed to be lognormally distributed and modeled as

lnRTik = λk − ϕkζi + ϵik, with ϵik ∼ N(0, σ2ϵk). (52)

The time intensity parameter λk represents the workload of an item, while the speed sensitivity

parameter ϕk represents how strongly items differentiate between slow and fast test-takers.

The speed parameter ζi represents the speed of a person i working on the test, and the

parameter σ2ϵk is an item-specific residual variance. The model resembles a unidimensional

confirmatory factor analysis model with freely estimated intercepts (time intensities), fac-

tor loadings (speed sensitivities), and residual variances. Due to the log-transformation of

response times, parameter interpretation is less straightforward. For more detailed explana-

tions see the work of van der Linden (2006) and Becker, Debeer, Weirich, and Goldhammer

(2021).

The Third Component: The Hierarchical Structure of the Joint Parameter Distri-

butions. The hierarchical framework models both item and person parameters as random

effects, and assumes that the item and person parameters of both measurement models stem

from common multivariate normal distributions. For the presented measurement models, this

results in the following person parameter distribution:

(θi, ζi) ∼ MVN (µI ,ΣI). (53)

The respective item parameter distribution can be denoted as

(ln ak, bk, lnϕk, λk) ∼ MVN (µK ,ΣK). (54)

The log transformations of the item discrimination and speed sensitivities are commonly

applied to enable the use of a joint multivariate normal item parameter distribution (Bolsi-

nova, 2016; Glas & van der Linden, 2003), as these parameters are often constrained to
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positive values.2526 The full likelihood for this and all other models discussed in this tutorial

are provided in Appendix C.1 or online supplement S0. All online supplements, including

model specifications and scripts necessary to estimate the models, are available on the online

repository at https://osf.io/k4m3s/.

For a detailed overview over the hierarchical framework and its assumptions see the work

of van der Linden (2007). Two crucial assumptions of the hierarchical framework are the

constant speed assumption and the assumption of conditional independence. The constant

speed assumption implies that test-takers work with the same level of speed throughout

the test. This assumption mirrors the assumption of constant ability of most IRT models.

The conditional independence assumption implies that responses and response times are

independent conditional on the common person and item parameter distributions. Both

assumptions have repeatedly been questioned (e.g., Bolsinova, de Boeck, & Tijmstra, 2017;

Domingue et al., 2021) and are, for example, violated if test-takers speed up at the end of a

test. Such speeding-up could occur if there is a strict speed limit on a test or if the motivation

of test-takers declines throughout the test. From a practical perspective, these assumptions

are reasonable for most applications and comparable to the assumptions of most “plain” IRT

models. However, there are model extensions in the hierarchical framework, which allow

modeling, for example, variable speed or conditional dependencies (Bolsinova, de Boeck, &

Tijmstra, 2017; Fox & Marianti, 2016). One of these extensions will be presented in detail in

the model extension section of the tutorial.

5.2 Doing Bayesian Hierarchical Response Time Modeling

In this section, we provide detailed guidance on how the basic hierarchical framework based

on the 2PL and 3PLN models can be specified and estimated using a Bayesian hierarchical

modeling approach. In this tutorial, we will use Stan (Carpenter et al., 2017) and its R pack-

age rstan (Stan Development Team, 2021), a general-purpose Bayesian estimation software

utilizing the No-U-Turn-Sampler (NUTS) that is based on Hamiltonian Markov chain Monte

Carlo (MCMC) sampling. While the basic hierarchical framework can easily be estimated

25Speed sensitivities and discriminations are constrained to positive values to deal with rotation indeter-
minacy. Note that this assumption also aligns with theoretical considerations in the context of cognitive
assessments where, commonly, all items can be assumed to load in the same direction on the ability and
speed factors. When researchers do not deem this assumption plausible, e.g., when analyzing items from
non-cognitive assessments worded in different directions, they can, without loss of generality, model item pa-
rameters as fixed effects, and constrain the first speed sensitivity and discrimination parameter to positive
values, while leaving the remaining speed sensitivity and discrimination parameters unconstrained.

26Note that this implementation deviates from Equation 18 presented in Chapter 1, as a and ϕ are log-
transformed. However, this does not change the conceptual meaning of the respective parameters.
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using Maximum Likelihood (ML) estimation implemented in standard statistical software

(e.g., Mplus, lavaan), ML implementations and estimation of the more complex extensions

can be challenging. Although custom-made Gibbs samplers exist for some of the extensions,

such customized samplers cannot easily be adapted to researchers’ needs. Furthermore, these

tailored Bayesian solutions do not offer the full range of diagnostics to assess the quality of the

resulting parameter estimates, in contrast to modern general-purpose Bayesian software such

as Stan. As detailed general introductions to Bayesian modeling and the Stan programming

language are beyond the scope of this paper, we refer readers to a collection of resources in

Appendix C.2 or online supplement S8. Note that this list is by no means exhaustive but a

small collection of resources we ourselves found helpful when doing Bayesian modeling using

Stan.

The Bayesian hierarchical modeling approach illustrated here warrants further introduc-

tory explanations. Instead of assigning prior distributions to the individual item or person

parameters, hyperprior distributions are specified for the grand means, standard deviations,

and correlations of the joint multivariate item and person parameter distributions (see Equa-

tions 53 and 54). This hierarchical specification results in partial pooling, as information of

all parameters assumed to stem from a joint distribution is used for estimating an individual

parameter (e.g., Jackman, 2009). This is beneficial in terms of precision; the standard er-

rors of the parameter estimates are usually smaller compared to non-hierarchical approaches.

For implementing the hierarchical specification, we follow a separation strategy (Barnard et

al., 2000; König et al., 2020), which allows assigning individual prior distributions for stan-

dard deviations and correlations, giving researchers more fine-grained control over these prior

distributions. More details are given in the following sections describing the actual implemen-

tation in Stan. We use weakly informative prior distributions in the form of the Cauchy (or,

alternatively, the exponential) distribution as hyperpriors for the standard deviations (Gel-

man, 2006; Polson & Scott, 2012). They introduce a small amount of information into the

analysis, primarily coming from the knowledge of the typical range of the parameters. They

facilitate convergence and sampling efficiency, which in turn leads to an increased accuracy

of the resulting parameter estimates, especially in smaller samples (e.g., König et al., 2020).

We illustrate the prior densities for the grand means and standard deviations of the item

parameters, and for the marginal correlations of the person and item parameters in Figure

16.
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Figure 16: Prior Distributions for Grand Means, Standard Deviations, and Marginal Cor-
relations.

Data. The data has to be provided in long format, where the number of rows equals the

total number of observed responses. Table 8 illustrates the first ten rows of a data set in

the long format. The electronic supplement S1 contains exemplary R code for reshaping the

data from wide to long format, and how to pass the data to Stan. Note that all input objects

for Stan need to be supplied as a named list, with list names specifying how objects can be

referred to within the Stan code. Figure 17 shows how all data input is defined in a single list

object for a data set consisting of responses and response times for 12 items and 500 persons.

Table 8: First Ten Rows of an Example Data Set in Long Format.

ID item y RT log RT

1 1 0 164.50 5.10
2 1 1 16.66 2.81
3 1 1 62.45 4.13
4 1 1 37.61 3.63
5 1 0 13.57 2.61
6 1 1 66.81 4.20
7 1 0 26.39 3.27
8 1 1 44.77 3.80
9 1 1 32.25 3.47
10 1 0 40.02 3.69

Note: ID: test-taker identifier; item: item number; y: response; RT: response
time in seconds; log RT: log-transformed response time.

Having prepared the data in R, we now turn our attention to the specific components of

a Stan model file (with .stan extension). The complete stan code for the basic hierarchical
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Figure 17: R Code Setting up the Data Input for the pisaL Dataset Consisting of Responses
and Response Times for 12 Items and 500 Persons for Stan.

# data in Stan format
K <- 12
I <- 500
pisa_data <- list(K = K,

I = I,
Nobs = K * I,
kk = as.integer(pisaL$item),
ii = as.integer(pisaL$ID),
y = pisaL$y ,
logrt = pisaL$log_RT)

}

model can be found in online supplement S2. The first component is the data block, which

defines and initializes the core elements of the data (see Figure 18): the number of test-takers

I, the number of items K, and the number of the observed responses and associated response

times Nobs as integer values (see the int-descriptor). It is possible to specify lower and

upper bounds. The dimensions of the objects are declared by the value (or other descriptors)

between the square brackets. The item responses y (integer values of 0 and 1, denoting

wrong and correct responses, respectively) and the log transformed response times logrt

(real numbers without bounds) are defined as vectors of length Nobs. Finally, the vectors ii

and kk are used as person and item identifiers for each observed response and the associated

response time.

Figure 18: The Data Block for the Hierarchical Framework Specification.

data {
int <lower=1> K;
int <lower=1> I;
int <lower=1> Nobs;
int <lower=1> kk[Nobs];
int <lower=1> ii[Nobs];
int <lower=0,upper=1> y[Nobs];
vector[Nobs] logrt;

}

Parameters. The parameters block (Figure 19) declares all model parameters to be esti-

mated (here: individual person and item parameters), as well as the associated hyperparam-

eters of the prior distributions (here: parameters describing the joint distribution of person

and item parameters). We first declare an array person containing I row vectors of length

2 (for the two person parameters ability and speed), and an array item containing K row

vectors of length 4 (for the four item parameters discrimination, difficulty, speed sensitivity,

and time intensity) to store the person and item parameters, respectively. Second, we de-

clare a vector of length K of residual standard deviations of the log response times sigma e.
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Since these residuals cannot be negative, we introduce a lower bound of zero as a parameter

constraint (<lower=0>). Third, a vector mu item of length 4 is declared that contains the

grand means of the multivariate normal hyperprior distribution for the four item parameters.

For identification, the means of the bivariate normal hyperprior distribution for the person

parameters are hard-coded to be zero, and thus not declared as parameters. Fourth, a vector

tau item of length 4 is declared that contains the standard deviations of the multivariate nor-

mal hyperprior distribution for the four item parameters. Because the standard deviations

of the bivariate normal hyperprior distribution for the person parameters are hard-coded

to be one for model identification, they are not explicitly declared as parameters. Lastly,

L Omega person and L Omega item are the Cholesky factors of the correlation matrices of

the person and item parameters, respectively. Together with the vector of standard devi-

ations tau item, the Cholesky factors are central parts of the aforementioned separation

strategy.

Figure 19: The Parameters Block for the Hierarchical Framework Specification.

parameters{
row_vector [2] person[I];
row_vector [4] item[K];
vector <lower =0>[K] sigma_e;
vector [4] mu_item;
vector <lower =0 >[4] tau_item;
cholesky_factor_corr [2] L_Omega_person;
cholesky_factor_corr [4] L_Omega_item;

}

Transformed Parameters. In the transformed parameters block (Figure 20) we declare

transformations of the raw parameters. This may include transformations of auxiliary param-

eters into parameters of substantive interest, identification restrictions of certain parameters,

or simple convenience transformations. In our case, the transformations essentially just give

explicit names to the columns of person and item arrays. These are convenience transfor-

mations that support readability of the code. We declare six vectors (four of length K, two

of length I) storing the item discriminations, difficulties, speed sensitivities, and time inten-

sities (discrimination, difficulty, sensitivity, intensity), and the ability and speed

parameters (ability, speed). Since item discriminations and speed sensitivities cannot be

negative, we declare a lower bound of zero with the lower=0 command. In the following,

the actual transformations are specified with the to vector command, which transforms the

columns of the person and item arrays into column vectors. Recall that log-transformed item

discriminations and time sensitivities are modeled in the joint item parameter distribution.
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Thus, to obtain untransformed item discriminations and time sensitivities, the respective

transformed column vectors are exponentiated. Note that all transformed parameters have

to be declared before specifying the transformations, otherwise the model specification will

not compile.

Figure 20: The Transformed Parameters Block for the Hierarchical Framework Specification.

transformed parameters{
vector <lower =0>[K] discrimination;
vector[K] difficulty;
vector <lower =0>[K] sensitivity;
vector[K] intensity;
vector[I] ability;
vector[I] speed;

discrimination = exp(to_vector(item [ ,1]));
difficulty = to_vector(item [,2]);
sensitivity = exp(to_vector(item [ ,3]));
intensity = to_vector(item [,4]);
ability = to_vector(person [ ,1]);
speed = to_vector(person [,2]);

}

Model. In the model block (Figure 21), the core of the script, we specify the prior dis-

tributions for the parameters declared in the parameters block, followed by the likelihood

of the model. We first specify an LKJ prior distribution27 (Lewandowski et al., 2009) for

the Cholesky factor of the correlation matrix of the person parameters L Omega person, gov-

erned by the parameter η ≥ 1. As η increases, the density increasingly concentrates around

the identity matrix, giving more weight to smaller correlations. Our specification (η = 1)

implies a uniform prior on correlations. Next, we specify a multivariate normal prior dis-

tribution for each row of person, with a zero-vector as grand means and covariance matrix

ΣI = diag(τI)LΩI
. The diag pre multiply command returns the product of the diagonal

matrix tau (in our case, the diagonal is given by a vector of ones) and the Cholesky factor

L Omega person. Both the LKJ and the multivariate normal distributions are used in their

Cholesky parameterization for efficiency purposes. This prior specification is repeated for the

item parameters, where we need to assign prior distributions to the grand means and standard

deviations of the multivariate normal prior distribution as well. For the LKJ prior on the

correlations, setting η = 1 does not result in a uniform prior in this case, because the number

of dimensions is larger than for the person parameters (see Figure 16). The density, however,

concentrates its mass around zero, and makes extreme correlations less likely. Furthermore,

we assign a weakly informative normal prior distribution to the grand means, and a weakly

27LKJ is an acronym consisting of the first letters of the family names of the authors of the original paper.
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informative half-Cauchy distribution to the standard deviations. We further employ a weakly

informative half-Cauchy prior distribution for the residual standard deviations sigma e.

Declaring the likelihood completes the model specification. In our case, we have the 2PL

model that assumes that the responses yik follow a Bernoulli distribution in logit specifi-

cation, governed by Equation 51, and the 3PLN model that assumes that the log response

times follow a normal distribution governed by Equation 52. The target+=-command is the

sampling statement that, in case of the 2PL model, indicates that, for instance, a Bernoulli

distribution is added to the target density (the target density being the joint posterior distri-

bution of the model). The lpmf and lpdf suffixes denote log probability mass functions and

log probability density functions, respectively. Alternatively, the likelihood can also be spec-

ified with simplified sampling statements: y ~ bernoulli logit(discrimination[kk] .*

(ability[ii] - difficulty[kk]) and logrt ~ normal(intensity[kk] - sensitivity[kk]

.* speed[ii], sigma e[kk]). Note that the likelihood is vectorized (the .* operator that

is the elementwise product of the sensitivity and speed vectors) and no loop over obser-

vations is necessary.

Figure 21: The Model Block for the Hierarchical Framework Specification.

model{
target += lkj_corr_cholesky_lpdf(L_Omega_person | 1);
target += multi_normal_cholesky_lpdf(person | [0,0],

diag_pre_multiply ([1,1], L_Omega_person );

target += lkj_corr_cholesky_lpdf(L_Omega_item | 1);
target += normal_lpdf(mu_item | 0,5);
target += cauchy_lpdf(tau_item | 0,2);
target += multi_normal_cholesky_lpdf(item | mu_item ,

diag_pre_multiply(tau_item , L_Omega_item );
target += cauchy_lpdf(sigma_e | 0,2);

target += bernoulli_logit_lpmf( y | discrimination[kk] .*
(ability[ii] - difficulty[kk]));

target += normal_lpdf( logrt | intensity[kk] - sensitivity[kk] .*
speed[ii], sigma_e[kk]);

}

Generated Quantities. The generated quantities block allows us to calculate addi-

tional quantities that can be derived from sampled parameters and are necessary for poste-

rior predictive checks (PPC), for evaluating the model fit, and for model comparisons. These

calculations are done after the sampling process; thus, these parameters and additional quan-

tities do not factor into the likelihood. In our application (Figure 22), we want to calculate

the correlation (ΩK and ΩI) and covariances matrices (ΣK and ΣI) of the item and per-

son parameters, respectively. To calculate ΩK and ΩI , we simply multiply the respective

Cholesky factors with their transpose, e.g. LΩI
LT
ΩI

(in the code block below, this operation is
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accomplished by the multiply lower tri self transpose-command). Then, for example,

ΣK is simply diag(τK)ΩKdiag(τK) (this operation is accomplished by the quad form diag-

command). Therefore, we first define the type (corr matrix and cov matrix for correlation

and covariance matrices, respectively), dimension, and name of the desired quantity, and

then indicate how to calculate it. Since both variance components of ΣI are fixed to 1 for

identification reasons, the second argument of the respective quad form diag-command is a

simple vector of ones. Additionally, we declare one array of integers y rep and one array of

real numbers logrt rep. Both arrays store replicated responses and response times that are

sampled from the posterior distribution using the distribution-specific random number gener-

ators bernoulli logit rng and normal rng, using the sampled item and person parameters

as inputs. These quantities are necessary to be able to conduct PPCs (Stan Development

Team, 2021). Lastly, we declare a vector of length Nobs named log lik that stores the

log-likelihood calculated for each observation. The calculation is done in a loop over ob-

servations, where we first calculate the pointwise log-likelihoods for each outcome variable

(log lik y and log lik logrt), and add them together to obtain the final pointwise log-

likelihood values. This quantity is necessary for model fit evaluations and model comparisons

after the sampling process (Stan Development Team, 2021). Please note that the quantity

has to be named log lik for further use with the loo-package (Vehtari et al., 2019). This

procedure is model-specific, i.e. for the model extensions illustrated later in this tutorial, the

calculation of the replicated data and the pointwise log-likelihood is based on the likelihood

of the respective model (see Appendix C.1 and the specifications of the model extensions in

this tutorial).

5.2.1 Code Execution in R

Actual estimation of the model is performed via calling the stan function of the rstan

package, which can be seen in online supplement S1. The complete stan code as described

above can be seen in online supplement S2. In the arguments of the stan function call, we

specify the model file (with .stan extension), and the data object. We run the sampler with

four chains on four cores simultaneously for greater computational efficiency. Users with

less than four cores available on their machines, however, should set the cores argument

accordingly. For all other settings we use rstan’s default option, which means 2000 draws

per chain, with 1000 draws as burn-in (Stan Development Team, 2021). After successful

convergence, the results are extracted via the summary function. It only requires the fit-
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Figure 22: The Generated Quantities Block for the Hierarchical Framework Specification.

generated quantities {
corr_matrix [4] Omega_item;
corr_matrix [2] Omega_person;
cov_matrix [4] Sigma_item;
cov_matrix [2] Sigma_person;
array[Nobs] int y_rep;
array[Nobs] real logrt_rep;
vector[Nobs] log_lik;

Omega_item = multiply_lower_tri_self_transpose(L_Omega_item );
Omega_person = multiply_lower_tri_self_transpose(L_Omega_person );
Sigma_item = quad_form_diag(Omega_item , tau_item );
Sigma_person = quad_form_diag(Omega_person , [1 ,1]);
y_rep = bernoulli_logit_rng(discrimination[kk] .*

(ability[ii] - difficulty[kk]));
logrt_rep = normal_rng(intensity[kk] - sensitivity[kk] .*

speed[ii], sigma_e[kk]);

for(n in 1:Nobs){
vector[Nobs] log_lik_y;
vector[Nobs] log_lik_logrt;
log_lik_y[n] = bernoulli_logit_lpmf( y[n] | discrimination[kk[n]] *

(ability[ii[n]] - difficulty[kk[n]]));
log_lik_logrt[n] = normal_lpdf( logrt[n] | intensity[kk[n]] -

sensitivity[kk[n]] * speed[ii[n]], sigma_e[kk[n]]);
log_lik[n] = log_lik_y[n] + log_lik_logrt[n];

}
}

object; it is, however, possible to manually specify the boundaries of the credibility interval

(CI) via the prob argument. Depending on which parameter estimates are of interest, results

can be easily extracted, regrouped, or reshaped.

5.2.2 Convergence Diagnostics and Model Fit Evaluation

Prior to interpreting the results of the Bayesian analysis, several characteristics of the MCMC

sampler have to be checked. The most common characteristics are convergence, effective

sample size, and the efficiency of the sampling process. Convergence is indicated by the Rhat

diagnostic (Vehtari et al., 2020), which compares the between- and within-chain estimates for

model parameters. Usually Rhat values smaller than 1.05 indicate acceptable agreement and

convergence of the chains. rstan provides a function for visually checking the Rhat values

for all model parameters (stan rhat) that requires the stanfit-object as input. The effective

sample size (ESS) is an indicator for uncertainty in the parameter estimates attributable

to autocorrelations within the chains (Geyer, 2011). The ESS serves as an indicator for

the number of independent samples with the same estimation power as the actually drawn

autocorrelated samples. Thus, it measures the amount of independent information within

the autocorrelated chains. ESS should be as large as possible. Different guidelines exist for

the minimum ESS required to ensure trustworthy inference. Zitzmann and Hecht (2019)

recommend an ESS for individual parameter estimates of ESS > 400. When assessing
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the quality of the individual parameter estimates of the models in this tutorial, we adopt

this criterion as well. Divergent transitions are also indicative of sampling inefficiencies,

leading to small ESS. Betancourt (2016) illustrates how they depend on the curvature of the

posterior distribution of a given parameter, and how they indicate deviations of the simulated

Hamiltonian trajectory from the true trajectory. In other words, it is possible for the sampler

to be stuck in regions of the posterior exhibiting low mass, from where it is difficult to get

out. Consequently, the sampler spends a lot of time in regions where there is no information

about the parameter, thus decreasing the ESS. Moreover, convergence problems and bias

in the parameter estimates become more likely. Other diagnostics include the Bayesian

Fraction of Missing Information and information about transitions saturating the maximum

tree depth (E-BFMI; Betancourt, 2016; Stan Development Team, 2021). While the technical

details of both diagnostics are beyond the scope of this tutorial, both diagnostics indicate

that the sampler was not able to explore the posterior distribution adequately and efficiently.

rstan provides applied researchers with several convenience functions that make convergence

diagnostics very simple. For example, the check hmc diagnostics() function only requires

the stanfit-object as input and checks for divergent transitions, transitions saturating the

maximum tree depth, and the E-BFMI (see the example code in online supplement S1).

Another useful tool for performing convergence diagnostics is plotting the (marginal)

posterior distributions. This can, for example, be done using the bayesplot package (Gabry

& Mahr, 2022). We include an illustration of posterior plotting and posterior predictive

checking using the bayesplot package in online supplement S1. We illustrate the case for

the log response times, since posterior predictive checks are primarily useful for continuous

data and distributions. The posterior predictive check uses the replicated responses and

response times calculated in the generated quantities block (see Figure 22). The replicated

data are extracted from the stanfit object, and then visually compared to the observed

data. The closer the replicated distributions resemble the distribution of the original data,

the better. For an extensive tutorial on plotting posterior distributions and performing

posterior predictive checks, see Gabry et al. (2019).

Moreover, research questions often involve the evaluation of the goodness of fit of a model

or comparisons of competing models. For instance, for checking whether data quality may be

impeded by rapid guessing behavior, researchers may want to compare the basic hierarchical

model with the mixture extension accommodating rapid guessing behavior illustrated later

in this paper. To conduct model fit evaluations and comparisons it is first necessary to
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calculate the pointwise log-likelihood for one or more given models (as illustrated in Figure

22). The pointwise log-likelihood can then be extracted using the loo-package to calculate, for

instance, the Widely Applicable Information Criterion (WAIC; Vehtari et al. (2017)). Leave-

One-Out cross-validation also requires the model specification to include the calculation of the

pointwise log-likelihood. Additionally to the loo-package, the rstan-package also includes

a loo-function. Both packages only require the stanfit object(s) to calculate model fit

indices such as the LOO-Information Criterion (LOOIC; Vehtari et al. (2017)) or to compare

different models. We include a simple example in online supplement S1. An extensive and

more detailed tutorial on how model comparisons can be conducted using the loo-package,

and how to properly interpret the information provided, can be found in Vehtari et al. (2017).

5.2.3 Empirical Example

To illustrate the basic hierarchical framework, we utilize the freely available PISA 2018 data

set (OECD, 2019a). We use a subset of I = 500 test-takers from the Canadian sample and

K = 12 items from a single booklet from the mathematical literacy domain. Polytomous

items are dichotomized for reasons of simplicity. In the PISA 2018 study, response times

are defined as time spent on item page. The data set is available in the R package pisaRT

(Becker, 2020). The analysis can be reproduced using supplement S1 (R code) and S2 (Stan

code). With the chosen set-up, running the four chains in parallel, model estimation of the

hierarchical framework required roughly 1.50 minutes.

Convergence diagnostics indicated no problems during the sampling process, thus war-

ranting a substantial interpretation of the results. We found a negative correlation between

speed and ability (-.50; 95% CI [-.59, -.39]) indicating that test-takers with lower ability

tended to generate responses faster. Means, standard deviations, and correlations of the item

parameters are given in Table 9, where, for instance, it can be seen that more difficult items

also tended to be more time intensive. Note, however, that due to the small number of items

the credibility intervals are rather broad and that with one exception no correlation between

item parameters is credibly different from zero.

The stanfit-object also includes the estimates of the individual model parameters. Thus,

it is possible to assess the properties and quality of individual items. Table 10 illustrates the

discrimination, difficulty, time intensity and speed sensitivity parameters of the individual

items, along with their 95% CIs. As can be seen, all items had acceptable discriminations and

difficulties. For example, item 1 was very easy (with a difficulty of -2.62), while Item 11 was
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Table 9: Means, Standard Deviations, and Correlations of the Item Parameters of the Basic
Hierarchical Response Time Model

ln(a) b ln(ϕ) λ
ln(a) 0.37

[0.22, 0.59]
b .45 1.33

[.01, .82] [0.87, 2.06]
ln(ϕ) .05 .44 0.33

[-.45, .55] [-.03, .78] [0.20, 0.54]
λ .39 .39 .39 0.54

[-.15, .78] [-.10, .75] [-.10, .75] [0.36, 0.83]
µK 0.19 -.22 -1.19 4.44

[-0.07, 0.44] [-1.03, 0.62] [-1.38, -1.00] [4.07, 4.75]

Note: ln(a): log item discrimination; b: item difficulty; ln(ϕ): log speed sensitivity;
λ: time intensity. Standard deviations and correlations are given in the diagonal
and off-diagonal, respectively. 95% CIs are given in squared brackets.

very difficult (with a difficulty of 2.30). Item 11 also exhibited the highest discriminatory

power. The average workload of the items ranged from 38.64 seconds (item 1) to 169.02

seconds (item 5), with their speed sensitivities ranging from 0.16 (item 1) to 0.47 (item

5). The complete R code to extract the individual item parameters can be seen in online

supplement S1.

5.3 Model Extensions

5.3.1 Modeling the Difficulty-Distance Hypothesis for Non-Cognitive Data

The Basic Idea. The 3PLN model presented above is well suited for modeling response

times for cognitive constructs, for example educational achievement testing. However, con-

ceptual limitations arise when this model is applied to non-cognitive data, for example moti-

vational constructs or attitudes. For non-cognitive constructs, response times and the focal

trait are often assumed to be more closely intertwined. A common hypothesis is the distance-

difficulty hypothesis, which states that the time spent on an item depends on the distance

between the difficulty parameter of an item and the person trait. Conceptually, this means

that persons who either strongly agree or disagree with a statement can quickly decide on

a suitable response option, while persons for whom it is difficult to decide whether or not

they agree with a statement need more time for their decision. The model by Ferrando and

Lorenzo-Seva (2007) allows to explicitly address this hypothesis. Their model is very similar

to the 3PLN model, except that it does not contain a slope parameter. Instead, it includes a
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Table 10: Individual Item Parameter Estimates of the Basic Hierarchical Response Time
Model

Item a b λ ϕ

1 0.85 -2.62 3.65 0.16
[0.58, 1.16] [-3.58, -1.96] [3.61, 3.69] [0.12, 0.2]

2 0.77 -1.27 3.67 0.22
[0.53, 1.03] [-1.82, -0.87] [3.64, 3.71] [0.18, 0.26]

3 1.19 -0.87 5 0.34
[0.89, 1.51] [-1.17, -0.63] [4.95, 5.05] [0.29, 0.38]

4 1.13 -1.46 4.15 0.25
[0.86, 1.46] [-1.87, -1.13] [4.1, 4.19] [0.2, 0.29]

5 1.18 1.34 5.13 0.47
[0.85, 1.52] [1.04, 1.72] [5.07, 5.2] [0.41, 0.53]

6 0.82 -0.78 4.29 0.33
[0.58, 1.06] [-1.15, -0.48] [4.25, 4.34] [0.29, 0.37]

7 1.56 -0.37 4.73 0.29
[1.2, 1.99] [-0.56, -0.2] [4.68, 4.77] [0.26, 0.34]

8 0.95 -0.17 3.96 0.43
[0.69, 1.24] [-0.41, 0.06] [3.9, 4.01] [0.38, 0.47]

9 1.6 0.52 4.39 0.33
[1.21, 2.08] [0.34, 0.7] [4.35, 4.44] [0.29, 0.37]

10 1.73 0.38 4.95 0.34
[1.34, 2.22] [0.22, 0.54] [4.9, 4.99] [0.3, 0.38]

11 2.19 2.3 4.83 0.33
[1.37, 3.23] [1.86, 2.94] [4.77, 4.89] [0.27, 0.39]

12 1.35 0.08 4.46 0.26
[1.03, 1.7] [-0.1, 0.25] [4.42, 4.51] [0.22, 0.3]

Note: a: item discrimination; b: item difficulty; λ: time intensity; ϕ: speed
sensitivity. 95% CIs are given in squared brackets.

distance-difficulty parameter δik =
√︂
a2k(θi − bk)2 that is determined by the person and item

parameter estimates of the focal latent construct. The full response time model equation is

lnRTik = λk − ζi + βδik + ϵik, with ϵik ∼ N(0, σ2ϵk), (55)

where β is defined as a regression parameter that is constant across items. Note that when

modeling the distance-difficulty hypothesis, the response time model cannot be estimated

independently from the response model, as its item and ability parameters are required for the

estimation of the latent speed factor. This also leads to conceptual differences regarding the

interpretation of the speed dimension. Response time differences attributable to differences

in the latent trait, for example a respondent answering quickly because all items are far from

his/her trait level versus a respondent answering slowly because all items are close to his/her
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trait level, are captured by β and not the latent speed dimension. This means that persons

can have different observed response times but the same latent speed level.

What’s Different? Compared to the basic hierarchical framework, there are three major

differences in the model specification (see Figure 23). (a) The response time model does

not include phi, the speed sensitivity parameter. Thus, the length of the item-related row-

vectors and hyper-parameter vectors is reduced from four to three. (b) Moreover, because

of the missing speed sensitivity parameter, the variance of the speed parameter does not

have to be fixed to one for model identification. (c) The regression coefficient beta and the

distance-difficulty parameters delta parameters are added. beta is equipped with a diffuse

normal prior.

Consequently, in the parameters block, we additionally declare the regression coefficient

beta as a single real-valued parameter. Furthermore, we explicitly declare a single real-

valued scale parameter tau speed with a lower bound of zero. In the transformed parameters

block, we declare a vector of length Nobs containing the distance-difficulty parameters delta.

Furthermore, we calculate the distance-difficulty parameters. In the model block, we first give

tau speed a half-Cauchy prior distribution, and then consider tau speed when obtaining

the covariance matrix for the multivariate normal distribution for the person parameters.

Other than that, only the specification of the response time model as part of the likelihood

differs. Here, the log response times are assumed to follow a normal distribution, governed

by Equation 55.

Empirical Example. To illustrate the non-cognitive model suggested by Ferrando and

Lorenzo-Seva (2007), we made use of the extraversion data set from the R package diffIRT

(Molenaar, Tuerlinckx, & van der Maas, 2015). The data comprise binary item responses and

response times for 146 subjects to 10 extraversion items, asking subjects to indicate whether

adjectives such as active or noisy are applicable to their personalities. The analysis can be

reproduced using supplement S3 (R code) and S4 (Stan code). With the chosen set-up, model

estimation required approximately two minutes.

Again, convergence diagnostics indicated no problems during the sampling process, thus

warranting a substantial interpretation of the results. In line with the difficulty-distance

hypothesis, β was negative (-0.10; 95% CI [-0.14, -0.06]), indicating that response time de-

creases with an increasing distance between the item’s difficulty and the person’s location on

the extraversion variable. The correlation between person variables was -.15, however, with
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Figure 23: The Parameters, Transformed Parameters and Model Blocks for the Non-
Cognitive Extension of the Hierarchical Framework.

parameters{
row_vector [2] person[I];
row_vector [3] item[K];
vector [3] mu_item;
real beta;
vector <lower =0>[K] sigma_e;
real <lower=0> tau_speed;
vector <lower =0 >[3] tau_item;
cholesky_factor_corr [3] L_Omega_item;
cholesky_factor_corr [2] L_Omega_person;

}

transformed parameters{
vector <lower =0>[K] discrimination;
vector[K] difficulty;
vector[K] intensity;
vector[I] ability;
vector[I] speed;
vector[Nobs] delta;

discrimination = exp(to_vector(item [ ,1]));
difficulty = to_vector(item [,2]);
intensity = to_vector(item [,3]);
ability = to_vector(person [ ,1]);
speed = to_vector(person [,2]);

delta = sqrt(square(discrimination[kk]) .*
square(ability[ii] - difficulty[kk]));

}

model{
target += lkj_corr_cholesky_lpdf(L_Omega_person | 1);
target += cauchy_lpdf(tau_speed | 0,2);
target += multi_normal_cholesky_lpdf(person | [0,0],

diag_pre_multiply ([1, tau_speed], L_Omega_person );

target += lkj_corr_cholesky_lpdf(L_Omega_item | 1);
target += normal_lpdf(mu_item | 0,5);
target += cauchy_lpdf(tau_item | 0,2);
target += multi_normal_cholesky_lpdf(item | mu_item ,

diag_pre_multiply(tau_item , L_Omega_item );
target += cauchy_lpdf(sigma_e | 0,2);

target += normal_lpdf(beta | 0,5);

target += bernoulli_logit_lpmf( y | discrimination[kk] .*
(ability[ii] - difficulty[kk]));

target += normal_lpdf( logrt | intensity[kk] - speed[ii] +
beta * delta , sigma_e[kk]);

}

a 95% CI of [-.40, .14] not credibly different from zero.

5.3.2 Modeling Conditional Dependence of Response Times and Accuracy

The Basic Idea. The assumption of stochastic local independence (all responses and re-

sponse times are independent given the latent hierarchical structure of the model) incorpo-

rated in the basic hierarchical framework has received considerable criticism (e.g., Bolsinova,

2016; Bolsinova, Tijmstra, et al., 2017; Ranger & Ortner, 2012a). In this regard, Bolsinova,

de Boeck, and Tijmstra (2017) propose to explicitly model conditional dependencies between

responses and response times. Such conditional dependencies may, for instance, arise when-
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ever there are heterogeneous (i.e., qualitatively different) response processes. Bolsinova, de

Boeck, and Tijmstra (2017) propose to explicitly take into account conditional dependencies

by letting the response model depend on the standardized residual response times zik, defined

as

zik =
lnRTik − λk − ζi

σϵk
. (56)

The parameters of the response model depend on zik as follows:

ln(aik) = ln(a0k) + ln(a1k)zik, (57)

and

bik = b0k + b1kzik. (58)

The resulting response model is defined by Bolsinova, de Boeck, and Tijmstra (2017) as

follows:

P (yik = 1|θi, ak, bk) =
exp(aikθi + bik)

1 + exp(aikθi + bik)
. (59)

Note that this parameterization deviates from Equation 51 as bik is not a difficulty but

an easiness parameter. Also, bik and aik vary over persons, as they depend on the response

time residuals. The parameters a0k and b0k are the baseline discrimination and easiness

parameters, while the parameters a1k and b1k indicate how strongly the discrimination and

easiness are influenced by zik for each item. If b1k is positive, relatively fast responses are

more often correct than slow responses (item easiness bik increases); if a1k > 1, relatively fast

responses contain less information about the ability in question (discrimination aik decreases).

If a1k = 1 and b1k = 0, there are no conditional dependencies. Note that the response time

model does not include the speed sensitivity parameter. The model can be used to answer

research questions as: If a person takes more time on a specific item than expected, does

this increase or decrease the probability of a correct response? And likewise, if a person

takes more time on a specific item than expected, are such responses more strongly or weakly

related to the person’s ability?

What’s Different? The following differences to the basic hierarchical framework are worth

noting (see Figure 24). First, the response time model does not include phi. Second, because

of the item parameters (lnslope0, lnslope1, intercept0, and intercept1), and because of

moving the residual sigma e into the joint multivariate distribution of the item parameters,

the dimensions of the item-related row-vectors and hyper-parameter vectors are increased
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from four to six. The variance of the speed parameter can be freely estimated. The most

important difference to the basic hierarchical framework and the previous extension is found

in the model block. Here, we first declare three local vectors, each of length Nobs, containing

the standardized residual response times zik and the discrimination aki and easiness bki pa-

rameters of the response model. The hyperprior specification is the same as in the previous

extension. In the loop over observations, we first specify the response time model, followed

by the calculation of the standardized residual log response times and the discrimination and

easiness parameters of the response time model as in Equations 56 to 59.

Empirical Example. We illustrate modeling conditional dependencies of response times

and accuracy based on the PISA 2018 data set introduced earlier. The analysis can be

reproduced using supplement S3 (R code) and S5 (Stan code). Model estimation required

approximately seven minutes.

Again, no problems were encountered during the sampling process. Table 11 illustrates

the core results of the analysis. First of all, we observe that the items have a moderate aver-

age baseline discrimination a0 (1.16; 95% CI [0.94, 1.43]), with an average baseline easiness

b0 of 0.01 (95% CI [-0.87, 0.89]), implying a mean item easiness typical for PISA assessments.

Second, the average effect of the residual log-response time on the slope a1k is 0.95 (95% CI

[0.83, 1.11]), while its average effect on the easiness b1k is 0.16 (95% CI [-0.05, 0.36]). The

credibility intervals, however, include one and zero, respectively. Thus, we can conclude that

the residual log-response time has no effect on either the item discrimination or the item easi-

ness. In other words, the informativeness of an item and the probability of a correct response

do not depend on the relative speed of a test-taker on a specific item. Note, however, that

due to the small number of items all credibility intervals are rather broad. The conditional

dependence model, while quite robust in smaller samples, requires larger number of items for

more conclusive results (Bolsinova, de Boeck, & Tijmstra, 2017).

5.3.3 Modeling Qualitative Differences in Response Behavior

The Basic Idea. Mixture extensions of the hierarchical framework are quite popular for

modeling and investigating qualitative differences in response strategies (Molenaar et al.,

2016; Ulitzsch et al., 2019a; C. Wang & Xu, 2015). We focus on the hierarchical latent

response model for disengaged rapid guessing behavior by Ulitzsch et al. (2019a) to exemplify

how such mixture extensions can be implemented. This mixture modeling approach allows for

response processes to vary on the item-by-test-taker level, governed by an unobserved response
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Figure 24: The Parameters, Transformed Parameters, and Model Blocks for the Local De-
pendence Extension of the Hierarchical Framework.

parameters{
row_vector [2] person[I];
row_vector [6] item[K];
vector [6] mu_item;
real <lower=0> tau_speed;
vector <lower =0 >[6] tau_item;
cholesky_factor_corr [2] L_Omega_person;
cholesky_factor_corr [6] L_Omega_item;

}

transformed parameters{
vector[K] intensity;
vector <lower =0>[K] sigma_e;
vector[K] lnslope0;
vector[K] lnslope1;
vector[K] intercept0;
vector[K] intercept1;
vector[I] ability;
vector[I] speed;

intensity = to_vector(item [,1]);
sigma_e = sqrt(exp(to_vector(item [ ,2])));
lnslope0 = to_vector(item [,3]);
lnslope1 = to_vector(item [,4]);
intercept0 = to_vector(item [,5]);
intercept1 = to_vector(item [,6]);
ability = to_vector(person [ ,1]);
speed = to_vector(person [,2]);

}

model{
vector[Nobs] zki;
vector[Nobs] aki;
vector[Nobs] bki;

target += lkj_corr_cholesky_lpdf(L_Omega_person | 1);
target += cauchy_lpdf(tau_speed | 0,2);
target += multi_normal_cholesky_lpdf(person | [0,0],

diag_pre_multiply ([1, tau_speed], L_Omega_person );

target += lkj_corr_cholesky_lpdf(L_Omega_item | 1);
target += normal_lpdf(mu_item | 0,5);
target += cauchy_lpdf(tau_item | 0,2);
target += multi_normal_cholesky_lpdf(item | mu_item ,

diag_pre_multiply(tau_item , L_Omega_item );

for(n in 1:Nobs){
target += normal_lpdf(logrt[n] | intensity[kk[n]] -

speed[ii[n]], sigma_e[kk[n]]);
zki[n] = (logrt[n] - (intensity[kk[n]] - speed[ii[n]])) / sigma[kk[n]];
aki[n] = exp(lnslope0[kk[n]] + lnslope1[kk[n]] * zki[n]);
bki[n] = intercept0[kk[n]] + intercept1[kk[n]] * zki[n];
target += bernoulli_logit_lpmf(y[n] | aki[n] * ability[ii[n]] +

bki[n]);
}

}

process status ∆ik. The model assumes different data-generating processes underlying item

responses and response times associated with solution (∆ik = 1) and rapid guessing behavior

(∆ik = 0). Item responses and response times stemming from solution behavior are modeled

according to Equations 51 and 52. Probability correct for responses stemming from rapid

guessing behavior is assumed to correspond to the guessing parameter c, while log response

times are governed by a common normal distribution with mean µd and variance σ2d that is
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Table 11: Means, Standard Deviations, and Correlations of the Item Parameters of the
Conditional Dependence Model.

λ σϵ a0k a1k b0k b1k
λ 0.59

[0.40, 0.85]
σϵ .15 0.42

[-.25, .52] [0.29, 0.62]
a0k .28 -.09 0.38

[-.14, .64] [-.48, .33] [0.22, 0.61]
a1k .11 .31 -.06 .23

[-.32, .51] [-.18, .69] [-.53, .41] [0.11, 0.39]
b0k -.31 -.41 -.18 -.11 1.83

[-.64, .07] [-.71, -.03] [-.56, .24] [-.52, .31] [1.27, 2.61]
b1k .18 .16 -.16 .38 .03 0.39

[-.24, .56] [-.27, .56] [-.57, .27] [-.09, .76] [-.40, .45] [0.24, 0.59]
µK 4.42 0.19 1.16 0.95 0.01 0.16

[4.16, 4.70] [0.16, 0.24] [0.94, 1.43] [0.83, 1.11] [-0.87, 0.89] [-0.05, 0.36]

Note: λ: time intensity; σ: residual variance of log response times; a0k: baseline discrimination;
a1k: effect of the residual log-response time on the discrimination; b0k: baseline easiness; b1k:
effect of the residual log-response time on the easiness. Standard deviations and correlations are
given in the diagonal and off-diagonal, respectively. The last row contains the mean vector µK

of the joint item parameter distribution. 95% credibility intervals are given in square brackets.

unaffected by person or item characteristics. Further, the model incorporates the assumption

that guessing generally requires less time than solution behavior by setting λk = µd+λ
∗
k and

constraining the time intensity offset parameters λ∗k (indicating how much longer test-takers

require to generate an engaged compared to a disengaged response) to positive values. Item-

by-test-taker-specific mixing proportions P (∆ik = 1) are modeled employing an IRT model

governed by test-taker’s engagement ψi and the item’s engagement difficulty ιk, that is

P (∆ik = 1|ψi, ιk) =
exp(ψi − ιk)

1 + exp(ψi − ιk)
. (60)

The person ψ and item parameters ι of this latent response model are considered in the joint

distributions of person and item parameters, respectively. Note that as λ∗k is required to be

positive, lnλ∗ is considered in the joint multivariate normal distribution of item parameters.

What’s Different? Figure 25 gives the parameters, transformed parameters, and model

blocks implementing the code modifications required for specifying the mixture model for

rapid guessing behavior by Ulitzsch et al. (2019a). In the parameters block, the dimensions

of the arrays of person and item parameters (person, item), the Cholesky factors of the
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Figure 25: The Parameters, Transformed Parameters, and Model Blocks for the Mixture
Extension of the Hierarchical Framework.

parameters{
row_vector [3] person[I];
row_vector [5] item[K];
vector [5] mu_item;
vector <lower =0 >[5] tau_item;
real <lower=0> tau_engagement;
vector <lower =0>[K] sigma_e;
real <lower=0> sigma_d;
real mu_d;
real <lower=0,upper=1> guess;
cholesky_factor_corr [3] L_Omega_person;
cholesky_factor_corr [5] L_Omega_item;

}
transformed parameters{

vector <lower =0>[K] discrimination;
vector[K] difficulty;
vector <lower =0>[K] sensitivity;
vector[K] intensityStar;
vector[K] engdifficulty;
vector[I] ability;
vector[I] speed;
vector[I] engagement;

discrimination = exp(to_vector(item [ ,1]));
difficulty = to_vector(item [,2]);
sensitivity = exp(to_vector(item [ ,3]));
intensityStar = exp(to_vector(item [ ,4]));
engdifficulty = to_vector(item [,5]);
ability = to_vector(person [ ,1]);
speed = to_vector(person [,2]);
engagement = to_vector(person [,3]);

}
model{

target += lkj_corr_cholesky_lpdf(L_Omega_person | 1);
target += cauchy_lpdf(tau_engagement | 0,2);
target += multi_normal_cholesky_lpdf(person | [0,0,0],

diag_pre_multiply ([1,1, tau_engagement], L_Omega_person );

target += lkj_corr_cholesky_lpdf(L_Omega_item | 1);
target += normal_lpdf(mu_item | 0,5);
target += cauchy_lpdf(tau_item | 0,2);
target += multi_normal_cholesky_lpdf(item | mu_item ,

diag_pre_multiply(tau_item , L_Omega_item );

target += normal_lpdf(mu_d | 0,5)
target += cauchy_lpdf(sigma_d | 0,2);
target += cauchy_lpdf(sigma_e | 0,2);
target += beta_lpdf(guess | 1,1);

for(n in 1:Nobs){
target += log_mix (1/(1 + exp(-engagement[ii[n]] +

engdifficulty[kk[n]])),
bernoulli_logit_lpmf(y[n]| discrimination[kk[n]]*

(ability[ii[n]]- difficulty[kk[n]])) +
normal_lpdf(logrt[n]|mu_d+intensityStar[kk[n]]- sensitivity[kk[n]]*

speed[ii[n]],sigma_e[kk[n]]),
bernoulli_lpmf(y[n]| guess)+
normal_lpdf(logrt[n]|mu_d ,sigma_d ));

}
}

person and item correlation matrices (L Omega person, L Omega item), as well as the vector

of item parameter means and standard deviations (mu item, sigma item) are adjusted to ac-

commodate the fact that the model considers three types of person parameters and five types

of item parameters in the respective joint distributions. Further, additional parameters for
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the standard deviation of person engagement (sigma engagement), the guessing parameter

for guessed responses (guess), as well as the common mean and standard deviation of the

disengaged log response time distribution (mu d,sigma d) are declared. The transformed pa-

rameters block again stores the item and person parameters in separate vectors. In the model

block, all standard deviations are equipped with half-Cauchy priors, and an uninformative

beta prior is employed for the guessing parameter. The key element of this modified code

block is the employment of the log mix function in the model block. This function can be

used for specifying models with two mixture components. The first element (line 51) gives the

mixing proportion, which is given by Equation 60. The second element (lines 52 and 53) gives

the first component model, i.e., the models for engaged responses and response times, and the

third element (lines 54 and 55) gives the second component model, i.e., the models for rapid

guesses and the associated response times. Note that Stan does not estimate the unobserved

engagement indicators ∆ik, but solely provides engagement probabilities P (∆ik = 1), as it

marginalizes over discrete parameters.

As becomes evident from this example specification, mixture extensions pose a powerful

and easy-to-adapt tool for incorporating beliefs on qualitative differences in data-generating

processes underlying responses and response times.

Empirical Example. Again, we illustrate the model based on the PISA 2018 data set.

The analysis can be reproduced using supplement S3 (R code) and S6 (Stan code). Model

estimation of the hierarchical framework required 45 minutes. Convergence diagnostics indi-

cated no problems during the sampling process, thus warranting a substantial interpretation

of the results. We found an average engagement probability (i.e. average P (∆ik = 1)) of .95

(95% CI [.85, .99]), corresponding to an expected rate of disengaged responses of 5%. The

probability to provide a correct response under rapid guessing was .09 (95% CI [.05, .14]).

The correlation between speed and ability remained negative (-.23; 95% CI [-.35, -.09]), in-

dicating that test-takers showing lower levels of ability when providing an engaged response

tended to do so faster. Engagement was highly positively related to ability (.72; 95% CI [.50,

.87]), indicating that test-takers approaching the test with higher levels of engagement tended

to display higher levels of ability on items they solved in an engaged manner, and showed a

weakly negative association with speed (-.23; 95% CI [-.47, .02]), indicating that test-takers

approaching the test with higher levels of engagement tended to take more time on items

they solved in an engaged manner. The joint distribution of item parameters is summarized

in Table 12, where it can be seen that items with higher difficulty and items requiring more
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time to be solved in an engaged manner exhibited higher engagement difficulties. However,

again, credibility intervals for item parameter correlations were very broad.

Table 12: Means, Standard Deviations, and Correlations of the Item Parameters of the
Rapid Guessing Mixture Model.

ln(a) b ln(ϕ) ln(λ∗) ι
ln(a) 0.41

[0.23, 0.71]
b .47 1.47

[.00, .81] [0.96, 2.30]
ln(ϕ) -.07 .25 0.25

[-.57, .45] [-.24, .67] [0.14, 0.45]
ln(λ∗) .38 .36 .18 0.79

[-.10, .76] [-.12, .73] [-.34, .62] [0.46, 1.39]
ι .03 .32 .29 .40 1.35

[-.43, .52] [-.18, .74] [-.25, .77] [-.12, .79] [0.67, 2.37]
µK 0.10 -.33 -1.51 -0.15 -9.41

[-0.17, 0.35] [-1.22, 0.53] [-1.68, -1.34] [-0.78, 0.31] [-11.08, -6.38]

Note: ln(a): log item discrimination; b: item difficulty; ln(ϕ): log speed sensitivity; λ∗:
time intensity offset; ι: engagement difficulty. Standard deviations and correlations are
given in the diagonal and off-diagonal, respectively. The last row contains the mean vector
µK of the joint item parameter distribution. 95% credibility intervals are given in square
brackets.

5.4 Discussion

This tutorial illustrated the implementation of the basic hierarchical framework of van der

Linden (2007) in the Bayesian software Stan and showcased its flexibility and ease of adaption

on the basis of three extension. The flexibility of the basic hierarchical framework makes it

easy to develop such extensions, facilitating further insights into the relationship between

accuracy (or non-cognitive constructs) and speed, into how individuals approach assessment

situations, and how they allocate their cognitive resources during the response process. The

extensions illustrated in this tutorial are by no means exhaustive. For example, Bezirhan

et al. (2021) utilize the basic hierarchical framework to analyze item-revisiting behavior in

high-stakes testing by adding the Rasch Poisson Counts Model (RPCM, Wright & Masters,

1982) measuring the number of revisits and relating them to response times and accuracy.

Other sources of information to explain response behavior are possible. The flexibility of the

basic hierarchical framework is accompanied by the flexibility of its implementation in Stan,

which oftentimes requires adaptations of only a few lines of code that mirrors adaptations of

the model.
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As already mentioned, response time models based on the lognormal distribution are

used very frequently. Alternative distributions such as the gamma distribution, the ex-

Gaussian distribution, or the Weibull distribution may also be employed. With the Bayesian

hierarchical approach outlined in this tutorial it is easy to use other distributions than the

lognormal by simply changing the likelihood of the respective component model within the

hierarchical framework. Furthermore, Stan offers the possibility for researchers to build

custom distributions and use them in their modified hierarchical framework.

As many of the latest developments in response time modeling draw on Bayesian mod-

eling techniques (e.g., J. Lu et al., 2021; Sinharay & Johnson, 2019), this tutorial aimed at

providing readers with an introduction to the latest developments with regard to Bayesian

hierarchical models. The Bayesian hierarchical approach outlined here offers a unique and

flexible framework for estimating recent response time models, but implementation can be

time consuming and cumbersome for researchers who have little background in using Bayesian

estimation techniques. For applied researchers already familiar with lme4 or general multilevel

syntax, the brms-package (Bürkner, 2018, 2021) is a valuable alternative for implementing,

for example, the basic hierarchical framework of van der Linden (2007). In the online repos-

itory accompanying this tutorial, we include a brms implementation of the basic hierarchical

framework (see online supplement S9). Since brms is a kind of general-purpose software,

and the model specification is not tailored towards response time modeling, sampling from

the joint posterior distribution takes considerably longer than with the model specification

illustrated in this tutorial. Moreover, the implementation of model adaptions may oftentimes

be markedly less straightforward. Posterior predictive checking and model fit assessment is,

however, easier with brms, since the fit-objects can be directly used to calculate the WAIC

criterion or to conduct leave one out cross validation (Vehtari et al., 2017) with built-in

functions, and without modifications to the model code.

The model specifications in this tutorial reflect our latest knowledge with regard to weakly

informative hyperprior specifications (Gelman, 2006; König et al., 2020; Polson & Scott,

2012). The utility of the modeling approach lies in the fact that the models illustrated

in this tutorial, which are arguably quite complex with large numbers of parameters, can

be estimated with relatively small test lengths and sample sizes. To increase the power to

detect, for instance, dependencies between accuracy and response times further, informative

prior distributions would be required. This additional information could stem, for example,

from pre-calibrated item parameters and their standard errors (that is where the actual
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information is introduced) that can be used for model estimation. This would, however, lead

to distinct changes in the model specification. First, a hierarchical prior structure for the

items would not be necessary in the case that item parameters for both the 2PL and 3PLN

model are available. Second, when only item parameters for either the 2PL or the 3PLN

model are available, the dimensions of the multivariate normal distribution for the item

parameters would reduce; moreover, only the grand means and standard deviations of the

item discriminations and difficulties (or time intensities and sensitivities) have to be sampled.

Third, although seldom the case, it is possible that researchers have information about the

grand means and standard deviations of certain item parameters. This would imply removing

the grand means and standard deviations as actively sampled parameters, and putting the

actual means and standard deviations into the sampling statement of the multivariate normal

distribution. A last possibility to utilize informative prior distribution without changing the

hierarchical structure is related to the beta parameter in the non-cognitive extension. Prior

information could come from previous studies on similar samples about the difficulty-distance

hypothesis in order to update the estimate and to get more certainty about its magnitude.

5.4.1 Concluding Remarks

To conclude, with this accessible tutorial we hope that we have given non-specialists and

applied researchers a better understanding of the use and utility of the basic hierarchical

response time framework and Bayesian hierarchical modeling of response time models. Due

to its modular nature, it is easy to adapt the framework to researchers’ needs, as illustrated

by the three extensions included in our tutorial. We hope that the tutorial furthers the appli-

cation of innovative response time models for answering novel substantive research questions

in various assessment contexts.
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6 Automated Test Assembly in R: The eatATA Package
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This chapter includes the author’s accepted manuscript (Postprint).

Abstract: Combining items from an item pool into test forms (test assembly) is a frequent

task in psychological and educational testing. Although efficient methods for automated test

assembly exist, these are often unknown or unavailable to practitioners. In this paper we

present the R package eatATA, which allows using several mixed integer linear programming

solvers for automated test assembly in R. We describe the general functionality and the

common work flow of eatATA using a minimal example. We also provide four more elaborate

use cases of automated test assembly: (a) The assembly of multiple test forms for a pilot

study; (b) the assembly of blocks of items for a multiple matrix booklet design in the context

of a large-scale assessment; (c) the assembly of two linear test forms for individual diagnostic

purposes; (d) the assembly of multi-stage testing modules for individual diagnostic purposes.

All use cases are accompanied with example item pools and commented R code.

28The indices for persons and items have been adapted to the notation of this thesis.
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6.1 Theoretical Background

In psychological or educational testing, assembling test forms from an existing item pool is

a frequent challenge (van der Linden, 2005). Sometimes, a single test form is constructed,

which has to be maximally informative for a certain classification decision. Sometimes, test

security is a concern and therefore multiple, parallel test forms are created to prevent test-

takers from answer-copying and from sharing test content across test sessions (Luecht &

Sireci, 2011). In large-scale assessments, multiple test forms are used to cover a broader

range of test content and to increase measurement precision (Kuhn & Kiefer, 2015; OECD,

2019b). In multi-stage testing (MST), test modules with different ability target groups are

created (Yan et al., 2016), whereas in computer adaptive testing (CAT), after every item,

a new item is added to the test (van der Linden & Glas, 2000). Because assembling test

forms by hand can be cumbersome and error prone, automated test assembly (ATA) methods

have been developed, which rely on mathematical programming techniques such as mixed

integer linear programming (MILP). In many, if not all cases where items should not just

be randomly selected, ATA can help, and will likely lead to better solutions than manual

test assembly.

In ATA, test specifications, similar to the number of items per test form or item type

distributions across test forms, are formulated as mathematical constraints. The optimization

goal (for instance, maximizing test information at a certain ability level) is formulated as a

mathematical objective function. Mathematical programming solvers can be used to find

an optimal solution for the given combination of mathematical constraints and objective,

meaning that the optimal item-to-test-form assignment for the test assembly problem can be

found. A general introduction to automated test assembly is, for example, available in the

work of van der Linden (2005).

Unfortunately, in practice, ATA approaches are not utilized as often as they could. Due

to conceptual and technical barriers, practitioners frequently opt for manual trial and error

approaches instead, leading to sub-optimal solutions. With the R package eatATA (educational

assessment tools: Automated Test Assembly) and this tutorial we try to give easy access

to ATA to more practitioners. The paper is structured as follows: First, we give a short

introduction to why an R package is suitable in this context. We then give an overview of the

functionalities of eatATA and which solvers are accessible via the package, and illustrate the

general work flow when using eatATA for automated test assembly with a minimal example.

Subsequently, we provide four practical use cases alongside detailed and commented R code
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to illustrate the package functionality in depth.

6.2 eatATA

In the context of psychological and educational testing, R (R Core Team, 2023) is a common

tool for psychometric and statistical analyses. R is an open source and free software envi-

ronment and its extensive and actively maintained libraries offer tools for a rich diversity of

data analysis use cases. Furthermore, a variety of mathematical programming solvers are

available through R, including both open source and commercial solvers. These solvers can

usually be accessed via packages that function as APIs (application programming interfaces)

to a specific solver, and the solver itself is often included directly in the respective package

(e.g., lpSolveAPI is an API to the solver lpSolve). This, in principal, enables researchers to

use R for test assembly purposes. For example, a short tutorial on how ATA can be used in R

using lpSolveAPI (Konis & Schwendinger, 2020) can be seen Diao and van der Linden (2011).

However, while such an implementation is possible, the translation of test specifications into

mathematical constraints can be an interesting challenge for some, but a cumbersome task

for others.

The mathematical programming solvers and APIs are often very flexible and applicable to

a wide range of optimization problems that go far beyond ATA. Although valuable, this flexi-

bility also increases the complexity for users, especially because the APIs, the solvers, and the

available documentation are generally not targeting ATA applications. Hence, for researchers

without a background in mathematical programming, applying the solvers to ATA problems

is far from straightforward. In addition, there exist considerable differences between the APIs

of different solvers. Therefore, when an educational measurement practitioner has invested

the time to become familiar with one specific solver API, switching to a different solver will

likely require an additional effort. From our experience, we believe that there are two main

reasons why ATA methods are highly underused in practice: First, a lot of practitioners are

not aware that there are efficient assembly techniques that could be helpful in their daily

practice. Second, practitioners that are aware of the efficient assembly techniques often lack

the time to work out all the operational details.

Through the R package eatATA and this tutorial paper we want to promote ATA methods

and provide easier access to ATA for measurement practitioners. The package facilitates the

access to mathematical programming and its potential for ATA-problems without worrying

about how test specifications are formulated mathematically. In the spirit of the R program-
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ming language, the functionality of the package is based on functions. Every test specification

can be expressed by a function, thereby enabling a work flow in R that will feel familiar for

practitioners with R experience.

Available solvers within the package are GLPK (Makhorin, 2018), lpSolve (Berkelaar

et al., 2016), SYMPHONY (Ladanyi et al., 2019), and Gurobi (Gurobi Optimization, LLC,

2021a). These solvers are used via the R package APIs Rglpk (Theussl & Hornik, 2019),

lpSolve (Berkelaar & Csárdi, 2020), Rsymphony (Harter et al., 2020), and gurobi (Gurobi

Optimization, LLC, 2021b). For a general overview of different available open source and

commercial MILP solvers see, for example, Donoghue (2015) and Luo (2020).

6.2.1 Work Flow

Regardless of the context of a specific test assembly problem, the common challenge when

assembling test forms is that a variety of requirements for the resulting test form(s) have to

be fulfilled, otherwise known as the test specifications (van der Linden, 2005). The schematic

work flow of automatically assembling test forms and incorporating the required test specifi-

cations using eatATA is the following:

1. Item Pool: A data.frame including all information on the item pool is loaded or

created. If the items have already been calibrated (e.g., based on data from a pilot

study) this will include the calibrated item parameters.

2. Test Specifications: Usually a combination of: (a) Typically one objective function and

(b) multiple constraints.

(a) Objective Function: Usually a single object corresponding to the optimization

goal, created via one of the objective function functions. This refers to a test

specification where we have no absolute criterion, but where we want to minimize

or maximize something.

(b) Further Constraints: Further constraint objects, created using various constraint

functions. These refer to test specifications with a fixed value or an upper and/or

lower bound.

3. Solver Call: The useSolver() function is called using the constraint objects to find an

optimal solution.

4. Solution Processing: The solution can be inspected using the inspectSolution() and

appendSolution() functions.
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To illustrate this general work flow, we provide a small illustrative example. More complex

extensions are discussed in the specific use cases later in the paper.

6.2.2 Minimal Example

In this minimal example, the goal is to assemble a single test form with maximum test

information function (TIF) for a medium ability level. Furthermore, the test form should

consist of exactly ten distinct items and have an average test time of approximately 8 min.

The complete R syntax for this example can be found in Supplement S0 and the mathematical

formulation of the test assembly problem is described in Appendix D.1. Further details

regarding mathematical formulations of MILP problems and how MILP solvers operate can

be found in van der Linden (2005).

(1) Item Pool. For the illustrative example, we use a small simulated item pool of 30

items, which is included in the eatATA package (items mini). In general, item pool infor-

mation should be stored in a single data.frame with each row representing an item. In the

example item pool, items are characterized by their format (“format”), average response

times (“time”), and a difficulty parameter (“difficulty”), based on a calibration according

to a Rasch model (Rasch, 1960). To calculate the item information function (IIF) we use

the calculateIIF() function (see Figure 26). Alternatively, the calculateIIF() function

could be used to calculate the IIF for the item parameters from the 2 and 3 parameter lo-

gistic models29. We provide the item parameters and one or multiple ability points (theta)

at which the item information function should be calculated. In our case, we are interested

only in the information function at a medium ability, so we set theta = 0 and append the

IIF to our item pool data.frame. The resulting first five rows of the item pool can be seen

in Table 13.

Figure 26: Calculate Item Information Function.

items_mini$IIF_0 <- calculateIIF(B = items_mini$difficulty , theta = 0)

(2a) Objective Function. As a first object, we define the objective function. This corre-

sponds to a test specification where we have no absolute criterion that needs to be exactly

fulfilled, but where the goal is to minimize or maximize something. This can vary greatly

29In principal, any response model can be used within eatATA and there exist various R packages to calculate
IIFs for a wide range of response models.

128



depending on the goal of the test assembly. Common optimization goals include maximizing

the TIF of a test form, minimizing test time or test length, or minimizing differences in TIF

between test forms.

Table 13: First Five Items of the Simulated Item Pool.

Item Format Time Difficulty IIF 0

1 mc 27.79 -1.88 0.11
2 mc 15.45 0.84 0.45
3 mc 31.02 1.12 0.33
4 mc 29.87 0.73 0.50
5 mc 23.13 -0.49 0.61

In our example, we seek to maximize the TIF at a medium ability level using the

maxObjective() function (see Figure 27). This is achieved via maximizing the sum of the

IIFs of the items in the test form30. Note that item identifiers should be supplied to all objec-

tive function and constraint functions. This guarantees that all constraints relate to the same

set of items and provides a more readable solver output. Other available functions for defin-

ing optimization goals are: minObjective(), maximinObjective(), minimaxObjective(),

and cappedMaximinObjective().

Figure 27: Define Objective Function: Maximize Item Information Function at Aver-
age Ability.

testInfo <- maxObjective(nForms = 1, itemValues = items_mini$IIF ,
itemIDs = items_mini$item)

(2b) Constraints. In the next step, we translate our further test specifications for the test

assembly into function calls. These constraints are not optimization goals but specifications

with fixed target values or upper and/or lower bounds. For this, we create multiple constraint

objects (see Figure 28). In our example we want to fix the number of items in the test

form to exactly ten items, which is performed by the itemsPerFormConstraint() function.

This function specifically serves the purpose of setting the test length for the test assembly.

Using the operator and the targetValue arguments we can set a fixed target value or an

upper or lower bound. The total test time is constrained to approximately eight minutes

using the itemsValuesDeviationConstraint() function. This function belongs to a family

of functions that can be used to set constraints using numerical item values. By setting

30As a Rasch model has been used for calibration, maximizing the TIF at ability level 0 corresponds to
minimizing the difference of the average item difficulty from 0.
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allowedDeviaton = 5 we allow the testing time to vary between 7 min and 55 s and 8 min

and 5 s. Note that setting the test time to be exactly eight minutes would be overly restrictive

and not necessary from a practical stand point. An overview over the available constraint

functions and their functionality can be found here: https://CRAN.R-project.org/package=

eatATA/vignettes/overview.html.

Figure 28: Define Constraints: Number of Items in the Test Form, Number of Times an
Item can be Used, and Total Average Testing Time.

# Number of items (test length)
itemNumber <- itemsPerFormConstraint(nForms = 1, operator = "=",

targetValue = 10,
itemIDs = items_mini$item)

# Test time
testTime <- itemValuesDeviationConstraint(nForms = 1,

itemValues = items_mini$time ,
targetValue = 8 * 60,
allowedDeviation = 5,
relative = FALSE ,
itemIDs = items_mini$item)

(3) Solver Call. Finally, we collect all constraint objects defined above in a list and hand

these to the solver of our choice via the useSolver() function (see Figure 29). The order in

which the constraints (including the objective function) are created or ordered does not have

any impact on the solution of the test assembly problem.

As complex test assembly problems with large numbers of possible solutions can lead

to long computation times, it is often reasonable to set a time limit for the solver via the

timeLimit argument. In cases where the time limit is reached and where at least one feasible

solution is found, but the search of the total solution space is incomplete, the function returns

the best available solution. In most practical applications, the quality of this solution will

be absolutely sufficient. As this illustrative example is a very simple ATA problem for which

GLPK finds a solution almost instantly, it is not necessary to set a time limit for the solver.

The solver used for ATA can be specified via the solver argument, with “GLPK” being

the default.

Figure 29: Solve MILP problem.

solver_out <- useSolver(list(itemNumber , testTime , testInfo),
solver = "GLPK")

Note that sometimes combinations of constraints can lead to infeasibility issues. That is, it

is possible that for a given set of test specifications for a specific item pool no feasible solution
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exists. If this is the case, useSolver() will issue a corresponding message. To identify which

(combination of) constraints causes the infeasibility, it can be helpful to remove constraints

from the ATA problem step by step until feasibility is achieved. Alternatively, constraints

can be added to the ATA problem step by step starting with just the objective function until

the problem becomes infeasible (Spaccapanico Proietti et al., 2020).

(4) Solution Processing. eatATA provides two functions to process the output of useSolver():

inspectSolution() to directly view the assembled test forms presented in a list that only

contains the items in the assembled test form(s), and appendSolution(), which appends the

assignment matrix containing 0 (item not in this test form) and 1 (item in this test form) to

the item pool data.frame (see Figure 30).

Figure 30: Inspect the Solver Solution and Append it to the Item Pool data.frame.

inspectSolution(solver_out , items = items_mini , idCol = "item")
item_mini_out <- appendSolution(solver_out , items = items_mini ,

idCol = "item")

6.3 Use Cases

In the following section, we present four different applications of the eatATA package to test

assembly problems. The use cases were chosen to cover a broad range of contexts for ATA

application: (1) A pilot study setting in which we assemble multiple test forms while depleting

the item pool (without prior item calibration), (2) a typical large-scale assessment situation,

in which calibrated items are assembled to blocks for a multiple matrix booklet design, (3)

the assembly of multiple parallel test forms for a high-stakes assessments from a calibrated

item pool, and (4) the assembly of modules from a calibrated item pool for a multi-stage

assessment. To illustrate the accessibility of eatATA compared to plain solver API’s use case

(3) and (4) correspond to two of the problems used in the tutorial paper by Diao and van der

Linden (2011). Because the solver calls and the solution processing do not differ much between

the minimal example and the different use cases, we primarily focus on how the constraint and

objective function definitions have to be altered from application to application. Complete

syntaxes for all use cases can be found in the corresponding supplementary files at https:

//www.mdpi.com/article/10.3390/psych3020010/s1.
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6.3.1 Pilot Study

Usually, when conducting a pilot study, little is known about the empirical characteristics

of the item pool. Instead, the goal of a pilot study is to gather such information (e.g.,

response times, and missing rates) and calibrate the items. Hence, the test specifications

for pilot studies often deviate substantially from test assembly specifications for operational

tests. For this use case, we use a simulated item pool items pilot, which is included in the

eatATA package. The item pool consists of 100 items with various characteristics, for example

the expected response times in seconds (“time”), the item format (“format”), and a rough

estimate of the item difficulty (“diffCategory”), grouped into five categories. The first five

items of the item pool can be seen in Appendix D.2. From this item pool, we want to assemble

test forms that meet the following requirements: (1) each item should appear in exactly one

test form (this implies no item overlap between test forms), (2) all items should be used (item

pool depletion), (3) the expected test form response times should be as close to 10 minutes as

possible, (4) the number of test forms should be determined accordingly, (5) item difficulty

categories and items formats should be distributed as evenly as possible across test forms,

(6) each content domain should be at least once in each test form, and (7) item exclusions

should be incorporated.

The definition of the objective function and all constraints can be seen in Figure 31.

Among the test specifications listed above, (3) is the specification most suitable for formu-

lation as an objective function. This means that we want to optimize the test takers’ mean

test taking time and keep it as close as possible to 10 min per test form. In order to achieve

this, we first transform the expected item response times to minutes. Then we calculate the

ideal number of test forms by dividing the sum of all expected item response times (which

is 74 min) by ten. As we prefer test forms below our target test time to test forms above

our target test time, we choose the next integer above via the ceiling() function, resulting

in eight test forms. The actual objective function is defined via the minimaxObjective()

function, which allows us to specify a targetValue. The maximum difference of test form

times from this target value is then minimized.

Second, we implement test specifications (1) and (2) (item pool should be depleted and no

item overlap) as constraints using a single function call to itemUsageConstraint(). The op-

erator argument is set to “=” which means that every item will occur exactly once across

all test forms. Test specification (5) refers to the difficulty column “diffCategory” as

well as to the item format column “format”. For item difficulty, we define the column
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Figure 31: Define Constraints for Pilot Study Test Assembly.

# Determine number of test forms
items_pilot$time_in_min <- items_pilot$time / 60
nForms <- ceiling(sum(items_pilot$time_in_min) / 10 )

# Objective function (response times)
timeCons <- minimaxObjective(nForms = nForms ,

itemValues = items_pilot$time_in_min ,
targetValue = 10, itemIDs = items_pilot$item)

# Item pool depletion
noItemOverlap <- itemUsageConstraint(nForms , targetValue = 1,

operator = "=", itemIDs = items_pilot$item)

# Difficulty and format
items_pilot$diffCategory <- as.factor(items_pilot$diffCategory)
equal_diff <- autoItemValuesMinMaxConstraint(nForms = nForms ,

itemValues = items_pilot$diffCategory ,
itemIDs = items_pilot$item)

equal_format <- autoItemValuesMinMaxConstraint(nForms = nForms ,
itemValues = items_pilot$format ,

itemIDs = items_pilot$item)

# Content categories
domainCons <- itemCategoryMinConstraint(nForms = nForms ,

itemCategories = items_pilot$domain ,
itemIDs = items_pilot$item , min = c(1, 1, 1))

# Exclusions
exclusionTuples <- itemTuples(items_pilot , idCol = "item",

infoCol = "exclusions", sepPattern = ", ")
excl_constraints <- itemExclusionConstraint(nForms = nForms ,

itemTuples = exclusionTuples ,
itemIDs = items_pilot$item)

“diffCategory” to be a factor variable, as we do not want the numerical mean value to be

equal across test forms but the distribution of distinct difficulty levels. We use the function

autoItemValuesMinMaxConstraint() to determine the required targetValues automati-

cally, after which the function directly calls the respective constraint functions using the

calculated targetValues. By default, the function returns the resulting minimum and max-

imum levels. For example, for item difficulty, items of difficulty category 1 will occur once

or twice in each test form. Alternatively, for item formats, the “cmc” format will occur four

or five times in each test form. Test specification (6) requires that each domain occurs at

least once in each test form. Using the itemCategoryMinConstraint() and the min argu-

ment, we define for each of the three categories (levels) of domain (“listening”, “reading”,

“writing”) the minimum occurrence frequency.

Finally, we implement test specification (7), the item exclusion constraints that are cap-

tured in the “exclusions” column of the items pilot data.frame. The column contains

item exclusions as a single character string for each item. The items in the data set have either

no exclusions (NA), only one exclusion (e.g., “76”), or multiple exclusions (e.g., “70, 64”).

As there are items with multiple exclusions, we need to separate the string into discrete item

identifiers via the function itemTuples(), which produces pairs (tuples) of exclusive items
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(also called enemy items). Using the sepPattern argument in the itemTuples() function,

the user must specify the pattern, which separates the item identifiers within the string.

These tuples can be used to define exclusion constraints in the itemExclusionConstraint()

function. The complete code for the pilot study use case, including the solver call and the

solution inspection, can be seen in Supplement S1.

6.3.2 LSA Blocks for Multiple Matrix Booklet Designs

Many large-scale assessment (LSA) test forms (typically referred to as booklets) consist of

multiple item blocks (also referred to as clusters). In the test assembly process, first, item

blocks are assembled from the item pool and later these item blocks are combined into test

forms according to so called multiple matrix booklet designs (Gonzalez & Rutkowski, 2010).

Examples of this approach can be found in the PISA studies (OECD, 2019b) or are described

by Kuhn and Kiefer (2015) for the Austrian Educational Standards Assessment. The present

use case illustrates the first step - assembling test items to eight item blocks that fit in

multiple matrix booklet designs. The second step - combining item blocks to test forms – is

currently beyond the scope of eatATA and the reader is referred to the literature on booklet

designs (Frey et al., 2009; Pokropek, 2011).

For this purpose, we assume that a pilot study has been conducted and that all required

parameter estimates from an item calibration are available. We use a simulated item pool

of 209 items with typical properties, which is included in the eatATA package (items lsa).

The first 10 items of this item pool can be seen in Appendix D.3. The assembled item blocks

should conform to the following test specifications: (1) blocks should contain as many well-

fitting items as possible, (2) hierarchical stimulus item structures should be incorporated, (3)

no item overlap, (4) a fixed set of anchor items has to be included in the block assembly31,

(5) the average item block times should be around 20 min, (6) difficulty levels should be

distributed evenly across item blocks, (7) all blocks should contain at least three different

item formats, and (8) maximally two items per block should have an average proportion of

correct responses below 8 or above 92 percent.

The definition of the objective function and all constraints can be seen in Figure 32. Test

specification (1) is chosen as the objective function. The infit (weighted MNSQ) is among

the most widely used diagnostic Rasch fit statistics (OECD, 2014) and can be found in col-

31If LSAs intend to measure trends between different times of measurement, new assessment cycles partially
reuse items from former studies, so-called anchor items, to establish a common scale (Kolen & Brennan, 2014).
Usually, anchor items are chosen beforehand based on their advantageous psychometric properties.
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umn “infit”. As we are only interested in absolute deviations from 1 (otherwise positive and

negative deviations could cancel each other out) we create a new variable, infitDev. The de-

viation of this variable from 0 is then minimized using the minimaxObjective() function.

Figure 32: Define Constraints for LSA Test Assembly.

# Objective function (infit)
infitDev <- abs(items_lsa$infit - 1)
infitCons <- minimaxObjective(nForms = 8, itemValues = infitDev ,

targetValue = 0, itemIDs = items_lsa$item)

# Shared stimuli
incluTup <- stemInclusionTuples(items_lsa , "item", "testlet")
incluCons <- itemInclusionConstraint(nForms = 8, itemTuples = incluTup ,

itemIDs = items_lsa$item)

# Item overlap
overlapCons <- itemUsageConstraint(nForms = 8, targetValue = 1,

operator = " <=",
itemIDs = items_lsa$item)

# Anchor items
anchorCons <- itemUsageConstraint(nForms = 8, targetValue = 1,

operator = "=",
whichItems=items_lsa$item[items_lsa$anchor ==1],
itemIDs = items_lsa$item)

# Block times
timeCons <- itemValuesDeviationConstraint(nForms = 8,

itemValues = items_lsa$time ,
targetValue = 1170, allowedDeviation = 150,
relative = FALSE , itemIDs = items_lsa$item)

# Difficulty
diffLevels <- as.factor(items_lsa$level)
levelCons <- itemCategoryMinConstraint(nForms = 8, diffLevels ,

itemIDs = items_lsa$item ,
min = c(1,2,2,1))

# Item format
formatLv <- as.factor(ifelse(grepl("complex",items_lsa$format )|

grepl("matching",items_lsa$format),
"mix",ifelse(grepl("open",items_lsa$format )|

grepl("sentence",items_lsa$format),
"open", "closed")))

formatCons <- itemCategoryMinConstraint(nForms = 8, formatLv ,
itemIDs = items_lsa$item , min = c(2,2,2))

# Proportion correct
freqLv <- as.factor(ifelse(items_lsa$frequency > .92, "above",

ifelse(items_lsa$frequency < .08, "below", "okay")))
freqCons <- itemCategoryMaxConstraint(nForms = 8, freqLv ,

itemIDs = items_lsa$item ,
max = c(2, 2, 200))

Test specification (2) is a common challenge for cognitive tests in LSAs, where items are

usually not distinct units. Instead, multiple items share a common stimulus (e.g., a text,

a picture or an auditive stimulus). Such item sets are often called testlets. In general, testlet

structures can be dealt with in different ways: (a) In the assembly, testlets can be treated as

fixed structures and used as the actual units in the test assembly, (b) testlet structures can be

incorporated using fixed inclusion constraints (e.g., whenever item A is chosen, items B and

C that belong to the same stimulus have to be chosen, too), (c) hierarchical structures can
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be incorporated in the test assembly (see chapter 7 in van der Linden, 2005)). In the eatATA

package, options (a) and (b) are implemented and option (b) is chosen for this specific use

case. Option (b) can indeed be implemented very similarly to the item exclusion constraints

that were introduced in the pilot study use case. Inclusion tuples are built using the function

stemInclusionTuples() and then provided to the itemInclusionConstraint() function.

Test specification (3) is implemented similarly as in the previous cases using the

itemUsageConstraint() function. The ”less than or equal” operator “<=” is used, be-

cause complete depletion of the item pool is not required. Test specification (4) refers to

the forced inclusion of certain items in the block assembly, which can also be implemented

using the itemUsageConstraint() function. In this specific case we specify the whichItems

argument, which lets us choose to which items this constraint should apply to. For this

specification, the operator argument is set to “=” as the items have to appear once across

the blocks.

The further test specifications are implemented in line with similar constraints in pre-

vious examples: block times, referring to test specification (5), are constrained using

the itemValuesDeviationConstraint() function. Test specifications (6), (7), and (8)

are implemented by transforming the respective variables to factors so we can apply the

itemCategoryMinConstraint() or the itemCategoryMaxConstraint() functions. As every

block should contain at least some items at the intermediate difficulty levels and also in each

block at least one item at the adjacent difficulty levels, we set the min argument for this test

specification to c(1, 2, 2, 1). For test specification (7), item formats are grouped into

three different groups, which then are constrained by setting the minimum number of items

of each group per block to two. In some LSA studies, items are flagged that have empirical

proportions correct below and/or above a certain value (cf., test specification (8)). Therefore,

we limit the inclusion of items that range below 8 percent and above 92 proportion correct

to a maximum of two items per category per block.

The complete code for the LSA use case, including the solver call and the solution inspec-

tion, can be seen in Supplement S2. Note that for this test assembly problem, the GLPK

Simplex Optimizer finds a feasible solution very quickly but the complete integer optimization

process takes a substantial amount of time, due to the large item pool, multiple assembled

item blocks, and various constraints. This showcases that often setting a time limit and using

a feasible but not optimal solution is sufficient in practice.
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6.3.3 High-Stakes Assessment

This use case corresponds to Problem 1 in the paper by Diao and van der Linden (2011).

Because the item pool used in Diao and van der Linden (2011) is not freely available, an item

pool was generated with similar characteristics (items diao in the eatATA package). The item

pool consists of 165 items following the three-parameter logistic model (3PL). Each item

belongs to one of six content categories. The first five items of the generated item pool can

be seen in Appendix D.4. In this example, the goal is to assemble two parallel test forms with

the following test specifications: (1) absolute target values for the TIFs set as Tθ = 5.4, 10, 5.4

at θ = −1.5, 0, 1.5; minimize the distances of the TIFs of the two new forms with respect

to the target at these ability values, (2) distribute the number of items per content category

evenly across test forms; Appendix D.5 presents the numbers of items per content category

that are available in the complete item pool as well as the numbers required in each of the

two forms, (3) no overlapping items, and (4) each test form should contain exactly 55 items.

These specifications are directly copied from Diao and van der Linden (2011). The code

for calculating the IIF, and setting up the minimax objective function as well as the other

constraints can be seen in Figure 33.

To implement test specification (1) we create minimax objects at each of the specified

ability values, and combine them in one objective function. Hence, when solving the ATA

problem, the solver will try to minimize the maximal distance between the target and the

two forms at the three ability values. The implementation of the further constraints directly

corresponds to formulations of test specifications in the use cases above. Therefore, further

explanations on these specifications are omitted. The complete code for the high-stakes

assessment use case, including the solver call and the solution inspection, can be seen in

Supplement S3.

6.3.4 Multi-Stage Testing

This use case covers the case of multi-stage testing and corresponds to Problem 3 in Diao

and van der Linden (2011). The use case uses the same items as use case (3), but the item

pool is doubled: all items are duplicated. Hence, the item pool in this example contains

330 items following the 3PL model. Here, the goal is to assemble a two-stage multi-stage test

with one routing module in the first stage and three modules in the second stage. The test

specifications are: (1) the TIF of the first-stage module is required to be relatively uniform

between θ = −1 and θ = 1, (2) the TIFs of the second-stage modules are required to be

137



Figure 33: Constraint Definitions for High-Stakes Assessment Test Assembly.

# Theta values
theta_values <- c(-1.5, 0, 1.5)

# Calculate item information for each theta -value
items_diao[, paste0("IIF_", theta_values )] <- calculateIIF(A = items_diao$a ,

B = items_diao$b ,
C = items_diao$c ,
theta = theta_values)

# Specify target values for each theta -value
target_values <- structure(c(5.4, 10, 5.4),

names = paste0(theta_values ))

# Objective function: minimize maximum difference between the TIF and
# the target values
minimaxTif <- combineConstraints(lapply(theta_values ,

function(theta_value) {
minimaxObjective(

nForms = 2,
itemValues = items_diao[, paste0("IIF_", theta_value )],
targetValue = target_values[as.character(theta_value )],
itemIDs = items_diao$item

)
}))

# Other constraints
contentConstraints <- itemCategoryConstraint(

nForms = 2,
itemCategories = items_diao$Category ,
operator = " >=",
targetValues = c(9, 9, 7, 9, 9, 11),
itemIDs = items_diao$item)

noOverlap <- itemUsageConstraint(
nForms = 2,
itemIDs = items_diao$item)

testLength <- itemsPerFormConstraint(
nForms = 2,
operator = "=",
targetValue = 55,
itemIDs = items_diao$item)

single-peaked at θ = −1, θ = 0 and θ = 1, respectively, (3) the number of items per content

category should be evenly distributed across the test forms according to Appendix D.5, (4)

no item overlap, (5) for the first-stage module the test length should be 30 items, and (6) for

each of the second-stage modules the test length should be 20 items.

Original Approach. Diao and van der Linden (2011) split this assembly problem in two

separate problems. In a first step, the routing module for the first stage is assembled. There-

after, the three modules for the second stage are assembled using only the remaining items in

the pool. In order to assemble the routing module with a uniform relative target, a maximin

approach is used—that is, the minimum value of the TIF at the three ability values is maxi-

mized. At the same time, the TIF values at the three ability values are required to be close to

each other, in order to create a TIF with a relatively flat plateau. More specifically, the TIF

at the three ability values is required to be within a distance of 0.5 of each other. Hence,
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the allowedDeviation is set to 0.5. The syntax for the implementation of the objective

function and the constraints can be found in Appendix D.6.

Combined Capped Approach. Using the eatATA package, it is possible to assemble the

modules for the two stages in one combined assembly. Especially in situations with multiple

stages, a simultaneous assembly may prevent infeasibility at later stages—that is, when the

modules for the stages are assembled sequentially, the assembly of the first stages may deplete

the item pool so that it becomes impossible to meet certain test specifications at later stages.

In addition, from a practitioner’s perspective, a simultaneous assembly may also be easier,

as the item pool does not need to be adjusted after every assembly step.

The R syntax for the combined capped approach can be seen in Figure 34. To implement

test specification (1) we specify the maximization of the minimum TIF values at the ability

values for the routing module in the first stage. Note that we do not use the original max-

imin approach but rather the capped maximin approach (Luo, 2020). The capped maximin

approach does not require to set a maximally allowed deviation, it combines maximizing

the minimal TIF with minimizing the maximal difference between the TIFs. For the mod-

ules at the second stage (test specification (2)) the capped maximin approach is also used.

To combine these constraints, knowing that the obtained TIF values in the first stage and

the obtained TIF values at the second stage do not need to be in the same range, we can set

a weight for the TIF values. In this case, the minimal TIF in both stages can be considered

equally important. Hence, the weights are set to 1 (which is the default). Because the other

test specifications in Figure 34 correspond to test specifications illustrated earlier, further

explanations are omitted. The complete code for the multi-stage assessment use case, both

for the original two-stage as well as the new combined assembly, with the solver call and the

solution inspection, can be found in Supplement S4.

6.4 Discussion

In 2005, van der Linden published his seminal book on automated test assembly. Since then,

additional tutorial papers and illustrations have been written to make ATA methods more

accessible to practitioners (e.g., Diao & van der Linden, 2011; Donoghue, 2015). However,

we believe that hurdles are still quite substantial for practitioners who want to utilize ATA

methods: Besides the conceptual challenges of formulating test specifications as concrete

constraints, one has to become familiar with formulating mathematical constraints and the

intricacies of specific solver APIs. The eatATA package and this tutorial paper have been
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Figure 34: Constraint Definitions for Multi-Stage Assessment Module Assembly.

# Objective function (TIF stage 1)
maximinTIF1 <- combineConstraints(lapply(theta_values ,

function(theta_value)
{

cappedMaximinObjective(
nForms = 4,
itemValues = items_diao2[, paste0("IIF_", theta_value )],
weight = 1,
whichForms = 1,
itemIDs = items_diao2$item)

}))

# Objective function (TIF stage 2)
maximinTIF2 <- combineConstraints(lapply(theta_values ,

function(theta_value)
{

cappedMaximinObjective(
nForms = 4,
itemValues = items_diao2[, paste0("IIF_", theta_value )],
weight = 1,
whichForms = which(theta_values == theta_value) + 1,
itemIDs = items_diao2$item)

}))

# Content categories stage 1 and 2
contentConstraints1 <- itemCategoryConstraint(

nForms = 4,
itemCategories = items_diao2$Category ,
operator = " >=",
targetValues = c(4, 4, 3, 4, 4, 5),
whichForms = 1,
itemIDs = items_diao2$item)

contentConstraints2 <- itemCategoryConstraint(
nForms = 4,
itemCategories = items_diao2$Category ,
operator = " >=",
targetValues = c(3, 3, 2, 3, 3, 4),
whichForms = 2:4,
itemIDs = items_diao2$item)

# No item overlap
noOverlap2 <- itemUsageConstraint(

nForms = 4,
itemIDs = items_diao2$item)

# Test length stage 1 and 2
testLength1 <- itemsPerFormConstraint(

nForms = 4,
operator = "=",
targetValue = 30,
whichForms = 1,
itemIDs = items_diao2$item)

testLength2 <- itemsPerFormConstraint(
nForms = 4,
operator = "=",
targetValue = 20,
whichForms = 2:4,
itemIDs = items_diao2$item)

written to promote ATA methods and make them more accessible to practitioners and re-

searchers. We have provided a short overview of the basic ideas of ATA and an illustration

of the typical eatATA work flow. Using a small illustrative example and four different, more

realistic use cases, we demonstrated how the package can be used to implement ATA in R.

By choosing a wide range of different ATA applications with diverse test specifications we

hope to spark interest in ATA methods in a broad audience.
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6.4.1 Limitations

There are currently a few limitations when using eatATA to solve ATA problems. As men-

tioned in use case (2), hierarchical item stimulus structures cannot be implemented as flexibly

as suggested by van der Linden (2005) with optional item selection. However, in practice,

item sets are often treated as fixed units anyway, as altering the item set that is presented

alongside a stimulus might have undesirable effects on the psychometric properties of the

individual items. Furthermore, item overlap specifications between test forms cannot be

specified directly in eatATA. Generally, a direct implementation of item overlap constraints

drastically increases the complexity of the mathematical programming problem, resulting in

high computing times. Moreover, often item overlap specifications can be met indirectly,

for instance by first selecting a set of items that can serve as overlap items, and then con-

straining the number of overlap items per test form, as well as how many times the overlap

items can appear across the test forms. Therefore, direct overlap constraints are deliberately

not included in eatATA. Finally, solver selection in eatATA is limited to the solvers mentioned

in the introduction. For example, CPLEX and XPRESS are potent commercial alternatives to

Gurobi. Another potentially promising open source solver, unfortunately currently without

an R API is SCIP (Luo, 2020). However, we do believe that for many ATA contexts the

available selection of solvers is more than sufficient.

6.4.2 Alternatives

It is noteworthy that while for most data handling procedures or statistical methods a wide

variety of R packages exists, this is not the case for ATA methods. More precisely, we

are only aware of four other R packages on CRAN that have some ATA functionality im-

plemented, of which only two (TestDesign, RSCAT) seem to be under active development.

Indeed, TestDesign (Choi & Lim, 2020) provides access to the same selection of solvers

as eatATA but has a strong focus on adaptive testing. This is illustrated by the fact that

TestDesign is not suited for the assembly of multiple parallel test forms32. In a similar vein,

RSCAT provides functionality specific to the shadow-test approach in computerized adaptive

testing (Jiang, 2020). However, other testing approaches, such as multi-stage testing or lin-

ear testing, are not supported in that package. Finally, Rata (Luo, 2019a) and xxIRT (Luo,

2019b) also implement ATA methods in R. Yet both packages only provide access to the

Rglpk and lpSolve solvers. In addition, although both packages in general have a similar

32Readers of the present thesis should note that in the meantime a tutorial paper on using TestDesign for
fixed-form test assembly as well as CAT has been published (Choi et al., 2021).
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work flow compared to eatATA, their functionality is more limited compared to eatATA (e.g.,

no specific categorical item constraint functions, no automatic calculation of target values,

no item inclusions constraints).

Furthermore, alternative approaches to MILP have been proposed in the past, e.g., heuris-

tic algorithms, which are also capable of solving automated test assembly problems. Examples

include genetic algorithms (T.-Y. Chang & Shiu, 2012; Sun et al., 2008; Verschoor, 2007)

or simulated annealing (Veldkamp, 1999). For a short but comprehensive overview see van

der Linden (2005). As these algorithms do not search the entire solution space they are not

guaranteed to find the optimal solution to the optimization problem but may be compu-

tationally faster than the classic MILP solvers that are used by eatATA. Another potential

benefit of heuristic algorithms is that some allow the introduction of soft constraints, which

might be helpful for dealing with feasibility issues. However, to our knowledge, only limited

ATA applications of these algorithms exist. For example, we are not aware of a single ATA

application of heuristic algorithms using R. Furthermore, it can be argued that for most prac-

tical ATA applications MILP solvers perform sufficiently well from a computational stand

point (van der Linden & Li, 2016).

6.4.3 Conclusions

We believe that eatATA can be a helpful tool for researchers and practitioners that want to

assemble test forms. It is applicable in a wide range of scenarios and its user interface should

be rather intuitive for R users. By providing this tool we hope to promote automated test

assembly methods, which are almost always superior to manual test assembly approaches.
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7 Discussion

As assessments are important cornerstones of modern educational systems, their fairness and

validity are prerequisites for the fairness and the effectiveness of the educational systems

themselves. Speededness has frequently been identified as a potential threat to the validity

and fairness of assessments in a wide range of different contexts. The validity of power tests

with time limits is threatened as speededness can introduce construct-irrelevant variance into

an assessment, thereby changing the nature of the measured construct. If a certain degree of

speededness is desired in an assessment, speededness has to be carefully controlled to avoid

under-representation of constructs. The fairness of assessments is threatened as speededness

can be expected to affect test-takers very differently depending on their working speed. This

threat is amplified by the fact that different subgroups (e.g., gender and ethnicity subgroups)

are differentially affected by speededness (e.g., Lawrence, 1993; Voyer, 2011). While there

is plenty of research on the topic of speededness in general, to this day there is still little

research on (a) how speededness can be properly controlled in assessments and (b) how

speededness may affect the fairness of assessments when multiple, parallel test forms are

used. Furthermore, (c) there are currently only very limited practical tools and tutorials for

controlling speededness in assessments.

One of the only published approaches for controlling speededness so far is the approach

proposed by van der Linden (2011a, 2011b). However, it is limited to the rather restrictive

2PLN model, which assumes equal speed sensitivities across all items. Furthermore, van

der Linden (2011a, 2011b) argues that controlling the speededness on the test-form-level is

sufficient to generate parallel test forms. However, as already Sax and Cromack (1966) as

well as Leary and Dorans (1985) noted, some item orders can be more beneficial than others

if a test is speeded. The present thesis builds upon the ideas of van der Linden (2011a,

2011b) to develop a more general and flexible approach for controlling speededness, which

can accommodate the 3PLN response time model. Furthermore, the thesis builds upon the

ideas of Leary and Dorans (1985) to develop simple-to-implement approaches mitigating

differential effects of speededness due to different item orders. Finally, the thesis seeks to

supply practitioners with all the necessary tools to implement the proposed approaches in

practice. In the following, the research work presented in Chapters 2-6 is summarized.

Chapters 2 and 3 focused on illustrating how the approach for controlling speededness

proposed by van der Linden (2011a, 2011b) falls short in frequently encountered empirical

situations. The approach by van der Linden (2011a, 2011b) makes use of a restricted lognor-
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mal response time model, the 2PLN model, in which all speed sensitivities (factor loadings)

are set to 1. However, so far, no substantial arguments in favor of this assumption have been

presented in the literature. Empirically, this assumption seems overly restrictive as well, as

whenever it has been tested on empirical data, the assumption of equal speed sensitivities

did not hold. This was also shown in the empirical data analyses provided in Chapter 2 and

3. Based on this argument, Chapter 2 illustrated how differential speed sensitivities across

test forms can lead to substantially unfair test forms. Chapter 3 presented a more general

approach for controlling speededness in assessments, which makes use of the 3PLN model

instead of the 2PLN model.

Chapter 4 demonstrated how speededness can negatively affect the fairness of parallel

test forms. As it can be assumed that speededness mainly affects items at the end of the

test, properties of the items placed at the end of test forms are crucial for the impact of

speededness. In case a test is speeded for a test-taker, the test becomes less challenging

when items are sorted by ascending difficulty (easy to hard) than when items are sorted by

descending difficulty (hard to easy). This is due to the fact that the test-taker automatically

spends most of their time on items they have a high solution probability on, namely the

easy items at the beginning of the test. Therefore, Chapter 4 proposed that using identical

and time intensive items at the end of interchangeably used test forms is a sensible and

easy-to-implement approach to overcome such fairness issues.

Chapters 5 and 6 provided assessment practitioners and researchers interested in applying

the approaches presented in Chapters 2-4 with some theoretical and practical guidelines for

doing so. Chapter 5 illustrated how the response time models discussed in the Chapters

before can be implemented in the general-purpose Bayesian estimation software stan. Various

extensions of the basic hierarchical framework were discussed as well. The suggested model

implementations, convergence checks, and model comparisons were, for instance, applied in

Chapter 3. Chapter 6 demonstrated how general automated test assembly can be performed

using the R package eatATA, which was created in the scope of this thesis as well. The R

package eatATA is, for instance, in use for the German Vergleichsarbeiten or the international

TIMSS study 2023 (von Davier & Mullis, 2022).

In the following, important limitations of the research presented in Chapters 2-6 will be

discussed. These limitations refer to specific assumptions of the used response time models

and the test assembly approaches. Second, alternative approaches for controlling speededness

in assessments are presented. Third, practical implications of the presented research for
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different testing contexts are discussed. The thesis closes with an outlook on how future

research could build upon the presented research.

7.1 Limitations

Potential limitations of the presented research mainly pertain to assumptions of the response

time modeling approaches used and general assumptions made regarding test-taking behavior.

Specific limitations to the presented research work and proposed approaches were already

briefly discussed in Chapters 2-6. Beyond these brief discussions, this section focuses in-

depth on two of the most relevant assumptions: The conditional independence assumption,

which is mainly of relevance for Chapters 2 and 3, and the stable item order assumption,

which is mainly of relevance for Chapter 4.

7.1.1 Conditional Independence Assumption

A central assumption of the 2PLN and the 3PLN model is that of local stochastic indepen-

dence. It is assumed that, given the latent speed factor, no residual covariances exist between

manifest response times of the different test items (van der Linden, 2006). This assumption

can also be reframed as a stable speed assumption. This assumption is violated, if a test-taker

works with varying speed levels, for instance if they realize after the first half of the test that

it is necessary to speed up to respond to all items within the time limit. As a consequence,

residual correlations will occur within items of the first half and within items of the second

half. Indeed, especially in the context of the hierarchical framework, the stable speed assump-

tion has frequently been questioned (e.g., Bolsinova & Tijmstra, 2016; Coomans et al., 2016;

Domingue et al., 2021; van der Linden et al., 2010). For instance, some researchers argue

that response processes typically differ qualitatively and should be categorized into fast and

slow processes (e.g., Coomans et al., 2016; Molenaar & de Boeck, 2018). In contrast, Fox and

Marianti (2016) argue that test-takers may simply change their working speed throughout

the test, for instance due to decreasing motivation for low-ability test-takers. Violations of

the independence assumption can occur at two different steps in the assessment cycle: (a)

when piloting or pre-testing items or (b) during the operational test.

Pre-Test. When controlling the speededness of an assessment as proposed in Chapter 3,

test designers rely on unbiased and reliable estimates of item parameters from pilot studies. If

model assumptions of the respective response time models are violated, this can lead to bias

in item parameter estimates and thereby to biased and unfair test forms during test assembly.
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This applies both for response time modeling (used for controlling the speededness of test

forms) and for response modeling (for controlling, for instance, the TIF of test forms). In

fact, in the context of IRT, a comparable assumption to the stable speed assumption is made:

That of a constant ability level that does not change throughout the test (van der Linden &

Glas, 2010b). Research investigating violations of this assumption, however, usually focuses

on item position effects (e.g., Debeer & Janssen, 2013; Nagy et al., 2018; Ong & Pastor,

2022; Weirich et al., 2017; Q. Wu et al., 2019). This discrepancy regarding framing (ability

differences on the person side vs. difficulty differences on the item side) is due to the fact

that instability of test-taker behavior across a test can either be attributed to the ability of

a person (e.g., the displayed ability is decreasing over the course of the test due to fatigue)

or to the difficulty of the items in the test (e.g., items positioned at the end of the test

have a higher effective difficulty compared to if they are placed at the beginning of the test

as test-takers are already fatigued). On the first glance it may seem that the assumption

of stability of both speed and ability is more restrictive than the assumption of just speed

stability. However, it can be argued that violations of the constant speed assumption will

indirectly lead to violations of the constant ability assumption due to the speed-accuracy

trade-off anyway. Nevertheless, the issue of biased item parameters from pilot studies is a

serious concern. Ideal piloting conditions are therefore discussed in a designated section in

“7.3 Practical Implications”.

Operational Test. In general, it should be emphasized that the proposed approach for

controlling speededness in Chapter 3 is to be used before any response data is collected

from an operational assessment. This means that the response time models discussed are

applied to pre-test data, not to the response times of the operational assessment (at least

not for the purpose of controlling speededness when designing the assessment). Nevertheless,

in an ideal world, test-takers would adopt the exact speed level that is required from them

to just finish in time. Any deviation from this speed level (e.g., initially working too slow

and then guessing on or not answering to items at the end of the test) can be expected to

result in lower scores for test-takers (Tijmstra & Bolsinova, 2018). However, such deviations

from ideal test-taking behavior are not an issue of test assembly but arguably an issue of

unclear test instructions or too complex requirements regarding test-wiseness. One could

argue that additional measures (e.g., more fine-grained time limits such as item time limits;

Goldhammer, 2015; Goldhammer et al., 2017) may be sensible. While this is not an issue of

controlling speededness in assessments, future research directions related to this are discussed
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in “7.4 Directions for Future Research”.

7.1.2 Stable Item Order Assumption

Chapter 4 discussed how speededness and item order may interact, resulting in unfair test

forms. In speeded conditions, test forms containing identical item sets can lead to different

ability estimates depending on how items are ordered. This is, however, mainly an issue if

it is assumed that (a) test-takers are affected by speededness mainly at the end of a test

and (b) that test-takers work on tests in a linear fashion. In fact, there is overwhelming

consensus among researchers as well as empirical evidence that both assumptions hold in

practice. This includes research on not reached items, rapid guessing, or test speededness,

which frequently assumes and shows that all these processes affect items located at the end

tests (e.g., Glas & Pimentel, 2008; Lindner et al., 2019; Nagy et al., 2022; Pastor et al.,

2019; Pohl & Carstensen, 2013; Pohl et al., 2019; Pools, 2022; Rose et al., 2017; Schnipke

& Scrams, 1997; Tijmstra & Bolsinova, 2018; Ulitzsch et al., 2020; Wise et al., 2009). This

assumption is also in line with research on decreasing test taking engagement, which focuses

on how engagement declines throughout the test based on item positions (e.g., List et al.,

2017). Furthermore, the aforementioned research on item position effects finds that items

positioned at the end of a test are typically more difficult than items positioned earlier in a

test (e.g., Debeer & Janssen, 2013; Nagy et al., 2018; Ong & Pastor, 2022; Weirich et al.,

2017; Q. Wu et al., 2019). Additionally, research on statistically detecting speededness or

accommodating for speededness frequently finds that test-takers speed up at a certain point

in a test or increase their working speed throughout the test (Bolt et al., 2002; De Boeck

et al., 2011; Goegebeur et al., 2008; Jin & Wang, 2014; Kahraman et al., 2013; Suh et al.,

2012; Williams, 2017; Wollack et al., 2003; Yamamoto, 1995). Lastly, Lee and Haberman

(2016) investigated the order in which test-takers work on the items of a test and confirm that

they do so predominantly in the presented order. Note that similar findings of test-takers

speeding up and performing worse at later points in the test were also confirmed in Chapter 5

of this thesis. The only exceptions to this overwhelming evidence can be found in the context

of formula scoring.

Formula Scoring. Formula scoring is a scoring approach for multiple-choice tests that

penalizes incorrect responses to discourage test-takers from randomly guessing on items to

which they do not know the answer (Lord, 1975; Thurstone, 1919). The penalty is defined

as − 1
c−1 , with c denoting the number of response options. It is plausible to assume that
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formula scoring causes test-takers to skip harder items and leave them for later. Doing so

allows test-takers to later decide if they want to answer to the harder items at all. In the

context of formula scoring, Y.-W. Chang et al. (2014) and J. Chang et al. (2016) propose

speeded IRT models, which assume that test-takers work on the items in the order of increas-

ing difficulty. The researchers term this test-taking strategy the leave-the-harder-till-later

approach. Thereby, these models account for the fact that due to speededness test-takers

may not answer to all items and these items are most likely the hardest ones in the test. See

Bejar (1985) and Cao and Stokes (2008) for similar ideas but with a focus on detecting the

speededness of a test and partial rapid guessing, respectively.

Formula scoring is generally viewed critically by the research community as personality

traits and test wiseness are likely to affect test scores, thereby threatening the validity and

fairness of a test (Budescu & Bo, 2015; Rowley & Traub, 1977). Yet, while a leave-the-harder-

till-later test-taking strategy is possible in paper-based assessments, it can be expected to

be less probable in computer-based assessments where navigation between items and tasks is

often less convenient. Additionally, test administrators can restrict the possibility to navigate

backwards to already seen items in computer-based assessments. Nevertheless, if formula

scoring is used in an assessment and navigating between items is freely possible, considering

differential effects of item order may be less relevant.

Finally, the approaches suggested in Chapter 4 can be considered low-risk approaches.

Even if test-takers were to work on the presented items in a different order, presenting the

same, most time intensive items at the end of the test for all test-takers will hardly have any

negative consequences. It is plausible to assume that at least some of the test-takers will

work on a test in a linear fashion. For them, eliminating unfair effects of differential item

ordering is vital. For all other test-takers, fixing the most time intensive items at the end

of all test forms will not be harmful. The small loss in test security should have very little

practical impact (see Chapter 4 for more detailed explanations regarding test security and

test wiseness).

7.2 Alternative Approaches to Dealing with Test Speededness

While the approach of van der Linden (2011a, 2011b) and the proposed generalization of it to

the 3PLN model (see Chapters 2 & 3) are among the only approaches for controlling speed-

edness in achievement assessments, other researchers have proposed conceptually different

approaches regarding how to deal with test speededness. Five approaches which, at least in
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some situations, can be viable alternatives or suitable additions to controlling speededness

in test assembly, will be discussed: (a) maximizing information per time unit, (b) explicit

scoring rules, (c) investigating the speed-ability trade-off experimentally, (d) statistical mod-

eling approaches, and (e) item time limits. As these approaches have not yet been discussed

in Chapters 2 and 3, detailed discussions to which degree they may substitute controlling

speededness during test assembly are warranted.

7.2.1 Maximizing Information per Time Unit

In the CAT context, measurement efficiency is of major interest. Frequently, measurement

efficiency is defined as the number of items which have to be administered to achieve sufficient

measurement precision. Others have argued that efficiency should instead be measured in

terms of required testing time. For this purpose, Fan et al. (2012) introduced the maximiz-

ing information per time unit criterion (MITC). They build upon the lognormal response

time model from van der Linden (2006) and use it to predict response times for all not yet

administered items in the item pool. Based on these expected response times, item selection

strategies are modified such as the maximum information criterion (MIC) or the a-stratified

item selection method. The goal is to no longer select the most informative item overall

but the item that provides the most amount of information per time unit in CAT. This is

achieved by using the expected response time E(RTk) given a preliminary speed estimate as

a weighting factor. For instance, the MITC of an item k for ability level θ and speed level ζ

is defined as

Ik(θ, ζ) =
Ik(θ)

E(RTk)
. (61)

A number of studies have built upon the ideas of Fan et al. (2012) using different response

time models (Patton, 2015), modifying the MITC approach (Cheng et al., 2017; Choe et al.,

2018), or applying it to CDMs (Finkelman et al., 2014). An important generalization of

the MITC approach, the generalized MITC (GMITC), has been presented by Choe et al.

(2018). The model is generalized in that it allows centering and weighting the response

times. Thereby the model allows not only minimizing the testing time, but minimizing the

difference to a target test time v:

Ik(θ, ζ) =
Ik(θ)

(E(RTik|ζi)− v)w
. (62)
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The MITC is a special case of the GMITC with v = 0 and w = 1. Despite the popularity

of the MITC or related approaches in research it should be noted that MITC approaches have

some important practical limitations compared to the more flexible approach for controlling

speededness presented in Chapter 3. First, they are only applicable in CAT, as no speed

estimates are available in fixed-form testing. An extension to MST seems possible, but

has apparently not yet been proposed. Second, MITC approaches in themselves provide no

framework for incorporating further test specifications (e.g., T. Wu et al., 2022). In contrast,

the approach proposed in Chapter 3 is based on ATA, which easily allows for incorporating

further test specifications (Huang, 2019). Therefore, GMITC approaches can be valuable

tools for reducing or controlling the speededness in CAT applications with a limited amount

of additional test specifications, but are not applicable in a wider range of scenarios.

7.2.2 Scoring Rules

In explicit scoring rule approaches, speed is incorporated directly into the scoring of responses.

For instance, Maris and van der Maas (2012) propose the so called signed residual time (SRT)

scoring rule. The scoring rule places larger rewards on fast and correct responses than on

slow and correct responses as well as larger penalties on fast and incorrect responses than on

slow and incorrect responses. An advantage of this approach is that test-takers are informed

about the scoring method beforehand and can incorporate this knowledge into their test-

taking strategy. For an extension of the originally proposed model, see also van Rijn and

Ali (2018). One of the benefits of the SRT scoring rule is that information can even be

gained from comparatively easy items with high solution probabilities, namely how fast test-

takers can produce the correct answer. However, the SRT scoring rule has been criticized

for ignoring that test-takers can differ in their chosen speed-ability trade-off (Tijmstra &

Bolsinova, 2021). Furthermore, it can be argued that such scoring rules always imply a

confounded measurement of speed and ability and make the measurement of a pure ability

dimension impossible. Currently, the SRT scoring rule (or comparable scoring rules) are

mainly used in the context of computerized adaptive practicing (e.g., Klinkenberg et al.,

2011). In computerized adaptive practicing, learners are typically presented with easy items

(expected probability of correct responses above .75) in order to motivate the learners and

continue the learning process. In addition, the typical skills in these environments are skills

that benefit from drill and practice, such as early numerical skills or basic reading skills. It

seems that scoring rules are well suited for these applications but may not be applicable in
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the wider assessment context.

7.2.3 Experimentally Varied Speed-Ability Trade-Off

Especially in the context of experimental psychology, researchers have argued that rather

than focusing only on ability or speed, measuring the speed-accuracy trade-off provides a

more holistic picture (Goldhammer et al., 2017; Wickelgren, 1977). In line with this, one

could argue that assessments could experimentally vary the speed-ability trade-off to assess

the complete shape of the trade-off for all test-takers. This would mean gaining substantially

more information than simply measuring a compound of speed and ability. However, cur-

rent research indicates that the interpretation of speed-ability trade-offs can be challenging

especially in unspeeded low-stakes settings. For instance, Domingue et al. (2022) present an

extensive review of the SAbT among a wide variety of data sets and find inconsistent results.

Certain features of assessments, such as time limits or different stakes may confound findings.

For example, in low-stakes assessments, fast responses could be motivated responses, when

test-takers move fast and efficiently through the test. However, fast responses could also be

produced by unmotivated test-takers who do not take sufficient time and care in answering

the items. Ranger et al. (2021) reason that motivational processes can indeed lead to different

empirical speed-ability trade-offs.

Regardless of conceptual issues, experimentally varied SAbT assessments would be very

challenging to implement in practice. Such experimental manipulations would deviate strongly

from current assessment practice and would complicate the test administration as well as the

analysis of tests. Furthermore, it is unlikely that test-takers can always perfectly control their

speed-ability trade-off. In current assessment practice, usually only a single speed-ability ma-

nipulation is implemented (i.e., a global time limit is set). Still, test-takers often struggle to

find the appropriate speed-ability trade-off that enables them to complete all items without

producing missing responses or resorting to rapid guessing (Tijmstra & Bolsinova, 2018).

7.2.4 Statistical Modeling

Other researchers have proposed that ability could be statistically purified of the effects of

speed and speededness. For instance, speed and ability could simply be modeled separately

in the hierarchical framework by van der Linden (2007) and be reported as separate latent

constructs (e.g. Pohl et al., 2019, 2021; Ulitzsch et al., 2020). Others have suggested mixture

modeling approaches to separate solution behavior and rapid guessing behavior due to test
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speededness (Boughton & Yamamoto, 2007; Meyer, 2010; C. Wang & Xu, 2015). Probably

the most straightforward approach is treating not-reached items as not administered (e.g.,

Pohl & Carstensen, 2012). This way, test-takers can work at their maximum capacity and

the test is simply reduced in its test length appropriately for each test-taker.

While such approaches have the advantage that they can be applied after the assessment

has been administered, for instance if speededness was not considered during test design

and assembly, they have various weaknesses: First, those approaches suffer from similar

weaknesses as approaches that try to measure and quantify the speededness of a test. They

frequently rely on symptoms of test speededness which simply may not be present for test-

wise test-takers, such as rapid guesses or missing responses. Second, these approaches make

specific assumptions about the underlying speed-ability relationship (e.g., linearity) that may

not always hold in practice. Third, even if we know the speed and ability level at which a

person has worked, we can never know the maximum ability level at which a person would

be able to work from a single speededness condition (Goldhammer et al., 2017; Tijmstra

& Bolsinova, 2018). Fourth, individual person parameter estimates will depend on specific

sample dynamics. For instance, assume a joint model for ability and speed is estimated to

account for speed differences. If, in the sample, high-ability test-takers usually work fast,

other test-takers will also be rewarded simply for working fast. If in another sample, high-

ability test-takers work slowly but carefully, other test-takers will be punished for working

fast. Fifth, especially in the context of high-stakes assessments, such purification approaches

could be abused or “gamed” if test-takers are aware that specific response strategies are

rewarded. Sixth, in low-stakes settings, speededness can sometimes be difficult to disentangle

from (other) sources of construct irrelevant variance, such as test-taker disengagement (e.g.,

Wise & Kingsbury, 2022; Wise & Kuhfeld, 2021).

These concerns are in line with concerns voiced by other researchers who have expressed

general skepticism about purification approaches (Robitzsch & Lüdtke, 2022; Tijmstra &

Bolsinova, 2018). Partchev et al. (2011) have shown that a test which was administered

without speededness for all test-takers may be turned into a compound measure of speed and

ability after its administration via posterior time limits. However, a test with undefined levels

of speededness for test-takers cannot be purified of its potential speededness via statistical

modeling. Nevertheless, there certainly is merit in approaches for detecting speededness and

purifying ability estimation of the effects of speededness. However, none of these approaches

can substitute for controlling the speededness of test forms in the first place. Instead, statis-
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tical modeling may provide a useful addition to approaches for controlling speededness, for

instance if test-takers in low-stakes assessment work too fast due to motivational issues.

7.2.5 Item Time Limits

Goldhammer (2015) proposes using time limits on item level to prevent test-takers from

working at different speed levels during an assessment. In contrast to common overall time

limits for complete tests, item time limits restrict how much time a test-taker can spend on

each individual item in the test. This approach is specifically targeted at issues arising from

test-takers choosing different speed-ability trade-offs in the assessment, thereby distorting

ability differences between test-takers (Goldhammer, 2015; Tijmstra & Bolsinova, 2018).

However, item time limits themselves do not prevent validity issues due to speededness or

fairness issues due to differential speededness. If item time limits are chosen too strictly,

speededness can confound a pure ability measurement just as much as test time limits. If

different test forms with distinct items are used for different test-takers, time limits and

workload still need to be chosen to be fair across test-takers. Therefore, similar to statistical

modeling, item time limits may be a suitable addition to the proposed approach for controlling

speededness in assessments but cannot substitute it. In fact, the approach for controlling

speededness in Chapter 3 may be useful in setting appropriate time limits on the item level.

Finally, van Rijn et al. (2021) report that item time limits can have negative effects on

the overall performance of test-takers compared to test time limits. Future research could

investigate both the practical advantages and disadvantages of item time limits and whether

the approach presented in Chapter 3 is suitable for setting item time limits.

7.3 Practical Implications

There is currently little guidance for assessment practitioners on how to control speededness

and the consequences of speededness in assessments in the literature. This section aims

at helping to fill this gap, providing some practical advice and further discussion. First,

the practical relevance of the proposed approaches for different testing contexts, namely

high-stakes and low-stakes assessments, and different levels of assessment adaptivity will be

discussed. Second, it will be discussed how piloting conditions should be designed to obtain

reliable and valid item parameter estimates for test assembly procedures. Finally, the current

lack of transparent reporting on how speededness is controlled during test assembly in almost

all testing programs is discussed and suggestions are made on how testing programs could
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improve their reporting.

7.3.1 Relevance for Different Assessment Contexts

Chapters 2 - 4 were mainly focused on speededness in the context of fixed-form linear high-

stakes assessment. However, as was already pointed out in Chapter 1, it can be argued that

controlling speededness is relevant in most testing contexts. In the following, it is argued

that especially Chapters 2 and 3 are relevant irrespective of the stakes for test-takers and the

level of adaptivity used.

Assessment Stakes. When stakes are high for individual test-takers it is apparent that

test forms must be fair (i.e., interchangeable) for each individual taking the test. In low-

stakes assessments, for instance large-scale assessments, results are usually only reported on

group level (e.g., country; Kirsch et al., 2013). Therefore, strict requirements for fairness

on the individual test-taker level often do not exist. If test forms are distributed evenly

across the different groups, which should be compared, differences between the test forms

simply even out across groups. However, this does not mean that controlling speededness

is not relevant in the context of low-stakes assessments. While speededness may not be a

fairness issue on the level of individual test-takers in low-stakes assessments, it should be

considered a validity issue in both high-stakes and low-stakes assessments. If an educational

large-scale assessment seeks to measure knowledge in geometry and is involuntarily speeded,

it is unclear, which policy decisions should be based on poor results in such a test: Is the

geometry curriculum flawed? Or were the students simply not answering test questions in

a fast and efficient manner? Other assessments seek to measure a compound construct, as

in the case of reading speed which can be considered an essential part of reading literacy.

In such cases, the construct may not be correctly represented if test forms are not speeded

enough or too strongly speeded. Furthermore, speededness can still be a fairness issue if

subgroups differ in their working speed. In such instances, a speeded test can favor certain

subgroups leading to fairness issues on the group level.

Additionally, controlling speededness should be considered relevant from a practical per-

spective. For instance, differentially speeded test forms can have a negative impact on test-

taking behavior, as low-stakes assessments are often administered in a classroom context. If

test forms are differentially speeded, meaning that some test forms contain more workload

than others, this will lead to some test-takers finishing ahead of other test-takers. These

test-takers may then get bored and distract other test-takers from the test. Alternatively, if
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some test-takers realize they are proceeding slower compared to other test-takers, they may

feel the urge to work faster (and less accurately) on the test.

Adaptivity. While controlling speededness is crucial during the assembly of fixed-form

linear test-forms, one can argue that it is of even greater importance in the context of adaptive

assessment modes. Speededness is an inherent concern in CAT and MST, as the time intensity

of items is often correlated with their difficulty (Bridgeman & Cline, 2004; van der Linden,

2009b). This means that high-ability test-takers will often systematically receive more time

intensive items than low-ability test-takers both in CAT and MST (Davey & Lee, 2011;

van der Linden & Xiong, 2013). Furthermore, CAT and MST are frequently administered

in fixed time slots with fixed time limits as well (Bridgeman & Cline, 2004). In a certain

sense, high-ability test-takers are therefore punished for performing well in adaptive testing

situations, an issue stated both in the literature for CAT (Bridgeman & Cline, 2004; Huang,

2019; van der Linden & Xiong, 2013) as well as MST (Davey & Lee, 2011).

Fortunately, all presented approaches for controlling speededness during test assembly in

Chapter 3 are applicable to CAT and MST, just as they are to fixed-form linear tests. In

MST, speededness constraints can simply be added during the assembly of modules33. For a

review on how ATA methods blend with MST see, for example, Zheng et al. (2016). For a

practical implementation see Chapter 6 of this thesis. In CAT, speededness constraints can

be added within the shadow-test framework (van der Linden, 2005). The latter was already

demonstrated for the original approach using the 2PLN model by van der Linden and Xiong

(2013). Therefore, an extension to the 3PLN model as demonstrated in Chapter 3 seems

straightforward.

7.3.2 Piloting Conditions

When items are piloted to inform the assembly of operational test forms, the goal is to obtain

valid and reliable information for these items, such as IRT item parameters or response time

model parameters. Such valid and reliable response time model parameter estimates are,

for instance, vital for the approach to controlling speededness presented in Chapter 3. But

how should pilot studies be designed to obtain valid and reliable item parameters? In fact,

this question is rarely addressed in the literature so far. Chapter 3 briefly discussed the

following two approaches: (1) Piloting conditions are chosen so they are as similar as possible

33Alternatively, parallelism can also be implemented on the higher panel or pathway level, following a
top-down approach.
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to operational testing conditions or (2) piloting conditions are chosen to minimize bias and

construct-irrelevant influences on parameter estimates. In the following, the advantages and

disadvantages of both approaches are discussed.

Similar Conditions. Choosing piloting conditions that closely mimic the conditions of

the operational test aims at preventing item parameters to substantially differ between the

pilot and the operational test. Indeed, if items are piloted in a low-stakes setting and are

later administered in a high-stakes setting, test-takers may invest less effort in the pilot

test compared to the operational test (Wise & DeMars, 2005). Thereby, item difficulty

may be overestimated and item time intensity may be underestimated based on the piloting

data. However, it is not always possible to exactly mimic operational testing conditions in

pilot tests. In low-stakes assessments, such as educational large-scale assessments, this is

often easy to implement, as both the pre-test as well as the operational test are low-stakes,

anyway. However, for high-stakes assessments, this is more challenging, as it is unethical

and/or difficult from a practical perspective to associate high-stakes for individuals with the

outcome of a pilot test. To circumvent this problem, some high-stakes assessments pilot

items as part of their operational test so test-takers perform and behave similarly both in the

operational test and the pilot test (e.g., Educational Testing Service, 2010).

Ideal Conditions. In contrast, it can also be argued that, if items are piloted under oper-

ational test conditions (e.g., speeded), these conditions could lead to bias in item parameter

estimates. As discussed before, conventional response and response time models assume that

test-takers work with constant ability and speed throughout a (pilot) test. Yet, processes such

as test speededness, fatigue, or declining effort can impact the ability and speed with which

test-takers work throughout the test. A prominent phenomenon often researched in this con-

text are the aforementioned item position effects (e.g., Debeer & Janssen, 2013; Weirich et al.,

2017). To counter such effects, four measures have been proposed in Chapter 4 which shall

be reiterated to emphasize their relevance for practical applications: (a) test-takers should

be given sufficient time on the pilot test, (b) the pilot test should be sufficiently short so test-

takers do not experience fatigue or a decrease in effort, (c) item positions should be balanced

in the pilot test design so item position effects average out, and (d) models which take item

position effects or varying speed levels into account could be used for the estimation of item

parameters (e.g., Fox & Marianti, 2016; Hong et al., 2020).

Choosing appropriate piloting conditions is often also limited by practical constraints.
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For instance, piloting items for high-stakes assessments in low-stakes settings can lead to

confidentiality issues. Furthermore, research exists that seeks to reduce the necessity of

piloting items in general. For instance, Baldwin et al. (2021) propose an approach suitable

for predicting response times based on item surface properties. In theory, such approaches

could be extended to predict the item parameters of the 3PLN model so these can be used

in ATA, even if the items have not been actually piloted.

7.3.3 Speededness Control Reporting

In this thesis, it has been repeatedly argued that controlling the speededness of a test is crucial

for the validity and fairness of an assessment. This emphasis is in line with various research on

the topic (e.g., Cintron, 2021; Jurich, 2020; Kane, 2020; Y. Lu & Sireci, 2007). Unfortunately

however, it stands in stark contrast to the common practice of testing programs. In fact,

testing programs rarely if ever describe their test assembly strategies, including how they

control the speededness of the assessment. In technical reports, information on test assembly

is often either omitted completely or reduced to a few conceptual statements (e.g., College

Board, 2015; Educational Testing Service, 2010; OECD, 2013, 2016a). It can be argued

that testing programs and assessments in general should explicitly define their measured

constructs and how they are related to speed as well as how speededness is controlled in test

assembly. More precisely it is suggested that assessment designers explicitly communicate:

1. Is the construct their assessment measures related to speed (i.e., is speed an intentional

parameter or nuisance factor)?

2. If speed is seen as an intentional parameter, to which degree should speed be part of

the measured construct?

3. How are pilot studies conducted to inform the assembly of test forms (e.g., time limit,

stakes for test-takers, instructions regarding time use)?

4. How is test speededness controlled during (automated) test assembly (e.g., van der

Linden approach or approach presented in Chapter 3)?

5. If multiple, parallel test forms are used, are items balanced at the end of test forms to

prevent differential effects of speededness (see recommendations provided in Chapter

4)?
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Only if these aspects of test designs are communicated, researchers can determine whether

an assessment appropriately considered speededness. Furthermore, transparent reporting of

these aspects will certainly foster further research in the area of test speededness.

7.4 Directions for Future Research

In the present thesis, various perspectives on how to control the speededness of an assessment

and how differential effects of speededness can be controlled were discussed. Future research

could build upon the presented research in a variety of ways. In the following, an extensive

(but not exhaustive) list of suggestions is given.

7.4.1 Defining Response Times

During large parts of this thesis (Chapters 2, 3, & 5) it was assumed that response times

are available from item pre-testing. Indeed, this is a crucial limitation of the present thesis.

If, for instance, items are pre-tested using paper-based assessments or response times are

not collected via the testing software, the respective approaches for controlling speededness

are simply not feasible. Unfortunately, even if response times are collected, their definition

can vary from assessment to assessment. As described in Chapter 1, some researchers define

response times as time-on-task (e.g., Goldhammer et al., 2020; OECD, 2022), others define

response times as time until the last answer-change was performed (e.g., Kröhne & Goldham-

mer, 2018; Li et al., 2017). Even though the topic of response time modeling is trending in the

psychometric literature (Becker et al., 2022; van Rijn & Sinharay, 2023), there is surprisingly

little research on this technical definition of response times. Future research should investi-

gate, which response time operationalization is most appropriate for psychometric purposes.

Furthermore, certain administration conditions (e.g., preventing test-takers from revisiting

items) might benefit clear operationalizations of response times. Such constraints might be

especially attractive for pilot tests in which the goal is not necessarily a valid and reliable

person parameter estimation but investigating the properties of items.

7.4.2 Defining Speededness

In his work, van der Linden (2011a, 2011b) defined test speededness as an interaction of the

workload of a test, its time limit and the working speed of a test-taker. This definition was

adopted throughout this thesis. More precisely, van der Linden (2011a, 2011b) defined the
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degree of speededness34 as the probability π of a test-taker to run out of time as35

π = Pr

{︄
k∑︂

j=1

RTk > RTlim | ζ, λ, ϕ, σ2ϵ

}︄

= 1− FRTtot(RTlim | ζ, λ, ϕ, σ2ϵ ).

(63)

FRTtot denotes the cumulative distribution function of RTtot, RTlim the time limit set on a

test. However, this speededness definition may be unsatisfactory for assessment practitioners

as it (a) focuses on the displayed speed level of the test-taker and (b) does not provide a clear

categorical definition of speededness. Both aspects warrant a further discussion and should

be investigated in future research.

Displayed Speed Level. Assume a test-taker is administered a time intensive test with a

strict time limit. If the test-taker chooses a fast and appropriate initial working speed, they

are able to finish the test in time. Following the definition of van der Linden (2011b), the

test-taker in this case was not exposed to a speeded test administration, as the test-taker

was not running out of time. Yet, if the test administration was not speeded, the test-taker

would probably have chosen a different, slower speed level leading to greater displayed ability.

Therefore, an extended definition of speededness is proposed: Test speededness is defined as

an interaction of the workload of a test, its time limit and the maximum working speed of

a test-taker at which they still achieve their maximum ability. Ranger et al. (2021) refer to

this maximum ability level of a test-taker as a test-taker’s capability. If a test-taker has to

increase their working speed to a point at which their displayed ability is reduced to finish

the test within the time limit, a test administration should be considered speeded. Or in

other words: If a test-taker had scored higher on a test had they been given more time, the

test administration for this test-taker must be considered speeded.

This speededness definition implies that the only sufficient approaches for detecting speed-

edness are test-retest approaches (Harik et al., 2018). Test-retest approaches refer to the ad-

ministration of multiple, parallel test forms with different time limits to compare individual

test-taker performance. If a shorter time limit leads to a lower ability estimate compared

to a more lenient time limit for a test-taker, this means that the stricter time limit led to

a speeded test administration for this specific test-taker. However, such a comparison does

34It can be argued that degree of speededness is unfortunate wording as this term could also refer to the
amount of time pressure a test-taker experiences (i.e., how strongly do they have to adjust their speed level).

35Note that the item parameter ϕ has been added to Equation 63 as this thesis advocates for the use of the
3PLN model instead of the restricted 2PLN model. Also note that π simply constitutes the inverse probability
of the quantile at RTlim.
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not imply that the more lenient time limit led to an unspeeded test administration. An un-

speeded test administration can only be proven by a configuration in which additional time

does not lead to additional gains in ability.

In contrast, Bridgeman (2020) suggests experiments with random assignment as the gold

standard, such as performed in the studies by Evans and Reilly (1972), Bridgeman, Trapani,

and Curley (2004), or Bridgeman, Cline, and Hessinger (2004). Unfortunately, experimental

approaches have an important pitfall: They investigate whether a test is speeded for the

average test-taker. However, this can mean little for an individual, slow test-taker, who will

experience test speededness even if a test is not speeded for the average test-taker.

This newly proposed definition of speededness brings up a variety of research questions

which should be addressed by future research, such as: Can test-takers accurately report

whether they have experienced a speeded test administration (i.e., do they have insight into

their own speed-ability trade-off)? How can pure power tests determine how time limits

must be set to guarantee an unspeeded test administration for all test-takers? Can specific

instructions during pilot testing (e.g., “Take as much time as you need.”) substitute cost

intensive test-retest approaches? And how can test-retest approaches be designed efficiently

to predict test speededness for future test-takers?

Probabilistic Speededness Definition. Assume a test-taker with a fixed speed level

could be presented the same test 100,000 times. As it is assumed that item response times

are manifestations of the latent speed level confounded with measurement error, every test

administration will yield a slightly different total test time. The resulting test time distri-

bution may look like one of the distributions in Figure 9 (Chapter 3), with the majority of

the test time distribution located between 8,500 and 10,000 seconds. Furthermore, assume

that the time limit of the test is set at 9,300 seconds. Should the test be considered speeded

for the specific speed level of the hypothetical test-taker? Empirically, the test is speeded for

the test-taker approximately 50% of the time. If a test-retest approach is used to determine

whether the test is speeded for this specific test-taker, measurement error can lead to sub-

stantially different conclusions. This may be unsatisfactory for assessment practitioners. In

that sense, two approaches to determining speededness could be considered: (a) Repeated

test-retest approaches, which allow to estimate how frequently a test is speeded for a certain

speed level or (b) statistical modeling of the response times, for instance, via the 3PLN model.

While repeated test-retest approaches seem hardly possible in practice, statistical modeling

requires that researchers are able to instruct test-takers to work at the exact speed level that
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allows them to work at their maximum capacity.

Future research should investigate the practical feasibility of such a statistical modeling

approach for determining the speededness of a test administration for a specific speed level.

Furthermore, future research could investigate whether this probabilistic notion of speeded-

ness may be translated into a categorical definition for practical applications. For instance,

it could be argued that it suffices that running out if time is highly unlikely (e.g., < 5%) for

a speed level to consider a test unspeeded for this speed level.

7.4.3 Setting Speededness based on Risk Probabilities

In his work, van der Linden (2011b, p. 46) emphasizes that arguably the most relevant use

case for being able to control speededness is that “...we may select a new test form to realize

a desired level of risk π for a given time limit RTlim.” This could mean, for example, to

assemble a test on which slow test-takers with ζ = −1 should have a 90% probability of

finishing the test within the time limit of 30 minutes. Alternatively, if a test is meant to be

substantially speeded, test-takers with moderate working speed (ζ = 0) should have a 50%

probability of finishing the test within the time limit. However, both van der Linden (2011b)

and Chapter 3 of this thesis focused on applications in which the cumulants of the desired

response time distribution are already given, either because the aim is to create an additional

test form (parallel to an existing test form) or to modify an existing test form. Furthermore,

in his previous work, van der Linden (2011a) focused on determining an appropriate time

limit RTlim given a fixed test (containing items with item parameters λ and σ2ϵ ) and a desired

risk π for a specific speed level ζ to run out of time. Indeed, Equation 63 can be reformulated

into Equation 64 to get the appropriate time limit RTlim for a test (van der Linden, 2011a):

RTlim = F−1
RTtot

(1− π | ζ, λ, ϕ, σ2ϵ ). (64)

However, a frequent application is that a fixed time limit RTlim is given (e.g., a certain

time slot is already allocated for the assessment, or the assessment has been using a certain

time limit before), alongside with a (maximum) desired risk π for test-takers to run out of

time. Unfortunately, it is not straightforward to derive the cumulants of a respective test

time distribution given Equations 63 and 64. Future research could investigate how a desired

level of risk and a given time limit can, for a specific speed level, be translated into the

first two cumulants of a response time distribution (mean and variance), which then can be

constrained in ATA as illustrated in Chapter 3.
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7.4.4 Understanding Speed Sensitivity

In Chapters 2 and 3, there was a strong emphasis on the fact that, empirically, items often

differ regarding their speed sensitivity. However, there is currently little research on which

item properties determine the speed sensitivity of items. For an exception, see the work of

Vista and Alahmadi (2022) who compare speed sensitivities across sub-domains of cognitive

ability. While item developers and test designers may have an intuitive understanding of

factors influencing the difficulty (e.g., complexity, constructed response formats) or time

intensity of items (e.g., text length), this is less trivial for slope or discrimination parameters.

However, practically speaking, in some situations it could be beneficial for item developers

to have insights into how the speed sensitivity of items can be manipulated.

It should be noted that, while items which discriminate well regarding ability are usually

preferred to poorly discriminating items, the same may not be true for speed sensitivity. If

items are highly sensitive for speed differences, this means that some test-taker need very

little time on an item, while others need substantially larger amounts of time. In a lot of

practical situations, test designers will prefer to have test-takers require similar amounts of

time instead.

7.4.5 Different Response Time Models in ATA

The present thesis has focused on utilizing lognormal response time models, namely the 2PLN

and 3PLN models in ATA. However, in the psychometric literature, a wide variety of different

response time models is available (De Boeck & Jeon, 2019). Furthermore, by conventional,

frequentist CFA standards, the lognormal response time model frequently exhibits poor model

fit in practical applications (van Rijn & Sinharay, 2023). However, this is rarely explicitly

investigated in the literature. Future research could investigate how different response time

models can be used in the ATA framework to control the speededness of test forms. The

central requirements for using other response time models in ATA are that (a) it is possible to

calculate the cumulants of the expected response time distributions and that (b) a conditional

independence assumption allows for these cumulants to be additive.

An alternative to approaches based on response time models is using predicted response

times for item selection. For instance, in CAT, information is collected on the test-taker dur-

ing the test and available during later stages of the test assembly process. In such applications,

machine learning approaches may outperform classic response time modeling approaches in

predicting response times.
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7.4.6 Differential Item Functioning

A major concern for the validity and fairness of assessments is differential item functioning

(DIF; e.g., de Ayala, 2022). DIF refers to items functioning differently in different subpop-

ulations, for instance due to differential familiarity with specific item content. Usually, DIF

focuses on differential difficulty of items. However, it seems plausible to assume that items

can be differentially time intensive as well. For instance, research has shown that reading

speed substantially differs between different languages and across the life span (Brysbaert,

2019). Therefore, international assessments which are administered in different languages or

assessments administered across different age groups may be prone to the effect of differential

item functioning regarding the time intensity of items (for similar ideas, see Lee & Haber-

man, 2016). For instance, Shin et al. (2020) illustrate using PISA data that measurement

invariance does not hold across assessment languages and countries based on IRT analysis of

categorized response times. If a test is differentially time intensive for test-takers, this can

lead to differential speededness and unfair test administrations. Note that DIF regarding

ability and speed may be often correlated in practice. If test-takers are familiar with the

content of a specific item (e.g., test-takers are asked about the capital of Germany lead-

ing to DIF for German test-takers in comparison to other nationalities) this will often have

an impact both on the speed and accuracy test-takers show on the item. Future research

could investigate the prevalence and the consequences of DIF regarding time intensity and

its relation to conventional DIF.

7.4.7 Extended Testing Time

A frequent challenge for test administrators is providing test accommodations related to

time limits. A common practice is providing, for instance, students with disabilities (SWD)

with extended testing times both in high-stakes assessments (Lovett, 2010) as well as low-

stakes assessments (e.g., OECD, 2016b). This is mostly done out of fairness reasons. If

a test is supposed to be unspeeded or only slightly speeded, SWD test-takers working at

substantially lower speed levels would otherwise be at a disadvantage. In practice, these

time accommodations are mostly categorical (e.g., standard time vs. 50% additional time;

Cahan et al., 2016). However, it seems unlikely that the underlying construct (i.e., speed) is

categorical (Gernsbacher et al., 2020). Therefore, researchers have argued that the current

practice of test time accommodations is arbitrary and threatens the validity of assessments,

as non-SWD test-takers would frequently benefit from extended test time as well (Cahan
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et al., 2016).

An illustrative example of how arbitrary these test time accommodations are and how eas-

ily the current system can be gamed is the 2019 College Entrance Scandal (United States De-

partment of Justice, 2019). Essential part of this fraudulent scheme was non-SWD test-takers

getting (undeserved) test time accommodations. However, these test time accommodations

themselves were achieved without any bribes by simply repeatedly requesting the accommo-

dations or seeking out lenient medical practitioners. Future research should investigate how

more fine-grained test time accommodations could be provided to test-takers according to

their true needs. For instance, while experimental investigations of the speed-ability trade-off

may be too time-consuming and resource-intensive for all test-takers, such an approach could

be suitable for determining test time accommodations.

7.4.8 Item Order in Tests with no Item Overlap

Chapter 4 focused on the effects of item order in test forms with identical items (i.e., full item

overlap). In such instances, keeping the order of items constant across test forms (at least

for specific parts of the test forms) is a viable solution. However, item order and speededness

can also lead to unfair test forms if the test forms have little or no item overlap at all.

For instance, test form A could still have mainly easy items at the end of the test while

test form B could have mainly difficult items at the end of the test. Unfortunately, if test

forms have no overlapping items, keeping identical items at the end of the test constant is

not a viable option. Future research should embrace this challenge, for instance by using

item pairs with comparable properties or assembling parallel test subsets which can be used

at the end of tests. Examples for the concept of item pairs can already be found in the

literature: Samejima (1977) refers to test forms consisting only of such parallel item pairs

as strongly parallel test forms. Clause et al. (1998) propose that additional test forms can

be constructed by specifically creating matching items, a procedure which the authors term

item-cloning. Armstrong et al. (1992) and P.-H. Chen (2016) suggest that new test forms can

be assembled parallel to an existing reference form using pairwise item matching. Various

distance measures are proposed as means to identifying item pairs. Already Gulliksen (1950)

proposed a method called matched random subtests, in which item pairs are created based

on their difficulty and discrimination. For an adaptation of the method to MILP see van der

Linden and Boekkooi-Timminga (1988). While none of these approaches were designed to

deal with speededness issues it seems plausible that these could easily be extended in that
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direction.

7.5 Conclusion

Controlling the speededness of test forms and the impact of such speededness is crucial for the

fairness and validity of assessments. In this thesis, it has been demonstrated that the state-

of-the-art approach for controlling speededness by van der Linden (2011a, 2011b) neglects

that items usually differ in their speed sensitivity and that this can be detrimental to the

fairness of test forms. A generalized approach incorporating differing speed sensitivities via

the 3PLN model and thereby overcoming this limitation has been proposed. Moreover, it

has been demonstrated how response time models can be estimated flexibly in stan as well

as how ATA can be performed in the R package eatATA. Additionally, it has been illustrated

how item order can be crucial if multiple, speeded test forms are used. With the provided

tools, including a new software package as well as extensive tutorial material, assessment

practitioners should be able to use the proposed approaches in practice.
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List, M. K., Robitzsch, A., Lüdtke, O., Köller, O., & Nagy, G. (2017). Performance decline

in low-stakes educational assessments: Different mixture modeling approaches. Large-

scale Assessments in Education, 5, 1–15. https://doi.org/10.1186/s40536-017-0049-3

Liu, T., Wang, C., & Xu, G. (2022). Estimating three- and four-parameter MIRT models

with importance-weighted sampling enhanced variational auto-encoder. Frontiers in

Psychology, 13, 1–19. https://doi.org/10.3389/fpsyg.2022.935419

Llabre, M. M., & Froman, T. W. (1987). Allocation of time to test items: A study of ethnic

differences. The Journal of Experimental Education, 55 (3), 137–140. https://doi.org/

10.1080/00220973.1987.10806446

Lord, F. M. (1975). Formula scoring and number-right scoring. Journal of Educational Mea-

surement, 12 (1), 7–11. https://doi.org/10.1111/j.1745-3984.1975.tb01003.x

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Rout-

ledge. https://doi.org/10.4324/9780203056615

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Information

Age Publishing.

Lovett, B. J. (2010). Extended time testing accommodations for students with disabilities:

Answers to five fundamental questions. Review of Educational Research, 80 (4), 611–

638. https://doi.org/10.3102/0034654310364063

Lu, J., Wang, C., & Shi, N. (2021). A mixture response time process model for aberrant

behaviors and item nonresponses. Multivariate Behavioral Research, Advance online

publication. https://doi.org/10.1080/00273171.2021.1948815

Lu, Y., & Sireci, S. G. (2007). Validity issues in test speededness. Educational Measurement:

Issues and Practice, 26 (4), 29–37. https://doi.org/10.1111/j.1745-3992.2007.00106.x

Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization.

Oxford University Press.

Luecht, R. M., & Sireci, S. G. (2011). A review of models for computer-based testing (Research

Report 2011-12). College Board.

Luo, X. (2019a). Rata: Automated test assembly [R package version 0.0.2]. https://CRAN.R-

project.org/package=Rata

181

https://doi.org/10.3389/fpsyg.2019.01533
https://doi.org/10.1186/s40536-017-0049-3
https://doi.org/10.3389/fpsyg.2022.935419
https://doi.org/10.1080/00220973.1987.10806446
https://doi.org/10.1080/00220973.1987.10806446
https://doi.org/10.1111/j.1745-3984.1975.tb01003.x
https://doi.org/10.4324/9780203056615
https://doi.org/10.3102/0034654310364063
https://doi.org/10.1080/00273171.2021.1948815
https://doi.org/10.1111/j.1745-3992.2007.00106.x
https://CRAN.R-project.org/package=Rata
https://CRAN.R-project.org/package=Rata


Luo, X. (2019b). xxIRT: Item response theory and computer-based testing in R [R package

version 2.1.2]. https://CRAN.R-project.org/package=xxIRT

Luo, X. (2020). Automated test assembly with mixed-integer programming: The effects of

modeling approaches and solvers. Journal of Educational Measurement, 57 (4), 547–

565. https://doi.org/10.1111/jedm.12262

Makhorin, A. (2018). GNU linear programming kit (GLPK) (Version 4.65). http://www.gnu.

org/software/glpk/glpk.html

Man, K., Harring, J. R., Ouyang, Y., & Thomas, S. L. (2018). Response time based non-

parametric Kullback-Leibler divergence measure for detecting aberrant test-taking

behavior. International Journal of Testing, 18 (2), 155–177. https://doi.org/10.1080/

15305058.2018.1429446

Man, K., & Harring, J. R. (2020). Assessing preknowledge cheating via innovative measures:

A multiple-group analysis of jointly modeling item responses, response times, and

visual fixation counts. Educational and Psychological Measurement, 81 (3), 441–465.

https://doi.org/10.1177/0013164420968630

Maris, G., & van der Maas, H. (2012). Speed-accuracy response models: Scoring rules based

on response time and accuracy. Psychometrika, 77 (4), 615–633. https://doi.org/10.

1007/s11336-012-9288-y

Martin, M. O., Mullis, I. V., & Hooper, M. (2017). Methods and procedures in PIRLS 2016.

International Association for the Evaluation of Educational Achievement (IEA).

Martin, M. O., von Davier, M., & Mullis, I. V. (2020). Methods and procedures: TIMSS

2019 technical report. International Association for the Evaluation of Educational

Achievement (IEA).

McDonald, R. P. (2013). Modern test theory. In T. D. Little (Ed.), The Oxford handbook of

quantitative methods in psychology (2nd ed., pp. 118–143). Oxford University Press.

https://doi.org/10.1093/oxfordhb/9780199934874.013.0007

McKeachie, W. J., Pollie, D., & Speisman, J. (1955). Relieving anxiety in classroom ex-

aminations. The Journal of Abnormal and Social Psychology, 50 (1), 93–98. https :

//doi.org/10.1037/h0046560

Melikyan, Z. A., Agranovich, A. V., & Puente, A. E. (2019). Fairness in psychological testing.

In G. Goldstein, D. Allen, & J. DeLuca (Eds.), Handbook of psychological assessment

(4th ed., pp. 551–572). Academic Press.

182

https://CRAN.R-project.org/package=xxIRT
https://doi.org/10.1111/jedm.12262
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://doi.org/10.1080/15305058.2018.1429446
https://doi.org/10.1080/15305058.2018.1429446
https://doi.org/10.1177/0013164420968630
https://doi.org/10.1007/s11336-012-9288-y
https://doi.org/10.1007/s11336-012-9288-y
https://doi.org/10.1093/oxfordhb/9780199934874.013.0007
https://doi.org/10.1037/h0046560
https://doi.org/10.1037/h0046560


Melikyan, Z. A., Puente, A. E., & Agranovich, A. V. (2021). Cross-cultural comparison of

rural healthy adults: Russian and American groups. Archives of Clinical Neuropsy-

chology, 36 (3), 359–370. https://doi.org/10.1093/arclin/acz071

Messick, S. (1993, December). Foundations of validity: Meaning and consequences in psycho-

logical assessment (ETS Research Report Series No. RR-93-51). Educational Testing

Service. https://doi.org/10.1002/j.2333-8504.1993.tb01562.x

Meyer, J. P. (2010). A mixture Rasch model with item response time components. Applied

Psychological Measurement, 34 (7), 521–538. https://doi.org/10.1177/0146621609355451

Millman, J., Bishop, C. H., & Ebel, R. (1965). An analysis of test-wiseness. Educational and

Psychological Measurement, 25 (3), 707–726. https://doi.org/10.1177/001316446502500304

Molenaar, D., & de Boeck, P. (2018). Response mixture modeling: Accounting for hetero-

geneity in item characteristics across response times. Psychometrika, 83 (2), 279–297.

https://doi.org/10.1007/s11336-017-9602-9

Molenaar, D., Oberski, D., Vermunt, J., & De Boeck, P. (2016). Hidden Markov item response

theory models for responses and response times. Multivariate Behavioral Research,

51 (5), 606–626.

Molenaar, D., Tuerlinckx, F., & van der Maas, H. L. J. (2015). Fitting diffusion item response

theory models for responses and response times using the R package diffIRT. Journal

of Statistical Software, 66 (4), 1–34. https://doi.org/10.18637/jss.v066.i04

Molenaar, D., Tuerlinckx, F., & van der Maas, H. L. J. (2015a). A bivariate generalized linear

item response theory modeling framework to the analysis of responses and response

times. Multivariate Behavioral Research, 50 (1), 56–74. https ://doi .org/10 .1080/

00273171.2014.962684

Molenaar, D., Tuerlinckx, F., & van der Maas, H. L. J. (2015b). A generalized linear fac-

tor model approach to the hierarchical framework for responses and response times.

British Journal of Mathematical and Statistical Psychology, 68 (2), 197–219. https:

//doi.org/10.1111/bmsp.12042

Mollenkopf, W. G. (1950). An experimental study of the effects on item-analysis data of

changing item placement and test time limit. Psychometrika, 15 (3), 291–315. https:

//doi.org/10.1007/bf02289044

Mollenkopf, W. G. (1960). Time limits and the behavior of test takers. Educational and Psy-

chological Measurement, 20 (2), 223–230. https://doi.org/10.1177/001316446002000203

183

https://doi.org/10.1093/arclin/acz071
https://doi.org/10.1002/j.2333-8504.1993.tb01562.x
https://doi.org/10.1177/0146621609355451
https://doi.org/10.1177/001316446502500304
https://doi.org/10.1007/s11336-017-9602-9
https://doi.org/10.18637/jss.v066.i04
https://doi.org/10.1080/00273171.2014.962684
https://doi.org/10.1080/00273171.2014.962684
https://doi.org/10.1111/bmsp.12042
https://doi.org/10.1111/bmsp.12042
https://doi.org/10.1007/bf02289044
https://doi.org/10.1007/bf02289044
https://doi.org/10.1177/001316446002000203


Monk, J. J., & Stallings, W. M. (1970). Effects of item order on test scores. The Journal of

Educational Research, 63 (10), 463–465.

Murphy, K. R., & Davidshofer, C. O. (2005). Psychological testing: Principles and applications

(6th ed.). Pearson Education International.

Nagy, G., Nagengast, B., Becker, M., Rose, N., & Frey, A. (2018). Item position effects in

a reading comprehension test: An IRT study of individual differences and individual

correlates. Psychological Test and Assessment Modeling, 60 (2), 165–187.

Nagy, G., Ulitzsch, E., & Lindner, M. A. (2022). The role of rapid guessing and test-taking

persistence in modelling test-taking engagement. Journal of Computer Assisted Learn-

ing, Advance online publication. https://doi.org/10.1111/jcal.12719

Naumann, J., & Goldhammer, F. (2017). Time-on-task effects in digital reading are non-

linear and moderated by persons’ skills and tasks’ demands. Learning and Individual

Differences, 53, 1–16. https://doi.org/10.1016/j.lindif.2016.10.002

Neely, D. L., Springston, F. J., & McCann, S. J. H. (1994). Does item order affect performance

on multiple-choice exams? Teaching of Psychology, 21 (1), 44–45. https://doi.org/10.

1207/s15328023top2101 10

OECD. (2013). Technical report of the survey of adult skills PIAAC (second edition).

OECD. (2014). PISA 2012 technical report.

OECD. (2016a). PISA 2015 assessment and analytical framework.

OECD. (2016b). PISA 2015 technical report.

OECD. (2019a). PISA 2018 assessment and analytical framework.

OECD. (2019b). PISA 2018 technical report.

OECD. (2022). PISA 2018 technical report: Annex K.

Ong, T. Q., & Pastor, D. A. (2022). Uncovering the complexity of item position effects

in a low-stakes testing context. Applied Psychological Measurement, 46 (7), 571–588.

https://doi.org/10.1177/01466216221108134

Ophoff, J. G., & Cramer, C. (2022, January). The engagement of teachers and school leaders

with data, evidence and research in Germany. In C. Brown & J. R. Malin (Eds.), The

Emerald handbook of evidence-informed practice in education (pp. 175–195). Emerald

Publishing Limited. https://doi.org/10.1108/978-1-80043-141-620221026

Oshima, T. C. (1994). The effect of speededness on parameter estimation in item response

theory. Journal of Educational Measurement, 31 (3), 200–219. https://doi.org/10.

1111/j.1745-3984.1994.tb00443.x

184

https://doi.org/10.1111/jcal.12719
https://doi.org/10.1016/j.lindif.2016.10.002
https://doi.org/10.1207/s15328023top2101_10
https://doi.org/10.1207/s15328023top2101_10
https://doi.org/10.1177/01466216221108134
https://doi.org/10.1108/978-1-80043-141-620221026
https://doi.org/10.1111/j.1745-3984.1994.tb00443.x
https://doi.org/10.1111/j.1745-3984.1994.tb00443.x


Pachella, R. G., & Pew, R. W. (1968). Speed-accuracy tradeoff in reaction time: Effect of

discrete criterion times. Journal of Experimental Psychology, 76 (1), 19–24. https :

//doi.org/10.1037/h0021275

Pant, H. A. (2013). Wer hat einen Nutzen von Kompetenzmodellen? Zeitschrift für Erziehungswis-

senschaft, 16 (S1), 71–79. https://doi.org/10.1007/s11618-013-0388-y

Partchev, I., Boeck, P. D., & Steyer, R. (2011). How much power and speed is measured in

this test? Assessment, 20 (2), 242–252. https://doi.org/10.1177/1073191111411658

Pastor, D. A., Ong, T. Q., & Strickman, S. N. (2019). Patterns of solution behavior across

items in low-stakes assessments. Educational Assessment, 24 (3), 189–212. https://

doi.org/10.1080/10627197.2019.1615373

Patton, J. M. (2015). Some consequences of response time model misspecification in educa-

tional measurement [Doctoral dissertation, University of Notre Dame]. https://www.

proquest.com/docview/1649186920

Perlini, A. H., Lind, D. L., & Zumbo, B. D. (1998). Context effects on examinations: The

effects of time, item order and item difficulty. Canadian Psychology, 39 (4), 299–307.

https://doi.org/10.1037/h0086821

Pettit, K. L., Baker, K. G., & Davis, L. D. (1986). Unconscious biasing of student examination

scores: A case of sequential versus random information retrieval. Journal of Marketing

Education, 8 (3), 20–24. https://doi.org/10.1177/027347538600800306

Plummer, M. (2016). rjags: Bayesian graphical models using MCMC [R package version 4-6].

https://CRAN.R-project.org/package=rjags

Plummer, M. (2017). JAGS: A program for analysis of Bayesian graphical models using Gibbs

sampling (Version 4.3.0). https://mcmc-jags.sourceforge.io/

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and

output analysis for MCMC. R News, 6 (1), 7–11. https : // journal . r - project . org/

articles/RN-2006-002/RN-2006-002.pdf

Podgursky, M. J., & Springer, M. G. (2007). Teacher performance pay: A review. Journal

of Policy Analysis and Management, 26 (4), 909–950. https://doi.org/10.1002/pam.

20292

Pohl, S., & Carstensen, C. H. (2012). NEPS technical report - Scaling the data of the compe-

tence tests (NEPS Working Paper No. 14). Nationales Bildungspanel. https://fis.uni-

bamberg.de/handle/uniba/1751

185

https://doi.org/10.1037/h0021275
https://doi.org/10.1037/h0021275
https://doi.org/10.1007/s11618-013-0388-y
https://doi.org/10.1177/1073191111411658
https://doi.org/10.1080/10627197.2019.1615373
https://doi.org/10.1080/10627197.2019.1615373
https://www.proquest.com/docview/1649186920
https://www.proquest.com/docview/1649186920
https://doi.org/10.1037/h0086821
https://doi.org/10.1177/027347538600800306
https://CRAN.R-project.org/package=rjags
https://mcmc-jags.sourceforge.io/
https://journal.r-project.org/articles/RN-2006-002/RN-2006-002.pdf
https://journal.r-project.org/articles/RN-2006-002/RN-2006-002.pdf
https://doi.org/10.1002/pam.20292
https://doi.org/10.1002/pam.20292
https://fis.uni-bamberg.de/handle/uniba/1751
https://fis.uni-bamberg.de/handle/uniba/1751


Pohl, S., & Carstensen, C. H. (2013). Scaling of competence tests in the National Educational

Panel Study - Many questions, some answers and further challenges. Journal for

Educational Research Online, 5 (2), 189–216. https://doi.org/10.25656/01:8430

Pohl, S., Ulitzsch, E., & von Davier, M. (2019). Using response times to model not-reached

items due to time limits. Psychometrika, 84 (3), 892–920. https://doi.org/10.1007/

s11336-019-09669-2

Pohl, S., Ulitzsch, E., & von Davier, M. (2021). Reframing rankings in educational assess-

ments. Science, 372 (6540), 338–340. https://doi.org/10.1126/science.abd3300

Pokropek, A. (2011). Missing by design: Planned missing-data designs in social science. Re-

search & Methods, 20 (1), 81–105.

Polson, N. G., & Scott, J. G. (2012). On the half-cauchy prior for a global scale parameter.

Bayesian Analysis, 7 (4), 887–902. https://doi.org/10.1214/12-BA730

Pools, E. (2022). Not-reached items: An issue of time and of test-taking disengagement? The

case of PISA 2015 reading data. Applied Measurement in Education, 35 (3), 197–221.

https://doi.org/10.1080/08957347.2022.2103136

Powers, D. E. (1985). Effects of coaching on GRE aptitude test scores. Journal of Educational

Measurement, 22 (2), 121–136. https://doi.org/10.1111/j.1745-3984.1985.tb01052.x

Powers, D. E. (2017). Understanding the impact of special preparation for admissions tests. In

R. E. Bennett & M. von Davier (Eds.), Methodology of educational measurement and

assessment (pp. 553–564). Springer. https://doi.org/10.1007/978-3-319-58689-2 17

Powers, D. E., & Rock, D. A. (1999). Effects of coaching on SAT I: Reasoning test scores.

Journal of Educational Measurement, 36 (2), 93–118. https://doi.org/10.1111/j.1745-

3984.1999.tb00549.x

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Ranger, J., Kuhn, J.-T., & Pohl, S. (2021). Effects of motivation on the accuracy and speed of

responding in tests: The speed-accuracy tradeoff revisited. Measurement: Interdisci-

plinary Research and Perspectives, 19 (1), 15–38. https://doi.org/10.1080/15366367.

2020.1750934

Ranger, J., & Ortner, T. (2012a). The case of dependency of responses and response times:

A modeling approach based on standard latent trait models. Psychological Test and

Assessment Modeling, 54 (2), 128–148.

186

https://doi.org/10.25656/01:8430
https://doi.org/10.1007/s11336-019-09669-2
https://doi.org/10.1007/s11336-019-09669-2
https://doi.org/10.1126/science.abd3300
https://doi.org/10.1214/12-BA730
https://doi.org/10.1080/08957347.2022.2103136
https://doi.org/10.1111/j.1745-3984.1985.tb01052.x
https://doi.org/10.1007/978-3-319-58689-2_17
https://doi.org/10.1111/j.1745-3984.1999.tb00549.x
https://doi.org/10.1111/j.1745-3984.1999.tb00549.x
https://www.R-project.org/
https://doi.org/10.1080/15366367.2020.1750934
https://doi.org/10.1080/15366367.2020.1750934


Ranger, J., & Ortner, T. (2012b). A latent trait model for response times on tests emply-

oing the proportional hazard model. British Journal of Mathematical and Statistical

Psychology, 65 (2), 334–349. https://doi.org/10.1111/j.2044-8317.2011.02032.x

Rasch, G. (1960). Studies in mathematical psychology: Probabilistic models for some intelli-

gence and attainment tests (Volume 1). Nielsen & Lydiche.

Rindler, S. E. (1979). Pitfalls in assessing test speededness. Journal of Educational Measure-

ment, 16 (4), 261–270. https://doi.org/10.1111/j.1745-3984.1979.tb00107.x

Rios, J. (2021). Improving test-taking effort in low-stakes group-based educational testing:

A meta-analysis of interventions. Applied Measurement in Education, 34 (2), 85–106.

https://doi.org/10.31234/osf.io/hvurb

Robitzsch, A., Kiefer, T., & Wu, M. (2017). TAM: Test analysis modules [R package version

2.8-21]. https://CRAN.R-project.org/package=TAM
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A Appendix to Chapter 2

A.1 Derivation of the (Model Implied) Correlation of Item Response Times

In the following, λk and ϕk are the time intensity parameter and the speed sensitivity pa-

rameter of item k, respectively, σ2ϵk is the residual variance parameter of item k and ζi is the

speed parameter of person i. We assume that over persons, speed is normally distributed

ζ ∼ N (0, σ2ζ ). Further, if X is a log normally distributed variable with parameters µ and σ,

then X = exp(Y ) where Y ∼ N (µ, σ2), which is the same as ln(X) ∼ N (µ, σ2). Then, from

Johnson et al. (1994), the expectation of X is:

E(X) = E[exp(Y )]

= exp

(︃
µ+

σ2

2

)︃
.

(65)

In addition, the expectation of X2 is:

E(X2) = E[(exp(Y ))2]

= E[exp(2Y )]

= E[exp(Y ∗)]

= exp
(︁
2µ+ 2σ2

)︁
,

(66)

where Y ∗ = 2Y and hence Y ∗ ∼ N (2µ, 4σ2).

Based on the 3PLN lognormal measurement model for response times RTik, the expecta-

tion of the response time variable E(RTk) of an item k can be written as

E(RTk) = E [E(RTik|ζi)]

= E

[︄
exp

(︄
λk − ϕkζi +

σ2ϵk
2

)︄]︄
= E [exp(Z)]

= exp

(︄
λk +

σ2ϵk
2

+
ϕ2kσ

2
ζ

2

)︄
,

(67)

where Z is a normally distributed: Z ∼ N (λk +
σ2
ϵk
2 , ϕ

2
kσ

2
ζ ).
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Using similar steps in the derivation, the expectation of the squared response time variable

E(RT 2
k ) can be written as

E[RT 2
k ] = E

[︁
E(RT 2

ik|ζi)
]︁

= E
[︁
exp

(︁
2λk − 2ϕkζi + 2σ2ϵk

)︁]︁
= exp

(︁
2λk + 2σ2ϵk + 2ϕ2kσ

2
ζ

)︁
.

(68)

Therefore, the variance of the response time variable of item k, Var(RTk), can be denoted

as

Var(RTk) = E(RT 2
k )− E(RTk)

2

= exp
(︁
2λk + 2σ2ϵk + 2ϕ2kσ

2
ζ

)︁
− exp

(︁
2λk + σ2ϵk + ϕ2kσ

2
ζ

)︁
= exp (2λk) exp

(︁
σ2ϵk + ϕ2k

)︁
exp

(︁
σ2ϵk + ϕ2k

)︁
− exp (2λk) exp

(︁
σ2ϵk + ϕ2k

)︁
= exp

(︁
2λk + σ2ϵk + ϕ2kσ

2
ζ

)︁ (︁
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︁
.

(69)

For the expectation of the distribution of the product of the response times of items k

and l, E(RTkRTl), this gives

E(RTkRTl) = E
[︁
exp

(︁
N(λk + λl − (ϕk + ϕl)ζ, σ

2
ϵk

+ σ2ϵl)
)︁]︁

= exp

(︄
λk + λl +

σ2ϵk + σ2ϵl
2

+
(ϕk + ϕl)

2σ2ζ
2

)︄
.

(70)

Therefore, the covariance of the response time variables of two items k and l, Cov(RTk, RTl)

and the respective product of the variances of these two items can be denoted as:

Cov(RTk, RTl) = E(RTkRTl)− E(RTk)E(RTk)

= exp

(︄
λk + λl +

σ2ϵk + σ2ϵl
2

+
(ϕk + ϕl)

2σ2ζ
2

)︄
− exp

(︄
λk + λl +

σ2ϵk + σ2ϵl
2

+
(ϕ2k + ϕ2l )σ

2
ζ

2

)︄

= exp

(︄
λk + λl +

σ2ϵk + σ2ϵl
2

+
(ϕ2k + ϕ2l )σ

2
ζ

2

)︄[︁
exp

(︁
ϕkϕlσ

2
ζ

)︁
− 1
]︁

(71)
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Var(RTk)Var(RTl)

= exp
(︁
2λk + σ2ϵk + ϕ2kσ

2
ζ

)︁ (︁
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︁
x exp

(︁
2λl + σ2ϵl + ϕ2l σ

2
ζ

)︁ (︁
exp(σ2ϵl + ϕ2l σ

2
ζ )− 1

)︁
=exp

(︁
2λk + σ2ϵk + ϕ2kσ

2
ζ

)︁
exp

(︁
2λl + σ2ϵl + ϕ2l σ

2
ζ

)︁
x
(︁
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︁ (︁
exp(σ2ϵl + ϕ2l σ

2
ζ )− 1

)︁
=exp

(︁
2λk + 2λl + σ2ϵk + σ2ϵl + ϕ2kσ

2
ζ + ϕ2l σ

2
ζ

)︁
x
(︁
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︁ (︁
exp(σ2ϵl + ϕ2l σ

2
ζ )− 1

)︁

(72)

This gives

ρRTk,RTl
=

Cov(RTk, RTl)√︁
Var(RTk)Var(RTl)

=

[︂
exp

(︂
ϕkϕlσ

2
ζ

)︂
− 1
]︂

√︃(︂
exp(σ2ϵk + ϕ2kσ

2
ζ )− 1

)︂(︂
exp(σ2ϵl + ϕ2l σ

2
ζ )− 1

)︂ . (73)

This is the model implied correlation of the two response time distributions of items k and

i under the 3PLN model. Under the 2PLN model phik = phil = 1, therefore the respective

correlation is [︂
exp

(︂
σ2ζ

)︂
− 1
]︂

√︃(︂
exp(σ2ϵk + σ2ζ )− 1

)︂(︂
exp(σ2ϵl + σ2ζ )− 1

)︂ . (74)
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A.2 Item Log Response Time Distributions

Figure 35: Expected Log Response Time Distributions of a Fast Person with ζ1 = 1 (Black
Line) and a Slow Person with ζ2 = −1 (Grey Line) on Four Different Items, all with λk = 4.
Dashed Lines Indicate the Medians of the Corresponding Distributions.
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A.3 Response Time Characteristic Curve

Figure 36: Response Time Characteristic Curve of Two Items with Identical Time Intensity
(λk = 4) and Differing Item Speed Sensitivity Parameters ϕk.
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A.4 Priors for Empirical Data Analysis

The identity matrix is notated as In with the size of n. σθi,ζi is truncated to stay in range

of −
√︂
σ2θσ

2
ζ and

√︂
σ2θσ

2
ζ (with σ2θ = 1 for model identification) to keep the person parameter

covariance matrix positive definite. Priors for the hierarchical framework with a 2PL model

for ability and a 2PLN model for speed:

ΣP ∼ InverseWishart(I3, 4)

σθi,ζi ∼ N(0, 10000) truncated at [−σζ , σζ ]
1

σ2ζ
∼ Γ(0.01, 0.01)

1

σ2σϵ

∼ Γ(0.01, 0.001)

µσϵ ∼ N(0, 1000000)

µb ∼ N(0, 1000000)

µa ∼ N(1, 1000000)

µλ ∼ N(1, 1000000)

(75)

Priors for the hierarchical framework with a 2PL model for ability and a 3PLN model for

speed:

ΣP ∼ InverseWishart(I4, 5)

σθi,ζi ∼ N(0, 10000)

1

σ2σϵ

∼ Γ(0.01, 0.001)

µσϵ ∼ N(0, 1000000)

µb ∼ N(0, 1000000)

µa ∼ N(1, 1000000)

µλ ∼ N(1, 1000000)

µϕ ∼ N(1, 1000000)

(76)

The first model was identified by fixing the hyperpriors of the person ability and person

speed distributions: The means of the person parameter distributions were fixed to 0 (Mθi = 0

and Mζi = 0) and the variance of the ability was fixed to 1 (V arθi = 1). For the 3PLN model

the variance of the person speed was also fixed to 1 (V arζi = 1). All item parameters were

estimated freely.
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A.5 Empirical Model Fit

Table 14: DIC for the Hierarchical Framework with the 2PLN Model and the 3PLN Model
and the Corresponding Difference for all Math Booklets.

Booklet DIC(3PLN) DIC(2PLN) ∆DIC

M01 251955 253042 1087
M02 213884 215179 1295
M03 231336 231690 354
M04 256032 256617 585
M05 257370 257703 333
M06ab 267682 268551 869
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A.6 Multivariate Normal Distributions for Data Generation

Means of the multivariate normal distribution:

µI = (µa = 1.12, µb = 0.54, µϕ = 0.3, µλ = 4.26) (77)

Covariances of the multivariate normal distribution:

ΣI =

⎛⎜⎜⎜⎜⎜⎜⎝
σ2a = 0.45

σb,a = 0.05 σ2b = 1.00

σϕ,a = 0.01 σϕ,b = 0.03 σ2ϕ = 0.01

σλ,a = −0.02 σλ,b = 0.13 σλ,ϕ = 0.01 σ2λ = 0.25

⎞⎟⎟⎟⎟⎟⎟⎠ (78)
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A.7 Item Numbers Not Reached in Simulation

Figure 37: Number of Not-Reached Items for the Low, Medium and High Speed Sensitiv-
ity Test Form, Across the Four Subgroups. Results Shown for a Randomly Selected Single
Replication.
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A.8 Standard Deviations for Simulation Results Across Replications

Table 15: Standard Deviations for Test Statistics per Test Form and per Speed Group,
Across All Replications.

Test Form ζi M(RT ) SD(RT ) M(mis) SD(mis) cor(θ̂, θ) RMSE M(θdiff )

low ϕ slowest 42.06 31.42 0.01 0.01 0.02 0.05 0.03
low ϕ slow 33.39 24.36 0.00 0.01 0.01 0.05 0.02
low ϕ fast 21.51 17.30 0.00 0.00 0.02 0.06 0.02
low ϕ fastest 18.04 14.39 0.00 0.00 0.02 0.06 0.02
medium ϕ slowest 46.88 33.10 0.02 0.02 0.02 0.07 0.05
medium ϕ slow 33.97 25.37 0.00 0.01 0.02 0.06 0.02
medium ϕ fast 19.86 16.64 0.00 0.00 0.01 0.05 0.02
medium ϕ fastest 16.25 13.48 0.00 0.00 0.02 0.06 0.02
high ϕ slowest 63.29 47.33 0.04 0.02 0.04 0.15 0.14
high ϕ slow 41.06 29.78 0.01 0.01 0.02 0.06 0.03
high ϕ fast 17.54 13.72 0.00 0.00 0.01 0.05 0.02
high ϕ fastest 12.45 9.82 0.00 0.00 0.02 0.06 0.02

Note: Standard deviations across replications are depicted for mean cumulative response times
M(RT ) and the corresponding standard deviation SD(RT ), mean proportion of missings M(mis),
the corresponding standard deviation SD(mis), correlation between true and estimated ability
cor(θ, θ), root mean square error (RMSE) and average difference between true and estimated
ability M(∆θ).
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B Appendix to Chapter 4

B.1 Speededness Analyses

Figure 38: Percentage of Correct Answers on Items When the Item Occurred on Position
1-15 and 16-20.
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Note. Results displayed for all test-takers with overall test times greater than 30 minutes (“slow”), for
all test-takers with overall test times greater than 30 minutes and no missings (“slow, no missings”)
and for test takers with overall test times less than 30 minutes (“fast”).
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Figure 39: Median Response Times on Items When the Item Occurred on Position 1-15
and 16-20.
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Note. Results displayed for all test-takers with overall test times greater than 30 minutes and no
missings (“slow, no missings”) and for test takers with overall test times less than 30 minutes (“fast”).
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B.2 Illustrative Data Simulation

Table 16: Summary Statistics of Simulated Test Scores for 100 Replications for Seven
Different Test-Takers with Different Speed (ζ) and Ability Levels (θ).

ζ θ M(range) Max(range)

-0.78 -0.87 3.35 8
-0.76 -0.83 3.30 7
-0.59 -0.02 2.88 7
-0.83 0.10 3.89 9
-0.64 -0.74 2.87 7
-0.59 -0.95 2.85 10
-0.58 -0.57 3.01 6

Note: Mean range (M(range)) and maximum range
(Max(range)) of differences between test forms.
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B.3 Simulation Study Results

Table 17: Mean and Standard Deviation of Item and Person Parameters in the Hierarchical
Estimated Model Using Organizational Psychology Exam Data.

Parameter M SD

b -0.78 0.45
λ 3.84 0.34

θ 0.00 0.33
ζ 0.00 0.22

Note: Item Difficulty (b), Item Time Intensity (λ), Per-
son Ability (θ), Person Speed (ζ).
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Figure 40: Mean Difference in Ability Estimation Between Test Forms.
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Figure 41: Maximum Difference in Ability Estimation Between Test Forms.
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C Appendix to Chapter 5

C.1 Likelihood Functions

Writing down models’ likelihoods can facilitate their translation into Stan code. We, there-

fore, here provide likelihood functions for the models discussed in the tutorial.

C.1.1 The Hierarchical Framework by van der Linden (2007)

The likelihood function of van der Linden’s (2007) hierarchical framework can be written as

L =

I∏︂
i=1

K∏︂
k=1

p(yik|ak, bk, θi)p(RTik|λk, ϕk, ζi, σϵk)

× p(θi, ζi|µI ,ΣI)p(ln ak, bk, lnϕk, λk|µK ,ΣK). (79)

Here, the first two components give the probabilities of the observed responses and re-

sponse times under the response and response time model, respectively, incorporating the

assumption of conditional independence among observed indicators. The second two com-

ponents give the probability of person, respectively item parameters given the respective

multivariate normal distributions. Each of the components can be translated into a log

probability increment statement target+= in Stan. For instance, the statement

target += bernoulli logit lpmf(y | discrimination[kk] .*

(ability[ii] - difficulty[kk]));

mirrors the likelihood’s first component and adds to the log density the log probability

of observing the given response vector given the response model. The likelihood functions of

the discussed model extensions can easily be obtained from Equation 1.
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C.1.2 Modeling the Difficulty-Distance Hypothesis for Non-Cognitive Data as

in Ferrando and Lorenzo-Seva (2007)

The likelihood function for the model extension incorporating the distance-difficulty hypothe-

sis when modeling data from non-cognitive assessments by Ferrando and Lorenzo-Seva (2007)

considers examinee ability and item difficulty in the component model for response times.

The speed sensitivity parameter is dropped.

L =

I∏︂
i=1

K∏︂
k=1

p(yik|ak, bk, θi)p(RTik|λk, ζi, β, ak, bk, θi, σϵk)

× p(θi, ζi|µI ,ΣI)p(ln ak, bk, λk|µK ,ΣK) (80)

C.1.3 Modeling Conditional Dependence of Response Times and Accuracy as

in Bolsinova et al. (2017)

The likelihood function for the model extension accommodating conditional dependence by

Bolsinova et al. (2017) considers observed response times, examinee speed, item time inten-

sity, and the response time residual variance in the component model for item responses. The

speed sensitivity parameter is dropped.

L =

I∏︂
i=1

K∏︂
k=1

p(yik|a0k, a1k, b0k, b1k, θi, RTik, λk, ζi, σϵk)p(RTik|λk, ζi, σϵk)

× p(θi, ζi|µI ,ΣI)p(ln ak, bk, λk|µK ,ΣK) (81)

C.1.4 Modeling Qualitative Differences in Response Behavior as in Ulitzsch et

al. (2020)

The mixture model accommodating rapid guessing behavior by Ulitzsch et al. (2020) assumes

the response and response time models of van der Linden’s (2007) hierarchical framework

to hold when examinees are engaged, while responses and response times stemming from

rapid guessing behavior are assumed to be unreflective of examinees’ ability and speed. The

likelihood function is that of a mixture model, i.e.,
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L =
I∏︂

i=1

K∏︂
k=1

(p(∆ik = 1|ψi, ιk)p(yik|ak, bk, θi)p(RTik|µd, λ∗k, ϕk, ζi, σϵk) +

(1− p(∆ik = 1|ψi, ιk))p(yik|c)p(RTik|µd, σd))

× p(θi, ζi, ψi|µI ,ΣI)p(ln ak, bk, lnϕk, λk, ιk|µK ,ΣK), (82)

with the first row representing the component model for engaged and the second the

component model for rapid guessing behavior. Engagement and rapid guessing probabilities

p(∆ik = 1) and 1− p(∆ik = 1) give the mixing proportions of this model.
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C.2 Resources on Bayesian Modelling with Stan

C.2.1 General Introduction to Bayesian Modeling (Textbooks)

Congdon, P.D. (2021). Bayesian Hierarchical Models: With Applications Using R (2nd ed.).

CRC Press.

Donovan, T., & Mickey, R. (2019). Bayesian Statistics for Beginners. Oxford University

Press.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, Aki, & Rubin, D. B. (2014).

Bayesian data analysis (3rd ed.). CRC Press.

Hoff, P. D. (2009). A first course in Bayesian statistical methods. Springer.

Kruschke, J. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd

ed.). Academic Press/Elsevier.

Lambert, B. (2018). A Student’s Guide to Bayesian Statistics. Sage.

McElreath, R. (2020). Statistical Rethinking – A Bayesian Course with Examples in R and

Stan (2nd ed.). CRC Press.

C.2.2 General Introduction to Hamiltonian MCMC

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo. arXiv.

https://doi.org/10.48550/arXiv.1701.02434

C.2.3 Resources for Stan, rstan, PPC and Model Evaluation

An overview over rstan, Stan and the respective documentation can be found at https:

//mc-stan.org, which includes the current Stan User’s Guide (https://mc-stan.org/docs/

stan-users-guide/index.html) and Stan Language Reference Manual (https://mc-stan.org/

docs/reference-manual/index.html). Stan User’s Guide also includes information about pos-

terior predictive checks (https://mc-stan.org/docs/stan-users-guide/ppcs.html).

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., &

Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical

Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

Gabry, J., & Mahr, T. (2017). bayesplot: Plotting for Bayesian models [R package version

1.9.0]. http://mc-stan.org/

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization

in Bayesian workflow. Journal of the Royal Statistical Society, Series A, 182, 389–402.
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D Appendix to Chapter 6

D.1 Constraint Formulation for the Minimal Example

In the minimal example, the combination of constraints and objective results in an MILP

model that can be mathematically formulated as follows. Let the items in the item pool have

a unique index k = 1, . . . , j, in this example j = 30. Let F be the total number of test forms

to be assembled, here F = 1. The MILP model has two parts: (1) the objective function,

max cTx, (83)

and (2) a set of constraints,

Ax ≤ d, (84)

where x is the vector of variables that MILP needs to solve for. x contains binary decision

variables xkf , k = 1, 2, . . . , j, and f = 1, 2, . . . , F for every item × test from combination,

and one real-valued variable z. Hence, x is a vector of length j ×F +1. The binary decision

variables are defined as:

xkf =

⎧⎪⎨⎪⎩
1 if item k is assigned to form f ,

0 otherwise.

(85)

Further, in the objective function (Equation (83)), c is a numeric vector of j × F + 1

known coefficients for the objective function. In the set of constraints (Equation (84)) A is

a known coefficient matrix with j ×F +1 columns and with one row for each constraint and

d is a vector with the corresponding right-hand values of the constraints.

The code in Figure 27 simultaneously creates coefficients for c as well as coefficients for

one row in A and the corresponding value in d. More specifically, the coefficients in c for all

binary decision variables are set to zero, whereas the coefficient for the real-valued variable

z is set to one 1. Thus, Equation (83) simplifies to:

max z. (86)

In addition, the following constraint is added as one row in A and the corresponding value

in d:
j∑︂

k=1

sk × xkf − z ≥ 0, for f = 1, . . . , F. (87)

218



In Equation (87) sk denotes the IIF value of item k at a medium ability level. Hence,

the coefficients in A for the binary decision variables xkf are set to sk, whereas the coef-

ficient for z is set to 1. Finally, the value in d corresponding to the row in A is set to

0. The combination of Equations (86) and (87) makes sure that the TIF of the test forms

is maximized.

In addition, the following constraints are also enforced:

j∑︂
k=1

xkf = 10, for f = 1, . . . , F, (88)

and
j∑︂

k=1

tk × xkf ≤ (8× 60) + 5, and

j∑︂
k=1

tk × xkf ≥ (8× 60)− 5, for f = 1, . . . , F.

(89)

In Equation (89) tk denotes the average response time for item k in seconds. Hence,

Equation (88) constrains the length of the test forms to be equal to ten and Equation (89)

constrains the sum of the expected response times to be within five seconds of eight minutes.

The left-hand sides and the right-hand sides of Equations (87) to (89) again correspond to

the rows in A and d, respectively. Note that the coefficient for z in these rows of A are set

to zero.
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D.2 Pilot Study Item Pool Illustration

Table 18: First Five Items of the Simulated Pilot Study Item Pool.

Item diffCategory Format Domain Time Exclusions

1 2 cmc listening 44.54
2 4 cmc listening 44.81
3 4 mc writing 32.36 76
4 2 mc listening 48.03
5 2 mc writing 42.06 9

D.3 Large-Scale Assessment Item Pool Illustration

Table 19: First 10 Items of the Simulated LSA Assessment Item Pool.

Testlet Item Level Format Frequency Infit Time Anchor

TRA5308 TRA5308a IV multiple choice 0.19 1.22 54.00 0
TRA5308 TRA5308b IV multiple choice 0.24 1.01 66.00 0
TRA5308 TRA5308c II multiple choice 0.42 1.22 89.00 0
TRA5308 TRA5308d III multiple choice 0.41 1.21 92.00 0
TRB6832 TRB6832a III open answer 0.51 1.21 85.00 0
TRB6832 TRB6832b III open answer 0.20 1.08 61.00 0
TRB6832 TRB6832c IV open answer 0.33 1.25 84.00 0
TRB6832 TRB6832d II open answer 0.49 1.05 109.00 0
TRC9792 TRC9792a I cmc 0.70 1.10 94.00 0
TRC9792 TRC9792b I cmc 0.61 1.02 110.00 0

220



D.4 High-Stakes Assessment Item Pool Illustration

Table 20: First Five Items of the Simulated High-Stakes Assessment Item Pool.

Item a b c Category

1 0.54 −0.09 0.17 6
2 0.71 −1.07 0.24 1
3 0.84 −1.11 0.17 2
4 1.38 −0.71 0.21 3
5 1.26 −0.44 0.12 4

D.5 Item Category Distribution in the High-Stakes Assessment Item Pool

Table 21: Item Category Distribution in the Item Pool and Test Specification.

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6

Item Pool 23 26 22 29 29 36
HST 9 9 7 9 9 11

MST: Stage 1 4 4 3 4 4 5
MST: Stage 2 3 3 2 3 3 4
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D.6 R Code for Multi-Stage Module Assembly

Figure 42: Test Assembly Constraints for Multi-Stage Test Stage 1.

maximinTIF1 <- combineConstraints(lapply (1:3, function(index)
{

maximinObjective(
nForms = 1,
itemValues = IIFs[,index],
allowedDeviation = 0.5,
itemIDs = items_diao2$item

)
})

)

contentConstraints1 <- itemCategoryConstraint(
nForms = 1,
itemCategories = items_diao2$category ,
operator = " >=",
targetValues = c(4, 4, 3, 4, 4, 5),
itemIDs = items_diao2$item)

noOverlap1 <- itemUsageConstraint(
nForms = 1,
itemIDs = items_diao2$item)

testLength1 <- itemsPerFormConstraint(
nForms = 1,
operator = "=",
targetValue = 30,
itemIDs = items_diao2$item)

Figure 43: Test Assembly Constraints for Multi-Stage Test Stage 2.

maximinTIF2 <- combineConstraints(lapply (1:3, function(index)
{

maximinObjective(
nForms = 3,
itemValues = IIFs_stage2[, index],
allowedDeviation = 0.2,
whichForms = index ,
itemIDs = items_diao2_stage2$item)

})
)

contentConstraints2 <- itemCategoryConstraint(
nForms = 3,
itemCategories = items_diao2_stage2$Category ,
operator = " >=",
targetValues = c(3, 3, 2, 3, 3, 4),
itemIDs = items_diao2_stage2$item)

noOverlap2 <- itemUsageConstraint(
nForms = 3,
itemIDs = items_diao2_stage2$item)

testLength2 <- itemsPerFormConstraint(
nForms = 3,
operator = "=",
targetValue = 20,
itemIDs = items_diao2_stage2$item)
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