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A simple first moment argument shows that in a randomly chosen k-SAT formula with

m clauses over n boolean variables, the fraction of satisfiable clauses is 1 − 2−k + o(1) as

m/n → ∞ almost surely. In this paper, we deal with the corresponding algorithmic strong

refutation problem: given a random k-SAT formula, can we find a certificate that the

fraction of satisfiable clauses is 1 − 2−k + o(1) in polynomial time? We present heuristics

based on spectral techniques that in the case k = 3 and m � ln(n)6n3/2, and in the case

k = 4 and m � Cn2, find such certificates almost surely. In addition, we present heuristics

for bounding the independence number (resp. the chromatic number) of random k-uniform

hypergraphs from above (resp. from below) for k = 3, 4.

1. Introduction and results

1.1. Random k-SAT

Let V = {x1, . . . , xn} be a set of n propositional variables, and let L = {xi, x̄i : i = 1, . . . , n}
be the set of literals over V . A k-clause over V is a disjunction of k literals over V .

Furthermore, the k-SAT problem is to decide whether for a given set ϕ of k-clauses there

exists an assignment of the variables V that satisfies all clauses in ϕ. The k-SAT problem

is well known to be NP-hard. In addition to the decision version, the optimization version

MAX k-SAT – given a set ϕ of k-clauses, find an assignment that satisfies the maximum

number of clauses – is of fundamental interest. Let OPT(ϕ) signify the maximum number

of clauses of ϕ that can be satisfied simultaneously by any assignment. Then a result
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of H̊astad [26] shows that it is NP-hard to approximate OPT(ϕ) within a factor of

1 − 2−k + ε for any fixed ε > 0. Indeed, this hardness result is essentially best possible,

as the expected fraction of clauses satisfied by a random assignment is 1 − 2−k . (Besides,

an assignment that satisfies a 1 − 2−k fraction of the clauses can also be constructed

deterministically in polynomial time: see [5, pp. 223 et seq.].)

However, the NP-hardness result just shows that no polynomial time algorithm can

achieve an approximation ratio of 1 − 2−k + ε on all instances (unless P=NP). Therefore,

it does not rule out the existence of efficient heuristics for k-SAT or MAX k-SAT that are

successful on large/interesting classes of instances. From the point of view of heuristics,

the satisfiability problem is interesting in two respects. On the one hand, one could ask

for heuristics for finding a satisfying assignment. This problem has been studied, e.g., by

Flaxman [18], who has shown that in a rather general model of random satisfiable formulas

a satisfying assignment can be found in polynomial time almost surely (see also [34] for an

extension to semirandom formulas). On the other hand, in this paper we study heuristics

for refuting k-SAT instances, i.e., for certifying that no satisfying assignment exists. More

precisely, we present strong refutation heuristics that do not only certify that there is no

satisfying assignment, but even that the number of satisfiable clauses does not exceed

the trivial (1 − 2−k)-fraction significantly. One motivation for studying this problem is the

relationship between the existence of strong refutation heuristics for random formulas

and approximation complexity pointed out by Feige [14].

In order to analyse a heuristic rigorously, we need to specify a model of input instances.

Let 0 < p = p(n) < 1. In this paper, we consider the following standard model Formn,k,p of

random instances of MAX k-SAT. The random formula Formn,k,p is obtained by including

each of the (2n)k possible k-clauses over the variables V = {x1, . . . , xn} with probability

p independently; here we consider clauses as ordered k-tuples of literals, and we allow

multiple occurrences of literals in a clause as well as tautological clauses containing both x

and x̄. Observe that the number of clauses occurring in Formn,k,p is binomially distributed

with mean m = (2n)kp. We say that the random formula Formn,k,p enjoys some property

almost surely , or with high probability if the probability that the property holds tends to 1

as the number n of variables tends to infinity. Throughout, we apply the notions ‘almost

surely’ and ‘with high probability’ to families of probability spaces different from Formn,k,p

in the same manner. (A couple of related though slightly different models of random

k-SAT instances have been considered – e.g., one could neglect the order of the literals in

a clause, or forbid multiple occurrences of a variable in one clause – but the differences

are merely of technical relevance.)

The combinatorial structure of random k-SAT formulas and, in particular, the question

for which values of p there exist satisfying assignments, has attracted considerable

attention. Friedgut [19] has shown that for each fixed k, Formn,k,p exhibits a sharp threshold

behaviour: there exist numbers ck = ck(n) = O(1) such that Formn,k,p is satisfiable almost

surely if m < (1 − ε)ckn, whereas Formn,k,p is unsatisfiable almost surely if m > (1 + ε)ckn.

We refer to ck as the satisfiability threshold. (Section 1.3 below contains some more

detailed comments on the literature.) Furthermore, for any fixed truth value assignment

a of V the number of clauses of Formn,k,p that a satisfies is binomially distributed with

parameters λ = (2k − 1) · nk and p. Therefore, the number of clauses satisfied by a is
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(1 + o(1))λp almost surely as m → ∞. In fact, a simple first moment argument shows that,

almost surely, for all assignments b the number of clauses satisfied by b is (1 + o(1))λp as

m/n → ∞. Hence, almost surely OPT(Formn,k,p) ∼ (1 − 2−k)m as m/n → ∞.

With respect to the computational complexity of refuting Formn,k,p, i.e., finding a

certificate that Formn,k,p is unsatisfiable, the strongest previous results are based on

spectral techniques. The first spectral heuristic for refuting Formn,k,p has been suggested

by Goerdt and Krivelevich [22], who show that the existence of a satisfying assignment

of Formn,4,p with p � ln(n)7n−2 can be refuted in polynomial time almost surely. Note

that for p = ln(n)7n−2, the expected number of clauses is m = 16 ln(n)7n2. Removing the

polylogarithmic factor, Feige and Ofek [16] and (independently) Coja-Oghlan, Goerdt,

Lanka, and Schädlich [10] have shown that spectral techniques can be used to refute

Formn,4,p almost surely if p � Cn−2 for a sufficiently large constant C > 0. Moreover,

Feige and Ofek [17] have given a sophisticated heuristic for refuting Formn,3,p with

p � Cn−3/2 (i.e., m = 8Cn3/2). Their heuristic relies on extracting and refuting a 2-XOR

formula consisting of Θ(n) clauses from the input 3-SAT formula. Moreover, refuting the

2-XOR formula essentially reduces to bounding the MAX CUT on a graph corresponding

to the formula, which can be implemented efficiently via spectral techniques. The result

of Feige and Ofek improves on previous work by Friedman and Goerdt [20], who have

presented a heuristic that refutes Formn,3,p almost surely if p � nε−3/2 for an arbitrarily

small but constant ε > 0, and Goerdt and Lanka [23], who assume that p � (ln7 n)n−3/2.

We emphasize that in all of the above cases, the values of p to which the refutation

heuristics apply exceed the threshold p = 2−kn1−kck when Formn,k,p actually becomes

unsatisfiable almost surely by at least a factor of n(k−2)/2.

The new aspect in the present paper is that we deal with strong refutation heuristics.

That is, we present heuristics that on input Formn,k,p almost surely certify that not more

than a (1 − 2−k + ε)-fraction of the clauses can be satisfied, for an arbitrarily small, but

constant ε > 0. This aspect has not (at least not explicitly) been studied previously. In fact,

the heuristics suggested so far [10, 16, 17, 20, 22, 23] only certify that every assignment

leaves a o(1)-fraction of the clauses unsatisfied.

With respect to MAX 3-SAT, we have the following result.

Theorem 1.1. Suppose that ln(n)6n−3/2 � p = o(n−1). There is a polynomial time algorithm

3-Refute that satisfies the following two conditions.

Correctness. For any MAX 3-SAT instance ϕ, the output of 3-Refute(ϕ, p) is an upper

bound on the number of satisfiable clauses OPT(ϕ).

Completeness. If ϕ = Formn,3,p, then 3-Refute(ϕ, p) � (7 + o(1))n3p almost surely.

Since the number of clauses of Formn,3,p is binomially distributed with mean 8n3p,

Formn,3,p has (8 + o(1))n3p clauses almost surely. Therefore, 3-Refute certifies almost

surely that Formn,3,p does not admit an assignment that satisfies more than a 7
8

+ o(1)

fraction of the clauses. Note that the value of p required by Theorem 1.1 is by a factor of

ln(n)6 larger than that required by the heuristic of Feige and Ofek [17]. However, since

the heuristic suggested in [17] just refutes a suitably chosen subformula consisting of a
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o(1) fraction of the clauses (and ignores the remaining clauses), this heuristic does not

provide strong refutation.

Moreover, the following result addresses MAX 4-SAT.

Theorem 1.2. Suppose that p � c0n
−2 for a sufficiently large constant c0 > 0. There is a

polynomial time algorithm 4-Refute that satisfies the following two conditions.

Correctness. For any MAX 4-SAT instance ϕ, the output of 4-Refute(ϕ, p) is an upper

bound on the number of satisfiable clauses OPT(ϕ).

Completeness. If ϕ = Formn,4,p, then almost surely 4-Refute(ϕ, p) � 15n4p + c1n
3√

p,

where c1 > 0 is a constant.

As in the case of MAX 3-SAT, the number of clauses of Formn,4,p follows a binomial

distribution with mean 16n4p, so that Formn,4,p has 16n4p + o(n3√
p) clauses almost surely.

Hence, 4-Refute almost surely provides a certificate that not more than a

15n4p + c1n
3√

p

16n4p + o(n3√
p)

=
15

16
+ O

(
1

n
√
p

)

fraction of the clauses can be satisfied. The second order term O( 1
n
√
p
) gets arbitrarily

small as n2p � c0 grows. Theorem 1.2 applies to the same range of p as the best previously

known refutation heuristics [10, 16] for 4-SAT, but provides strong refutation.

Theorem 1.1 directly implies that for ϕ = Formn,3,p, p � ln(n)6n−3/2, OPT(ϕ) can be

approximated within a factor of 1 − o(1) almost surely as follows. First, construct an

assignment a that satisfies a 7
8

fraction of the clauses; this can be done deterministically in

polynomial time (e.g., [5, pp. 223 et seq.]). Then, run 3-Refute in order to (try to) certify

that not more than a 7
8

+ o(1)-fraction of the clauses can be satisfied. If 3-Refute succeeds,

which happens almost surely by Theorem 1.1, then the number of clauses satisfied by the

assignment a is within a factor of 1 − o(1) from OPT(ϕ). Similarly, Theorem 1.2 implies

that the number of satisfiable clauses of ϕ = Formn,k,p can be approximated within a

factor of 1 − O( 1
n
√
p
) with high probability.

1.2. Hypergraph problems

The techniques that the algorithms 3-Refute and 4-Refute rely on yield heuristics for

random instances of some coNP-hard hypergraph problems. Recall that a k-uniform

hypergraph H = (V , E) consists of a set V = V (H) of vertices and a set E = E(H) of

edges. The edges are subsets of V of cardinality k. An independent set in H is a set

S ⊂ V (H) such that there is no edge e ∈ E(H) with e ⊂ S . The independence number

α(H) is the number of vertices in a maximum independent set. Moreover, H is called κ-

colourable if there exists κ independent sets S1, . . . , Sκ in H such that S1 ∪ · · · ∪ Sκ = V (H).

The chromatic number χ(H) is the least integer κ � 1 such that H is κ-colourable.

The NP-hardness of approximation results for graph colouring and the clique problem

in graphs [15, 25] imply immediately that it is NP-hard to approximate the independence

number (resp. the chromatic number) of k-uniform hypergraphs on n vertices within a

factor of nε−1 (resp. n1−ε), where ε > 0 is arbitrarily small but fixed. Therefore, we are

interested in heuristics for estimating the independence number or the chromatic number
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of random hypergraphs. As in the case of MAX k-SAT, two different issues arise. On the

one hand, one could ask for heuristics that compute a lower bound on the independence

number, or an upper bound on the chromatic number. For instance, a heuristic for

finding a 2-colouring of a random 2-colourable hypergraph has been suggested by Chen

and Frieze [7]. On the other hand, in this paper we deal with heuristics for upper-bounding

the independence number, and lower-bounding the chromatic number.

In analogy with the Formn,k,p model of random k-SAT instances, there is the Hn,k,p model

of random k-uniform hypergraphs: the vertex set of Hn,k,p is V = {1, . . . , n}, and each of

the
(
n
k

)
possible edges is present with probability 0 < p < 1 independently. Krivelevich

and Sudakov [30] have determined the probable value of the independence number and

of the chromatic number of random hypergraphs: if 1 	 d = k
(
n−1
k−1

)
p = o(nk−1), then

χ(Hn,k,p) ∼
(

d

k ln d

) 1
k−1

and α(Hn,k,p) ∼ n

(
d

k ln d

) 1
1−k

almost surely. (1.1)

Hence, in particular, if d > max{C, (1 + ε)klk−1 ln(klk−1)} for an arbitrarily small but fixed

ε > 0 and a suitable constant C > 0, then χ(Hn,k,p) > l and α(Hn,k,p) < nl−1 almost surely.

The following results deal with the algorithmic problem of bounding the independence

number of Hn,k,p from above, or bounding the chromatic number of Hn,k,p from below.

(The proofs of Krivelevich and Sudakov [30] do not lead to polynomial time algorithms

for these problems.)

Theorem 1.3. Let ε > 0 be arbitrarily small but fixed. Suppose that ln(n)6 � n3/2p = o(n1/2).

There is a randomized polynomial time algorithm 3-Alpha that satisfies the following con-

ditions.

Correctness. For any 3-uniform hypergraph H , 3-Alpha(H, p) outputs an upper bound

on α(H).

Completeness. Almost surely the random hypergraph H = Hn,3,p enjoys the following prop-

erty: the probability over the coin tosses of 3-Alpha(H, p) of the event that 3-Alpha(H, p) <

εn tends to 1 as n → ∞.

We abbreviate the completeness statement in Theorem 1.3 by simply saying that ‘if

H = Hn,3,p, then 3-Alpha(H, p) < εn almost surely’. We use a similar terminology in the

following results.

Theorem 1.4. Let 1 � a � n be an integer. Suppose that a4p � c0n
2 for some sufficiently

large constant c0 > 0. There is a randomized polynomial time algorithm 4-Alpha that sat-

isfies the following conditions.

Correctness. For any 4-uniform hypergraph H , 4-Alpha(H, p) outputs an upper bound

on α(H).

Completeness. If H = Hn,4,p, then 4-Alpha(H, p) < a almost surely.

Since α(H)χ(H) � |V (H)| for all H , Theorem 1.4 yields an algorithm for lower-bounding

the chromatic number immediately.
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Corollary 1.5. Let κ � 2 be an integer. Suppose that n2p � c0κ
4 for some sufficiently large

constant c0 > 0. There is a randomized polynomial time algorithm 4-RefuteCol that satisfies

the following conditions.

Correctness. If H is a 4-uniform hypergraph, then 4-RefuteCol(H, p) either outputs ‘not

κ-colourable’ or ‘fail’. If 4-RefuteCol(H, p) answers ‘not κ-colourable’, then χ(H) > κ.

Completeness. On input H = Hn,4,p, 4-RefuteCol(H, p) outputs ‘not κ-colourable’ almost

surely.

1.3. Further related work

Quite a few papers deal with estimates on the satisfiability thresholds ck (see Section 1.1).

Using the second moment method and extending the work of Achlioptas and Moore [1],

Achlioptas and Peres [3] have shown that ck = 2k ln(2) − O(k). In addition, Achlioptas,

Peres and Naor [2] have derived rather precise estimates on the number of satisfiable

clauses (above the threshold). The proofs are, however, non-algorithmic, i.e., they do not

lead to heuristics for finding good assignments or for refuting the existence of a satisfying

assignment. The best current bounds on c3 are 3.52 � c3 � 4.52 [24, 28, 13]. Furthermore,

7.91 � c4 � 10.23 [3, 29].

With respect to proof complexity, various types of resolution proofs for the non-

existence of satisfying assignments have been investigated on Formn,k,m. Ben-Sasson [6]

has shown that tree-like resolution proofs for refuting Formn,k,m almost surely have size

exp(Ω(n/∆1/(k−2)+ε)), where ∆ = m/n and 0 < ε < 1/2 is an arbitrary constant. Hence,

tree-like resolution proofs are of exponential length even if the number of clauses is

m = nk−1−δ (δ > 0 arbitrarily small but constant). Furthermore, [6, Theorem 2.24] shows

that general resolution proofs for the nonexistence of satisfying assignments almost surely

have exponential size if m � nk/2−δ . We emphasize that resolution does not yield strong

refutation.

Let Gn,p denote the binomial random graph on n vertices, in which each of the
(
n
2

)
possible

edges is present with probability 0 < p < 1 independently. Krivelevich and Vu [32] and

Coja-Oghlan and Taraz [12, 9] have proved that using spectral techniques or semidefinite

programming, one can certify that α(Gn,p) = O(
√
n/p) in polynomial time almost surely.

Hence, these algorithms can be used to refute that α(Gn,p) > εn for a fixed ε > 0, provided

that p is such that the expected number of edges is � Cε−2n for certain constant C > 0.

Furthermore, building on [32, 11, 12], Coja-Oghlan has shown that using semidefinite

programming, one can refute in polynomial time that Gn,p is k-colourable if np � Ck2.

1.4. Notation and preliminaries

If ϕ is a k-SAT instance, then |ϕ| signifies the number of clauses in ϕ. Moreover, if

G = (U,E) is a graph and S ⊂ U, then EG(S) = {e ∈ E : e ⊂ S}. Furthermore, if S, T ⊂ U,

then EG(S, T ) = {{s, t} ∈ E : s ∈ S, t ∈ T }.

Let V1 = {v1, . . . , vn} and V2 = {w1, . . . , wn} be two disjoint sets of n vertices each. A

graph G = (V1 ∪ V2, E) is (V1, V2)-bipartite if e ∩ V1, e ∩ V2 �= ∅ for all e ∈ E. We let Bn,p

denote a random bipartite graph obtained by including each of the n2 possible edges
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{vi, wj} with probability p independently. Hence, the expected number of edges of Bn,p is

n2p.

Let U = {u1, . . . , un} be a set, and let k � 1 be an integer. A k-tuple system is a pair

T = (U, S) where S ⊂ Uk . The difference between a hypergraph and a k-tuple system

is that the edges of a hypergraph are unordered sets of k elements, whereas a k-tuple

system consists of ordered k-tuples. For 0 < p < 1, we obtain the random k-tuple system

Tn,k,p by including each possible k-tuple from Uk with probability p independently. Thus,

the number of k-tuples occurring in Tn,k,p is binomially distributed with mean nkp.

Let ν � 1 be an integer. We let Jν denote an ν × ν matrix with all entries equal to 1.

Furthermore, 	1ν denotes the vector with all ν entries equal to 1. We omit the index ν if it

is clear from the context. Furthermore, if A is a matrix, then ‖A‖ = sup‖ξ‖=1 ‖Aξ‖ signifies

the norm of A. Here ‖η‖ =
√
η2

1 + · · · + η2
ν signifies the l2-norm of a vector η ∈ R

ν . We

recommend [33] as a reference to all further notions and results from linear algebra.

We frequently apply the following Chernoff bounds on the tails of a binomially

distributed random variable X with mean µ (see [27, pp. 26–28] for proofs):

if t > 0, then P(X � µ + t) � exp

(
− t2

2(µ + t/3)

)
(1.2)

and P(X � µ − t) � exp

(
− t2

2µ

)
; (1.3)

if t � 7µ, then P(X > t) � exp(−t). (1.4)

1.5. Techniques and outline

The heuristics for Theorems 1.1–1.4 are based on heuristics for certifying that certain

random k-tuple systems have ‘low discrepancy’. Roughly speaking, we say that a random

k-tuple system T = (U,E) has ‘low discrepancy’ if for all set S ⊂ U the number |E ∩ Sk|
of tuples spanned by S is approximately (|S | · |U|−1)k · |E| (see Section 3.1 for a precise

definition). Now, on the one hand, a standard first moment argument shows that if

T = Tn,k,p is a random k-tuple system such that nk−1p � 1, then T has low discrepancy

almost surely. However, on the other hand, certifying that a random k-tuple system

has low discrepancy seems to be an algorithmic challenge. Indeed, the main technical

contributions of this paper are heuristics for certifying almost surely that a 3-tuple system

Tn,3,p (resp. 4-tuple system Tn,4,p) with p � n−3/2 ln6 n (resp. p � n−2) has low discrepancy.

To see the connection between refuting a random k-SAT instance strongly and certifying

low discrepancy, let ϕ = Formn,k,p be a random formula over the propositional variables

V = {x1, . . . , xn}. Let L = {x1, x̄1, . . . , xn, x̄n} be the set of literals. Then we can define a

k-tuple system T = T (ϕ) = (L,E) as follows: the k-tuple (l1, . . . , lk) is present in E if and

only if the clause l1 ∨ · · · ∨ lk occurs in ϕ. Clearly, as ϕ = Formn,k,p is a random formula,

T = T2n,k,p is a random k-tuple system. Now consider any truth value assignment a.

Let Fa ⊂ L be the set of literals set to false. Then |Fa| = n. Therefore, if T has low

discrepancy, then the number of k-tuples e ∈ E ∩ Fk
a is (1 + o(1))2−k|E|, and each such

k-tuple e corresponds to a clause that evaluates to false under the assignment a. Thus, if

T has low discrepancy, then any assignment leaves a (1 + o(1))2−k-fraction of the clauses
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unsatisfied. Hence, if we can certify almost surely that a random k-tuple system has low

discrepancy, then we can refute Formn,k,p strongly.

In Section 2 we carry out the above approach for random 4-SAT, and Section 3 deals

with the strong refutation heuristic for random 3-SAT. Moreover, in Section 4 we apply

the techniques developed in Sections 2 and 3 to bound the independence number of

random hypergraphs (Theorems 1.3 and 1.4).

Let us finally sketch how the heuristics for certifying that a random k-tuple system

T has low discrepancy work. First, let T = Tn,4,p, p � Cn−2. In order to certify that T

has low discrepancy, we construct a bipartite auxiliary graph G. If the graph G has

low discrepancy in a certain sense (see Section 2.1), then the random 4-tuple system

T is of low discrepancy as well. Furthermore, using spectral techniques, we can almost

surely certify that G has low discrepancy. More precisely, we set up a matrix M that

is related to the adjacency matrix of G; if the norm of M is considerably smaller than

the average degree of G, which happens to be the case almost surely, then G has low

discrepancy. Moreover, to certify that a random 3-tuple system T = Tn,3,p, p � ln6 n−3/2,

has low discrepancy, we construct a certain bipartite auxiliary graph B and in addition a

matrix A. Loosely speaking, almost surely we have that both B has low discrepancy and A

has norm � n3/2+o(1)p, and in this case, T has low discrepancy (see Section 3.1 for details).

There are only few references on certifying that a k-tuple system (or, equivalently,

a k-uniform hypergraph) has low discrepancy. For instance, Chung [8] addresses the

discrepancy problem on k-tuple systems with � nk−1 tuples, i.e., for rather ‘dense’ k-

tuple systems. By comparison, in order to obtain the strong refutation heuristics for

Theorems 1.1 and 1.2, we need to certify low discrepancy on random k-tuple systems with

an expected number of n
k
2 +o(1) tuples (k = 3, 4). To this end, we extend the techniques

from Coja-Oghlan, Goerdt, Lanka, and Schädlich [10], and Goerdt and Lanka [23]

considerably ([10, 23] do not address the issue of strong refutation). Furthermore, we

consider it as a significant aspect of the present work that both the proofs and the

algorithms are much simpler than those in [10, 23]. For instance, in order to refute a

random 4-SAT formula, [10, Section 2] combines somewhat intricate spectral methods

with the use of approximation algorithms for NP-hard problems such as MAX CUT or

MIN BISECTION. By contrast, the heuristic presented in this paper just computes the

eigenvalues of one auxiliary matrix (see Section 2).

2. A strong refutation heuristic for random 4-SAT

In Section 2.2 we present the heuristic for Theorem 1.2. The main tool is a procedure for

certifying that a random bipartite graph is of low discrepancy.

2.1. Discrepancy of random bipartite graphs

Throughout, we let V1 = {v1, . . . , vn}, V2 = {w1, . . . , wn} be two disjoint sets of n vertices.

Let G be a (V1, V2)-bipartite graph, and let 0 � p � 1. We say that G has low p-discrepancy

if, for all sets Si ⊂ Vi, i = 1, 2, we have

||S1||S2|p − |EG(S1, S2)|| � c1

√
|S1||S2|np + n exp(−np/c1), (2.1)
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where c1 > 0 denotes some sufficiently large constant. The aim in this section is to establish

the following proposition.

Proposition 2.1. Suppose that np � c0 for some sufficiently large constant c0 > 0. There is

a polynomial time algorithm BipDisc and a constant c1 > 0 such that the following two

conditions hold.

Correctness. Let G be a (V1, V2)-bipartite graph. Then BipDisc(G, p) either outputs ‘low

discrepancy’ or ‘fail’. If BipDisc(G, p) outputs ‘low discrepancy’, G has low p-discrepancy.

Completeness. BipDisc(Bn,p, p) outputs ‘low discrepancy’ almost surely.

Suppose that np = d > c0, let G = Bn,p, and let Si ⊂ Vi be subsets of cardinality Ω(n)

(i = 1, 2). Further, assume that BipDisc(G, p) outputs ‘low discrepancy’. Note that the

expected number of S1-S2-edges is |S1| · |S2| · p = Ω(nd). By comparison, the term on

the right-hand side of (2.1) is c1

√
|S1||S1|np + n exp(−np/c1) � O(n

√
d). Hence, if d is

sufficiently large, then (2.1) entails that EG(S1, S2) is in fact approximately equal to its

expectation |S1||S2|p for all S1, S2.

The procedure BipDisc is based on computing the norm of a certain auxiliary matrix.

Given a (V1, V2)-bipartite graph B = (V1 ∪ V2, E), we let A = A(B) = (aij)i,j=1,... ,n be the

matrix with entries aij = 1 if {vi, wj} ∈ E, and aij = 0 if {vi, wj} �∈ E. Further, we set

M(B, p) = pJ − A(B). On input B and p, ‖M(B, p)‖ can be computed in polynomial time

within any numerical precision (e.g., by computing the largest eigenvalue of the positive

semidefinite matrix M(B, p)TM(B, p), where M(B, p)T denotes the transpose of M(B, p)).

The next lemma shows what ‖M(B, p)‖ has to do with discrepancy.

Lemma 2.2. Let B be a (V1, V2)-bipartite graph. Then for any two sets Si ⊂ Vi, i = 1, 2,

we have ||EB(S1, S2)| − |S1||S2|p| �
√

|S1||S2| · ‖M(B, p)‖.

Proof. Let M = M(B, p). Moreover, let ξi = (ξ(v)
i )v∈Vi

be the characteristic vector of Si,

that is, ξ(v)
i = 1 if v ∈ Si, and ξ

(v)
i = 0 otherwise (v ∈ Vi). Then ‖ξi‖ =

√
|Si|, 〈pJξ2, ξ1〉 =

p|S1||S2|, and 〈Aξ2, ξ1〉 = |EB(S1, S2)|. Therefore,

||S1||S2|p − |EB(S1, S2)|| = |〈Mξ2, ξ1〉| � ‖M‖ · ‖ξ1‖ · ‖ξ2‖ =
√

|S1||S2| · ‖M‖,

as claimed.

In the case np � ln(n)7, one can show that ‖M(Bn,p)‖ � O(
√
np) almost surely (via the

‘trace method’ from [21]). Hence, in this case, Lemma 2.2 implies that we could certify (2.1)

almost surely just by computing ‖M(Bn,p)‖. In the case np = O(1), however, ‖M(Bn,p)‖ =

Θ(
√

ln n) � √
np almost surely, i.e., ‖M(Bn,p)‖ is too large to give the bound (2.1); the

reason is that almost surely there occur vertices of degree Θ(ln n) in Bn,p (see [31] for more

details). Following an idea of Alon and Kahale [4], we avoid this problem by removing

all edges that are incident with vertices whose degree is too high (at least 10np, say).

https://doi.org/10.1017/S096354830600784X Published online by Cambridge University Press

https://doi.org/10.1017/S096354830600784X


14 A. Coja-Oghlan, A. Goerdt and A. Lanka

Lemma 2.3. Suppose that c0 � np for a sufficiently large constant c0 > 0. Let G = Bn,p,

and let S be the set of all vertices that have degree > 10np in G. Then there are constants

c2, c3, c4 > 0 such that the following three statements hold almost surely.

(1) |S | � n exp(−c2np).

(2) The number of edges of G incident with at least one vertex in S is � c3n
2p exp(−c2np).

(3) Let G′ be the graph obtained from G by deleting all edges that are incident with a vertex

in S . Then ‖M(G′, p)‖ � c4
√
np.

We shall prove Lemma 2.3 in Section 2.3. Finally, the algorithm for certifying that Bn,p

has low discrepancy is as follows.

Algorithm 1. BipDisc(G, p)

Input: A (V1, V2)-bipartite graph G = (V1 ∪ V2, E), a number 0 � p � 1.

Output: Either ‘low discrepancy’ or ‘fail’.

1. Let S be the set of all vertices of degree > 10np in G. If |S | > n exp(−c2np), then

output ‘fail’ and halt; here c2 > 0 is a sufficiently small constant (see Lemma 2.3).

2. Let ES = {e ∈ E : e ∩ S �= ∅}. If |ES | > c3n
2p exp(−c2np), where c3 > 0 is a sufficiently

large constant, then halt with output ‘fail’.

3. Let G′ be the graph obtained from G by deleting all edges in ES . Let M = M(G′, p).

If ‖M‖ > c4
√
np for a certain constant c4, then output ‘fail’ and halt.

4. Output ‘G has low discrepancy’.

Proof of Proposition 2.1. Let Si ⊂ Vi for i = 1, 2. If BipDisc(G, p) answers ‘low discrep-

ancy’, then, by Lemma 2.2,

||EG(S1 \ S, S2 \ S)| − |S1 \ S ||S2 \ S |p| � c4

√
|S1||S2|np. (2.2)

Moreover, because of step 2,

|EG(S1, S2)| − |EG(S1 \ S, S2 \ S)| � c3n
2p exp(−c2np). (2.3)

Finally, due to step 1

|S1||S2|p − |S1 \ S ||S2 \ S |p � (|S1| + |S2|)|S |p � 2np · |S |
� 2n2p exp(−c2np) � n exp(−c2np/2). (2.4)

Combining (2.2)–(2.4), we conclude that (2.1) holds, provided that c1 is chosen large

enough. Finally, Lemma 2.3 implies that BipDisc(Bn,p, p) outputs ‘low discrepancy’ almost

surely.

2.2. The refutation heuristic

Let V = {x1, . . . , xn} be a set of n propositional variables, and let L = {x1, x̄1, . . . , xn, x̄n}
be the set of the 2n literals over V . Moreover, assume that n2p � c0 for a sufficiently large

constant c0.

Let ϕ be a set of 4-clauses over V . To employ the procedure BipDisc from Section 2.1,

we construct a bipartite graph G = G(ϕ) from ϕ as follows. G is a (V1, V2)-bipartite
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graph, where Vi = L × L × {i}, i.e., V1, V2 are disjoint copies of L × L. For each clause

l1 ∨ l2 ∨ l3 ∨ l4 of ϕ, we include the edge {(l1, l2, 1), (l3, l4, 2)} in G, where l1, l2, l3, l4 ∈ L.

That is, the edges of G are obtained by ‘splitting the clauses of ϕ in the middle’. Thus,

each Vi has 4n2 vertices, and the edges of G are in one-to-one correspondence with the

clauses of ϕ. The algorithm for Theorem 1.2 is as follows.

Algorithm 2. 4-Refute(ϕ, p)

Input: A set ϕ of 4-clauses over V , and a number 0 � p � 1.

Output: An upper bound on the number of satisfiable clauses.

1. If |ϕ| > 16n4p + n3√
p, then return |ϕ| and halt.

2. Construct the graph G = G(ϕ) as above. If BipDisc(G, p) answers ‘fail’, then return

|ϕ| and halt.

3. Return 15n4p + c1n
3√

p, where c1 is a sufficiently large constant.

We first prove that 4-Refute outputs an upper bound on the number of satisfiable

clauses; recall that for a 4-SAT formula, OPT(ϕ) signifies the maximum number of clauses

that can be satisfied simultaneously.

Lemma 2.4. There is a constant c′
1 > 0 such that the following holds. Let ϕ be a set of 4-

clauses such that BipDisc(G(ϕ), p) answers ‘low discrepancy’. Then |ϕ| − OPT(ϕ) � n4p −
c′

1n
3√

p.

Proof. Consider an assignment that sets the literals T ⊂ L to true, and F = L \ T

to false. Clearly, |T | = |F | = n. We shall bound the number of edges of G = G(ϕ) that

correspond to unsatisfied clauses. Invoking Proposition 2.1, we get

|EG(F × F × {1}, F × F × {2})| � |F |4p − c′′
1n

3√
p − 4n2 exp(−4n2p/c′′

1) � n4p − c′
1n

3√
p,

where c′
1, c

′′
1 are suitable constants. Hence, there are at least n4p − c′

1n
3√

p unsatisfied

clauses.

Proof of Theorem 1.2. By Lemma 2.4, the output of 4-Refute(ϕ, p) is always an upper

bound on the number of satisfiable clauses, provided that the constant c1 is chosen

sufficiently large. Since |Formn,4,p| is binomially distributed with mean 16n4p, the Chernoff

bounds (1.2) and (1.3) yield that the total number of clauses in Formn,4,p is � 16n4p +

o(n3√
p) almost surely. Hence, the probability that step 1 of 4-Refute outputs |ϕ| is o(1).

Further, the completeness of BipDisc(Formn,4,p, p) (see Proposition 2.1) implies that the

probability that step 2 of 4-Refute(Formn,4,p, p) answers ‘fail’ is o(1) as well.

2.3. Proof of Lemma 2.3

Given a (V1, V2)-bipartite graph G, we let G′ be the graph obtained from G by deleting all

edges that are incident with vertices of degree > 10np in G. Furthermore, we let A′ = A(G′)

be the n × n-matrix whose ijth entry is 1 if vi, wj are adjacent in G′, and 0 otherwise.

We need the following lemma from [10, Lemma 45], whose proof is based on spectral

considerations from [4].
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Lemma 2.5. There are constants c0, c > 0 such that the following holds. Suppose that np �
c0. Then G = Bn,p enjoys the following three properties almost surely.

(1) Let S be the set of all vertices that have degree > 10np in G. Then |S | � n exp(−np/c).

(2) For all unit vectors ξ ⊥	1 we have ‖A′ξ‖ � c
√
np.

(3) ‖A′	1 − np	1‖ � cn
√
p.

Proof of Lemma 2.3. Let G = Bn,p, where np � c0 for a sufficiently large constant c0 > 0.

Let S be the set of all vertices that have degree > 10np in G. Our goal is to establish that

the following three statements hold almost surely.

(1) |S | � n exp(−c2np).

(2) The number of edges of G incident with at least one vertex in S is � c3n
2p exp(−c2np).

(3) Let G′ be the graph obtained from G by deleting all edges that are incident with a

vertex in S . Then ‖M(G′, p)‖ � c4
√
np.

Here c2, c3, c4 > 0 denote suitable constants.

Part (1) of Lemma 2.5 shows immediately that the first property is satisfied almost

surely, if 0 < c2 < 1 is a sufficiently small constant.

With respect to the second property, fix a set S ′ consisting of s = n exp(−c2np) vertices.

Then the number of edges that are incident with S ′ is bounded from above by a

binomially distributed random variable with mean snp = n2p exp(−c2np). Hence, by the

Chernoff bound (1.4), P(S ′ is incident with > 10snp edges) � exp(−10snp). Therefore, the

expected number of sets S ′ ⊂ V of cardinality s such that S ′ is incident with > 10snp

edges is

�
(
n

s

)
exp(−10snp) �

(
en

s

)s

exp(−10snp)

� exp(s(1 − (10 − c2)np)) � exp(−8snp) = o(1),

because 0 < c2 < 1. Consequently, almost surely there is no such set S ′. Hence, in particular

S is incident with at most c3n
2p exp(−c2np) edges almost surely, if c3 � 10.

Finally, we establish that part (3) of Lemma 2.3 holds almost surely. Let e = ‖	1‖−1 ·	1 =

n−1/2 ·	1. By Lemma 2.5, almost surely we have

‖A′ξ‖ = O(
√
np) for all unit vectors ξ ⊥	1, (2.5)

‖A′e − npe‖ = O(
√
np). (2.6)

Let M = M(G′, p) = pJ − A′. Let ξ ⊥	1 be a unit vector. Then Jξ = 0, whence (2.5) yields

‖Mξ‖ = ‖A′ξ‖ = O(
√
np). (2.7)

Moreover, by (2.6),

‖Me‖ = ‖npe − A′e‖ = O(
√
np). (2.8)

Finally, let η be a unit vector. Then we have a decomposition η = αe + βξ, where

α2 + β2 = 1 and ξ ⊥	1 is a unit vector. Combining (2.7) and (2.8), we conclude that

‖Mη‖ � ‖Mξ‖ + ‖Me‖ = O(
√
np). Consequently, ‖M‖ = O(

√
np).
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Remark. Instead of Lemma 2.5, we could also use the spectral considerations from Feige

and Ofek [16] to prove Lemma 2.3.

3. A strong refutation heuristic for random 3-SAT

While our refutation heuristic for 4-SAT is based on checking that a certain bipartite

graph has low discrepancy, the heuristic for 3-SAT needs a procedure for certifying low

discrepancy of triple systems. This procedure is the content of Section 3.1. Then, in

Section 3.2, we show how to employ the procedure in order to refute random 3-SAT

instances strongly.

3.1. Discrepancy in triple systems

Let T = (V , S) be a triple system, where |V | = n. For W1,W2,W3 ⊂ V we let

(W1,W2,W3)T = S ∩ (W1 × W2 × W3).

We say that T has low ε-discrepancy if, for all sets X ⊆ V of cardinality εn � |X| � (1 − ε)n,

we have |(X,X,X)T | = (|X| · n−1)3 · |S | + o(|S |).

Proposition 3.1. Let ε > 0 be constant, and suppose that ln6 n � n3/2p = o(n1/2). There is

a polynomial time algorithm TripleDiscε that satisfies the following conditions.

Correctness. For each triple system T = (V , S) the output of TripleDiscε(T , p) is either

‘low discrepancy’ or ‘fail’. If the output is ‘low discrepancy’, then T has low ε-discrepancy.

Completeness. The output of TripleDiscε(Tn,3,p, p) is ‘low discrepancy’ almost surely.

To certify that the triple system T = (V , S) has low discrepancy, the algorithm

TripleDiscε constructs a bipartite projection graph B12 = (V1 ∪ V2, E). The vertex sets

of B12 are Vi = V × {i}, and the edge {(x, 1), (y, 2)} is present in B12 if and only if there

is a z ∈ V such that (x, y, z) ∈ S . Thus, if T = Tn,3,p, then each V1-V2-edge occurs in B12

with probability p′ = 1 − (1 − p)n ∼ pn independently of all other edges, so that B12 is

distributed as the random bipartite graph Bn,p′ .

In order to certify that the triple system T = (V , S) has low discrepancy, it is, however,

not sufficient to check that the projection graph B12 is of low discrepancy. Therefore, in

addition to the projection graph, we consider the matrix A(T , p) defined as follows. For

0 < p < 1 and b1, b2, z ∈ V we let

Bb1b2z = Bb1b2z(T , p) =

{
− 1 if (b1, b2, z) ∈ S,

p/(1 − p) otherwise.
(3.1)

Then the n2 × n2-matrix A = A(T , p) = (ab1c1 ,b2c2
)(b1 ,c1),(b2 ,c2)∈V 2 is given by

ab1c1 ,b2c2
=

{ ∑
z∈V (Bb1b2z · Bc1c2z + Bb2b1z · Bc2c1z) if (b1, b2) �= (c1, c2),

0 if (b1, b2) = (c1, c2).
(3.2)
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Remark. Given a triple system T , we could define its ‘product graph’ P = (V × V , EP ),

where {(b1, c1), (b2, c2)} ∈ EP if and only if

(b1, b2) �= (c1, c2) ∧ (∃z ∈ V : ((b1, b2, z), (c1, c2, z) ∈ T ) ∨ ((b2, b1, z), (c2, c1, z) ∈ T )).

The definition of P is directed by the refutation heuristic from [20]. If we had constructed

the matrix A as in (3.2) but with Bb1b2z = 1 if (b1, b2, z) ∈ S and Bb1b2z = 0 if (b1, b2, z) �∈ S ,

then A would essentially be the adjacency matrix of P . However, the definition (3.1) of

the Bb1b2z s has been adjusted so that E(Bb1b2z) = 0. This adaptation will be of technical

significance in the proof of Lemma 3.3 below.

If T = (V , S) is a triple system, x ∈ V , and i ∈ {1, 2, 3}, then the degree of x in slot i is

dx,i = dx,i(T ) = |{(z1, z2, z3) ∈ S : zi = x}|.

We say that T is asymptotically regular if dx,i = (1 + o(1))n−1|S | for all x, i. Equipped

with these definitions, we can state the following sufficient condition for T having low

discrepancy.

Lemma 3.2. Suppose that ln6 n � f = n3/2p = o(n1/2) and let ε > 0 be a constant. If T =

(V , S) with |V | = n is a triple system that satisfies the following four conditions, then T has

low ε-discrepancy.

(1) |S | = (1 + o(1))f · n3/2.

(2) T is asymptotically regular.

(3) The projection graph B12 = (V1 ∪ V2, E) of T satisfies |E| = |S | + o(|S |) and has low

p′-discrepancy (see (2.1)).

(4) We have ‖A(T , p)‖ � f · ln5 n.

The proof of Lemma 3.2 can be found in Section 3.3.

Algorithm 3. TripleDiscε(S, p)

Input: A triple system T = (V , E), a number 0 < p < 1.

Output: Either ‘low discrepancy’ or ‘fail’.

1. Check whether conditions (1), (2) and (4) in Lemma 3.2 hold. If not, halt with output

‘fail’.

2. If BipDisc(B12, p
′) answers ‘low discrepancy’, then output ‘low discrepancy’. Otherwise

output ‘fail’.

In order to prove that TripleDiscε is complete, we need the following lemma, which

we shall prove in Section 3.4.

Lemma 3.3. Suppose that ln(n)6 � f = n3/2p = o(n1/2). Then ‖A(Tn,3,p, p)‖ � f · ln5 n al-

most surely.

Proof of Proposition 3.1. The correctness of TripleDiscε follows from Lemma 3.2

immediately. In order to prove the completeness, let us first observe that the random triple
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system T = (V , S) = Tn,3,p satisfies conditions (1) and (2) in Lemma 3.2 almost surely.

Indeed, |S | is binomially distributed with mean n3p, so that the Chernoff bounds (1.2)

and (1.3) imply that |S | ∼ n3p almost surely. Moreover, for each x ∈ V and each

i ∈ {1, 2, 3}, dx,i(T ) is binomially distributed with mean n2p. Hence, by the Chernoff

bound (1.2),

P(|dx,i − n2p| > n
√
p ln n) � exp

(
−Ω

(
n2p ln2 n

n2p + n
√
p ln n

))
� exp(−Ω(ln2 n)) � n−2.

Therefore, by the union bound we have |dx,i − n2p| � n
√
p ln n = o(n2p) for all x ∈ V and

all i ∈ {1, 2, 3} almost surely.

Furthermore, the bipartite graph B12 = (V1 ∪ V2, E) satisfies |E| � |S | by construction.

Moreover, if there occur two edges e1 = (x, y, z1), e2 = (x, y, z2) ∈ S , z1 �= z2, whose first two

components coincide, then e1, e2 get mapped to the same edge of B12. However, since the

expected number of edges e1 = (x, y, z1) ∈ S such that there exists e1 �= e2 = (x, y, z2) ∈ S

is o(|S |), we conclude that |E| ∼ |S | almost surely.

Since p′ ∼ np � n−1, Proposition 2.1 entails that BipDisc(B12, p
′) answers ‘low discrep-

ancy’ almost surely and thus certifies that condition (3) in Lemma 3.2 holds. Finally, due

to Lemma 3.3, condition (4) in Lemma 3.2 holds almost surely.

Remark. The techniques behind TripleDiscε can be adapted easily to obtain an

algorithm that certifies further related discrepancy properties. For example, a variation

of TripleDiscε can be used to certify that all triples (X1, X2, X3) of subsets of V of

cardinalities |Xi| = αin, ε � αi � 1 − ε, satisfy |(X1, X2, X3)T | ∼ α1 · α2 · α3 · |S |. Since our

refutation heuristics do not rely on this more general discrepancy concept, we omit the

details.

3.2. The refutation heuristic

Let ϕ be a set of 3-clauses over the variable set V = {x1, . . . , xn}. Let L = {xi, x̄i : 1 � i � n}
be the set of literals over V . To apply the procedure TripleDiscε from Section 3.1, we

construct a triple system T = (L, S) = T (ϕ) in the natural way: the triple (l1, l2, l3) is in S

if and only if the clause l1 ∨ l2 ∨ l3 occurs in ϕ. Thus, the clauses in ϕ and the triples in S

are in one-to-one correspondence. Moreover, if ϕ = Formn,3,p is a random 3-SAT instance,

then T (ϕ) = T2n,3,p is a random triple system.

Algorithm 4. 3-Refute(ϕ, p)

Input: A set ϕ of 3-clauses over V , and a number 0 < p < 1.

Output: An upper bound on the number of satisfiable clauses.

1. Compute the triple system T = T (ϕ) and run TripleDisc1/2(T , p). If the output is

‘fail’, then return |ϕ| and halt.

2. Return (7 + o(1))n3p.

Proof of Theorem 1.1. Let ϕ be a 3-SAT instance, and consider an assignment a of the

variables V that sets a set Ta ⊂ L of literals to true, and a set Fa = L \ Ta of literals

to false. Then |Ta| = |Fa| = n. In order to prove that 3-Refute is correct, assume that
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TripleDisc1/2(T , p) does not fail. We need to show that the assignment a does not satisfy

more than (7 + o(1))n3 clauses. Indeed, if TripleDisc1/2(T , p) answers ‘low discrepancy’,

then the correctness of TripleDiscε (see Proposition 3.1) implies that |ϕ| ∼ 8n3p, and

(Fa, Fa, Fa)T ∼ 1
8
(2n)3p. Hence, the assignment a satisfies at most (7 + o(1))n3p clauses.

Finally, the completeness of 3-Refute is an immediate consequence of the completeness

of TripleDisc1/2 established in Proposition 3.1.

3.3. Proof of Lemma 3.2

Let T = (V , S) be a triple system with |V | = n that satisfies the assumptions of Lemma 3.2.

Let ln6 n � f = n3/2p = o(n1/2). Moreover, let B12 = (V1 ∪ V2, E) be the bipartite projection

graph, and set s = n3p ∼ |S | ∼ |E|. Let X be an arbitrary subset of V such that α = |X|n−1

satisfies ε � α � 1 − ε, and set Y = V \ X. Moreover, for each z ∈ V let

Mz = (X,X, {z})T , and set

M = {(B,C) ∈ S × S : B,C ∈ Mz for some z ∈ V , and B �= C}.

Thus, M consists of ordered pairs ((b1, b2, z), (c1, c2, z)) ∈ S × S , where (b1, b2) �= (c1, c2)

and b1, b2, c1, c2 ∈ X. Furthermore, let m = |M| and mz = |Mz |. We proceed in two steps.

Step 1. We establish that

m ∼ α4f2n2 = α4s2/n (3.3)

implies

|(X,X,X)T | ∼ α3s. (3.4)

Step 2. We prove (3.3).

With respect to the first step, note that

|(X,X, V )T | ∼ EB12
(X × {1}, X × {2}) ∼ α2s (3.5)

because B12 is of low p′-discrepancy and |E| ∼ |S |. Moreover, (3.5) yields∑
z∈V

mz =
∑
z∈V

|(X,X, {z})T | = |(X,X, V )T | ∼ α2s. (3.6)

Therefore,

m =
∑
z∈V

mz(mz − 1)

=
∑
z∈V

m2
z −

∑
z∈V

mz =
∑
z∈X

m2
z +

∑
z∈Y

m2
z − α2s(1 + o(1)). (3.7)

Furthermore, since the sum
∑

z∈X m2
z subject to the condition

∑
z∈X mz = |(X,X,X)T | is

minimized when each term equals the arithmetic mean |(X,X,X)T |/αn of all αn terms, we

have ∑
z∈X

m2
z � αn

(
|(X,X,X)T |

αn

)2

=
|(X,X,X)T |2

αn
. (3.8)
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Since |(X,X, Y )T | = |(X,X, V )T | − |(X,X,X)T |, we get in the same way that

∑
z∈Y

m2
z � (1 − α)n

(
|(X,X, Y )T |

(1 − α)n

)2

=
(|(X,X, V )T | − |(X,X,X)T |)2

(1 − α)n
. (3.9)

Now let δ be such that |(X,X,X)T | = (α3 + δ)s. We shall prove that δ = o(1). Invok-

ing (3.3), we get

α4f2n2 ∼ m =
∑
z∈X

m2
z +

∑
z∈Y

m2
z − (1 + o(1))α2s (by (3.7))

� |(X,X,X)T |2
αn

+
(|(X,X, V )T | − |(X,X,X)T |)2

(1 − α)n

− (1 + o(1))α2s (by (3.8), (3.9))

∼ ((α3 + δ)s)2

αn
+

(α2s − (α3 + δ)s)2

(1 − α)n
− α2s (using (3.5)).

Dividing both sides of the preceding estimate by s2/n = f2n2, we get

α4 � (α3 + δ)2

α
+

(α2(1 − α) − δ)2

1 − α
− o(1)

= α5 + 2δα2 +
δ2

α
+ α4(1 − α) − 2α2δ +

δ2

1 − α
− o(1)

=
δ2

α
+ α4 +

δ2

1 − α
− o(1).

As ε � α � 1 − ε, we conclude that δ = o(1). Thus, we get |(X,X,X)T | ∼ α3s(1 + o(1)),

thereby proving (3.4).

We are left to show (3.3). Let χ be the characteristic vector of X × X, that is χ ∈
{0, 1}n2

= {0, 1}V×V is 1 in each coordinate corresponding to an element of X × X, and

0 otherwise. As ‖χ‖2 = |X × X| = α2n2 we conclude that |〈χ,Aχ〉| � α2n2 · ‖A‖, where

A = A(T , p). Hence, plugging in the definition of A, we get

α2n2‖A‖ � |〈χ,Aχ〉| =

∣∣∣∣ ∑
(b1 ,b2)∈X×X

∑
(c1 ,c2)∈X×X

ab1c1 ,b2c2

∣∣∣∣
=

∣∣∣∣ ∑
(b1 ,b2 ,c1 ,c2)∈X4

(b1 ,b2)�=(c1 ,c2)

∑
z∈V

(Bb1b2z · Bc1c2z + Bb2b1z · Bc2c1z)

∣∣∣∣

= 2 ·
∣∣∣∣ ∑

(b1 ,b2 ,c1 ,c2)∈X4

(b1 ,b2)�=(c1 ,c2)

∑
z∈V

Bb1b2z · Bc1c2z

∣∣∣∣. (3.10)

We shall prove below that

β =
∑

(b1 ,b2 ,c1 ,c2)∈X4

(b1 ,b2)�=(c1 ,c2)

∑
z∈V

Bb1b2z · Bc1c2z = m − (1 + o(1))α4n2f2. (3.11)
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Combining (3.10) and (3.11), we get 2 · |m − (1 + o(1))α4n2f2| � α2n2‖A‖. Since

‖A‖ � f ln5 n (by condition (4) of Lemma 3.2)

= o(f2) (by the assumption that f � ln6 n),

we conclude that m ∼ α4n2f2, thereby proving (3.3).

To prove (3.11), we observe that the sum β consists of the following terms.

(a)
∑

z∈V mz(mz − 1) = m-times the term 1.

This accounts for the cases when (b1, b2, z), (c1, c2, z) ∈ S , so that Bb1b2z = Bc1c2z = −1.

(b) 2 ·
∑

z∈V mz(α
2n2 − mz)-times the term −p/(1 − p).

This accounts for those cases when (b1, b2, z) ∈ S and (c1, c2, z) /∈ S or vice versa . In

these cases one ‘B-factor’ is −1 and the other is p/(1 − p). Note that |X × X| = α2n2,

and that we have α2n2 − mz triples (b1, b2, z) /∈ S with b1, b2 ∈ X.

(c)
∑

z∈V (α2n2 − mz) · (α2n2 − mz − 1)-times the term (p/(1 − p))2.

This accounts for those cases when (b1, b2, z), (c1, c2, z) /∈ S .

By the assumption s ∼ fn3/2 and (3.6), we get∑
z∈V

mz = |(X,X, V )T | ∼ α2fn3/2. (3.12)

Hence, as 1 − p ∼ 1 and mz � s = O(fn3/2) = o(n2), we obtain the following estimate on

the terms as in (b):

−2 ·
∑
z∈V

mz(α
2n2 − mz) · p

1 − p
∼ −2 ·

∑
z∈V

mz(α
2n2) · p ∼ −2α2n2p ·

∑
z∈V

mz

∼ −2α2n1/2f · α2fn3/2 (by (3.12))

∼ −2α4f2n2.

With respect to the terms in (c), we get

∑
z∈V

(α2n2 − mz) · (α2n2 − mz − 1)

(
p

1 − p

)2

∼
∑
z∈V

α4n4 · p2

∼
∑
z∈V

α4n4f2n−3 ∼ α4n2f2.

Consequently, the sum over all three types (a)–(c) is m − α4f2n2 · (1 + o(1)), which

implies (3.11).

3.4. Proof of Lemma 3.3

The proof of Lemma 3.3 is based on the trace method from [21]. Let T = (V , S) = Tn,3,p.

Since every possible triple is present in S with probability p, the definition of Bb1b2z entails

that

E(Bb1b2z) = p · (−1) + (1 − p) · p

1 − p
= −p + p = 0 for all b1, b2, z ∈ V . (3.13)

Let λ1 � · · · � λn2 be the eigenvalues of A = A(T , p), and let λ = ‖A‖ = max{λ1,−λn2 }
signify the spectral radius of A. Further, recall that the trace of a matrix, which is defined
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as the sum of the elements on the main diagonal, equals the sum of the eigenvalues

(see [33]). Consequently,

Trace[A] =
∑

(b1 ,c2)∈V×V

ab1c2 ,b1c2
=

n2∑
i=1

λi,

Trace[Ak] =

n2∑
i=1

λki for any integer k � 1.

As all eigenvalues of A are real, for even k we obtain

λk �
n2∑
i=1

λki = Trace[Ak].

In particular, E(λk) � E(Trace[Ak]). We shall prove below that there exists an even k = k(n)

such that

E(Trace[Ak]) � (ln4 n · f)k. (3.14)

Then Markov’s inequality yields the assertion of the lemma:

P(λ � ln5 n · f) = P(λk � (ln5 n · f)k)

� E(λk)

(ln5 n · f)k
� E(Trace[Ak])

(ln5 n · f)k
� (ln4 n · f)k

(ln5 n · f)k
= o(1).

Thus, the remaining task is to establish (3.14). Let k > 1 be an even integer (which we

shall specify below). A direct computation yields

Trace[Ak] =

n∑
b1=1

n∑
c1=1

· · ·
n∑

bk=1

n∑
ck=1

ab1c1 ,b2c2
· ab2c2 ,b3c3

· · · abkck ,b1c1
. (3.15)

If there is some 1 � i < k such that (bi, bi+1) = (ci, ci+1), or if (bk, b1) = (ck, c1), then

the entire product ab1c1 ,b2c2
· ab2c2 ,b3c3

· · · abkck ,b1c1
vanishes, due to the definition of the a s.

Therefore, we omit these terms tacitly from now on, i.e., we assume that

(bi, bi+1) �= (ci, ci+1) for all 1 � i < k, and (bk, b1) �= (ck, c1). (3.16)

Expanding the a s in (3.15), we get

Trace[Ak] =
∑

b1 ,... ,bk

∑
c1 ,... ,ck

( ∑
z1∈V

(Bb1b2z1
· Bc1c2z1

+ Bb2b1z1
· Bc2c1z1

)

)
× · · ·

×
( ∑

zk∈V
(Bbkb1zk · Bckc1zk + Bb1bkzk · Bc1ckzk )

)

=
∑

b1 ,... ,bk

∑
c1 ,... ,ck

∑
z1 ,... ,zk

(Bb1b2z1
· Bc1c2z1

+ Bb2b1z1
· Bc2c1z1

) × · · ·

× (Bbkb1zk · Bckc1zk + Bb1bkzk · Bc1ckzk ).
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Moreover, expanding the products, we obtain a sum
∑2k

j=1 Xj , where each Xj is of the

form

Xj = Xj(b1, . . . , bk, c1, . . . , ck, z1, . . . , zk) = Bβ1
· Bγ1

· Bβ2
· Bγ2

· . . . · Bβk · Bγk . (3.17)

Here we either have βi = (bi, bi+1, zi) and γi = (ci, ci+1, zi), or βi = (bi+1, bi, zi) and γi =

(ci+1, ci, zi) for 1 � i < k. Analogously, either βk = (bk, b1, zk) and γk = (ck, c1, zk), or βk =

(b1, bk, zk) and γk = (c1, ck, zk, ). Note that we may assume that βi �= γi for all i ∈ {1, . . . , k},

because by (3.16) the other terms do not contribute to the sum (3.15). Thus, we get

Trace[Ak] =
∑

b1 ,... ,bk

∑
c1 ,... ,ck

∑
z1 ,... ,zk

2k∑
j=1

Xj(b1, . . . , bk, c1 . . . , ck, z1, . . . , zk).

Now, we reorder the above summation over terms containing exactly b different bi s and

ci s and exactly z different zi s. As a notational convenience, we set

B = (b1, . . . , bk, c1, . . . , ck) and Z = (z1, . . . , zk).

Moreover, we let #B = |{b1, . . . , bk, c1, . . . , ck}| signify the number of distinct bi s and ci s

occurring in B, and we let #Z = |{z1, . . . , zk}| denote the number of distinct zi s occurring

in Z. Then our goal is to show that

E(Trace[Ak]) =

2k∑
b=1

k∑
z=1

∑
B

#B=b

∑
Z

#Z=z

2k∑
j=1

E(Xj(B,Z)) � (ln4 n · f)k.

We claim that

E(Trace[Ak]) =

k+2∑
b=1

k/2∑
z=1

∑
B

#B=b

∑
Z

#Z=z

2k∑
j=1

E(Xj(B,Z)). (3.18)

In fact, fix a B with #B = b, and a Z with #Z = z, and let

Xj = Xj(B,Z) = Bβ1
· Bγ1

· · ·Bβk · Bγk

be a term of the sum corresponding to B and Z. In order to prove (3.18), we show that

if z > k/2 or b > k + 2, then there exists a factor Bδ inside Xj which occurs only once.

Then E(Xj) = 0 by (3.13), because Bδ is independent of the remaining factors in Xj .

Assume that all factors Bδ occur at least twice. Then going along the product (3.17)

from the left to the right, there are exactly z places where an element of Z occurs for the

first time. At each such place, we get two new ‘B-factors’, which do not occur to the left

in Xj . Thus, there are at least 2z different ‘B-factors’ in Xj . If each of these 2z ‘B-factors’

occurs at least twice in Xj , then 2k � 4z, i.e., z � k/2.

Furthermore, if we go through the expression (3.17) from the left to the right, then

the first two ‘B-factors’ use at most four elements of B for the first time. Moreover, all

the remaining ‘B-factors’ use at most two elements of B for the first time, because two

indices in each ‘B-factor’ are determined by its predecessor. Thus, in addition to the first

two ‘B-factors’, we need at least b − 4 different ‘B-factors’ to use up all the elements of
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B. Hence, altogether there are at least 2 + (b − 4) = b − 2 different ‘B-factors’. Therefore,

if each ‘B-factor’ occurs at least twice in Xj , then 2(b − 2) � 2k, i.e., b � k + 2. Thus, we

have established (3.18).

Let Bα be a factor which occurs exactly r � 2 times in Xj . Then since we assume that

p � 1
2
,

E(Br
α) = p · (−1)r + (1 − p) ·

(
p

1 − p

)r

� p +
pr

(1 − p)r−1
� 2p.

As we have at least max{2z, b − 2} different ‘B-factors’ in Xj , we obtain the estimate

E(Xj) � (2p)max{2z,b−2},

where the right-hand side only depends on b and z. Therefore, we just need to show that

k+2∑
b=1

k/2∑
z=1

∑
B

#B=b

∑
Z

#Z=z

2k · (2p)max{2z,b−2} � (ln4 n · f)k. (3.19)

Given b, each B with #B = b can be obtained by first picking a subset of b elements from

V and then placing these elements into the 2k possible places; thus, there are at most

nbb2k ways to choose B. Moreover, as we can assume b � 2k, we get nbb2k � nb(2k)2k .

Similarly, we can bound the number of sequences Z with #Z = z by nzzk , and since

z � k, we get nzzk � nzkk . Therefore,

k+2∑
b=1

k/2∑
z=1

∑
B

#B=b

∑
Z

#Z=z

2k · (2p)max{2z,b−2} �
k+2∑
b=1

k/2∑
z=1

23k · nb+z · k3k · (2p)max{2z,b−2}.

As a next step, we estimate nb+z · (2p)max{2z,b−2}. If 2z > b − 2, then b � 2z + 1, so that

nb+z · (2p)max{2z,b−2} � n3z+1(2p)2z = n3z+1(2fn−3/2)2z = n(2f)2z .

On the other hand, if b − 2 � 2z, then z � b/2 − 1, whence

nb+z · (2p)max{2z,b−2} � nb+b/2−1(2p)b−2 = nb+b/2−1(2fn−3/2)b−2 = n2(2f)b−2.

Furthermore, as b � k + 2 and z � k/2, we have max{2z, b − 2} � k. Thus, in order to

prove (3.19), we just need to show that

k+2∑
b=1

k/2∑
z=1

23k · k3k · n2 · (2f)k � (ln4 n · f)k. (3.20)

Let k as the smallest even integer � ln n. Then, for n sufficiently large, we get

k+2∑
b=1

k/2∑
z=1

23k · k3k · n2 · (2f)k � (k + 2) · (k/2) · 24k · k3k · n2 · fk � (ln4 n)k · fk,

which yields (3.20) and thus completes the proof.
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4. Hypergraph problems

The heuristics for Theorems 1.3 and 1.4 make use of the techniques from Sections 2 and 3.

In order to apply these techniques directly, we transform random k-uniform hypergraphs

into random k-tuple systems. We describe this transformation in Section 4.1. Then, we

describe the algorithms for Theorem 1.4 and Theorem 1.3 in Sections 4.2 and 4.3.

4.1. From random hypergraphs to random k-tuple systems

Let k ∈ {3, 4}, let 0 < p < 1, and let H = (V , E) be a k-uniform hypergraph. To transform

H into a k-tuple system Tp(H), we use the following randomized procedure. For each

edge e = {y1, . . . , yk} ∈ E, let T (e) be the set of the k! possible ordered tuples that can be

obtained from y1, . . . , yk . Letting p0 = 1 − (1 − p)1/k!, we choose the set ∅ �= Xe ⊂ T (e) of

k-tuples that we include into Tp(H) to represent e according to the distribution

P(Xe is chosen) = p
|Xe|
0 (1 − p0)k!−|Xe|p−1.

Thus, each edge e ∈ E gives rise to at least one tuple in Tp(H). The choice of the sets

Xe is independent for all e ∈ E. Furthermore, we include each tuple (x1, . . . , xk) ∈ Vk such

that |{x1, . . . , xk}| < k into Tp(H) with probability p0 independently.

Lemma 4.1. The k-tuple system Tp(Hn,k,p) is distributed as a random k-tuple system Tn,k,p0
.

Proof. This is a straightforward computation.

4.2. Bounding the independence number of random 4-uniform hypergraphs

The heuristic 4-Alpha for Theorem 1.4 employs the procedure BipDisc from Section 2.1.

Algorithm 5. 4-Alpha(H, p)

Input: A 4-uniform hypergraph H = (V , E), V = {1, . . . , n}, and a number 0 < p < 1.

Output: An upper bound on α(H).

1. Construct T = Tp(H) (see Section 4.1). Furthermore, let Vi = V × V × {i} for

i = 1, 2, and construct a (V1, V2)-bipartite graph B as follows: include the edge

{(v1, v2, 1), (v3, v4, 2)} into B if and only if (v1, v2, v3, v4) ∈ T .

2. Let p0 = 1 − (1 − p)1/24. If BipDisc(B, p0) answers ‘fail’, then return |V |. Otherwise,

return Cn1/2p−1/4, where C is a sufficiently large constant.

Proof of Theorem 1.4. The completeness of 4-Alpha is an immediate consequence of

Proposition 2.1. To prove the correctness, assume that there is an independent set I in H

such that a = |I | > n1/2p−1/4. Let I1, I2, I3, I4 be disjoint subsets of I such that |Ij | = a/4 for

j = 1, 2, 3, 4. Then EB(I1 × I2 × {1}, I3 × I4 × {2}) = ∅. Hence, if BipDisc(B, p0) outputs

‘low discrepancy’, then (2.1) implies that(
a

4

)4

p0 � c1

(
a

4

)2

n
√
p0 + n2 exp(−n2p0/c1) � c1

8
a2n

√
p0,

where c1 denotes a sufficiently large constant. Since p0 � p
24

, we get a2 � 32c1n(p/24)−1/2.

Hence, a � Cn1/2p−1/4 for a certain constant C .
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4.3. Bounding the independence number of random 3-uniform hypergraphs

Let ε > 0 be an arbitrarily small but fixed number. The following algorithm tries to certify

that the independence number of the 3-uniform hypergraph H is � εn.

Algorithm 6. 3-Alpha(H, p)

Input: A 3-uniform hypergraph H = (V , E) with vertex set V = {1, . . . , n}, and a number

0 < p < 1.

Output: An upper bound on α(H).

1. Construct the triple system T = Tp(H) (see Section 4.1). Let p0 = 1 − (1 − p)1/6 and

Q = {(x, y, z) ∈ T : |{x, y, z}| < 3}. If |Q| > 4n2p0, then halt with output |V |.
2. If TripleDiscε/2(T , p0) answers ‘fail’, then return |V |. Otherwise, return εn.

Proof of Theorem 1.3. Note that |Q| has binomial distribution with mean (3 + o(1))n2p0.

Hence, the Chernoff bound (1.2) implies that |Q| � 4n2p0 almost surely. Thus, the

completeness of 3-Alpha follows from Proposition 3.1.

To prove the correctness, suppose that 3-Alpha(H, p) outputs εn. Furthermore, assume

for contradiction that H has an independent set I of cardinality εn. As TripleDiscε/2(T , p)

answers ‘low discrepancy’, the correctness of TripleDiscε (see Proposition 3.1) implies

that |T | ∼ n3p0, and that

|(I, I, I)T | ∼ |I |3p = ε3n3p0.

However, as I is an independent set in H , we obtain the contradiction |(I, I, I)T | � |Q| �
4n2p0 = o(n3p0), thereby proving the correctness of 3-Alpha.
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[27] Janson, S., �Luczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[28] Kaporis, A. C., Kirousis, L. M. and Lalas, E. G. (2003) Selecting complementary pairs of

literals. Electron. Notes in Discrete Math. 16.

[29] Kirousis, L., Kranakis, E., Krizanc, D. and Stamatiou, Y. (1998) Approximating the

unsatisfiability threshold of random formulas. Random Struct. Alg. 12 253–269.

[30] Krivelevich, M. and Sudakov, B. (1998) The chromatic numbers of random hypergraphs.

Random Struct. Alg. 12 381–403.

[31] Krivelevich, M. and Sudakov, B. (2003) The largest eigenvalue of sparse random graphs.

Combin. Probab. Comput. 12 61–72.

[32] Krivelevich, M. and Vu, V. H. (2002) Approximating the independence number and the

chromatic number in expected polynomial time. J. Combin. Optim. 6 143–155.

[33] Strang, G. (1988) Linear Algebra and its Applications, Harcourt Brace Jovanovich.

[34] Vilenchik, D. (2004) Finding a satisfying assignment for random satisfiable 3CNF formulas.

MSc thesis, Weizmann Institute of Science.

https://doi.org/10.1017/S096354830600784X Published online by Cambridge University Press

https://doi.org/10.1017/S096354830600784X

