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This paper proposes a nonparametric test of Granger causality in quantile. Zheng
(1998, Econometric Theory 14, 123–138) studied the idea to reduce the problem
of testing a quantile restriction to a problem of testing a particular type of mean
restriction in independent data. We extend Zheng’s approach to the case of dependent
data, particularly to the test of Granger causality in quantile. Combining the results
of Zheng (1998) and Fan and Li (1999, Journal of Nonparametric Statistics 10,
245–271), we establish the asymptotic normal distribution of the test statistic under
a β-mixing process. The test is consistent against all fixed alternatives and detects
local alternatives approaching the null at proper rates. Simulations are carried out
to illustrate the behavior of the test under the null and also the power of the test
under plausible alternatives. An economic application considers the causal relations
between the crude oil price, the USD/GBP exchange rate, and the gold price in the
gold market.

1. INTRODUCTION

Whether movements in one economic variable cause reactions in another vari-
able is an important issue in economic policy and also for financial investment
decisions. A framework for investigating causality between economic indicators
has been developed by Granger (1969). Testing for Granger causality between
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economic time series has been since studied intensively in empirical macroeco-
nomics and empirical finance. The majority of research results were obtained in
the context of Granger causality in the conditional mean. The conditional mean,
though, is a questionable element of analysis if the distributions of the variables
involved are nonelliptic or fat tailed as is to be expected with, for example, finan-
cial returns. The focus of a causality analysis on the mean might result in unclear
news. The conditional mean is only one element of an overall summary for the
conditional distribution. A tail area causal relation may be quite different from
a causality based on the center of the distribution. Lee and Yang (2007) explore
money-income Granger causality in the conditional quantile and find that Granger
causality is significant in tail quantiles, whereas it is not significant in the center
of the distribution.

An illustrating motivation for the research presented here is from labor market
analysis where one tries to find out how income depends on the age of the em-
ployee for different education levels, genders, and nationalities, and so on (dis-
crimination effects); see, for example, Buchinsky (1995). In particular, the effect
of education on income is summarized by the basic claim of Day and Newburger
(2007): At most ages, more education equates with higher earnings, and the pay-
off is most notable at the highest educational level, which is actually from the
point of view of mean regression. However, whether this difference is signifi-
cant or not is still questionable, especially for different ends of the (conditional)
income distribution. Härdle, Ritov, and Song (2009) show that for the 0.20 quan-
tile confidence bands for income given “university,” “apprenticeship,” and “low
education” status do not differ significantly from one another although they be-
come progressively lower, which indicates that high education does not equate
to higher earnings significantly for the lower tails of income, whereas increasing
age seems to be the main driving force. For the conditional median, the bands
for “university” and “low education” differ significantly. For the 0.80 quantiles,
all conditional quantiles differ, which indicates that higher education is associ-
ated with higher earnings. However, these findings do not necessarily indicate
causalities. To answer the question “Does education Granger cause income in
various conditional quantiles?” the concept of Granger causality in means can-
not be used to estimate or test for these effects. Hence the need for the concept
of Granger causality in quantiles and the need to develop tests for these effects
emerge.

Another motivation comes from controlling and monitoring downside market
risk and investigating large comovements between financial markets. These are
important for risk management and portfolio/investment diversification (Hong,
Liu, and Wang, 2009). Various other risk management tasks are described in
Bollerslev (2001) and Campbell and Cochrane (1999) indicating the impor-
tance of Granger causality in quantile. Yet another motivation comes from the
well-known robustness properties of the conditional quantile: like the paral-
lel boxplot—calculated across an explanatory variable—the set of conditional
quantiles characterizes the entire distribution in more detail.
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Based on the kernel method, we propose a nonparametric test for Granger
causality in quantile. Testing conditional quantile restrictions by nonparametric
estimation techniques in dependent data situations has not been considered in the
literature before. This paper intends to fill this literature gap. In an unpublished
working paper that has been independently carried out from ours, Lee and Yang
(2007) also propose a test for Granger causality in the conditional quantile. Their
test, however, relies on linear quantile regression and thus is subject to possible
functional misspecification of quantile regression. Recently, Hong et al. (2009) in-
vestigated Granger causality in value at risk (VaR) with a corresponding (kernel-
based) test. Their method, however, offers two possible improvements. The first is
that it needs a parametric specification of VaR, again subject to misspecification
errors. The second is that their test does not directly check causality but rather a
necessary condition for causality.

The problem of testing conditional mean restrictions using nonparametric es-
timation techniques has been actively studied for dependent data. Among the re-
lated work, the testing procedures of Fan and Li (1999) and Li (1999) use the
general hypothesis of the form E(ε|z) = 0, where ε and z are the regression er-
ror term and the vector of regressors, respectively. They consider the distance
measure of J = E[εE(ε|z) f (z)] to construct kernel-based procedures. For the ad-
vantages of using this distance measure in kernel-based testing procedures, see
Li and Wang (1998) and Hsiao and Li (2001). A feasible test statistic based on
J has a second-order degenerate U-statistic as the leading term under the null
hypothesis. Generalizing the result of Hall (1984) for independent data, Fan and
Li (1999) establish the asymptotic normal distribution for a general second-order
degenerate U -statistic with dependent data.

All the results stated previously on testing mean restrictions are however irrel-
evant when testing quantile restrictions. Zheng (1998) proposed an idea to trans-
form quantile restrictions to mean restrictions in independent data. Following his
idea, one can use the existing technical results on testing mean restrictions in test-
ing quantile restrictions. In this paper, by combining Zheng’s idea and the results
of Fan and Li (1999) and Li (1999), we derive a test statistic for Granger causal-
ity in quantile and establish the asymptotic normal distribution of the proposed
test statistic under a β-mixing process. Our testing procedure can be extended to
several hypothesis testing problems with conditional quantile in dependent data;
for example, testing a parametric regression functional form, testing the insignifi-
cance of a subset of regressors, and testing semiparametric versus nonparametric
regression models.

The paper is organized as follows. Section 2 presents the test statistic. Sec-
tion 3 establishes the asymptotic normal distribution under the null hypothesis of
no causality in quantile. Section 4 displays a fairly extensive simulation study to
illustrate the behavior of the test under the null, in addition to the power of the
test under plausible alternatives. Section 5 considers the causal relations between
the crude oil and gold prices as an economic application. Section 6 concludes the
paper. Technical proofs are given in the Appendix.
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2. NONPARAMETRIC TEST FOR GRANGER CAUSALITY
IN QUANTILE

To simplify the exposition, we assume a bivariate case, or that only {yt ,wt } are
observable. Granger causality in mean (Granger, 1988) is defined as follows.

1. wt does not cause yt in mean with respect to {yt−1, . . . , yt−p,wt−1, . . . ,
wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = E( yt |yt−1, . . . , yt−p) and

2. wt is a prima facie cause in mean of yt with respect to {yt−1, . . . , yt−p,
wt−1, . . . ,wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) �= E( yt |yt−1, . . . , yt−p).

Motivated by the definition of Granger causality in mean, we define Granger
causality in quantile as follows.

1. wt does not cause yt in the θ -quantile with respect to {yt−1, . . . , yt−p,
wt−1, . . . , wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = Qθ ( yt |yt−1, . . . , yt−p). (1)

2. wt is a prima facie cause in the θ -quantile of yt with respect to {yt−1, . . . ,
yt−p, wt−1, . . . ,wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) �= Qθ ( yt |yt−1, . . . , yt−p), (2)

where Qθ (yt |·) is the θ th (0 < θ < 1 ) conditional quantile of yt given ·,
which depends on t .

Denote xt ≡ (yt−1, . . . , yt−p) , zt ≡ (yt−1, . . . , yt−p,wt−1, . . . ,wt−q), and the
conditional distribution function yt given zt (xt ) by Fyt |zt (yt |zt )(Fyt |zt (yt |xt )),
which is abbreviated as Fy|z(y|z) (Fy|x (y|x)) later, and vt = (xt , zt ). In this paper,
Fy|z(y|z) is assumed to be absolutely continuous in y for almost all v = (x, z).
Denote Qθ (zt ) ≡ Qθ (yt |zt ) and Qθ (xt ) ≡ Qθ (yt |xt ). Then we have, with proba-
bility 1,

Fy|z {Qθ (zt )|zt } = θ, v = (x, z) and

from the definitions (1) and (2), the hypotheses to be tested are

H0 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}= 1 a.s. (3)

H1 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}

< 1 a.s. (4)
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Zheng (1998) proposed an idea to reduce the problem of testing a quantile re-
striction to a problem of testing a particular type of mean restriction. The null hy-
pothesis (3) is true if and only if E[1{yt � Qθ (xt )|zt }] = θ or 1{yt � Qθ (xt )} =
θ + εt where E(εt |zt ) = 0 and 1(·) is the indicator function. For a list of related
literature we refer to Li and Wang (1998) and Zheng (1998). Although various
distance measures can be used to consistently test the hypothesis (3), we consider
the following distance measure:

J ≡ E
[{

Fy|z(Qθ (xt )|zt )− θ
}2

fz(zt )
]
, (5)

with fzt (zt ) being the marginal density function of zt , which is sometimes ab-
breviated as fz(zt ). Note that J � 0 and the equality holds if, and only if, H0 is
true, with strict inequality holding under H1. Thus J can be used as a proper
candidate for consistent testing of H0 (Li, 1999, p. 104). Because E(εt |zt ) =
Fy|z {Qθ (xt )|zt }− θ we have

J = E{εt E(εt |zt ) fz(zt )} . (6)

The test is based on a sample analogue of E{ε E(ε|z) fz(z)}. Including the density
function fz(z) avoids the problem of trimming on the boundary of the density
function; see Powell, Stock, and Stoker (1989) for an analogue approach. The
density-weighted conditional expectation E(ε|z) fz(z) can be estimated by kernel
methods

Ê(εt |zt ) f̂z(zt ) = 1

(T −1)hm

T

∑
s �=t

Ktsεs, (7)

where m = p + q is the dimension of z, Kts = K {(zt − zs)/h} is the kernel
function, and h is a bandwidth. Then we have a sample analogue of J as

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts [1{yt � Qθ (xt )}− θ ] [1{ys � Qθ (xs)}− θ ] . (8)

The θ th conditional quantile of yt given xt , Qθ (xt ), can also be estimated by the
nonparametric kernel method

Q̂θ (xt ) = F̂−1
y|x (θ |xt ), (9)

where

F̂y|x (yt |xt ) =
∑

s �=t
Lts1(ys � yt )

∑
s �=t

Lts
(10)

is the Nadaraya–Watson kernel estimator of Fy|x (yt |xt ) with the kernel function
of Lts = L (xt − xs)/a and the bandwidth parameter of α. The unknown error ε
can be estimated as
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ε̂t ≡ I
{

yt � Q̂θ (xt )
}

− θ. (11)

Replacing ε by ε̂, we have a feasible kernel-based test statistic of J ,

ĴT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts ε̂t ε̂s

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts

[
1
{

yt � Q̂θ (xt )
}

− θ
][

1
{

ys � Q̂θ (xs)
}

− θ
]
. (12)

3. THE LIMITING DISTRIBUTIONS OF THE TEST STATISTIC

Two existing works are useful in deriving the limiting distribution of the test statis-
tic; one is Theorem 2.3 of Franke and Mwita (2003) on the uniform convergence
rate of a nonparametric quantile estimator; another is Lemma 2.1 of Li (1999)
on the asymptotic distribution of a second-order degenerate U -statistic, which is
derived from Theorem 2.1 of Fan and Li (1999). We restate these results in lem-
mas subsequently for ease of reference. We collect the assumptions needed for
Theorem 3.1.

(A1)

(a) {yt ,wt }T
t=1 is strictly stationary and absolutely regular with mixing coeffi-

cients β(τ) =O(ρτ ) for some 0 < ρ < 1.

(b) For some integer v � 2, fy, fz, and fx all are bounded and belong to A∞
v

(see (D2) later in this section).

(c) Use μt
s(z) (μt

s(ε)) to denote the σ algebra generated by (zs, ..., zt ) ((εs, ...,

εt )) for s ≤ t . With probability 1, E
[
εt |μt−∞(z),μt−1−∞(ε)

]
= 0, that is, the

error εt is a martingale difference process. The terms E
[∣∣∣ε4+η

t

∣∣∣] < ∞ and

E

[∣∣∣εi1
t1 ε

i2
t2 . . . ε

il
tl

∣∣∣1+ξ
]

< ∞ for some arbitrarily small η > 0 and ξ > 0,

where 2 � l � 4 is an integer, 0 � i j � 4, and ∑l
j=1 i j � 8. The terms

σ 2
ε (z) = E(ε2

t |zt = z) and με4(z) = E
[
ε4

t |zt = z
]

all satisfy some Lipschitz

conditions: |a(u + v)−a(u)| � D(u)‖v‖ with E
[
|D(z)|2+η′]

< ∞ for

some small η′ > 0, where a (·) = σ 2
ε (·) ,με4 (·).

(d) Let fτ1,...,τl ( ) be the joint probability density function of
(
zτ1 , . . . , zτl

)
(1� l � 3). Then fτ1,...,τl ( ) is bounded and satisfies a Lipschitz condition:∣∣ fτ1,...,τl (z1 +u1, z2 +u2, . . . , zl +ul)− fτ1,...,τl (z1, z2, . . . , zl)

∣∣ � Dτ1,...,τl

(z1, . . . , zl)‖u‖, where u = (u1, ...,ul), z = (z1, ..., zl), and Dτ1,...,τl ( ) is in-
tegrable and satisfies the condition that

∫ ∫ ∫
Dτ1,...,τl (z1, . . . , zl)‖z‖2ξ dz1,

. . . ,dzl < M < ∞ and
∫ ∫ ∫

Dτ1,...,τl (z1, . . . , zl) fτ1,...,τl (z1, . . . , zl)dz1, ...,
dzl < M < ∞ for some ξ > 1.
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(e) For any y and x satisfying 0 < Fy|x (y|x) < 1 and fx (x) > 0, Fy|x and
fx (x) are continuous and bounded in x and y; for fixed y, the conditional
distribution function Fy|x and the conditional density function fy|x belong
to A∞

3 ; fy|x (Qθ (x)|x) > 0 for all x ; fy|x is uniformly bounded in x and y
by, say, cf .

(f) For some compact set G, there are ε > 0 and γ > 0 such that fx � γ
for all x in the ε-neighborhood {x |‖x −u‖ < ε, u ∈ G } of G. For the
compact set G and some compact neighborhood �0 of 0, the set � =
{v = Qθ (x)+μ|x ∈ G,μ ∈ �0} is compact, and for some constant c0 > 0,
fy|x (y|x)� c0 for all x ∈ G,v ∈ �.

(g) There is an increasing sequence sT of positive integers such that for some
finite A,
T
sT

β2sT /(3T )(sT )� A, 1� sT � T
2 for all T � 1.

(A2)

(a) We use product kernels for both L (·) and K (·). Let l and k be their corre-
sponding univariate kernel which is bounded and symmetric. Then l(·) is
nonnegative, l(·) ∈ ϒv , k(·) is nonnegative, and k(·) ∈ ϒ2.

(b) h =O(T −α′
) for some 0 < α′ < (7/8)m.

(c) a =O(1) and S̃T = T a p(sT log T )−1 → ∞ for some sT → ∞.

(d) A positive number δ exists such that for r = 2+δ and a generic number M0

∫ ∫ ∣∣∣∣ 1

hm
K

(
z1 − z2

h

)∣∣∣∣
r

d Fz(z1)d Fz(z2)� M0 < ∞ and

E

∣∣∣∣ 1

hm
K

(
z1 − z2

h

)∣∣∣∣
r

� M0 < ∞.

(e) For some δ′ (0 < δ′ < δ), β(T ) =O(T −(2+δ′)/δ′
).

The following definitions are due to Robinson (1988).

DEFINITION (D1). ϒλ, λ � 1 is the class of even functions k : R → R satis-
fying

∫
R ui k(u)du = δi0 (i = 0,1, . . . ,λ−1),

k(u) =O
(
(1+|u|λ+1+ε)

−1
)
, for some ε > 0,

where δi j is the Kronecker’s delta.

DEFINITION (D2). Aα
μ, α > 0, μ > 0 is the class of functions g : Rm → R

satisfying that g is (d − 1)-times partially differentiable for d − 1 � μ � d;
for some ρ > 0, supy∈φzρ

∣∣g(y)− g(z)− Gg(y, z)
∣∣/|y − z|μ � Dg(z) for all z,

where φzρ = {y| |y − z| < ρ}; Gg = 0 when d = 1; Gg is a (d − 1)th degree
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homogeneous polynomial in y − z with coefficients being the partial derivatives
of g at z of orders 1 through d − 1 when d > 1; and g(z), its partial derivatives
of order d −1 and less, and Dg(z) have finite αth moments.

The functions in Aα
μ are thus expanded in a Taylor series with a local Lipschitz

condition on the remainder, (α,μ) depending simultaneously on smoothness and
moment properties. Bounded functions in Lip(μ) (the Lipschitz class of degree μ)
for 0 < μ ≤ 1 are in Aα

μ; for μ > 1, Aα
μ contains the bounded and (d − 1)-times

boundedly differentiable functions whose (d − 1)th partial derivatives are in Lip
(μ−d +1)). In applying Aα

μ to f and F , we take α = ∞.
Conditions (A1)(a)–(d) and (A2)(a) and (b) are adopted from conditions (D1)

and (D2) of Li (1999), which are used to derive the asymptotic normal distribution
of a second-order degenerate U -statistic. Assumption (A1)(a) requires {yt ,wt }T

t=1
to be a stationary absolutely regular process with geometric decay rate. Assump-
tions (A1)(b)–(d) are mainly some smoothness and moment conditions; these con-
ditions are quite weak in the sense that they are similar to those used in Fan and
Li (1996) for the independent data case. However, for autoregressive condition-
ally skedastic (ARCH) or generalized autoregressive conditionally heteroskedas-
tic (GARCH) type error processes as considered in Engle (1982) and Bollerslev
(1986), the error term εt may not have finite fourth moments in some situations.
For example, let εt |εt−1 ∼ N (0,α0 +α1ε

2
t−1). Engle (1982) showed that εt does

not have a finite fourth moment if α1 > 1/
√

3. Thus, Assumption (A1)(c) will be
violated in such a case.

Assumption (A2)(a) requires L(·) to be a vth- (v � 2 ) order kernel. This con-
dition together with (A1)(b) ensures that the bias in the kernel estimation (of the
null model) is bounded. The requirement that k is a nonnegative second-order
kernel function in (A2)(b) is a quite weak and standard assumption.

Conditions (A1)(e)–(g) and (A2)(c) are technical conditions (A1), (A2), (B1),
(B2), (C1), and (C2) of Theorem 2.3 of Franke and Mwita (2003), which are re-
quired to get the uniform convergence rate of the nonparametric kernel estimator
of the conditional distribution function and corresponding conditional quantile
with mixing data. Because the simple ARCH models (Engle, 1982; Masry and
Tjøstheim, 1995, 1997), their extensions (Diebolt and Guegan, 1993), and the
bilinear Markovian models are geometrically strongly mixing under some general
ergodicity conditions, Assumption (A1)(g) is usually satisfied. There also exist
simple methods to determine the mixing rates for various classes of random pro-
cesses, for example, Gaussian, Markov, autoregressive moving average, ARCH,
and GARCH. Hence the assumption of a known mixing rate is reasonable and
has been adopted in many studies, for example, Györfi, Härdle, Sarda, and Vieu
(1989), Irle (1997), Meir (2000), Modha and Masry (1998), Roussas (1988), and
Yu (1993). Auestad and Tjøstheim (1990) provided excellent discussions on the
role of mixing for model identification in nonlinear time series analysis. But since
the restriction of Assumption (A1)(c) as discussed before, ARCH or GARCH
type processes may not satisfy all assumptions here. Finally conditions (A2)(d)
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and (e) are adopted from conditions of Lemma 3.2 of Yoshihara (1976), which
are required to get the asymptotic equivalence of the nondegenerate U -statistic
and its projection under the β-mixing process. They are technical assumptions
and are quite standard.

LEMMA 3.1 (Franke and Mwita, 2003). Suppose conditions (A1)(e)–(g)
and (A2)(c) hold. The bandwidth sequence is such that a = O(1) and S̃T =
T a p(sT log T )−1 → ∞ for some sT → ∞. Let ST = a2 + S̃−1/2

T . Then for the non-
parametric kernel estimator of the conditional quantile of Q̂θ (xt ), equation (9),
we have

sup
‖x‖∈G

∣∣∣Q̂θ (x)− Qθ (x)
∣∣∣=O (ST )+O

(
1

T a p

)
a.s. (13)

LEMMA 3.2 (Li, 1999). Let Lt = (εt , zt )
T be a stochastic process that satisfies

conditions (A1)(a)–(d). εt ∈ R, zt ∈ Rm, and K (·) be the kernel function with h
being the smoothing parameter that satisfies conditions (A2)(a) and (b). Define

σ 2
ε (z) = E[ε2

t | zt = z] and (14)

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs . (15)

Then

T hm/2 JT → N(0,σ 2
0 ) in distribution, (16)

where σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du
}

and fz(·) is the marginal density
function of zt .

We consider testing for local departures from the null that converge to the null
at the rate T −1/2h−m/4. More precisely we consider the sequence of local alter-
natives

H1T : Fy|z {Qθ (xt )+dT l(zt )|zt } = θ, (17)

where dT = T −1/2h−m/4 and the function l(·) and its first-order derivatives are
bounded.

THEOREM 3.1. Assume the conditions (A1) and (A2). Then

(i) Under the null hypothesis (3), T hm/2 ĴT
L→ N(0,σ 2

0 ) in distribution, where

σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du

}
and

σ 2
ε (zt ) = E(ε2

t |zt ) = θ(1− θ).

(ii) Under the null hypothesis (3), σ̂ 2
0 ≡ 2θ2(1− θ)21/(T (T −1)hm)∑s �=t K 2

ts

is a consistent estimator of σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}∫

K 2(u)du. Thus
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T hm/2 ĴT /σ̂0

=
√

T

T −1

T
∑

t=1

T
∑

s �=t
Kts

[
1
{

yt � Q̂θ (xt )
}

− θ
][

1
{

ys � Q̂θ (xs)
}

− θ
]

√
2θ(1− θ)

√
∑

s �=t
K 2

ts

.

(iii) Under the alternative hypothesis (4),

ĴT → E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )} > 0 in probability.

(iv) Under the local alternatives (A.2) in the Appendix, T hm/2 ĴT → N(μ,σ 2
1 )

in distribution, where

μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
,

σ 2
1 = 2E

{
σ 4

v (zt ) fz(zt )
}∫

K 2(u)du, and

σ 2
v (zt ) = E(v2

t |zt ) with vt ≡ I {yt � Qθ (xt )}− F(Qθ (xt )|zt ).

Theorem 3.1 generalizes the results of Zheng (1998) for independent data to
the weakly dependent data case. A detailed proof of Theorem 3.1 is given in
the Appendix. The main difficulty in deriving the asymptotic distribution of the
statistic defined in equation (12) is that a nonparametric quantile estimator is
included in the indicator function that is not differentiable with respect to the
quantile argument and thus prevents taking a Taylor expansion around the true
conditional quantile Qθ (xt ). To circumvent the problem, Zheng (1998) made
use of the work of Sherman (1994) on uniform convergence of U -statistics in-
dexed by parameters. In this paper, we bound the test statistic by the statistics
in which the nonparametric quantile estimator in the indicator function is re-
placed with sums of the true conditional quantile and upper and lower bounds
consistent with the uniform convergence rate of the nonparametric quantile esti-
mator, 1(yt � Qθ (xt )−CT ) and 1(yt � Qθ (xt )+CT ).

An important further step is to show that the differences of the ideal test statistic
JT given in equation (8) and the statistics having the indicator functions obtained
from the first step stated previously are asymptotically negligible. We may directly
show that the second moments of the differences are asymptotically negligible by
using the result of Yoshihara (1976) on the bound of moments of U -statistics
for absolutely regular processes. However, it is tedious to get bounds on the
second moments with dependent data. In the proof we use instead the fact that
the differences are second-order degenerate U-statistics. Thus by using the result
on the asymptotic normal distribution of the second-order degenerate U -statistic
of Fan and Li (1999), we can derive the asymptotic variance that is based on the
independent and identically distributed (i.i.d.) sequence having the same marginal
distributions as weakly dependent variables in the test statistic. With this little
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trick we only need to show that the asymptotic variance is O(1) in an i.i.d.
situation. For details refer to the Appendix.

4. SIMULATION

We generate bivariate data {yt ,wt }T
t=1 according to the following model:

yt = 1

2
yt−1 + cw2

t−1 + ε1t ,

wt = 1+ 1

2
wt−1 + ε2t ,

where ε1t and ε2t are independent standard normal random variables. Here c = 0
corresponds to the hypothetical model; that is, wt does not cause yt in the θ
quantile with respect to {yt−1,wt−1}. All the coefficients are set such that the
corresponding time series is stationary and β-mixing with corresponding densities
bounded to satisfy the assumptions discussed before. We use different values of
c ∈ [0,1] to investigate the power of the test, such that the higher c is, the stronger
the causality of wt on yt is. Without loss of generality, we choose θ = 0.1,0.5,0.9
and T = 500,1,000,5,000 here with the bandwidth h and a as in (7) and (10)
as for a typical Nadaraya–Watson type estimator. We consider the nominal 0.05
significance level and repeat the test 500 times to generate the power.

Table 1 displays the power performance of the test for different combinations
of T, c, and θ . First, obviously the power is very sensitive to the choice of T ; that
is, the larger T is, for the same c and θ , the larger the power is. From a technical
point of view, this makes sense, because the more data we have, the more evidence
we can draw from to detect the “causality” effect. Our asymptotic result, Theorem
3.1, needs the plug-in estimation of the asymptotic covariance matrix that is used
to normalize the test statistic. Note that such an estimator is model-dependent and
under the alternative is consistent with a different value than the one under the
null. As a result, the power deteriorates for small T . On the other hand, whether
the causality effect exists or not is the nature of the series, which is independent of
the sample size used in this technical test. Enhancing the power performance for
small-sample data using the simulation-based method deserves further research.
Second, as discussed before, the higher c is, the stronger the causality of wt on yt

is, which is confirmed by the larger and larger power values. Third, for different
quantiles θ , we find that the powers with respect to θ = 0.5 are usually larger than
the powers with respect to θ = 0.1 and 0.9.

5. APPLICATION TO COMMODITY PRICES

In financial and commodity markets, it has been argued that the covariation of
the tails may be different from that of the rest of the distribution. The gold mar-
ket is one of the most important markets in the world, where trading takes place
24 hours a day around the globe and transactions involving billions of dollars of

https://doi.org/10.1017/S0266466611000685 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466611000685


872 KIHO JEONG ET AL.

TABLE 1. Power performance for different combinations of T,c, and θ

c Power (θ 0.1) c Power (θ 0.5) c Power (θ 0.9)
T = 500

0.00 0.024 0.00 0.108 0.00 0.010
0.03 0.030 0.03 0.288 0.03 0.020
0.06 0.058 0.06 0.796 0.06 0.108
0.09 0.190 0.09 0.991 0.09 0.585
0.12 0.414 0.12 1.000 0.12 0.950
0.15 0.696 0.15 1.000 0.15 0.994
0.18 0.888 0.18 1.000 0.18 1.000
0.21 0.962 0.21 1.000 0.21 1.000
0.24 0.988 0.24 1.000 0.24 1.000
0.27 1.000 0.27 1.000 0.27 1.000
0.30 1.000 0.30 1.000 0.30 1.000

T = 1,000
0.00 0.014 0.00 0.130 0.00 0.018
0.01 0.022 0.01 0.144 0.01 0.024
0.02 0.038 0.02 0.296 0.02 0.024
0.03 0.026 0.03 0.564 0.03 0.040
0.04 0.060 0.04 0.788 0.04 0.108
0.05 0.110 0.05 0.946 0.05 0.284
0.06 0.196 0.06 0.990 0.06 0.506
0.07 0.356 0.07 1.000 0.07 0.838
0.08 0.530 0.08 1.000 0.08 0.950
0.09 0.676 0.09 1.000 0.09 0.994
0.10 0.816 0.10 1.000 0.10 0.996
0.11 0.906 0.11 1.000 0.11 1.000
0.12 0.958 0.12 1.000 0.12 1.000
0.13 0.972 0.13 1.000 0.13 1.000
0.14 0.994 0.14 1.000 0.14 1.000
0.15 0.998 0.15 1.000 0.15 1.000
0.16 1.000 0.16 1.000 0.16 1.000

T = 5,000
0.00 0.020 0.00 0.116 0.00 0.026
0.01 0.028 0.01 0.328 0.01 0.046
0.02 0.124 0.02 0.904 0.02 0.142
0.03 0.490 0.03 1.000 0.03 0.728
0.04 0.924 0.04 1.000 0.04 0.988
0.05 1.000 0.05 1.000 0.05 1.000
0.06 1.000 0.06 1.000 0.06 1.000
0.07 1.000 0.07 1.000 0.07 1.000
0.08 1.000 0.08 1.000 0.08 1.000
0.09 1.000 0.09 1.000 0.09 1.000
0.10 1.000 0.10 1.000 0.10 1.000
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TABLE 2. Unit root tests

Time CR Unit root
Test trend Test value Unit after

Variable type term statistics 5% root differencing
LN Oil DF no 0.86955 −1.94160 yes no

ADF no 0.72255 −1.94160 yes no
PP no 0.73107 −1.94160 yes no

KPSS no 2.16221 0.14600 yes no
DF include −0.81819 −2.86386 yes no

ADF include −1.03287 −2.86386 yes no
PP include −0.94355 −2.86386 yes no

KPSS include 2.16221 0.14600 yes no

GBP DF no −0.12461 −1.94160 yes no
ADF no −0.16186 −1.94160 yes no
PP no −0.12506 −1.94160 yes no

KPSS no 5.26720 0.14600 yes no
DF include −1.53295 −2.86386 yes no

ADF include −1.51000 −2.86386 yes no
PP include −1.53853 −2.86386 yes no

KPSS include 5.26720 0.14600 yes no

LN Gold DF no 0.45931 −1.94160 yes no
ADF no 1.03139 −1.94160 yes no
PP no 0.69975 −1.94160 yes no

KPSS no 3.50910 0.14600 yes no
DF include −1.98422 −2.86386 yes no

ADF include −1.36627 −2.86386 yes no
PP include −1.66336 −2.86386 yes no

KPSS include 3.50910 0.14600 yes no

Note: ”LN Oil”, ”GBP”, and ”LN Gold” refer to the logarithmic Brent crude oil price, USD/GBP exchange rate, and
logarithmic NYMEX spot gold price, respectively. The “Test types” DF, ADF, PP, and KPSS refer to unit root tests
of, respectively, Dickey–Fuller (Fuller, 1976), augmented Dickey–Fuller (Fuller, 1976), Phillips–Perron (Phillips &
Perron, 1988), and (Kwaitkowski et al., 1992).

gold are carried out each day. Understanding the mechanism of gold price changes
is important for many outstanding issues in international economics and finance.
Market participants are increasingly concerned with their exposure to large gold
price fluctuations with special interest in which factors drive the changes. In this
section, we apply the quantile causality test to investigate relations between the
Brent crude oil, USD/GBP exchange rate and NYMEX spot gold prices (in USD
per barrel and per ounce, respectively). The data, as seen in Figure 1, obtained
from Datastream, are daily observations from 20 February 1997 to 17 July 2009
(T = 3,237). We use the USD/GBP instead of USD/EUR because the euro was
only introduced as a new currency from 1 January 1999. As indicated by Table 2,
we assume differenced logarithmic data are stationary and β-mixing with corre-
sponding densities bounded. Because a long memory effect is not expected, we
choose p = q = 1 and m = 2.
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FIGURE 1. Plot of the gold prices, oil price, and exchange rate time series from 20
February 1997 to 17 July 2009.

FIGURE 2. Test statistics with respect to different quantiles for the oil-gold prices causality
test.

Figures 2 and 3 present results of testing whether oil prices Granger cause gold
prices and whether the USD/GBP exchange rate Granger causes gold prices at
the various quantiles, respectively, where logarithmic returns instead of the raw
observations are used. The solid line and dotted line represent the standardized
test statistics with respect to different quantiles (x-axis) and the critical value
1.96, respectively. In Figures 2 and 3, because the test statistic exceeds the critical
value when 0.22 ≤ θ ≤ 0.80, we conclude that the oil price and exchange rate
changes do not cause the gold price change in θ < 0.22 or θ > 0.80, whereas it is
a prima facie cause in the 0.22 ≤ θ ≤ 0.80 quantile, respectively. For example, the
oil price and USD/GBP exchange rate increases suggest that investors are wary of
the U.S. dollar’s weakness and inflation. Because gold is typically bought as an
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FIGURE 3. Test statistics with respect to different quantiles for the exchange rate-gold
prices causality test.

alternative to the dollar among safe-haven assets, investors seeking safety from
inflation risk and currency devaluation will cause the gold price to rise. However,
the extreme low and high changes of the gold market may be caused by specula-
tion. This is consistent with most of the empirical findings in the literature that the
codependency may be stronger in the center than in the tails. By combining results
from Figures 2 and 3, we find that the oil price and exchange rate changes have a
significant predictive power for nonextreme gold price changes, which is, however,
not significant for extreme changes. This finding could help to make it possible to
use the gold price and GBP to hedge oil price changes in a more precise way with
more careful investigation of their relations, which deserves further research.

6. CONCLUSION

By extending the Zheng (1998) idea to dependent data, we propose a consistent
test for Granger causality in conditional quantile. The appealing feature of our
proposed test is that it can investigate Granger causality in various conditional
quantiles. The benefit of this is illustrated in the commodity market application
where the causal relationships among the oil price, USD/GBP exchange rate, and
gold price were shown to be different between a tail area and in the center of the
distribution. We also illustrate that oil price and USD/GBP changes have signifi-
cant predictive power on nonextreme gold price changes.

The test can be extended in a number of ways to test conditional quantile re-
strictions with dependent data: First, it can be extended to test functional mis-
specification, or the insignificance of a subset of regressors in quantile regression
function, and second, it can also be used to test some semiparametric versus non-
parametric models in quantile regression models.
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APPENDIX

Proof of Theorem 3.1(i). In the proof, we use several approximations to ĴT . We define
them now and recall a few already defined statistics for convenience of reference.

ĴT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts ε̂t ε̂s , (A.1)

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs , (A.2)

JT U ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

KtsεtU εsU , (A.3)

JT L ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεt LεsL , (A.4)

where ε̂t = I
{

yt � Q̂θ (xt )
}

− θ,

εt = I {yt � Qθ (xt )}− θ,

εtU = I {yt +CT � Qθ (xt )}− θ,

εt L = I {yt −CT � Qθ (xt )}− θ,

and CT is an upper bound consistent with the uniform convergence rate of the nonparamet-
ric estimator of conditional quantile given in equation (13). The proof of Theorem 3.1(i)
consists of three steps.
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Step 1. Asymptotic normality.

T hm/2 JT → N (0,σ 2
0 ), (A.5)

where σ 2
0 = 2E

{
θ2(1− θ)2 f (zt )

}{∫
K 2(u)du

}
under the null.

Step 2. Conditional asymptotic equivalence. Suppose that both T hm/2(JT − JT U ) =
Op(1) and T hm/2(JT − JT L ) =Op(1).

Then T hm/2( ĴT − JT ) =Op(1). (A.6)

Step 3. Asymptotic equivalence.

T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =Op(1). (A.7)

The combination of steps 1–3 yields Theorem 3.1(i).

Proof of Step 1. Because JT is a degenerate U -statistic of order 2, the result follows
from Lemma 3.2. �

Proof of Step 2. The proof of step 2 is motivated by the technique of Härdle and Stoker
(1989) that was used in treating trimming an indicator function asymptotically. Suppose
that the following two statements hold:

T hm/2(JT − JT U ) =Op(1) and (A.8)

T hm/2(JT − JT L ) =Op(1). (A.9)

Use CT to denote an upper bound consistent with the uniform convergence rate of the
nonparametric estimator of conditional quantile given in equation (13). Suppose that

sup |Q̂θ (x)− Qθ (x)|� CT . (A.10)

If inequality (A.10) holds, then the following statements also hold:

{Qθ (x) > yt +CT } ⊂ {Q̂θ (x) > yt } ⊂ {Qθ (x) > yt −CT }, (A.11)

1(Qθ (x) > yt +CT ) � 1( Q̂θ (x) > yt ) � 1( Qθ (x) > yt −CT ), (A.12)

JT U � ĴT � JT L , (A.13)

|T hm/2(JT − ĴT )|� max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|}. (A.14)

Using (A.10) and (A.14), we have the following inequality:

P
{
|T hm/2(JT − ĴT )| > δ | sup

∣∣∣Q̂θ (x)− Qθ (x)|� CT

}
� P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
∣∣∣ sup |Q̂θ (x)− Qθ (x)|� CT

}
for allδ > 0. (A.15)
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Invoking Lemma 3.1 and condition (A2)(c), we have

P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
→ 1 as T → ∞. (A.16)

By (A.8) and (A.9), as T → ∞, we have

P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
}

→ 0 for all δ > 0. (A.17)

Therefore, as T → ∞,

the right-hand side of the inequality (A.15) × P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
→ 0;

the left-hand side of the inequality (A.15) × P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
= P
{
|T hm/2(JT − ĴT )| > δ

}
→ 0.

In summary, we have that if both T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =
Op(1), then T hm/2( ĴT − JT ) =Op(1). �

Proof of Step 3. In the remaining proof, we focus on showing that T hm/2(JT − JT U ) =
Op(1), with the proof of T hm/2(JT − JT L ) = Op(1) being treated similarly. The proof
of step 3 is close in line with the proof in Zheng (1998). Denote

HT (s, t,g) ≡ Kts{1(yt � g(xt ))− θ}{1(ys � g(xs))− θ} and (A.18)

J [g] ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

HT (s, t,g). (A.19)

Then we have JT ≡ J [Qθ ] and JT U ≡ J [Qθ −CT ]. We decompose HT (s, t,g) into three
parts:

HT (s, t,g) = Kts{1(yt � g(xt ))− F(g(xt )|zt )}{1(ys � g(xs))− F(g(xs)|zs)}
+2× Kts{1(yt � g(xt ))− F(g(xt )|zt )}{F(g(xs)|zs)− θ}
+ Kts{F(g(xt )|zt )− θ}{F(g(xs)|zs)− θ}

= H1T (s, t,g)+2H2T (s, t,g)+ H3T (s, t,g). (A.20)

Then let Jj [g] = 1/(T (T −1)hm)
T
∑

t=1

T
∑

s �=t
HjT (s, t,g), i = 1,2,3. We will treat Jj [Qθ ] −

Jj [Qθ −CT ] for j = 1,2,3 separately.

(1) T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=Op(1). By simple manipulation, we have

J1(Qθ )− J1(Qθ −CT )

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts

{
[1(yt � Qθ (xt ))− F(Qθ (xt )|zt )]

× [1(ys � Qθ (xs))− F(Qθ (xs)|zs)]
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− [1(yt � (Qθ (xt )−CT ))− F((Qθ (xt )−CT )|zt )]

× [1(ys � (Qθ (xs)−CT ))− F((Qθ (xs)−CT )|zs)]
}
.

(A.21)

To avoid tedious work to get bounds on the second moment of J1(Qθ ) − J1(Qθ − CT )
with dependent data, we note that the right-hand side of (A.21) is a degenerate U -statistic
of order 2. Thus we can apply Lemma 3.2 and have

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]→ N (0,σ 2

2 ) in distribution, (A.22)

where the definition of the asymptotic variance σ 2
2 is based on the i.i.d. sequence having

the same marginal distributions as weakly dependent variables in (A.21). That is,

σ 2
2 = 2h−m Ẽ

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2,

where the notation Ẽ is an expectation evaluated at an i.i.d. sequence having the same
marginal distribution as the mixing sequences in (A.21) (Fan and Li, 1999, p. 248). Now,
to show that T hm/2 [J1(Qθ )− J1(Qθ −CT )

] = Op(1), we only need to show that the

asymptotic variance σ 2
2 (z) is O(1) with i.i.d. data. Use �T to denote an upper bound

consistent with the integral over Kts being of the order O(hm). We have

Ẽ
[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2
��T Ẽ{[1t (Qθ )− Ft (Qθ )] [1s(Qθ )− Fs(Qθ )]

− [1t (Qθ −CT )− Ft (Qθ −CT )] [1s(Qθ −CT )− Fs(Qθ −CT )]}2

��T Ẽ{Ft (Qθ ) [1− Ft (Qθ )] Fs(Qθ ) [1− Fs(Qθ )]}
+ Ẽ{Ft (Qθ −CT ) [1− Ft (Qθ −CT )] Fs(Qθ −CT ) [1− Fs(Qθ −CT )]}
−2E{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
= �T Ẽ{[Ft (Qθ )− Ft (Qθ )Ft (Qθ )] [Fs(Qθ )− Fs(Qθ )Fs(Qθ )]}

−�T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
+�T Ẽ{[Ft (Qθ −CT )− Ft (Qθ −CT )Ft (Qθ −CT )]

× [Fs(Qθ −CT )− Fs(Qθ −CT )Fs(Qθ −CT )]}
−�T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
��T CT . (A.23)

Thus we have that σ 2
2 =O(CT ) =O(1), and so

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=Op(1). (A.24)
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(2) T hm/2 [J2(Qθ )− J2(Qθ −CT )
]=Op(1). Note that H2T (s, t, Qθ ) = 0 because of

Fy|z(Qθ (xs)|zs)− θ = 0. Then we have

J2(Qθ )− J2(Qθ −CT ) = −J2(Qθ −CT )

= − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}
×{Fy|z(Qθ (xs)−CT |zs)− θ}. (A.25)

By taking a Taylor expansion of Fy|z(Qθ (xs)−CT |zs) around Qθ (xs), it equals

− 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}
× (−CT ) fy|z(Q̄θ (xs)|zs), (A.26)

where Q̄θ is between Qθ and Qθ −CT . Thus we have

(J2(Qθ )− J2(Qθ −CT ))2

�
[

1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )
}]2

�2C2
T

= �2C2
T

[
1

T

T

∑
t=1

{
1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT )

}
f̂z(zt )

]2

≡ �2C2
T

{
1

T

T

∑
t=1

ut f̂z(zt )

}2

= �2C2
T T −2

T

∑
t=1

u2
t f̂ 2

z (zt )+�2C2
T T −2

T

∑
t=1

T

∑
s �=t

ut us f̂z(zt ) f̂z(zs)

≡ J21 + J22, (A.27)

where the inequality holds because of Assumption (A.1)(e).

E |J21| = �2C2
T T −1

[
T −1

T

∑
t=1

E
{

u2
t f̂ 2

z (zt )
}]

= O
(

C2
T T −2h−m

)
, (A.28)

where the second equality is derived by using Lemma C.3(iii) of Li (1999).
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J22 = �2C2
T

[
T −2

T

∑
t=1

T

∑
s �=t

ut us fz(zt ) fz(zs)

+2T −2
T

∑
t=1

T

∑
s �=t

ut us fz(zt )
{

f̂z(zs)− fz(zs)
}

+ T −2
T

∑
t=1

T

∑
s �=t

ut us

{
f̂z(zt )− fz(zt )

}{
f̂z(zs)− fz(zs)

}]

≡ �C2
T (J221 + J222 + J223) . (A.29)

Following the line of the proof of Lemma A.2(i) of Li (1999) we have that

J221 =Op

(
T −2
)

, J222 =Op

(
T −1
)

, and J223 =Op

(
T −1
)

; thus

J22 =Op

(
C2

T T −1
)

. (A.30)

Thus, combining (A.28) and (A.30), we have

T hm/2 [J2(Qθ )− J2(Qθ −CT )
]=Op (CT )+Op

(
CT T 1/2hm/2

)
=Op(1). (A.31)

(3) T hm/2 [J3(Qθ )− J3(Qθ −CT )
] = Op(1). Noting that H3T (s, t, Qθ ) = 0 because

of F(Qθ (xj )|zj )− θ = 0 for j = t,s, we have

J3(Qθ )− J3(Qθ −CT )

= − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
C2

T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs)

= C2
T

1

T

T

∑
t=1

fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.32)

Thus, we have

E |J3(Qθ )− J3(Qθ −CT )|

� �C2
T

1

T

T

∑
t=1

E
∣∣∣ f̂z(zt )

∣∣∣
� �C2

T
1

T

T

∑
t=1

E | fz(zt )|+�C2
T

1

T

T

∑
t=1

E
∣∣∣ f̂z(zt )− fz(zt )

∣∣∣
=O
(

C2
T

)
. (A.33)
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Finally, we have

T hm/2 [J3(Qθ )− J3(Qθ −CT )
]=Op

(
T hm/2C2

T

)
=Op(1). (A.34)

By combining (A.24), (A.31), and (A.34), we have the result of step 3. �

Proof of Theorem 3.1(ii). Because

σ 2
0 = 2θ2(1− θ)2E{ fz(zt )}

∫
K 2(u)du and

σ̂ 2
0 ≡ 2θ2(1− θ)2 1

T (T −1)hm ∑
s �=t

K 2
ts ,

it is enough to show that

σ 2
T ≡ 1

T (T −1)hm ∑
s �=t

K 2
ts

= E{ fz(zt )}
∫

K 2(u)du +Op(1). (A.35)

Note that σ 2
T is a nondegenerate U -statistic of order 2 with kernel

HT (zt , zs) = 1

hm K 2
(

zt − zs

h

)
. (A.36)

Because Assumptions (A2)(d) and (e) satisfy the conditions of Lemma 3.2 of Yoshihara
(1976) on the asymptotic equivalence of the U -statistic and its projection under β-mixing,
we have for γ = 2(δ − δ′)/δ′(2+ δ) > 0

σ 2
T ≡ 1

T (T −1)
∑
s �=t

HT (zt , zs)

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)

+2T −1
T

∑
t=1

[∫
HT (zt , z2)d Fz(z2)−

∫ ∫
HT (z1, z2)d Fz(z1)d Fz(z2)

]

+Op(T −1−γ )

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)+Op(1)

=
∫ ∫ 1

hm K 2
(

z1 − z2

h

)
d Fz(z1)d Fz(z2)+Op(1)

=
∫

K 2 (u)du
∫

f 2
z (z)dz +Op(1). (A.37)

The result of Theorem 3.1(ii) follows from (A.37). �

Proof of Theorem 3.1(iii). The proof of Theorem 3.1(iii) consists of two steps.
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Step 1. Show that ĴT = JT +Op(1) under the alternative hypothesis (4).

Step 2. Show that JT = J +Op(1) under the alternative hypothesis (4),

where J = E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )}. The combination of steps 1 and
2 yields Theorem 3.1(iii).

Proof of Step 1. We note that the results of step 2 and T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=

Op(1) of step 3 in the proof of Theorem 3.1(i) still hold under the alternative hy-
pothesis (4). Thus we focus on showing that J2(Qθ ) − J2(Qθ − CT ) = Op(1) and
J3(Qθ )− J3(Qθ −CT ) =Op(1).

We begin with showing that J2(Qθ )− J2(Qθ −CT ) =Op(1). By the same procedures
as in (A.27), we can show that J2(Qθ −CT ) = Op(T −1h−m/2). Thus it remains to show
that J2(Qθ ) = Op(1). By taking a Taylor expansion of Fy|z(Qθ (xs)|zs) around Qθ (xs),
we have

J2(Qθ ) = − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}× fy|z(Q̄θ (xs)|zs)

= 1

T

T

∑
t=1

{1(yt � Qθ (xt ))− Fy|z(Qθ (xt ))} fy|z(Q̄θ (xs)|zs) f̂z(zt )

≡ 1

T

T

∑
t=1

ut fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.38)

By similar arguments as in (A.26) and (A.31), we have

J2(Qθ ) =O
(

T −1h−m
)

. (A.39)

Next, we show that T hm/2 [J3(Qθ )− J3(Qθ −CT )
] = Op(1) under the alternative hy-

pothesis (4). Because F(Qθ (xj )|zj )− θ �= 0 for j = t,s under the alternative hypothesis,
we have

J3(Qθ )− J3(Qθ −CT )

= 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ}

− 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1

T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1

T

T

∑
t=1

{F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ} f̂z(zt ). (A.40)
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By taking a Taylor expansion of Fy|z(Qθ (xj ) − CT |zj ) around Qθ (zj ) for j = t,s, we
have

J3(Qθ )− J3(Qθ −CT ) = 1

T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}CT fy|z(Q̄θ (xt )|zt ) f̂z(zt )

+ 1

T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ){F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1

T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.41)

We further take a Taylor expansion of Fy|z(Qθ (xj )|zj ) around Qθ (zj ) for j = t,s and
have

J3(Qθ )− J3(Qθ −CT ) = 1

T

T

∑
t=1

fy|z(Q̄θ (xt , zt )|zt )CT fy|z(Q̄θ (xs)|zs) f̂z(zt )

+ 1

T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs , zs)|zs) f̂z(zt )

− 1

T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ), (A.42)

where Q̄θ (xs , zs) is between Qθ (xs) and Qθ (zs). Then by using the same procedures as
in (A.30), we have

J3(Qθ )− J3(Qθ −CT ) =O (CT ) . (A.43)

Now we have the result of step 1 for the proof of Theorem 3.1(iii). �

Proof of Step 2. Using (7) and the uniform convergence rate of the kernel regression
estimator under a β-mixing process, we have

JT = 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs

= 1

T ∑
t=1

Ê(εt |zt ) f̂z(zt )εt

= 1

T ∑
t=1

E(εt |zt ) fz(zt )εt + 1

T ∑
t=1

{
Ê(εt |zt ) f̂z(zt )−E(εt |zt ) fz(zt )

}
εt

= 1

T ∑
t=1

E(εt |zt ) fz(zt )εt +Op(1)

= E
[
E(εt |zt ) fz(zt )εt

]+Op(1)

= J +Op(1). (A.44)
�
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Proof of Theorem 3.1(iv). The proof of Theorem 3.1(iv) is close in line with the proof
in Zheng (1998). The proof of Theorem 3.1(iv) consists of two steps.

Step 1. Show that ĴT = JT +Op(T −1h−m/2) under the alternative hypothesis (A.2).

Step 2. Show that T hm/2 JT → N (μ,σ 2
1 ) under the alternative hypothesis (A.2),

where μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
, σ 2

1 = 2E
{
σ 4
v (zt ) fz(zt )

}
∫

K 2(u)du,and σ 2
v (zt ) = E(v2

t |zt ) with vt ≡ I {yt � Qθ (xt )}− F(Qθ (xt )|zt ).

Proof of Step 1. The results of step 1 in the proof of Theorem 3.1(iii) show that,
under the general alternative hypothesis (4), the elements consisting of ĴT − JT are all

Op(T −1h−m/2) except for J2(Qθ (x)), the order of which is O
(

T −1h−m
)

as in (A.39).

Thus we need to show that J2(Qθ (x)) = Op(T −1h−m/2) under the local alternative hy-
pothesis (A.2). Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around dT = 0,
we have

Fy|z {Qθ (zt )+dT l(zt )|zt } = θ +dT fy|z {Qθ (zt )|zt } l(zt )+Op(d2
T ). (A.45)

By similar procedures as in (A.38) and (A.39), we have

J2(Qθ (x)) = − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× dT fy|z {Qθ (zt )|zt } l(zt )+Op

(
d2

T

)

= −dT
1

T

T

∑
t=1

{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

≡ −dT
1

T

T

∑
t=1

ut fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

=Op

(
d2

T

)
. (A.46)

�

Proof of Step 2. Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around
dT = 0, we have

JT (Qθ (x)) = 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts {1(yt � Qθ (xt ))F(Qθ (xt )|zt )}

×{1(ys � Qθ (xs))− F(Qθ (xs)|zs)}

− 2dT

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts {1(yt � Qθ (xt ))− F(Qθ (xt )|zt )}

× fy|z {Qθ (zs)|zs} l(zs)
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+ d2
T

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts fy|z {Qθ (zt )|zt } l(zt ) fy|z {Qθ (zs)|zs} l(zs)

+Op

(
d2

T

)
= T1T −2dT T2T +d2

T T3T +Op

(
d2

T

)
. (A.47)

Noting that T1T is a degenerate U -statistic of order 2, by Lemma 3.2, we have

T hm/2T1T → N
(

0,σ 2
1

)
in distribution, (A.48)

Similarly to the proof for (A.31), we can show that T2T =O
{
(T hm)−1

}
, and so dT T2T =

O
{
(T hm/2)

−1
}

. And by the same procedures as in (A.44), we have

T3T → E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
in probability. (A.49)

Thus,

T hm/2 JT → N
(
μ,σ 2

1

)
, (A.50)

where μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
. �
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