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Abstract
Student drop-out is one of the most critical issues that higher educational institutions face 
nowadays. The problem is significant for first-year students. These freshmen are espe-
cially at risk of failing due to the transition from different educational settings at high 
school. Thanks to the massive boom of Information and Communication Technologies, 
universities have started to collect a vast amount of study- and student-related data. Teach-
ers can use the collected information to support students at risk of failing their studies. At 
the Faculty of Mechanical Engineering, Czech Technical University in Prague, the situa-
tion is no different, and first-year students are a vulnerable group similar to other institu-
tions. The most critical part of the first year is the first exam period. One of the essential 
skills the student needs to develop is planning for exams. The presented research aims 
to explore the exam-taking patterns of first-year students. Data of 361 first-year students 
have been analysed and used to construct “layered” Markov chain probabilistic graphs. 
The graphs have revealed interesting behavioural patterns within the groups of successful 
and unsuccessful students.
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Introduction

European Union higher education institutions face student drop-out. Between 20% 
and 54% of students fail to complete their degrees (Quinn, 2013). The situation in 
the engineering disciplines is especially grave (Kabra, 2011; Zdrahal et al., 2016). 
In combination with the increasing education costs, universities face a significant 
challenge.

Thanks to the increased usage of Information and Communication Technologies 
(ICT) in learning and management, the increased education costs are partially com-
pensated (Bowen,  2015). Universities use information systems for recording and 
storing study-related data such as student demographics, course contents, student 
results, etc. These data open the opportunity to understand underlying educational 
processes. However, many higher education institutions (HEIs) collect the data in a 
diverse ecosystem of systems, making it challenging to extract, collect and analyse 
available data. Still, even in the case of having only student outcomes, it is possible 
to uncover the relevant information (Pandey & Sharma, 2013).

In that context, HEIs employ various methods, including Educational Data Min-
ing and Learning Analytics research fields. One of the most promising is Artificial 
Intelligence, which starts influencing all aspects of everyday human life. In educa-
tion, various attempts to understand educational processes and even predict future 
outcomes of students using advanced AI techniques have emerged (Papamitsiou & 
Economides, 2014).

Critical aspects such as instructional styles, faculty expectations, or the learn-
ers’ behavioural, cognitive, motivational and developmental capabilities have been 
associated with the first-year student’ success (Daempfle, 2003). First-year students 
need to adapt to the new academic life and learn how to efficiently manage time 
and study practices to succeed in their studies (Sebesta & Bray Speth, 2017). These 
study aspects are well described by metacognition and self-regulated learning (SLR) 
(Zimmerman, 1989). In SRL, the students act as active participants in their learning. 
Systematic and proactive students are manifesting three aspects of SRL (Sebesta & 
Bray Speth, 2017): motivation processes (interest in studies, accepting responsibil-
ity); metacognitive processes (planning, goal setting, monitoring the learning pro-
gress, self-evaluating); and behavioural processes (seeking information and advice, 
adopting effective study strategies). The student’s ability for setting goals and plan-
ning/time management is vital metacognitive processes recognised themselves con-
cerning the success in academic career (Winne, 2013; Sebesta & Bray Speth, 2017).

The Faculty of Mechanical Engineering, Czech Technical University in Prague1 
(FME) faces the issue of first-year engineering student retention. The FME, like 
many HEIs in post-Austrian-Hungary countries such as Austria, Czech and Slovak 
Republic, etc., follows a typical educational framework (Van der Plank et al., 2012). 
University students study several courses during the academic year, divided into the 
winter and summer semesters. Every semester is then followed by the exam period. 

1 https:// www. fs. cvut. cz/

https://www.fs.cvut.cz/


585

1 3

International Journal of Artificial Intelligence in Education (2023) 33:583–608 

Students need to learn how to manage and plan their exams within the predefined 
time to successfully progress through the exam period and follow the study trajec-
tory based on a study plan. Thus, it is essential for them to learn how to organise 
their time efficiently (“learn how to learn”). To achieve this, providing students with 
the ways leading to success and showing them how the time is organised by students 
who have been successful in the past may lead to better adaptation to the new aca-
demic life and increase the odds of the student passing. Thus our research focuses 
on extracting the exam-taking patterns of successful, passing and failing students to 
provide the students and teachers with insights on how the students should organise 
the exam period.

Research Questions

Our research focuses on the questions: How do students organise their exam period? 
and What, if any, are the differences in exam-taking behaviour between successful 
and failing students?. To answer them, the method - which transforms the student 
exam attempt log into a probabilistic graphical representation - will be introduced. 
The FME use-case data will be divided into three groups based on final student out-
comes (successful, passing, and failing students); the Markov chain models will be 
constructed and compared.

State‑of‑the‑art

The boom of ICT brings new possibilities of measuring, storing, and analysing vari-
ous processes and phenomena. Higher education is no exception, and universities 
use different tools to collect and analyse study-related data. These data can uncover 
essential knowledge about the study process (Papamitsiou & Economides,  2014). 
The analysis of the data has been primarily aimed at predictive modelling of stu-
dent performance using data collected from Virtual Learning Environments (VLEs), 
which has been proved to be the source of helpful information (Arnold & Pis-
tilli, 2012; Kennedy et al., 2015).

Student demographics, combined with the information about their study history 
without any VLE related data, can be used for the estimation of students’ success 
in their studies (Sharabiani et  al.,  2014; Shehata & Arnold, 2015). Howard et  al., 
(2018) deployed the Early Warning System with Bayesian Additive Regressive 
Trees to predict the student grade after the sixth week of the semester with a mean 
absolute error of 6.5 percentage points. Romero et al. (2013) predict the students’ 
performance based on the student participation in discussion forums. The accuracy 
of the proposed approach varied based on the selected machine learning algorithm 
for model building around 80%.

In the case that only students’ past performance (grades) is available, it can be 
still used to model students’ performance (Pandey & Sharma, 2013). The J48 deci-
sion tree builds using the performance data achieved an accuracy of 80.15%.

Furthermore, machine learning methods can be used to analyse face-to-face 
learning. For example, Kent et al. (2017) explored the relationship between student 
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engagement and learning outcomes in the context of traditional brick and mortar 
UK university.

The basic idea of student performance modelling can be further extended to 
analysing student activity (behaviour) within the VLE, focusing on student perfor-
mance. The modelling of the student activity helps to uncover patterns correspond-
ing to the manifestation of SLR metacognitive processes. The approach can make 
use of various methods. For example, Fincham et  al. (2019) identified the learn-
ing behaviour patterns by building Hidden Markov Model and found a significant 
association between the students’ learning strategies and their academic outcomes. 
Matcha et al. (2019) applied process mining and clustering to extract study behav-
iour from click-stream data. The detected study strategies were associated with the 
course performance.

Hlosta et  al. (2014) proposed two methods for student activity analysis in 
VLEs: General Unary Hypothesis Automaton and Markov chains. The research-
ers extracted data from the online moodle-like platform the Open University (UK) 
used and analysed how students interacted with the VLE system every week. This 
analysis uncovered how a student behaves within such online educational systems 
and the bottlenecks in the course design. This idea was extended by Okubo et  al. 
(2017). The authors deployed the Markov chain-based method at Kyushu University 
and implemented it as a Moodle analysis module. The developed plugin served the 
university teachers for adjusting the learning content more appropriately.

More recent work of Davis et al. (2016) employed Markov chains in the analy-
sis of Massive Open Online Course data from edX and Coursera courses with over 
100,000 students. They were also interested in the interaction of students with the 
online learning system and the learning path students took. The research found that 
failing students tend to review course materials more often.

In 2018 Kuzilek et al. (2018) used Markov chains on the same task as Hlosta et al. 
(2014) with the students’ VLE activities generalised to the higher level of abstraction, 
leading to uncovering a passive withdrawal pattern within the VLE behavioural data.

Marques and Belo (2011) applied Markov chains on analysis of behavioural pro-
files at a Portuguese university. They could isolate the most common patterns stu-
dents follow when browsing through the VLE system containing the educational 
resources.

To conclude, most of the current methods for analysing students’ learning behav-
iour focus on online environments, which provide rich information about each stu-
dent’s learning path when focusing on the selected learning goal. The approaches 
based on the online learning data demonstrate the importance of capturing student 
learning behaviour. However, there exists the evidence (Pandey & Sharma,  2013; 
Zdrahal et al., 2016) suggesting the use of only sparse student data can be used for 
modelling student success. Thus, having the information about student exam-taking 
sequence might enable proper data transformation to uncover underlying meta-cog-
nitive processes of students when managing their time during the exam period. We 
will also show that the student behaviour captured by exam-taking sequence records 
can reveal vital information about student time management and identify patterns 
that lead to success.
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Educational Setting at FME

The Czech Technical University in Prague is one of the biggest and oldest technical 
universities in Europe.2 Currently, it has eight faculties and about 18,000 students 
studying 160 study programmes. One of its faculties is the Faculty of Mechanical 
Engineering, which provides studies in three bachelor’s and six master’s study pro-
grammes. It has approximately 3,000 students currently pursuing their degree, from 
which 400 registered for studies in the Theoretical fundamentals of Mechanical 
Engineering programme, which is the flagship bachelor programme provided by the 
faculty enrolled by most of the students.

The faculty does not use any form of centralised VLE system. Most online learn-
ing platforms serve only to distribute educational materials, and no online activity is 
recorded.

The typical study year at FME is divided into the winter and summer semesters. 
Both followed by the exam period and both 14 teaching weeks long. The Winter 
semester usually starts at the beginning of October and has winter holidays in the 
last quarter. The summer semester begins after the winter exam period, followed by 
the exam period, which ends the academic year.

The exam period has six weeks (five regular and one extra for first-year students). 
Every week, each course usually has one or more exam dates listed. Every student 
has two attempts to pass the exam, and if failing both, the dean can allow a third 
attempt.

To simplify the transition from high school, first-year FME students have a pre-
scribed selection of courses they should attend in the winter semester (Table 1). There 
are three exam courses (as advertised by FME): Mathematics I. (M), Constructive 
Geometry (C) and Physics I. (P). The other courses are completed by completing the 
laboratory tasks and seminar work. Exam courses grading is done in line with the EU 
ECTS credit, and scoring system (Bonjean, 2019), where A-E represents passing mark 
and F non-passing mark. Each course is awarded points (credits) reflecting students’ 
time and work requirements to pass. To progress into the second semester, students 

Table 1  First semester courses

Exam courses Non-exam courses

Name Credits Name Credits

Mathematics I. 6 Engineering Design I. 3
Constructive Geometry 5 Fundamentals of Technology I. 3
Physics I. 5 Computer Support for Study 3

Management Skills 2
History of Technology 2

Total credits 16 Total credits 13

2 https:// www. cvut. cz/ en/ welco me- to- ctu

https://www.cvut.cz/en/welcome-to-ctu
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need to achieve at least 15 ECTS credits, thus succeeding in at least one exam course 
and all non-exam courses is required to pass the first semester.

Data

There were 361 incoming students registered for the studies in the study programme 
Theoretical fundamentals of Mechanical Engineering in the academic year 2017/2018. 
From them, we removed those who were allowed a third exam attempt by the dean. 
Additionally, 24 students who passed all exams but were unregistered from studies due 
to various external non-study related reasons such as long-term illness or family issues 
have been excluded from the further investigation - the exclusion results in a dataset of 
311 students. The university data warehouse contains dates and outcomes of all student 
exam attempts in the winter semester. Thus, the extracted data includes three to six 
pieces of information for every student in the form of an exam attempt log. A randomly 
generated example of attempt logs is shown in Table 2. The log contains the ids of the 
students, the date of the exam, course and the exam outcome. The first student in our 
example took four exams in total, with the first failed attempt in the Mathematics I. 
exam (mark F). This example will be further used for the explanation of our analytical 
approach.

Methods

This section describes the process of creating the probabilistic graph model. The 
method of forming the model is demonstrated on data from FME, and its extension 
to different settings is straightforward. First, the transformation of the attempt log to 
the space of student exam states is introduced. Next, the building of the Markov chain 
model is explained, the measures of graph complexity and the methodology for the 
testing of similarity between graphs is described.

Transforming Student Attempts to Student Exam States

A week represents a typical preparation time for the exam. Thus the attempt-log 
is aggregated to the level of weeks using the starting date of the exam period. 
This results in allocating each recorded attempt to one of the six weeks.

Table 2  Example of exam 
attempt log

Student id Date Course Result

15456106 2018-01-22 Mathematics I. F
15456106 2018-02-16 Mathematics I. E
15456106 2018-02-24 Constructive geometry D
15456106 2018-02-29 Physics I. A
13274506 2018-01-26 Mathematics I. B
... ... ... ...
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A student can be in four possible “situations” regarding the exam: 

0. the student did not attempt the exam so far,
1. the student failed the first attempt,
2. the student failed the second attempt (and failed the course),
3. the student passed the exam (and passed the course).

The students have three exams in the first academic semester, and the resulting 
state space has 43 = 64 possible states for every week of the exam period. The 
student weekly exam state (one of possible 64 states) can be transformed into the 
vector � of length 3:

where P ∈ {0, 1, 2, 3} , C ∈ {0, 1, 2, 3} and M ∈ {0, 1, 2, 3} represents students’ cur-
rent “situation” in Physics I. (P), Constructive geometry (C) and Mathematics I. 
(M). State 0 corresponds to state when the student did not attempt the exam, state 1 
to state when the student failed the first attempt, state 2 to the state when the student 
failed the second attempt (and failed the course), and state 3 to state when student 
pass the exam (and the course).

The vector � represents quaternary (base-4) numbers, which can be trans-
formed into a decimal number X:

The number X ∈ 0, 1, 2, ..., 63 represents the student’s weekly exam state, which 
accumulates their achievements in the exam period so far. X = 0 represents the fact 
that the student did not attempt any exam and X = 63 represent the fact that the stu-
dent passed all three exams. Table 3 shows the complete list of possible states.

The students’ weekly states table is used to construct a probabilistic graph-
ical model, e. g. Markov chain. Every student’s progression through the exam 
period is represented as the sequence of 6 states. In our example the student 
15456106 attempt log is transformed to the weekly exam states containing states 
Sstudent = ⟨1, 1, 1, 3, 15, 63⟩ . This sequence is illustrated in Fig.  1. In each week, 
the student’s state accumulates their results so far. Thus, the student has the same 
state in the first three weeks.

The sequence fully characterizes each student’s exam-taking pattern. It reflects 
how students progress through the exam period, and it is vital to identify patterns 
of successful and unsuccessful students. Since each student sequence is unique to 
that person, it is necessary to construct the general “scheme” of the exam-taking 
pattern. To construct the general pattern, we employed the technique of Markov 
chains.

Markov Chains

Markov chains is the statistical technique to create the model for describing the sequence of 
events, in which the probability of the next event depends only on the previous event. The 

(1)�⃗e = (P,C,M),

(2)X = 16P + 4C +M.
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primary benefit of representing event sequence using the Markov chain is the simplicity of 
the model building. It is beneficial for modelling discrete-time and discrete space stochastic 
processes. On the other hand, the assumption of dependency on the previous state (event) 
means that the model works with no memory and cannot provide more complex informa-
tion about the process. In our case, the sequence of events is represented by the student exam 
sequence in six exam period weeks, where each state accumulates the information from 
previous states. The limitation of Markov chains regarding the memory is partially compen-
sated, keeping the advantage of creating a general model using “simple” transition probabili-
ties between states. The following paragraph will introduce the technique in more detail.

A sequence of random variables forms a discrete-time random process 
{Xn} = {Xn ∶ n = 0, 1, 2, ...} , where n is the index. The process Xn takes on values of a 

Table 3  Complete list of all possible weekly student-exam states

The column State contains the numeric value of the state; columns P, C, M are corresponding states in 
each course with possible values: 0 = The exam is not attempted, 1 = Failed 1st attempt, 2 = Failed 2nd 
attempt, 3 = Passed

State P C M State P C M State P C M State P C M

0 0 0 0 16 1 0 0 32 2 0 0 48 3 0 0
1 0 0 1 17 1 0 1 33 2 0 1 49 3 0 1
2 0 0 2 18 1 0 2 34 2 0 2 50 3 0 2
3 0 0 3 19 1 0 3 35 2 0 3 51 3 0 3
4 0 1 0 20 1 1 0 36 2 1 0 52 3 1 0
5 0 1 1 21 1 1 1 37 2 1 1 53 3 1 1
6 0 1 2 22 1 1 2 38 2 1 2 54 3 1 2
7 0 1 3 23 1 1 3 39 2 1 3 55 3 1 3
8 0 2 0 24 1 2 0 40 2 2 0 56 3 2 0
9 0 2 1 25 1 2 1 41 2 2 1 57 3 2 1
10 0 2 2 26 1 2 2 42 2 2 2 58 3 2 2
11 0 2 3 27 1 2 3 43 2 2 3 59 3 2 3
12 0 3 0 28 1 3 0 44 2 3 0 60 3 3 0
13 0 3 1 29 1 3 1 45 2 3 1 61 3 3 1
14 0 3 2 30 1 3 2 46 2 3 2 62 3 3 2
15 0 3 3 31 1 3 3 47 2 3 3 63 3 3 3

Fig. 1  Student exam sequence for example student 15456106
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countable set S ∈ {s1, s2, ..., sN} , which is called a state space within which the values si 
represent the individual states. The process Xn is then called a Markov chain if it satisfies the 
Markov property:

for all i, j, x0, ..., xn−2 ∈ S for all n = 1, 2, 3, ... . This means that the process and its 
future state is dependent only on the present state and not on past states. For such 
a process we can define a square transition probability matrix � with dimension 
|S| × |S| and transition probabilities (elements) pi,j such that:

Transition matrix � is a stochastic matrix with non-negative elements such that: ∑
j∈S pi,j = 1 , for any i ∈ S . The Markov chain is called homogeneous if its transition 

probabilities do not depend on the time, i.e.: P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) . 
Otherwise, it is called non-homogeneous.

Students accumulate their exam results in their exam state, sampled every 
week of the exam period. The accumulation of results in each exam state 
means that the transition to the next week’s state depends only on the most 
recent state. This fulfils the Markov property, and a Markov chain probabilis-
tic model can be constructed (Norris & Norris, 1998). The model is specified 
by the set of all possible states from all exam weeks S of length 6 ∗ 64 = 384 . 
Using set S, the transition matrix P is constructed. The entry in the i-th row 
and j-th column of matrix P represents the probability pij that a student moves 
from exam state si to the exam state sj . The transition probability pij repre-
sents the proportion of the time that student ends up in state sj being in state 
si in the previous week. For example, for state 3 in week 2, 45 students end up 
in state 15 in week 4 out of 60 students in state 3 in week 2. That means that 
p3,15 = 0.75% between week 3 and 4.

Transition matrix P will be sparse with only non-zero elements representing transi-
tion sub-matrices from week to week. The layered structure of the transition matrix 
suggests that the resulting Markov chain is non-homogeneous. The states in the last 
layer (the final exam week) are absorbing states (state cannot be left once entered) 
(Norris & Norris, 1998). The resulting transition matrix is sparse and satisfies the con-
dition of being in the canonical form (Norris & Norris, 1998):

where Q is t-by-t square matrix containing probabilities of transitioning between t 
states, R is the t-by-r matrix of probabilities of transitioning into r absorbing states, 
� is r-by-t zero matrix and Ir is r-by-r identity matrix. In our case matrix Q repre-
sents student transition probabilities of states in weeks 1 to 5 and matrix R transition 
probabilities from week 5 to week 6 states. When a student progresses through the 
exam period, he moves between layers (weeks) of the Markov chain starting in the 
far left layer and ending in the far-right layer.

(3)P(Xn = j|X0 = x0, ...,Xn−1 = i) = P(Xn = j|Xn−1 = i),

(4)pi,j = P(Xn+1 = j|Xn = i).

(5)P =

(
Q R

� Ir

)
,
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Student Performance Groups

The students can be divided into three groups according to their success in the win-
ter semester and whether they progressed to the second academic year:

– Successful students. Students passed all courses (3 exams) in the winter semester 
and proceeded to the second academic year.

– Passing students. Students passed most of their courses (1 or 2 exams) and pro-
ceeded to the second academic year. Students in this category achieved enough 
ECTS credits to continue their studies. However, they did not achieve a full 
“score” of 29 credits.

– Failing students. Students failed all three exams in the winter semester and did 
not accommodate enough credits to proceed even though they might pass all 
non-exam courses.

Estimation of the Graph Complexity

Markov chains are, in principle, directed weighted graphs, which can be examined in 
several ways. One possibility is to investigate graph complexity, which reflects how 
many elementary graph transformations are needed to construct the graph (Zinovyev 
& Mirkes, 2013). In another world, it reflects how “complicated” the graph is. Meas-
uring the complexity of a directed graph can be done using various measures such 
as DAG-width, directed treewidth, girth or polynomial-based complexity (Dehmer 
et al., 2019). We adopted the last approach, which is based on constructing graph 
polynomials based on the out- and in- degrees of the graph. The technique does not 
suffer from high degeneracy (Dehmer et al., 2019). We selected average complexity 
measure Î calculated as a mean value between out- and in- zeros � of corresponding 
graph polynomial on the interval (0, 1) (see Dehmer et al. (2019) for details). The 
computed measure is in the interval (0, 1), where values close to 1 represents more 
complex directed graphs and values close to 0 less complex graphs.

Comparison of Graphs

Markov chains are probabilistic graphs (Norris & Norris,  1998) represented by a 
weighted adjacency (transition) matrix P of dimension n × n , where n is the num-
ber of possible states. In our case n = 384 . The transformation of the graph into the 
high-dimensional space using the so-called kernel function (Samatova et al., 2013) 
has been used to compare graphs. Using the kernel function, one can construct a 
positive semi-definite transformation kernel matrix, which represents a special case 
of Mercer’s theorem (Mercer, 1909). Thus, the kernel function serves as a valid sim-
ilarity measure (Samatova et al., 2013). The shortest-path kernel method (Borgwardt 
& Kriegel,  2005) measures similarity by finding the all-pairs shortest paths using 
a direct product graph. The algorithm produces the similarity matrix M containing 
numbers equal to the number of shared shortest paths between graphs for every pair 
of graphs on the algorithm input. The matrix M is normalized using:
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where M is the similarity matrix and Mij is the element of matrix M on i-th row and 
j-th column. The resulting matrix has elements ranging from 0 to 1, where 1 repre-
sents equality and 0 complete dissimilarity of two graphs.

Extracting Exam Taking Patterns

The resulting Markov chain graph is complex and reflects reality by tracking all 
exam paths taken by students in the group. However, the complex Markov chain 
is not suitable for analysing the patterns carried out by the majority of students, 
which reflects the “behaviour” of students in a more general way. For this purpose, 
the absolute values transition matrix has been extracted in addition to the transi-
tion matrix. It contains the same information as the transition matrix, but instead 
of probability, it shows the absolute values of how many students have taken this 
path. Using the absolute values, we extracted the Markov chain graph edges, taken 
by more than 10% of the students in the performance group. The application of this 
extraction approach enabled us to extract the predominant patterns of exam behav-
iour within different groups of students.

Results & Discussion

This section presents the results and discussion of student exam behaviour model-
ling using Markov chains and computed similarities between patterns of students in 
different performance groups using the shortest path kernel method.

The student cohort has been divided into performance groups according to the 
methodology presented in “Student Performance Groups”. The number of students 
in each performance group is shown in Table 4. We can observe that approximately 
50 % of students pass all requirements for completing the first academic year and 
continue their studies without any additional workload in the following year. Addi-
tionally, 20.3 % of the student cohort do not complete all courses successfully yet 
pass the minimum requirements to proceed to the next academic year. However, they 
need to invest additional effort to finish the failed first-year courses in the next aca-
demic years. Finally, 30.5 % of the student cohort do not fulfil the minimum require-
ments, and they are de-registered from the studies by the FME.

(6)Mij =
Mij

√
MiiMjj

,

Table 4  Number of students and 
their proportion to the whole 
cohort in performance groups

Group Number of students Proportion

Successfull 153 49.2 %
Passing 63 20.3 %
Failing 95 30.5 %
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For each student performance group, the Markov chain model has been con-
structed. The model represents the probabilities of students taking the path from 
state si in one week to state sj in the second week. The graph is represented by the 
transition matrix. The constructed Markov chains can be found in figures in Appen-
dix 1. Nodes correspond to weekly student exam states, and an edge represents the 
probability that a student in state si proceeds to state sj . Each week exam states are 
positioned into layers to help visualise the constructed graphs. Each layer then rep-
resents one week of the exam period. For each performance group, two graphs have 
been built. The first one has the labelling of each node corresponding to the exam 
state number the second one then has labels corresponding to the number of stu-
dents in the exam state depicted in the first graph.

For each constructed Markov chain, the number of nodes, edges and the complex-
ity Î has been computed, and the result is presented in the Table 5. We can observe 
that the number of nodes is the lowest for the students in the Successful group and 
the highest in the performance group of Failing students. The same observation 
can be made for the graph edges and the complexity Î . This suggests that success-
ful students follow a limited number of exam-taking paths during the exam period 
and can pass the exam on the first attempt (this can be verified by observation of 
Markov chain in Fig. 7). The limited number of exam-taking patterns in the group of 
successful students suggest that specific order of exams might influence the winter 
exam period outcome, thus influencing the result of the first academic year.

Applying the extraction technique described in  “Extracting Exam Taking Pat-
terns” to the constructed Markov chains for the three performance groups resulted in 
the significant simplification of Markov chains and led to extracting pathways with 
the nodes “containing” the most important proportion of student cohort. The follow-
ing sections will describe these extracted pathways enriched with findings from the 
original “large” Markov chains presented in Appendix 1.

Comparison Between Performance Groups

The similarity between successful and passing students is higher than between suc-
cessful and failing students. The similarity between passing and failing students is 
higher than the similarity between successful and failing and lower than between 
successful and passing. The expected “ordering” of student groups shows that 
the minor differences between graphs make a significant difference in the student 
outcomes.

The most notable observation, which can explain the difference between student 
performance groups, is the pace of taking exams. The most successful students start 

Table 5  Markov chain statistics 
for each performance group of 
students

Measure Successful Passing Failing

Nodes 48 84 114
Edges 83 134 206
Complexity 0.1844 0.2896 0.7474
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at the beginning of the exam period and progress through the exams faster with min-
imum delays. The failing students tend to have a slower attempt ratio, leaving them 
less time for the proper exam preparation.

The computed similarities suggest that a student’s transition from the low-perfor-
mance group to the high-performance group is possible since the difference in graph 
similarities is small.

As the last step of our analysis, we compared the normalized similarities between 
Markov chains of student performance groups (Table 6). The computed similarities 
are quite high ( > 0.95 ). The high similarity is because all the behaviours share com-
mon patterns related to the strict pace of the exam period. However, we can observe 
that the speed at which students progress through the exam period is essential.

Successful Students

Figure 2 shows the extracted Markov chain for the group of successful students. The 
nodes are labelled with the state numbers, and the value in brackets represents the 
number of students in a corresponding state. Since successful students are selected 
as a group of those who finished all the exams successfully, there is only one absorb-
ing (end) state 63, which reflect the situation when the student passed all the exams. 
The most common path in the sense of student absolute numbers and probabilities 
is Mathematics I. (state 3 in week 1), Constructive geometry (state 15 in week 2), a 
week or two pause (states 15 in weeks 3 and 4) and Physics I. (state 63 in week 4 or 
5). This path suggests that the Physics I. exam requires more preparation time than 

Table 6  Similarities between 
Markov chains for different 
performance groups

Successful Passing Failing

Successful 1 0.997 0.954
Passing 0.997 1 0.973
Failing 0.954 0.973 1

Fig. 2  Simplified Markov chain for the group of successful students in the winter exam period of aca-
demic year 2017/2018
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the Constructive geometry, which is usually taken one week after the Mathematics 
I. exam.

No one was able to complete the exam period in under three weeks. Only 27 stu-
dents (approx. 18%) were able to finish all the exams within three weeks (state 63 
in the 3rd week). So that most of the successful student cohort make at least a small 
“pause” between two consecutive exams. Based on the numbers, the pause is usually 
between the Constructive geometry and Physics I. exam.

Students who passed Mathematics I. in the first week (state 3) are divided into 
two groups. The first took a one-week pause (state 3 in the second week), and the 
second took the Constructive geometry exam (state 15 in the second week). There is 
a minority of students who need the second attempt to pass the exam. This pattern 
is not demonstrated in Fig. 2 but can be observed in the full-scale Markov chain in 
Appendix 5.

No student within the group failed the Mathematics I. exam in the first week. 
When exploring this anomaly, it has been uncovered that students with good per-
formance during the semester has been offered to pass the course without the 
exam. Approximately 2/3 of the successful students passed the exam like this. The 
Mathematics I. course was the only one offering the pass based on the semester 
performance.

The observed patterns suggest that successful students tend to schedule the exams 
in the first weeks of the exam period. The observed pattern of finishing Mathematics 
I.; Constructive geometry; and Physics I. suggests that the Constructive geometry 
course is considered the “simplest” one from all exam courses in the winter exam 
period. This is also supported by the fact that approximately half the students took 
the Constructive geometry exam week after the Mathematics I. exam.

Passing Students

The resulting extracted Markov chain for a group of passing students can be found in 
Fig. 3. At first, it is worth noting that there is no clear pattern in taking the exams by 
the students compared to the group of successful students. The Markov chain shows 
a significant portion of students who did nothing (state 0) in the first exam week (41 
out of 63 students). Most of the students active in that first week took and passed 
Mathematics I. (state 3). However, from students who finished Mathematics I. in the 
first week, the majority make a “break” in the following week. The same pattern is 
observed in the group of successful students. Following this pattern in the complete 
Markov chain in Appendix 1 shows that most students also took “pause” the fol-
lowing week before taking any other exam. This suggests two possible scenarios: 1) 
students underestimate the time required to prepare for the next exam, or 2) students 
are required to finish requirements for the non-exam courses. The second reason 
suggests the importance of focusing on finishing the non-exam courses before the 
exam period.

Most students did not succeed in Mathematics I. and Constructive geometry 
within the first two weeks. However, 15 students finished both exams in week 3. 
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The state (and preceding pattern) suggests an overlap with the group of successful 
students. We can expect that the difference between passing and successful students 
is in the individual requirements for preparing for the exams. This also suggests that 
teachers should focus on students who did not finish the combination of Mathemat-
ics I. and Constructive geometry exams before week 3 to support them in prepara-
tion for the Physics I. exam. The state 31 in weeks four to six shows that a signifi-
cant portion of passing students fail to pass the Physics I. exam, suggesting that the 
time requirements for exam preparation are higher than most students estimate.

Most students do not take the second attempt on the Physics I. exam. This sug-
gests that students are moving their last attempt to the summer semester or the next 
academic year, making them vulnerable to failure in the next period of their aca-
demic life due to increased workload.

The students usually pass Mathematics I. in the first three weeks of the exam 
period, followed by the successful attempt in Constructive geometry. This pattern 
of passing Mathematics I. followed by successful completion of the Constructive 
geometry is shared with the successful students, suggesting that this is the most 
easily achievable outcome from the first semester. Thus, teachers should recom-
mend that students who did not achieve both exams focus on them to continue their 
studies.

There are 21 students (approx. 33% of students in a group) who did not take any 
exam attempt for the first two weeks of the exam period. Those students might either 
struggle with preparation for the exam; or focus on finishing the non-exam courses 
they did not manage to finish before the exam period. Passing students’ performance 
group is manifested by starting the exams later in the exam period. This suggests 
that they are more under time pressure and increased workload during the exam 
period. Thus, one possible solution is to recommend that they start with the exams 
earlier and increase the teacher support before the exam period to help students fin-
ish non-exam courses before the end of the semester.

Fig. 3  Simplified Markov chain for the group of passing students in winter exam period of academic year 
2017/2018
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When observing the full Markov chain in Appendix 1, it can be observed that 
there are more possible end states for the group of passing students. This is because 
students in this performance group usually do not finish all the required exams, and 
they end with one or more unsuccessful attempts in one or two exams. The majority 
of students in this group fail to pass the Physics I. exam, suggesting that this exam is 
the most problematic from the student’s point of view. It might be recommended to 
examine the reasons in more detail to adjust the course, course content or the exami-
nation more appropriately.

Failing Students

Figure 4 presents the simplified Markov chain for the performance group of failing 
students. It can be observed that students in this performance group predominantly 
did not attempt any exam in the first week, and approximately half of the students 
did nothing in the second week. This suggests that this group might have problems 
with the preparation for the exams or have difficulties finishing non-exam courses 
during the semester, requiring them to allocate the time during the exam period. 
This observation is also made in the previous group of passing students, suggesting 
that in detail analysis is required by the teaching personnel to uncover necessary 
details to assist the students appropriately.

The 19 students passed the Mathematics I. exam in the third week. Still, they did 
not proceed to the second academic year. This suggests that they either: 1) did not 
finish all non-exam courses in the winter semester (leaving them with not enough 
ECTS credits and being de-registered from the studies), 2) or did not achieve all 
requirements at the end of the first academic year (and again being de-registered). 
This suggests that not finishing all courses in the scheduled semester creates an 
additional workload, which might lead to undesired outcomes from the studies.

All students of the failing performance group attempted at least one exam (as seen in 
the complete Markov chain in Appendix 1). This suggests that all the students are par-
tially involved in the learning, and the group of “passive withdrawal” students is missing.

Fig. 4  Simplified Markov chain for the group of failing students in winter exam period of academic year 
2017/2018
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The observation of long student periods of inactivity suggests that the workload 
for the exam preparation for all exams during the end of the exam period might be 
high. Also, there might be a problem with properly scheduling the exams since there 
are enough exam dates, but the number of possible combinations is reduced; thus, 
flexibility is reduced.

The observed patterns suggest that teachers increase students’ awareness to ade-
quately plan their activities during the exam period, try to finish non-exam courses 
at the end of the semester, and seek guidance when needed.

Summary of Findings

The evaluation of the produced Markov chain and deeper analysis of extracted “sim-
plified” Markov chains uncovered interesting student exam-taking patterns. The fol-
lowing summarises the main findings:

– Students starts with the Mathematics I. exam. This pattern is presented within 
all performance groups. The first reason is the fact mentioned above that part 
of the students was offered the possibility to pass the course without an exam 
based on their performance in the semester. This also suggests that the students 
are the most prepared for the exam before the exam period starts. It also indicates 
this exam should be taken as soon as possible to accommodate enough time for 
the other two exams. Students in less performing groups finish the exam later 
than the successful students’ performance group. This suggests that the students 
might need more time to complete non-exam courses during the exam period. 
This phenomenon needs to be examined in more detail.

– There is usually a week gap before taking Physics I. attempt. The week gap 
suggests that students need more time for the preparation for the exam indi-
cating the requirements for passing the course are either higher, or the course 
needs more different knowledge than Mathematics I. and Constructive geometry 
exams, thus needs more time to accommodate the required knowledge.

– Passing and failing students start taking exams later. This pattern is in con-
nection with previous observation. Again it suggests that the students either need 
to finish the non-exam courses during the exam period, or it is harder for them 
to gain enough knowledge/confidence before making an exam attempt. Still, the 
observed pattern suggests that the teachers should provide timely intervention to 
support students with proper suggestions regarding their study performance.

– Failing students are inactive in the first two weeks of the exam period. The pattern 
of starting the exams later is mainly manifested in the performance group of failing 
students suggesting these students have some study-related issues either with non-
exam courses; or with preparation for the exams. This might trigger necessary inter-
vention to support the students who did not attempt any of the exams.

– Significant portion of passing students fail in Physics I. exam. The obser-
vation suggested that the Physics I. exam is considered as the “hardest” by the 
students. It indicates that the course might need to make several adjustments to 
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address student needs better. With the observation of successful students’ tak-
ing pattern of passing the exam, the last suggests that the course might require 
deeper understanding or comprehensive knowledge different from other courses.

The ability for setting goals and planning/time management is recognised by stu-
dents themselves as a critical metacognitive process for study success (Sebesta & Bray 
Speth, 2017). Observed patterns can confirm this within all three performance groups and 
measured complexity of the constructed Markov chains. The successful students Markov 
chain has the lowest complexity suggesting that this group follows the defined, planned 
sequence of exams, fulfilling all the requirements to proceed to the second academic 
year. Also, the increased complexity of lower-performing groups suggests that students’ 
metacognitive processes in these groups are not properly set, and students require more 
guidance from the teachers to succeed. This is vital, especially in the first weeks of the 
exam period, where passing and failing students probably need to also focus on non-exam 
courses, leaving them less time to prepare for the exam courses. This suggests that the 
teaching personnel should intervene during this vulnerable period, helping students with 
the proper planning and suggestions regarding the sequence and pace of the exams. Stu-
dents of the successful group finish the exams usually in 4 to 5 weeks suggesting they are 
exhibiting some aspects of SRL (Zimmerman, 1989).

Markov chains are the technique for constructing a simple statistical model in which the 
state depends only on the previous state. However, by accumulating the student “achieve-
ments” in the student exam state, the Markov chain uncovers the sequence of exams taken 
by the majority of students in three different performance groups. The uncovered structure 
and complexity of constructed graphs suggest that students within low performing groups 
require more guidance. This guidance should occur in the first weeks of the exam period, 
where the difference between performance groups is manifested by the later attempt in the 
Mathematics I. exam. Based on the observations presented in this paper and our previous 
research, which results align with the presented findings, FME implemented several steps 
to support its students.

Intervention Framework

The analysis presented in this paper and published previously (Zdrahal et al., 2016) 
serve as a basis for the interventions carried out by FME staff. Interventions are 
phased and contain several steps, which identify at-risk students based on the 
achieved ECTS credits.

The first step takes place during the information campaign at the FME Open Day. 
Potential students are informed about the study, and they receive the first notification 
about the problematic study parts in the first study year. Next, during the student 
enrollment, the student gets the study information materials in the form of so-called 
White book3 with study-related information including contacts, a list of accredited 
study programmes, study plans and time requirements for each course. In addition, 

3 https:// bit. ly/ 2WlMM ES

https://bit.ly/2WlMMES
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they are informed that there exists the Learning Analytics framework for identifying 
at-risk students and their support.

Three weeks before the winter exam period, students are invited to the optional 
lecture of Vice-Dean for Education, where the progression rules and the study sta-
tistics from previous years. They are informed about the best exam-taking strategies 
and collected experiences from last academic year students obtained from surveys. 
Usually, around 70  % of the first-year students attend the lecture. The video and 
slides from the talk are then available online for students to use.

In the first week of the exam period, help with the planning and preparation for 
passing the exams is offered to students with low credit scores (approximately 90 
students). About 10 % of the invited students respond.

Two weeks before the end of the winter exam period, students with less than 10 
ECTS credits earned are again offered help to plan the exam schedule for the last 
two weeks of the exam period. The intervention is carried out individually and anon-
ymously. Usually, there are only a few students who responded to this call. These 
students are provided with help similar to those responding in the first week, focus-
ing on their current circumstances.

In addition to these “active” steps to intervene at-risk students vice-dean is available 
for consultations at least once a week for the whole semester. The consultation meetings 
can also be anonymous and individually focused if students express their wishes.

FME organizes the voluntary faculty survey after the semester to improve the 
learning outcomes, where students evaluate every course they attended and every 
lecturer they met. Additionally, first-year students receive an additional survey in 
which they assess the difficulty of the first-year courses.

Qualitative Research

In parallel to the research of the student exam taking, the qualitative pedagogical 
investigation has been carried out. It focused on course content analysis, including 
lectures, seminars, and laboratory exercises accompanied by the guided semi-struc-
tured interview with lecturers and students.

The interviews helped to understand the underlying behaviour of students dur-
ing the semester and exam period, including exam planning. The findings confirmed 
that failing students with delayed exams in the exam period has been “waiting” for 
the later attempt dates. The reasons for the “waiting” were procrastination, waiting 
for the peers to get insights on the exam requirements and more extended adaptation 
to the new environment due to the move to the capital city.

Conclusions

In this paper, we addressed our research questions: How do students organise 
their exam period? and What, if any, are the differences in exam-taking behaviour 
between successful and failing students? via analysing student exam data from 
the winter semester taken at traditional university. At first, the student exam log 
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has been transferred to the student exam state sequence. The resulting student 
sequences were then used for constructing Markov chains, which represented 
the behaviour of the selected cohort of students. Three different Markov chains 
have been built, reflecting other performance groups regarding student success 
in the winter semester and first academic year. Constructed graphs demonstrated 
different levels of complexity, with the lowest complexity presented within the 
group of successful students. The lowest complexity suggests that the success-
ful students mastered the ability to plan and manage their time (Sebesta & Bray 
Speth, 2017). However, a more detailed analysis on complexity values within the 
graphs with different sets of states is required to understand better the underlying 
exam-taking phenomena. Such analysis would require simulation study with pre-
defined conditions to enable the needed complexity analysis, and it is out of the 
scope of the presented research.

In contrast to this observation, another student’s performance has more com-
plex graphs suggesting that they might struggle with the planning issue leading 
them to a situation where either they need to focus on non-exam courses; or can-
not prepare for the exams properly. The uncovered patterns suggested that the 
FME should intervene on the students who did not start taking exams in the first 
weeks of the exam period, helping them plan and acquire the required knowledge. 
It is also worth considering revising the Physics I. course regarding the required 
ability and difficulty. The successful students manifested a clear exam-taking 
pattern, suggesting that this is a manifestation of SRL metacognitive processes 
every student needs to acquire to succeed in the academic career. In addition, 
the first round of interventions and qualitative pedagogical research has been car-
ried out. The interventions provided students with additional help, and there are 
first indications that the interventions improved the retention of students. How-
ever, a detailed analysis of the intervention framework efficiency has not been 
carried out so far. Such a study has been planned for years after the completion of 
this study. The qualitative research included the guided interviews with lecturers 
and students confirmed the observations exam-taking patterns and provided more 
insights into the reasons behind the practices leading to the failure.

Appendix 1

This appendix presents the full scale Markov chains of three different perfor-
mance groups (Figures 5, 6, 7, 8, 9 and 10). The label of the node represents the 
name of the state. Each colourful layer of nodes represents one week of the win-
ter exam period. Every edge aims from the left node si in week n to the right node 
sj in the week n + 1 . The colour of the edge represents the transition probability 
from one node to another. Lighter colours denote a lower probability, darker a 
higher one.

In addition to the transition graph, the same graph with different node labels 
has been constructed. Each label represents the absolute number of students in 
the state. The assembled “relabeled” graphs are shown on Figs. 6, 8 and 10.
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Fig. 5  Markov chain for the group of successful students in winter exam period of academic year 
2017/2018

Fig. 6  Markov chain with labels representing number of students for the group of successful students in 
winter exam period of academic year 2017/2018
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Fig. 7  Markov chain for the group of passing students in winter exam period of academic year 2017/2018

Fig. 8  Markov chain with labels representing number of students for the group of passing students in 
winter exam period of academic year 2017/2018
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Fig. 9  Markov chain for the group of failed students in winter exam period of academic year 2017/2018
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Fig. 10  Markov chain with labels representing number of students for the group of failed students in win-
ter exam period of academic year 2017/2018
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