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Abstract

This thesis presents an algorithm for solving finite-dimensional optimization problems with

a piecewise linear objective function and piecewise linear constraints. For this purpose,

it is assumed that the functions are in the so-called Abs-Linear Form, a matrix-vector

representation. Using this form, the domain space can be decomposed into polyhedra, so

that the nonsmoothness of the piecewise linear functions can coincide with the edges of

the polyhedra. For the class of abs-linear functions, necessary and sufficient optimality

conditions that can be verified in polynomial time are given for both the unconstrained

and the constrained case.

For unconstrained piecewise linear optimization problems, Andrea Walther and Andreas

Griewank already presented a solution algorithm called the Active Signature Method (ASM)

in 2019. Building on this method and combining it with the idea of the Active Set Method

to handle inequality constraints, a new algorithm called the Constrained Active Signature

Method (CASM) for constrained problems emerges. Both algorithms explicitly exploit

the piecewise linear structure of the functions by using the Abs-Linear Form. Part of the

analysis of the algorithms is to show finite convergence to local minima of the respective

problems as well as an efficient solution of the saddle point systems occurring in each

iteration of the algorithms.

The numerical performance of CASM is illustrated by several examples. The test problems

cover academic problems, including bi-level and linear complementarity problems, as well

as application problems from gas network optimization and inventory problems.

Keywords: nonsmooth optimization, optimality conditions, Abs-Linearization, Abs-Linear

Form, constrained optimization, quadratic overestimation method, CASM, gas network

optimization





Zusammenfassung

In dieser Arbeit wird ein Algorithmus zur Lösung von endlichdimensionalen Optimierungs-

problemen mit stückweise linearer Zielfunktion und stückweise linearen Nebenbedingungen

vorgestellt. Dabei wird angenommen, dass die Funktionen in der sogenannten Abs-Linear

Form, einer Matrix-Vektor-Darstellung, vorliegen. Mit Hilfe dieser Form lässt sich der

Urbildraum in Polyeder zerlegen, so dass die Nichtglattheiten der stückweise linearen

Funktionen mit den Kanten der Polyeder zusammenfallen können. Für die Klasse der abs-

linearen Funktionen werden sowohl für den unbeschränkten als auch für den beschränkten

Fall notwendige und hinreichende Optimalitätsbedingungen bewiesen, die in polynomialer

Zeit verifiziert werden können.

Für unbeschränkte stückweise lineare Optimierungsprobleme haben Andrea Walther

und Andreas Griewank bereits 2019 mit der Active Signature Method (ASM) einen

Lösungsalgorithmus vorgestellt. Aufbauend auf dieser Methode und in Kombination mit

der Idee der aktiven Mengen Strategie zur Behandlung von Ungleichungsnebenbedingungen

entsteht ein neuer Algorithmus mit dem Namen Constrained Active Signature Method

(CASM) für beschränkte Probleme. Beide Algorithmen nutzen die stückweise lineare

Struktur der Funktionen explizit aus, indem sie die Abs-Linear Form verwenden. Teil der

Analyse der Algorithmen ist der Nachweis der endlichen Konvergenz zu lokalen Minima

der jeweiligen Probleme sowie die Betrachtung effizienter Berechnung von Lösungen der in

jeder Iteration der Algorithmen auftretenden Sattelpunktsysteme.

Die numerische Performanz von CASM wird anhand verschiedener Beispiele demonstriert.

Dazu gehören akademische Probleme, einschließlich bi-level und lineare Komplementa-

ritätsprobleme, sowie Anwendungsprobleme aus der Gasnetzwerkoptimierung und dem

Einzelhandel.

Stichworte: Nichtglatte Optimierung, Optimalitätsbedingungen, Abs-Linearisierung, Abs-

Linear Form, beschränkte Optimierung, quadratische Überschätzungsmethode, CASM,

Gasnetzwerkoptimierung
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1
Introduction

1.1 Motivation

Solution methods for piecewise linear optimization problems, i.e., mathematical optimiza-

tion problems where both the objective function and the equality and inequality constraints

are piecewise linear, are receiving increasing attention and can be motivated by several

applications. According to [96], a mathematical function f : Rn → R is said to be piecewise

linear if there exists a k ∈ N and a finite set of affine linear functions fi(x), i = 1, . . . , k

such that the inclusion f(x) ∈ {f1(x), . . . , fk(x)} holds for all x ∈ Rn. This piecewise

composition leads to points in the domain of the function at which the function itself is no

longer differentiable and therefore difficult for derivative based optimization algorithms.

For illustration, a comparison between smooth and nonsmooth optimization is helpful.

In smooth optimization, linearization techniques are often used to generate local linear or

quadratic models of the original problem. The classical approaches, such as trust-region

methods, sequential quadratic programming (SQP) or Newton’s methods, require gradients

of the original problem [32, 87]. Such methods usually rely on the Taylor expansion

to produce an approximation of the functions. Thus, depending on the distance to the

evolutionary point, the models have local errors of an appropriate order [35]. For smooth

functions, gradients exist from a theoretical point of view and can be computed numerically

using algorithmic differentiation (AD). Examples of tools for algorithmic differentiation,

also called automatic differentiation, are the packages ADOL-C [106], TAPENADE [53] or

CoDiPack [94] available for C/C++, and ADiMAT [14] for Matlab, just to name a few.

For a more detailed list and more information about AD, see e.g., [16, 43].

However, unlike the smooth functions, these considerations do not transfer so easily to

nonsmooth functions. Here it is not a reasonable assumption that derivative information is

available at every point and thus one cannot directly generate a local model with the Taylor

expansion. In his article [41], published in 2013, Andreas Griewank addressed precisely this

problem. There he presented an idea of a piecewise linearization for Lipschitz continuous

1



1 Introduction

and thus not necessarily smooth functions. According to Rademacher’s theorem Lipschitz

continuous functions are differentiable almost everywhere, i.e., the points in which f is

not differentiable form a set of Lebesgue measure zero [27]. In addition, a second-order

approximation property can be shown for this piecewise linearization approach. The focus is

on the nonsmooth absolute value function abs as well as the min and max functions, which

can also be expressed by the absolute value. Furthermore, Andreas Griewank describes the

possibility to generalize algorithmic differentiation for this problem class.

Therefore, the focus of this dissertation is the handling of piecewise linear functions in the

optimization context, i.e., the class of functions arising from linearization. Because of the

second-order approximation property due to linearization, on the one hand, the natural

motivation arises to consider such an optimization algorithm as an inner solver for general

algorithms for nonsmooth problems, e.g., SALMIN [28]. Additionally, it can be used to

solve directly local models for the original problem [50, 77]. On the other hand, there are

concrete application areas for piecewise linear problems like, e.g., train time tabling [31],

shallow training of neural networks with the Rectified Linear Unit (ReLU) as activation

function [40, 101] or inventory problems [4].

Another large class of applications are the mixed-integer (non)linear optimization problems

[11]. In [38] it is described how piecewise linear functions can be used to solve such

problems. However, it is known that it is NP-hard to solve mixed-integer or piecewise

linear optimization problems [65]. In the latter this is also the case when exact penalty

methods are used to handle the piecewise linear constraints [60].

Mixed-integer optimization problems may arise, e.g., in gas network optimization. A recent

approach is based on the idea of solving series of mixed-integer linear relaxations [6]. As

described in more detail later in this thesis, this results in piecewise linear optimization

problems. This, as well as the various application examples given before, motivate the

development of algorithms for the special class of piecewise linear optimization problems.

For unconstrained piecewise linear optimization problems, Andrea Walther and Andreas

Griewank introduced the ASM in 2019 [45]. The idea of this method is to decompose the

domain into polyhedra such that the nonsmoothness of the function lies on the edges of

the polyhedra. Therefore, the objective function is converted into the so-called Abs-Linear

Form [41], which is a matrix-verctor-based representation of the function. Subsequently, an

appropriately linearized optimization problem with a quadratic regularization term arises

on each polyhedron and, beginning from a starting point and its associated polyhedron,

a sequence of these subproblems is solved. Unsatisfied optimality conditions are used to

decide on which neighboring polyhedra to optimize further, until finally a local minimum

2



1.2 Contributions

is found. To verify this, an optimality condition can be derived, which can be checked as a

matrix-vector product with polynomial effort.

The goal of this work is to develop an optimization algorithm based on the ASM, which, in

addition to the piecewise linear objective function, also allows for piecewise linear equality

and inequality constraints. For this purpose, the idea of the polyhedral decomposition of

ASM is extended by handling the constraints in an active set sense. Since the constraints

are also piecewise linear, they in addition to the objective function influence the polyhedral

decomposition into potentially more polyhedra than in the unconstrained case of the

same objective function. This new algorithm is called Constrained Active Signature

Method (CASM) and optimality conditions are also proven for it, which can be verified

with polynomial effort. Afterwards, its numerical performance is illustrated using various

examples of applications, both academic and real world. In the latter, the main focus is on

the previously described subproblems from gas network optimization but also a piecewise

linear regression problem motivated by inventory problems.

1.2 Contributions

A substantial part of this thesis is devoted to the development of an optimization algorithm

for solving constrained piecewise linear optimization problems and testing it on various

application examples. The main contributions of this thesis can be summarized as follows:

• State the already known Active Signature Method (ASM) from [45], collecting

various results from different publications on the class of abs-linear functions and

supplementing them by details missing so far.

• Show necessary and sufficient optimality conditions for (constrained) piecewise linear

optimization problems, which can be tested with polynomial effort.

• Development of the Constrained Active Signature Method (CASM) for constrained

piecewise linear optimization problems combining ASM and Active Set Method.

• Proof of finite convergence to local optima for ASM and CASM.

• Numerical performance tests for CASM using acdemic and real application problems

with a focus on subproblems arising from gas network optimization.

• For relaxed subproblems from the gas network optimization, as alternative to MIP

solver, using CASM that allows a warm start strategy such that it can profit from

the results obtained for coarser relaxations.

3



1 Introduction

The theoretical results, the solution method CASM as well as the numerical results in this

dissertation are based essentially on the following articles and proceedings contributions,

to which the author has given a substantial contribution:

• Timo Kreimeier, Andrea Walther, and Andreas Griewank. An active signature

method for constrained abs-linear minimization. Submitted to Computational Opti-

mization and Applications. Available at https://opus4.kobv.de/opus4-trr154/

frontdoor/index/index/docId/474, 2022.

• Timo Kreimeier, Martina Kuchlbauer, Frauke Liers, Michael Stingl, and Andrea

Walther. Towards the solution of robust gas network optimization problems using the

constrained active signature method. In Christina Büsing and Arie M. C. A. Koster,

editors, Network Optimization INOC 2022, 2022.

In addition, the following two reports were drafted during the authors PhD phase, in which

the author also participated:

• Timo Kreimeier, Henning Sauter, Tom Streubel, Caren Tischendorf, and Andrea

Walther. Solving least-squares collocated differential algebraic equations by successive

abs-linear minimization - a case study on gas network simulation. Available at https:

//opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/473, 2021.

• Timo Kreimeier, Sebastian Pokutta, Andrea Walther, and Zev Woodstock. On a

Frank-Wolfe approach for abs-smooth functions. Available at https://opus4.kobv.

de/opus4-trr154/frontdoor/index/index/docId/499, 2022.

1.3 Structure of this Dissertation

The main focus of this work is to present an optimization algorithm, called CASM,

which can be used to solve piecewise linear optimization problems with piecewise linear

constraints. For this purpose, various application fields were already shown in Chapter 1

as motivation, where piecewise linear optimization problems can occur (see Section 1.1).

For the upcoming derivation of CASM, some needed basics such as the excerpts from KKT

theory (Section 2.1) and the Acitve Set Method, (Section 2.2) including Phase I Methods

for determining feasible starting points, are given in Chapter 2. These introductory aspects

conclude with Section 2.3 on penalty approaches, which provide an alternative to the

explicit treatment of constraints.

In Chapter 3, the Active Signature Method (ASM) as already published in [45] is presented

and supplemented by further details. For this purpose, the concepts of Abs-Linear Forms

4
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1.3 Structure of this Dissertation

is introduced in Section 3.1 and it is briefly described how an Abs-Linear Form can be

generated for arbitrary abs-smooth functions using abs-linearization. After presenting

optimality conditions for abs-linear problems in Section 3.2 and adding a more detailed

proof, the ASM is then the subject of Section 3.3. As a special highlight of the optimality

condition it should be pointed out that it can be verified in polynomial time. The ASM is

an algorithm for solving unconstrained piecewise linear optimization problems. Essentially,

it consists of three components namely computing a descent direction, determining a step

size along that direction, and checking optimality. After the algorithm is then given as

pseudocode, its finite convergence will be shown. At the end of the chapter, optimization

methods based on abs-linearization are briefly discussed (see Section 3.4).

As an extension of ASM, Chapter 4 then focuses on the Constrained Active Signature

Method (CASM), which considers additional piecewise linear constraints by using an

active set strategy. The structure of this chapter is congenial to that of Chapter 3. First,

Section 4.1 establishes the counterpart pendants of the necessary and sufficient optimality

conditions for the constrained case, which can again be verified in polynomial time. The

CASM itself is then the subject of Section 4.2, which, analogous to ASM, consists of the

three parts of determining the direction of descent, computing the step size, and checking

optimality. Subsection 4.2.4 is used to state the overall algorithm, and afterwards its finite

convergence will be shown as well. This chapter concludes then with a brief discussion of

penalty approaches as an alternative to explicit handling of constraints in Section 4.3.

The numerical results for the performance of CASM on different example problems, also

in comparison to other solvers like Gurobi [52], are presented in Chapter 5. At first some

aspects concerning the implementation of CASM, e.g., exploiting the sparsity of matrices

and choosing a suitable solver for a occurring linear system of equations, are discussed.

Thereafter, with respect to dimension, rather smaller and academic examples are computed

(see Section 5.2). These also include in dimension scalable or bi-level problems as well as

those involving linear complementarity constraints. A major focus is then in Section 5.3

on application examples from gas network optimization. Here, a subproblem from an

adaptive bundle method is computed for different GasLib instances and scenarios. The

possibility of a warm start strategy for mixed integer problems is also demonstrated. As

a last application, a piecewise linear balancing problem is solved, which is known from

optimization problems in the retail industry (see Section 5.4).

Finally, this thesis concludes with Chapter 6, in which the main results are summarized (see

Section 6.1) and an outlook on possible future research directions is given (see Section 6.2).
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2
Aspects of Smooth Optimization

This chapter should introduce the necessary mathematical basics from smooth constrained

optimization. For this purpose, the chapter is structured as follows: Section 2.1 introduces

a class of optimality conditions, the so-called Karush-Kuhn-Tucker (KKT)-conditions.

Subsequently, in Section 2.2 the Active Set Method is explained, which can be used to

solve quadratic optimization problems with linear equality and inequality constraints.

Therefore, the theory motivating the algorithm is described, the algorithm itself is stated

as a pseudocode, and statements about its convergence are given. As an alternative to the

explicit handling of the constraints, as it is done by the Active Set Method, in Section 2.3 a

passage in which penalty approaches are presented is following. These are methods which

combine the constraints as penalty terms to the objective function and thus create an

unconstrained optimization problem from the constrained one.

2.1 Optimality Conditions for Smooth Constrained Optimization

One of the most widely used and well-known necessary optimality conditions are considered

to be the KKT-conditions, named after the US mathematicians William Karush, Harold

William Kuhn and Albert William Tucker. Historically, these were first shown in his

master’s thesis by William Karush in 1939 [64], but did not gain more popularity until a

conference paper was published by Harold W. Kuhn and Albert William Tucker in 1950

[72]. However, the formulations and results given here are from [37, Chapter 2].

Definition 2.1 (KKT-conditions). Consider the optimization problem

min
x∈Rn

f(x)

s.t. 0 = G(x) ,

0 ≥ H(x) ,

(2.1)
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2 Aspects of Smooth Optimization

with f : Rn → R, G : Rn → Rm and H : Rn → Rp all continuously differentiable. The

conditions

∇xL(x, δ, ν) = 0 ,

G(x) = 0 ,

H(x) ≤ 0 ,

ν>H(x) = 0 ,

ν ≥ 0 .

are called KKT-conditions of (2.1), where ∇xL(x, δ, ν) denotes the derivative of the La-

grange function

L(x, δ, ν) = f(x) +
m∑
i=1

δiGi(x) +

p∑
i=1

νiHi(x)

with respect to the argument x and multipliers δ ∈ Rm and ν ∈ Rp. Every point

(x∗, δ∗, ν∗) ∈ Rn × Rm × Rp that fulfills the KKT-conditions is called KKT-point of (2.1)

and the componenents of δ∗ and ν∗ or often the vectors themselves are called Lagrange-

multipliers.

In the later parts of this thesis special attention will be paid to piecewise linear functions and

especially to those as constraints. Therefore, first a result based on the KKT-conditions for

the linear case is given here, which will also be useful for the piecewise linear consideration.

Theorem 2.2 (KKT-conditions for linear constrained problems). Let x∗ be a local mini-

mizer of the linear constrained problem

min
x∈Rn

f(x)

s.t. 0 = g +Ax ,

0 ≥ h+Dx ,

(2.3)

with f : Rn → R continuously differentiable, g ∈ Rm, h ∈ Rp, A ∈ Rm×n and D ∈ Rp×n.

Then, there exist Lagrange-multipliers δ∗ ∈ Rm and ν∗ ∈ Rp such that (x∗, δ∗, ν∗) fulfill the

8



2.1 Optimality Conditions for Smooth Constrained Optimization

KKT-conditions

∇f(x∗) + (δ∗)>A+ (ν∗)>D = 0 , (2.4a)

g +Ax∗ = 0 , (2.4b)

h+Dx∗ ≤ 0 , (2.4c)

(ν∗)> (h+Dx∗) = 0 , (2.4d)

ν∗ ≥ 0 . (2.4e)

Proof. See [37, Satz 2.42].

Moreover, if the objective function is assumed to be convex, the KKT-conditions are even

sufficient optimality conditions in the case of linear constraints.

Theorem 2.3 (KKT-conditions as necessary and sufficient optimality conditions). Con-

sider the optimization problem (2.3) and additionally assume that f is convex. Then x∗ ∈ Rn
is a (local = global) minimizer of (2.3), if and only if there exist Lagrange-multiplier δ∗ ∈ Rm
and ν∗ ∈ Rp such that the tuple (x∗, δ∗, ν∗) is a KKT-point of (2.3).

Proof. See [37, Korollar 2.47].

For both linear and nonlinear constraints, if one adds further regularity assumptions, the

so-called LICQ, it can be shown that the Lagrange multipliers must even be unique. The

definition of the LICQ will given next, followed by corresponding result.

Definition 2.4 (LICQ). Let x ∈ Rn be a feasible point of the optimization problem (2.1)

and I(x) = {i | Hi(x) = 0} the corresponding set of active inequality constraints. Then x

fulfills the linear independence constraint qualification (LICQ) if the gradients

∇Gi(x) for i = 1, . . . ,m and ∇Hi(x) for i ∈ I(x)

are linear independent.

Theorem 2.5 (KKT-conditions for constrained problems with C1-functions). Let x∗ be

a local minimizer of the optimization problem (2.1) which fulfills the LICQ. Then there

exist unique Lagrange multipliers δ∗ ∈ Rm and ν∗ ∈ Rp such that the tuple (x∗, δ∗, ν∗) is a

KKT-point of (2.1).

Proof. See [37, Satz 2.41].
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In addition to LICQ, there are nowadays countless further regularity assumptions as well

as optimality conditions based on them, see, e.g., [1, 37, 46, 82, 99] to only name a few.

In the context of this thesis, however, the one mentioned earlier suffice for the upcoming

discussions.

For the later convergence analysis, the concept of the descent direction will be important.

Therefore, the following two definitions as well as the Lemma 2.8 are taken from [2, Chapter

1 and 3]. From the naming it is already self-explaining what descent direction means: It

concerns a direction, in which the function value decreases.

Definition 2.6 (Descent direction). Let f : Rn → R be a function and x ∈ Rn. A vector

d ∈ Rn is called descent direction of f in direction d, if there exists a t̄ > 0 such that

f(x+ td) < f(x) holds for all t ∈ ]0, t̄[.

To characterize descent directions one can use directional derivatives. These are defined as

follows:

Definition 2.7 (Directional derivative). Let f : Rn → R be a function and x, d ∈ Rn. If

the limit

f ′(x; d) := lim
t↘0

1

t
(f(x+ td)− f(x))

exists then f ′(x; d) is called directional derivative of f in the point x in the direction d.

In case of convex functions the relation of descent direction and directional derivative is

now described by the following lemma:

Lemma 2.8. Let f : Rn → R be a convex function and x, d ∈ Rn. Then the following

statements are equivalent

i) d is a descent direction of f in x,

ii) f ′(x; d) < 0.

Proof. See [2, Satz 3.2.2].

2.2 Active Set Method

The Active Set Method has been developed to solve quadratic optimization problems

with linear equality and inequality constraints. It belongs to the standard methods of
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quadratic optimization and is accordingly also discussed in many lectures on nonlinear

optimization. It can also be found in many standard textbooks on this topic. This chapter

is also essentially based on the two books [37, 87].

To avoid confusion with the Active Signature Method (ASM), no acronym is used for the

Active Set Method in this thesis. However, to make the conceptual similarities to the ASM

more recognizable, the notation from the corresponding books is adapted to the setting

considered here.

The basic idea of the Active Set Method is to solve a sequence of equality-constrained

optimization problems where the active inequality constraints at the current iterate are

added to the equality constraints. Theoretical considerations then provide information

about which of the inequality constraints are added as active constraints for the next

iteration or which become inactive again. The handling of the active or inactive inequality

constraints is then described by a set. Therefore, this is also an explanation for the naming

of the Active Set Method.

2.2.1 Equality Constrained Problem

Consider in a first step only the following equality constrained optimization problem

min
x∈Rn

a>x+
1

2
x>Qx

s.t. 0 = g +Ax ,

(2.5)

with Q ∈ Rn×n symmetric, a ∈ Rn, g ∈ Rm and A ∈ Rm×n. Hence, in this case there are

n independent optimization variables and m equality constraints. Note, that w.l.o.g. a

constant shift in the objective function has been omitted here. Assume x∗ ∈ Rn to be a

local minimizer, then by Theorem 2.2 there exists at least one Lagrange-multiplier δ∗ ∈ Rm
such that the pair (x∗, δ∗) fulfills the KKT-conditions, i.e.,

a> + x>Q+ δ>A = 0 ,

g +Ax = 0 .

This is a linear system of equations to determine a KKT-point and directly yields the

following result:

Theorem 2.9. A pair (x∗, δ∗) ∈ Rn × Rm is a KKT-point of Eq. (2.5), if and only if
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(x∗, δ∗) is a solution of the system of linear equations(
Q A>

A 0

)(
x

δ

)
= −

(
a

g

)
. (2.6)

Proof. See [37, Satz 5.1].

In the case of a positive semi-definite matrix Q the target function is convex and thus, by

Theorem 2.3, the KKT-conditions of (2.5) are fully equivalent to the optimization problem

itself. Thus, a solution of an equality constrained optimization problem can be reduced to

the solution of corresponding systems of linear equations (2.6).

By elementary rearrangement the following statement follows directly from Theorem 2.9,

which is already a preparation for the Active Set Method. Therefore, substituting x by

x + ∆x in Eq. (2.6), where x now denotes a feasible and fixed point for the quadratic

optimization problem (2.5) and ∆x ∈ Rn a correction term, which plays the role of a search

direction. Hence, it follows(
Q A>

A 0

)(
x+ ∆x

δ

)
= −

(
a

g

)

⇔
(
Q A>

A 0

)(
∆x

δ

)
= −

(
a

g

)
−
(
Q A>

A 0

)(
x

0

)
=

(
−a−Qx
−g −Ax

)

⇔
(
Q A>

A 0

)(
∆x

δ

)
=

(
−∇f(x)

0

)
,

where in the last rearrangement ∇f(x) = a+Qx and the feasibility of x for (2.5) is used.

This immediately provides the following theorem:

Theorem 2.10. Let x̄ ∈ Rn be a feasible point of the optimization problem (2.5). Then,

(x∗, δ∗) ∈ Rn × Rm is a KKT-point of (2.5), if and only if, x∗ = x̄+ ∆x∗ and (∆x∗, δ∗) is

a solution of the system of linear equations(
Q A>

A 0

)(
∆x

δ

)
=

(
−∇f(x̄)

0

)
,

with f(x) = a>x+ 1
2x
>Qx.

Proof. See [37, Satz 5.2].
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2.2.2 Strategy of Active Sets for Inequality Constraints

Having initially only the equality constraints taken into account, the inequality constraints

are now added to the optimization problem (2.5). Thus, the optimization problem consid-

ered in the Active Set Method, is described by

min
x∈Rn

a>x+
1

2
x>Qx

s.t. 0 = g +Ax ,

0 ≥ h+Dx ,

(2.7)

again with Q ∈ Rn×n symmetric and positive semi-definite, a ∈ Rn, g ∈ Rm, A ∈ Rm×n
and furthermore h ∈ Rp and D ∈ Rp×n. As mentioned at the beginning of the chapter, to

solve the actual problem (2.7) a sequence of equality-constrained problems is solved using

Theorem 2.9. This is followed by only adding the inequality constraints which are active at

the current iterate to the equality constraints. The so-called working set W is introduced

to approximate these index set of active inequality constraints in the point x given by

I(x) =
{
i ∈ {1, . . . , p} | e>i (h+Dx) = 0

}
,

where ei ∈ Rp denotes the ith unit vector. Then, the projection onto the approximation

W of the active inequality constraints is defined as PW ≡ (e>i )i∈W ∈ R|W|×p.
Using these notations, in every iteration of the Active Set Method the optimization problem

min
x∈Rn

a>x+
1

2
x>Qx

s.t. 0 = g +Ax ,

0 = PW(h+Dx)

(2.8)

has to be solved, which is by Theorem 2.9 equivalent to setting x = x̄+ ∆x for the solution

∆x to  Q A> (PWD)>

A 0 0

PWD 0 0


∆x

δ

νW

 =

−∇f(x̄)

0

0

 , (2.9)

with νW ≡ PWν ∈ R|W| and x̄ denoting the current point. Starting from a solution

(∆x, δ, νW) of (2.9), two main questions arise. First, how to determine the new iterate

13
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including the calculation of the step length, i.e., how far to go in the direction of ∆x and

second, how does the working set change.

To begin with, because of the complementarity condition Eq. (2.4d) of the KKT-conditions,

νi is set to zero for all index i /∈ W . Now distinguish the two cases ∆x = 0 and ∆x 6= 0. If

the first one holds true, the current iterate is a candidate for a local minimzer of the whole

problem (2.7), at least it is a local minimizer of (2.8). To be a local minimizer of (2.7)

by Theorem 2.3 it is necessary and sufficient that the KKT-conditions (2.4) are fulfilled.

Therefore, the four conditions, namely the stationarity condition (2.4a) the two primal

feasibility (2.4b) and (2.4c) as well as the complementary condition (2.4d), are fulfilled via

the construction above. Thus, only the dual feasibility condition (2.4e) has to be checked.

If this is also fulfilled the algorithm stops. If not, any index j for which νj < 0 dropping

the jth inequality constraint usually will yield a direction ∆x along which the algorithm

can make progress as can be seen by the following theorem.

Theorem 2.11. Suppose that the point x̄ satisfies the first-order conditions for the equality-

constrained problem with the working set W, i.e.,

PWDνW = −Qx̄− a

is satisfied along with PW(h+Dx̄) = 0. Further, assume that the matrix(
A

PWD

)

has full row rank, i.e., the active constraints are linearly independent, and finally suppose

that there exists an index j ∈ W such that νj < 0. Let ∆x be the solution obtained by

dropping the constraint j and solving the system Q A>
(
PW\{j}D

)>
A 0 0

PW\{j}D 0 0


 ∆x

δ

νW\{j}

 =

−∇f(x̄)

0

0

 .

Then ∆x is a feasible direction for jth inequality constraint, i.e., e>j D∆x ≤ 0

Proof. See [87, Theorem 16.5].

Here, the common way is to chose the most negative multiplier, which is motivated by the

sensitivity analysis given in [87, Chapter 12].
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Algorithm 1 Active Set Method

Require: Feasible start point x ∈ Rn, n ∈ N, m, p ∈ N∪{0}, a ∈ Rn, Q = Q> ∈ Rn×n
symmetric and positive semi-definite, g ∈ Rm, h ∈ Rp, A ∈ Rm×n, D ∈ Rp×n,
W := {i | e>i (h+Dx) = 0}
1: loop
2: Set νi = 0 for i /∈ W und compute (∆x, δ, νW) by solving (2.9)
3: if ∆x = 0 then
4: if ν ≥ 0 then . Termination
5: return x
6: else . Drop Constraint
7: Determine index j such that νj = min{νi | i ∈ W}
8: Set x+ = x and W+ =W \ {j}
9: else

10: if x+ ∆x is feasible for (2.3) then . Full step
11: Set x+ = x+ ∆x and W+ =W
12: else . Add Constraint
13: Determine index j and step length β via Eq. (2.10)
14: Set x+ = x+ β∆x and W =W ∪ {j}
15: Set x = x+ and W =W+

Now consider the case where ∆x 6= 0. The simple case here is when updating the current

iterate x by adding ∆x still yields a feasible point for the original problem (2.7). Then

exactly this step is applied and the working set remains unchanged. The more complicated

case is when a complete step in the direction of ∆x no longer yields a feasible point. In

this case a step length up to the first blocking inequality constraint must be determined.

For the current iterate x the step length β is defined as

β ≡ min
i/∈W

(−e>i (h+Dx)

e>i (D∆x)

∣∣∣∣ e>i (D∆x) < 0

)
(2.10)

and the first index for which the minimum is attained is denoted by j. Using the step

length the update of the current iterate and the working set is given by

x+ := x+ β∆x ,

W+ :=W ∪ {j} .

When all these considerations are combined, they lead to the Active Set Method as given

in Algorithm 1.
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2.2.3 Finite Convergence

For the Active Set Method, it is possible to show finite convergence under relatively mild

assumptions. First, the following result is needed for this.

Theorem 2.12. Let a solution ∆x of the linear equation system (2.9), which is obtained

form the current iterate x̄, be given. Suppose, that ∆x is nonzero and satisfies the second-

order sufficient condition for optimality for that problem, i.e., Z>QZ is positive definite

for the matrix Z whose columns are a basis of the null space of the constraints of (2.8).

Then, the function f , defined by

f(x) := a>x+
1

2
x>Qx

is strictly decreasing along the direction ∆x.

Proof. See [87, Theorem 16.6].

Now, according to [87, page 477 f.] the argumentation to show the finite convergence of

Algorithm 1 is described. Assume that for strictly convex quadratic programs the Active

Set Method determines a positive step size β in every iteration and furthermore that the

direction ∆x as the solution of the system (2.9) is nonzero. Then, the argumentation is as

follows:

If ∆x = 0 by Theorem 2.12 the current iterate x̄ is the unique global minimizer of (2.8), i.e.,

for the current working set W. If at least one of the Lagrange-multiplier of ν is negative,

x̄ is not the solution of the original problem (2.7), but then combining Theorems 2.11

and 2.12 leads to the conclusion that the direction ∆x computed after a constraint is

dropped will be a strict descent direction for f . Taking the assumption β > 0 into account,

it follows that the value of f is lower than f(x̄) at all subsequent iterations. Since x is

actually the unique global minimizer for the current working set, the algorithm can never

return to it, after the value of f has decrease once. In summary, these considerations

provide two findings: First, after a working set has been left once, it cannot be reached

again, and, second, after a constraint is dropped, there is a strict descent in the function

value.

Furthermore, the algorithm encounters an iterate for which ∆x = 0 at most on every

(p+ 1)th iterations, because either there is a constraint to add, which can occur at most

p times and is discussed next or there is a full step, in which case the minimizer for the

current working set is reached as seen by the equivalence of (2.8) and (2.9) and the next
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iterate leads to ∆x = 0. Note, in case of linearly independent equality and active inequality

constraints, there could be at most p ≤ n considered constraints.

It is easy to see that the cases of adding constraints or dropping constraints can only occur

finitely often in sequence. Since there are only finitely many constraints, namely p of them,

the case that an element is added to the working set can occur at most p times in a row.

The same applies to the dropping out of constraints. Here it is also known that in the

case of a real step, i.e., β∆x 6= 0, this working set is no longer reached. Note that the

assumption of the existence of a positive step size is important here, since otherwise there

may be a cycling between adding and dropping the same constraint. More about this is

given in the following section.

In summary, there can only be a positive step size or a zero step size ∆x each finitely often

in series. And since there can only be a finite number of different working sets that cannot

be reached again after leaving them, the algorithm can only run through the phase for

∆x = 0 finitely often. This provides the finite convergence of the Active Set Method.

2.2.4 Degeneracy, Cycling, and Further Remarks

In this short subsection some further remarks about the Active Set Method are made,

which should be mentioned in this context, but are not considered in detail here.

First of all it should be noted that scaling the constraints can influence the sequence of

iterations. If one considers several constraints and scales some but not all of them with an

arbitrary factor, these constraints remain mathematically equivalent. However, this may

can have an influence on the value of the Lagrange multipliers when solving Eq. (2.9). I.e.

possibly other inequality constraints are deactivated as it would be the case otherwise.

Further it should be mentioned that, for example, if LICQ is not satisfied in the optimal

point or if the optimal point also coincides with the solution of the unconstrained problem,

degeneracies may occur. It can happen that the Active Set Method cycles [80, 87, 113].

Finally, it should be mentioned that there are now a large number of Active Set Methods

or those that build on a similar idea of handling constraints. Likewise, there are dual or

primal-dual Active Set Methods in addition to the primal one. For this purpose, reference

is made to [5, 23, 34, 57].
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2.2.5 Finding a Feasible Starting Point: Phase I Methods

One assumption that is made for the Active Set Method, which has not been discussed yet,

is the assumption of an existing feasible starting point. Up to now it was always assumed

that a feasible starting point exists, but of course the question arises how to determine

such a point if it is not yet known for the given problem for other reasons. One approach

to this is called the Phase I Method and is motivated by the Simplex Algorithm, which

was developed to solve linear constrained optimization problems [85, 86]. Thus, it is also

immediately clear that for both the Simplex Algorithm and the Active Set Method, the

feasible sets are described by linear functions and thus the same or similar approaches of a

Phase I are motivated. Some approaches to this will now be briefly described and like the

previous chapters, the current one is also essentially based on [87]. Alternatively, there are

other sources, some of which are also closely related or also developed specifically for the

field of operation research, e.g., [10, 17, 98] to name only a few.

A first approach for a Phase I Method can be described by the following linear optimization

problem, where x̃ is a random starting point:

min
x∈Rn,π∈Rm+p

e>π

s.t. 0 = gi + a>i x+ θiπi , i = 1, . . . ,m ,

0 ≥ hi + d>i x+ θiπi , i = m+ 1, . . . ,m+ p ,

0 ≤ π ,

where a>i and d>i denotes the ith row of the matrices A and D, respectively, and e =

(1, . . . , 1)>, θ = − sgn(gi + a>i x̃) for i = 1, . . . ,m and θi = −1 for i = m+ 1, . . . ,m+ p. A

feasible initial point for this problem is then

x = x̃ , πi = |gi + a>i x̃| , for i = 1, . . . ,m ,

πi = max(hi + d>i x̃, 0) , for i = m+ 1, . . . ,m+ p .

If the objective value of this problem is zero then the corresponding solution point (x, 0)

is a feasible starting point for the original problem (2.7) and the other way around if the

original problem has a feasible point, then the optimal value in this Phase I-formulation is

zero.

A second approach for a Phase I Method is the penalty-based, so called Big M -Method. In

fact, this is no longer a strict Phase I Method in the sense that only a feasible starting point
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is searched for, but the objective function itself is also included in the optimization problem.

By adding a scalar-valued variable ρ as a measure for the violation of the constraints to

the target function, the following optimization problem is to be solved:

min
x∈Rn,ρ∈R

a>x+
1

2
x>Qx+Mρ

s.t. ρ ≥ gi + a>i x , i = 1, . . . ,m ,

ρ ≥ −
(
gi + a>i x

)
, i = 1, . . . ,m ,

ρ ≥ hi + d>i x , i = m+ 1, . . . ,m+ p ,

ρ ≥ 0 ,

(2.11)

where M is a large positive value. For this problem, any random x̃ can be part of a feasible

starting point, which is completed by an appropriate choice of ρ. This parameter must then

be chosen large enough depending on x̃ so that all constraints are satisfied. A critical aspect

of this approach is the appropriate choice of M . Here, a heuristic is to increase M and

re-solve the problem until ρ becomes zero. If ρ = 0, then the problem formulation (2.11) is

equivalent to the original (2.7). As will be seen in the next section, this approach is an

l∞-penalty approach.

By introducing slack variables u, v ∈ Rm, w ∈ Rp and an l1-penalization of the violation of

the constraint, the problem (2.11) can also be formulated as

min
x∈Rn,u,v∈Rm,w∈Rp

a>x+
1

2
x>Qx+Me>m(u+ v) +Me>p w

s.t. 0 = g +Ax+ u− v ,
0 ≥ h+Dx− w ,

0 ≤ u, v, w ,

where em is the vector (1, . . . , 1)> of length m and analog for ep. Again, the problem for

u, v, w = 0 is consistent with the original problem (2.7) and, as in the previous approach,

the choice of M is nontrivial.

All these approaches have in common that they are formulated as optimization problems,

which in turn fall into the class of problems that can be solved by the solver itself. However,

in contrast to the original problem, a feasible starting point can always be easily specified.
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2.3 Penalty-Approaches

In the previous section, the Active Set Method was described, a method which explicitly

handles constraints, but was considered here only for quadratic problems with linear

constraints. In contrast to this, there are the so-called penalty methods for more general

optimization problems. Characteristic of these approaches is that the constraints are linked

to the objective function and a violation of feasibility is penalized. This has the consequence

that a constrained optimization problem becomes an unconstrained one and thus solvers

can be used which are especially designed for unconstrained problems. Therefore, they

provide an alternative way to solve constrained optimization problems without explicitly

dealing with constraints.

Since the basic idea of penalty methods is a standard approach to constrained optimization,

standard textbooks are again given as references. Thus, the following section is essentially

based on the books [37, 61, 87].

2.3.1 General Penalty Method

For this section, consider the general optimization problem

min
x∈Rn

f(x) s.t. x ∈ F , (2.12)

where f : Rn → R is the continuous target function and, at first, the feasible set F ⊆ Rn is

closed. In this setting, an indication function can then be defined as

r : Rn → R+, where
r(x) > 0 for x /∈ F ,

r(x) = 0 for x ∈ F .

Here, the function r indicates the violation of feasibility by a positive function value. If

the feasible set is given in the form

F := {x ∈ Rn | G(x) = 0, H(x) ≤ 0} , (2.13)

where G : Rn → Rm and H : Rn → Rp are continuous functions, an indication function

can be defined as

r(x) :=
m∑
i=1

|Gi(x)|κ +

p∑
i=1

(
H+
i (x)

)κ
,
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2.3 Penalty-Approaches

Algorithm 2 General Penalty Method

Require: Random ρ > 0

1: loop
2: Determine (or approximate) a local minimum x+ of Φ(x, ρ)
3: if x+ ∈ F then
4: return x+

5: else
6: Choose ρ+ ≥ 2ρ

7: Set x = x+ and ρ = ρ+

with κ > 0 and H+
i (x) := max (0, Hi(x)). If now a penalty parameter ρ > 0 is added, the

resulting and so called penalty function is composed as

Φ(x, ρ) := f(x) + ρ · r(x) (2.14)

and is a weighted sum of the objective function and the indication function. There is now

the hope that solving the unconstrained problem

min
x∈Rn

Φ(x, ρ) (2.15)

for a ρ large enough will give a good approximation of the solution for the constrained prob-

lem (2.12). Therefore, in a General Penalty Method (GPM), a sequence of problems (2.15)

is solved, where the penalty parameter is successively increased until the respective iterate

represents a feasible point of (2.12). But not only this implicit assumption motivates this

approach. In general it can be shown that a minimun of the original problem can be found.

For this purpose, first the GPM is presented in Algorithm 2 and therefore there is the

following result:

Theorem 2.13. Let f : Rn → R be a continuous function, x∗ a strictly local minimum

of (2.12) with F nonempty, convex and closed and r : Rn → R an indication function.

Then, there exists a ρ0 > 0 such that for all ρ > ρ0 the function Φ(x, ρ) := f(x) + ρr(x)

assume a local minimum x(ρ) for which

lim
ρ→∞

x(ρ) = x∗

holds. Consequently, the GPM converges to a local minimum of f provided ρ goes to

infinity.
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2 Aspects of Smooth Optimization

Proof. See [61, Satz 11.1.5].

Implicitly, it is assumed that solving the problem (2.15) is easier for small ρ. In fact, there

exist simple examples showing that penalty methods with a too large choice of the penalty

parameter ρ do not perform well. In this context, using the eigenvalues of the Hessian of

the penalty function, one can show that these matrices are ill-conditioned, making the

subproblems occurring in line 2 of Algorithm 2 difficult to solve numerically, e.g., [37,

Chapter 5.2] or [87, Chapter 17.1].

To conclude the general case, the following remarks are relevant: First, there are counterex-

amples that even if (2.15) for ρ = ρk →∞ has a sequence of local minima x(ρk) converging

to a point x̃ ∈ F , then x̃ is not necessarily a local minimizer of (2.12) with F nonempty,

convex and closed, because in Theorem 2.13 a strict local minimizer is assumed. Second,

differentiability is a critical aspect. Thus, a smooth optimization problem can become a

nonsmooth problem depending on the choice of κ and therefore, it would be useful to keep

the differentiability. Third, the GPM theoretically generates an infinite sequence. Hence,

it would be ideal if there is a value ρ∗ > 0 such that a local minimizer x∗ of (2.12) with F
nonempty, convex and closed is also local minimal for any unbounded formulation (2.15)

with ρ ≥ ρ∗.These are called exact penalty functions, for which the reader is referred to

the literature at this point [37, 61, 87].

In the following, a concrete penalty method will be discussed, i.e., for a concrete choice

of κ. Since in the context of this work it is in particular about piecewise linear problems,

here the focus is on the l1-penalty method.

2.3.2 l1-Penalty Method

To begin with, the l1-penalty function for the optimization problem (2.12) with the feasible

set F given by (2.13) is defined as

Φ(x, ρ) := f(x) + ρ
m∑
i=1

|Gi(x)|+ ρ

p∑
i=1

H+
i (x) ,

again with H+
i (x) := max(0, Hi(x)). Thus, for the choice of κ = 1, this is consistent with

the formulation from (2.14). The name l1-penalty function is also naturally motivated by

the l1-norm as the sum of all absolute values of the vector components.

Therefore, some directly apparent advantages and disadvantages are given: A critical

aspect is certainly, as also noted before, that by this formulation the objective function
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2.3 Penalty-Approaches

becomes nonsmooth. So for an original smooth problem, smooth solvers are generally

no longer usable. If the function was already nonsmooth before, this consideration is of

course less critical. However, a clear advantage is that the l1-penalty function is an exact

penalty function. This means that for a suitable choice of the penalty parameter only

one optimization, i.e., only one loop pass in the Algorithm 2 is necessary. Other penalty

functions, such as the quadratic penalty function, which will be briefly described in the

next subsection, are not exact. This has the consequence that the penalty parameter must

be increased in the worst case even infinitely often, until a solution for the original problem

is found. This extremely useful property of the l1-penalty function is stated in the following

theorem.

Theorem 2.14. Suppose that x∗ is a strict local solution of the nonlinear problem (2.1)

at which the conditions of Theorem 2.5 are satisfied with Lagrange multipliers δ∗ ∈ Rm
and ν∗ ∈ Rp. Then x∗ is a local minimizer of the l1-penalty function for the optimization

problem (2.1) for all ρ > ρ∗, where

ρ∗ = ||(δ∗, ν∗)||∞ = max{|δ∗i |, νj | i = 1, . . . ,m , j = 1, . . . p}.

Proof. See [87, Theorem 17.3].

Note that in contrast to the optimization problem (2.12) with the feasibly set given by (2.13),

the Theorem 2.14 assumes differentiability of the functions in addition to continuity.

In [3] the exact l1-penalty method for constrained nonsmooth optimization problems was

also considered, but with the additional assumptions that the functions are invex. Simply

speaking, invex functions are understood to be a generalization of convex functions, but

not so general as to include the class of piecewise linear functions.

2.3.3 Quadratic Penalty Approach

For the optimization problem (2.12) with the feasible set F defined as in (2.13) the quadratic

penalty function is defined as

Φ(x, ρ) := f(x) +
ρ

2

m∑
i=1

G2
i (x) +

ρ

2

p∑
i=1

(
H+
i (x)

)2
,

again with H+
i (x) := max(0, Hi(x)). As usual, the penalty parameter is scaled with 1

2 for

differentiation reasons.

23



2 Aspects of Smooth Optimization

However, since the focus is to be on piecewise linear and not piecewise smooth functions,

these approaches will not be considered further in the remainder of this thesis. However,

they are meant to clarify that there are further penalty functions beyond the l1-penalty

function. For more details on these and other approaches, the reader is referred to

[37, 61, 87].
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3
The Abs-Linear Optimization Problem:

Theory and Solution Method

The focus of this chapter is the derivation of an optimization algorithm for unconstrained

piecewise linear optimization problems, which has already been published in [45]. Therefore,

Section 3.1 makes the transition from the contents of the previous chapter to nonsmooth

optimization. For this purpose, abs-smooth functions are first introduced, and optimality

conditions for abs-linear functions are shown in Section 3.2. Abs-linear functions, as

a subclass of abs-smooth functions, are compositions of linear functions and absolute

value evaluations, in particular continuous piecewise linear functions. Therefore, the

nondifferentiability is generated only by the absolute value. The main aspect of this

chapter, the Active Signature Method (ASM) as an optimization algorithm for an abs-

linear function, is part of Section 3.3. In this context, the ASM represents the essential basis

for the algorithm for solving constrained piecewise optimization problems (see Chapter 4)

developed in the context of this dissertation. Optimality conditions, the derivation of the

algorithm itself and convergence statements are given. Afterwards, the chapter concludes

with a short overview of other optimization methods that have been and are still being

developed for abs-smooth functions in Section 3.4.

It should be noted that the notation has been adjusted in comparison to [45] because

the Abs-Linear Form is used in a slightly different representation. The reason for this is

that in Chapter 4, in addition to the objective function, piecewise linear constraints are

also considered, which should have a representation as general as possible. All required

definitions in this thesis are adapted accordingly, hence the notation is self-consistent in

this work.
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3 The Abs-Linear Optimization Problem: Theory and Solution Method

3.1 Abs-Linear Form and Abs-Linearization

After introducing selected aspects of smooth optimization in the previous chapter and using

the l1-penalty approach as a first nonsmooth method, the focus will now be on relevant

aspects of nonsmooth optimization.

As mentioned in the introduction (see Chapter 1), there are classes of nonsmooth functions

for which derivative information can be generated using AD. To describe one of these classes,

suppose that the functions are given by an evaluation program. Here, the nonsmoothness

can be represented by the absolute value function, as well as the min- and max-functions,

which themselves can be represented by the abs-function via

min(u, v) =
1

2
(u+ v − |u− v|) (3.1)

and max(u, v) =
1

2
(u+ v + |u− v|) . (3.2)

For details on this evaluation process, there are a number of sources, see, e.g., [29, 30, 41, 43]

and it leads to the following definition of the class of these functions:

Definition 3.1 (Cdabs(Rn)-functions). For any d ∈ N, the set of functions ϕ : Rn → R, y =

ϕ(x), defined by an Abs-Smooth Form

y = f(x, z) ,

z = F (x, z, |z|) , (3.3)

with f ∈ Cd(Rn+s,R) and F ∈ Cd(Rn+s+s,Rs), such that zi is determined only by the values

of zj, for 1 ≤ j < i, is denoted by Cdabs(Rn). The components zi, 1 ≤ i ≤ s, of z are called

switching variables, the whole vector z switching vector, and Eq. (3.3) switching equation.

Here and throughout, |z| denotes the component-wise modulus of a vector z. As in [48],

assume that the switching variable which does not impose nonsmoothness is located in

the last component of z and that only the first s̃ ∈ {s − 1, s} components z1, . . . , zs̃ are

arguments of the absolute value.

For piecewise linear functions as a subclass of Cdabs(Rn)-functions the Abs-Smooth Form

can be given explicitly in the so-called Abs-Linear Form. All further contributions in this

thesis rely on this form.

Definition 3.2 (Abs-Linear Form, switching vector). A continuous piecewise linear func-
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3.1 Abs-Linear Form and Abs-Linearization

tion ϕ : Rn → R is in Abs-Linear Form if y ≡ ϕ(x) is given by

y = d+ a>x+ b>z , (3.4)

z = c+ Zx+Mz + L|z| , (3.5)

with x ∈ Rn the argument vector, z ∈ Rs the vector of switching variables, called switching

vector, and constants d ∈ R, a ∈ Rn, b, c ∈ Rs, Z ∈ Rs×n, L,M ∈ Rs×s, where the last

two matrices are strictly lower triangular. Eq. (3.5) is called switching system.
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Figure 3.1: Plot of the Hill-function

In context of optimization w.l.o.g. it is assumed that

d = 0. Using the representations of the min and max

as given in Eqs. (3.1) and (3.2) via the abs-function

and [96, Proposition 2.2.2] an important fact is that

every piecewise linear function can be represented

in an Abs-Linear Form, see also [48, Lemma 2].

To illustrate the different concepts introduced in

this thesis, starting with the Abs-Linear Form, the

following simple example will be used throughout.

Example 3.3 (Abs-Linear Form of Hill-function).

Consider the function

ϕ(x) : R2 → R, x 7→ max{0, x1 − |x2|} . (3.6)

A plot of this function is given in Figure 3.1, and because of its shape will be referred to as

Hill-function in the following. Note that this is a nonsmooth and nonconvex function, which

in particular is already piecewise linear. The points where the function is not differentiable

in the classical sense are marked by dark blue lines. However, the function is differentiable

for x1 < 0 with x2 = 0, but this line is relevant for the polyhedral decomposition that

will be discussed later. This graphical illustration also motivates the term kink for the

nondifferentiable segments in the following. According to Rademacher’s theorem [27,

Theorem 3.1.6], these are always sets of measure zero.

Using Eq. (3.2) the Hill-function can be rewritten as

ϕ(x) =
1

2

(
x1 − |x2|+

∣∣x1 − |x2|
∣∣) .

From this, it can also be seen that nestings of absolute values are also included in the

27



3 The Abs-Linear Optimization Problem: Theory and Solution Method

function class considered here. In [41, 44], this nesting property and the number of nestings

is called switching depth. The Abs-Smooth Form for the Hill-function is given by

y = f(x, z) :=
1

2
x1 + z3 , z = F (x, z, |z|) :=

 x2

x1 − |z1|
−1

2 |z1|+ 1
2 |z2|

 (3.7)

and therefore, in particular the full Abs-Linear Form by

y = 0 +
[

1
2 0

] [x1

x2

]
+
[
0 0 1

]z1

z2

z3

 ,

z =

 x2

x1 − |z1|
−1

2 |z1|+ 1
2 |z2|

 =

0

0

0

+

0 1

1 0

0 0

[x1

x2

]
+

0 0 0

0 0 0

0 0 0


z1

z2

z3

+

 0 0 0

−1 0 0

−1
2

1
2 0


|z1|
|z2|
|z3|

 .

In his outstanding article [41], Andreas Griewank has studied piecewise linearizations

of abs-smooth functions. The basic idea, well known from smooth analysis, is that one

linearizes functions or applies a Taylor expansion to get an approximation. For the purpose

of abs-smooth functions as in Definition 3.1 with d ≥ 1 consider the following vectors and

matrices:

a =
∂

∂x
f(x, z) ∈ Rn , b =

∂

∂z
f(x, z) ∈ Rs ,

Z =
∂

∂x
F (x, z, w) ∈ Rs×n ,

M =
∂

∂z
F (x, z, w) ∈ Rs×s strictly lower triangular ,

L =
∂

∂w
F (x, z, w) ∈ Rs×s strictly lower triangular .

Using these vectors and matrices it is possible to define an Abs-Linear Form of abs-smooth

functions, which represents a piecewise linear approximation of the abs-smooth function.

Given an abs-smooth function ϕ : Rn → R and a base point x̊ ∈ Rn from which the

approximation is constructed, the resulting and so-called Abs-Linearization is denoted

by ∆ϕ(̊x; ·) : Rn → R. For this purpose, since the argument of the function ∆ϕ(̊x; ·) is

rather to be understood as a direction, the argument vector x in the representation given

by Eqs. (3.4) and (3.5) is replaced by a direction vector ∆x ∈ Rn.

Numerically, an Abs-Linear Form of an abs-smooth function can be generated using
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3.1 Abs-Linear Form and Abs-Linearization

appropriate variants of AD (see Section 1.1). A special property of the approximation of

abs-smooth functions by their abs-linearization is that it is a second-order approximation.

Theorem 3.4. Suppose, f is abs-smooth on D ⊂ K ⊂ Rn, D open, K closed and convex.

Then there exists some γ > 0 such that for all x, x̊ ∈ D

||ϕ(x)− ϕ(̊x)−∆ϕ(̊x, x− x̊)|| ≤ γ||x− x̊||2 .

Proof. See [41, Proposition 1].

An optimization algorithm that uses exactly this abs-linearization is called Successive Abs-

Linear MINimization (SALMIN), [28, 29]. It solves unconstrained optimization problems

with abs-smooth objective functions using the abs-linearization as a local model over which

the optimization is performed. A solver for the resulting inner abs-linear subproblem is

the Active Signature Method (ASM) by Andreas Griewank and Andrea Walther [45]. It is

presented in the following section. The algorithm was developed to solve unconstrained

piecewise linear optimization problems. Here, the nonsmoothness of the objective function

is explicitly exploited by the polyhedral structure that arises as described next. Therefore,

the remaining chapter is essentially based on [45], but the notation is adapted to fit this

thesis, as it is already stated in [48] or [70]. Furthermore, significant details are added in

the derivation and in the proofs.

To begin with, in the further course it will be useful to distinguish the switching variables

into active and inactive ones.

Definition 3.5 (Active switching variables). A switching variable zi is called active at x

if zi(x) = 0. The active switching set α(x) collects all indices of active switching variables

that explicitly depend on x, i.e.,

α(x) ≡ {i ∈ {1, . . . , s̃} | zi(x) = 0} .

The projection onto the active components of z(x) is defined as Pα ≡ (e>i )i∈α ∈ R|α|×s
with ei denoting the ith unit vector of appropriate size.

Example 3.6 (Active switching variables for Hill-function). Consider the Hill-function

with its Abs-Smooth Form (3.7) at the point x̄ = (4;−4)>. Then the set of active switching

variables in x̄ is a singleton set α(x̄) = {2}. This can be seen in Figure 3.1, because the

point x̄ lies exactly on one of the kinks (in the right corner of the plot). Thus, this one is

active for x̄.
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3 The Abs-Linear Optimization Problem: Theory and Solution Method

In [44] it is shown, that it is possible to decompose Rn into polyhedra using the signatures

of the switching vector.

Definition 3.7 (Signature vector and signature matrix). Let a Cdabs(Rn)-function be given

in Abs-Smooth Form. For each x ∈ Rn the signature vector is defined by

σ(x) ≡ (sgn(z1(x)), . . . , sgn(zs(x))) ∈ {−1, 0, 1}s .

The corresponding signature matrix is given by Σ(x) = diag(σ(x)). A signature vector

σ(x) is called definite, if no component vanishes, i.e., σ(x) ∈ {−1, 1}s. This situation is

denoted by 0 /∈ σ(x). Otherwise it is called indefinite.

Since frequently fixed signature vectors are considered in this thesis, the dependence on

x is explicitly stated if there is one. Based on these signature vectors, it is possible to

decompose Rn into polyhedra as follows.

Definition 3.8 ((Extended) Signature domain). For a fixed σ ∈ {−1, 0, 1}s, define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} .

The set Pσ is called signature domain and the set Pσ extended signature domain.
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Figure 3.2: Signature domains of the
Hill-function

Note that here and throughout the symbol ⊂ denotes

a subset relation that also allows equality of sets.

For the Hill-function the signature domains are il-

lustrated in the following example.

Example 3.9 (Signature vectors and domains for

Hill-function). Again, consider the Hill-function with

its Abs-Smooth Form (3.7). Figure 3.2 shows the

decomposition of the R2 in the polyhedra, i.e., the

signature domains Pσ, labeled by their corresponding

definite signature vectors σ. The blue lines corre-

spond to polyhedra with indefinite signature vectors,

were one of them is marked by σ = (1,−1, 0) on the

left half of Figure 3.2 to give also an example for the

indefinite ones. Here, those kinks that do not cause

nonsmoothness in the sense that they are arguments of the absolute value are represented

by the dashed lines.
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3.2 Optimality Conditions

The properties of these domains have been discussed in detail in papers such as [44, 45, 49].

One of these characteristics is that the domains Pσ are given as inverse images of the

corresponding σ and represent a disjoint decomposition of Rn into relatively open polyhedra.

This polyhedral structure also motivates the identifier P for these sets. A second one is, that

the boundaries of the polyhedra Pσ are exactly the set where the corresponding abs-smooth

function potentially has its nonsmooth points. In the remainder, this characteristic will

be further clarified by graphical illustrations of examples. Last but not least, it is also

possible to define a partial ordering as follows

σ ≺ σ̃ ⇐⇒ σ2
l ≤ σ̃lσl for 1 ≤ l ≤ s ⇐⇒ Pσ ⊆ P σ̃ .

As stated in [45, 70], the aim of the ASM is to determine a local minimizer of a piecewise

linear objective function ϕ : Rn → R given in Abs-Linear Form (cf. Definition 3.2). Using

this form of the objective function ϕ, one obtains the following equivalent abs-linear

optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. z = c+ Zx+Mz + L|z| .
(ALOP)

At this point, it should be stated that whenever a minimum is mentioned in the remainder

of this work, a local minimum is meant, unless it is explicitly specified otherwise.

3.2 Optimality Conditions

First, necessary and sufficient optimality conditions for (ALOP) are to be derived. These

are not given in the original source [45] in detail, however, were already further developed

in the appendix of [48] as well as in [70], with additional constraints. In addition, in the

context of her PhD thesis Lisa Hegerhorst-Schultchen considers also optimality conditions

for abs-smooth optimization problems under the supervision of Marc Steinbach [54, 55, 56].

There, necessary and sufficient first and second order optimality conditions were established

for unconstrained and constrained abs-smooth nonlinear optimization problems. For this

purpose, optimality conditions were first considered for individual branch problems, and

these results were then combined to show the optimality conditions for the general problem.

Furthermore, it has been shown that the class of abs-smooth nonlinear optimization

problems is equivalent to the class of mathematical programs with equilibrium constraints
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3 The Abs-Linear Optimization Problem: Theory and Solution Method

(MPEC), and additionally, an equivalence of the corresponding regularity conditions can

be shown. These are, on the one hand, the MPEC-LICQ and, on the other hand, the

regularity conditions for abs-smooth problems, the so-called LIKQ, which will also be

introduced in this thesis in Definition 3.12 for the unconstrained case and in Definition 4.6

for the constrained case.

In contrast to the results in the thesis of Lisa Hegerhorst-Schultchen, this thesis will

show necessary and sufficient optimality conditions for the optimization problem (ALOP)

explicitly. On the one hand, their representation also directly implies that they can be

verified in polynomial time. On the other hand, the connection to the optimality criteria

and thus to the termination criteria of the algorithms given later in this thesis can easily

be seen.

Therefore, consider for each fixed σ ∈ {−1, 0, 1}s the optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z (3.8a)

s.t. z = c+ Zx+Mz + LΣz , (3.8b)

0 = (Is − |Σ|)z , (3.8c)

0 ≤ Σz ,

where Is denotes the identity matrix of dimension s. As described in [45], the last two

constraints restrict the feasible set to corresponding polyhedra Pσ. Optimal points of these

are defined as follows:

Definition 3.10 (Signature optimal point). Let an optimization problem of the form

(ALOP) be given. Consider a fixed signature vector σ ∈ {−1, 0, 1}s. A minimizer xσ ∈ Pσ
of the optimization problem (3.8) is called a signature optimal point of the original,

unconstrained optimization problem (ALOP).

Note, that for many or even most σ the polyhedra Pσ do not contain minimizers, in which

case the solutions of (3.8) lie on their relative boundary.

Example 3.11 ((Non) signature optimal points for Hill-function). For the Hill-function

given by Eq. (3.6) consider the three points x̄ = (4,−4)>, x̃ = (4, 2.5)> and x̂ = (0, 0)> as

marked in Figure 3.3. The point x̄ has the signature vector σ(x̄) = (−1, 0,−1)> ≡ σ̄. When

optimizing over P σ̄, x̄ itself is a minimizer and therefore a signature optimal point for the

Hill-function. Note, due to the fact, that the function is piecewise linear, in this case the

signature optimal points are not unique. The point x̃ is not a signature optimal point and
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3.2 Optimality Conditions

has the signature vector σ(x̃) = (1,−1,−1)> ≡ σ̃. When optimizing over P σ̃ one could

obtain the minimizer x̂, which is still not a unique minimizer. This point has the signature

vector σ(x̂) = (0, 0, 0) = σ̂ 6= σ̃. Hence, one has x̂ /∈ Pσ̃, but x̂ is signature optimal on

the polyhedron Pσ̂ that contains only x̂. The polyhedron Pσ̃ contains no signature optimal

points.

To simplify the notation, define

Z̃ := (Is −M − LΣ)−1Z and c̃ := (Is −M − LΣ)−1c . (3.9)

Combining the two Eqs. (3.8b) and (3.8c) and substituting the linear constraint into the

target function (3.8a) yields the optimization problem

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z

s.t. 0 = |Σ|z − c̃− Z̃x , (3.10a)

0 ≤ Σz .
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Figure 3.3: (Non) signature optimal
points for Hill-function

Since this is a linear constrained optimization prob-

lem, by [87, Lemma 12.7] the set of feasible direc-

tions at x coincides with the tangent cone at x.

This ensures the existence of not necessarily unique

Lagrange multipliers without further regularity con-

ditions. As written in [70], the goal is to derive

optimality conditions that can be verified in poly-

nomial time. If this can be shown, it is a significant

advantage over typical theoretical optimality condi-

tions of nonsmooth optimization. Many concepts of

these optimality conditions are based on some kind

of subgradients. At nondifferentiable points these

subgradients are often given by multi-element sets,

the subdifferentials. In the worst case, they can even

contain infinitely many elements. A simple example

is given by the absolute value function. One of the best known subgradient concepts is given

by the Clarke derivative, [18]. An optimality condition here requires 0 to be an element of

the subdifferential. In the case of the absolute value function, however, the subdifferential

at the minimum x = 0 is given by the interval [−1, 1]. However, such quantities are
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3 The Abs-Linear Optimization Problem: Theory and Solution Method

difficult to determine numerically, and thus the optimality condition is difficult to test.

Moreover, this condition does not allow to distinguish between minima and maxima, since

the subdifferential of the negative absolute value function at x = 0 is also given by [−1, 1].

However, this thesis will completely lack such generalized derivation concepts, so at this

point it is referred to the literature for further details, e.g., [18, 58, 92, 93].

Returning to the existence of Lagrange multipliers, a regularity assumption ensuring their

uniqueness was introduced in [44] and is called linear independence kink qualification

(LIKQ). It is a generalization of LICQ (cf. Definition 2.4) from smooth to nonsmooth

optimization. For the piecewise linear case it is defined as:

Definition 3.12 (LIKQ (unconstrained case)). Let an optimization problem of the form

(ALOP) and a signature vector σ ∈ {−1, 0, 1}s be given. Then, the linear independence

kink qualification (LIKQ) holds at a point x ∈ Pσ if the active Jacobian

Jσ = PαZ̃

with α ≡ α(x) has full row rank |α|. This requires in particular that ||σ||1 ≥ s− n so that

Jσ is a short, thick matrix.

For a small example of this definition, consider once more the Hill-function.

Example 3.13 (LIKQ for Hill-function). Using Eq. (3.9) one obtains for the Hill-function

given in its Abs-Linear Form as stated in Example 3.3 at the point x̄ = (4,−4)> the active

Jacobian

J(−1,0,−1)> = Pα(x̄)Z̃ =
[
0 1 0

]0 1

1 1

0 1
2

 =
[
1 1

]
,

which has obviously full row rank |α(x̄)| = 1. Thus, LIKQ is fulfilled in x̄. In particular,

since the first α̃ = 2 rows of Z̃ are linearly independent, it even holds that Pα(x)Z̃ has full

row rank for all x ∈ Rn. Thus, for this example, LIKQ is satisfied at every point.

To increase the possibility for linear independence kink qualification (LIKQ) to ensure

uniqueness of the Lagrange multipliers (see Theorem 3.14), one can assume that zs(x
∗) 6= 0

holds for x∗ as a solution of (ALOP). This can be achieved by a constant shift, since the

Abs-Linear Form is not unique.

Note that due to the slightly different definition of the Active Switching Set α(x) in
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Definition 3.5 compared to [44], the question naturally arises as whether the definition of

LIKQ in this work is the same as the original definition. By the fact that according to

the Definition 3.1 the arguments of the absolute value are still represented by the first s̃

switching variables, and thus also the arising nonsmoothness, exactly these components

are also considered in the Definition 3.12.

Now consider a signature optimal point xσ. In the optimization problem (3.10) all functions

are continuous. Due to this fact and the relation Σz = |z|, the components zi, with i /∈ α,

of the switching vector z determined by Eq. (3.10a) will not drop to zero in an open

neighborhood U(xσ) of xσ. Using the identity Σz = Σ|Σ|z, in the neighborhood U(xσ) the

optimization problem (3.10) is equivalent to

min
x∈U(xσ)

a>x+ b>|Σ|(c̃+ Z̃x)

s.t. 0 = Pα(c̃+ Z̃x) . (3.11a)

This concludes the preliminary considerations to show the necessary and sufficient optimality

conditions similar to [48, 70], which verifies the optimality of a signature optimal point in

polynomial time.

Theorem 3.14 (Necessary and sufficient optimality conditions for (ALOP)). Let an

optimization problem of the form (ALOP) and a signature vector σ ∈ {−1, 0, 1}s be given.

Assume that xσ is signature optimal for (ALOP) and that LIKQ holds at xσ. Then xσ is a

local minimizer of (ALOP) if and only if there exists a unique Lagrange multiplier λ ∈ Rs,
such that

0 = a> + b>|Σ|Z̃ − λ>P>α PαZ̃ , (3.12)

0 = b>|Σ|+ λ>|Σ| (3.13)

and |Pα(b+ λ)| ≤ −PαL̃>λ (3.14)

with L̃ given by L̃ = (Is −M − LΣ)−1L .

Proof. Since xσ is signature optimal for (ALOP) per definition it is a minimizer of (3.8) for

the given signature vector σ. As seen by the conversions above, xσ is thus also a minimizer

of (3.11). Therefore, due to the assumtion of LIKQ once obtains from the KKT-theory (cf.

Theorem 2.5) that there exist a unique Lagrange multiplier λ̌ ∈ R|α| associated with the
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equality constraint (3.11a) such that

0 = a> + b>|Σ|Z̃ + λ̌>PαZ̃ .

Hence, each vector λ ∈ Rs such that λ̌ = −Pαλ fulfills Eq. (3.12).

For local minimality of (ALOP) it is necessary and sufficient that (xσ, z(xσ)) is a minimizer

of (3.8) on all extended signature domains Pσ̃ with definite σ̃ � σ. Any such σ̃ can be

written as σ̃ = σ + γ with γ ∈ {−1, 0, 1}s structurally orthogonal to σ such that for

Γ ≡ diag(γ) the matrix equations

Σ̃ = Σ + Γ and ΣΓ = 0 = |Σ|Γ (3.15)

hold true. Using this decomposition in Eq. (3.8b) for the expression z(x) = zσ̃(x) for

x ∈ P σ̃ yields

zσ̃(x) = zσ+γ(x) = (Is−M−LΣ−LΓ)−1 (c+Zx) =
(
Is−L̃Γ

)−1(
c̃+Z̃x

)
. (3.16)

Now xσ must be the minimizer on P σ̃, i.e., solves the smooth optimization problem

min
x∈Rn,z∈Rs

a>x+ b> (|Σ|+ |Γ|) z

s.t. 0 =
(
Is − L̃Γ

)
z − c̃− Z̃x , (3.17a)

0 ≤ PαΓz . (3.17b)

Notice that the inequalities are imposed only on the sign constraints that are active at xσ

since the strict inequalities are maintained in a neighborhood of xσ due to the continuity of

z(x). Applying once more the KKT-theory to (3.17), there must exist Lagrange multipliers

λ ∈ Rs associated with reformulated switching system (3.17a) and 0 ≤ µ ∈ R|α| associated

with the sign condition (3.17b) such that

0 = a> − λ>Z̃ and (3.18)

0 = b> (|Σ|+ |Γ|) + λ>
(
Is − L̃Γ

)
− µ>PαΓ . (3.19)

Multiplying the last equation from the right by |Σ|Z̃ and using the identity Σ = Σ|Σ| as

well as the matrix equation (3.15) yields

0 = b>|Σ|Z̃ + λ>|Σ|Z̃ . (3.20)
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By exploiting the decomposition of the identity given by

Is = |Σ|+ P>α Pα , (3.21)

due to the definition of Σ and Pα and adding Eq. (3.20) to Eq. (3.18) one obtains

0 = a> + b>|Σ|Z̃ − λ>P>α PαZ̃ .

Hence, it follows that the Lagrange multiplier λ ∈ Rs fulfills Eq. (3.12) with λ̌ = −Pαλ.

Due to the kink qualification LIKQ, one also has that the components Pαλ ∈ R|α| are

determined uniquely. The remaining components of λ ∈ Rs can be obtained by multiplying

Eq. (3.19) this time only with |Σ| from the right and using Eq. (3.15) yielding

0 = b>|Σ|+ λ>|Σ|

and thus also Eq. (3.13).

To obtain the third condition (3.14) the following identities regarding the projection matrix

Pα are needed:

P>α Pα = ΓΓ = |Γ| , PαP
>
α = I|α| and thus ΓΓP>α = P>α . (3.22)

Using this identities and again multiplying Eq. (3.19) from the right this time with ΓP>α
yields

0 = b>ΓP>α + λ>
(

ΓP>α − L̃P>α
)
− µ> . (3.23)

By reformulating this equation and using µ ≥ 0, it follows that

−
(
b> + λ>

)
ΓP>α = −λ>L̃P>α − µ> ≤ −λ>L̃P>α .

Now the key observation is that this condition is linear in Γ and is strongest for the choice

γi = − sgn
(
b> + λ>

)
i

for i ∈ α yielding the inequality

|Pα (b+ λ) | ≤ −PαL̃>λ

and thus Eq. (3.14) which completed the necessary optimality condtions.

Next, consider the sufficient optimality conditions. For this, again consider Eq. (3.19) and

multiply it from the right-hand side by ΓP>α . By using Eq. (3.22), Eq. (3.15) and Eq. (3.14)
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one obtains

µ> = b>ΓP>α + λ>
(
Is − L̃Γ

)
ΓP>α =

(
b> + λ>

)
ΓP>α − λ>L̃P>α ≥ 0 (3.24)

and therefore the feasibility. To show Eq. (3.18) one can use Eq. (3.21), Eq. (3.13) multiplied

from the right-hand side by Z̃ and Eq. (3.12) to obtain

λ>Z̃ = λ>
(
|Σ|+ P>α Pα

)
Z̃ = λ>|Σ|Z̃ + λ>P>α PαZ̃ = −b>|Σ|Z̃ + a> + b>|Σ|Z̃ = a> .

Now only Eq. (3.19) remains to be shown. Therefore, using Eq. (3.21), Eq. (3.19) holds

true if and only if

0 = b> (|Σ|+ |Γ|) + λ>
(
|Σ|+ P>α Pα − L̃Γ

)
− µ>PαΓ

holds true. Using Eq. (3.13) the last equation is equivalent to

0 = b>|Γ|+ λ>
(
P>α Pα − L̃Γ

)
− µ>PαΓ .

Again, multiplying the last equation from the right-hand side by ΓP>α and using Eq. (3.22)

yields

µ> =
(
b> + λ>

)
ΓP>α − λ>L̃P>α .

Now, defining the Lagrange multiplier µ as above, the multiplier satisfies Eq. (3.19). To

see this, insert µ into Eq. (3.19) and use Eq. (3.22), (3.13) and (3.21) to obtain

0 = b> (|Σ|+ |Γ|) + λ>
(
Is − L̃Γ

)
−
(
b> + λ>

)
|Γ|+ λ>L̃Γ

= −λ>|Σ|+ λ>Is − λ>|Γ|

= −λ>|Σ|+ λ>
(
|Σ|+ P>α Pα

)
− λ>|Γ| .

Since P>α Pα = |Γ| holds according to Eq. (3.22), this is a true statement.

The uniqueness of the Lagrange multiplier follows directly from Eqs. (3.12) and (3.13).

Due to the full rank by the assumptions of LIKQ, Eq. (3.12) can be used to uniquely

determine the components λi for all i ∈ α(xσ). By Eq. (3.13), for the remaining i ∈ αC ,

the complement of α, with Σii = ±1 immediately follows λi = −bi.

As mentioned above, a particular achievement of this theorem is that it allows the optimality
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of a given Lagrange multiplier to be tested by simple matrix-vector multiplication in

polynomial time. For this, the two so-called tangential stationarity conditions Eqs. (3.12),

(3.13) and the normal growth condition Eq. (3.14) must hold. These terms have been used

in [44, 45, 47, 48], among others.

3.3 Active Signature Method

After the theoretical preliminary considerations, the algorithm for solving problems of the

form (ALOP), the Active Signature Method (ASM), shall now be derived. This section is

therefore essentially based on [45], continued using the adapted notation of this thesis, and

extended by recent considerations from [70].

The basic idea to solve the problem (ALOP) is to decompose the Rn into polyhedra as

sketched in Subsection 3.1 using the signature vectors σ(x) and to optimize a penalized

version of the objective function on these domains, switching from one polyhedron to the

next one in an appropriate way. To achieve this behavior, information about the structure

of nonsmoothness is exploited for each x ∈ Rn and the corresponding z = z(x). This

strategy can be seen as a generalization of the usual active set quadratic optimization

method to find a stationary point on each polyhedron.

Consider the optimization problem (3.10) where a quadratic penalty term with a positive

definite matrix Q = Q> ∈ Rn×n is added. This penalty term ensures that the objective

function is bounded from below, and thus the existence of a minimum is guaranteed, even

if some or all polyhedra from the polyhedral decomposition of Rn are unbounded. This

leads to the following optimization problem

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx

s.t. 0 = |Σ|z − c̃− Z̃x ,
0 ≤ Σz ,

(3.25)

with Z̃ and c̃ defined as in Eq. (3.9). Due to the fixed signature vector, this is a quadratic

optimization problem with linear constraints. Of course, such problems can be solved with

standard QP solvers, such as KNITRO [15], SCIP [13], Gurobi [52], or IPOPT [104], just

to name a few. However, the developers of ASM wanted to explicitly exploit the structure

of the signature vectors to achieve the best possible performance for the overall algorithm.

Based on the optimization problem (3.25), the ASM has three main components: First,
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the computation of a search direction, second, the step size in this direction, and finally,

the optimality check and, in case of nonoptimality, the use of these conditions to switch

from one polyhedron to the next one and thus to update σ.

3.3.1 Computing a Descent Direction for Given σ

To determine a descent direction, KKT-theory as stated in Theorem 2.2 is applied to the

optimization problem (3.25). With Lagrange multipliers λ ∈ Rn and µ ∈ Rs, this provides

the following necessary optimality conditions:

0 = a> + x>Q− λ>Z̃ , (3.26)

0 = b>|Σ|+ λ>|Σ| − µ>Σ , (3.27)

0 = |Σ|z − c̃− Z̃x ,
0 ≤ Σz , 0 ≤ µ , 0 = µ>Σz . (3.28)

As was done in [45], multiplying Eq. (3.27) from the right by Σ and using Eq. (3.28) yields

0 ≤ µ>|Σ| = b>Σ + λ>Σ . (3.29)

If σ = sgn(z) and hence the underlying x is stationary, Eq. (3.29) reduces because of the

required complementarity µ>|Σ|z = 0 to

0 = b>Σ + λ>Σ .

Hence, if the signature optimal point xσ exists, it must satisfy the system of linear equation Q 0 −Z̃>
0 0 |Σ|
−Z̃ |Σ| 0


xz
λ

 =

 −a−|Σ|b
c̃

 , (3.30)

where the middle row is once more scaled by Σ to make the resulting Jacobian fully

symmetric.

There is a lot of literature on solving saddle point systems, e.g., [113]. Besides, in [45,

Lemma 3.1] a simplified way to solve such a saddle point system for the original problem

representation has already been derived. Therefore, the lemma and the proof will be

adapted in the following.
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Lemma 3.15 (Partitioned solution (unconstrained case)). The solution of the equations

system (3.30) can be reduced to solving the symmetric semidefinite linear system[
|Σ|Z̃Q−1Z̃>|Σ|

]
λ = |Σ|Z̃Q−1

[
a+ Z̃>|Σ|b

]
− |Σ|c̃ (3.31)

for the nontrivial entries of |Σ|λ where |Σ| ≡ Is−|Σ| denotes the complementary orthogonal

projection to |Σ|. The system is uniquely solvable exactly when the rows of the s×n matrix

Z̃ that correspond to active kinks are linearly independent, i.e., LIKQ holds. For λ̃ as a

solution of the reduced system (3.31) the dual and primal variables are then obtained as

λ = |Σ|λ̃− Σb ,

x = Q−1
(
Z̃>λ− a

)
,

z = c̃+ Z̃x .

Proof. If λ is given, the expressions for x can be read off directly from the original

system (3.30) as well as the components of z which belongs to inactive kinks. The

remaining components can simply be set to zero.

So the main task consists in calculating λ. Therefore, using Q to eliminate the block Z̃ on

the bottom left of (3.30) yieldsQ 0 −Z̃>
0 0 |Σ|
0 |Σ| −Z̃Q−1Z̃>


xz
λ

 =

 −a−|Σ|b
˜̃c

 ,

with ˜̃c = c̃ − Z̃Q−1a. Thus, the second row as a projection on |Σ| gives |Σ|λ = −|Σ|b,
which makes it easy to calculate the components belonging to the inactive kinks. To find

the remaining components, consider the projection of the third line through |Σ|

|Σ|
[
|Σ|z − Z̃Q−1Z̃>

(
|Σ|+ |Σ|

)
λ
]

= |Σ|˜̃c .

Skipping the sign to the right-hand side and using |Σ| · |Σ| = (Is − |Σ|)|Σ| = 0 as well as

|Σ|λ = −|Σ|b yields [
|Σ|Z̃Q−1Z̃>

] (
−|Σ|b+ |Σ|λ

)
= −|Σ|˜̃c .

Finally, after moving the expression in |Σ|b to the right-hand side, resubstituting ˜̃c from
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above yields [
|Σ|Z̃Q−1Z̃>|Σ|

]
λ = −|Σ|

[
c̃− Z̃Q−1a

]
+ |Σ|Z̃Q−1Z̃>|Σ|b

= |Σ|Z̃Q−1
[
a+ Z̃>|Σ|b

]
− |Σ|c̃ ,

which completes the proof.

Numerically, the solutions obtained by Lemma 3.15 must yield |Σ|z = 0 up to rounding.

After checking this, the nonbasic components of z can be set exactly to zero, while λ is

generally dense without any sign constraints.

Now in the following (x̂, ẑ, λ) denotes the solution of the saddle point system (3.30). This

system is in principle similar to a classical Newton step. Thus, the search direction from a

current point (x, z) in direction (x̂, ẑ) results naturally in

∆x = x̂− x and ∆z = ẑ − z .

3.3.2 Computing a Step Size β

After calculating a search direction, the next question is how far to go in that direction.

On the one hand, there are several optimization algorithms that explicitly compute a step

size, but on the other hand, there are also methods that use a step size heuristic, since it

is not always easy to compute. For this, reference is made to standard literature such as

[8, 37, 61].

kink

(1− βz)x+ βzx̂

x

x̂

Figure 3.4: Illustration of the step sizes βz

Since the functions in the context of this sec-

tion are (piecewise) linear, it is quite easy to

determine a step size for the ASM as described

in [45]. If (x̂, ẑ) are given as parts of the solu-

tion of Eq. (3.30), then it is necessary to check

whether σ(x̂) = σ(x) still holds and thus x̂ still

lies in the same polyhedron as x or whether

it is left. In the first case, a full step can be

made along the direction ∆x. In the latter

case, however, there is a blocking constraint

generated by the polyhedron, i.e., a blocking

kink. A graphical illustration of this is shown

in Figure 3.4, where the blue line represents a kink and the yellow arrow indicates the step
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size. Leaving a polyhedron results in a sign change in at least one of the components of z.

The step size, denoted by βz, can then be calculated by

βz = inf
1≤l≤s

{
βzl ≡

−zl
ẑl − zl

∣∣∣∣ (ẑl − zl)σl < 0

}
∈]0,∞] . (3.32)

Compared to [45], the factor zl is replaced by σl in the sign test. Since only the sign is

important, the formulation in Eq. (3.32) is equivalent to the original formulation, but

numerically more stable. Note that only the first s̃ components represent the nonsmoothness

and thus the kinks that impose nonsmoothness. Therefore, it is possible to stop at points

where the function is smooth, but these points lie on a boundary of a polyhedron. If

βz <∞ the first index for which the minimum is attained is denoted by jz. If βz ≤ 1, the

step size is calculated to reach exactly a kink. In this case the corresponding index jz is

used to update the vector σ. The new sigma is set as σ+ = σ − σjzejz with the jzth unit

vector ejz which means setting σjz = 0. Thus, the vector σ is restricted.

Note that due to the fact that for a given signature vector σ and a point x ∈ Pσ one has

that for σi 6= 0 also zi(x) 6= 0 holds. Thus, for σ with σi 6= 0 one has zi(x) 6= 0 and βz > 0

must hold.

In order to bound the step size, the current step size β is set to

β = min{βz, 1} , (3.33)

where the upper bound 1 on β ensures with the update of the current iterate

x+ = (1− β)x+ βx̂ = x+ β∆x

that the next iterate is still contained in Pσ. In the case of a full step, i.e. β = 1, obviously

x+ = x̂ and σ(x+) = σ holds. Since in this case the vector remains unchanged, the point

x+ is then also called signature stationary.

One could avoid stopping at points that lie on kinks that do not represent nonsmoothness

by simply looking at the first s̃ indices in the infimum (3.32) and also checking whether

such a kink is crossed. If this is the case, one must additionally change the corresponding

entries of σ.
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3.3.3 Checking the Optimality

If a signature optimal point is found on the current polyhedron Pσ, it is necessary to check

if it is already a minimizer of the original problem (ALOP) with the added regularization

term. If such a minimizer is detected, the algorithm can terminate. Otherwise, the

optimization must be continued on a neighboring polyhedron Pσ̃ with definite σ̃ � σ. As

in the proof of the Theorem 3.14, such a σ̃ can be decomposed into σ + γ with |σ|>|γ| = 0.

Then replacing Σ in the optimality conditions (3.26)-(3.28) by the corresponding Σ + Γ

and using Eq. (3.16) yields that the primal feasibility condition and the dual equality

constraint are still satisfied by the solution (x̂, ẑ, λ). The only difference is that Eq. (3.29)

has as many new nontrivial components as γ, which can be written as

0 ≤ µ>|Γ| = b>Γ + λ>Γ− λ>L̃|Γ|

similar to Eq. (3.24). This optimality condition is violated if and only if there is at least

one index k such that γ = − sgn (bk + λk) ek satisfies

0 > −
∣∣∣b> + λ>

∣∣∣ ek − λ>L̃ek and σk = 0 . (3.34)

Eq. (3.34) represents a violation of the normal growth condition, as can be seen from

Theorem 3.14. Thus, if the optimality condition is violated, i.e., Eq. (3.34) holds true for

at least one k, one possible strategy is to choose the index k for which the right-hand side

of Eq. (3.34) is minimal. This is a heuristic known, e.g., from Active Set Methods [87].

Then, by updating σk = − sgn (bk + λk), the next signature vector, denoted by σ+, has

one component less that equals zeros. This can be interpreted as releasing a kink in that

one does not insist anymore that the corresponding absolute value is evaluated at zero.

Thus, the vector σ is relaxed.

3.3.4 The Overall Algorithm

A pseudocode for the ASM is given in Algorithm 3 and a schematic representation in

Figure 3.5.

The Active Signature Method (ASM) given in Algorithm 3 combines all the previous

steps in a suitable way. Therefore, given an optimization problem of the form (ALOP),

a positive definite matrix Q = Q> ∈ Rn×n and a starting point x ∈ Rn, the associated

switching and signature vectors are determined and then the saddle point system (3.30)

is solved (cf. line 2 of Algorithm 3). Afterwards, in line 3 the step size β is computed
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Algorithm 3 Active Signature Method (ASM)

Given: Optimization problem of the form (ALOP), Q = Q> ∈ Rn×n positive definite
and starting point x ∈ Rn
Compute: z := z(x) via Eq. (3.5), σ := σ(z(x))

1: loop
2: Compute (x̂, ẑ, λ) by solving Eq. (3.30) . Solve saddle point system
3: Compute βz via Eq. (3.32) and β via Eq. (3.33) . Compute step size
4: Set (x+, z+) = (1− β)(x, z) + β(x̂, ẑ) . Update iterate
5: if βz = β then Restrict σ . Add kink

6: if β = 1 then . x+ is signature stationary
7: if Eq. (3.34) holds true then . x+ is signature optimal
8: Relax σ, set β = 0 . Drop kink
9: else . x+ is local optimal

10: return (x+, z+) . Problem solved

11: Set (x, z) = (x+, z+)

as in Eq. (3.33). If now βz = β holds, i.e., βz ≤ 1 and thus a kink is reached, this kink

is added by restricting σ (cf. line 5). If β = 1, then optimality is checked. Note that by

construction, at least one of the two if conditions must be true in each iteration. If the

current point is not optimal, Eq. (3.34) is used to modify, i.e., relax, a component of σ.

Otherwise the algorithm terminates and has found a local minimum (cf. line 7–10). In

case of nonoptimality the algorithm continues with the next iterate (cf. line 11).

For numerical results the reader should refer to the corresponding paper [45], where also

other aspects, such as more efficient implementation of the update of the saddle point

system are discussed.

3.3.5 Convergence Analysis of the Active Signature Method

The goal now is to show the convergence of ASM. The paper [45], in which this method

was proposed, only briefly mentions that the algorithm terminates after a finite number

of steps. The formal proof of this will now be given. First, an auxiliary result is needed

which shows a descent of the objective function in certain cases. This lemma has already

been formulated and proven in [48, Corollary A1]. However, the proof in this thesis is used

to fill in missing details and to extend it to the regularized problem. Therefore, consider
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Figure 3.5: Scheme of Active Signature Method (ASM)

the following problem

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx

s.t. 0 = |Σ|z − c̃− Z̃x ,

which is exactly the one related to the saddle point system (3.30), and is identical to (3.25)

if one omits the sign condition on the switching equation described by the last inequality

condition of (3.25). Substituting the equality constraint into the target function and the

identity |Σ|z = z on the corresponding polyhedron Pσ (cf. Eq. (3.8c)), the following

function is obtained

f(x) := a>x+ b>|Σ|
(
c̃+ Z̃x

)
+

1

2
x>Qx . (3.35)

To show the descent of this objective function, the next auxiliary result will be required.
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Lemma 3.16. Assume that x ∈ Pσ and σ is the signature vector for a given switching

equation

zσ(x) = c̃+ Z̃x ,

with c̃ and Z̃ defined as in Eq. (3.9). Further assume that γ ∈ {−1, 0, 1}s is structurally

orthogonal to σ, i.e., σ>γ = 0 and ||γ||1 = 1. Then for σ̃ := σ + γ it holds

zσ̃(x) = zσ+γ(x) =
(
Is − L̃Γ

)−1 (
c̃+ Z̃x

)
= c̃+ Z̃x . (3.36)

Proof. The first two equalities directly followed from Eq. (3.16). Now let i denote the

component where γi 6= 0. Since γ is orthogonal to σ it must hold that σi = 0. In the first

brackets in Eq. (3.36) the matrix Γ = diag(γ) acts as a projection onto the ith column of

L̃. Since L̃ is strictly lower triangular,
(
Is − L̃Γ

)
is also lower triangular with ones on the

diagonal and other entries only in the ith column below of the diagonal element. Therefore,

it holds that
(
Is − L̃Γ

)−1
=
(
Is + L̃Γ

)
. Thus, using z = |Σ|z = c̃+ Z̃x and ΓΣ = 0 yields

(
Is − L̃Γ

)−1 (
c̃+ Z̃

)
=
(
Is + L̃Γ

)
|Σ|z = c̃+ Z̃x .

Now it is possible to show results regarding the descent direction in the nonoptimal case,

as given in [48, Corollary A1]

Lemma 3.17 (Descent direction in the nonoptimal case for ASM). Let x ∈ Rn and the

optimization problem (3.25) be given and suppose that LIKQ holds in x. If tangential

stationarity is violated, i.e.,

0 6= a> + b>|Σ|Z̃ + x>Q− λ>P>α PαZ̃ ,

there exists some direction d ∈ Rn such that PαZ̃d = 0 but(
a> + b>|Σ|Z̃ + x>Q

)
d < 0 , (3.37)

and the target function defined in (3.35) is decreasing in direction τd, i.e., f(x+ τd) < f(x)

for τ & 0. If tangential stationarity holds but normal growth fails there exists at least one
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i ∈ α with |bi + λi| > −λ>L̃ei. Defining γ = − sgn(bi + λi)ei ∈ Rs, any d satisfying(
Is − L̃Γ

)−1
Z̃d = γ (3.38)

is a descent direction.

Proof. In the first case, since tangential stationarity is violated, the point x is not a

minimizer on the current polyhedron Pσ(x). Therefore, let xσ be a minimizer on Pσ(x)

and denote by d := xσ − x a corresponding direction. Since both points, x and xσ lie on

the same extended signature domain, they have the same index set of active switching

variables α and thus PαZ̃d = 0 holds. Furthermore, since f is convex due to the positive

definite matrix Q, the vector d is a descent direction in that f is decreasing in direction τd

for τ ∈ ]0, 1].

Moreover, x + τd ∈ Pσ holds true for τ & 0, since by PαZ̃d = 0 the components of

z(x+ τd) with indices in α stay zero and the others vary only slightly. Then, computing

the directional derivative of f at x in direction d and using the symmetry of Q yields

f ′(x; d) = lim
t↘0

1

t

(
a>(x+ td) + b>|Σ|

(
c̃+ Z̃(x+ td)

)
+

1

2
(x+ td)>Q(x+ td)

−
(
a>x+ b>|Σ|

(
c̃+ Z̃x

)
+

1

2
x>Qx

))
= lim

t↘0

1

t

(
ta>d+ tb>|Σ|Z̃d+ tx>Qd+

1

2
t2d>Qd

)
=
(
a> + b>|Σ|Z̃ + x>Q

)
d . (3.39)

Using Lemma 2.8, d being a descent direction of f in x is equivalent to f ′(x; d) < 0. This

together with Eq. (3.39) proves Eq. (3.37).

Otherwise, λ is well defined and one can choose i ∈ α with |bi + λi| > −λ>L̃ei. Setting

γ = γiei with γi = − sgn(bi + λi), one obtains for d with
(
Is − L̃Γ

)−1
Z̃d = γ that

x+ τd ∈ Pσ+γ . To see this, consider Eq. (3.16) and Lemma 3.16

zσ+γ(x+ τd) =
(
Is − L̃Γ

)−1 (
c̃+ Z̃ (x+ τd)

)
=
(
Is − L̃Γ

)−1 (
c̃+ Z̃x

)
+ τ

(
Is − L̃Γ

)−1
Z̃d

= zσ(x) + τγ .

Thus, since σi = 0 it holds that sgn(zσ+γ(x+ τd)) = sgn(zσ(x)) + sgn(τγ) = σ+ γ yielding
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x+ τd ∈ Pσ+γ . On that polyhedron the Lagrange multiplier vector µ is also well defined

by Eq. (3.23). It can be re-sorted to

µ> =
(
b> + λ>

)
ΓP>α − λ>L̃P>α ,

and in this case by assumption for the ith component it follows

µi = (bi + λi)γi − λ>L̃ei = −|bi + λi| − λ>L̃ei < 0 .

Now consider the directional derivative of the objective on Pσ+γ at x in direction τd:

f ′(x; τd)

= lim
t↘0

1

t

(
a>(x+tτd) + b>(|Σ|+|Γ|)

(
Is−L̃Γ

)−1 (
c̃+Z̃ (x+tτd)

)
+

1

2
(x+tτd)>Q(x+tτd)− a>x− b> (|Σ|+|Γ|)

(
Is−L̃Γ

)−1 (
c̃+Z̃x

)
− 1

2
x>Qx

)
= lim

t↘0

1

t

(
tτa>d+ tτb> (|Σ|+ |Γ|)

(
Is − L̃Γ

)−1
Z̃d+ tτx>Qd+

1

2
t2τ2d>Qd

)
= τa>d+ τx>Qd+ τb> (|Σ|+ |Γ|)

(
Is − L̃Γ

)−1
Z̃d .

Finally, substituting Eqs. (3.26) (which does not depend on the σ + γ decomposition

but includes the regularization term), (3.19) and (3.38) as well as using µi < 0 the last

expression then yields

f ′(x; τd) = τ

(
λ>Z̃d− λ>Z̃d+ µ>PαΓ

(
Is − L̃Γ

)−1
Z̃d

)
= τµiγ

2
i < 0 .

Therefore, there is again a descent, which completes the proof.

Note that in the case of Q = 0 Lemma 3.17 simplifies exactly to the purely (piecewise)

linear case considered in the appendix of [48]. Using this lemma, it is now possible to show

the finite convergence of Algorithm 3, which reduces the result of [70, Theorem 4.2] to the

unconstrained case.

Theorem 3.18. Suppose that an optimization problem of the form (ALOP) is given, LIKQ

holds at every point x ∈ Rn and let Q = Q> ∈ Rn×n be a positive definite matrix. Then,

Algorithm 3 terminates for any starting point x ∈ Rn after finitely many iterations at a
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minimizer of the quadratically penalized optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z +
1

2
x>Qx

s.t. z = c+ Zx+Mz + L|z| .
(3.40)

Proof. Algorithm 3 starts by solving the system of equations (3.30). If the solution returns

the same point x̂ as the current point x, then x is a signature optimal point, the step size

is β = 1, and the algorithm tests for optimality. If this test is successful, the algorithm

terminates. If it is not successful, then, as seen in the proof of Lemma 3.17, there exists

at least one index i ∈ α such that µi < 0. Furthermore, it follows from Lemma 3.17

and the fact that β > 0, that after adjusting the signature vector, there exists a new

descent direction. Lemma 4.11 shows that solving the system of equations (3.30) also

yields a descent direction. Since the algorithm always finds a signature optimal point

before changing the polyhedron and thus obtains the best possible function value on this

polyhedron, the algorithm cannot reach the same polyhedron again because of the descent

after leaving a kink. In addition, there are only finitely many closed polyhedra, at most 2s.

Now consider the situation where there is no signature optimum point yet. Then the

solutions of the saddle point system (3.30) provide a search direction. The calculated step

size will then either return β = 1, where the optimum is reached on the current polyhedron

and the next iteration returns a zero step, or (maybe also and) a kink is added. The latter

can be repeated at most s times - due to LIKQ - until all linearly independent kinks have

been added. Again, the next iteration will return a zero step.

So the key arguments are that nonzero steps always yield a descent, an optimum is found

on a polyhedron after finitely many iterations, and there are only finitely many polyhedra.

Hence, this leads to convergence after finitely many iterations.

To see that the ASM also provides a solution to the original unregularized problem (ALOP),

it is referred to Theorem 4.13 in the following chapter.

Furthermore, it is important to mention again that the optimization problem (3.40) always

has a global minimum due to the quadratic regularization, but the algorithm only guarantees

to find a local minimum.
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3.4 Optimization Methods Based on Abs-Linearization

Since the main focus in the previous parts of this thesis was on the ASM, which is a

substantial foundation for the further results in this thesis, this section shall be used to

give a short overview of other methods based on the Abs-Linear Form respectively the

abs-linearization.

One approach that has been developed in recent years, is the so-called Successive Abs-Linear

MINimization (SALMIN). It was mainly developed by Sabrina Fiege during her PhD thesis

[28] together with her supervisors Andrea Walther and Andreas Griewank [29, 30, 49].

SALMIN is designed to optimize respectively minimize continuous nonsmooth objective

functions without constraints. For this purpose it is assumed that the nonsmoothness

is only caused by the evaluation of the absolute value. In simple terms, the method

consists of generating an abs-linear model for each current iterate and then optimizing this

abs-linearization. This approach is motivated by smooth optimization, where quadratic

models of the objective function that provide a good approximation are generated and then

successively minimized on them. To generate the abs-linear model, as already mentioned,

several AD tools can be used. As a solver for the abs-linear model, another method was

originally developed, see [28], which was then replaced by ASM due to its higher efficiency.

Therefore, to keep it brief and denoting the vector of optimization variables by x the

optimization approach of SALMIN can be described by the updating step

x+ = x+ arg min
∆x

{
∆F (x; ∆x) +

ρ

2
||∆x||2

}
, (3.41)

in each iteration. Here, ρ denotes a penalty parameter, for which also adaptation strategies

exists, and ∆x the search direction as described in the path before Theorem 3.4.

In the article [69], to which the author of this work also contributed, the SALMIN

approach was used to solve differential algebraic equations (DAEs) in combination with a

least-squares collocation. This problem was motivated by gas networks with regulating

elements, whose mathematical modeling results in DAEs. In contrast to classical approaches,

more collocation points were chosen than there are degrees of freedom for the collocation

polynomials. The resulting system of equations is nonsmooth due to the regulating elements

in the gas networks. Therefore, using a least squares formulation, the SALMIN approach

can be used to solve this system.

The idea of transferring SALMIN from finite-dimensional to infinite-dimensional optimiza-

tion was also developed by Olga Weiß [109] under the supervision of Andrea Walther.
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Since this would lead too far away from the subject and the necessary notation without

having a direct relation to the content of this thesis, the interested reader is referred to the

corresponding work [107, 109, 110, 111, 112].

Another algorithm based on the ASM combined with the so-called Frank-Wolfe (or condi-

tional gradient) algorithm [36, 75] is currently under development. Its goal is to optimize

an abs-smooth function over a compact and convex set [68]. Since the author of this thesis

is also involved in the development and the approach can be seen as an extension of the

results of this thesis, the reader is referred to the outlook, Section 6.2, and, of course, to

[68] for more details. Furthermore, there are also works on the Frank-Wolfe algorithms in

the infinite-dimensional setting with nonsmoothness, e.g., [73, 89].
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4
The Constrained Abs-Linear Optimization

Problem: Theory and Solution Method

In the previous chapter, especially in Section 3.3, the focus was mainly on unconstrained

optimization problems. In this chapter, however, the results and algorithms of Chapters 2

and 3 will be combined and extended to develop an algorithm which can solve constrained

piecewise linear optimization problems, i.e., with piecewise linear constraints as well. In

addition to academic test problems, there are of course real-world application problems

where such optimization problems arise. As a motivation, gas networks are mentioned and

for further details as well as numerical results, reference is made to the next Chapter 5.

Several aspects presented in the following, notably the solution approach, the Constrained

Active Signature Method (CASM), have already been published in [70] and are further

extended here.

As in the unconstrained case, assume that the objective function, but now also the

constraints are given in Abs-Linear Form (see Definition 3.2). Since it can happen that

some components of the switching vectors belong to more than one of the occurring functions,

assume that the switching vectors of all functions are combined into one switching system

z = c+ Zx+Mz + L|z| ,

as introduced already in Eq. (3.3). Thus, the following constrained abs-linear optimization

problem (CALOP) is the starting point for further investigations:

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. 0 = g +Ax+Bz + C|z| ,
0 ≥ h+Dx+ Ez + F |z| ,
z = c+ Zx+Mz + L|z| ,

(CALOP)
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where g ∈ Rm, h ∈ Rp, A ∈ Rm×n, B,C ∈ Rm×s, D ∈ Rp×n and E,F ∈ Rp×s. Therefore,

(CALOP) is a single objective optimization problem with m equality, p inequality constraints

and s switching variables. Since, the constraints should be allowed to be as general as

possible, there are no further restrictions made on the matrices C and F . For later use,

define

f : Rn × Rs → R, (x, z) 7→ a>x+ b>z ,

G : Rn × Rs × Rs → Rm, (x, z, |z|) 7→ g +Ax+Bz + C|z| , (4.1)

and H : Rn × Rs × Rs → Rp, (x, z, |z|) 7→ h+Dx+ Ez + F |z| . (4.2)

By adding the constraints, the concept of signature domains (cf. Definition 3.8) can be

extended, or more precisely, the respective sets can be constrained.

Definition 4.1 (Feasible (extended) signature domain). For a fixed signature vector

σ ∈ {−1, 0, 1}s, define

Fσ≡

x ∈ Rn
∣∣∣∣∣∣∣
G(x, z(x),Σz(x)) = 0,

H(x, z(x),Σz(x)) ≤ 0,

sgn(z(x)) = σ,

⊆ Fσ≡
x ∈ Rn

∣∣∣∣∣∣∣
G(x, z(x), |z(x)|) = 0,

H(x, z(x), |z(x)|) ≤ 0,

Σz(x) = |z(x)|

 .

The set Fσ is called feasible signature domain and Fσ the feasible extended signature

domain.

Note that Definition 4.1 does not depend on the explicit representation of the constraints

as in Eq. (4.1) and Eq. (4.2), but can applied in general to arbitrary equality and inequality

constraint functions G and H. Obviously, for the feasible (extended) signature domains,

the subset relations Fσ ⊆ Pσ and Fσ ⊆ Pσ hold, and with appropriate constraints, Fσ
can also be empty. To illustrate this extended definition, consider again the Hill-function

from the previous chapter.

Example 4.2 (Feasible signature domains for Hill-function). In the previous examples,

the Hill-function was always considered as an unconstrained function, see Example 3.3.

Now add the following constraint

|z3| =
∣∣∣∣−1

2
|z1|+

1

2

∣∣x1 − |x2|
∣∣∣∣∣∣ ≤ 2 , (4.3)
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which in the sense of Eq. (4.2) can be formulated as

H(x, z, |z|) = −2 +
[
0 0

] [x1
x2

]
+
[
0 0 0

]


z1

z2

z3


+

[
0 0 1

]


|z1|
|z2|
|z3|


 ≤ 0 .

Now, |z3| contributes explicitly to the evaluation of the abs-linear constraint. Thus, in

comparison to the unconstrained case, further kinks that introduce nonsmoothness via the

constraints are added. Figure 4.1 shows the polyhedra P labeled by the corresponding definite

signature vectors σ. All points that lie inside or on the edges of the red area are feasible.
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Figure 4.1: Feasible signature do-
mains for constrained Hill-function

Similar to the switching vectors, signature vectors

can be defined for the inequality constraints. From

the point of view of the Active Set Method (see

Section 2.2), this is a way of representing the active

set W.

Definition 4.3 (Signature vector and signature ma-

trix of inequality constraints). Let x ∈ Rn be given

such that it fulfills the equality and inequality con-

straints of (CALOP). Then the signature vector of

the inequality constraints is defined as

ω(x) ≡ sgn(H(x, z, |z|)) ∈ {−1, 0}p .

The ith inequality constraint is called active if

ωi(x) = 0 and inactive otherwise. The signature ma-

trix of the inequality constraints is denoted by Ω(x) = diag(ω(x)). Furthermore, I ≡ I(x)
collects the indices of the active inequality constraints at x. The projection onto the active

components of H(x) is defined as PI ≡ (e�i )i∈I ∈ R|I|×p with ei denoting the ith unit

vector of appropriate size.

After this short preparation, the rest of this chapter is structured very similar to the previous

one, except that the constraints are now considered everywhere. First, in Section 4.1 the

optimality conditions are shown, which can still be verified in polynomial time as already

in the unconstrained case. Then, in Section 4.2, CASM is presented. For this purpose, the

section is divided into the components of computing a descent direction (see Subsection 4.2.1)

and a step size (see Subsection 4.2.2), testing the optimality (see Subsection 4.2.3), the
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algorithm itself as pseudocode (see Subsection 4.2.4) and finally the convergence analysis

in Subsection 4.2.5. As already mentioned, many of the following sections are taken from

[70], the paper related to CASM. This chapter then concludes in Section 4.3 with a brief

discussion of the possible use of penalty approaches and Phase I Methods in the context of

piecewise linear optimization problems.

4.1 Optimality Conditions

As in the unconstrained case, necessary and sufficient optimality conditions for (CALOP)

are shown first. Therefore, consider for each fixed σ ∈ {−1, 0, 1} the optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. 0 = g +Ax+Bz + CΣz ,

0 ≥ h+Dx+ Fz +GΣz ,

z = c+ Zx+Mz + LΣz , (4.4a)

0 = (Is − |Σ|)z , (4.4b)

0 ≤ Σz ,

where again Is denotes the identity matrix of dimension s. Therefore, as an extension of

Definition 3.10, feasible optimal points are defined as follows:

Definition 4.4 (Feasible signature optimal point). Let an optimization problem of the

form (CALOP) be given. Consider a fixed signature vector σ ∈ {−1, 0, 1}s. A minimizer

xσ ∈ Fσ of the optimization problem (4.4) is called feasible signature optimal point of the

original, constrained optimization problem (CALOP).

Note that compared to the signature optimal points for (ALOP), for the feasible signature

optimal points only the feasibility is added as a new property.

In the same way as in the unconstrained case, it is possible to combine the two constraints

Eqs. (4.4a) and (4.4b) and using the notation from Eq. (3.9) to reformulate problem (4.4)
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into the equivalent problem

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z

s.t. 0 = g +Ax+Bz + CΣz ,

0 ≥ h+Dx+ Fz +GΣz ,

0 = |Σ|z − c̃− Z̃x ,
0 ≤ Σz .

(4.5)

Arguing as in Section 3.2, since this optimization problem has only linear constraints by

fixing the signature Σ, the set of feasible directions at x coincides with the tangent cone at x,

see [87, Lemma 12.7] and therefore no further constraint qualifications are needed to ensure

the existence of Lagrange multipliers. However, this does not guarantee their uniqueness.

But since the goal for the constrained case is also to derive optimality conditions that can

be verified in polynomial time, it is necessary to ensure their uniqueness. Otherwise, any

dependence on the signature vectors would lead to combinatorial complexity in 2s. As

regularity conditions, the LIKQ for unconstrained problems was given in Definition 3.12.

In the context of her PhD thesis, Lisa Hegerhorst-Schultchen extended this concept for

constrained optimization problems under the supervision of Marc Steinbach [54, 55, 56].

In the present work, a version is defined that is specially adapted to the notation used in

the thesis and that exploits the piecewise linearity.

To derive these optimality conditions, the optimization problem (4.5) is analyzed for a

feasible signature optimal point xσ in more detail. Due to the continuity of all involved

functions and the relation Σz = |z|, the components zi, with i /∈ α, of the vector z

determined by the penultimate constraint of (4.5) will not drop to zero in an open

neighborhood U(xσ) of xσ. As a consequence, in combination with the identity Σz = Σ|Σ|z,

in this neighborhood U(xσ) the optimization problem (4.5) is equivalent to

min
x∈U(xσ)

a>x+ b>|Σ|(c̃+ Z̃x)

s.t. 0 = g +Ax+B|Σ|(c̃+ Z̃x) + CΣ(c̃+ Z̃x) , (4.6a)

0 ≥ h+Dx+ E|Σ|(c̃+ Z̃x) + FΣ(c̃+ Z̃x) , (4.6b)

0 = Pα(c̃+ Z̃x) . (4.6c)

Definition 4.5 (Active Jacobian). Consider for the constrained optimization problem

(CALOP) and a given signature vector σ ∈ {−1, 0, 1}s a feasible point xσ. The active
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Jacobian of the equivalent problem (4.6) is given by

Jσ ≡

 A+B|Σ|Z̃ + CΣZ̃

PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

 ∈ R(m+|I|+|α|)×n .

Now, the required kink qualification can be stated for the setting considered in this thesis.

Definition 4.6 (LIKQ (constrained case)). Let a constrained optimization problem of

the form (CALOP) and a signature vector σ ∈ {−1, 0, 1}s be given. Then the linear

independence kink qualification (LIKQ) holds at a feasible point x ∈ Fσ if the active

Jacobian Jσ has full row rank m+ |I|+ |α|.

Example 4.7 (LIKQ for constrained Hill-function). Using Eq. (3.9) one obtains for the

constrained Hill-function given in its Abs-Linear Form as stated in Example 3.3 with the

constraint (4.3) at the point x̄ = (4,−4)> the active Jacobian

J(−1,0,1)> =

[
PI(x̄)

(
D + E|Σ|Z̃ + FΣZ̃

)
Pα(x̄)Z̃

]
=

[
0 −1

2

1 1

]
,

which has obviously full row rank |I(x̄)|+ |α(x̄)| = 2. Thus, LIKQ is fulfilled in x̄. Contrary

to Example 3.13, LIKQ is no longer satisfied at every point, because, e.g., for the origin

all three switching variables are active, so the three lines of Pα(0)Z̃ are no longer linearly

independent.

To shorten the notation for the further course, define for the equality and inequality parts

of the active Jacobian the following designators

Jσ,G := A+B|Σ|Z̃ + CΣZ̃ and Jσ,H := D + E|Σ|Z̃ + FΣZ̃ . (4.7)

In order to consider only the terms which belong to the switching variable z, another z is

added in the subscript. This results in the following short notations

Jσ,G,z := B|Σ|+ CΣ and Jσ,H,z := E|Σ|+ FΣ (4.8)

and obviously the identities

Jσ,G = A+ Jσ,G,zZ̃ and Jσ,H = D + Jσ,H,zZ̃ . (4.9)
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Thus, all preliminary considerations from the unconstrained case are extended and there-

fore it is also possible to show the necessary and sufficient optimality conditions from

Theorem 3.14 for the constrained optimization problem (CALOP). These were also already

published in [70] and are included here accordingly.

Theorem 4.8 (Necessary and sufficient optimality condition for (CALOP)). Let a con-

strained optimization problem of the form (CALOP) and a signature vector σ ∈ {−1, 0, 1}s
be given. Assume that xσ is feasible signature optimal for (CALOP) and that the LIKQ

holds at xσ. Then xσ is a local minimizer of (CALOP) if and only if there exist unique

Lagrange multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp and λ ∈ Rs, such that

0 = a> + b>|Σ|Z̃ + δ>Jσ,G + ν>Jσ,H − λ>P>α PαZ̃ , (4.10)

0 = b>|Σ|+ δ>Jσ,G,z + ν>Jσ,H,z + λ>|Σ| (4.11)

and

|Pα(b+B>δ + E>ν + λ)| ≤ Pα
(
C>δ + F>ν − L̃>λ

)
(4.12)

with L̃ given by L̃ = (Is −M − LΣ)−1L .

Proof. Since xσ is feasible signature optimal for (CALOP) per definition it is also a

minimizer of (4.4) for the given signature vector σ. As seen by the conversions above, xσ

is thus also a minimizer of (4.6). Therefore, due to the assumption LIKQ one obtains

from the KKT-theory (cf. Theorem 2.5) that there exist unique Lagrange multiplier

δ ∈ Rm, 0 ≤ ν ∈ Rp and λ̌ ∈ R|α| associated with the equality constraint (4.6a), the

inequality constraint (4.6b) and the equality constraint given by the reformulated switching

system (4.6c) such that

0 = a> + b>|Σ|Z̃ + δ>Jσ,G + ν>Jσ,H + λ̌>PαZ̃ .

Hence together with δ ∈ Rm and 0 ≤ ν ∈ Rp, each vector λ ∈ Rs such that λ̌ = −Pαλ
fulfills Eq. (4.10).

For local minimality of (CALOP) it is necessary and sufficient that (xσ, z(xσ)) is a minimizer

of (4.4) on all feasible extended signature domains F σ̃ with definite σ̃ � σ. Any such σ̃ � σ
can be written as σ̃ = σ + γ with γ ∈ {−1, 0, 1}s structurally orthogonal to σ such that for

Γ = diag(γ) the matrix equations Eq. (3.15) still holds. Therefore, it is still possible to

express z(x) = zσ̃(x) for x ∈ Pσ as stated in Eq. (3.16).
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Now xσ must be the minimizer on P σ̃, i.e., solves the smooth constrained optimization

problem

min
x∈Rn,z∈Rs

a>x+ b> (|Σ|+ |Γ|) z

s.t. 0 = g +Ax+B (|Σ|+ |Γ|) z + C (Σ + Γ) z , (4.13a)

0 ≥ h+Dx+ E (|Σ|+ |Γ|) z + C (Σ + Γ) z , (4.13b)

0 =
(
Is − L̃Γ

)
z − c̃− Z̃x , (4.13c)

0 ≤ PαΓz . (4.13d)

Again, notice that the inequalities are only imposed on the sign constraints that are active

at xσ since the strict inequalities are maintained in a neighborhood of xσ due to the

continuity of z(x). Applying once more the KKT-theory to problem (4.13), there must

exist Lagrange multipliers δ ∈ Rm, 0 ≤ ν ∈ Rp, λ ∈ Rs and 0 ≤ µ ∈ R|α| associated

with the equality constraint (4.13a), the inequality constraint (4.13b), the reformulated

switching system (4.13c) and the sign condition (4.13d) such that

0 = a> + δ>A+ ν>D − λ>Z̃ and (4.14)

0 = b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
− µ>PαΓ .

(4.15)

Multiplying the last equation from the right by |Σ|Z̃ and using the identity Σ = Σ|Σ| as

well as the matrix equations (3.15) and the notation introduced in Eq. (4.8), yields

0 = b>|Σ|Z̃ + δ> (B|Σ|+ CΣ) Z̃ + ν> (E|Σ|+ FΣ) Z̃ + λ>|Σ|Z̃
= b>|Σ|Z̃ + δ>Jσ,G,zZ̃ + ν>Jσ,H,zZ̃ + λ>|Σ|Z̃ . (4.16)

Now, by adding Eq. (4.16) to Eq. (4.14) and using the decomposition of the identity given

by Eq. (3.21) and the notation for the Jacobian given by Eq. (4.9) one obtains

0 = a> + b>|Σ|Z̃ + δ>Jσ,G + ν>Jσ,H − λ>P>α PαZ̃ .

Hence, it follows that the Lagrange multipliers δ ∈ Rm, ν ∈ Rp and λ ∈ Rs fulfill Eq. (4.10)

with λ̌ = −Pαλ. Due to the kink qualification LIKQ, one also has that the vectors δ ∈ Rm
as well as the components PIν ∈ R|I| and Pαλ ∈ R|α| are determined uniquely. The
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remaining components of ν ∈ Rp can be set to zero and those of λ ∈ Rs can be obtained by

multiplying Eq. (4.15), this time only with |Σ| from the right and using Eq. (3.15), yielding

0 = b>|Σ|+ δ>Jσ,G,z + ν>Jσ,H,z + λ>|Σ|

and thus Eq. (4.11).

To derive the third condition (4.12) again multiply Eq. (4.15) from the right, this time

with ΓP>α and use the identities regarding to the projection matrix Pα given by Eq. (3.22)

to obtain

0 = b>ΓP>α + δ>
(
BΓP>α + CP>α

)
+ ν>

(
EΓP>α + FP>α

)
+ λ>

(
ΓP>α − L̃P>α

)
− µ> .

(4.17)

Reformulating this equation and using µ ≥ 0 yields

−
(
b> + δ>B + ν>E + λ

)
ΓP>α =

(
δ>C + ν>F − λ>L̃

)
P>α − ν>

≤
(
δ>C + ν>F − λ>L̃

)
P>α .

As in the unconstrained case, the key observation is that this condition is linear in Γ

and is strongest for the choice γi = − sgn
(
b> + δ>B + ν>E + λ>

)
i

for i ∈ α yielding the

inequality ∣∣∣Pα (b+B>δ + E>ν + λ
)∣∣∣ ≤ Pα (C>δ + F>ν − L̃>λ

)
and thus Eq. (4.12) which completed the necessary optimality conditions.

Now consider the sufficient optimality condition. For this, consider again Eq. (4.15) and

multiply this from the right by ΓP>α . Using Eq. (3.22), Eq. (3.15) and Eq. (4.12) one

obtains

µ> =
(
b> + δ> (B|Γ|+ CΓ) + ν> (E|Γ|+ FΓ)

)
ΓP>α + λ>

(
Is − L̃Γ

)
ΓP>α

=
(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F − λ>L̃

)
P>α ≥ 0 (4.18)

and therefore feasibility. To show Eq. (4.14) use Eq. (3.21), Eq. (4.11) multiplied from the
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right by Z̃ and Eq. (4.10) together with Eq. (4.9) to obtain

λ>Z̃ = λ>
(
|Σ|+ P>α Pα

)
Z̃

= λ>|Σ|Z̃ + λ>P>α PαZ̃

= −b>|Σ|Z̃ − δ>Jσ,G,zZ̃ − ν>Jσ,H,zZ̃ + a> + b>|Σ|Z̃ + δ>Jσ,G + ν>Jσ,H
= a> + δ>A+ ν>D .

Now only Eq. (4.15) remains to be shown. Therefore, using Eq. (3.21), Eq. (4.15) holds

true if and only if

0 = b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
|Σ|+ P>α Pα − L̃Γ

)
− µ>PαΓ

holds true. Using Eq. (4.11) and Eq. (4.8) the last equation is equivalent to

0 = b>|Γ|+ δ> (B|Γ|+ CΓ) + ν> (E|Γ|+ FΓ) + λ>
(
P>α Pα − L̃Γ

)
− µ>PαΓ .

Again, multiplying the last equation from the right by ΓP>α and using Eq. (3.22) yields

µ> = −λ>L̃P>α +
(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F

)
P>α .

Now, by defining the Lagrange multiplier µ as above, it satisfies Eq. (4.15). To see this,

insert µ into Eq. (4.15) and use Eq. (3.22) to obtain

0 = b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
−
(
−λ>L̃P>α +

(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F

)
P>α
)
PαΓ

= b> (|Σ|+ |Γ|) + δ> (B (|Σ|+ |Γ|) + C (Σ + Γ))

+ ν> (E (|Σ|+ |Γ|) + F (Σ + Γ)) + λ>
(
Is − L̃Γ

)
+ λ>L̃Γ−

(
b>|Γ|+ δ>B|Γ|+ ν>E|Γ|+ λ>|Γ|+ δ>CΓ + ν>FΓ

)
= b>|Σ|+ δ> (B|Σ|+ CΣ) + ν> (E|Σ|+ FΣ) + λ>Is − λ>|Γ|
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Using Eq. (4.11) and Eq. (3.21) it follows that

0 = −λ>|Σ|+ λ>|Σ|+ λ>P>α Pα − λ>|Γ|

must be true. Using Eq. (3.22), one sees that this is a true statement and thus completes

the proof.

For the uniqueness of the Lagrange multipliers, see again the first paragraph of this proof.

There it was stated that the Lagrange multipliers δ and ν as well as the components

λi belonging to the index set α(xσ) are unique. Finally, for the remaining i ∈ αC , the

complement of α, the components λi can be uniquely determined by Eq. (4.11).

This theorem shows that the optimality conditions for the unconstrained case (cf. Theo-

rem 3.14) can be extended to the constrained case. It is still possible to test optimality

by simple matrix-vector multiplications in polynomial time. Moreover, as expected, one

sees that Theorem 4.8 coincides with Theorem 3.14 when the constraints are removed.

Again, the conditions given in Eqs. (4.10) and (4.11) can be called tangential stationarity

condition and Eq. (4.12) can be called normal growth condition.

4.2 Constrained Active Signature Method

After showing that the optimality of a point x for an optimization problem of the form

(CALOP) can be tested in polynomial time, the goal now is to present a corresponding

algorithm that can solve such optimization problems. As mentioned above, this algorithm

has already been published in [70], and essential parts are adopted, as well as some

additional details are added here.

In very simplified terms, the algorithm, called Constrained Active Signature Method

(CASM), is a suitable combination of ASM and the Active Set Method. Analogous to

ASM, the Rn is decomposed into different polyhedra, defined by the signature vector,

and a penalized version of the objective function is optimized over them. The inequality

constraints are handled as in the Active Set Method and are therefore considered as active

or inactive. Thus, as before, the information about the nonsmoothness, now also that

of the constraints, is explicitly exploited by the switching vector z = z(x). Note, that

on the one hand, on a polyhedron all constraints are linear, because if they would cause

a nonsmoothness, a new polyhedron would be located there. On the other hand, since

no further assumptions, such as compactness or convexity, are made on the feasible set,
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it is still possible that the polyhedra themselves can be unbounded even when adding

constraints. Thus, it is still necessary to add the regularization term in order to guarantee

the existence of a minimizer. Therefore, consider the optimization problem (4.5) with the

addition of this regularization term, again with a positive definite matrix Q = Q> ∈ Rn×n,

to obtain the following opitmization problem

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx (4.19a)

s.t. 0 = g +Ax+B|Σ|z + CΣz , (4.19b)

0 ≥ h+Dx+ E|Σ|z + FΣz , (4.19c)

0 = |Σ|z − c̃− Z̃x , (4.19d)

0 ≤ Σz , (4.19e)

with Z̃ and c̃ defined as in Eq. (3.9). Due to the fixed signature vector, this is still a

quadratic optimization problem with linear constraints.

Based on the optimization problem (4.19), CASM has three main components: First, the

computation of a search direction, second, the step size in this direction, and finally, the

checking of optimality and, in case of nonoptimality, the use of these conditions to drop

active inequality constraints by updating ω or switching from one polyhedron to the next

and thus updating σ.

4.2.1 Computing a Descent Direction for Given σ and ω

To determine a descent direction, the KKT-theory is applied to the optimization prob-

lem (4.19). With Lagrange multipliers δ ∈ Rm, ν ∈ Rp, λ ∈ Rn and µ ∈ Rs associated with

the equality constraint (4.19b), inequality constraint (4.19c), the switching equation (4.19d)

and the sign condition (4.19e), this provides the following necessary optimality conditions:

0 = a> + x>Q+ δ>A+ ν>D − λ>Z̃ , (4.20)

0 = b>|Σ|+ δ>Jσ,G,z + ν>Jσ,H,z + λ>|Σ| − µ>Σ , (4.21)

0 = g +Ax+B|Σ|z + CΣz ,

0 ≥ h+Dx+ E|Σ|z + FΣz ,

0 = |Σ|z − c̃− Z̃x ,
0 ≤ Σz , 0 ≤ µ , 0 = µ>Σz , (4.22)

0 ≤ ν , 0 = ν> (h+Dx+ E|Σ|z + FΣz) . (4.23)
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Now, the proceeding is quite similar to the unconstrained case in Section 3.3.1: Multiplying

Eq. (4.21) from the right by Σ and using Eq. (4.22) yields

0 ≤ µ>|Σ| = b>Σ + δ>Jσ,G,zΣ + ν>Jσ,H,zΣ + λ>Σ . (4.24)

If σ = sgn(z) so that the underlying x is stationary, Eq. (4.24) reduces, because of the

required complementarity µ>|Σ|z = 0, to

0 = b>Σ + δ>Jσ,G,zΣ + ν>Jσ,H,zΣ + λ>Σ .

Hence, with ω = sgn(H(x, z, |z|)) and Ω = diag(ω) denoting the projection onto the

inactive inequality constraints, if the feasible signature optimal point xσ exists, it must

satisfy the system of linear equation
Q 0 −Z̃> A> D>

0 0 Σ ΣJ >σ,G,z ΣJ >σ,H,z
−Z̃ |Σ| 0 0 0

A Jσ,G,z 0 0 0

ΩD ΩJσ,H,z 0 0 Ω




x

z

λ

δ

ν

 = −


a

Σb

−c̃
g

Ωh

 ,

where Ω = Ip − |Ω| = Ip + Ω forces the inactive inequalities to vanish. The matrix Ω in the

lower right corner ensures that ν is zero for the inactive inequality constraints. For this

reason, one can also multiply the rightmost blocks in the first and second rows from the

right with Ω and the second row from the left with Σ to make the resulting Jacobian fully

symmetric and obtain
Q 0 −Z̃> A> D>Ω

0 0 |Σ| J >σ,G,z J >σ,H,zΩ
−Z̃ |Σ| 0 0 0

A Jσ,G,z 0 0 0

ΩD ΩJσ,H,z 0 0 Ω




x

z

λ

δ

ν

 = −


a

|Σ|b
−c̃
g

Ωh

 . (4.25)

In comparison to Lemma 3.15, a similar result can be shown for the constrained case, i.e.,

it is possible to reduce this saddle point system to determine a solution with less effort.

Lemma 4.9 (Partitioned solution (constrained case)). The solution of the equation sys-
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tem (4.25) can be reduced to solving a symmetric semidefinite linear system−|Σ|Z̃Q
−1Z̃>|Σ| |Σ|Z̃Q−1J >σ,G |Σ|Z̃Q−1J >σ,HΩ

Jσ,GQ−1Z̃>|Σ| −Jσ,GQ−1J >σ,G −Jσ,GQ−1J >σ,HΩ

ΩJσ,HQ−1Z̃>|Σ| −ΩJσ,HQ−1J >σ,G −ΩJσ,HQ−1J >σ,HΩ


λδ
ν

 =

|Σ|ĉĝ
Ωĥ

 , (4.26)

with

ĉ = c̃− Z̃Q−1
[
a+ Z̃>|Σ|b

]
,

ĝ = Jσ,GQ−1
[
a+ Z̃>|Σ|b

]
− Jσ,G,z c̃− g ,

ĥ = Jσ,HQ−1
[
a+ Z̃>|Σ|b

]
− Jσ,H,z c̃− h ,

for the nontrivial entries of |Σ|λ and Ων, where |Σ| ≡ Is − |Σ| denotes the complementary

orthogonal projection to |Σ|. The system is uniquely solvable exactly when the rows of the

(s+m+ p)× n matrix 
|Σ|Z̃

A+B|Σ|Z̃ + CΣZ̃

Ω
(
D + E|Σ|Z̃ + FΣZ̃

)
Q−1Z̃>

that correspond to active kinks and active constraints are linearly independent, i.e., LIKQ

holds. For (λ̃, δ, ν̃) as a solution of the reduced system (4.26) the dual and primal variables

are then easily obtained as

λ = |Σ|λ̃−
[
|Σ|b+ J >σ,G,zδ + J >σ,H,zΩν

]
,

ν = Ων̃ ,

x = Q−1
(
Z̃>λ− a−A>δ −D>Ων

)
,

z = Z̃x+ c̃ .

Proof. If λ, δ and ν are given, again the expressions for x can be read off directly from the

original system (4.25) as well as the component of z which belongs to the inactive kinks.

Similar to the unconstrained setting, the main task consists in calculating the Lagrange

multipliers λ, δ and ν. Therefore, the second row as a projection on |Σ| gives

|Σ|λ = −
[
|Σ|b+ J >σ,G,zδ + J >σ,H,zΩν

]
, (4.27)
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which makes it again easy to calculate the components belonging to the inactive kinks

when δ and ν are given. In the same manner the projection on Ω gives Ων = 0, which

means setting the components belonging to the inactive inequality constraints to zero.

Using Q to eliminate the three last blocks in the first column and since Ων = 0 ignoring

the matrix in the right lower corner, yields
Q 0 −Z̃> A> D>Ω

0 0 |Σ| J >σ,G,z J >σ,H,zΩ
0 |Σ| −Z̃Q−1Z̃> Z̃Q−1A> Z̃Q−1D>Ω

0 Jσ,G,z AQ−1Z̃> −AQ−1A> −AQ−1D>Ω

0 ΩJσ,H,z ΩDQ−1Z̃> −ΩDQ−1A> −ΩDQ−1D>Ω




x

z

λ

δ

ν

 = −


a

|Σ|b
˜̃c

g̃

Ωh̃

 ,

with ˜̃c = Z̃Q−1a− c̃, g̃ = g −AQ−1a and h̃ = h−DQ−1a.

Next, considering the projection of the third row through −|Σ| by using |Σ||Σ| = 0.

Moreover, adding the third row multiplied by −Jσ,G,z from the left-hand side to the fourth

row and the third row multiplied by −ΩJσ,H,z from the left-hand side to the fifth row

yields the three equations

|Σ|Z̃Q−1Z̃>λ− |Σ|Z̃Q−1A>δ − |Σ|Z̃Q−1D>Ων = |Σ|˜̃c ,(
Jσ,G,zZ̃Q−1Z̃> +AQ−1Z̃>

)
λ−

(
Jσ,G,zZ̃Q−1A> +AQ−1A>

)
δ

−
(
Jσ,G,zZ̃Q−1D>Ω +AQ−1D>Ω

)
ν = ˜̃g ,

Ω
(
Jσ,H,zZ̃Q−1Z̃> +DQ−1Z̃>

)
λ− Ω

(
Jσ,H,zZ̃Q−1A> +DQ−1A>

)
δ

−Ω
(
Jσ,H,zZ̃Q−1D>Ω +DQ−1D>Ω

)
ν = Ω

˜̃
h ,

with ˜̃g = Jσ,G,z ˜̃c − g̃ and
˜̃
h = Jσ,H,z ˜̃c − h̃. To simplify the expressions, use Eq. (4.9) to

obtain

|Σ|Z̃Q−1Z̃>λ− |Σ|Z̃Q−1A>δ − |Σ|Z̃Q−1D>Ων = |Σ|˜̃c , (4.28)

Jσ,GQ−1Z̃>λ− Jσ,GQ−1A>δ − Jσ,GQ−1D>Ων = ˜̃g , (4.29)

ΩJσ,HQ−1Z̃>λ− ΩJσ,HQ−1A>δ − ΩJσ,HQ−1D>Ων = Ω
˜̃
h , (4.30)

Now, using λ =
(
|Σ|+ |Σ|

)
λ = |Σ|λ+|Σ|λ and substituting Eq. (4.27) in Eqs. (4.28), (4.29)

and (4.30) as well as some reformulations yields the reduced symmetric semidefinite linear
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system−|Σ|Z̃Q
−1Z̃>|Σ| |Σ|Z̃Q−1J >σ,G |Σ|Z̃Q−1J >σ,HΩ

Jσ,GQ−1Z̃>|Σ| −Jσ,GQ−1J >σ,G −Jσ,GQ−1J >σ,HΩ

ΩJσ,HQ−1Z̃>|Σ| −ΩJσ,HQ−1J >σ,G −ΩJσ,HQ−1J >σ,HΩ


λδ
ν

 =

|Σ|ĉĝ
Ωĥ

 ,

with

ĉ = −˜̃c− Z̃Q−1Z̃>|Σ|b , ĝ = ˜̃g + Jσ,GQ−1Z̃>|Σ|b and ĥ =
˜̃
h+ Jσ,HQ−1Z̃>|Σ|b .

Numerically and similar to Lemma 3.15, the solutions obtained by Lemma 4.9 must yield

|Σ|z = 0 and Ων = 0 up to rounding. After that has been checked the nonbasic components

of z can be set exactly to zero, while λ is generally dense without any sign constraints.

Comparing the effort to solve the two systems of equations, it can be seen that the system

matrices in both Eq. (4.25) and Eq. (4.26) are symmetric and quadratic. The matrix

from Eq. (4.25) has a total of n + 2s + m + p rows and columns, but it also contains

some zero blocks, which makes the matrix potentially quite sparse, depending on the

respective dimensions n, s, m and p. In comparison, the matrix from Eq. (4.26) has a

total of only s+m+ p rows and columns, which makes the size completely independent of

the dimension n. However, this matrix no longer contains any zero blocks, which makes it

potentially more densely filled, depending on the nature of the individual matrices given

by the optimization problem (CALOP) itself. In summary, it is not possible to determine

which of the two systems of equations is more efficient to solve. This may depend on the

specific application, or may be numerically influenced by a well-chosen solver.

In the following (x̂, ẑ, λ, δ, ν) denotes the solution of the saddle point system (4.25). This

system is still in principle similar to a classical Newton step. Thus, the search direction

from a current point (x, z) in direction (x̂, ẑ) will be again denoted with

∆x = x̂− x and ∆z = ẑ − z . (4.31)

4.2.2 Computing a Step Size β

As before, when a search direction has been calculated, the question is how far to go in

that direction. The first option is still the length until a kink is reached. With (x̂, ẑ) as

part of the solution of the system of equations (4.25), the calculation for this is unchanged
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kink

blocking inequality

constraint

(1− βz)x+ βzx̂

x

x̂

kink

blocking inequality

constraint

(1− βH)x+ βH x̂

x

x̂

Figure 4.2: Illustration of the two different step sizes βz and βH

compared to the unconstrained case and with βz as given in Eq. (3.32). Furthermore, let

jz denote the index for which the minimum was first assumed in Eq. (3.32).

Now, by adding inequality constraints, it can also happen that they block the search

direction. In this case, the idea is to calculate the step size in such a way that one ends up

exactly on the first blocking constraint, as it is also done in the Active Set Method, see

[87] or Subsection 2.2.2. For this, in a similar way as βz, the step size βH related to the

constraints can be calculated as

βH = inf
1≤l≤p

{
βHl ≡

Hl

Hl − Ĥl

∣∣∣∣ (Ĥl −Hl)ωl < 0

}
, (4.32)

where H ≡ H(x, z,Σz), Ĥ ≡ H(x̂, ẑ,Σẑ) and l denote the lth component of H and Ĥ,

respectively. Similar to the first step size, denote by jH the smallest index for which the

minimum is attained. A graphical illustration of both step sizes is shown in Figure 4.2,

where on the left-hand side βz is sketched and on the right-hand side βH . The blue lines

represent a kink, the red line an inequality constraint that becomes active and the yellow

arrow indicates the corresponding step size.

In order to bound the step, the current step size β is set to

β = min{βz, βH , 1} . (4.33)

Here, the upper bound 1 on β ensures with the current iterate

x+ = (1− β)x+ βx̂

that the next iterate is still in Fσ. In the case of a full step, i.e., β = 1, obviously x+ = x̂
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and σ(x+) = x̂ holds. Since the vector is therefore kept, the point x+ is also called feasible

signature stationary.

Furthermore, by determining β, it can be seen that the case is chosen that occurs first. I.e.,

if an inequality constraint is reached first, the step is performed only up to the constraint,

and similarly, if a kink is reached first, the step is performed only up to the kink. If the

step sizes βz and βH are equal, then both, a kink and an inequality constraint can also be

added.

Given the step size β, the next question remains how to update σ, but now also how to

update ω, i.e., on which feasible polyhedron to optimize next and which constraints to

be considered. In case of adding a constraint, it follows directly from the considerations

above. For this, the corresponding index jH is used to update ω. The new one is set as

ω+ = ω+ejH with the jHth unit vector, which means to set ωjH = 0. Thus, the vector ω is

restricted. Since all active constraints are encoded in ω, one must have βH > 0. Activating

kinks is unchanged as for ASM in Subsection 3.3.2. The index jz is used to set σjz = 0

and therefore restrict the signature vector σ.

4.2.3 Checking the Optimality

The case of leaving a constraint is relatively simple. If no feasible optimal point is found due

to the fact that a constraint is still active but should be inactive, at least one component

of ν must be negative. Therefore, ν ≥ 0 does not hold, and it is one possible heuristic

to choose the component for which ν ≥ 0 is most violated and drop the corresponding

constraint. Hence, the associated entry of ω is set to −1 to relax ω. This is the same

procedure as in the Active Set Method described in Section 2.2.

Finally, there is the case of releasing an active kink, i.e., relaxing σ. This is the most complex

case, but the basic idea has already been described in Subsection 3.3.3 and now needs to be

extended under consideration of the constraints. In this case, a feasible signature optimal

point is found on the current feasible polyhedron Fσ, and it is necessary to check if it is

already a minimizer of the original problem (CALOP) with the added regularization term.

If such a minimizer is detected, the algorithm can terminate. Otherwise, the optimization

must be continued on a neighboring polyhedron Pσ̃ with definite σ̃ ≺ σ. As in the proofs

of the Theorems 3.14 and 4.8, such a σ̃ can be decomposed into σ + γ with |σ|>|γ| = 0.

Then replacing Σ in the optimality conditions (4.20)-(4.23) by the corresponding Σ + Γ and

using Eq. (3.16) yields that the primal feasibility condition and the dual equality constraint

are still satisfied by the solution (x̂, ẑ, λ, δ, ν). The only change is that Eq. (4.24) contains
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as many new nontrivial components as γ, which can be written as

0 ≤ µ>|Γ| = b>Γ + δ> (BΓ + C|Γ|) + ν> (EΓ + F |Γ|) + λ>
(
Is − L̃Γ

)
Γ

=
(
b> + δ>B + ν>E + λ>

)
Γ +

(
δ>C + ν>F − λ>L̃

)
|Γ| ,

similar to Eq. (4.18). This optimality condition is violated if and only if there is at least

one index such that γ = − sgn
(
bk + δ>Bek + ν>Eek + λk

)
ek satisfies

0 >
(
δ>C + ν>F − λ>L̃

)
ek −

∣∣∣b> + δ>B + ν>E + λ>
∣∣∣ ek and σk = 0 , (4.34)

which represents a violation of the normal growth condition. Thus, if the optimality

condition is violated, i.e., Eq. (4.34) holds true for at least one k, one possible strat-

egy is to choose the index k for which the right-hand side of Eq. (4.34) is minimal.

This is a well-known heuristic, e.g., from Active Set Methods [87]. Then, by updating

σk = − sgn
(
bk + δ>Bek + ν>Eekλk

)
, the next signature vector, denoted by σ+, has one

component less that equals zeros. This can be interpreted as releasing a kink, since one no

longer insist on evaluating the corresponding absolute value at zero.

4.2.4 The Overall Algorithm

A pseudocode for the Constrained Active Signature Method (CASM) is given in Algorithm 4

and a schematic representation is given in Figure 4.3.

CASM combines now all these previous steps in an appropriate way. This means, given an

optimization problem of the form (CALOP), a positive definite matrix Q = Q> ∈ Rn×n
and a feasible starting point x ∈ F , the associated switching and signature vector as well

as the signature vector for the active inequality constraints are determined and then the

saddle point system (4.25) is solved (cf. line 2). Afterwards, in line 3 the step size β

is computed as in Eq. (4.33). If now βH = β holds, i.e., βH ≤ 1 and thus a blocking

inequality constraint is reached, this one is added by restricting ω (cf. line 5). The same

applies to βz and the corresponding σ (cf. line 6), as already seen for ASM.

If β = 1, then optimality is checked. Note that by construction, at least one of the three

if -conditions must be true in every iteration. The optimality is verified in line 7–14. If

β < 1 the current iterate can not be feasible signature stationary. Hence, for x being a

minimizer, it is necessary that β = 1 holds (cf. line 7). Then the optimality check is

starting by checking the sign condition on the Lagrange multiplier ν. If there is at least

one negative component of ν, it is required to drop a corresponding constraint (cf. line 9).
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Algorithm 4 Constrained Active Signature Method (CASM)

Given: Optimization problem of the form (CALOP), Q = Q> ∈ Rn×n positive definite
and feasible start point x ∈ F
Compute: z := z(x) via Eq. (3.5), σ := σ(x), ω := ω(x)

1: loop
2: Compute (x̂, ẑ, λ, δ, ν) by solving Eq. (4.25) . Solve saddle point system
3: Compute βz via Eq. (3.32), βH via Eq. (4.32) and β via Eq. (4.33)
4: Set (x+, z+) = (1− β)(x, z) + β(x̂, ẑ) . Update iterate
5: if βH = β then Restrict ω . Add constraint

6: if βz = β then Restrict σ . Add kink

7: if β = 1 then . x+ is feasible signature stationary
8: if ν � 0 then
9: Relax ω . Drop constraint

10: else . x+ is feasible signature optimal
11: if Eq. (4.34) holds true then
12: Relax σ . Drop kink
13: else . x+ is local optimal
14: return (x+, z+) . Problem solved

15: Set (x, z) = (x+, z+)

Otherwise, when line 10 is reached, a feasible signature optimal point has been found and

the last optimality condition must hold for local optimality. If this is not yet the case, a

kink is dropped (cf. line 12), otherwise the algorithm terminates in line 14 with a local

minimum. In case of nontermination the algorithm continues with the next iterate (cf.

line 15).

4.2.5 Convergence Analysis of the Constrained Active Signature Method

Similar to ASM, now the goal is to show the convergence of CASM. In the paper [70], in

which this method was proposed, the proof is already given and is taken over here. As for

ASM, it is also possible to show for CASM that the algorithm terminates after a finite

number of steps. Therefore, first the results of Lemma 3.17 have to be adapted to the

constraint setting. Thus, consider the following problem
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Figure 4.3: Scheme of Constrained Active Signature Method (CASM)

73



4 The Constrained Abs-Linear Optimization Problem: Theory and Solution Method

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx

s.t. 0 = g +Ax+B|Σ|z + CΣz ,

0 = Ω (h+Dx+ E|Σ|z + FΣz) ,

0 = |Σ|z − c̃− Z̃x ,

(4.35)

which is exactly the one related to the saddle point system (4.25) ignoring the Ω in the

right lower corner, and is identical to (4.19) if one omits the sign condition on the switching

equation described by the last inequality condition of (4.19). In the same way as in

Section 3.3.5 it is possible to derive the same objective function as in Eq. (3.35).

Now it is possible to show results regarding the descent direction in the nonoptimal case.

Lemma 4.10 (Descent direction in the nonoptimal case for CASM). Let x ∈ Fσ and the

optimization problem (4.19) be given and suppose that LIKQ holds in x.

1. If tangential stationarity is violated, i.e.,

0 6= a> + b>|Σ|Z̃ + x>Q+ δ>Jσ,G + ν>Jσ,H − λ>P>α PαZ̃ ,

there exists some direction d ∈ Rn such that PαZ̃d = 0, Jσ,Gd = 0 and ΩJσ,Hd = 0

but (
a> + b>|Σ|Z̃ + x>Q

)
d < 0 , (4.36)

and the target function defined in (3.35) is decreasing in direction τd i.e., f(x+τd) <

f(x) for τ & 0.

2. If tangential stationarity holds but ν ≥ 0 fails, there exists at least one i ∈ I with

νi < 0. Defining υ = −ei ∈ Rp and Υ = diag(υ), any d satisfying

PαZ̃d = 0 , Jσ,Gd = 0 and
(
Ω + Υ

)
Jσ,Hd = υ (4.37)

is a descent direction.

3. If tangential stationarity and ν ≥ 0 holds but normal growth fails, there exists at

least one i ∈ α with |bi + δ>Bei + ν>Eei + λi| >
(
δ>C + ν>F − λ>L̃

)
ei. Defining
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γ = − sgn(bi + δ>Bei + ν>Eei + λi)ei ∈ Rs, any d satisfying

Ad+ Jσ+γ,G,z

(
Is − L̃Γ

)−1
Z̃d = 0 , (4.38)

Ω

(
Dd+ Jσ+γ,H,z

(
Is − L̃Γ

)−1
Z̃d

)
= 0 (4.39)

and
(
Is − L̃Γ

)−1
Z̃d = γ (4.40)

is a descent direction.

Proof. 1. Since tangential stationarity is violated, the point x is not a minimizer on the

current feasible polyhedron Fσ(x) for the given index set of active inequality constraints

I(x). Therefore, let xσ be a minimizer on Fσ(x) with the same index set, i.e., I(x) = I(xσ),

and denote by d := xσ − x a corresponding direction. Both points, x and xσ lie on the

same feasible extended signature domain, thus Jσ,Gd = 0 holds. Moreover, they have the

same index sets of active switching variables α and thus PαZ̃d = 0 holds. In addition, they

have the same index set of active inequality constraints I and thus, also ΩJσ,Hd = 0 holds.

Next, it is to show, that x+ τd is still feasible. Therefore, it is to prove that x+ τd ∈ Fσ
for τ & 0. Using PαZ̃d = 0 the components of zσ(x+ τd) are equal to zero and the others

vary only slightly. Hence, the signature of x + τd coincides with the one of x. For the

feasibility consider the notation given in Eqs. (4.7) and (4.8) as well as zσ(x) = c̃+ Z̃x to

obtain for the equality constraint

g +Ax+B|Σ|z + CΣz = g +Ax+ Jσ,G,z
(
c̃+ Z̃x

)
= g + Jσ,G,z c̃+ Jσ,Gx

and analogously for the inequality constraint

Ω (h+Dx+ E|Σ|z + FΣz) = Ω (h+ Jσ,H,z c̃+ Jσ,Hx) .

Thus, for obtaining the feasibility it is to show that the equality and the projection of the

active inequality constraints are still zero. Therefore, using the assumptions regarding the

direction d, one obtains

g + Jσ,G,z c̃+ Jσ,G(x+ τd) = g + Jσ,G,z c̃+ Jσ,Gx+ τJσ,Gd = 0 ,

due to the feasibility of x and analogously

Ω (h+ Jσ,H,z c̃+ Jσ,H(x+ τd)) = Ω (h+ Jσ,H,z c̃+ Jσ,Gx+ τJσ,Hd) = 0 .
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Thus, the components with indices in I stay zero. The remaining ones only vary slightly

for τ & 0.

The same computation and arguments as in the proof of Lemma 3.17 show descent in the

function value and Eq. (4.36).

2. There are two statements to show, first the feasibility and second the descent in the

function value. For the feasibility of x+ τd ∈ Fσ for τ & 0 in Lemma 3.17 and the first

statement of this lemma it was already shown that x+τd ∈ Pσ and the equality constraints

are still fulfilled. Hence, it remains only to prove that the inequality constraints hold.

Using Eq. (4.8) to consider the relevant lines of the inequalities and zσ(x) = c̃+ Z̃x yields

(
Ω + Υ

)
(h+Dx+ Ez + FΣZ) =

(
Ω + Υ

) (
h+Dx+ Jσ,H,z

(
c̃+ Z̃x

))
.

Therefore, to obtain the signs at the point x+ τd the last expression provides

(
Ω + Υ

) (
h+D (x+ τd) + Jσ,H,z

(
c̃+ Z̃ (x+ τd)

))
=
(
Ω + Υ

) (
h+Dx+ Jσ,H,z

(
c̃+ Z̃x

))
+ τ

(
Ω + Υ

) (
Dd+ Jσ,H,zZ̃d

)
= τ

(
Ω + Υ

)
Jσ,Hd

= τυ ,

where for the second equality one uses that the active constraints at x are zero and for the

third equality the assumption (4.37). Examining the sign, all active inequality constraints

stay active with the exception of the ith one, which turns negative. Taking this into account

and the fact that the inactive constraints vary only slightly for τ & 0 and stay negative,

the feasibility of x+ τd follows.

To show that τd is a descent direction consider the optimization problem that results after

dropping the ith constraint

min
x∈Rn,z∈Rs

a>x+ b>|Σ|z +
1

2
x>Qx

s.t. 0 = g +Ax+B|Σ|z + CΣz ,

0 =
(
Ω + Υ

)
(h+Dx+ E|Σ|z + FΣz) ,

0 = Pα

(
z − c̃− Z̃x

)
.

Note that the switching equation is multiplied by Pα, since these are only the relevant

components because the remaining components of the Lagrange multiplier λ are set to
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zero. The stationarity condition of the KKT-theory yields for the Lagrange multipliers

δ ∈ Rm, ν ∈ Rp and λ ∈ R|α| and the notation introduced in Eq. (4.8) the two equations

0 = a> + x>Q+ δ>Aν>
(
Ω + Υ

)
D + λ>PαZ̃ ,

0 = b>|Σ|+ δ>Jσ,G,z + ν>
(
Ω + Υ

)
Jσ,H,z + λ>Pα .

Substituting these two equations in the expression of the directional derivative given in

Eq. (3.39) yields

f ′(x; τd) = τ
(
a> + x>Q+ b>|Σ|Z̃

)
d

= τ
(
−δ>A− ν>

(
Ω + Υ

)
D + λ>PαZ̃

−δ>Jσ,G,zZ̃ − ν>
(
Ω + Υ

)
Jσ,H,zZ̃ − λ>PαZ̃

)
d

= τ
(
−δ>Jσ,Gd− ν>

(
Ω + Υ

)
Jσ,Hd

)
= −τνiυ < 0 ,

where for the last equality the assumptions (4.37). are used.

3. Once more, there are two statements to show, first the feasibility and second descent

in the function value. For the first one it is to show that x + τd ∈ Fσ+γ . The fact that

x+ τd ∈ Pσ+γ was already proven in Lemma 3.17. For the equality constraint consider

Eq. (4.8) as well as Eq. (3.16) to obtain

g +Ax+B (|Σ|+ |Γ|) zσ+γ(x) + C (Σ + Γ) zσ+γ(x)

= g +Ax+ Jσ+γ,G,z

(
Is − L̃Γ

)−1 (
c̃+ Z̃x

)
(4.41)

and analogously for the inequality constraint

Ω (h+Dx+ E (|Σ|+ |Γ|) zσ+γ(x) + F (Σ + Γ)) zσ+γ

= Ω

(
h+Dx+ Jσ+γ,H,z

(
Is − L̃Γ

)−1 (
c̃+ Z̃x

))
. (4.42)

Thus, showing that the equality and the projection of the active inequality constraints

are still zero yields the feasibility. Therefore, consider the representation for the equality
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constraint in Eq. (4.41) at the point x+ τd, yielding

g +A(x+ τd) + Jσ+γ,G,z

(
Is − L̃Γ

)−1 (
c̃+ Z̃(x+ τd)

)
= g +Ax+ Jσ+γ,G,z

(
Is − L̃Γ

)−1 (
c̃+ Z̃x

)
(4.43)

+ τ

(
Ad+ Jσ+γ,G,z

(
Is − L̃Γ

)−1
Z̃d

)
= τ

(
Ad+ Jσ+γ,G,z

(
Is − L̃Γ

)−1
Z̃d

)
= 0 ,

where the contribution in line (4.43) is zero because of the feasibility of x. The last equation

follows from the assumption (4.38). Analogously, by using assumption (4.39) it follows for

the projection onto the active inequality constraints that Eq. (4.42) holds at x+ τd and

thus the components with indices in I stay zero and the remaining ones vary only slightly

for τ & 0.

Finally, the descent in the function value has to be shown. On the polyhedron Pσ+γ the

Lagrange multipliers are well defined and µ is given by Eq. (4.17) and can re-sorted be to

µ> =
(
b> + δ>B + ν>E + λ>

)
ΓP>α +

(
δ>C + ν>F − λ>L̃

)
P>α ,

but in this case by assumption for the ith component it follows

µi = γi

(
b+ δ>B + ν>E + λ

)
ei +

(
δ>C + ν>F − λ>L̃

)
ei

= −
∣∣∣b+ δ>B + ν>E + λ

∣∣∣ ei +
(
δ>C + ν>F − λ>L̃

)
ei < 0 .

Next, consider the directional derivative of the objective on Pσ+γ at x in direction τd. The

first steps are the same as in Lemma 3.17 yielding immediately

f ′(x; τd) = τ

(
a>d+ x>Qd+ b> (|Σ|+ |Γ|)

(
Is − L̃Γ

)−1
Z̃d

)
.

Then, substituting Eqs. (4.20) (which does not depend on the σ + γ decomposition but

includes the regularization term), (4.15) and using the assumption (4.40) on d as well as
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µi < 0 and the notation introduced in Eq. (4.8) the last expression yields

f ′(x; τd) = τ

((
λ>Z̃ − δ>A− ν>D

)
d− δ>Jσ+γ,G,z

(
Is − L̃Γ

)−1
Z̃d

−ν>Jσ+γ,H,z

(
Is − L̃Γ

)−1
Z̃d− λ>Z̃d+ µ>PαΓ

(
Is − L̃Γ

)−1
Z̃d

)
= −τδ>

(
A+ Jσ+γ,G,z

(
Is − L̃Γ

)−1
Z̃

)
d

− τν>
(
D + Jσ+γ,H,z

(
Is − L̃Γ

)−1
Z̃

)
d

+ τµ>PαΓ
(
Is − L̃Γ

)−1
Z̃d

= τµiγ
2
i < 0 .

Therefore, there is again a descent, which completes the proof.

Consequently, the lemma has shown that there exists a descent direction in all cases where

optimality does not hold. The following lemma demonstrates further that solving the

saddle point system (4.25) yields such a descent direction under mild assumption. As

a preparation, the optimization problem (4.35) is rewritten as an optimization problem

in the search direction. This means, with the help of the search directions defined in

Eq. (4.31), it is possible to reformulate problem (4.35). Therefore, denote by fQ(x, z) =

a>x+ b>|Σ|z + 1
2x
>Qx the target function and x̄ and z̄ the current point to obtain

fQ(x̄+ ∆x, z̄ + ∆z) = a>(x̄+ ∆x) + b>|Σ|(z̄ + ∆z) +
1

2
(x̄+ ∆x)>Q(x̄+ ∆x)

= a>x̄+ b>|Σ|z̄ +
1

2
x̄>Qx̄︸ ︷︷ ︸

=fQ(x̄,z̄)=const.

+a>∆x+ b>|Σ|∆z +
1

2
∆x>Q∆x+

1

2
x̄>Q∆x+

1

2
∆x>Qx̄︸ ︷︷ ︸

=x̄>Q∆z

= (a> + x̄>Q)∆x+ b>|Σ|∆z +
1

2
∆x>Q∆x+ fQ(x̄, z̄). (4.44)

Defining ϕ(∆x,∆z) := (a+Qx̄)>∆x+ b>|Σ|∆z + 1
2∆x>Q∆x then yields the problem

min
(∆x,∆z)∈Rn+s

ϕ(∆x,∆z)

s.t. 0 = A∆x+B|Σ|∆z + CΣ∆z ,

0 = Ω(D∆x+ E|Σ|∆z + FΣ∆z) ,

0 = |Σ|∆z − Z̃∆x .

(4.45)
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The only difference of this problem compared to (4.35) is that here it is minimized along

the search direction for fixed x̄ and z̄, whereas in the original problem (4.35) it is searched

for the point where the minimum is attained. Thus, as in [70], it can be shown that solving

the saddle point system (4.25) yields a descent direction.

Lemma 4.11. Suppose that (∆x∗,∆z∗) is a solution of (4.45) with ∆x∗ 6= 0 and let the

zero vector be no solution of (4.45). Then the objective function fQ(·, ·) is strictly decreasing

along the direction (∆x∗,∆z∗). If LIKQ also holds, then this direction is unique.

Proof. Since the zero vector is a feasible point but no solution of (4.45) and (∆x∗,∆z∗) is

a solution, one has that

ϕ(∆x∗,∆z∗) < ϕ(0) ⇒ (a+Qx̄)>∆x∗ + b>|Σ|∆z∗ +
1

2
∆x∗Q∆x∗ < 0 . (4.46)

Since Q is positive definite, one has 1
2(∆x∗)>Q∆x∗ > 0 and it follows with Eq. (4.46):

(a+Qx̄)>∆x∗ + b>|Σ|∆z∗ < 0.

Therefore, using Eq. (4.44) one obtains

fQ(x̄+ α∆x∗, z̄ + α∆z∗) = fQ(x̄, z̄) + α(a+Qx̄)>∆x∗ + αb>|Σ|∆z∗ +
1

2
α2∆x∗Q∆x∗︸ ︷︷ ︸

<0

< fQ(x̄, z̄) ,

for all α > 0 sufficiently small. The uniqueness follows from the assumption that LIKQ

holds true (see Section 4.1).

Using the last two lemmata, it is now possible to show the convergence of Algorithm 4.

The result is similar to the one for the unconstrained case in Theorem 3.18 and has already

been formulated and shown in [70].

Theorem 4.12. Suppose that an optimization problem of the form (CALOP) is given,

LIKQ holds at every feasible point and let Q = Q> ∈ Rn×n be a positive definite matrix.

Then, Algorithm 4 terminates for any feasible starting point x ∈ Rn after finitely many
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iterations at a minimizer of the quadratically penalized optimization problem

min
x∈Rn,z∈Rs

a>x+ b>z +
1

2
x>Qx

s.t. 0 = g +Ax+Bz + C|z| ,
0 ≤ h+Dx+ Fz + E|z| ,
z = c+ Zx+Mz + L|z| .

Proof. The essential argumentation is very similar to the proof of Theorem 3.18: It has to

be shown that on every polyhedron an optimum is found after finitely many steps, then

finite convergence follows again from the finite number of polyhedra.

Algorithm 4 starts by solving the system of equations (4.25). If the solution returns the

same point x̂ as the current point x, then x is a feasible signature stationary point, the step

size β = 1 and the algorithm tests for optimality. If this test is successful, the algorithm

terminates. If it is not successful, then, as seen in the proof of Lemma 4.10, there exists at

least one index i ∈ α such that µi < 0, or j ∈ I such that νj < 0. Further, it follows by

Lemma 4.10 and the fact that β > 0, after adjusting the signature vector or the signature

vector of inequality constraints, that there exists a new descent direction afterwards.

Since the algorithm always finds a feasible signature optimal point before changing the

polyhedron and thus assumes the best possible function value on this feasible polyhedron,

the algorithm cannot reach the same polyhedron again because of the descent after leaving

a kink. Now there are only finitely many closed polyhedra, namely at most 2s. In a similar

manner the algorithm always finds a feasible signature stationary point before dropping

an active constraint. Therefore, the best possible function value for the currently active

inequality constraints on the current polyhedron is found. As seen in Lemma 4.10 and

by the fact that β > 0 there is a descent after dropping an active inequality constraint

and thus the algorithm cannot reach the set of active inequality constraints on the current

polyhedron again. There are only finitely many combinations for the active sets, namely at

most 2p.

Now consider the situation where there is no feasible signature stationary point yet. Then

the solutions of the saddle point system (4.25) provides a search direction. The computed

step size will then either return β = 1 or, and maybe and, an inactive inequality constraint

or a kink will be added. The first case means that the optimum for the current active

inequality constraints on the current polyhedron has been reached and the next iteration

will return a zero step. If this is not the case, adding constraints and kinks can only occur

repeatedly at most p+ s times, until all - because of LIKQ - linearly independent inequality
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constraints and kinks have been added. Also in this case the next iteration will yield a

zero step.

Thus, as in the unconstrained case an optimum is found on a polyhedron after finitely

many iterations, and there are only finitely many polyhedra. This leads to convergence

after finitely many iterations.

Because of the regularizer, Algorithm 4 (as well as Algorithm 3) naturally does not

necessarily find a solution of the original problem (CALOP). In practice, however, the

matrix Q is to be chosen with very small entries in absolute value, e.g., a multiple of

the unit matrix qI, for a q & 0 very small. Theorem 4.8 can then be used to check the

optimality of the found point with respect to the problem (CALOP). If it is not yet optimal

but the optimization problem is bounded on the feasible set, one can use the found point

as a new starting point and set Q to zero or tend it to zero. Otherwise, the solution cannot

be given anyway. However, the numerical results in Chapter 5 show that such cases do not

occur in practice so far. Nevertheless, this is also formally proven in the following theorem,

which of course can also be applied to ASM, if one assumes artificial box constraints that

have no influence on the minima but bound the feasible set.

Theorem 4.13. Let f be bounded from below on the feasible set given by (CALOP),

denoted by F . Further assume that F is bounded and LIKQ holds at every feasible point.

Then, for Q → 0 the solutions generated by Algorithm 4 converge to a solution of the

optimization problem (CALOP).

Proof. Since F is bounded and f is bounded from below it attains a minimum on F . All the

optimality conditions (4.21) to (4.23) are independent from Q and therefore coincide with

the corresponding optimality conditions of (CALOP) (cf. Theorem 4.8). Thus, the only

optimality condition that depends on Q is stated in Eq. (4.20). For reasons of continuity, if

Q tends to zero, Eq. (4.20) converges to the same optimality condition as given in Eq. (4.14).

Thus, the solution generated by Algorithm 4 coincides with the solution of (CALOP).

To conclude this section, the regularization term should be discussed once more. With the

choice of 1
2x
>Qx used here, the regularization is done around zero. However, it can also

be in the interest of the user to do this not around zero but around another point. This

can be the case, for example, if the user can expect beforehand that the solution is to be

expected ”very far away” from zero. It is also possible to move the regularizer around the

current iteration, so that it adapts in each iteration. If x̄ is the point around which the
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regularizer is to be shifted, the regularization term 1
2(x− x̄)>Q(x− x̄) results. The theory

is not significantly influenced by this shift, only the first block of the right-hand side in the

saddle point system (4.25) changes to the term a−Qx̄ instead of just a.

4.3 Penalty Approaches for Piecewise Linear Optimization

Problems

As described in the previous sections (see Subsection 4.2.4), Algorithm 4 is a feasible point

method, i.e., a feasible starting point is required and any iteration point generated by the

algorithm is feasible. If no feasible starting point is available, it is necessary to determine

one. Phase I Methods, very similar to those described in Section 2.2.5, can be used for this

purpose. However, for piecewise linear functions in combination with l1-penalty approaches

(see Section 2.3), problems may arise. Examining this in more detail is the purpose of this

section. Other publications that have focused on (exact) Penalty Methods for nonsmooth

functions are, e.g., [60, 90, 91, 108].

In a wider sense, all Phase I Methods from Section 2.2.5 can be interpreted as penalty-like

methods in the sense of Section 2.3, since in all cases the violation of constraints is penalized

by a penalty term. Thus, discussions of Phase I Methods and Penalty Methods are closely

related in this context.

By combining algorithms for unconstrained problems with Penalty Methods, Theorem 2.13

shows under which conditions a solution to the corresponding constrained optimization

problem can be found. This is also true for Algorithm 3 given in this paper. Here, however,

two essential aspects play a role. First, for Theorem 2.13 to be valid, the feasible set of

the constrained optimization problem must be convex and closed. Another aspect is that

the theorem ”only” gives results concerning local minima. Now, for example, compare

Algorithm 3 combined with a l1-penalty approach with Algorithm 4 and assume that the

feasible set described by the constraints satisfies the conditions from Theorem 2.13. By

this way, the theorem ensures that the solutions coincide and a local minimum is reached.

However, local minimality can lead to problems with the Phase I Methods of Subsection 2.2.5,

at least when these methods are applied to piecewise linear problems. For convex functions,

such as those considered in the Active Set Method in Algorithm 1, these methods are also

applicable, since convexity ensures that any local minimum is already a global minimum.

If the feasible set then satisfies the conditions in Theorem 2.13, this is equivalent to saying

that the solution of the Phase I Methods also provides a feasible starting point for the
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actual problem.

Of course, in the piecewise linear case, the feasible set can be convex and closed. However,

the danger is much greater here, because of the kinks, that this is no longer true for

arbitrary problems. Therefore, in the general case, there is a very high risk that a Phase I

Method or even a l1-penalty method will terminate in a local minimum without finding a

feasibility point.

For example, consider the equality constraint max(x− 1,−|x|+ 2) = 0, which has the only

feasible point given by x̌ = −2. Using the l1-penalty approach to determine this feasible

point, one obtains the minimization problem

min
x∈R

ρ |max(x− 1,−|x|+ 2)| ,

for ρ > 0. Regardless of the choice of penalty parameter ρ, this optimization problem has

a global minimizer at x̌ = −2 and a local, but no global, minimizer at x̂ = 1.5. Therefore,

using any starting point x ≥ 1.5 for Algorithm 3 or 4 yields the solution x̂ and thus a

nonfeasible point for the constraint itself.

Nevertheless, there are cases where are Penalty Methods or Phase I Methods are successful.

The first one has already been discussed indirectly. If one additionally assumes that for

the corresponding problems every local minimum is also a global minimum, then Phase I

Methods also provide feasible starting points. Of course, this is especially true for convex

functions, but not only. Still, this is a relatively strong assumption. An alternative is to

run a Phase I Method with a quadratic objective function on each polyhedron. This way

one has a quadratic optimization problem with only linear constraints on each polyhedron.

If at the end the penalty term is zero, then one has a feasible starting point. If not,

the entire polyhedron must not contain any feasible point. However, this is very close

to a globalization strategy, which becomes very expensive depending on the number of

polyhedra.

To conclude the theoretical discussion in this thesis on the topic of Penalty Methods,

the choice of the penalty parameter is now briefly discussed. A possible choice of this

parameter was already given in Theorem 2.14. For this, however, the Lagrange multipliers

have to be determined. Illustratively, any of the violation of the constraints must penalize

more than the function value decreases. The gradient of the objective function of the

optimization problem (4.19) as a function of σ can be determined by substituting the

switching equation (4.19d) into the objective function (4.19a), thus obtaining Eq. (3.35).
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The largest slope over all polyhedra is then obtained by

Jmax
f := max

σ∈{−1,0,1}s
||f ′(x)||∞ := max

σ∈{−1,0,1}s
||a+ Z̃>|Σ|b+Qx||∞ .

Using the active Jacobian (cf. Definition 4.5) the gradients of the constraints can be

determined. Therefore, the smallest value is of interest. To ensure that it does not vanish,

assume that the active Jacobian Jσ for all σ ∈ {−1, 0, 1} contains no zero lines. Then

define the smallest slope of the constraints as

Jmin := min
σ∈{−1,0,1}s

||Jσ||∞ .

To compensate the slope of the objective function by the penalty parameter ρ∗ and the

constraints, the following must be fulfilled

Jmax
f ≤ ρ∗Jmin .

Thus, in case that every local minimizer is a global one, any penalty parameter ρ > ρ∗ with

ρ∗ ≥
Jmax
f

Jmin

yields the exactness of the l1-penalty function in that Algorithm 3 with the l1-penalty

function for (CALOP) yields a local minimum of (CALOP).
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5
Numerical Results

In order to conclude the main part of this thesis, the numerical performance of Algorithm 4,

hereafter always referred to as CASM, will be demonstrated in the following chapter for

different types of examples. For this purpose, this chapter is divided into four sections.

Section 5.1 briefly discusses aspects of the implementation of CASM. First simple and

academic examples are then considered in Section 5.2. These include problems that are

scalable in dimension as well as linear complementary and bi-level problems. This is

followed by Section 5.3 where optimization problems with application background are

solved. These are subproblems that arise in the optimization of gas networks and can

be approximated by constrained piecewise linear problems. Different network sizes are

considered here as example instances and different aspects are considered in each case. The

final Section 5.4 considers a piecewise linear regression problem, where the parameters of

the regression problem are determined for data from the retail trade.

5.1 Aspects of Implementation

For the numerical results in the following sections, CASM is implemented in Matlab version

R2021a [84]. The examples are performed on a Lenovo ThinkPad T490 with Ubuntu

20.04.5, 16 GB RAM and an Intel(R) Core(TM) i7-8565U processor.

Since quantitative statements about runtimes are naturally associated with uncertainties,

for example due to background processes, the used programming language, or different

implementations, some more qualitative anomalies are listed here. During the implemen-

tation a number of options occurred, which have influence on the performance of CASM

regarding the stability or run time.

Since CASM does not ensure LIKQ in every iteration, the saddle point systems (4.25)

or (4.26) may not be uniquely solvable. To deal with this initially, e.g., the solver mldivide

(respectively \) was used. However, it happened that individual entries of the solution
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vector were no longer presentable numbers. From the mathematical point of view this is

also reasonable. For example, if LIKQ is not fulfilled, there can be an infinite number of

solutions, where entries are numerically also outside of the representable numbers. The

same behavior was observed if the system matrix was inverted with inv to solve the system

of equations. In the end, the solver lsqminnorm turned out to be the most stable one.

According to the Matlab documentation [84], lsqminnorm returns an array X that solves

the linear equation AX = B and minimizes the value of ‖AX −B‖. If several solutions

exist to this problem, then lsqminnorm returns the solution that minimizes ‖X‖. As a

result, it no longer occurs that solutions are computed where entries cannot be represented

numerically.

Two other factors that had a significant impact on the computation time were the precise

updating of the saddle point matrix (4.25), respectively (4.26), and the exploitation of

sparsity. In all examples given here, most of the matrices and also in some cases the vectors

are very sparse, i.e., many entries are zero. For such a situation Matlab has the function

sparse, which according to the documentation converts a full matrix into sparse form by

squeezing out any zero elements. If a matrix contains many zeros, converting the matrix

to sparse storage saves memory. Of course, the use of this function depends largely on the

problem itself, but as already mentioned, in practice most matrices that occur are sparse.

Now consider the update of the saddle point matrix: In the first implementations, the

entire system matrix was completely rebuilt in each iteration. But since the matrix in

Eq. (4.25) changes only slightly in each iteration, because at most one component of σ and

ω is changed, it is sufficient to adjust only the corresponding rows and columns and not to

rebuild the whole matrix. Unlike the system matrix from Eq. (4.25), this is no longer so

easy for the one from Eq. (4.26): By the transformation resulting from reduction of the

system matrix (cf. Lemma 4.9) the blocks are no longer simply multiplied from one side

with Σ or Ω but these are now in the middle of the blockterms. The consequence is that a

change in Σ respectively Ω has influence on a larger number of entries, which can also no

longer be localized so easily. For this reason, the first variant was used for the numerical

examples in this thesis, i.e., the sparse saddle point system (4.25) was solved using the

function lsqminnorm. Then, in each iteration, only the corresponding rows and columns

of the matrix blocks were updated after a change in the signature vectors σ and/or ω.

These two points, the exploitation of sparsity and the precise updating of the system matrix

have reduced the runtime to about less than 5% of the original one, where this was not

taken into account. This made it possible to solve significantly more complex problems,

which otherwise would have taken several days.
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5.2 Academical Examples

In this section, some rather simpler, academic examples are now considered and the

behavior of CASM is illustrated. The examples in this section have already been considered

in the article in which CASM was presented and are reproduced here, see [70, Section 5].

The first example is the Hill-function, which has already been considered several times in

the course of this thesis.

Example 5.1 (Hill-function). Consider again the constrained optimization problem stated

in Example 4.2 which is given by

min
x∈R2

max{0, x1 − |x2|}

s.t.

∣∣∣∣−
1

2
|z1|+

1

2

∣∣x1 − |x2|
∣∣
∣∣∣∣ ≤ 2 .

Figure 5.1 shows two different sequences of iterates generated by CASM, for two different

starting values x0 = (8, 3) and x̃0 = (8,−5). For the regularization term Q = qI2 is chosen

with q = 10−10. Once more, the resulting kinks are given by the blue lines and the feasible

set is marked by the red area. In Table 5.1, the individual iterates, the signature vectors

and signature vectors of the inequality constraints are given.

In the sequence labeled by xi in Figure 5.1, it can be seen that the constraints are not

touched at all. This is different for the sequence marked with x̃i. There, the constraint

becomes active in the first iteration. Then the function is minimized along this constraint

and yields the locally minimal point x̃3 = (4,−4). Numerically, in this example the choice

of the parameter q plays a role. If one chooses q one order of magnitude higher, then

−4 4 8

−4

44

−4

−4

4

x0
x1

x2 = x3

x̃0x̃1x̃2 = x̃3

x1

x2

Figure 5.1: Illustration of the iteration sequences generated by CASM for the Hill-function
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Iteration xi σi ωi x̃i σ̃i ω̃i

0 (8.00, 3.00) ( 1, 1, 1) -1 (8.00, -5.00) ( -1, 1, -1) -1
1 (7.33, 3.66) ( 1, 1, 0) -1 (7.33, -5.66) ( -1, 1, -1) 0
2 (0.00, 0.00) ( 1, 0, 0) -1 (4.00, -4.00) ( -1, 0, -1) 0
3 (0.00, 0.00) ( 1, 0, 0) -1 (4.00, -4.00) ( -1, 0, -1) 0

Table 5.1: Optimization history of CASM for the Hill-function

another step is also made to the point (0, 0). This is due to the choice of ε-parameters in

the implementation and the lsqminnorm solver of Matlab. Of course, both (0, 0) and (4,−4)

are solutions. The example thus shows that different starting points do not necessarily yield

the same minimum point.

The next example is a convex piecewise linear function for which it has already been

shown in [59] that a steepest descent approach with exact line search for the starting point

x0 = (9,−2.5) yields zigzag behavior and convergence to a nonstationary point. Numerical

results using ASM for the unconstrained problem have already been presented in [45,

Chapter 4].

Example 5.2 (Constrained HUL). In [59], Hiriart-Urruty and Lemaréchal considered the

piecewise linear and convex function ϕ : R2 → R,

ϕ(x) = max{max{−100, 2x1 + 5|x2|}, 3x1 + 2|x2|} . (5.1)

To test CASM, the feasible starting point x0 = (9,−2.5) is chosen and the two constraints

H1(x) = −0.25x1 − x2 − 10 ≤ 0 ,

H2(x) = 2− 0.2|x1 + 9| − |x2 + 1| ≤ 0 , (5.2)

are added. After reformulation of the max functions in Eq. (5.1) by means of the absolute

value, this optimization problem requires the six switching variables and the target function

z1 = x2 , z2 = −100− 2x1 − 5|z1| ,
z3 = −50− 2x1 + 0.5|z1|+ 0.5|z2| , z4 = x1 + 9 ,

z5 = x2 + 1 , z6 = 2.25|z1|+ 0.25|z2|+ 0.5|z3| ,
y = −25 + 2x1 + z6 ,
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Iteration xi σi ωi

0 ( 9.00, -2.50) ( -1, 1, 1, 1, -1, 1 ) ( -1, -1 )
1 ( 6.75, -1.00) ( -1, 1, 1, 1, 0, 1 ) ( -1, -1 )
2 ( 3.00, -1.00) ( -1, 1, 0, 1, 0, 1 ) ( -1, -1 )
3 ( 3.00, -1.00) ( -1, 1, 0, 1, 1, 1 ) ( -1, -1 )
4 ( 0.00, 0.00) ( 0, 1, 0, 1, 1, 1 ) ( -1, -1 )
5 ( 0.00, 0.00) ( 0, 1, -1, 1, 1, 1 ) ( -1, -1 )
6 (- 4.00, 0.00) ( 0, 1, -1, 1, 1, 1 ) ( -1, 0 )
7 (- 4.00, 0.00) ( 1, 1, -1, 1, 1, 1 ) ( -1, 0 )
8 (- 9.00, 1.00) ( 1, 1, -1, 0, 1, 1 ) ( -1, 0 )
9 (- 9.00, 1.00) ( 1, 1, -1, -1, 1, 1 ) ( -1, 0 )
10 (-14.00, 0.00) ( 0, 1, -1, -1, 1, 1 ) ( -1, 0 )
11 (-14.00, 0.00) ( 0, 1, -1, -1, 1, 1 ) ( -1, 0 )
12 (-40.00, 0.00) ( 0, 1, -1, -1, 1, 1 ) ( 0, -1 )
13 (-40.00, 0.00) ( 1, 1, -1, -1, 1, 1 ) ( 0, -1 )
14 (-66.67, 6.67) ( 1, 0, -1, -1, 1, 1 ) ( 0, -1 )
15 (-66.67, 6.67) ( 1, 0, -1, -1, 1, 1 ) ( 0, -1 )

Table 5.2: Optimization history of CASM for the constrained HUL-function

e.g., one has n = 2, s = 6, m = 0 and p = 2. Using CASM, 15 iterations are needed as

stated in Table 5.2, which also illustrates the deactivation and the activation of the switches

and the inequality constraint during the optimization.

Figure 5.2 shows a plot of the resulting kinks originating from the objective function and

from the constraints (blue lines). The inequality constraints are marked by the red lines

and the red area represents the feasible set. Finally, the iterates generated by CASM are

denoted by the black dots.

This example illustrates one of the advantages of CASM. The feasible set is a nonconvex

set because the constraint (5.2) cuts out a rhombus. Since the remaining set is still

path-connected, CASM can find a trajectory that avoids the hole created by the rhombus,

provided that no local minimum is reached.

The next example is particularly interesting because it is scalable in dimension. Furthermore,

it is known for having only one unique global minimum but no further local minima, instead

it has many stationary points where many optimization algorithms get stuck [45]. This

example has been also already studied in [70] and is also reported here.
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Figure 5.2: Illustration of the iteration sequences generated by CASM for the constrained
HUL-function

Example 5.3 (Constrained Rosenbrock-Nesterov II). According to [51], Nesterov suggested

the Rosenbrock-like test function

ϕ : Rn → R, ϕ(x) =
1

4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1|

that is piecewise linear and nonconvex. It has the unique global minimizer x∗ = (1, 1, . . . , 1)

∈ Rn and 2n−1 − 1 other Clarke stationary points, where none of them is a local minimizer.

For the starting point

x01 = −1 and x0i = 1 , for 2 ≤ i ≤ n ,

the paper [45] contains numerical results and comparisons to other solvers showing that

nonsmooth optimization algorithms may get stuck at one of these stationary points that are

no minimizers. From the literature [45, 51] it is known that the selected starting point is

particularly well chosen, since most algorithms run through all stationary points first. A

different starting point would then yield the same iteration sequence in the further course

after reaching a stationary point. Since constrained problems are considered in this thesis,

the piecewise linear constraint

n∑
i=1

|xi − 1| ≥ 1

2n

is added. Hence, there is an n-dimensional rhombus around the global optimum which is
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cut out of the Rn. The remaining 2n−1 − 1 stationary points are still feasible. To derive an

abs-linear representation of this constrained optimization problem, s = 3n− 1 switching

variables are defined, namely

zi = xi for 1 ≤ i < n , zn+i = xi+1 − 1 for 0 ≤ i < n ,

z2n+i = xi+2 − 2 |zi+1|+ 1 for 0 ≤ i < n− 1 , z3n−1 =
1

4
|zn|+

n−2∑
i=0

|z2n+i| .

Hence, they yield the matrices and vectors

Z =


In−1 0

In

0 In−1

0 0

 ∈ Rs×n, M = 0 , L =

 0 0 0 0 0

−2 In−1 0 0 0 0

0 1
4 0 1> 0

 ∈ Rs×s,
h = 1

2n , D = 0 , E = 0 , F = (0, . . . , 0︸ ︷︷ ︸
n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

) ,

a = 0 ∈ Rn, b = e3n−1 ∈ Rs, c = (0, . . . , 0︸ ︷︷ ︸
n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n−1

, 0) ,

with 1 ∈ Rn−1 as the vector with 1 in every component. Consider the point

x∗i = 1− 2i−1

2n − 1
· 1

2n
∈ (0, 1) for 1 ≤ i ≤ n .

Then one has

σ(x∗) = (1, . . . , 1︸ ︷︷ ︸
n−1

,−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

)> ⇒ α = {2n, . . . , 3n− 2} and ω(x∗) = 0 .

Note that the index 3n− 1 is not contained in α according to Definition 3.5, since z3n−1

does not occur as an argument of an absolute value. Then, one obtains

[
PI(D + E|Σ|Z̃ + FΣZ̃)

PαZ̃

]
=



1 1 · · · · · · · · · 1

−2 1 0 0

0 −2 1 0 0
. . .

. . .
. . .

. . . 0
. . .

. . .
. . . 0

0 −2 1


∈ R(n−1)×n,
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n 1 2 3 4 5 6 7 8 9 10 11 12

# 2 5 14 27 64 117 238 439 856 1685 3382 6807

n 13 14 15 16 17 18 19 20

# 13592 26285 42994 82995 131096 262173 605342 1119907

Table 5.3: Number of iterations generated by CASM for the constrained Rosenbrock-
Nesterov II example with different values of dimension n

such that LIKQ holds. The optimality conditions stated in Theorem 4.8 require

ν> = λ>P>α PαZ̃ , ν> = −λ>|Σ| and |Pαλ| ≤ −PαL̃>λ .

These conditions hold for ν = 0 ∈ R and λ = 0 ∈ Rs. Hence, x∗ is a minimizer.

For varying values of n, the number of iterations required by CASM is shown in Table 5.3.

As can be seen from the iteration counts, the number of visited polyedra is much less than

the total number of polyhedra with definite signatures given by 2s. For a comparison, the

MPBNGC solver, [81], was also applied to solve this problem. MPBNGC is a multiobjective

proximal bundle method for nonconvex, nonsmooth and generally constrained minimization.

For n = 1, seven iterations are needed. Already for n = 2, the solver gets stuck at a non

optimal stationary point. The same can be observed for larger values of n.

Another class of problems that can be put into the form of (CALOP) are linear comple-

mentarity problems. An example of such a problem is the following one.

Example 5.4. Consider the linear complementarity problem (LCP) given by

Mx+ q ≥ 0 and x>(Mx+ q) = 0 (5.3)

for 0 ≤ x ∈ Rn, M ∈ Rn×n and q ∈ Rn. In [12], the LCP is formulated as a system of

piecewise linear equations

min(x,Mx+ q) = 0 , (5.4)

where the minimum operator acts componentwise. In the same paper, the authors present

an algorithm that can be viewed as a semismooth Newton method and show nonconvergence

for a special choice of the matrix M . They pointed out that the problem has a unique
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solution for any q ∈ Rn if and only if M is a P-matrix, i.e., M has positive principal

minors det(MII) > 0 for all nonempty I ⊂ {1, . . . , n}.
To solve Eq. (5.4) with CASM the problem (5.3) is reformulated as

min
x∈Rn

n∑
i=1

|min(xi, (Mx+ q)i)| .

For this problem, consider the two instances with n = 3 respectively n = 4 and the

corresponding matrices for M :

M3 ≡

1 0 2

2 1 0

0 2 1

 and M4 ≡


1 0 1

2
4
3

4
3 1 0 1

2
1
2

4
3 1 0

0 1
2

4
3 1

 .

In both cases, the right-hand side is given by q = 1 as the vector with 1 in every component

of appropriate dimension as considered also in [12]. As starting point the first unit vector

in Rn is used as proposed in [12]. Then, CASM needs five iterations in both cases, i.e.,

for M3 and M4, respectively, to reach the solution 0 as zero vector of the appropriate

dimension. In [12, Proposition 3.7] it is shown that the algorithm proposed in that paper

does not converge but generates a circle of three respectively four reoccurring iterates.

As a final academic example in this section, a bi-level problem is considered. Bi-level

problems have the structure that a lower-level optimization problem must be solved and

its solution has an impact on an upper-level optimization problem [24]. They play an

important role in many real-world applications, see, e.g., [9, 24, 26, 78], and are closely

related to linear complementarity problems as in Example 5.4. In the bi-level problem

considered here all functions appearing as objective functions of the upper and lower level

as well as all constraints are linear. To convert such problems to the setting of this thesis

the KKT-theory (cf. Theorem 2.3) is applied to the lower level to obtain a set of equalities

and inequalities representing the necessary and sufficient optimality conditions for the

lower level. Therefore, the lower level problem is replaced by these conditions in form

of additional constraints. Hence, the Lagrange multipliers from the lower problem also

become optimization variables. However, the resulting complementarity condition is no

longer a linear function. Thus, for the application of CASM, they can be reformulated

analogous to Eq. (5.4) as a piecewise linear constraints.
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Example 5.5. Consider the following linear bi-level problem taken from [102, Chapter 7]:

min
x,y∈R2

3x1 + 2x2 + y1 + y2

s.t. x1 + x2 + y1 + y2 ≤ 4 ,

y ∈ arg min
ỹ∈R2

4ỹ1 + ỹ2

s.t. 3x1 + 5x2 + 6ỹ1 + 2ỹ2 ≥ 15 ,

x ≥ 0, y ≥ 0 .

Using the starting point

x = (2.5, 1.5) , y = (0, 0) , and µ = (0, 4, 1) ,

where µ represents the Lagrange multiplier resulting from the lower level problem as described

above, Table 5.4 shows information about the iterates when solving this problem with CASM.

In [102], a structurally quite different algorithm is used to solve the problem, making it

difficult to compare the effort. Both algorithms perform some preparatory work in that

a pre-solve is performed before applying the algorithm proposed in [102] and a feasible

starting point has to be determined for CASM. Subsequently, the algorithm presented in

[102] requires three iterations, each of which requires the solution of two linear programs.

CASM needed six iterations, where a system of equations with a 27 × 27 system matrix

must be solved in each iteration. Both algorithms attain the same solution.

i xi yi µi σi ωi

0 (2.5, 1.5) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) ( 0, -1, -1, 0, 0, 0, 0, -1, -1)
1 (2.5, 1.5) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, -1, -1, 0, 0, 0, 0, -1, -1)
2 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, 0, 0, 0, -1, -1)
3 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, -1, 0, 0, -1, -1)
4 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (0, 1, 1) (-1, 0, -1, 0, -1, 0, -1, -1, -1)
5 (0.0, 3.0) (0, 0) (0.0, 4.0, 1.0) (1, 1, 1) (-1, 0, -1, 0, -1, 0, -1, -1, -1)
6 (0.0, 3.0) (0, 0) (0.5, 4.0, 0.0) (1, 1, 0) (-1, 0, -1, 0, -1, 0, -1, -1, 0)

Table 5.4: Optimization history of CASM for the linear bi-level problem
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5.3 The Gas Transport Problem

In contrast to the previous section, the following one will now deal with a real-world

application example, namely gas transport problems. The results given here are mainly

derived from a cooperation with Martina Kuchlbauer, during her PhD phase under the

supervision of Frauke Liers and Michael Stingl, and have already been published jointly in

the conference paper [67]. The derivation of the optimization problem and the corresponding

numerical results will be restated and extended by results on larger dimensioned problems.

The problem considered here is called the stationary robust gas transport problem. It is

an optimization problem under uncertainties in demand and physical parameters, which

is nonconvex in node pressure and flow along the pipes. This section is neither about

modeling nor about other solution methods. For details about the mathematical modeling

and other solution methods the reader is referred to [66]. The focus here is the problem

formulation and afterwards an overview of numerical results, which are generated with the

help of CASM. In the following, the arising robust gas transport problem from the point of

view of the network operator is modeled [6].

The gas network is described by a directed graph G = (V,A), where the set V denotes the

nodes. In addition, the arcs model pipes and compressors (A = Api ∪ Ac), resulting in a

corresponding incidence matrix M ∈ {−1, 0, 1}|V|×|A|. The gas flow is denoted by q ∈ R|A|,
where its sign indicates the flow’s direction. Furthermore, squared pressure values are

denoted by π ∈ R|V|. To ensure uniqueness of the physical states, the pressure value is

fixed at one so-called root node.

The aim of the stationary robust gas transport problem is to find an optimal control that

is robustly protected against the perturbation of physical parameters and a minimum-cost

control of compressors. Therefore, by w(∆) the costs of a control ∆ of compressors are

denoted. As a first set of constraints all demands should be satisfied and as a second set for

all arcs none of the physical conditions should be violated. The control of active elements

can be modeled as here-and-now variables at the first stage and the realization of physical

states as wait-and-see variables at the second stage. The realization of physical states takes

place after uncertain parameters realize themselves. As already mentioned, the uncertain

parameters are the demand and the physical parameters, for the latter more precisely the

pressure loss coefficients, which are given by the uncertainty in the frictions of the pipes.

For every possible realization of the pressure loss coefficients, physical feasibility of the

gas transport has to be maintained by the network operator. In order to let a value of ∆a

cause a pressure increase of ∆a at the compressor a ∈ Ac, a linear compressor model is
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used. This yields the robust optimization problem:

min
∆∈[∆,∆]

max
(d,λ)∈U ,π,q

w(∆) +
∑
v∈V

max{0, πv − πv, πv − πv}

s.t. Mq = d ,

(M>π)a = ∆a ∀a ∈ Ac ,
(M>π)a = −λaqa|qa| ∀a ∈ Api ,
(q, π) ∈ R|A| × R|V| .

(5.5)

Thereby, with the under- and overlined variables as fixed lower and upper bounds on the

corresponding variables the uncertainty set U is defined as

U :=

{
(d, λ)

∣∣∣∣∣λ ∈ [λ, λ], di ∈ [d, d],

n∑
i=1

di = 0

}
.

Fixing the uncertain parameters to some values, there is a unique physical state, i.e., unique

flow and pressure variables, that fulfills the physical constraints [6, 22]. Due to this fact,

the optimization problem (5.5) can be reformulated as a box-constrained optimization

problem by writing the pressure as a function of the other parameters (see [71]):

min
∆∈[∆,∆]

max
(d,λ)∈U

w(∆) +
∑
v∈V

max{0, πv − πv(∆; d, λ), πv(∆; d, λ)− πv} .

To solve such a problem, Martina Kuchlbauer has developed an adaptive bundle method

during her PhD phase, see [71]. Therefore, the bundle method is applied to the outer

minimization problem with the optimal value function of the inner maximization problem

as its objective function. As in the bundle method, an approximate function evaluation is

required, the inner maximization problem has to be solved approximately in every iteration.

This inner adversarial problem is the following nonconvex constrained optimization problem:

max
(d,λ)∈U ,π,q

∑
v∈V

max{0, πv − πv, πv − πv}

s.t. Mq = d ,

(M>π)a = ∆a ∀a ∈ Ac ,
(M>π)a = −λaqa|qa| ∀a ∈ Api , (5.6a)

(q, π) ∈ R|A| × R|V| .
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In [71] this adversarial problem is solved approximately via piecewise linear relaxation.

The adaptive bundle method only allows for a certain error in the optimal objective

value. As a relaxation that fulfills a requested error bound, for each of the pressure loss

constraints (5.6a), piecewise linear relaxation via the delta method [6, 38, 83] is used.

From a set of given interpolation points xi with corresponding interpolation values yi, an

auxiliary result can be used to convert the corresponding piecewise linear interpolation

function into Abs-Linear Form. The next lemma is taken from a not yet published article,

which was kindly provided by the authors [42].

Lemma 5.6. In terms of the values y0, yn the outer slopes s0, sn+1, and the inner slopes

si = (yi − yi−1)/(xi − xi−1) for i = 1, . . . , n the interpolant y(x) is given by

y =
1

2

[
y0 + s0(x− x0) +

n∑
i=0

((si+1 − si)|x− xi|) + yn + sn+1(x− sn)

]
.

Here, the two linear functions at the beginning and the end can be combined to [y0 − s0x0 +

yn − sn+1xn + (s0 + sn+1)x]/2.

In the adaptive bundle method [71], an error bound on the optimal objective value of the

adversarial problem is requested and a consequent bound for the error in the pressure loss

constraints is provided. As this theoretical bound turned out to be not very tight, the

strategy in [71] is to allow for large errors in the constraints and to refine in case of a too

large a posteriori error in the objective (see [71, Section 5.1.1, 5.1.2]). As also described in

[71], solving the adversarial problem up to the requested error has the biggest impact on

the run time. To solve the piecewise linearly relaxed adversarial problem mixed-integer

programming (MIP)-Solvers, e.g., Gurobi [52], are used. Therefore, a major motivation

is the reduction of the runtime of an inner solver for these piecewise linear problems. In

particular, a method that allows for warm start strategies has the potential to speed up

computations, because of the use of the refinement strategy. Therefore, sequences of refined

relaxations are solved. This sequence of solutions of refined relaxation is referred to as a

cascade. In the bundle method as described above, the MIP is completely solved anew

after each refinement, without the old solution having any influence since so far no warm

start strategy is known for MIP solvers. In contrast to that, CASM perform a warm start

for the inner loop. That is, if the inner problem is solved for a given discretization, a new

starting point for the next model, with a finer discretization, is calculated with the help of

the previous solution. For this purpose, the calculated values for demand d and pressure

loss coefficient λ are taken from the solution and new starting values for pressure and flow
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are determined for the refined model. This step coincides with the one for the starting

point, i.e., the coarsest discretization.

The application of CASM as a solver for the single piecewise linear problem is studied

numerically in [67]. The results shown here, represent a further improvement compared to

[67] due to additionally exploiting sparsity of the matrices and efficient updating of the

system matrix, as described in Section 5.1.

5.3.1 GasLib-Instances

As a basis for data, a library of realistic gas network instances [88, 95] is used. In [67],

results on instances GasLib-11, GasLib-40 and GasLib-134 have already been presented

and in this thesis, these test cases and additionally the instance GasLib-582 are considered.

The respective number in the name of the problem instance indicates the number of nodes

in the network. Over all of them, different aspects are considered from instance to instance.

On the one hand, different choices of the compressor control ∆ are investigated. One option

here is to use randomly chosen controls, which may be not robust feasible. Another option

is to consider a robust feasible control implying that the optimal value of the adversarial

problem is equal to 0. On the other hand, results for different choices of the piecewise linear

relaxations will be shown. That is to impose different allowed error tolerances up to which

the relaxed problem deviates from the original one in terms of the nonconvex pressure loss

constraints leading to different discretizations in the piecewise linear approximation of the

nonconvex term. As described above, the error bounds are possibly refined during one

iteration of the outer bundle method. This results in an applicability of CASM for such a

cascade of refinements. Finally, physically useful values are considered as feasible starting

points for CASM for most instances, but physically infeasible starting values are also used

for the penalty approaches from Section 2.3 to determine a feasible starting point.

The data sets used for the optimizations are from random iterations of the adaptive bundle

method and were provided by Martina Kuchlbauer. The goal is to show the successful

application of CASM for such optimization problems. A complete integration of the method

as an inner solver in the adaptive bundle method is the subject of future research.

All network plots in the following subsections are given by internal data of the Sonder-

forschungsbereich/Transregio 154 Mathematical Modelling, Simulation and Optimization

using the Example of Gas Networks (project ID: 239904186) [97]. There input nodes

are marked in blue, output nodes red, inner nodes black, pipes and short pipes black,

compressor stations red, resistors cyan, valves green, and control valves are orange.

100



5.3 The Gas Transport Problem

10 20 30 40 50 60 70 80 90

2,400

2,500

2,600

iteration i

fu
n
ct
io
n
va
lu
e

optimal values
1. solve
2. solve

Figure 5.4: Optimization history of CASM for the GasLib-11 cascade

GasLib-11

Figure 5.3: Topology of GasLib-11

To begin with, consider the small and academic test

instance GasLib-11. The topology of it is shown

in Figure 5.3. For this instance the adversarial

problem (5.6) with an initial compressor control

for two typical sizes of given error bounds is solved.

Figure 5.4 shows the development of the function

values during the optimization runs using CASM for

two discretizations of the nonconvex function (5.6a).

The blue line depicts the function values for the

coarse discretization (1. solve) and the green line the function value for the fine discretization

(2. solve). The black line represents the optimal value, which was determined by the

solver Gurobi [52] for the respective problem. This line does not depend on the number of

iterations, but only represents the target to be reached. For this example, both the first

and the second discretization have the same optimal objective function value. Here, one

can see that at the end of each optimization the function value does not increase further,

but the algorithm still needs some iterations to terminate. The reason for this behavior is

the regularization term which is used in CASM. In the graphic the function value is shown

without the regularization term. If one would add this term, it can be seen that the value

still increases slightly until the algorithm terminates.

Table 5.5 lists some essential parameters for the respective problems. The number of

variables, the equality and inequality constraints remain the same in both optimizations,
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but a finer approximation of the Eq. (5.6a) increases the number of switching variables

and thus the dimension of the saddle point system (4.25).

relaxation 1. 2.

variables n 44

equal. const. m 19

inequal. const. p 70

switching variables s 175 183

rows/columns
484 500

of saddle point sys.

iterations 75 23

Table 5.5: Complexity of GasLib-11
instances for their respective opti-
mizations and iterations needed by
CASM

For the first optimization CASM required 75 itera-

tions and for the second one 23 additional iterations

are needed. In Figure 5.4 it can be seen from the

beginning of the green line that after the refinement

and thus after the warm start the optimal function

value is not directly reached again. This is due to

the fact that - as described at the beginning of this

section - the initial values for the pressure and the

flow are recalculated using the solution for the de-

mand and the pressure loss coefficients from the first

optimization and do not coincide with those of the

previous solution. For this instance, the optimal

values for both relaxations coincide. For some of

the next instances it will be seen that this does not

always need to be the case.

The plots and tables in the following subchapters are structured very similarly to those

here, thus the description will be limited to the essential changes.

GasLib-40

Figure 5.5: Topology of GasLib-40

After the GasLib-11, now with the GasLib-40

(cf. Figure 5.5) a somewhat larger instance

is considered in two different settings and in

cascades of three.

First, the adaptive bundle method was ap-

plied with an uncertainty set for demand

d and pressure loss coefficients λ that is

[0.95d, 1.05d] × [λ, 1.1λ]. For this case, mul-

tiple refinements of the relaxation of the ad-

versarial problem are requested in the bundle

method’s last iteration, when a robust feasible

compressor control is investigated.

102



5.3 The Gas Transport Problem

nonrobust feasible robust feasible
relaxation 1. 2. 3. 1. 2. 3.

variables n 170

equal. const. m 54

inequal. const. p 314

switching variables s 331 341 573 315 315 319

rows/columns
1206 1226 1690 1174 1174 1182

of saddle point sys.

iterations 965 620 707 621 213 213

Table 5.6: Complexity of GasLib-40 instances for their respective optimizations and
iterations needed by CASM
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Figure 5.6: Optimization history of CASM for the GasLib-40 cascade

Second, the uncertainty set is enlarged to [0.9d, 1.1d] × [λ, 1.5λ]. In this case, multiple

refinements are requested in an earlier iteration of the bundle method in which the

compressor control is not robust feasible. Therefore, for this instance it is distinguished

between a nonrobust feasible and a robust feasible control.

Analogous to the previous subsection, the main quantities for this problem are given in

Table 5.6. In addition, two different plots are shown for the nonrobust feasible problem in

Figure 5.6 and 5.7. The first one shows, analogous to the plot for GasLib-11 (cf. Figure 5.4),

the development of the function values over the iterations but in this case for the three

individual optimizations. In contrast to the calculation for GasLib-11, however, the optimal

function value decreases after the refinement.
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To highlight the effect of the warm start strategy, refer to Figure 5.7. Here, on the one

hand, the function values of the iterates corresponding to the third optimization from

Figure 5.6 is shown in red (warm start). On the other hand, the function values for the

same problem is shown in sand color (cold start) this time with the initial values from

the first optimization from the three-part cascade, where 1109 iterations are needed. This

shows that even the most refined problem can be solved with the original starting value,

however, clearly more iterations are needed and due to the larger system matrix the cost

per iteration is larger and this is less useful. The effect is even more noticeable for the

GasLib-134 instance, as can be seen in the next subsection.
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·104

iteration i
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optimal value
warm start
cold start

Figure 5.7: Comparison of the third op-
timization for nonrobust feasible GasLib-
40 with and without warm start

In addition, from a technical point of view, the

considered model with the adapted finer dis-

cretization can only be generated if the solution

of the previous one is known. Otherwise, a re-

finement that leads to the same a posteriori

error would be even more complex to solve (see

[67, 71]) which also supports the warm start

strategy proposed here.

Despite the fact that the models become more

complex with each refinement, the number of

iterations does not increase in the same way.

Next, the results for the GasLib-40 instance with

a robust feasible compressor control are given.

For the first two relaxations of the three-part

cascade the optimal function value is 0.6965 and

for the finest one the optimal function value is 0 corresponding to a robust feasible

compressor control. For this setting, CASM needs 621 iterations to solve the first model

with the coarsest discretization to reach a local optimum that is not globally optimal.

However, since CASM determines only locally optimal points this fits to the theoretical

analysis of CASM as described in Section 4.2. The same behavior is also observed for the

second relaxation, where the number of iterations is clearly reduced by the warm start (cf.

Table 5.6). In the third optimization, however, the global optimum is found again.
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Figure 5.8: Topology of GasLib-134

GasLib-134

relaxation 1. 2. 3.

variables n 534

equal. const. m 230

inequal. const. p 784

switching variables s 737 1107 1985

rows/columns
3022 3762 5518

of saddle point sys.

iterations 732 337 337

Table 5.7: Complexity of GasLib-134 in-
stances for their respective optimizations and
iterations needed by CASM

GasLib-134 models the gas network of

Greece, which has a tree structure, see Fig-

ure 5.8. Typically, solvers handle tree struc-

tures better, since the gas can flow only in

one direction and only along one path to

arrive at a certain location.

The adversarial problems (5.6) for GasLib-

134 are also taken from a run of the adap-

tive bundle method, namely for the un-

certainty set [0.8d, 1.2d] × [λ, 2λ]. Again,

CASM is applied to multiple refinements

that are requested for a compressor control

that is not robust feasible.

The progress of the function values is shown

in Figure 5.9, while the essential quantities are listed in Table 5.7. In Figure 5.9 the three

optimizations with the respective refinements using the warm start are given again (blue,

green and red line). A noteworthy observation is that after the warm start in the second

and third iteration the optimal function value is already reached, but - as already described

for the GasLib-11 - because of the regularization still further iterations are needed before
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Figure 5.9: Optimization history of CASM for the GasLib-134 cascade

CASM terminates. Moreover, Figure 5.9 shows in sand color, the cold start optimization,

i.e., the same optimization problem with the same refinement as in the last part of the

three-part cascade was used, but with the same starting value as in the first optimization.

Here it can be seen particularly well that approximately four times as many iterations are

necessary, namely 5919. Note that in each iteration the largest system of equations from

the cascade has to be solved. This is also reflected in the runtime: While the three-step

cascade takes about 20 seconds in total, the cold start variant takes about 120 seconds.

GasLib-582

A much larger instance, namely the GasLib-582, whose topology is shown in Figure 5.10,

is considered as the last instance.

Again a nonrobust feasible setting is used, so that a nonzero function value is attained

in the optimum. Using this instance, the performance of CASM is now compared with a

penalty approach. For this purpose, the constraints are added to the objective function via

a l1-penalty, as described in Section 2.3, and the resulting unconstrained and still piecewise

linear optimization problem is solved with Algorithm 3, i.e., ASM. For each constraint

another nonsmoothness, i.e., an argument in the absolute value, is added resulting in a

total number of m+ p+ s switching variables.

The essential data and the overview of the optimization process are again presented in

Table 5.8 and three plots, namely Figure 5.11 for a given feasible starting point and

Figures 5.12 as well as 5.13 without a given feasible starting point. Note the different

scaling of the function values. In Figure 5.12 the optimal value is of course the same as in
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Figure 5.10: Topology of GasLib-582

Figures 5.11 and 5.13 and given by 7.2074 · 104 but because of the scaling it is optically

almost close to zero. On the one hand, for an already known feasible starting point, the

performance of CASM and ASM combined with the l1-penalty approach is compared. On

the other hand, if no feasible starting point is available, a two-stage strategy is compared

with ASM together with the l1-penalty approach. The two-stage strategy consists in the

first step of a Phase I Method as in the representation (2.11), but without the part of the

actual objective function to ignore its nonsmoothnesses. After obtaining a feasible starting

point, in the second step CASM is used to finally solve the problem. For the comparison

without a feasible starting point, the zero vector is used as an initial point. The solution of

all approaches is finally compared again with the solution by the optimizer Gurobi, still

marked in the figures by the blue lines.

When comparing the optimization with the given starting point (cf. Figure 5.11), it is

noticeable that CASM requires significantly more iterations, but is still faster than ASM

in combination with the penalty approach. This is due to the fact that the complexity

of this problem has reached a size where the regularization term is often adjusted for a

better condition number of the system matrix. The effect of this adjustment is to make

the residual of the solution of the system of equations sufficiently small, i.e., smaller than

a given ε-tolerance. As a heuristic, if the system of equations (4.25) would not be solved
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feasible nonfeasible
CASM ASM ASM

+ Penalty Phase I CASM + Penalty

variables n 2382 2382 2383 2382 2382

equal. const. m 1246 - - 1246 -

inequal. const. p 2832 - 5325 2832 -

switching variables s 2569 6647 2569 2569 6647

rows/columns
11598 15676 12846 11598 15676

of saddle point sys.

iterations 3245 1042 5820 3180 8233

runtime (sec.) 2533 3296 30810 3591 5331

Table 5.8: Comparison of the complexity of GasLib-582 instances for their respective
optimizations and iterations needed by CASM and ASM with a l1-penalty approach

sufficiently well enough, the matrix Q is scaled by a factor of 10 and the system of equations

is solved again. This results in the system having to be solved twice on average in almost

every iteration. Thus, there are almost 2000 solutions of the saddle point system, which

in combination with the larger dimension of the system leads to a larger runtime. Both

approaches yield the same result at the end, however the explicit treatment of the constraint

as in CASM lead to a better numerical stability, in particular with optimization problems

which are more complex by the dimensions.

Considering the setting in which one starts with an infeasible starting point and therefore

first has to perform a Phase I Method to find an feasible point, the performance comparison

changes significantly. Compared to all other optimizations, the Phase I Method requires a

significantly larger number of iterations, a multiple of this again in the number of solutions

of the saddle point system and thus a much higher runtime by about 30 000 seconds ≈
8.3 hours (cf. Table 5.8). Numerically it could be observed that a main reason for this is

the upcoming numerical instability. Therefore, the system of equations has to be solved

very often after adjusting the regularization parameter q. Hence, this problem is not

particularly robust to implementation-typical choices of tolerance parameters. In addition,

it was necessary here to shift the regularization term for reasons of numerical stability.

For this the current iteration was used, as it was described at the end of Subsection 4.2.5.

Without this shift, a function value in the order of 10−4 was already reached, but then a

cycle occurred, in which a constraint was added and dropped repeatedly.
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Figure 5.11: Optimization history of CASM for GasLib-582 with feasible starting point
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Figure 5.12: Optimization history of ASM for
GasLib-582 with nonfeasible starting point

Figure 5.12 shows the history of the func-

tion values per iteration for the solution

with ASM combined with the penalty ap-

proach. In Figure 5.13, on the other

hand, the course of the function value

of Phase I for finding a feasible starting

point (in sand color) is shown on the left

side. Since the target function is initially

ignored here, the value of the violation

of the constraint can be seen, here scaled

logarithmically. In order to reach a fea-

sible starting point, this must therefore

become zero. As starting point for Phase

I the zero vector is chosen. Furthermore,

on the right side the subsequent history of the function values for the original optimization

problem with CASM as solver using the starting value calculated from Phase I (in green)

as well as the optimal value determined by Gurobi (in black) are shown. Using this

combination of the Phase I and CASM, a total of about 9000 iterations are needed. In

contrast, due to the Phase I Method, an even larger number of solutions of the equation

system (4.25) and thus also the above mentioned relatively long runtime is observed.

In summary, this instance shows that numerically, the choice of CASM as an optimization

algorithm with the explicit handling of the constraints is most stable if the user has access
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Figure 5.13: Optimization history for the Phase I and CASM of the GasLib-582 using the
zero vector as nonfeasible starting point

to a feasible starting point. If the latter is not the case, a Phase I Method can be used

to determine it, but this results in greater numerical instability for problems that are too

complex. In this case, it is recommended to use ASM with a l1-penalty approach to handle

the constraints. In any case, the optimal solution has been found in the end, which was also

found by the comparison algorithm Gurobi. The possible problems for Phase I Methods or

penalty approaches as described in Section 4.3 did not occur here.

5.4 Piecewise Linear Regression in Retail

A subproblem from the retail industry marks the final example in this chapter. It arises

when solving retail portfolio maximization problems.

The retail industry is governed by crucial decisions on inventory management, discount

offers (promotions), and stock clearing (markdowns). These present a two-step optimization

problems. The first step is an estimation problem, where the underlying objective is to

predict the coefficients of demand (consumer demand/sales) elasticity with respect to

product prices. This is the one that will be considered here. The second step is the

dynamic revenue maximization problem, that takes in the coefficients as inputs [62, 63].

While both present nonsmooth optimization problems, the latter is a challenging nonlinear

problem in high dimensions. This is further subject to constraints on inventory, inter-

product relationships, and price bounds. Because of the nonlinearities, this is not a subject

of this work but of future research.
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5.4 Piecewise Linear Regression in Retail

Here the estimation problem is discussed. The consumer demand is usually nonlinear and

nonsmooth. Therefore, the demand d as a function of price p at a time t ∈ {1, . . . , T} and

for a product i ∈ {1, . . . , N} is modeled by a piecewise smooth function of the form

dti(p
t
i) = max

j
(hj(p

t
i)) ,

with finitely many smooth functions hj : R → R, see [62, 63]. To approximate this

nonlinear demand function, there has been an extensive study in literature to multiple

demand models, e.g., see [20, 74, 100]. One possibility is to represent this as a piecewise

linear function of the form

dti(p
t
i) = max(ai − bipti, 0) , (5.7)

where ai and bi are the coefficients to be determined. For this, there are anonymized,

but publicly available real data from a retailer [19]. This retailer has 44 products/stock-

keeping-units and over 4400 entries with individual columns for price and sales (besides

others). This has been used as one of the standards for demand forecasts, e.g., in [21, 25].

The timestamps of the records cover about 100 weeks between the years 2016 to 2018.

In order to determine the coefficients for Eq. (5.7) using these data, the following piecewise

linear optimization problem is considered

min
a,b∈RN

N∑
i=1

T∑
t=1

∣∣max(ai − bipti, 0)− dti
∣∣

s.t. a, b ≥ 0 .

(5.8)

Since the ith coefficient depend only on the associated price pi and demand di and not on

the others, i.e., not on pj and dj for j 6= i, for all i = 1, . . . , N , this can also be viewed as

N individual optimization problems of the form

min
ai,bi∈R

T∑
t=1

∣∣max(ai − bipti, 0)− dti
∣∣

s.t. a, b ≥ 0 .

(5.9)

Table 5.9 shows the essential quantities for the complexity of the optimization problems (5.8)

and (5.9) each with the zero vector as starting point. Note that the latter is solved 44 times,

each corresponding to one of the 44 different products, one after the other. The shown
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optimization problem (5.8) (5.9)

variables n 88 2

equal. const. m 0 0

inequal. const. p 88 2

switching variables s 8625 197

rows/columns
17426 398

of saddle point sys.

iterations 10215 10303

runtime (sec.) 765 27

Table 5.9: Comparison of the complexity of
the optimization problems (5.8) and (5.9)
as well as iterations needed by CASM

running time is the total time for all 44 runs together. So it is clear to see that although

the number of iterations is almost the same, the runtime is much faster. This is of course

due to the much larger system matrix when all products are considered simultaneously.

The history of the function values of (5.8) in each iteration is shown in Figure 5.14.

This example thus shows another field of application for CASM, namely solving piecewise

linear regression problems, here using the example given by the retail industry.
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6
Conclusions and Outlook

This concluding chapter will now be used to briefly summarize the most important results

of this thesis once again (see Section 6.1). In addition, a selection of topics follows, which

result from this work as further research fields (see Section 6.2).

6.1 Summary

In this thesis, an optimization algorithm, called Constrained Active Signature Method

(CASM), for solving piecewise linear optimization problems with piecewise linear equality

and inequality constraints was presented and its performance was tested using various

academic as well as real-world application examples. For this purpose, it was assumed that

the optimization problems are given in the so-called Abs-Linear Form, a matrix-vector

representation. With the help of this form it was possible to decompose the primal image

space into finitely many polyhedra. As a first step, the constraints were not considered and

the Active Signature Method (ASM) from [45] was introduced and optimality conditions

for the unconstrained case were given, which can be verified in polynomial time. The basic

idea of ASM is to use polyhedral decomposition to solve linear subproblems on individual

polyhedra and to use the optimality condition to choose the next polyhedron if optimality

is not satisfied. In addition, and in comparison to the previously published literature,

missing details have been added in various places. This includes in particular the finite

convergence of ASM and the related assurance of a descent in the function value.

Thereafter, ASM was used as the basis for the development of CASM. For this purpose,

the constraints in an active set sense were additionally taken into account, resulting in

potentially more polyhedra in the decomposition, depending on the nonsmoothness in the

constraints, and additional linear constraints on the polyhedra. The algorithmic procedure

is then similar to ASM. First, as in Active Set Methods [87], the inequality constraints

are considered as active or inactive. To switch again from polyhedron to polyhedron,
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the optimality conditions are used again to decide which constraints or kinks are to be

activated or deactivated. It was shown, that these conditions can also be checked again

in polynomial time in the constrained case. This makes it unnecessary to check whether,

e.g., the zero vector lies in some kind of subdifferential, as required by other optimality

conditions for nonsmooth optimization. For both algorithms, ASM as well as CASM, it

was possible to show convergence in finitely many steps.

In order to test the numerical performance of CASM, the algorithm was implemented

in Matlab and tested on various, both academic and real-world, application examples

and compared with other optimization algorithms. Problems of smaller scale, including

bi-level problems or those with linear complentarity constraints, were successfully solved.

As examples with real-world background, subproblems from an adaptive bundle method

[71] used to solve gas network optimization problems were studied. Therefore, different

instances and scenarios were considered. Furthermore, a possible warm start strategy was

shown, which can be used to solve equivalent formulations of mixed integer problems.

Here it was seen that for large optimization problems, i.e., those in which the system matrix

of the system of equations to be solved in each iteration is of the order of approximately

15000x15000, first numerical inaccuracies appear. From this observation it can be concluded

that, at least as a Matlab implementation, small to medium sized optimization problems

can be solved. Dimensionally very large optimization problems, on the other hand, have

been challenging, but can still be solved in the order of magnitude considered here. However,

other programming languages or also improvements in the Matlab implementation itself

could provide a more stable method.

6.2 Future Research Directions

To conclude this thesis, now a few possible further research aspects will be discussed.

Solving the saddle point system The main task, which also accounts for most of the

runtime of the CASM implementation, has turned out to be solving the system of equa-

tions (4.25). In Lemma 4.9 it has already been shown that this can be reduced to a smaller

system (4.26), but is more nested in the dependence of the changing matrices Σ and Ω.

I.e., these matrices are usually not only multiplied from one side to others but occur more

frequently in each block, so that a change of these generally changes more entries in the

system matrix itself. Possibly low rank updating can be used here, as known for example

from Quasi-Newton methods [37, 39, 87]. Of course, it would be ideal if the previous
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solution of the system of equations could be reused and the solution from the next iteration

could be determined directly without solving the system itself. However, this seems highly

unlikely, since to the best of the authors’ knowledge no comparable methods are known, in

which this could be used.

Globalization strategies Another research direction consists in globalization strategies.

So far, both ASM and CASM are ”only” able to find local minima. Of course, they can

also be global minima, or if one adds further assumptions to the problem, this can be

guaranteed (see Section 4.3). But the goal should be to find global solutions for problems

without making additional assumptions and to ensure this mathematically. Due to the

decomposition of the feasible set into finitely many polyhedra, strategies known from

mixed-integer optimization [76] may be useful. Because of the fact that only finitely

many polyhedra exist, one can, for example, number them consecutively and interpret

this numbering as an integer variable. In the worst case, of course, one can also optimize

on each polyhedron individually and then compare the function values belonging to the

minima there. This results in the optimization problem

min
σ∈{−1,1}s

min
x∈Rn,z∈Rs

a>x+ b>z

s.t. 0 = g +Ax+Bz + CΣz ,

0 ≥ h+Dx+ Fz +GΣz ,

z = c+ Zx+Mz + LΣz ,

0 = (Is − |Σ|)z ,
0 ≤ Σz ,

where the inner problem is a linear optimization problem. This can be solved by using

Simplex algorithms [85] or, in an unbounded case by an Active Set Method together

with a regularization [87]. The outer minimization problem then gives a finite number of

inner optimization problems. Note that in this thesis it was avoided to solve the linear

optimization problems one by one which would lead to 2s optimizations of the inner problem.

Rather, the goal was to use the information given by the Lagrange multipliers to select the

next polyhedron as cleverly as possible and, as seen in the examples in Chapter 5, to reduce

the number of inner optimization tasks. Therefore, in principle, there are possibilities for

globalization strategies, the challenge is to make the process as efficient as possible.
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Solving constrained abs-smooth optimization problems In Chapter 3 the SALMIN

Algorithm [28, 29] was already mentioned, which uses abs-linearization to generate an

abs-linear model of an abs-smooth function and then, for example, ASM acts as a solver

on the model. In a first step, CASM could also be integrated here, so that abs-smooth

optimization problems with piecewise linear constraints can be solved. As a second step,

however, it becomes more complicated if additional general abs-smooth constraints are to be

considered. These could then also be abs-linearized with the help of the AD techniques as

described at the beginning of this thesis. However, the problem arises that the linearization

changes the feasible set and one does not get a consistent feasible point method anymore.

In order to be able to guarantee this further, for example, projections back on the feasible

set are necessary, if this set is left, or one could work with filter methods [33, 103, 105]. In

comparison to the update step given by Eq. (3.41) for the unconstrained case, one option

is to update in the constrained case via

x̃+ = x+ arg min
∆x∈Fabs(x)

{
∆F (x; ∆x) +

ρ

2
||∆x||2

}
,

x+ = ProjF (x̃+) ,

where F denotes the feasible set, Fabs(x) the abs-linearization of the feasible set obtained

from the base point x and ProjF (x+) the projection of x+ on the set F .

Bagirov et al. listed a survey of various academic test problems in [7, Section 9]. One of

them is the so-called MAD1 from [79, Example 1]. This is a nonsmooth linear constrained

optimization problem, which will be used here to show in a simple example that the

SALMIN approach with constraints can in principle be successful. Since this example has

only one linear constraint, no projection is needed for this at first.

Example 6.1. As stated in [79, Example 1], first consider the linear optimization problem

min
x∈R2

max{x2
1 + x2

2 + x1x2 − 1, sin(x1),− cos(x2)}

s.t. − x2 − x1 + 0.5 ≤ 0 .

Second, consider the slightly modified optimization problem with a piecewise linear constraint

min
x∈R2

max{x2
1 + x2

2 + x1x2 − 1, sin(x1),− cos(x2)}

s.t. − x2 + max{−x1 + 0.5,−4x1 − 1.75} ≤ 0 .

This is constructed in such a way that the optimal point is the same as in the first example,
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Figure 6.1: Illustration of the iteration sequences generated by SALMIN for Example 6.1

but the iteration sequence has to change, because not all iteration points from the first one

are feasible anymore. Of course, the piecewise linear constraint from the second problem can

also be formulated as two single linear constraints, but here a piecewise linear representation

is explicitly considered. Using for both problems the starting point x0 = (1, 2) Figure 6.1

shows two plots of the iteration sequence which are generated by SALMIN. For this purpose,

the contour lines of the objective function in the x1-x2-plane are shown, and the iterations

are marked as points. The green straight lines indicates the constraint, all points above

them are feasible. In total, in both cases 6 (outer) SALMIN iterations are needed to find

the optimal point x∗ = (−0.4003, 0.9003) according to the literature.

Frank-Wolfe Algorithm for abs-smooth functions on convex and compact domains

Similar to the previous approach and as mentioned at the end of Section 3.4, the gener-

alization to abs-smooth functions of the so-called Frank-Wolfe algorithm (or conditional

gradient) [36, 75] is also the subject of current research. First results of this research,

in which the author is also involved, can be found as a report in [68]. The setting is

somewhat different from the one considered in this thesis. In the Frank-Wolfe algorithm for

abs-smooth functions, general abs-smooth functions are allowed in the objective function

and not only piecewise linear ones. On the other hand, the feasible set, denoted in the

following by C ⊆ Rn, is required to be convex and compact. These two requirements do

not play any role at all in this thesis.

Classical Frank-Wolfe algorithms for smooth objective functions f : Rn → R compute in
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every iterate i a direction vi ∈ arg min
v∈C

∇f(xi)
>v, which corresponds to an optimization

along the linearization of the function f . Then, with a step size αi ∈ (0, 1], a linear

combination of the previous iterate and the computed solution of the linearized problem

determines the new iterated [36, 75]. Therefore, for abs-smooth objective functions, the

idea is to replace the linearization by an abs-linearization, which replaces the first step by

vi ∈ arg min
v∈C

∆f(xi; v − xi). Depending on the nature of C, this interior problem can then

be solved with, e.g., ASM or CASM. First statements on convergence rates, which depend

among others on the choice of the step size, as well as numerical tests can be found in [68].

The possible topics listed here show that there are many directions for further research,

building on CASM. There are many more, of course, but these are just a few of the ones

the author is particularly interested in.
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[16] Martin Bücker and Paul Hovland. autodiff.org, 1999. Online; accessed 14-February-

2023.

[17] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. On the evaluation

complexity of constrained nonlinear least-squares and general constrained nonlinear

optimization using second-order methods. SIAM Journal on Numerical Analysis,

53(2):836–851, 2015.

[18] Frank H. Clarke. Optimization and nonsmooth analysis. Canadian Mathematical

Society series of monographs and advanced texts, A Wiley-Interscience publication.

New York: Wiley, 1983.

[19] Maxime C. Cohen, Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. Demand

Prediction in Retail: A Practical Guide to Leverage Data and Predictive Analytics.

Springer Series in Supply Chain Management, 14. Springer Cham, Cham, 1st ed.

2022. edition, 2022.

120



Bibliography

[20] Maxime C. Cohen, Ngai-Hang Zachary Leung, Kiran Panchamgam, Georgia Perakis,

and Anthony Smith. The impact of linear optimization on promotion planning.

Operations Research, 65(2):446–468, 2017.

[21] Maxime C. Cohen, Renyu (Philip) Zhang, and Kevin Jiao. Data aggregation and

demand prediction. ERN: Statistical Decision Theory; Operations Research (Topic),

2019.

[22] Michael Albert Collins, Leon Cooper, Richard Helgason, Jeffery Kennington, and

Larry LeBlanc. Solving the pipe network analysis problem using optimization

techniques. Management Science, 24(7):747–760, 1978.

[23] Frank E. Curtis, Zheng Han, and Daniel P. Robinson. A globally convergent primal-

dual active-set framework for large-scale convex quadratic optimization. Computa-

tional Optimization and Applications, 60(2):311–341, 2015.

[24] Stephan Dempe and Alain Zemkoho. Bilevel Optimization: Theory, Algorithms,

Applications and a Bibliography, pages 581–672. Springer International Publishing,

Cham, 2020.

[25] Yiting Deng, Yuexing Li, and Jing-Sheng Jeannette Song. A unified parsimonious

model for structural demand estimation accounting for stockout and substitution.

SSRN, 2022.

[26] Gabriele Eichfelder. Multiobjective bilevel optimization. Mathematical Programming,

123(2):419–449, 2010.

[27] Herbert Federer. Geometric Measure Theory. Springer, Berlin, Heidelberg, first

edition, 1996.

[28] Sabrina Fiege. Minimization of Lipschitzian piecewise smooth objective functions.

PhD thesis, University of Paderborn, 2017.

[29] Sabrina Fiege, Andrea Walther, and Andreas Griewank. An algorithm for nonsmooth

optimization by successive piecewise linearization. Mathematical Programming, 177,

2018.

[30] Sabrina Fiege, Andrea Walther, Kshitij Kulshreshtha, and Andreas Griewank. Al-

gorithmic differentiation for piecewise smooth functions: a case study for robust

optimization. Optimization Methods and Software, 33(4-6):1073–1088, 2018.

[31] Frank Fischer and Christoph Helmberg. Dynamic graph generation and dynamic

rolling horizon techniques in large scale train timetabling. In ATMOS’10, pages

45–60. 2010.

121



Bibliography

[32] Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,

NY, USA, second edition, 1987.

[33] Roger Fletcher, Sven Leyffer, and Philippe Toint. A brief history of filter methods.

Preprint ANL/MCS-P1372-0906, Argonne National Laboratory, Mathematics and

Computer Science Division, 36, October 2006.

[34] Anders Forsgren, Philip E. Gill, and Elizabeth Wong. Primal and dual active-set

methods for convex quadratic programming. Mathematical programming, 159(1):469–

508, 2016.

[35] Otto Forster. Analysis 1. Springer Spektrum, Wiesbaden, 2016.

[36] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3(1-2):95–110, 1956.

[37] Carl Geiger and Christian Kanzow. Theorie und Numerik restringierter Opti-

mierungsaufgaben. Springer-Lehrbuch Masterclass. Springer Berlin Heidelberg, 2002.

[38] Björn Geißler, Alexander Martin, Antonio Morsi, and Lars Schewe. Using piecewise

linear functions for solving MINLPs. In Jon Lee and Sven Leyffer, editors, Mixed

Integer Nonlinear Programming, pages 287–314, New York, NY, 2012. Springer New

York.

[39] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical optimization.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1981.

[40] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial intel-

ligence and statistics, pages 315–323. JMLR Workshop and Conference Proceedings,

2011.

[41] Andreas Griewank. On stable piecewise linearization and generalized algorithmic

differentiation. Optimization Methods and Software, 28(6):1139–1178, 2013.

[42] Andreas Griewank, Manuel Radons, Tom Streubel, and Andrea Walther. Represen-

tation of piecewise linear functions in abs-linear form of switching depth less than

2n. unpublished, February 2020.

[43] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics,

USA, second edition, 2008.

[44] Andreas Griewank and Andrea Walther. First- and second-order optimality condi-

122



Bibliography

tions for piecewise smooth objective functions. Optimization Methods and Software,

31(5):904–930, 2016.

[45] Andreas Griewank and Andrea Walther. Finite convergence of an active signature

method to local minima of piecewise linear functions. Optimization Methods and

Software, 34(5):1035–1055, 2019.

[46] Andreas Griewank and Andrea Walther. Relaxing kink qualifications and proving

convergence rates in piecewise smooth optimization. SIAM J. Optim., 29(1):262–289,

2019.

[47] Andreas Griewank and Andrea Walther. Beyond the Oracle: Opportunities of

Piecewise Differentiation, pages 331–361. Springer International Publishing, Cham,

2020.

[48] Andreas Griewank and Andrea Walther. Polyhedral DC decomposition and DCA

optimization of piecewise linear functions. Algorithms, 13(7), 2020.

[49] Andreas Griewank, Andrea Walther, Sabrina Fiege, and Torsten Bosse. On lipschitz

optimization based on gray-box piecewise linearization. Mathematical Programming,

158:383–415, 2016.

[50] Vidar Gunnerud and Bjarne Foss. Oil production optimization—a piecewise linear

model, solved with two decomposition strategies. Computers & Chemical Engineering,

34(11):1803–1812, 2010.
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