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Zusammenfassung

Ein großer Teil des biomedizinischen Fachwissens handelt von Interaktionen zwischen
verschiedenen Molekülen, wie z.B. Proteinen, Genen oder kleinen Chemikalien. Diese
molekularen Interaktionen werden häufig nicht isoliert betrachtet sondern im Kontext
eines größeren Netzwerks das eine bestimmte zelluläre Funktion erfüllt. Diese Netzwerke
können beispielsweise benachbarte Zellen auf die Präsenz eines Pathogens hinweisen oder
die Proteinproduktion auf wechselnde Nährstoffkonzentrationen anpassen. Solche Netz-
werke von molekularen Interaktionen, die eine spezifische Funktion erfüllen, werden Path-
ways genannt.

Neue Erkenntnisse über Pathways werden typischerweise erst mittels wis-
senschaftlicher Publikationen kommuniziert und später in stärker strukturierte Formate
überführt, beispielsweise in grafische Darstellungen in Lehrbüchern, in Maschinen-lesbare
Modelle in Pathway-Datenbanken oder in simulierbare mathematische Modelle. Die Ku-
ratierung solcher Pathway-Modelle aus wissenschaftlichen Publikationen, die in immer
schnellerem Tempo veröffentlicht werden, erfordert einen hohen manuellen Aufwand von
Expert:innen, was es schwierig macht, die strukturierten Pathway Modelle aktuell zu
halten.

In dieser Dissertation untersuchen wir, wie Text Mining Methoden, die auf
maschinellem Lernen beruhen, die Kuratierung von Pathways unterstützen können. Als
erstes beschreiben wir Protein-Protein-Association Extraction with Deep Language Mo-
dels (PEDL), eine Methode für die Extraktion von Protein-Protein-Assoziationen (PPAs)
aus biomedizinischen Publikationen. Mit PEDL schlagen wir eine Lösung für eine wichtige
Herausforderung in der PPA-Extraktion vor, nämlich, dass es keine hinreichend großen
Goldstandard-Datensätze gibt, die als Trainingsdaten für akkurate Extraktionsmodele
genutzt werden können. Wir schlagen vor, Distant Supervision und tiefe Sprachmodelle
zu kombinieren, was PEDLs Extraktion genauer macht als die vergleichbarer Modelle.
Außerdem führen wir eine Evaluation von PEDL mit Expert:innen in der Biomedizin
durch. Hier finden wir, dass die Qualität von PEDLs Extraktionen hoch genug ist um bei
der Pathway-Kuratierung hilfreich zu sein.

Aus diesem Grund haben wir PEDL in Form der benutzerfreundlichen Komman-
dozeilenanwendung PEDL+ neu implementiert, die es ermöglicht, PPAs für Proteine von
Interesse aus einem großen Teil der verfügbaren biomedizinischen Literatur mit einem
einzigen Befehl zu extrahieren. Wir evaluieren PEDL+, indem wir sie in zwei verschiede-
nen Projekten zur Pathway-Kuratierung anwenden und drei Kurator:innen bitten, dabei
die Nützlichkeit des Tools zu bewerten. Hier geben die Kurator:innen an, dass 55,6% bis
79,6% der extrahierten PPAs hilfreich für ihr Projekt sind.

Häufig findet PEDL so viele PPAs, die potenzielle Pathway-Erweiterungen darstellen,
dass es nicht möglich ist, alle manuell zu kuratieren. Als Lösung für dieses Problems
schlagen wir PathComplete vor, ein Deep Learning Modell für Pathway-Erweiterung, das
hilfreiche Erweiterungen des bereits existierenden Pathways in Form von PPAs vorschla-
gen kann. PathComplete ist die erste Methode für automatisierte Pathway-Erweiterung
die auf Supervised Machine Learning beruht und sie verwendet Transfer Learning um
die großen Mengen an Trainingsdaten zu nutzen, die in Pathway-Datenbanken verfügbar
sind. Um PathCompletes Leistung systematisch in verschiedenen Anwendungsszenarien
zu untersuchen, erstellen wir den ersten umfassenden Evaluationsdatensatz für Methoden
zur Pathwayerweiterung. Unsere Evaluation auf diesem Datensatz ergibt, dass PathCom-
plete sechs starke Baselines übertrifft und oft die Evaluationsmetriken der nächstbesten
Methode verdoppelt. Darüber hinaus zeigt eine manuelle Analyse der von PathCom-



plete vorgeschlagenen Erweiterungen, dass diese das Pathway-Modell um weitere zelluläre
Funktionen ergänzen würden, die vom Pathway kontrolliert werden.

In unserem dritten Beitrag untersuchen wir, ob es möglich ist, Pathways anstatt durch
binären Interaktionen, mittels komplexer Eventstrukturen zu erweitern, die biochemische
Reaktionen mit mehreren Reaktanten und Produkten beschreiben können und damit
realistischer sind. Wir formulieren dieses Problem im Conditional Graph Modification
Framework. In diesem lernt ein Deep Learning Modell Graphen anhand einer externen
Eingabe zu modifizieren. Wir schlagen eine neuartige Methode für Conditional Graph
Modification mit Texteingaben vor, welche den bisherigen Stand der Technik auf drei
Benchmarkdatensätzen um 13 bis 24 Prozentpunkte genauer macht. Darüber hinaus
stellen wir einen neuen Datensatz für Pathway-Erweiterung mit komplexen Eventstruk-
turen vor. Für diesen generalisiert die State-of-the-Art Methode nicht, während die von
uns vorgestellte Methode sinnvolle Erweiterungen vorschlagen kann. Zusammenfassend
zeigen die Ergebnisse unserer drei Beiträge, dass Deep-Learning-basierte Information-
sextraktion eine vielversprechende Grundlage für die Unterstützung von Pathwaykura-
tor:innen ist.
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Abstract

A significant portion of biological knowledge revolves around interactions between molecules
such as proteins, genes or small chemicals. Frequently, these molecular interactions are
studied not in isolation but in the context of a larger network that serves a certain cellular
function, for instance, to alert neighbouring cells to the presence of a pathogen or to adapt
the protein production to changes in available nutrients. These function-specific networks
of molecular interactions are called pathways. New findings about pathways are typically
first communicated via research publications and later condensed into more structured
forms, for instance as graphical representations in textbooks, as machine-readable models
in pathway databases or as mathematical models for simulation. Curating these pathway
models from research papers, which are published at an ever-accelerating rate, requires
a lot of manual effort from domain experts, which makes it hard to keep the structured
versions of pathways up to date.

In this thesis, we investigate how machine-learning-based text mining methods can
facilitate the pathway curation process. First, we present Protein-Protein-Association
Extraction with Deep Language Models (PEDL), a method for extracting protein-protein
associations (PPAs) from biomedical publications. PEDL addresses a major challenge in
PPA extraction, which is that there is no sufficiently large-scale gold standard dataset
for the training of high-quality extraction models. To cope with this challenge, it uses
distant supervision and deep language models, which allows it to extract PPAs much
more accurately than the state of the art. Additionally, an expert evaluation confirms
that the quality of PEDL’s extractions is high enough to be useful for pathway curators.
Motivated by this, we reimplement PEDL as the user-friendly command-line application
PEDL+ that allows to extract PPAs for proteins of interest from a large portion of the
available biomedical literature with a single command. We evaluate PEDL+ by applying
it in two different pathway curation projects and ask three curators to rate the helpfulness
of PEDL’s extraction. Here, the curators find 55.6% to 79.6% of the extracted PPAs to
be helpful for their curation project.

However, often, PEDL finds so many PPAs that could be potential pathway extensions
that it is not feasible for a researcher to curate all of them. We address this challenge by
developing PathComplete, a deep-learning model for pathway extension which can suggest
suitable extensions based on the known PPAs comprising a pathway. PathComplete is
the first method for pathway extension based on supervised machine learning and it uses
transfer learning to exploit the vast amount of training data that is available through
pathway databases. To systematically investigate the performance of pathway exten-
sion methods in different application scenarios, we propose the first large-scale evaluation
dataset for pathway extension methods. Here, we find that PathComplete outperforms
six strong baselines, often doubling all evaluation metrics compared to the best contender.
Additionally, a manual analysis of PathComplete’s proposed extensions reveals that in-
troducing them into the pathway model would allow to extend the model with additional
cellular functions controlled by the pathway.

In our third contribution, we explore whether it is possible to generalize pathway
extension from binary interactions to – more realistic – complex events describing bio-
chemical reactions that can have multiple inputs and outputs. We address this problem
in the framework of conditional graph modification, in which a deep learning model learns
to modify graphs based on external input. We propose a novel method for conditional
graph modification based on textual input which improves upon the previous state of the
art on three benchmark datasets by 13 to 24 percentage points accuracy. Furthermore,
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we introduce a novel dataset for the complex reaction-based pathway extension problem
and show that the state-of-the-art method fails to generalize on it while our proposed
method can produce meaningful extensions. Across all three contributions, our results
show that deep-learning-based information extraction is a promising basis for supporting
pathway curators.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

Cells can adapt to changing circumstances remarkably well. For instance, when human
cells face an overproduction of reactive oxygen species, which can cause serious damage to
the DNA, they can readily adapt their metabolism to counter this oxidative stress [Mit-
tler, 2002], and when they sense the presence of a pathogen, such as a virus, they can alert
the immune system to this [Koyama et al., 2008]. Many of these behavioural programs
are governed by complex networks of biochemical reactions called pathways. When such
a pathway is disturbed, for instance, because a protein that plays a crucial role carries
a function-altering mutation, it can lead to serious diseases, such as cancer [Sherr and
McCormick, 2002, Lisec et al., 2021] or auto-immune disorders [Chen et al., 2016, Mikuda
et al., 2020]. As pathways are important to decipher cellular behaviour in healthy organ-
isms and to understand and treat diseases, a central research question in biology is how
biochemical reactions interact with each other to fulfil a specific goal, or in other words,
which system of biochemical reactions constitutes a specific pathway. This information is
usually spread across the biomedical literature and thus, collecting it in a single location is
an ongoing effort undertaken in multiple research communities within the field of systems
biology. This has led to the creation of a multitude of pathway databases [Chowdhury and
Sarkar, 2015] which store pathway definitions in machine-readable formats and surveys
and textbooks which provide graphical portraits of pathways called cartoons. What is
common for all of the pathway curators who create these condensed accounts of pathways
is that they have to screen the biomedical literature for information on the pathway, and
they have to decide which reactions belong to it.

This manual curation of the pathway literature is made difficult by the enormous
growth of the biomedical literature. For example, PubMed has indexed over 1,290,000
new articles in 2021 alone1, a search for the prominent signalling pathway NFκB yields
over 79,000 articles2, and a search for the important cellular function apoptosis returns
over 315,000 articles3. See Figure 1.1 for a visualization of the development of these
numbers over time. This shows that it is almost impossible for curators to perform an
exhaustive literature review, even for a single pathway. In this thesis, we develop text-
mining methods with the goal of making the pathway curation process as comprehensive
and fast as possible despite this enormous amount of literature. We focus on methods
that can extract biochemical reactions from the biomedical literature and that suggest
the most relevant reactions for a given project to pathway curators. Within the field of
text mining for pathway curation, we identify the following shortcomings, for which we
then develop solutions:

1. Available datasets for extracting biochemical reactions from the literature are small,
which makes training accurate models for this task challenging.

2. State-of-the-art models for relation extraction for pathway curation are only avail-
able as research code, which limits their accessibility and use for practical applica-
tions.

3. Modern text mining algorithms can extract millions of reactions from the literature
and it is not clear which of these are useful for a given pathway curation project.

1https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html (accessed 2022/09/15)
2https://pubmed.ncbi.nlm.nih.gov/?term=NF-kappa%20B%20%5Bmh%5D (accessed 2022/09/15)
3https://pubmed.ncbi.nlm.nih.gov/?term=apoptosis+%5Bmh%5D (accessed 2022/09/15)

12

https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
https://pubmed.ncbi.nlm.nih.gov/?term=NF-kappa%20B%20%5Bmh%5D
https://pubmed.ncbi.nlm.nih.gov/?term=apoptosis+%5Bmh%5D


1.1 Motivation

Figure 1.1: Number of publications indexed by PubMed in total and for the search terms
’Apoptosis’ and ’NFκB’

4. Most prior work in text mining for pathway curation represents biochemical reac-
tions as binary relations which ignores important complexities.

We first describe these four shortcomings in detail and then explain our proposed solu-
tions.

Challenge 1: Biochemical reactions can be expressed in highly regular structures
describing the reactions at different levels of abstraction [Franzese et al., 2019]. Biomedical
Natural Language Processing (BioNLP) researchers have exploited this regular structure
and constructed methods to assist the pathway curation process by drawing from the
field of information extraction (IE) [Ohta et al., 2013, Junge and Jensen, 2019, Soto
et al., 2018]. These methods condense the information found in text into structured
representations, such as ‘Protein A interacts with Protein B’ or ‘Protein C is involved
in Pathway P’. This can speed up the curation process because in the best case, the
curator can use the condensed structured information to identify the most important
papers to read. Most of the commonly used IE methods are based on supervised machine
learning algorithms and thus, require manually labelled datasets that should be as large as
possible for maximum accuracy. Unfortunately, the available datasets with annotations for
biochemical reactions that might be relevant for pathway curators are rather small [Kim
et al., 2011b, 2013, Ohta et al., 2011, 2013]. BioNLP researchers have addressed this
problem of data sparsity by using distant supervision algorithms that can learn from
noisy data derived from databases [Junge and Jensen, 2019, Poon et al., 2015, Thomas
et al., 2011]. However, these works did not use recent methodological advancements in IE,
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1 INTRODUCTION

such as the combination of gold-standard and distantly supervised data [Beltagy et al.,
2019a] or the fine-tuning of a pre-trained language model (PLM) [Devlin et al., 2019].

Challenge 2: Furthermore, state-of-the-art models for biomedical IE are typically
only available as research code [Lee et al., 2019]. This limits their usefulness for non-
experts in practical settings, where the method has to be adapted to the project require-
ments, for instance, by restricting the proteins to be extracted or the research articles
from which the reactions are extracted.

Challenge 3: Modern IE algorithms can, within hours, extract millions of candi-
dates for biochemical reactions from the literature [Van Landeghem et al., 2013] and for
curators, it might not be immediately clear which of these would be good candidates for
inclusion in the pathway. Researchers have addressed this problem by developing methods
that suggest possible additions to an already partially curated pathway [Ahmed et al.,
2020, Holtzapple et al., 2021, Butchy et al., 2021]. Such pathway extension methods typ-
ically require that the pathway model can be simulated and thus are only applicable to
mathematical models. Additionally, to the best of our knowledge, none of the proposed
extension methods uses supervised machine learning, which would allow it to exploit the
large number of pathway definitions available in databases. Finally, previous pathway ex-
tension methods have been evaluated only on small-scale datasets that contain a handful
of pathways, which makes a robust comparison of different extension methods hard.

Challenge 4: Most of the IE methods that can assist pathway curators and vir-
tually all of the pathway extension methods represent biochemical reactions as binary
relations between biological entities, such as ‘protein A interacts with protein B’. How-
ever, biochemical reactions can be much more complex than that, as they frequently have
multiple substrates, which are transformed into multiple products with the help of one or
more catalysts. Additionally, modifications of proteins can alter their behaviour, and fre-
quently proteins can only participate in a reaction when a specific modification is present
or absent. These details can be important in the pathway-curation process but are lost
when reactions are represented as these simple binary relations, which can negatively
impact the usefulness of the IE methods for pathway curation (see Section 3.4). Biomed-
ical Event Extraction is an IE formalism that has been developed to account for these
complexities [Kim et al., 2009] but, so far, it has been used only sparingly for pathway
extension [Soto et al., 2018].

1.2 Goals and Contributions

In this thesis, we4 investigate how text mining methods can be designed or improved to
support pathway curators. Specifically, we address the limitations of the state of the art
that we identified above.

Contribution 1: In Chapter 3, we propose PEDL, a novel method for extracting
protein-protein associations (PPAs), which are a representation of biochemical reactions
as binary relations between proteins. In particular, we propose a solution for the data-
sparsity problem of PPA extraction, in which we train a PLM with distantly supervised
and manually annotated data. This allows PEDL to extract PPAs more accurately than
other state-of-the-art models. Additionally, we propose a novel multi-task formulation for
combining distantly and manually annotated data that helps to detect the evidence for
extracted PPAs more accurately than the state-of-the-art for distantly supervised relation

4When requiring a first-person pronoun in this thesis, I use the plural form exclusively, because all
scientific results presented in this thesis are the result of cooperations with different co-authors. The exact
contributions of each author, including myself, are provided in Section 1.4.
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1.3 Outline

extraction [Beltagy et al., 2019a].

Contribution 2: In Section 3.4, we describe the implementation of PEDL+, a stan-
dalone biomedical relation extraction tool, that allows non-experts to extract PPAs from
a large portion of the biomedical literature. We empirically evaluate PEDL+’s usefulness
in two different pathway curation projects and find that the three annotators rate 55.6%
to 79.6% of the found PPAs to be helpful for their curation project.

Contribution 3: In Chapter 4, we propose PathComplete, the first pathway ex-
tension method that can exploit available pathway definitions, e.g. from databases, to
improve its accuracy. To achieve this, we develop a novel approach that constructs rep-
resentations for PPAs with Graph Neural Networks (GNNs). We pre-train this GNN on
a large collection of pathways sourced from databases combining transfer and multi-task
learning. To evaluate PathComplete, we introduce the first large-scale evaluation dataset
for pathway extension methods. On this dataset, we compare PathComplete to six strong
baselines and find that it strongly outperforms all competitors and frequently even doubles
the performance metrics of the next-best contender. Additionally, our analysis shows that
PathComplete can propose meaningful extensions to mathematical models of pathways.

Contribution 4: In Chapter 5, we generalize the pathway extension problem from
binary representations of reactions to complex ones and introduce a new dataset to study
this problem. We propose a novel method that can jointly extract complex reactions from
text and extend an input pathway with them. For this, we build on the framework of
conditional graph modification. Additionally, we propose a novel method for conditional
graph modification which reformulates the problem as a graph extension task. This allows
the proposed method to modify graphs based on textual instructions much more precisely
than the state-of-the-art [He et al., 2020], improving the accuracy on three benchmark
datasets by 13 to 24 percentage points.

1.3 Outline

The remainder of this thesis is divided into five chapters.

Chapter 2 provides the scientific background for the subsequent chapters. First, it
gives an overview of the most important concepts in pathway biology, with a focus on how
pathways are curated in pathway databases and mathematical models. It describes the
deep learning theory and fundamental techniques that we use in chapters three, four, and
five. Finally, it discusses the state of the art in NLP, focussing on information extraction
and BioNLP, as these are the two subfields into which most of this thesis’ contributions
can be placed.

Chapter 3 introduces PEDL, a novel method for extracting PPAs from the biomedical
literature, that alleviates the problem of data sparsity by training a PLM on a combination
of manually and distantly annotated data. We describe how we model PPA extraction
as multi-instance learning, as well as our novel combination of manually and distantly
annotated data that we develop to improve the identification of text snippets that can
serve as evidence for the extracted PPAs. We discuss the training data, which consists
of PPAs extracted from a large pathway database and four smaller manually-annotated
PPA datasets. We provide details about the two baselines against which we compare
PEDL’s extractions, a recently published state-of-the-art model [Beltagy et al., 2019a]
and a large database of text-mined PPAs [Van Landeghem et al., 2013]. Our results
show that on average, PEDL outperforms the state of the art across three evaluation
scenarios. In a manual evaluation, we find that PEDL can accurately extract PPAs that
are missing from two major pathway databases. In the final section of the chapter, we
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describe our reimplementation of PEDL as the standalone tool PEDL+ for user-friendly
PPA extraction, which allows PPA extraction for proteins of interest from a large fraction
of the biomedical literature with a single command. We evaluate the usefulness of this
reimplementation in two pathway curation projects with the help of three annotators
and find that depending on the annotator and the project 55.6% of 79.6% of PEDL+’s
extractions are rated as helpful for the project. Finally, we discuss related work for
relation extraction in pathway curation contexts.

Chapter 4 proposes PathComplete, a pathway extension method that can exploit
pathway definitions from databases as training data. We first describe how we formu-
late pathway extension as a network-based supervised learning problem and then how we
incorporate large-scale training data from pathway databases by combining transfer and
multi-task learning. We provide details about the two scenarios in which we compare
PathComplete to baselines. In our experiments, we find that PathComplete strongly out-
performs all baselines in one evaluation scenario and performs competitively in the other.
We use ablation experiments and inspection of the weights to analyse PathComplete,
discuss its robustness to distribution shifts and report on a manual analysis of PathCom-
plete’s proposed extensions for two mathematical models of signalling pathways. Finally,
we discuss work related to pathway extension methods.

In Chapter 5, we describe a generalization of the pathway extension problem to com-
plex biochemical reactions, which can include multiple reactants, products, and enzymes.
For this, we propose a novel method that can jointly extract such complex reactions from
text and extend an input pathway with the extracted reactions. It builds on the condi-
tional graph modification framework, in which a model learns to modify an input graph
according to a modification prompt. We first describe our reformulation of conditional
graph modification as conditional graph extension and how this allows us to address mul-
tiple shortcomings that we identified in the state of the art. Then, we provide details
about the experiments and introduce a new dataset for pathway extension with complex
reactions. Our experiments show that the proposed method performs better than the
state of the art on three benchmark datasets and that it can produce meaningful exten-
sions in the pathway extension setting, which the state of the art fails to do. Finally, we
investigate the reasons for the observed performance gains, describe which types of errors
our proposed method frequently makes, and discuss related work for conditional graph
generation.

Chapter 6 concludes the thesis by discussing its main limitations and open questions
and how these could be addressed in future work. For instance, two important limitations
are the lack of available data for building pathway-related text-mining models and the
limited user-friendliness of the developed methods. Three essential open questions that re-
main are whether text-mining tools are truly useful in the pathway curation workflow and
how to measure it, which output complexity of extracted reactions and pathways would
be most useful, and which other subfields of NLP can contribute to pathway curation.

1.4 Published Material and Contributions from Co-Authors

Chapters three and five are based on published material. Chapter 3 has been published
as Weber et al. [2020], with the exception of Section 3.4, which is still unpublished. For
Weber et al. [2020], Leon Weber-Genzel developed the method, designed and executed the
experiments, and wrote the manuscript. Ulf Leser and Jana Wolf contributed to the study
design. Kirsten Thobe and Oscar Arturo Migueles Lozano performed the manual eval-
uation of the evidence predictions described in Section 3.2. Kirsten Thobe and Mareike
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1.4 Published Material and Contributions from Co-Authors

Simon performed the analysis of novel PPAs described in Section 3.2.3. All authors pro-
vided feedback and suggestions for the manuscript. For Section 3.4, Leon Weber-Genzel
developed the architecture of the standalone application and implemented it with the help
of Fabio Barth. Leon Weber-Genzel, Ulf Leser and Jana Wolf designed the evaluation
and Fabian Konrath, Kirsten Thobe and Leonie Lorenz executed it. Leon Weber-Genzel
wrote the manuscript with contributions from all co-authors.

Chapter 4 is not yet published at the time of writing. For it, Leon Weber-Genzel
developed the method and the study design with guidance from Ulf Leser and Jana Wolf.
Fabian Konrath performed the error analysis and Ziyue Chen curated the senescence
model. All other experiments and analyses were conducted by Leon Weber-Genzel. Leon
Weber-Genzel wrote the manuscript in collaboration with all other authors.

Chapter 5 has been published as Weber et al. [2021a]. Leon Weber-Genzel developed
the method and experiments with contributions from Jannes Münchmeyer and Samuele
Garda. Leon Weber-Genzel performed all experiments as well as analyses and wrote the
manuscript. All co-authors provided feedback and suggestions for the manuscript.

In a few places, we reference the two papers Wang et al. [2020] and Wang et al. [2022].
They originate from a study project and the Master’s thesis of Xing David Wang, for which
Leon Weber-Genzel acted as the main supervisor. For these, Xing David Wang and Leon
Weber-Genzel jointly designed the method and experiments. Xing David Wang performed
the experiments and analysed the results. Xing David Wang wrote the manuscripts with
contributions from Leon Weber-Genzel and Ulf Leser.
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2 Background

The endeavour to develop Natural Language Processing (NLP) methods that can assist
pathway curators is deeply interdisciplinary. Most current NLP research relies strongly
on recent advances in Machine Learning (ML) and especially on the ML subfield of deep
learning [Jurafsky and Martin, 2021]. Pathway curation itself is also an interdisciplinary
field which combines insights and methods from biology [Klipp and Liebermeister, 2006,
Heinrich and Schuster, 2012], database and data integration research [Gillespie et al., 2022,
Rodchenkov et al., 2020] and sometimes mathematical modelling5 [Klipp and Liebermeis-
ter, 2006]. In this chapter, we review these different (sub-)fields insofar as they are relevant
to the contributions of this thesis. First, we describe the field of pathway curation, in-
cluding a short introduction to the necessary biological background. We presuppose basic
knowledge about Biology, which can be found e.g. in Alberts et al. [2015, Part I]. Then,
we describe the deep learning theory that is the basis for the NLP and ML methods that
we developed in this thesis. For this, we presuppose basic knowledge about (non-deep
learning) ML, for which, e.g., Hastie et al. [2009] is an excellent resource. Finally, we dis-
cuss the background in NLP with a focus on biomedical NLP and information extraction.
For specific work in NLP for pathway curation, see the related work sections of chapters
three (relation extraction for pathway curation) and four (automated pathway extension).

2.1 Biochemical Pathways

Biochemical pathways (or short ‘pathways’) are important abstractions in Biology re-
search, which allow researchers to group multiple biochemical reactions that together
allow a cell to execute some function or alter its behaviour [Michal and Schomburg,
2012]. For example, when a yeast cell senses osmotic stress at its cellular membrane,
the cell has to transmit the signal to the nucleus, where it then can increase the expres-
sion of genes that allows it to counteract the osmotic stress [Klipp et al., 2005]. The
whole system of reactions that transmits the signal is called the ’osmoregulation path-
way’. Researchers have described different types of pathways, such as signalling pathways,
metabolic pathways, protein-protein interaction networks and gene regulatory networks,
which differ by the type of the described system, their general purposes, or by the level
of abstraction [Barabási and Oltvai, 2004]. In the context of this thesis, only signalling
and metabolic pathways are relevant, which we now describe in detail. See Figure 2.1 for
an example of both pathway types.

2.1.1 Signalling Pathways & Metabolic Pathways

A common pattern for signalling pathways is that an external signal is sensed by a receptor
protein at the membrane of the cell, which transduces the signal by altering the state of
one or more interacting proteins, which in turn interact with additional proteins and
thereby alter their state. Such a chain then conveys the signal from one location to
another [Alberts et al., 2015, Chapter 15]. Such a chain of biochemical reactions finally
leads to the activation of an effector protein, which then changes the behaviour of the cell,
for instance by altering the osmoregulation. An important class of effector proteins are
transcription factors, which regulate the transcription of their target genes into mRNA.

5It can be argued that the ‘mathematical’ in ‘mathematical modelling’ is a misnomer because all
pathway representations can be interpreted as graphs which clearly are mathematical entities. Maybe a
better term would be ‘simulatable models’, as this is their defining characteristic. However, we follow the
more common nomenclature of ‘mathematical modelling’ here.
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2 BACKGROUND

Figure 2.1: Example pathways.
On the top is a cartoon of the NFκB signalling pathway (adapted from
https://commons.wikimedia.org/wiki/File:NF-κB.svg, accessed on 2022/10/24, licensed
under CC BY-SA 3.0). It illustrates the general makeup of signalling pathways, where a
signal sensed by a receptor at the cell membrane is transduced through a series of bio-
chemical reactions to the nucleus where it alters the production of certain proteins that
allow the cell to react to the signal. Note, that the effector of the NFκB pathway are
members of the NFκB family of transcription factors. In this specific example, RelA and
p50 are shown.
At the bottom is a cartoon of the glycolysis metabolic pathway (adapted
from https://en.wikipedia.org/wiki/File:Glycolysis metabolic pathway 3 annotated.svg,
accessed on 2022/10/24, licensed under CC BY 4.0). This catabolic pathway uses glucose
to build up biologically available energy in the form of ATP and NADH, which then can
be used by the organism to drive the synthesis of useful molecules in anabolic pathways.
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This mRNA then either can be translated into proteins or can be modified to serve other
biological functions inside the cell, for instance by controlling the rate of translation for
some other proteins by acting as miRNA [Alberts et al., 2015, Chapter 8].

There is a handful of classes of biochemical reactions that play important roles in
signalling pathways [Alberts et al., 2015, Chapter 15], which we discuss in detail because
the different relations that our proposed methods extract represent most of these classes.

• The first class encompasses post-translational modifications (PTMs) in which
a protein is modified by other biochemical entities after it has been translated from
RNA. This modification changes the behaviour of the protein, which allows the
transmission of the signal. A PTM that is especially prevalent in signalling is (de-
)phosphorylation, in which a phosphate group is either attached to or detached from
the modified protein. The PTM changes the protein surface and thus a function of
the protein can be activated or inactivated, or the PTM can change whether the
protein is recognized or not by other proteins that interact with it.

• Another mechanism for the (in-)activation of specific proteins frequently found in
signalling pathways is the GTPase, which is a class of proteins that can be activated
by replacing a bound GDP group with a GTP group with the help of an enzyme
that controls the reaction.

• A third important type of reaction is complex formation in which two or more
proteins bind together and thus form a protein complex, which can behave differently
from each of the individual complex members in isolation. For instance, a protein
can bind two other proteins and thus catalyse a reaction between both.

• A fourth reaction type that is crucial to signalling pathways is the expression
of genes and the subsequent synthesis of proteins, in a process that consists of
transcription and translation. Both the transcription and translation of a protein
can be controlled by other proteins, which can thus specifically alter the amount of
these proteins in the cell.

• The fifth important reaction type is translocation, where a biochemical molecule,
usually a protein, migrates to another cellular compartment, for instance when a
transcription factor moves from the cytosol to the nucleus where it can influence the
gene expression of its target genes. This process, also called transport, can be either
active (requiring an enzyme) or passive, where the present concentration gradient
is sufficient to drive the transport reaction.

We use the activation pathway of Nuclear factor-κB (NFκB) [Liu et al., 2017b] to
illustrate many of these reaction types. See also Figure 2.1 for a graphical description.
NFκB is a family of transcription factors that regulate many genes related to inflamma-
tion, cell survival and the immune system. In its inactive state, NFκB, which itself is
a two-protein complex, resides in the cytosol and is bound by IκBα, which prevents it
from translocating to the nucleus, where it can be active as a transcription factor. When
a receptor capable of activating NFκB receives a signal, the activation of the protein
complex IKK through phosphorylation is triggered. Phosphorylated IKK then in turn
phosphorylates IκBα, which leads to its ubiquitination (another PTM), and through that
to its degradation. After IκBα is degraded, NFκB is free to migrate to the nucleus and
alter the expression of its target genes. Here we can see, how information travels from
the cellular membrane to the nucleus by the means of different reaction types, including
PTMs, complex formation, translocation and controlled changes in gene expression.
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The second type of pathway relevant to this thesis are metabolic pathways, in which
nutrients are broken down and transformed into physiologically useful energy sources or
compounds, such as proteins or other molecules, that are useful for the organism [Alberts
et al., 2015, Chapter 2]. Metabolic pathways can be grouped into catabolic pathways
in which compounds are broken down and anabolic pathways in which new compounds
are synthesized. Throughout this thesis, we treat metabolic reactions as a single reac-
tion class following the resources that we use for training our models [Rodchenkov et al.,
2020, Ohta et al., 2013] and thus do not describe them in more detail. The vast major-
ity of the reactions that constitute metabolic pathways are catalyzed by enzymes, which
are proteins that facilitate the reactions so that they run reasonably fast at biologically
feasible temperatures. These concepts are illustrated with the example of the glycolysis
metabolism depicted in Figure 2.1. Glycolysis is a catabolic pathway that breaks down
glucose in order to store biologically available energy in form of ATP and NADH. An-
abolic pathways can then use ATP and NADH to drive the synthesis of biologically useful
molecules, such as in amino acid biosynthesis. Each step of the glycolysis pathway is
catalyzed and thus controlled, by a specific enzyme.

2.1.2 Pathway Databases

Pathway databases provide computer-readable representations of pathways. Bioinformati-
cians and biomedical researchers typically use them for interpreting the results of omics
experiments with pathway enrichment methods [Reimand et al., 2019] and mathematical
pathway modellers sometimes use them as an information source [Klipp and Liebermeis-
ter, 2006]. In this thesis, we use pathway databases to train and evaluate both our PPA
extraction method in Chapter 3 and our pathway extension method in Chapter 4.

There exists a multitude of different pathway databases, which one can categorize
along different axes: (1) the type of provided pathways, (2) whether the database’s con-
tents are freely accessible to researchers, (3) the level of detail of the provided pathway
information, (4) the manner of curation and, relatedly, the provided evidence, and (5) the
provided data formats [Chowdhury and Sarkar, 2015]. In this thesis, these characteristics
determine which subset of pathway databases we use for training and evaluation. For
instance, in Chapter 3, we focus on signalling pathways and thus we can source train-
ing/evaluation data only from databases that include signalling pathways (axis 1). See
Table 2.1 for an overview of pathway databases that are freely available for academics.

1. Possibly the most important characteristic of a pathway database is which types of
pathways are available. Some databases provide information only about signalling
pathways, metabolic pathways or gene regulation networks respectively, while others
provide information about a subset or all of them.

2. Another important property is whether the database is only commercially available
or whether it provides its information free of cost to researchers. There are also
databases which give researchers free access to only a subset of information, such
as KEGG [Kanehisa et al., 2021].

3. This axis describes the level of detail of the provided information which can be
expressed as a spectrum. At one end, there are very detailed databases that provide
executable mathematical models of pathways [Malik-Sheriff et al., 2020], while on
the other end, there are databases that provide only gene sets, i.e. the names of the
genes that constitute the pathway without giving any information about how they
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Pathway Types Detail Curation BioPAX In PC12

Reactome [Gillespie et al., 2022] S / M Reaction manual native yes
PID [Schaefer et al., 2009] S Reaction manual conv. yes
HumanCyc [Romero et al., 2004] M Reaction manual native yes
PANTHER [Mi and Thomas, 2009] S / M Reaction manual native yes
KEGG [Kanehisa et al., 2021] S / M Reaction manual conv. yes
INOH [Yamamoto et al., 2011] S Reaction manual conv. yes
NetPath [Kandasamy et al., 2010] S Reaction manual native yes
Pathbank [Wishart et al., 2020] S / M Interaction semi-auto. + meta native no
WikiPathways [Martens et al., 2021] S / M Reaction manual conv. no
BioModels [Malik-Sheriff et al., 2020] S / M Math. Model manual native no
ConsensusPathDB [Kamburov and Herwig, 2022] S / M Gene set meta no no
InnateDB [Breuer et al., 2013] S (Immunology) Gene set manual + meta no no
SignaLink [Csabai et al., 2022] S Interaction manual native no
SIGNOR [Licata et al., 2020] S Gene set manual no no
PathwayCommons [Rodchenkov et al., 2020] S / M Misc. meta native -

Table 2.1: Pathway databases that are freely accessible for academics. Pathway type can be signalling (S) and metabolic (M). ’Semi-auto.’
in the Curation column refers to a semi-automatic curation process, in which manual curation is used alongside automated methods. The
availability of BioPAX can be either available natively, via conversion (conv.) or not available at all (no). The column ‘In PC12’ indicates
whether the database is included in the metadatabase PathwayCommons v12, which we use to train and evaluate our models in chapters
three and four.
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interact with each other. Between these extremes, there are databases with varying
levels of information, e.g. those that provide detailed reaction-level information
but no executable models such as Reactome [Gillespie et al., 2022] and those that
provide details about the mode of binary interactions between two molecules such
as whether the interaction is direct or indirect.

4. We also characterize how the information presented by the database was acquired.
Some databases are manually curated by researchers who survey the existing lit-
erature for information on a given pathway and provide citations for every bit of
information in the database. Others are constructed in a (semi-)automatic manner,
for instance by programmatically transferring a manually constructed pathway for
one species to another [Wishart et al., 2020]. An important special case of automat-
ically constructed databases are meta databases, such as PathwayCommons, which
provide a uniform representation of the information from different other databases.
Some databases such as InnateDB [Breuer et al., 2013] offer primarily original in-
formation but additionally include information derived from other databases. Im-
portantly, PathwayCommons aggregates the information of 22 different pathway
databases in different formats6. PathwayCommons exports reaction-level informa-
tion in BioPax when available, and additionally offers detailed information about
binary interactions between molecules for most of the indexed databases. We use
PathwayCommons as a main source for training and evaluation data in chapters
three and four.

5. The file format axis describes in which formats the databases make their data avail-
able. Many provide their data in a custom format, such as a database dump, and
additionally offer representations in formats specifically developed for the sharing
of pathway information such as BioPax [Demir et al., 2010] or SBML [Hucka et al.,
2003].

2.1.3 Mathematical Models of Pathways

The mathematical modelling of pathways is an active area of research, in which the
reaction networks of one or more pathways are represented in a mathematical formalism,
that allows simulating the behaviour of the pathway under multiple conditions [Klipp
and Liebermeister, 2006, Konrath et al., 2020, Heinrich and Schuster, 2012]. An accurate
mathematical model of a pathway can serve at least two functions. First, it can condense
the core knowledge about the pathway into a form in which it can be empirically verified
by using the model to reproduce the experimentally observed behaviour of the modelled
system. Further, the pathway model can make predictions about the system’s behaviour
that can inform further experiments. Second, it allows to computationally test hypotheses
about pathway behaviour, for which lab experiments are difficult or impossible to conduct,
e.g., because the space of potential modifications of the system is too large. For example,
mathematical models of pathways have been used to predict how specific mutations can
drive cancer progression or how a given cancer could react to a certain treatment and
thereby suggest potential trug targets [Clarke and Fisher, 2020, Thobe et al., 2021]. In
this thesis, we use our proposed pathway extension method to extend two mathematical
models of signalling pathways in Chapter 4.

Researchers have used multiple mathematical formalisms to model pathways, which
have different advantages and disadvantages. Arguably, the most prominent formalism

6https://www.pathwaycommons.org/archives/PC2/v12/, accessed 2022/08/15
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are systems of Ordinary Differential Equations (ODEs), in which the interactions between
different molecules are expressed as differential equations [Klipp and Liebermeister, 2006].
ODEs allow to model pathways very accurately as long as the involved reactions are well
characterized empirically and the modelled system is not too large [Lavrova et al., 2017].
Boolean models, which represent pathway interactions as a collection of boolean formu-
lae, can be used to model much larger systems than possible with ODEs and do not
require exactly characterized reactions. These advantages come at the price of a reduced
fidelity to the modelled pathway because the discrete nature of boolean formulae is at
odds with the continuous states of biological systems [Lavrova et al., 2017]. Less promi-
nent modelling frameworks that are closely related to boolean models are petri nets and
cellular automata [Klipp and Liebermeister, 2006]. Models can typically be simulated
in a deterministic or stochastic manner, in which stochastic simulation is more common
for systems with small numbers of molecules, where stochastic effects can be especially
pronounced [Klipp and Liebermeister, 2006]. Mathematical models of pathways differ
in at least two important aspects from pathway models defined in pathway databases.
First, they allow simulating pathway behaviour, which pathway models from databases
typically don’t [Klipp and Liebermeister, 2006]. A notable exception to this is BioMod-
els [Malik-Sheriff et al., 2020], a database that collects mathematical models of both
signalling and metabolic pathways. Second, mathematical models have to strike a bal-
ance between biological realism and the constraints imposed by the used mathematical
formalism. Thus, mathematical models frequently combine multiple related reactions into
a single one [Heinrich and Schuster, 2012] whereas pathway databases are not subject to
such restrictions.

2.2 Deep Neural Networks

A large fraction of modern NLP research uses deep neural networks and the work presented
in this thesis is no exception to this. Hence, we provide an overview of modern Deep
Learning. For a more exhaustive overview see Goodfellow et al. [2016] which we also
follow for this section if not indicated otherwise.

Deep Learning is a powerful and flexible framework to build machine learning models
called neural networks. Deep Learning allows building arbitrary complex models from
simpler functions, also called layers, f (1), f (2), ..., f (L) as long as they are differentiable.
The number of layers L is called the depth of the neural network and if L is large, we
speak of a deep neural network. Arguably, one of the most widely used neural network
architectures is the feed-forward network or multi-layer perceptron (MLP). MLPs map
an input vector x to an output vector ŷ. The defining characteristic of MLPs is that
information only flows forward through the f (l)s, which means that no f (l) will receive an
input vector that depends on a prior output of f (l). Architectures that use such recurrent
connections are called Recurrent Neural Networks (RNNs). We do not discuss them, as
all models that we developed in this thesis are based on feed-forward architectures. See
Figure 2.2 for an illustration of an MLP architecture.

Formally, an MLP is a parameterized function fθ with parameters θ that maps an
input vector x ∈ Rd to an output vector ŷ ∈ Rt, by applying a sequence of, usually non-
linear, functions ŷ = f (L) ◦f (L−1) ◦ ...◦f (1), where l’th function is called the l’th layer and
f (L) is called the output layer. The goal of MLPs is typically to approximate an unknown
function f∗(x) by estimating an θ̂ from training data (x1, y1), (x2, y2), ..., (xn, yn), such
that fθ̂(xi) ≈ f∗(xi) = yi. That is, one uses the training data as a proxy for the full data
distribution and optimizes the parameters of fθ so that the resulting function captures
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Figure 2.2: Architecture of a fully-connected MLP. Every box represents one element of
a vector. The grey lines are the model’s weights.

the known input-label relations. Each layer f (l) produces an output vector h(l), where the
h(0) = x is defined to be the input vector, h(L) = ŷ is called the output of the MLP and
all other vectors h(l) are referred to as hidden representations of x. Typically, every layer
of an MLP is parameterized with a weight matrix W (l) ∈ Rd×d′ , a bias vector b(l) ∈ R,
and an element-wise non-linear function ψ(l) : R → R called non-linearity. The output of
the hidden layer is then computed as

a(l) = h(l−1) ·W (l) + b(l) (2.1)

h(l) = ψ(l)(al). (2.2)

Typical choices for ψ in the hidden layers are the rectified linear unit (ReLU) [Nair and
Hinton, 2010], gaussian error linear unit (GELU) [Hendrycks and Gimpel, 2016], or tanh
which are defined as follows:

ReLU(a) = max(a, 0) (2.3)

GELU(a) = a
1

2
(1 + erf(

a√
2

)) (2.4)

tanh(a) =
ea − e−a

ea + e−a
, (2.5)

where erf is the Gaussian error function.

While we can choose any nonlinearity for the hidden layers, the nonlinearity of the
output layer ψ(L) is determined by the function the neural network is supposed to ap-
proximate. For example, when using the MLP for a binary classification or multilabel
classification task over c classes, the value of y ∈ Rc in each dimension should be either
1 or 0. In this case, one usually normalizes each entry in the output vector ŷ ∈ Rc to
the interval [0, 1] by applying the sigmoid function. This way, each dimension can be
interpreted as an independent binomial distribution. If, on the other hand, we use the
MLP for multiclass classification, the value of exactly one of y ∈ Rc’s dimensions is 1 and
the rest is 0. So, we normalize ŷ ∈ Rc to be interpretable as a categorical probability
distribution by applying the softmax function.
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σ(a) =
ea

ea + 1
(Sigmoid) (2.6)

softmax(a)i =
eai∑d
j=1 e

aj
(Softmax), (2.7)

where σ is applied element-wise to the vector, whereas softmax takes the full vector as
input.

To optimize our network on the training data, we have to measure how well our
network approximates the desired outputs yi for the inputs xi. We achieve this by defining
a loss function L(ŷ, y) that returns a smaller value for correct ŷs than for incorrect ones;
i.e., L(y, y) < Lŷ ̸=y(ŷ, y). Similarly to the activation function of the output layer, the
choice of loss function depends on the function we want to approximate. Typical choices
are binary cross entropy for binary or multilabel classification problems and cross entropy
for multiclass problems.

L(ŷi, yi) = − 1

|yi|

|yi|∑
j=1

yij log(ŷij) + (1 − yij) log(1 − ŷij) (Binary Cross Entropy) (2.8)

L(ŷi, yi) = −
|yi|∑
j=1

yij log(ŷij) (Cross Entropy). (2.9)

The loss for the whole dataset L(Ŷ , Y ) is usually defined as 1
n

∑n
i=1 L(ŷi, yi). To train our

network on the dataset, i.e. find a θ that produces a sufficiently small L(Ŷ , Y ), we typically
use a flavour of mini-batch stochastic gradient descent (SGD), an optimization algorithm
that decouples the computation time for a parameter update from the size of the training
data. That is, first, we initialize θ, usually by random sampling. Then, we iteratively
update θ by sampling a mini batch ofm≪ n training samples (x1, y1), (x2, y2), ..., (xm, ym)
with the update rule

θnew = θold − ν
1

m
∇θ

m∑
i=1

L(ŷi, yi) (Vanilla SGD), (2.10)

where ∇θ is the gradient with respect to θ and ν is called learning rate or step size. Vanilla
SGD works well when ν is properly chosen for the specific dataset which typically requires
experimenting with different choices [Keskar and Socher, 2017]. Other variants of SGD,
such as momentum [Sutskever et al., 2013], RMSProp [Tieleman and Hinton, 2012], and
Adam [Kingma and Ba, 2015] require less tuning of ν because they adapt it dynamically
during training. Adam, which combines momentum with RMSProp is especially popular
for training neural networks. Its update rule is

mnew = β1mold + (1 − β1)∇θ

m∑
i=1

L(ŷi, yi) (2.11)

vnew = β2vold + (1 − β2)(∇θ

m∑
i=1

L(ŷi, yi))
2 (2.12)

θnew = θold − ν(
mnew√
vnew + ϵ

), (2.13)

with β1, β2, ϵ ∈ R being hyperparameters.
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To apply any variant of SGD, we have to compute ∇θ
∑m

i=1 L(ŷi, yi) which is non-
trivial for deep networks, as they can consist of hundreds of different composed functions.
The gradients for a neural network can be computed with the backpropagation algo-
rithm [Rumelhart et al., 1986]. The first step of backpropagation is forward propagation,
which is a synonym for using the full network to compute ŷ = f(x). The backpropagation
operation is an application of the chain rule of calculus dz

dx = dz
dy

dy
dx to the network’s func-

tion composition f = f (1) ◦f (2) ◦ ...◦f (L). It would work to apply the chain rule naively to
compute the derivative of each f (l) individually. However, this would imply recomputing
many intermediate terms and would incur a large runtime cost. Backpropagation applies
the chain rule in a more clever fashion which avoids the repeated recomputation of the
intermediate terms. It achieves this by applying the chain rule recursively backwards
in the network architecture from f (L) to f (1) while caching intermediates. The concrete
formula for backpropagation depends on the chosen network architecture.

Most neural networks in NLP are large machine learning models with some modern
architectures having over 500 billion parameters [Chowdhery et al., 2022]. As such they
are prone to overfitting, that is, to approximate f∗(x) well on the training data but badly
when x is not part of the training data. Regularization techniques can alleviate overfitting
by imposing additional constraints on the possible choices for θ. Two regularization
techniques that are especially prominent in deep learning are early stopping and dropout.

For early stopping, we use a second dataset next to the training data called validation
data which acts as a proxy for all unseen data that our network could observe when it is
used after training. During training, we periodically evaluate the network’s performance
on the validation data and simply select the model with the best performance for later
usage and not the last model as we would without early stopping.

While early stopping is a regularizing training strategy, dropout is a model component
that acts as a regularizer. When we apply dropout to a layer f (l), we randomly set
elements of the output vector h(l) ∈ Rd to zero by multiplying the output vector with a
masking vector m ∈ {0, 1}d that we sample from a Bernoulli distribution with parameter
p chosen independently for each training example (xi, yi). Here, p is a hyperparameter
of the network architecture and determines the strength of the regularization with larger
ps leading to stronger restrictions for θ. One intuition that can explain the regularizing
effects of dropout is that it prevents the model from overly relying on a few dimensions
because they might be zeroed out in the future.

A third strategy to address overfitting is to increase the parameter efficiency of the
model by introducing weight sharing. A popular type of layer that achieves this is the
convolutional layer. Convolutional layers are based on the intuition that sometimes it is
useful to divide an input xi into smaller chunks xic and apply the same function f (l) to
all chunks. The prime example of this is image recognition, where it has proven useful to
divide an image into patches and then apply the same function to each patch, which might
recognize basic image features such as edges or corners. A special case of convolution,
which is prominent in neural networks for NLP, is 1D convolution, where the input is
chunked into a, typically overlapping, sequence of vectors [xi1 , xi2 , ..., xis ] of length s and
the function is applied to each element in the sequence:

xi = [xi1 , xi2 , ..., xis ] (2.14)

h(k) = [f (l)(xi1), f (l)(xi2), ..., f (l)(xis)] (1D Convolution) (2.15)

In this thesis, we use 1D convolutions as a network component in Chapter 4.
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2.2.1 Graph-based Deep Learning

In the previous section, we implicitly assumed that the input data xi is independent
and identically distributed. In this case, the model can process the datapoints in an
arbitrary order and independently from each other without compromising the accuracy
of the approximation of f∗. However, for many datasets, this is not the case. Consider
for example a scenario in which we want to predict the function of proteins based on a
feature vector that characterises the protein. In this case, we would have one datapoint
xi, yi per protein, but some of these datapoints would be closely related to each other
because they interact with each other, belong to the same protein family or are members
of the same pathway. A common way to model such relations is to construct a graph
G = (N , E), where each node ni ∈ N corresponds to a datapoint xi and two nodes ni, nj
are connected with an edge eij ∈ E if they are related to each other [Sharan et al., 2007].
Most graphs that we consider in this thesis are multi-graphs, i.e. a pair of nodes can
be connected by more than one edge. Two prominent classes of deep learning models
that can take this graph-based information into account are knowledge graph embeddings
(KGEs) [Ali et al., 2021a] and graph neural networks (GNNs) [Gilmer et al., 2017], both
of which we use for pathway extension in Chapter 4.

KGEs are self-supervised node embedding methods, i.e. they learn node representa-
tions that can be used in different downstream tasks [Ali et al., 2021a]. They typically
operate on heterogeneous networks, which are directed multi-graphs with node labels LN
and edge labels LE [Ali et al., 2021a]. In the protein example, node labels could be the
type of the node (e.g. protein, protein family, pathway) and edge labels could be the
type of relation (e.g. member of, interaction). Formally, we can express node labels and
edge labels by defining special functions that map each node/edge to a one-hot vector
representation of their type(s):

tnode : N → {0, 1}|LN | (2.16)

tedge : E → {0, 1}|LE |. (2.17)

A central component of neural networks for KGEs is the embedding layer, which assigns
an embedding hi ∈ Rd with embedding dimensionality d to an object (here node or edge)
identified by a unique id i. An embedding layer is commonly described as a differentiable
lookup table with parameters H ∈ R|O|×d, where |O| is the number of objects. An
embedding for id i is computed with

hi = HT · li, (2.18)

where li ∈ {0, 1}|O| is the lookup vector for i, which means that it is 1 at index i and
zero everywhere else. The embedding layer can be used as a component in a neural
network like any other layer and its entries can be optimized like the weights of an MLP.
KGE models typically optimize the embedding layer with the task of link prediction on
a heterogeneous graph, after which the embeddings can be used for other downstream
tasks, for example by using them as input to another machine learning model.

In the link prediction task, the input to the KGE model is a head node h ∈ N , a
tail node t ∈ N , and an edge type (usually called relation) r ∈ {0, 1}|LE | and has to
predict whether there is an edge from h to t with type r in G. KGE models solve this
task by using their embedding layer to construct embeddings for the head node hh, the
tail node ht and the relation hr and then feeding them through an output layer called
score function. RotatE [Sun et al., 2019], which is the KGE we use in Chapter 4 uses the
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Figure 2.3: Typical architecture of a neural message passing GNN applied to a graph with
two protein nodes and one pathway node. Graph information is drawn in grey, hidden
representations are drawn in brown, and model components are drawn in pink. The edges
in the input graph determine which nodes can communicate in the message passing layers.

following score function

RotatE(hh, ht, hr) = −||hh ◦ hr − ht||1. (2.19)

where ◦ denotes the Hadamard (element-wise) product. Here, hh, ht, hr ∈ Ce are complex-
valued embeddings instead of the more common real-valued embeddings, which allows for
modelling a larger number of relations with properties such as symmetry, anti-symmetry
or inversion. After training the KGE model on this link prediction task, hh or ht can be
used to represent the entities h or t by using them in another model or task. A recent
large-scale benchmark of KGE models [Ali et al., 2021a] has found that RotatE performs
strongly on a large variety of different networks.

GNNs are neural networks that can take graphs as input [Zhou et al., 2020]. As such,
they can be used as parts of larger neural architectures similar to other layers. How they
are trained depends on the larger architecture and the task and does not differ from other
types of neural networks like MLPs. Most GNNs can be formulated in the neural message
passing framework [Gilmer et al., 2017] on which we will focus in this section. For an
illustration of a typical message passing architecture, see Figure 2.3. The core operation
of GNN layers, both during training and during inference, is the computation of node
representations. The first step of this operation is to compute node (and sometimes edge)
embeddings, using one or more embedding layers which can be either randomly initialized
or precomputed with other methods, e.g. with KGEs. After the GNN has computed an
embedding hn for each node, it uses a differentiable message passing mechanism to enrich
node embeddings with information derived from the embeddings of neighbouring nodes in
G. The forward pass of a message passing GNN proceeds in t rounds which each consist
of two steps, the message passing step and the update step. In the message passing step,
nodes send out messages to their neighbours which they derive from their node and edge
embeddings and aggregate the messages they received from their neighbours. After this,
each node performs the update step in which it computes a new node embedding from

30



2.2 Deep Neural Networks

the aggregated received messages and its embedding from the previous round. Formally,
both steps can be described as

m(t+1)
ni

=
∑

nj∈N(n)

Mt(h
(t)
ni
, h(t)nj

, eij) (Message passing) (2.20)

ht+1
ni

= Ut(h
(t)
ni
,m(t)

ni
) (Update), (2.21)

where h
(t)
ni is the embedding of node i after t rounds of forward passes, Mt is the message

passing function for round t, and Ut is the update function for round t, which can but does
not have to be different for each t. Both Mt and Ut can have parameters which can be
learned like any other weights of a neural network. Note, that the graph neighbourhood

about which h
(t)
ni can include information is determined by t, because it can only have

received (indirect) messages from nodes that are at most t hops away in G. There are
software packages that allow an efficient implementation of GNNs by exploiting the sparse
structure of graphs [Wang et al., 2019, Fey and Lenssen, 2019]. However, most GNNs
still do not scale to very large graphs and need special approximations for this, such as
sampling a random subgraph for the forward pass [Hu et al., 2021]. Another strategy to
apply GNNs to large graphs is to use only message passing functions Mt that do not have
any trainable parameters and apply them only on the initial node embeddings so that the
message passing results can be computed in a preprocessing step before training. This
is the route taken by Neighbor Averaging over Relation Subgraphs (NARS) [Yu et al.,
2020], which is a GNN supporting large-scale heterogeneous graphs. For these reasons,
we have opted to use NARS as the GNN for our pathway extension method in Chapter 4,
where we also describe it in detail.

2.2.2 Transformers

The transformer architecture [Vaswani et al., 2017] is a recent neural network architec-
ture that has seen an explosive gain in popularity since it has been published in 2017.
As an example of this, refer to Figure 2.4, where it can be observed that the num-
ber of citations for the transformer architecture quickly approaches that of the much
older LSTM [Hochreiter and Schmidhuber, 1997] which was the previous de facto stan-
dard neural network architecture for sequence modelling. While the architecture has
been originally developed for applications in NLP, it has also achieved strong results for
computer vision [Dosovitskiy et al., 2022], graph-based deep learning [Min et al., 2022],
earthquake early warning [Münchmeyer et al., 2021], or protein function prediction [Cao
and Shen, 2021]. We shall use transformers to process text in Chapter 3 and to jointly
encode graphs and text in Chapter 5. The transformer architecture consists of multiple
transformer blocks, sometimes also called ‘transformer layers’. Each of these blocks takes

a sequence of S vectors h
(l−1)
1 , h

(l−1)
2 , ..., h

(l−1)
S and transforms them into a sequence of

them same length h
(l)
1 , h

(l)
2 , ..., h

(l)
S , so that each output vector h

(l)
i can encode infor-

mation about all of the input vectors h
(l−1)
j . The input embeddings h

(0)
1 , h

(0)
2 , ..., h

(0)
S

of the first transformer block are usually the output of an embedding layer which is the
same kind of differentiable lookup table as in KGEs. We now describe the components of
a transformer block. These are self-attention (the core operation), residual connections,
layer normalization, and position-wise MLPs. See Figure 2.5 for an illustration of the
transformer architecture.

Self attention is the operation that allows the transformer to enrich an output vector

h
(l)
i with information about all of the input vectors h

(l−1)
j regardless of their relative po-
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Figure 2.4: Cumulative citation count for the publications of Transformer and
LSTM [Hochreiter and Schmidhuber, 1997] (the pre-transformer standard architec-
ture for modelling sequences) as indexed by https://scholar.google.com (accessed
2022/07/30).

sition. Intuitively, the self-attention operation decides how important information about
each of the input vectors for the computation of a given output vector is and aggregates

the information accordingly. It achieves this by generating a query vector q
(l)
i , a key

vector k
(l)
i , and a value vector v

(l)
i for each of the input vectors. One can think of the

i’th query as encoding what is important for the computation of the i’th output, the i’th
key as what is important about the i’th input and the i’th value what information about
the i’th input should be conserved in the output embeddings. When computing the i’th

output vector, the self-attention operation compares the query q
(l)
i to all keys k

(l)
j with

a scaled dot product to produce the attention weights α
(l)
ij that encode the importance.

These attention weights are then used to compute a weighted average of the values that

results in the output vector h
(l)
i . In a loose analogy to human attention, we say that the
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Figure 2.5: Architecture of a typical transformer model

model attends to certain vectors more or less strongly. Formally,

q
(l)
i ∈ Rdk = h

(l−1)
i W (l)

q (Query) (2.22)

k
(l)
j ∈ Rdk = h

(l−1)
j W

(l)
k (Key) (2.23)

v
(l)
j ∈ Rd = h

(l−1)
j W (l)

v (Value) (2.24)

z
(l)
ij ∈ R =

q
(l)
i · k(l)j√
dk

(2.25)

α
(l)
ij ∈ [0, 1] = softmax(zij)j (Attention weights) (2.26)

h
(l)
i =

n∑
j=1

αijv
(l−1)
j (Update). (2.27)

The query, key, and value matrices Wq ∈ Rd×dk , Wk ∈ Rd×dk , Wv ∈ Rd×d are learnable
parameters of the transformer. The scaling factor

√
dk is supposed to prevent zij from

getting too large for large values of dk, because large inputs to the softmax can lead
to small gradients which can potentially harm optimization. While this description of
attention is technically correct, most transformer models use a slightly more complex
attention mechanism called multi-head attention, which uses M different query, key and

value matrices W
(l,m)
q ,W

(l,m)
k ,W

(l,m)
v that yield M different hidden representations of

each input node h
(l,m)
i , where M is a hyperparameter. This allows the model to represent

aspects of the input data. The different hidden representations for each node are then
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aggregated via concatenation, followed by a linear layer W ∈ RMd×Md, b ∈ RMd:

h
(l)
i = [h

(l,1)
i , h

(l,2)
i , ..., h

(l,M)
i ] ·W + b, (2.28)

where [·, ..., ·] denotes concatenation. After aggregating information about all sequence
elements with (multi-head) self-attention, the transformer layer uses a residual connec-
tion [He et al., 2016] between the input and the output embeddings which is thought to
ease the optimization process by smoothing the loss surface during training [Li et al.,
2018]. The formula for a residual connection is simply

h
′(l)
i = h

(l)
i + o

(l−1)
i (Residual connection), (2.29)

where o
(l−1)
i is the representation of the i’th element computed by the previous layer.

After the residual connection layer normalization [Ba et al., 2016] is used to speed up the
training process by normalizing the output vectors with

µ
(l)
i =

1

d

d∑
k=1

h
′(l)
ik (Mean) (2.30)

σ
(l)
i =

√√√√1

d

d∑
k=1

(h
′(l)
ik − µ

(l)
i )2 (Standard deviation) (2.31)

h
′′(l)
i = LayerNorm(h

′(l)
i ) =

g
(l)
i

σ
(l)
i

(h
′(l)
i − µ

(l)
i ) (Layer Normalization), (2.32)

where g
(l)
i is a learnable gain vector that allows the model to explicitly control the scale

of the output and thus to be more expressive. The final component of a transformer layer
is the position-wise MLP, which applies the same 1-hidden-layer MLP7 with a ReLU

activation to every node representation h
′′(l)
i and which is followed by another residual

connection and layer normalization:

h
′′′(l)
i = max(0, h

′′(l)
i W1 + b1)W2 + b2, (Position-wise MLP)

(2.33)

o
(l)
i = LayerNorm(h

′′′(l)
i + h

′′(l)
i ) (Residual Connection + Layer Normalization)

(2.34)

where W1,W2 ∈ Rd×d and b1, b2 ∈ Rd are learnable parameters.

Self-attention, residual connections, layer normalization and position-wise MLPs are
all permutation equivariant. That is, a permutation of the input vector indices would
lead to the same permutation of the output vectors without changing the values of the
output vectors. When one uses transformers to encode sequences such as sentences this
is frequently an undesired property, because the relative and absolute position of words
in a sentence can carry important information about the sentence’s meaning. For exam-
ple, the sentence ‘IKK phosphorylates IκBα which leads to NFκB activation’ describes a
different scenario than ‘NFκB phosphorylates IKK which leads to IκBα activation’, even
though both sentences only differ in their word order. Transformer architectures typically
encode this positional information by enriching the input embeddings of the first trans-

former block h
(0)
i with position embeddings e

(p)
pi , where pi is the absolute position of the

7The position-wise MLP is equivalent to a 1D convolution, but we follow the more common terminology
for transformers here.
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i’th sequence element. These position embeddings are computed by using an additional
embedding layer that contains one embedding per absolution position in the sequence.
Formally,

h
(0p)
i = h

(0)
i + e

(p)
p(i), (2.35)

where e
(p)
p(i) is the output of the position embedding layer for pi. The position embedding

matrix can be either pre-computed or its parameters can be optimized during training. In
this thesis, we always optimize the position embeddings, which has become the standard
in NLP research [Devlin et al., 2019].

There are at least two reasons for the success of the transformer architecture. The first
is that, unlike other prominent architectures for sequences like the LSTM [Hochreiter and
Schmidhuber, 1997], the transformer layer can be parallelized, which allows to drastically
increase the size of the models. Second, transformers avoid the recency bias of LSTMs,
which describes the problem that, in some architectures, when updating the representation
of hi the network is biased towards assigning more weight to nodes that are close to hi in
the sequence.

2.2.3 Multitask Learning

Sometimes it can be beneficial to train a model on multiple related tasks simultaneously,
for instance on k classification tasks, which each have their own dataset (xi1 , yi1), (xi2 , yi2)
up to (xik , yik) and their own loss function L1,L2, ...,Lj , ...,Lk. Multitask Learning (MTL)
studies how to best combine such a collection of tasks to increase the model’s accuracy over
the accuracy of a model trained for a single task [Ruder, 2017]. We use MTL in chapters
three and four to improve the accuracy of our models. A comprehensive overview of
the many ways in which one can approach MTL is outside of the scope of this thesis.
See Ruder [2017] for an excellent survey.

A straightforward way to tackle MTL with neural networks is to introduce one output
layer per task called task head. Each of these task heads then uses the outputs of a layer
of the network, which does not necessarily have to be the last one, and produces a loss
for its task. These losses are aggregated with a weighted sum and the resulting term is
treated as the final loss and optimized as the loss of a single task would be. Formally, for
k different tasks, each weighted with γj this means

ŷij = task headj(h
(lj)
ij

) (Application of task heads) (2.36)

Lj =
1

mj

mj∑
i=1

Lj(ŷij , yij ) (Task-specific loss) (2.37)

L =
k∑

j=1

γjLj (Total loss), (2.38)

where h
(lj)
ij

is the representation of the ij ’th example at layer lj , which is used as the final
representation for task j, and mj is the size of the mini-batches for task j.

2.3 Natural Language Processing

NLP is the study of how computers can process unstructured text and speech. Here, we
give an account of the NLP techniques and subfields that this thesis touches. These are
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Pre-trained Language Models, Information Extraction, and the peculiarities of biomedical
NLP (BioNLP). Because this thesis is mostly focused on NLP in the biomedical domain,
we will primarily use the terminology and references from BioNLP if there is a divergence
from general domain NLP research. For an excellent comprehensive overview of general
domain NLP, see Jurafsky and Martin [2021] onto which we base this section where not
indicated otherwise.

2.3.1 Preprocessing of Natural Language

Most current NLP models are based on ML. However, ML models operate on vectors
while text is usually represented as a string of characters in a computer. Thus, when
developing an ML model for NLP, one first has to preprocess the strings into vectors,
before they can apply their models. We call the collection of texts we want to process
a corpus, which commonly refers to a collection of machine-readable text. In the first
preprocessing step, we have to decide in which granularity we want to process our text;
will one input sequence for our model be a document, a paragraph, a sentence, or a word?
This decision might entail a first preprocessing step in which we separate a document into
paragraphs, sentences or words. This is typically achieved by applying a set of static rules
or by using an ML model. The next decision is what the atomic elements of our input
sequence should be; should they be multiple words, a word or a sequence of characters
smaller than a word? We call one element of the input sequence a token and the process
of dividing our text into tokens ’tokenization’ [Jurafsky and Martin, 2021, Chapter 2].
Finally, we can assign a numeric id to each token, which we then can use as input to our
model. We assign the numeric id to a token by first creating a static vocabulary that
maps every token to a unique id. If we use a word-based tokenization strategy, then it can
happen that, during inference, we observe a word which is not in our vocabulary and that
the model has never observed during training and is not prepared to handle. Subword
tokenization [Schuster and Nakajima, 2012] has been developed to address this out-of-
vocabulary problem. Subword tokenizers are trained on a corpus to segment each word
into one or more substrings, trying to avoid the separation of substrings that have been
frequently observed in the training corpus. For instance, the string "horseradish" could
be segmented into the subwords "horse", "##rad", "##ish", where ’#’ marks that the
subword is from the same word as the previous subword. Importantly, the vocabulary will
contain all characters of the used alphabet as subwords. Thus, out-of-vocabulary words
are avoided, because, in the worst case, they will be broken down into single characters.

Researchers widely use three different subword tokenization algorithms [Jurafsky and
Martin, 2021, Chapter 2]: byte-pair encoding [Sennrich et al., 2016], unigram language
modeling [Kudo and Richardson, 2018], and WordPiece [Schuster and Nakajima, 2012].
In this thesis, we mainly use variants of BERT, a pre-trained transformer model which
we will describe in detail in Section 2.3.2, to encode natural language. All used BERT
models employ the WordPiece algorithm, which we now explain in detail. The segmen-
tation strategy of WordPiece is optimized on a training corpus by iteratively updating
its vocabulary V. First, V is initialized with all unique characters in the training corpus.
Then, WordPiece iteratively adds a new combination of two elements from V until it
reaches a pre-specified maximum size, which is roughly 30, 000 subwords in Devlin et al.
[2019]. WordPiece chooses the two-element combination to add among a list of candidates
c /∈ V by constructing an n-gram language model (LM; see Section 2.3.2 for a definition
of language models) on the vocabulary V ∪ c for it and then choosing the c that yields the
LM with the highest probability. For example, at one step V might contain the subwords
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"hor" and "##se" but not their combination "horse" and the addition of "horse" would
yield the LM with the highest probability for the training corpus, then it would add the
new subword "horse" to V and replace every occurrence of adjacent "hor" and "se" with
"horse" in the training corpus. Then, the process would continue until the maximum size
of V is reached. After the WordPiece tokenizer was trained, it can be applied to tokenize
unseen texts by repeating the merges learned from the training corpus in the order they
were learned.

2.3.2 Pre-trained Language Models

Pre-trained Language Models (PLMs) have been the foundation of large gains in accuracy
for many different NLP tasks [Jurafsky and Martin, 2021, Chapter 11]. For instance
after BERT was published, one can observe a significant jump on the public leaderboard
of SQuAD 2.0 [Rajpurkar et al., 2018], a standard benchmark in NLP research. See
Figure 2.6 for an illustration of this. The motivating intuition behind PLMs is that when
we train a neural network to perform a machine learning task with textual input, for
instance, to classify sentences into different categories, the model has two solve two tasks
at once. The first task is to learn the regularities of the language the texts are in, i.e. to
learn how words are semantically and syntactically related. The second task is then to
build on this ‘understanding’ of the language and perform the actual task, for instance,
the text classification. Now, when one approaches a different NLP task, for instance, to
detect all company names in text, then this does not change task one, but only task two.
Thus, the idea behind PLMs is to first learn the regularities of language and then reuse
this model by adapting it to different tasks. This way the model can be trained for task
one on a very large corpus with significant compute resources only once and then later
can be repeatedly trained on corpora for the tasks of interest by initializing the model
with the parameters that result from the training on task one. The training for task one
is called ‘pre-training’, the adaptation of the pre-trained model for task two is termed
‘fine-tuning’, and the whole process of first pre-training and then fine-tuning is called
‘transfer learning’. While the architecture of the model used for transfer learning can in
principle be any deep learning architecture that can process sequences, recent PLMs are
typically based on large transformer architectures [Devlin et al., 2019, Liu et al., 2019,
Lewis et al., 2020].

Usually, PLMs are pre-trained as language models on a large corpus in one of two
variants of language modelling: causal language modelling or masked language modelling
(MLM) [Luo et al., 2022]. In the causal language modelling task, the model receives
a sequence of words as input and has to predict the next word, whereas, in MLM, the
model receives a corrupted sequence of words as input and has to predict the words of the
uncorrupted sequence. As all PLMs that we use in this thesis are variants of BERT [Devlin
et al., 2019], which uses MLM, we will describe in detail only how MLM is implemented
in BERT and refer to Jurafsky and Martin [2021] for a general treatment of language
models.

BERT is a masked language model that is based on a transformer architecture which
typically comes in one of two sizes. BERT-base has 12 layers each with 12 attention heads
and an embedding vectors h ∈ R768 leading to a total of roughly 110 million parameters.
BERT-large has 24 layers each with 16 attention heads and an embedding dimensionality
of R1024 which leads to a total of roughly 340 million parameters. BERT is pre-trained on
the two tasks of MLM and next sentence prediction (NSP) in a multi-task fashion, which
we’ll now both describe in detail. The pre-training data for the MLM task is produced
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Figure 2.6: Maximum F1 score for all submissions to the SQuAD2.0 [Rajpurkar
et al., 2018] leaderboard [https://rajpurkar.github.io/SQuAD-explorer/; accessed
2022/08/01] in a given month. SQuAD2.0 is a popular benchmark for NLP models with
over 200 submissions to the leaderboard.

by taking a sequence s = (t1, t2, ..., tm) and corrupting it, by randomly replacing some
tokens with a special mask token [MASK]. Then, during pre-training, BERT solves one
classification task per introduced mask token, in which it has to predict which token was
originally in the position of the mask token. However, the model will never encounter
[MASK] tokens when it is applied later on and thus could be incentivized to learn rich
representations only for the [MASK] tokens and not the context words which would harm
results. To counteract this, the MLM training routine sometimes replaces the chosen
token with another random token or leaves it as it is and still asks the model to predict
the correct token at this position [Devlin et al., 2019]. A corrupted sequence derived from
our example could be ([MASK], "is", [MASK], "type", "beautiful", "plant") or
("Horseradish", "is", "a", "type", "of", [MASK]). This MLM pretraining allows
the model to internalize knowledge in its parameters, both about the structure of lan-
guage and about the meaning of words [Rogers et al., 2021]. For example, to generate
a good prediction for the example ([MASK], "is", [MASK], "type", "of", "plant")

the model has to know that the first mask token could be filled with a noun, but not
with a verb and for (”Horseradish”, ”is”, ”a”, ”type”, ”of”, [MASK]) it has to know that
horseradish is a plant. After embedding the tokens and producing context-aware repre-
sentations oi with a sequence of transformer layers, the model can classify the mask tokens
by feeding them through an output layer. In NSP, the second pre-training task, the model
has to decide whether two input sequences s1 and s2 were observed next to each other
in the corpus or whether they come from different locations. However, the usefulness of
NSP has come under scrutiny and it has been removed in more recent MLMs [Liu et al.,
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2019]. When BERT is pre-trained or fine-tuned on a sequence-level task like NSP, it has
to produce a global representation of two full sequences, in contrast to the local represen-
tation of each token of each sequence required for MLM. To achieve this, BERT’s input
is usually augmented with the special tokens [CLS] and [SEP], where [CLS] is usually
the first token in the input while [SEP] marks the end of a sequence. Accordingly, an
input example for NSP could be ([CLS], [MASK], "is", [MASK], "type", "of", "plant",
".", [SEP] "It", "is", "grown", "for", [MASK], "delicious", "root", ".", [SEP]).
The representation of the [CLS] token is used as input to the output layer, whenever the
task requires output representing the full sequence(s) and not individual tokens.

After pre-training, the model is called a PLM and can be fine-tuned for different
downstream tasks. For fine-tuning, the output layers for MLM and NSP are discarded
and a new output layer for the downstream task is added. Then, the whole model is
trained on the training data of the downstream task starting from the weights of the
pre-trained model instead of randomly initialized ones. PLMs typically converge much
faster than models trained fully from scratch, often requiring only a few epochs [Devlin
et al., 2019]. Note, that while pre-training is a fairly resource-intensive process, it has to
be done only once, whereas the relatively resource-light process of fine-tuning is usually
repeated frequently with the same PLM for different downstream tasks.

2.3.3 Information Extraction

Information Extraction (IE) [Jurafsky and Martin, 2021, Chapter 17] is the subfield of
NLP that investigates how computers can be used to extract structured information from
text. In this thesis, chapters three, four, and five can be regarded as studies in the field
of IE. Imagine, for example, that an oncologist has a patient who has kidney cancer that
is caused by a rare mutation and that standard therapy has failed for this patient. The
oncologist then might search the biomedical literature for how cases with similar mutations
were treated in the past. This would be a prototypical IE problem in which, we want to
extract triples of the type (cancer, mutation, drug) from a large amount of literature.
Note, that in a realistic application scenario, this IE-assisted literature search would only
be the first step, whereas the oncologist would manually verify the extractions of interest
and combine them with results from a manual literature search before using them to guide
their treatment decision. The standard IE pipeline consists of three tasks: Named Entity
Recognition (NER), Named Entity Normalization (NEN), and finally Relation Extraction
(RE) or Event Extraction (EE) and is illustrated in Figure 2.7.

NER is the task of finding entities of interest in text and determining their type.
In the example above, we would want to detect all mentions of cancers, mutations and
drugs in a corpus. Historically, the first NER models were entirely based on manually
constructed rules of what constitutes an entity of interest [Narayanaswamy et al., 2003].
While these models could achieve high precision, their recall was typically low, because
the open-ended structure of natural language makes it very hard to capture all possible
mentions of named entities with rules [Habibi et al., 2017]. ML-based NER methods
usually suffer less from this problem and thus achieve better results. In the past few
years, most researchers working on NER have shifted their attention to methods based on
deep learning [Habibi et al., 2017, Lample et al., 2016]. The most common framework for
NER is the sequence labelling framework [Jurafsky and Martin, 2021], in which one trains
a model to annotate each token with a label that expresses whether the token is part of
a named entity and if so, which position it has in the entity. One of the most common
flavours of sequence labelling for NER is the IOB-tagging scheme, in which a token can
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Figure 2.7: Exemplary IE pipeline for a biomedical text span taken from Espinosa et al.
[2018]. First, an NER model detects named entities in the text, which are then normalized
to a database by an NEN model. Finally, relational knowledge is extracted either by using
an RE or a BEE model.

either be the beginning of an entity B-, within an entity I- or outside of all entities O.
In IOB, there is one separate B- and I- tag for each considered entity type, which makes
it possible to distinguish entities of different types. In our example, we would have the
tags O, B-cancer, I-cancer, B-mutation, I-mutation, B-drug, and I-drug. The model
is usually trained in a standard multi-class classification framework with a cross-entropy
loss. After we have tagged all tokens with these tags, we can reconstruct the found entities
by enumerating all valid entity spans, i.e. tag sequences that start with a B-[type] and
are potentially followed by I-[type] tags. It is possible to train accurate models in the
IOB framework, with models frequently reaching over 80% F1 [Habibi et al., 2017, Weber
et al., 2019, Giorgi and Bader, 2018], which makes it a robust step in the IE pipeline.
However, IOB does not support nested entities (when one entity contains one or more
subentities) or overlapping entities [Straková et al., 2019].

After applying the NER model, we know where in the text cancers, mutations, and
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drugs are mentioned, but – depending on the context – the same string can refer to
different entities and the same entity can be known under different names. Resolving
these ambiguities is crucial for many use cases because only this allows programmatically
linking the extractions to those of other papers or to databases. This mapping from
entity spans to a concept unique identifier (CUI), which uniquely identifies the entity, is
performed by an NEN model [Morgan et al., 2004]. A typical NEN model takes three
inputs (1) the recognized entity mention with its type, (2) the context (e.g. the sentence)
in which the entity was detected, and (3) one or more databases that together index
every entity type that can be recognized. The output of the NEN model is then one
or more CUIs that identify the recognized entity in one of the databases. A frequently
used framework is to compare the entity mention with all the synonyms for each CUI
and return the most similar. For instance, the MeSH database8 lists ”Carcinomas, Renal
Cell”, ”Renal Cell Carcinomas”, ”Nephroid Carcinoma” among others as synonyms for
the CUI ”Carcinoma, Renal Cell”. The entity normalizer would then match the entity
mention with all synonyms of the database and return the CUI of the best match. This
matching procedure can be approached in a variety of ways. While approximate string
matching algorithms are surprisingly strong baselines [Wei et al., 2015], recent works on
NEN frequently use supervised methods for matching [De Cao et al., 2022, Zhang et al.,
2022b]. We refer the reader to [Huang et al., 2020] for a survey on NEN approaches.

For some IE use cases, it is enough to have text enriched with normalized entities.
For example, when constructing a semantic search engine [Thomas et al., 2012] which
allows users to query for texts in which specific entities appear, we only require a linking
of normalized entities to text. However, for other use cases like our running example,
it is crucial to additionally have relational information, which would tell us whether a
text states that the detected entities are in a specific relation with each other. It is not
enough that a text mentions kidney cancer together with the mutation and a specific
drug, because these concepts might be mentioned in totally different contexts. Instead,
we need to extract the information whether the text states that the drug was used to
treat the cancer caused by the mutation.

A very popular framework for RE is relation classification, which formulates RE as
a supervised classification task [Zhou et al., 2016]. In this thesis, we use the relation
classification framework to extract protein-protein associations from text in Chapter 3.
When using relation classification, we are given a text s together with all detected entities
e1, e2, ..., em as input. Then, we construct m · (m−1) inputs to our model by enumerating
all pairs (eh, et) with eh ̸= et, where eh is called the head entity and et the tail entity.
Then we mark eh and et in s, for example by introducing special marker tokens around
the entities. This yields m ·m(−1) different texts sht and for each of these texts, we use
our model to independently predict whether sht expresses a relation between the marked
entities. Relation classification is a well-studied framework [Baldini Soares et al., 2019,
Ren et al., 2018] and can yield very accurate models for relation extraction [Weber et al.,
2021b].

Sometimes, binary relations which connect a pair of entities are not sufficient. In our
running example, we wanted to build a pipeline that can detect when a text mentions
that a certain drug was used to treat a certain cancer caused by a specific mutation.
This task of detecting relations between more than two arguments is studied under the
term n-ary relation extraction [Peng et al., 2017]. In the biomedical domain, there is also
the task of biomedical event extraction (BEE) [Björne and Salakoski, 2018, Trieu et al.,

8https://www.nlm.nih.gov/mesh/introduction.html
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2020, Ramponi et al., 2020], which subsumes n-ary RE9. Because we model the pathway
extension problem in the BEE framework in Chapter 5, we focus on the description of
BEE here. BEE in general seeks to detect events in text, which are structures that can
be more complex than n-ary relations. In BEE, the presence of an event in a text is
signalled by a trigger phrase, which also determines the type of event. For example,
the word ”treats” could indicate a treatment event which connects the kidney cancer,
the patient’s mutation and a drug. In this example, the mentions of kidney cancer, the
mutation and the drug would be the arguments of the treatment event, each of which
would fill a specific role of the event. Here, for example, kidney cancer might fill the
theme role, which typically indicates that the role filler is the entity to which the event
happened. The drug might fill a by role that always has to be filled when a treatment
event is detected, while the mutation could fill an optional modifier role (see Figure 2.7
for an illustration of this event structure). A characteristic that distinguishes BEE from
general domain event extraction is that the arguments of events are frequently other
events. For our example, we could formulate the relation between cancer and drug as
a treatment event and connect the mutation through a separate modification event that
has the treatment event as its theme argument. More formally, we can think of BEE
as the problem of generating directed typed graphs from text, where the form of valid
graphs is determined by an underlying grammar and where some nodes, such as entities
and triggers, must correspond to phrases in the text. We develop this view of BEE in
more detail in Chapter 5, where we use it for extending graphs of biochemical reactions.

The state-of-the-art models for BEE are usually pipeline models, based on neural
networks, which operate in three steps [Björne and Salakoski, 2018, Trieu et al., 2020]. The
first step is to detect event trigger phrases and, optionally, entities, either by performing
sequence labelling or by using span classification [Wadden et al., 2019]. In the second step,
the model extracts binary relations between all detected entities and triggers, typically by
operating in the relation classification framework. Finally, the model constructs distinct
events from the detected edges. This third step is required because a single trigger can
indicate multiple events and so the edges detected for one trigger can belong to different
events. For instance, Trieu et al. [2020] model performs this event detection step by
enumerating all possible events for the set of detected edges and then classifying whether
the event can be extracted from the text.

2.3.4 Distant Supervision

So far, we implicitly assumed that we had enough training data available so that we could
train a supervised model for IE. However, this is not always the case. Annotating high-
quality data is costly, especially in the biomedical domain, where highly trained domain
experts are required. Thus, alleviating the need for manually annotated training data is
a major research theme in the ML community. A prominent approach to achieve this for
IE is distant supervision [Mintz et al., 2009]. We use distant supervision in Chapter 3 to
train our model for extracting protein-protein associations. In distant supervision, one
uses existing resources, such as databases, that contain the type of information our model
is supposed to extract, e.g. binary relations. This information is then used to generate
noisy annotations for a large corpus of unlabeled text, which can be utilized as additional
training data. The specific process depends on the type of IE task and on the model. In

9BEE in its usual formulation requires the presence of a trigger phrase to detect an event in the text,
which is not required by n-ary RE. However, for a strict notion of subsumption, we can simply define the
trigger phrase to be the head entity.
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this thesis, we use distant supervision to obtain training data for relation extraction in
Chapter 3. Thus, we will use the relation extraction part of the oncology example from
Section 2.3.3 to explain this process in detail.

Assume that for this task we would not have any gold-standard data available. That
is, we do not have access to a corpus of texts in which domain experts annotated treatment
relations between cancer, drug and mutation. If we decided to use distant supervision
to circumvent this lack of training data, we would start by searching a database that
contains examples of this relation. From this database, we would extract all (cancer,
mutation, drug) triples and then locate a large text corpus for which we can reasonably
expect that it contains mentions of some of these relations. Then, we would generate our
noisy training data by automatically aligning the relations to the text. This is typically
achieved by finding all text spans in which the related entities co-occur. The set of
aligned texts is also called the ‘bag’ of the relation. Assume that a database contains
the relation (Carcinoma, Renal Cell, Sirolimus, c.2739dup). Then, we would find all
text spans up to a specified length that contain these three entities. For this, we first need
to preprocess each text with NER to detect all entities of the types we are interested in
and then map them to the database identifiers that our cancer-drug-mutation database
uses. We can use the NEN annotations to construct the bag for our relation. The
resulting examples are noisy because we cannot expect every text in the bag to explicitly
state the relation. If we would train our RE model directly on the data, the presence of
false positives could be detrimental to the learning process [Riedel et al., 2010]. We can
mitigate this problem by training our model under the at-least-once assumption, which
states that we expect the relation to be mentioned at least once in the bag [Riedel et al.,
2010]. This is typically encoded in the model by using an aggregation procedure over
the bag information which respects the assumption. For more details on this process, see
Chapter 3.

2.3.5 Biomedical Natural Language Processing

In our description of NLP so far, we did not make any assumption about the domain
to which we apply our models [Ramponi and Plank, 2020]. This is crucial information
because we would expect texts sourced from news text to look very different from text
extracted from, say, social media posts. This should influence our modelling decisions. In
this thesis, we primarily develop NLP models for scientific publications in the biomedical
domain. We describe how this affects the NLP techniques which we have discussed so far.

First, the preprocessing has to be adapted to the biomedical domain. The rules for
splitting text into sentences that work well for the news or Wikipedia pages do not transfer
well to scientific publications but need to be enriched with rules that handle citations,
references, footnotes and other idiosyncracies of scientific language [Neumann et al., 2019].
In a similar vein, it is important to train a subword tokenizer specifically for the biomedical
domain instead of using one that was, for instance, trained on Wikipedia [Lewis et al.,
2020], because biomedical language uses a vocabulary very different from other domains.
The third important adaptation is to pre-train the PLM on a collection that includes a
large number of biomedical articles. It has been demonstrated for different downstream
tasks that the choice of a pretraining domain can have a strong effect on the accuracy
of the fine-tuned model [Lewis et al., 2020]. There are multiple BERT-based PLMs that
have been specifically proposed for the biomedical domain. These sometimes perform
differently for different tasks, so a BioNLP researcher or practitioner might have to try
multiple to find the one yielding the best performance. Table 2.2 gives an overview
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of biomedical PLMs and their performance on different task types. The best-performing
models are those that have a subword vocabulary trained on biomedical text, were trained
on a large collection of biomedical text and have a large number of parameters.

When considering the IE pipeline, it depends on the concrete task whether BioNLP-
specific modifications are required. For NER and RE, techniques developed for the news
or Wikipedia domains typically perform also well on biomedical text [Habibi et al., 2017,
Weber et al., 2021b]. A minor distinction between general-domain and biomedical NER
and RE is that in the biomedical domain it is rather common to study the tasks for single
entity types, such as NER approaches specifically for chemicals [Krallinger et al., 2015] or
RE approaches that can detect relations only between chemicals and proteins [Miranda
et al., 2021]. NEN in BioNLP, on the other hand, presents very different challenges
than entity normalization for Wikipedia or news articles, and they are different among
different biomedical entity types. For instance, in NEN for genes, homonyms – words
that can have multiple meanings – are a huge issue, because genes that serve similar
functions in different species typically have similar or even identical names but different
database identifiers [Wei et al., 2015]. BEE differs from event extraction on news and
Wikipedia articles, because of the frequent occurrence of nested events, in which one
event has another event as one of its arguments.

The de facto standard corpus for BioNLP researchers working with biomedical scien-
tific publications is the PubMed text mining collection [Comeau et al., 2019] that currently
consists of over 34 million abstracts10 and over 4.5 million full texts11. Because processing
this many texts with an IE pipeline requires significant computational resources, multiple
projects make the results of state-of-the-art IE pipelines available for download [Wei et al.,
2019, Sung et al., 2022]. Multiple benchmarks assess the state of the art across different
BioNLP tasks by comparing different models on public leaderboards [Peng et al., 2019,
Zhang et al., 2022a]. At the time of writing, the largest benchmark focusing on English
datasets is BLURB, which currently compares 17 PLMs across 13 datasets that span 6
different tasks including NER and RE12. For an excerpt of the current leaderboard see
Table 2.2.

10https://pubmed.ncbi.nlm.nih.gov/about/[accessed2022/08/22]
11https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_file_list.txt(accessed 2022/08/22)
12(https://microsoft.github.io/BLURB/leaderboard.html; accessed 2022/08/29)
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BERT-base
[Devlin et al., 2019]

76.11 82.99 76.83 General
3,300M words from general domain;
16 GB

BERT 110M

BioBERT
[Lee et al., 2019]

80.34 85.81 79.79 General
initialized with BERT;
18,000M words from PubMed abstracts

BERT 110M

BlueBERT
[Peng et al., 2019]

76.27 84.5 76.13 General
initialized w/ BERT;
4,000M words from PubMed abstracts

BERT 110M

ClinicalBERT
[Alsentzer et al., 2019]

77.29 83.99 76.91 General
initialized w/ BioBERT;
MIMIC-III 1.4 [Johnson et al., 2016]

BERT 110M

RoBERTa
[Liu et al., 2019]

76.46 83.09 81.25 General 160 GB General RoBERTa 110M

SciBERT
[Beltagy et al., 2019b]

78.86 85.43 79.56
Biomed.
+ CS

2,600 words from PubMed
570M words from CS papers

BERT 110M

PubMedBERT-large
[Gu et al., 2022]

81.16 86.13 81.53 Biomed. 3,200 words from abstract BERT 340M

BioM-ELECTRA-large
[Alrowili and Shanker, 2021]

83.81 86.88 83.17 Biomed. PubMed Abstracts ELECTRA 335M

BioLinkBERT-Large
[Yasunaga et al., 2022]

84.3 86.89 82.74 Biomed. Comparable to PubMedBERT LinkBERT 340M

Table 2.2: Overview of the biomedical PLMs evaluated on the BLURB benchmark (https://microsoft.github.io/BLURB/leaderboard.
html; accessed 22/08/29) sorted by date of publishing. BLURB is a benchmark for BioNLP models consisting of 13 datasets across 6 tasks
(NER, PICO extraction, RE, sentence similarity, document classification, question asnwering). For models which have multiple variants on
the leaderboard, we display the best performing one. We show the total BLURB score, which is a macro average over all tasks and the two
IE tasks NER and RE. The computer science domain is abbreviated as CS. The score columns are colour-coded individually from lowest
(white) to highest (dark green). The ELECTRA pre-training was proposed by Clark et al. [2020].
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3 Extracting Protein-Protein Associations

The main drivers of metabolic and signalling pathways are proteins, which catalyze the
reactions, act directly as reactants or are products of the pathway reactions. For a pathway
curator, it is not only important to know which proteins are involved in the pathway but
also how they are related through biochemical reactions. However, knowledge about these
protein-protein reactions is scattered across the biomedical literature, which is growing
at a fast rate13. We investigate in this chapter whether we can develop an information
extraction (IE) pipeline that automatically extracts protein-protein relations from the
biomedical literature14. As there are multiple possible abstractions of protein-protein
reactions which come with varying levels of detail [Franzese et al., 2019], we first have to
decide which abstraction we want to extract. For this chapter, we choose the abstraction of
protein-protein associations (PPAs) which reduces protein-protein reactions to individual
relations between protein pairs. For instance, the reaction in which a complex consisting
of IKKα, NEMO, and phosphorylated IKKβ phosphorylates IκB could be represented
as the three separate PPAs ‘IKKα phosphorylates IκB, ‘NEMO phosphorylates IκB’ and
‘IKKβ phosphorylates IκB’ (see Figure 3.1). While this sacrifices some detail about the
actual biological mechanism, it allows us to model the extraction problem in the well-
studied (binary) relation extraction framework [Jurafsky and Martin, 2021]. We shall
investigate the generalization to more complex abstractions of reactions in Chapter 5.

Unfortunately, to the best of our knowledge, there is no large-scale gold standard
corpus that contains PPA annotations and that thus would allow us to train a relation
extraction model in a standard supervised setting. Thus, we investigate two strategies to
combat this data scarcity problem: We use distant supervision to generate noisy train-
ing data and initialize our model from a pre-trained language model (PLM), which also
accounts for the name of the proposed method: PEDL (PPA Extraction with Deep
Language Models). Specifically, we source a large number of protein pairs together with
their PPAs from the PID database [Schaefer et al., 2009] and find texts mentioning these
pairs in roughly 24 million abstracts of biomedical publications and 3 million full texts
from the PubMed text mining collection. The resulting PPA extraction data set is dis-
tantly supervised, i.e. it only contains annotations for relations between the proteins but
it is not known whether a text span confirms the relation. Given a protein pair, PEDL
takes the text spans mentioning both proteins as input and predicts which PPAs hold for
this pair if any. Importantly, in what we call evidence prediction, PEDL predicts not only
the PPAs but also which text span expresses it. We augment the distantly supervised
training data of PEDL with gold-standard data which additionally contains annotations
for evidence predictions, which we generate from the few available small-scale gold stan-
dard data sets [Kim et al., 2011b, Ohta et al., 2011, Kim et al., 2013, Ohta et al., 2013].
We compare the performance of PEDL to state-of-the-art approaches on three different
data sets and find that, on average, it performs substantially better for both PPA and
evidence prediction. In a manual evaluation of the top ten predicted PPAs, conducted
by three experts in Systems Biology, we find that PEDL can be used to predict PPAs
that cannot be found in major pathway databases. Furthermore, the predicted evidence
text spans actually confirm the relation and thus can be used for direct verification of the

13https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html[accssed2022/08/23]
14This chapter, excluding Section 3.4, has been published as Weber et al. [2020]. Compared to the

published versions, the introduction and conclusion have been heavily edited to place the chapter into the
context of the thesis. We performed some light editing for the remaining parts, mainly correcting spelling
mistakes. Section 3.4 is still unpublished.

47

https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html [accssed 2022/08/23]


3 EXTRACTING PROTEIN-PROTEIN ASSOCIATIONS

Figure 3.1: Transformation of complex reaction to PPAs. The complex reaction in which
a complex of IKKα, NEMO, and phosphorylated IKKβ phosphorylates IκB is reduced to
three PPAs.

predicted PPAs, which is important for expert curation. Motivated by these results, we
reimplement PEDL as the user-friendly command-line application PEDL+, which allows
extracting PPAs for proteins of interest from a large fraction of the available biomedical
literature with a single command. We evaluate PEDL+ by using it in two different cura-
tion projects in which we develop mathematical models for signalling pathways. We asked
the three curators to annotate whether the extracted PPAs are correct and whether they
provide information that is helpful for their curation project. The curators find 48.2% to
76.24% of the extractions to be correct and 55.6% to 79.6% to be helpful.

In summary, the main contributions of this chapter are:

1. We present PEDL, the first neural distantly-supervised model for PPA extraction.

2. We propose a multi-instance learning scheme that combines gold-standard and
distantly-supervised data in a novel way and show that, for evidence extraction,
it outperforms the state-of-the-art.

3. We show the usefulness of PEDL’s predictions for knowledge base curation.

4. We describe PEDL+, an off-the-shelf tool for protein-centric RE, and show its use-
fulness in two pathway curation projects.

The code and data to reproduce the results of Weber et al. [2020] are available under
https://github.com/leonweber/pedl_ismb20 and PEDL+ is available under https:

//github.com/leonweber/pedl.

3.1 Method

We model PPA extraction following a multi-instance learning framework for relation ex-
traction [Riedel et al., 2010, Hoffmann et al., 2011, Surdeanu et al., 2012]. Given two
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proteins p1 and p2, we aim to predict all PPAs r ∈ R relating p1 to p2 by leveraging
a corpus of biomedical literature. We focus on a set R of five specific types of PPAs,
which is a subset of the Simple Interaction Format relations available in Pathway Com-
mons [Rodchenkov et al., 2020]:

• in-complex-with is true for a protein pair (A,B), if A and B occur together in at
least one protein complex.

• controls-state-change-of means that A regulates some change of B. This can
be a post-translational modification such as phosphorylation or ubiquitination or a
transfer between cellular compartments.

• controls-phosphorylation-of is a subset of controls-state-change-of and means
that A phosphorylates B.

• controls-transport-of is a subset case of controls-state-change-of and denotes that
A controls the transfer of B to a cellular compartment.

• controls-expression-of implies that A modulates the expression of B.

Additionally, in what we term evidence prediction, we want the model to find the strongest
possible evidence for a given PPA in the form of text expressing the relation between the
proteins.

This section describes how PEDL combines PLMs, distant supervision and auxiliary
gold-standard data to approach these two tasks.

Figure 3.2: (a) Overview of PEDL for the two tasks of relation prediction and evidence
prediction. In this example, the model predicts relations for the protein pair BTC and
ErbB4 given three text spans containing both proteins. First, the BERT component
produces a score matrix containing a prediction for each text and relation type. The
relation predictions are then generated by applying LSE column-wise to approximate the
maximum score for a given PPA type across all spans. The evidence predictions are
obtained by taking the row-wise maximum, which is the highest score assigned to this
text span regardless of PPA type. (b) The generation of one row of the score matrix s. In
each of BERT’s 12 transformer layers, each token receives a 768-dimensional embedding
(ui for the first and zi for the last layer). The embedding of the prepended [CLS] token
is used to summarize the text span in the single vector h, which is then transformed to
one row of the score matrix by the output layer (W , b).

3.1.1 PPA Prediction as Multi-instance Learning

To predict relations between proteins p1 and p2, the first step of PEDL is to collect all text
spans T , up to a given length, mentioning p1 and p2 together. This requires the use of
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Named Entity Recognition (NER) [Weber et al., 2019] and Named Entity Normalization
(NEN) [Wei et al., 2019] as a preprocessing step.

For the two sub tasks of relation prediction and evidence prediction, the model has to
produce two vectors r ∈ R|R| and e ∈ R|T |, where R is the set of considered types of PPAs
and T the set of spans for the pair. The vector r contains |R| scores ∈ [0, 1] reflecting the
confidence of PEDL in each type of PPA. e contains |T | scores ∈ [0, 1], each modelling
PEDL’s confidence that the corresponding text span expresses a relation between p1 and
p2.

Technically, PEDL predicts a score-matrix S ∈ R|T |×|R| for each text span, represent-
ing the confidence of the model that a text span supports a given type of PPA. To this
end, it first marks the entity pair in each text span by surrounding the first entity with
the entity markers <e1> and </e1> and the second entity with <e2>, </e2>. Then, each
text span Ti is fed through BERT [Devlin et al., 2019, see Section 2.3.2] individually, to
obtain the [CLS] embedding hi ∈ R768 of the 768-dimensional final layer, which can be
regarded as a summary of the whole text span. Finally, we use a single hidden layer to
transform hi to one row of the score matrix Si, which contains one score per type of PPA.
See Figure 3.2 for a graphical description of this process.

The relation prediction r for each PPA type is generated by aggregating the scores
for the PPA over all spans, i.e. column-wise. Correspondingly, the evidence prediction e
for an individual sentence is produced by aggregating the scores of all PPA predictions
for this sentence, i.e. row-wise. Finally, both sum-vectors are normalized by applying the
sigmoid function. In preliminary experiments, we used maximum for both aggregations,
but found that the resulting sparse gradient flow hampered optimization. Thus, we use
the smooth approximation of maximum LogSumExp as aggregation function for PPA
predictions, because it allows for gradient flow through all sentences and empirically
works well in end-to-end training of transformer models [Verga et al., 2018]. Putting
everything together, the formulae for predicting PPAs and evidence are the following:

hi = BERT[CLS](Ti)

Sij = (W · hi)j + bj

ei = σ(max
j

(Sij))

rj = σ(log
∑
i

exp(Sij)),

(3.1)

where log and exp denote element-wise application of logarithm and exponentiation, W ∈
R768×|R| and b ∈ R|R| are trainable parameters, and σ is the element-wise sigmoid function.
Alternatively, Sij can be directly used as an evidence score per relation.

For the training of PEDL, we assume that two types of data are available: Distantly-
supervised data which only has noisy labels for relation prediction and relatively noise-free
gold-standard data which has labels for both relation and evidence prediction. Further-
more, we assume that both types of data share the same label space. The gold-standard
data is used to give the model additional guidance on what text spans expressing PPAs
look like. To achieve this, we combine both types of data by using a multi-task learn-
ing framework. We introduce one loss term each type of data: Ldistant for the distantly
supervised and Lgold for the gold-standard data. The loss for the gold-standard data is
composed of a loss term for relation prediction and another term for evidence prediction:
Lgold = Lrelation

gold +Levidence
gold . The loss for the distantly supervised data only consists of the

loss term for the relation prediction task, because labels for evidence predictions are not
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available for this type of data: Ldistant = Lrelation
distant . The total loss for the batch is then a

weighted average of the gold-standard and distant losses:

Ltotal = α · Lgold + (1 − α) · Ldistant, (3.2)

where α ∈ [0, 1] is a hyperparameter controlling the relative importance of the gold-
standard loss, which will be tuned on the development set of each new task/data set
separately. At each optimization step, we sample a batch from the distantly supervised
and one from gold standard data.

Since we model PPA prediction as a multi-label task, all losses are computed with
binary cross entropy. Note, that the only parameters of PEDL are those of BERT and one
output layer (W , b). We optimize these parameters with Adam [Kingma and Ba, 2015].
For PEDL, we set the learning rate to 3e-5 and the batch size to 16 across all experiments.
The maximum sequence length per text span is set to 256 WordPiece-tokens and all spans
that exceed this length after tokenization are discarded. We implemented PEDL with the
PyTorch deep learning framework [Paszke et al., 2019] and the HuggingFace’s transformers
library [Wolf et al., 2019]. To allow the model to fit in GPU memory, we represent parts
of the models with only 16-bit floating point numbers (instead of 32-bit) using the apex-
libary15 with optimization level O1. On all data sets, we found α = 0.2 to be optimal for
the development data.

We set the hyperparameters of comb-dist as follows. For BioNLP (E2 & E3 ), we
found sent loss weight = 1 optimal, while for PID (E1 ), sent loss weight = 2 yielded the
best results. Dropout was turned off across all experiments because this yielded the best
scores on all development sets. The remaining hyperparameters were left at their default
values from the original implementation.16 One training step on one batch (16 protein
pairs with up to 100 text spans each) takes about 9.5 seconds on four RTX 2080 Ti GPUs.

3.1.2 Data

The training of PEDL requires distantly-supervised and gold-standard data. To obtain the
distantly supervised data, we follow the standard approach for creating a multi-instance
learning data set [Riedel et al., 2010]. First, we collect all protein pairs and the relations
between each pair from a large knowledge base, where we opt for the PID database [Schae-
fer et al., 2009], due to its very high curation standards. We gather our data from the
Simple Interaction Format version of PID provided by PathwayCommons17 [Cerami et al.,
2010]. Then, for each protein pair p1 and p2, we collect all text spans up to the length
of 300 characters that mention p1 and p2 together. To estimate the probability that a
protein pair is not related by any of the considered PPAs, we also require negative pairs
which are not related by any PPA. We generate such negative examples by randomly
sampling 10 · |PID| pairs, where |PID| is the number of pairs obtained from PID.

We use all 24,377,760 PubMed abstracts available through PubTator Central18 [Wei
et al., 2019] and 2,986,273 full texts available in the PubmedCentral BioC text mining
collection19 [Comeau et al., 2019]. For recognizing and normalizing proteins, we employ
the NER and NEN annotations from PubTator Central for both abstracts and full texts.

15https://github.com/NVIDIA/apex
16https://github.com/allenai/comb_dist_direct_relex
17https://www.pathwaycommons.org/archives/PC2/v11/PathwayCommons11.pid.hgnc.txt.gz
18ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.

gz, Version of 2019/08/19
19ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/BioC-PMC/, Version of 2019/05/24
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We transform the Entrez ids provided by PubTator Central to Uniprot identifiers with
the mapping provided by Uniprot20 to relate them to the Uniprot identifiers from PID.
Additionally, we expand the identified proteins with all homologous proteins obtained
from the HomoloGene database21, to increase the number of text spans per protein pair,
considering only the taxa Homo Sapiens, Rattus norvegicus, Mus musculus, Oryctolagus
cuniculus and Cricetulus longicaudatus. For protein pairs which occur together in more
than 100 texts, we randomly sample 100 texts and discard the rest. Finally, we discard
all (positive and negative) protein pairs which did not co-occur at least once. The trans-
formation process is depicted in Figure 3.3 and detailed statistics of the resulting data
set can be found in Table 3.1.

Relations Pairs Texts (Avg.)
expr. phosph. state transport complex total pos. neg. pos. neg.

BioNLP 2011 245 44 136 38 278 741 615 1,845 19.69 4.97
BioNLP 2013 179 104 160 43 441 927 730 2,190 17.44 4.85

PID 2,376 2,714 8,425 1,020 5,799 20,622 16,369 54,261 53.60 16.32

Table 3.1: Statistics of the data sets BioNLP 2011, BioNLP 2013, and PID. Relations gives
the total number of protein pairs for the five considered relations controls-expression-of
(expr.), controls-phosphorylation-of (phosph.), controls-state-change-of (state), controls-
transport-of (transport) and in-complex-with (complex). Pairs denotes the total number
of protein pairs with at least one relation (pos.) and without any relation (neg.). Texts
states the average number of text spans per protein pair for pairs with at least one relation
(pos.) and without any relation (neg.).

Next, we describe the generation of the gold-standard data, which we need for two
different purposes. First, we use it as additional training data as explained. Second, it
allows us to evaluate the performance for evidence prediction without manual inspection
of the predictions. Hence, to perform our experiments, we actually need two distinct
gold-standard data sets, one for evaluation and one as additional training data for PEDL.

In order to generate the gold-standard data, we transform sentence-level event extrac-
tion data from the BioNLP shared tasks [Kim et al., 2011a, Nédellec et al., 2013] into
multi-instance learning data. We transform the BioNLP event structures into pairwise
relations between proteins with the same five relation types as for the distantly super-
vised data. The BioNLP event extraction data is distributed in the BRAT-standoff
format, which was designed to annotate the textual description of complex biochemical
events. Each event is defined by a trigger word such as ‘phosphorylation’ and a theme
which denotes the protein undergoing the change expressed by the event. Events can
optionally be regulated by other proteins, which can be expressed by cause annotations
or connected regulation events. We extract a PPA between proteins A and B if there is
an event with theme B and regulator A. The mapping from event types to PPAs can be
found in Table 3.2 and we discard all events that cannot be mapped to a PPA. If an event
type maps to multiple PPA types, we infer multiple PPAs accordingly. Then, akin to the
generation of the distantly supervised data, we normalize all protein mentions, collect all
pairs of co-occurring proteins, and sample non-interacting proteins as negative examples.

20ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/

by_organism/HUMAN_9606_idmapping.dat.gz
21ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/homologene.data

52

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/homologene.data


3.1 Method

Figure 3.3: Transformation of BioNLP event extraction data into gold-standard data for
PEDL. First, the event structures are decomposed into binary PPAs. Then, the protein
mentions are mapped to uniprot ids with MyGene.info to aggregate evidence statements
for a given PPA from multiple documents. The evidence text spans are tokenized and
split into sentences with SciSpacy.

We normalize protein mentions by querying MyGeneInfo [Xin et al., 2016] for the hu-
man uniprot id. Tokenization and sentence splitting are performed with the en core sci sm
model of SciSpacy [Neumann et al., 2019]. The whole process is illustrated in Figure 3.1.
We perform this transformation for the Genia [Kim et al., 2011b] and Epigenetics [Ohta
et al., 2011] data sets from BioNLP 2011 as well as the Genia [Kim et al., 2013] and
Pathway Curation [Ohta et al., 2013] tasks from BioNLP 2013. These BioNLP data sets
were specifically selected since they were the only ones containing annotations for all
considered PPA types. Finally, we aggregate the protein pairs of both 2011 and 2013
tasks, respectively. This yields two multi-instance learning data sets with the additional
information of which text spans express relations between the proteins. Detailed statistics
of both data sets can be found in Table 3.1.

In preliminary experiments on the PID data set, we found that the predictions of
PEDL seemed to almost exclusively rely on the protein names appearing in the text span.
While this led to good performance for relation prediction, this is most likely an artefact of
the PID database, because if two proteins are related by a given PPA, then frequently, all
members of the respective protein families, which typically have very similar names, are
related by the same PPA. We found that this overrepresentation of typographically simi-
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BioNLP Event Type PPA

Gene expression controls-expression-of
Translation controls-expression-of

Transcription controls-expression-of
Transport controls-transport-of, controls-state-change-of

Localization controls-transport-of, controls-state-change-of
Phosphorylation controls-phosphorylation-of, controls-state-change-of

Dephosphorylation controls-phosphorylation-of, controls-state-change-of
Acetylation controls-state-change-of

Deacetylation controls-state-change-of
Ubiquitination controls-state-change-of

Deubiquitination controls-state-change-of
Hydroxylation controls-state-change-of

Dehydroxylation controls-state-change-of
Methylation controls-state-change-of

Demethylation controls-state-change-of
Glycosylation controls-state-change-of

Deglycosylation controls-state-change-of
Protein modification controls-state-change-of

Binding in-complex-with
Dissociation in-complex-with

Table 3.2: The mapping from BioNLP event types to PPAs used in the transformation
of the BioNLP data. Comma-separated PPAs imply that the event type maps to more
than one PPA and thus multiple PPAs are inferred for one event with this type.

lar names led PEDL to extract PPAs for all occurrences of members of such large protein
families regardless of whether the text span supported it. Ultimately, we are interested
in predicting PPAs that are not contained by PID, and thus, we performed all further
experiments on entity-blinded data, which prevents PEDL from inferring family member-
ship. To achieve this, we replaced all protein names recognized by the en ner jnlpba md
model of SciSpacy with dummy identifiers.

3.1.3 Baselines

We compare PEDL to the two competitor methods comb-dist [Beltagy et al., 2019b] and
EVEX [Van Landeghem et al., 2013], representing the state-of-the-art for distantly su-
pervised relation extraction (comb-dist) and for sentence-level relation extraction applied
on whole PubMed (EVEX).

comb-dist is a recently published multi-instance learning method for distantly su-
pervised relation extraction. It set a new state of the art on a standard benchmark
for distantly supervised relation extraction [Riedel et al., 2010] strongly outperforming
competitor methods by additionally integrating gold-standard data. As a base model,
comb-dist uses a piece-wise convolutional neural network [Zeng et al., 2015] with selective
attention and pretrained word embeddings. comb-dist was not developed for biomedical
applications and has never been applied to such data as far as we know. In all exper-
iments with comb-dist, we use the (selective) attention distribution over the text spans
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as evidence predictions. Both PEDL and comb-dist are multi-instance learning methods
developed for distantly supervised relation extraction. They both allow for the inclusion
of gold-standard data to improve the accuracy of the model. However, there are large dif-
ferences concerning the technical details of both methods. comb-dist employs a Piece-wise
Convolutional Neural Network (PCNN) with Selective Attention and Word Embeddings
as its machine learning model. First, each word is encoded with pre-trained (uncontextu-
alized) word embeddings. The PCNN first divides the text span into three sub spans: (1)
the text left to the first entity, (2) the text between both entities and (3) the text right
to the entity. Each of these three sub spans is then processed by a Convolutional Neural
Network (CNN) layer that models interactions between words that are close together.
The resulting representations are then aggregated with max-pooling, yielding a vector
representation of each text span. Finally, the vector representations of each text span are
aggregated with selective attention and the resulting encoding of all text spans is used
for prediction. PEDL on the other hand uses pre-trained transformers which recently led
to large gains over CNN models in many other NLP tasks (Devlin et al., 2019; Beltagy et
al., 2019b). In PEDL, each word in the text span is encoded by the self-attention mecha-
nism of the transformer, allowing to model interactions between words regardless of their
respective distance. The weights of the transformer have been pre-trained with masked
language modelling and next-sentence prediction on a corpus that includes a large num-
ber of biomedical articles. This allows the model to learn (general and domain-specific)
regularities of language which are then encoded in the contextualized word embeddings.
Each text span is then represented by the embedding of a special token, that was pre-
trained to encode information about the entire span. Each of the span representations
is then transformed into a score vector that models which PPAs (if any) are expressed
in the text span. These score vectors are then aggregated by taking the maximum or its
LogSumExp approximation. Note, that no attention module is used in the aggregation
of the span representations, which allows for direct interpretation of the score vectors as
PPA predictions per span. For word embeddings, we equip comb-dist with wikipedia-
pubmed-PMC22 embeddings of [Pyysalo et al., 2013], because they performed well in our
earlier work [Habibi et al., 2017].

EVEX is a database of text-mined biological events, accompanied by inferred pair-
wise PPAs and has annotations for whether an event was deemed speculative or negated.
The database was created by applying a state-of-the-art biomedical event extraction
tool [Björne, 2014] to a large collection of PubMed abstracts and PMC full texts. Since
the EVEX database was last updated in 2013, we compare PEDL with EVEX on a mod-
ified test data of PID in which we only use texts published prior to 2013 to ensure a
fair comparison. We apply a straightforward mapping of EVEX’s types of PPAs to the
five considered in our work and remove all relations with a detected negation, but retain
speculative relations.

3.1.4 Evaluation Details

We use the three data sets PID, BioNLP 2011 and BioNLP 2013 in three different exper-
imental settings E1, E2 and E3.

• E1 : PID is the distantly supervised data and the union of both BioNLP data sets
is the gold-standard auxiliary training data.

• E2 : BioNLP 2011 is the distantly supervised data (disregarding evidence anno-

22http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin

55

http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin


3 EXTRACTING PROTEIN-PROTEIN ASSOCIATIONS

tations during training) and BioNLP 2013 is the gold-standard auxiliary training
data.

• E3 : BioNLP 2013 is the distantly supervised data and BioNLP 2011 is the gold-
standard auxiliary training data.

In both E2 and E3, we report the average of five runs with different seeds to compen-
sate for the small data set sizes. Note, that results from the BioNLP shared tasks are
not comparable to E2 and E3 because we do perform multi-instance learning (and not
sentential prediction) and the label spaces are different. We use the gold-standard data
only during training and remove all protein pairs occurring in the development and test
set from the gold-standard data to prevent knowledge leaks. We split each data set into
train, development and test set by randomly dividing protein pairs with their associated
text in a 60:10:30 ratio. For relation prediction, we compare models by plotting their
Precision-Recall (PR) curves. These curves are computed by ranking all PPAs by the
predicted confidence score of the model and computing the resulting (micro-averaged)
precision and recall for all possible threshold values. We also report Average Precision
(AP) which is an approximation of the area under the PR curve. We use mean Average
Precision (mAP) and precision at ten (P@10) to evaluate evidence predictions, both for
the automated evaluation in E2 and E3, as well as for the manual evaluation by domain
experts in E1. mAP averages the individual APs of evidence predictions for each protein
pair and P@10 is defined as the mean precision of the top ten predictions.

BioNLP ’11 BioNLP ’13
r-AP e-mAP r-AP e-mAP

comb-dist 65.4 (2.6) 75.86 (1.6) 70.68 (2.6) 79.35 (0.9)
- direct 62.33 (1.8) 54.38 (26.9) 70.06 (2.1) 54.64 (27.2)

PEDL 65.59 (4.9) 82.36 (1.2) 76.75 (2.0) 84.67 (1.6)
- direct 60.65 (4.1) 64.64 (4.1) 71.03 (3.0) 75.14 (2.1)

Table 3.3: Results on the two BioNLP data sets (E2 & E3 ). r-AP is the average pre-
cision (AP) for relation prediction and e-mAP the mean Average Precision for evidence
prediction. All results are averages of five runs with different random seeds, with standard
deviations given in brackets. ‘- direct’ shows scores without gold-standard data. The best
scores are displayed in bold.

3.2 Results

We evaluate PEDL, a method for predicting PPA-relations between proteins and the
evidence for these relations, on three different data sets. The results are compared to
two competitor methods: comb-dist, a recently published state-of-the-art multi-instance
relation extraction method, and EVEX, a large database of PPAs that was generated by
applying biomedical event extraction to a large collection of abstracts and full-texts.

3.2.1 Prediction of Protein-Protein Associations

At first, we investigate the results of PEDL for predicting PPAs between pairs of proteins.
The results for the BioNLP data sets (E2 & E3 ) can be found in Table 3.3 and results
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for PID (E1 ) in Table 3.4. In terms of AP, PEDL performs better than the competitor
methods on two of the three considered data sets and comparably on the third. On
BioNLP 2013 (E3 ), PEDL achieves an AP score that is 6.07 pp higher than that of
comb-dist, while on PID (E1, mixing predictions for all PPA types) it is 1.24 pp higher.
If one considers predictions for each type of PPA on PID individually (see Figure 3.4),
the difference between both models is considerably larger. PEDL performs better than
comb-dist on all five types with differences ranging from 1.84 pp for in-complex-with to
12.34 for controls-transport-of, with an average of 4.66 pp. On BioNLP 2011 (E2 ), the
difference in AP of both models is marginal.

It is instructive to compare the PR-curves of PEDL, comb-dist and EVEX for relation
prediction on the PID data (E1, see Figure 3.4). We compare them to the results of
EVEX only on abstracts and full texts published prior to 2013 to account for the fact
that EVEX was last updated in 2013. Both models strongly outperform EVEX on the
before 2013 data, both in terms of recall and precision. The difference in recall is especially
pronounced because EVEX only generates positive predictions for fewer than 37% of the
PPAs in the PID test set. PEDL performs better than comb-dist in the mid-precision
regime but a little worse for low precisions when provided with all articles and full texts.
On the before 2013 subset, PEDL performs equal to comb-dist in the high-precision regime
but worse for mid-to-low precision values, leading to 40.54% AP for PEDL and 44.24%
AP for comb-dist (see Section 3.3.2 for a discussion of this).

Figure 3.4: (a) Precision-Recall curve for the PID data. The left plot shows results for all
available abstracts and full texts. The right plot displays the results using only abstracts
and full texts published prior to 2013, which allows a fair comparison with EVEX. These
results are based on a ranking that includes all types of PPA. The improvement of PEDL
over comb-dist is larger for rankings of only one type of PPA (see Table 3.4 for numbers
and explanation). (b) Results from the manual evaluation of evidence prediction on PID.

3.2.2 Evidence Prediction

In most biomedical annotation efforts, extracted PPAs are not accepted per se, but un-
dergo confirmation through experts. The reason is the far-from-perfect performance of
state-of-the-art approaches and the fact that even a correctly extracted text needs not
express biological truth, for instance, due to weak experimental support. Therefore, it is
important that methods not only predict the correct PPA, but also the text spans on which
the model’s PPA prediction is based (which we call evidence prediction). Table 3.3 gives
results for evidence prediction on the BioNLP data sets, where both PEDL and comb-dist
achieve high mAP scores for evidence prediction. PEDL outperforms comb-dist on both
data sets, by 6.38 pp for BioNLP ’11 and 5.32 pp for BioNLP ’13.

In contrast to the BioNLP data, PID is a distantly supervised data set and does
not have annotations to evaluate evidence predictions. For evaluating the predictions of
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expr. phosph. state transport complex total

comb-dist 42.77 38.38 49.14 5.87 47.86 44.78
PEDL 46.45 40.26 52.70 18.21 49.70 46.02

count 694 817 2,532 288 1,668 5,999

Table 3.4: APs for relation prediction on the PID data (E1 ) for the PPA types controls-
expression-of (expr.), controls-phosphorylation-of (phosph.), controls-state-change-of
(state), controls-transport-of (transport) and in-complex-with (complex). Total gives the
AP for all PPA types as an micro-average. The best score per relation-type is displayed
in bold. Count denotes the number of protein pairs with this type of PPA in the test set.
Note that total is computed on a ranking of predictions including all PPA types, which
leads to the fact that the difference between both models is smaller than every distance
of the individual PPAs. EVEX cannot be compared in this setting, because it doesn‘t
consider texts published after 2013.

comb-dist and PEDL on this data set, two domain experts evaluated the top ten evidence
predictions for the top ten predictions of each PPA-type, amounting to 500 evaluated
evidence predictions (the annotation guidelines can be found in SM B.1). Note, that
for this evaluation we directly use the rows of the score matrix as evidence score per
relation for PEDL. This refinement is not possible for comb-dist, because the attention
distribution is computed independently of the relation type. This allows PEDL to rank
the evidence specifically for one PPA type, while comb-dist only predicts whether there
is a relation between the proteins at all. The results of this analysis show that PEDL
performs better than comb-dist for predicting evidence for the three PPA-types controls-
transport-of, in-complex-with, and controls-expression-of (see Figure 3.4). The results for
controls-state-change-of are comparable and worse for controls-phosphorylation-of. The
improvement over comb-dist is especially striking in the case of controls-transport-of, for
which comb-dist produces almost no correct evidence predictions and PEDL achieves a
mAP of 46%. The results in terms of P@10 are similar, with PEDL additionally achieving
better results for controls-state-change-of. Moreover, the variability in performance across
different PPA types is much larger for comb-dist than for PEDL. On average, PEDL
achieves a 7.66 pp higher mAP and an 8.14 pp higher P@10 than comb-dist.

3.2.3 Analysis of New Predictions

We also evaluated PEDL in a realistic application scenario, where three experts in systems
biology manually analyzed the top 10 predictions that are contained in neither Reactome
nor PID. The results are summarized in Table 3.5, where we provide all predictions
considered biologically justified by all experts together with the highest ranking true
evidence text span. The annotations of all three experts agreed perfectly for all 10 PPAs.
In the evaluation, 6 out of 10 PPAs are predicted correctly. One prediction is wrong due
to errors in the protein normalization preprocessing step, and the other three are errors
of PEDL. It can be further observed, that for all correct predictions but one, the highest
ranking text span (columns Text span and t) actually expresses the PPA and either states
the finding of the PPA or refers to an earlier publication reporting it.
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k PPA Text span (Source PMID) t Evidence

1
IGF-II
in-complex-with
VN

‘We have previously reported that IGF-II binds
the extracellular matrix protein
vitronectin (VN) [...]’ (12746303)

1 [Upton et al., 1999]

2
hnRNP-A1
controls-expression-of
IL10

‘These results suggest that hnRNP-A1
promotes transcription of human IL10.’ (19349988)

1 [Noguchi et al., 2009]

4
NCOR1
controls-expression-of
PSA

‘ChIP-reChIP assays revealed that NCOR and [...] p300
are present in distinct AR complexes on the
promoter of PSA gene [...]’ (23518348)

4 [Qi et al., 2013]

5
ETS-2
controls-expression-of
BRCA1

‘Conditional overproduction of ets-2
in MCF-7 cells resulted in repression
of endogenous BRCA1 mRNA expression.’ (12637547)

1 [Baker et al., 2003]

6
C-REL
controls-expression-of
BCL-X

‘We further demonstrate [...] that introduction of
two downstream c-Rel target genes, Bcl-X [...]’ (15922711)

1
[Chen et al., 2000] /
[Lee et al., 1999]

8
C/EBP-beta
controls-expression-of
COX-2

‘C/EBP-beta is a transcription factor [...] capable
of inducing COX-2 expression [...]’ (19124115)

1
[Kim and Fischer, 1998] /
[Zhu et al., 2002]

Table 3.5: Evaluation results for the top-10 predictions that can’t be found neither in Reactome nor in PID. The rank of the prediction is
given by k. We provide the highest ranking evidence text span that actually expresses the relation and its rank in PEDL (t), as well as
manually sourced literature evidence that provides strong biological evidence for the existence of the PPA. Note, that this evidence need not
be identical to the evidence span predicted by the model.
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3.3 Discussion

3.3.1 Importance of Gold-standard Data

The results that are given in Table 3.3 allow for interesting observations regarding the
importance of gold-standard data. On the BioNLP data sets, the incorporation of gold-
standard data improves results for both relation and evidence prediction. The improve-
ment is much more pronounced for the evidence prediction task than for relation predic-
tion. This supports our hypothesis, that we can improve evidence prediction specifically
by including gold-standard data.

For both PEDL and comb-dist, the inclusion of gold-standard data improves the
accuracy of the relation predictions. Compared to comb-dist, PEDL has a much larger
gain from gold-standard data in the relation prediction task (5.33 pp vs 1.85 pp). For
BioNLP 2011, comb-dist even outperforms PEDL in relation prediction when no gold-
standard data is available. This might partly be because the inclusion of gold-standard
data stabilizes PEDL’s training process. In preliminary experiments on the PID data set,
we observed that without access to gold-standard data the model failed to converge while
setting the whole score matrix to zero. Our hypothesis to explain this is that the PLM-
based architecture of PEDL is especially sensitive to the noise in the distant supervision
data and that it needs the relatively low-noise gold-standard data to compensate.

Notably, on the relatively noise-free gold-standard data, PEDL achieves strong results
for evidence prediction even without access to gold-standard data. This suggests that
the constraint of only aggregating (logit-)scores, and not high-dimensional embeddings as
in comb-dist’s selective attention, is more appropriate for evidence prediction in absence
of gold-standard data. These scores also have a clear interpretation as the confidence of
PEDL that the given text span supports a given PPA. The lower (average) performance of
comb-dist in this setting can be attributed to strong performance drops for some random
seeds (min. 24.03 vs max. 76.61), indicating a notable instability of the model. We
furthermore found that running comb-dist with the most recent versions of PyTorch
(1.4.0) and AllenNLP (0.9.0) leads to a performance drop of 1 to 5 pp. for both relation
prediction and evidence prediction.

3.3.2 Comparison to EVEX

The comparison of the two distantly supervised methods to EVEX (cf. Figure 3.4) is
instructive, because it allows to compare methods trained only on gold-standard data
(EVEX) to models with access to both types of data. Especially striking is the difference
in recall between EVEX and the distantly supervised models, where EVEX only gives
predictions for 36.15% of the positive protein pairs, while PEDL and comb-dist produce
predictions for 95.1% and 95.33% of the pairs. This might be partially attributed to the
advancements in Named Entity Recognition and Normalization that were achieved since
2013 – which we implicitly incorporate by using PubTator Central – but also stresses the
importance of predicting relations for proteins that occur in different sentences. Recall,
that EVEX only considers single sentences, while PEDL uses text snippets that can
span multiple sentences. The importance of using multiple sentences will be further
discussed in the next section. Notably, the increased recall does not come at the price
of reduced precision, as both PEDL and comb-dist strongly outperform EVEX in all
precision regimes. Together with the encouraging results of the evidence prediction, this
indicates that distant supervision is a promising paradigm to train accurate classifiers for
PPA prediction.
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A related interesting observation is that PEDL performs markedly worse on the before
2013 subset of the data than on all publications, whereas comb-dist almost retains its
performance. We hypothesize that this is because PEDL does not model the semantic
interactions between text spans via attention, making it more susceptible to violations
of the at-least-once assumption. To validate this, we inspect the top ten predictions of
PEDL for true PPAs with the largest drop in ranking between the full and the before
2013 data. We found that for nine of the ten PPAs, none of the texts published prior
to 2013 contains any mention of the PPA. Additionally, no text published prior to 2013
contained any mention of the associated protein pair for 5% of all true PPAs, which limits
both PEDL’s and comb-dist’s maximum recall to 95% for the before 2013 data.

Figure 3.5: Maximum possible recall for a given maximum character distance between
the protein mentions. ‘Positive’ refers to protein pairs with at least one PPA in PID and
‘Negative’ to pairs without any. The dashed lines indicate the maximum recall that is
possible for sentence-level approaches. The red vertical line indicates our choice for the
maximum distance between pairs.

3.3.3 Importance of Using Multiple Sentences

We investigate the effect of considering protein mentions across sentences by measuring
the fraction of protein pairs in PID that are at most d characters away from each other
in at least one text for different values of d. Additionally, we report this quantity, which
we call maximum recall, considering only single sentences, again using the en core sci sm
model of SciSpacy to split the text into sentences. The results are depicted in Figure 3.5.
It can be observed that considering only protein mentions that occur within the same
sentence has a strong limiting effect on maximum recall. By using d = 300, PEDL can
predict PPAs for 87.9% of the positive pairs in PID, which is a large gain over the 59.24%
that would be achievable if we considered only single sentences. This, however, comes
at the price of more included negative protein pairs. 50.01% of the considered negative
pairs have d ≤ 300, whereas only 9.25% occur in the same sentence. This highlights the
importance of using a strong machine learning model to rank the predicted PPAs instead
of relying on simple co-occurence statistics in the high-recall regime.
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Figure 3.6: Average Precision as a function of the maximum number of texts. At each
point, we compute the AP for the subset of bags with at most i text spans for i ∈ [1, 100).
PEDL performs consistently better than comb-dist for all maximum text numbers. The
performance of both models consistently increases with the number of available text spans.

3.3.4 Error Analysis

We perform an error analysis on the PID test data (E1) to gain a more detailed picture
of the performance differences between PEDL and comb-dist.

First, we analyze the AP as a function of the maximum number of texts. For this,
we select the subset of pairs that contain at most i text spans for i ∈ [1, 100). Then, we
compute the AP of both PEDL and comb-dist for each subset. The result can be found
in Figure 3.6. We find that for both models performance improves with the number of
available text spans, with PEDL performing roughly 5 pp better for all i’s.

In a second analysis, we proceed similarly but analyze the AP as a function of the
maximum average length of texts. That is, we select the subset of all protein pairs whose
text spans have an average length of not more than i for i ∈ [1, 1000]. The results can
be found in Figure 3.7. For both models, there is a trend of increasing performance with
a larger average text length up to the point of i = 300. After 300, the performance
decreases slightly with growing i. PEDL performs better than comb-dist for almost all
average text lengths with a larger difference for smaller values.

3.4 PEDL+: PEDL as a User-Friendly Command-Line Application

The primary purpose of the code23 published alongside Weber et al. [2020] was to allow
the documentation and reproduction of the results described in Section 3.2. As such, we

23https://github.com/leonweber/pedl_ismb20
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Figure 3.7: Average Precision as a function of the maximum average text length. At each
point, we compute the AP for the subsets of bags with an average text span length of
at most i for i ∈ [1, 1000]. PEDL performs better than comb-dist for most maximum
average lengths with the improvement being higher for lower lengths.

did not design it for easy usability nor for applying it to other text corpora. For instance,
a user had to download and preprocess the – usually very large – text corpora themselves,
which is a complex task on its own. Furthermore, when curators create a pathway, they
are typically interested in describing a specific system or addressing a concrete research
question. Supporting them in this endeavour was a major motivation for the development
PEDL, but we did not evaluate it in this scenario in Section 3.2.

In this section, we address both of these missing pieces. We describe PEDL+, a
complete reimplementation of PEDL as an easy-to-use command-line tool, which allows
the application of a state-of-the-art PPA model to large amounts of text with only a few
simple commands. Specifically, the improvements over Weber et al. [2020] are:

• PEDL+ is easy to install and use. A user can apply an RE model for one or more
user-provided protein pairs with a single command. PEDL+ then automatically
retrieves all available articles discussing the protein pair, preprocesses them, applies
a state-of-the-art RE model and stores the results.

• The PPA model in PEDL+ has an improved architecture and was trained on a
larger and more consistent data set than PEDL.

• PEDL+ supports the post-processing of the results of large-scale RE, for instance
by filtering the extractions by the topics discussed by the source papers or by sorting
the results by different confidence measures.
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Figure 3.8: PEDL+’s two main commands extract (top) and summarize (bottom).
When the user issues a extract command for a protein pair, PEDL+ first fetches PubMed
articles that contain the pair. From these, it extracts the sentences that mention both
proteins together and constructs one input example per pair of mentions. These examples
are processed by the RE model which then predicts which type of PPA (including ‘none’)
is stated. Finally, the extractions are enriched with metadata and written into an output
file specifically created for the protein pair. Then, the user can use summarize to create
a spreadsheet that contains a synopsis of one or more extract calls. Additionally, the
user can use summarize to filter the extracted PPAs by confidence and by MeSH terms
of the articles from which the PPAs were extracted.

We evaluate PEDL+ by applying it in two pathway-curation research projects and man-
ually assessing the usefulness of the results. PEDL+ is freely available under https:

//github.com/leonweber/pedl.

3.4.1 Implementation

We implement PEDL+ as a command-line application that allows easy installation and
usage by non-experts. PEDL+ supports two important commands: extract, which
extracts PPAs for a list of specified protein pairs and summarize, which allows to filter and
interpret the results. Figure 3.8 shows a typical workflow that involves both commands.

The extract command can be used to extract PPAs from a continuously updated
version of the PubMed text mining subset [Comeau et al., 2019] for single or multiple entity
pairs. For each protein pair (A,B), PEDL+ uses PubTator Central (PTC) [Wei et al.,
2019] to retrieve all documents in which both proteins of the pair occur together. PTC is
a continuously updated version of PubMed abstracts and PubMed Central full texts that
were annotated with state-of-the-art named entity recognition and normalization tools,

64

https://github.com/leonweber/pedl
https://github.com/leonweber/pedl


3.4 PEDL+: PEDL as a User-Friendly Command-Line Application

which, among others, provides the locations and entrez gene ids [Maglott et al., 2011] of
all recognized proteins. PEDL+ first constructs an index of which proteins are mentioned
in which PTC articles and uses it to find all articles that mention both proteins from the
pair together. PEDL+ supports two modes for retrieval from PTC, an API-based one
for small sets of protein pairs and a local one for large sets. In the API-based retrieval
mode, it uses PTC’s web API24 to retrieve the text and the annotations of the respective
articles. PEDL+ segments each of the texts into sentences with segtok25 and selects those
sentences that mention both proteins A and B together. The API-based retrieval with
subsequent preprocessing is aimed toward PPA extraction for a small number of protein
pairs and PEDL will not process more than 100 pairs with this retrieval method. An
alternative for larger sets of pairs is the local retrieval mode. Here, PEDL+ stores a
preprocessed version of all PTC texts in an ElasticSearch26 index. This step is relatively
time-consuming, taking roughly 22 hours on a machine with 36 Intel Xeon 6254 cores,
but has to be performed only once after installation. After retrieval and preprocessing,
PEDL+ marks one mention of A and one of B with special marker tokens, as illustrated
in Figure 3.8. If there is more than one mention of A or B, PEDL+ will generate one
preprocessed sentence for every possible combination of mentions. After retrieval and
pre-processing, PEDL+ feeds the pre-processed sentences (see Figure 3.8 for an example)
through the relation classification model, which classifies the types of PPAs (including
none) that the sentence expresses. To store the results of the relation classification model,
PEDL+ creates a file for the protein pair in which each line is an extracted PPA together
with meta-data, i.e. the text of the sentence supporting the PPA, the PubMed ID of the
article that contains the sentence and the confidence of the relation classification model
in its extraction.

If one is interested in the extracted relationships for a single entity pair, it is often
enough to inspect the result file for the pair directly. However, when extracting PPAs for
multiple protein pairs this can quickly become overwhelming. In these cases, summarize
allows to post-process and interpret all extractions in a folder. It can be used to sort and
filter the PPAs using multiple confidence measures which are derived from the output
probabilities of the relation extraction model. Further, it allows to select a subset of
PPAs that were extracted from articles discussing specific biological phenomena via MeSH
terms27. For instance, when one studies the biology of B-cell lymphoma, results from
developmental biology could be distracting and should be excluded. This can be achieved
by passing --mesh terms "Lymphoma, B-Cell", which would then find the ids of all
articles that are labelled with this MeSH term in PubMed and include only PPAs extracted
from this set of articles in the summary. The output of summarize can be configured to be
either a machine-readable CSV or a xlsx spreadsheet file meant for human consumption.
The spreadsheet summary is created on a per-article base, which means that it reports
every PPA only once per article, even if it was extracted multiple times from it. It contains
two different types of scores for a PPA. The article score is an indication of how much
information an article contains about the PPA and is defined as the sum of all confidence
scores for extractions of the association in the article that are higher than the user-defined
threshold. The total score measures how well the entire text-mined literature supports
the association and is calculated by summing all confidence scores that are higher than
the threshold. Formally, let Ak be the set of text span indices that come from article k.

24https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
25https://github.com/fnl/segtok
26https://www.elastic.co/de/downloads/elasticsearch
27https://www.nlm.nih.gov/mesh/introduction.html
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Then, the scores are defined as

akj =
∑
i∈Ak

Sij , (article score) (3.3)

tj =
∑
i

Sij , (total score). (3.4)

The relation extraction model that we use for PEDL+ differs in a few aspects from the
model that we described in Weber et al. [2020]. First, we updated the training data by
adding more distantly supervised data and by removing one gold-standard dataset to im-
prove the consistency of the annotations. Specifically, in addition to PID, the training data
now includes PPAs derived from the PathwayCommons representations of Panther [Mi
and Thomas, 2009]28 and Netpath [Kandasamy et al., 2010]29. From all used databases we
include the two additional PPA types interacts-with, which represents physical protein-
protein interactions observed in high-throughput experiments, and catalysis-precedes,
which is annotated when the head protein controls a reaction with a product that is used
as substrate in another reaction controlled by the tail protein30. For the gold-standard
data, we removed the BioNLP Epigenetics dataset, because its annotation guidelines are
very different from those of the other datasets which led to the inclusion of many false
negative annotations when combining all. Additionally, we made the MyGeneInfo-based
normalization more lenient by introducing support for non-SwissProt proteins and for
protein mentions that are mapped to more than one uniprot id, which allows mapping
a larger fraction of gene mentions to uniprot ids. As we only include PPAs for proteins
which can be resolved to uniprot, we obtain more PPAs per dataset, and thus, in the end,
we have more gold-standard PPAs than in the dataset described in Section 3.1.2. See
Table 3.6, for statistics on the updated dataset.

Relations
expr. phosph. state transport complex interacts catalysis total

Direct 412 196 334 107 918 0 0 1967
Distant 2646 6954 20732 1276 17718 2357 1353 53036

Pairs Spans (Avg.)
pos. neg. pos. neg.

Direct 1563 4689 17.7 5
Distant 42768 531557 36.7 3.8

Table 3.6: ‘Pairs’ is the total number of protein pairs with at least one PPA (pos.) and
without any PPA (neg.). ‘Spans’ states the average number of text spans per protein
pair for pairs with at least one PPA (pos.) and without any PPA (neg.). Abbreviations:
‘expr.’ - controls-expression-of, ‘phosph.’ - controls-phosphorylation-of, ‘state’ - controls-
state-change-of, ‘transport’ - controls-transport-of, ‘interacts’ - interacts-with, ‘catalysis’
- catalysis-precedes

We additionally introduced some minor modifications to the model’s architecture.
First, we use the concatenation of the final-layer embeddings of the entity start markers

28https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.panther.hgnc.txt.gz
29https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.netpath.hgnc.txt.gz
30https://www.pathwaycommons.org/pc2/formats (accessed 2022/09/22) and https://www.biopax.

org/owldoc/Level3/classes/MolecularInteraction___1004444555.html (accessed 2022/09/22)
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<e1> and <e2> instead of [CLS] to represent a text span for subsequent classification,
because Baldini Soares et al. [2019] suggest that this can lead to more accurate extractions.
Also, we use LSE instead of maximum to aggregate the scores from the score matrix to
form the evidence prediction for better gradient flow.

3.4.2 Evaluation & Results

We evaluate the usefulness of PEDL+ by applying it in two separate projects in which
we develop models of signalling pathways. For both projects, the curators supplied one
or more pairs of gene sets A and B together with MeSH terms describing the scope of the
project and we used PEDL+ to search for all PPAs that connect a protein a ∈ A and a
protein b ∈ B. In the first project, two curators sought to develop models based on ordi-
nary differential equations and boolean logic that describe the role of cellular senescence
in B-cell lymphoma. For this, they used PEDL+ to connect a recently proposed transcrip-
tomic signature for cellular senescence in diffuse large B-cell lymphoma patients [Reimann
et al., 2021] to in-house models of B-cell development based on the models of Roy et al.
[2019] and Thobe et al. [2021]. Here, we used the MeSH filter Lymphoma, B-Cell.

In the second project, a third curator developed a boolean model for the intrinsic
pathway of apoptotic regulation with a specific focus on the role of the BCL-2 family.
They used PEDL+ to extract PPAs in two ways; (1) among 15 different members of
the BCL-2 family and (2) between these BCL-2 family members and a list of putative
upstream regulators of apoptosis based on the models of Roy et al. [2019] and Thobe
et al. [2021]. For this project, we provided the annotator with results without any MeSH
filter and, additionally, results for (1) filtered by the MeSH term Lymphoma, B-Cell.

We gave the spreadsheet summary of PEDL+’s extraction results sorted by the article
score to the curators. They then rated the top-ranking PPAs for each query by assigning
one out of the three possible scores 0 (not useful), 0.5 (maybe useful), and 1 (useful). Ad-
ditionally, the annotators indicated whether PEDL’s extraction was correct, i.e. whether
the article confirms the existence of the PPA, regardless of its usefulness for the specific
project. In total, three annotators rated 156 PPA extractions for 43 protein pairs.

Results can be found in Figure 3.9. The annotators found PPA extractions to be
correct in 48.2% to 76.2% of the cases, which is in line with the accuracies found in the
manual evaluation described in Section 3.2. Usefulness ranged from 55.6% to 79.6% of all
PPAs. Interestingly, all three curators rated some incorrectly extracted PPAs as useful.
This is especially pronounced for Senescence (Annotator A), who found only 59.3%
of the PPAs to be correctly extracted but 79.6% of the PPAs to be useful. For many
of these cases, the annotators commented that PEDL+ correctly detected that there
is a PPA between the proteins but that PEDL+ assigned the wrong type of PPA. To
measure inter-annotator agreement, we calculated Cohen’s κ [Cohen, 1960] between both
annotators in the senescence project for both correctness and usefulness. The agreement
was markedly higher for correctness with κ = 0.49 than for usefulness with κ = 0.3, which
suggests that the usefulness of PPA extractions might vary strongly with the individual
preference of the curator, even for the same curation project. This finding is additionally
supported by the large difference of over 20 percentage points between the two usefulness
ratings in the senescence project.

We asked the annotators to provide reasons when annotating a PPA as incorrect or
unhelpful where possible. When the reasons provided by the two annotators for the senes-
cence project agreed, we counted it as one occurrence, otherwise as two. The results can
be found in Figure 3.10. The most frequently cited reasons for incorrect PPA extractions
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Figure 3.9: Results of PEDL+’s usefulness for two different pathway-curation projects.
In the senescence project, two annotators annotated the same set of 30 PPAs, whereas in
the apoptosis project, a third annotator annotated 95 further PPAs.

were that PEDL erroneously extracted a PPA from a sentence that does not state it and
that it assigned the wrong type for a PPA. The reasons for unhelpful extractions cannot
be as easily ordered, because there are only 16 annotations in total and the numbers are
close together. Cited reasons were that articles discussed the PPA in the context of a
disease that is irrelevant to the curation context, that the extracted PPA is known to be
an indirect interaction, that the article did not provide sufficient biochemical evidence
for the PPA, and that the PPA is only true in specific contexts, e.g. when a protein is
mutated or a drug is administered.

3.5 Related Work

In this section, we discuss the work related to PEDL and PEDL+. First, we give an
overview of the field of PPA extraction. Then, we describe how prior work in NLP
addressed the lack of gold-standard data with distant supervision techniques and PLMs.
Finally, we survey user-friendly relation extraction methods similar to PEDL+.

Extracting PPAs from the biomedical literature has been a long-standing research
goal. Early approaches focused on matching sentences to manually defined templates,
usually leading to high-precision but low-recall results [Friedman et al., 2001]. Later
methods employed supervised machine learning to classify whether a sentence expresses
a relation between a given pair of proteins, frequently relying on support-vector-machines
(SVMs) with graph kernels [Miwa et al., 2009, Tikk et al., 2013]. Similar techniques
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Figure 3.10: Results of the error analysis in PEDL’s application to two pathway curation
projects for incorrect (left) and unhelpful (right) PPAs. Incorrect: ‘No PPA’ means
that the article does not confirm the PPA, ‘Type’ that the article states a PPA for the
correct protein pair, but the wrong type of PPA was extracted. ‘Normalization’ refers to
cases in which the PPA was correctly extracted but PubTator Central assigned at least
one wrong gene id for the pair. ‘Negation’ describes cases in which the two proteins and
the PPA type are correct, but the existence of the PPA is explicitly negated in the article.
‘Direction’ means that the head and tail of the PPA should be inversed. Unhelpful:
‘Wrong Disease’ is assigned for PPAs that are discussed in the context of a disease that
is unrelated to the curation project, ‘Indirect’ for PPAs that describe interactions that
are known to be indirect, and ‘Insufficient Evidence’ for PPAs that are stated by the
article but there is not enough biochemical evidence for their existence. ‘Context missing’
describes PPAs which are only true under special circumstances, e.g. under medication
or when a protein is mutated.
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have been applied to biomedical event extraction, which aimed at not only extracting
pairwise relations between two proteins but also complex biochemical reactions between
proteins [Miwa et al., 2010, Björne et al., 2009]. More recently, also approaches based on
neural networks have been applied to sentence-wise supervised classification of protein-
protein interactions [Peng and Lu, 2017] and to biomedical event extraction [Björne and
Salakoski, 2018]. None of these methods is capable of detecting relations between proteins
mentioned in different sentences or of using PLMs that recently have led to large gains
in other NLP tasks [Devlin et al., 2019]. Additionally, these models rely on manually
annotated training data, which for PPA extraction requires expert knowledge and thus
is very costly. Consequently, the available manually labelled PPA data sets are rather
small, typically containing at most a few thousand sentences [Pyysalo et al., 2008].

This data sparsity led to the introduction of distantly-supervised approaches [Mintz
et al., 2009] for PPA prediction [Thomas et al., 2011, Poon et al., 2015, Junge and Jensen,
2019]. In contrast to PEDL, Thomas et al. [2011] and Poon et al. [2015] are based on non-
neural models with manually defined features and [Junge and Jensen, 2019] use averaged
word embedding without leveraging multi-instance learning.

Distantly-supervised relation extraction methods generate noisy training data by align-
ing a knowledge base to a large collection of texts. Typically, a large knowledge base of
relations (in our case PPAs) in the form (e1, r, e2) is connected to a text by first linking
the entities from the knowledge base e1, e2 to the entities in the text. Initially, the core
assumption of distant supervision was that every sentence that contains the entities e1, e2
expresses the relation r. This assumption can be relaxed through the use of multi-instance
learning [Riedel et al., 2010, Hoffmann et al., 2011, Surdeanu et al., 2012]. Multi-instance
learning explicitly models the assumption that at least one sentence expresses the relation
between the entity pair in question by selecting only a subset of the sentences to gen-
erate the prediction. Originally, probabilistic graphical models were used to implement
this approach, but recently deep-learning-based models in the form of piece-wise convolu-
tional neural networks [Zeng et al., 2015] with selective attention [Lin et al., 2016] were
successfully applied. An orthogonal line of work uses auxiliary gold-standard training
examples, achieving significant improvements for graphical models [Pershina et al., 2014,
Angeli et al., 2014] and for neural networks [Liu et al., 2017a, Beltagy et al., 2019a]. How-
ever, all of these approaches only consider entity pairs that occur together in the same
sentence, which severely limits recall [Quirk and Poon, 2017]; see Section 3.3.3.

Accordingly, there is growing interest in using text that spans multiple sentences for
distantly supervised biomedical relation extraction. Verga et al. [2018] use transformer-
based models to predict all relations between chemicals, diseases and genes contained
in one abstract but do not consider multiple abstracts simultaneously. Quirk and Poon
[2017] use multi-instance learning to predict relations between drugs and genes that can
be up to three sentences apart, using an SVM-classifier on manually defined dependency
graph features. However, none of these works considered PPA extraction.

Recently, PLMs have seen widespread success in NLP, including the biomedical do-
main [Beltagy et al., 2019b]. The often used two-step process of training these models can
be regarded as a type of transfer learning [Pratt et al., 1991]: The first step is unsuper-
vised pretraining, in which a large model, typically with hundreds of million parameters,
is trained on a huge corpus of texts with a language modelling task. In the second step,
the pretrained model is adapted to the target task, either by fine-tuning the model pa-
rameters or by using the model to generate contextualized embeddings [Peters et al.,
2019]. BERT [Devlin et al., 2019] is a highly successful PLM based on the transformer
architecture [Vaswani et al., 2017] which allows to train very large models efficiently by
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leveraging GPUs. Originally, BERT was trained on a large collection of books and English
Wikipedia, but recently two BERT models trained on biomedical abstracts and full-texts
have been released, BioBERT [Lee et al., 2019] and SciBERT [Beltagy et al., 2019b], which
both showed strong performance on biomedical relation extraction. However, to the best
of our knowledge, none of these PLMs was used for extracting PPAs. As BERT uses
WordPiece tokenization [Wu et al., 2016], it learns a domain-dependent vocabulary that
allows it to use sub-word information to relate similar words such as TRAF2 and TRAF3.
PEDL uses SciBERT as its PLM, because unlike BioBERT, its WordPiece vocabulary is
optimized for scientific literature.

Some RE methods for PPA extraction have been made available as user-friendly tools
that include the full preprocessing pipeline required for RE including NER. For instance,
INDRA [Gyori et al., 2017, Bachman et al., 2022] is a software package that allows to
apply various biomedical event extraction models [Valenzuela-Escárcega et al., 2018,
McDonald et al., 2016, Novichkova et al., 2003, Torii et al., 2015, Garg et al., 2016]
to biomedical text and to harmonize the resulting output. INDRA allows retrieving
arbitrary PubMed abstracts and PubmedCentral full texts for processing with these event
extraction methods. Most of these event extraction models are based on manually defined
rules and none of them uses PLMs or distantly supervised data. TEES [Björne, 2014] is
a software package that can retrieve user-defined PubMed articles and extract biomedical
events with a SVM-based and a CNN-based model. Some are designed to extract PPAs
for a tightly defined setting. For instance, PLAN2L [Krallinger et al., 2009] is limited
to extracting PPAs (and other relations) for Arabidopsis thaliana and E3Miner extracts
only relations between ubiquitin-protein ligases and other proteins. Many tools make the
extracted relations available through periodically updated databases [Szklarczyk et al.,
2021a, Plake et al., 2006]. To the best of our knowledge, apart from PEDL+, there is no
easy-to-use tool for PPA extraction that exploits distantly supervised data or PLMs to
improve the accuracy of the extractions.

3.6 Conclusion

In this chapter, we propose PEDL, a method that extracts PPAs from the biomedical
literature and which addresses the lack of a large-scale gold standard dataset for PPA
extraction by combining distant supervision and PLMs. We compare PEDL on three
different data sets with two state-of-the-art methods and find that, on average, it out-
performs them in most cases and performs comparably in the remaining ones. A manual
evaluation of the predicted PPAs shows that PEDL can be used to identify PPAs that
are missing in major pathway databases. We demonstrate that the predicted evidence
text spans confirm the relation and thus can be used to quickly verify the predicted
PPAs. Finally, we propose PEDL+, a user-friendly command-line application that al-
lows extracting PPAs for protein pairs of interest from a large fraction of the biomedical
literature with a single command. An evaluation of PEDL+ in two pathway curation
projects undertaken by three curators shows that 55.6% to 79.6% of the PPAs are helpful
for the curator. PEDL and PEDL+ address pairwise PPA prediction in which a relation
holds between exactly two proteins. However, the biochemical reactions that make up
metabolic and signalling pathways are more complex, as they can have multiple reactants,
products and regulators, all of which can also be complexes and modified in different ways
altering their behaviour [Berg et al., 2019]. These complexities cannot be captured by
the relation extraction framework in which we have developed PEDL. We investigate how
to use PLMs to extract such complex reaction networks from biomedical literature in
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Chapter 5.

One of the envisioned use cases for PEDL is to assist pathway curators by providing
additional PPAs together with textual evidence so that they can include some of the
PPAs in the curated pathway. However, depending on the number of input pairs the list
of extracted PPAs can easily be too large to process manually and it is not immediately
clear which of the extracted PPAs would make good additions to the curated pathway.
While PEDL produces a ranking based on the confidence in the extracted PPA, this
ranking does not reflect at all how the PPA relates biologically to the system for which
the curator constructs the pathway. We study this problem of producing a ranking of
text-mined PPAs that reflects this biological relatedness to the pathway under the name
of ’pathway extension’ in Chapter 4.
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4 Extending Pathways with Text-mined Protein-Protein As-
sociations

In the previous chapter, we have shown that one can accurately extract PPAs from the
biomedical literature on a large scale. However, if we want to use these extracted PPAs
as additional information in a pathway curation project, the large scale of the extraction
becomes a problem, because it is not immediately clear which of the many extracted
PPAs are important for the project. If we, for example, use PEDL to extract PPAs for all
possible pairs of roughly 13,000 well-studied proteins from a large fraction of the available
biomedical literature, we obtain over 380,000 PPAs (see Section 4.1.1). The problem of
automatically selecting the most useful PPAs for a given pathway curation project has
been studied under the name of pathway extension [Liang et al., 2017]. Pathway extension
is usually framed as a graph or set completion problem, where the goal of the extension
method is to suggest biochemical reactions that might belong to a given input pathway
based on the set of reactions that are known to belong to it. A natural approach to this
problem would be supervised machine learning because there are many public pathway
databases [Rodchenkov et al., 2020] that could serve as training data. However, existing
pathway extension methods ignore this option and instead either use model checking for
extending pathway models that can be simulated [Sayed et al., 2018, Liang et al., 2017]
or unsupervised machine learning [Ahmed et al., 2021].

In this chapter, we close this gap and describe PathComplete, which is – to the best of
our knowledge – the first pathway extension method based on supervised machine learn-
ing. PathComplete models pathway extension as a supervised classification problem,
where it trains a linear model that predicts whether a text-mined candidate PPA could
belong to the input pathway. We choose a network-based approach to generate the fea-
tures for this linear model. Here, we construct a large heterogeneous graph that encodes
contextual information about the text-mined PPAs and then explore different methods to
derive embeddings from this graph, which are then used as input representations for the
linear classifier. In particular, we propose a novel transfer-learning approach, in which
we pre-train a Graph Neural Network (GNN) to produce embeddings that are specifically
optimized for later use by our supervised pathway extension method. To obtain robust
embeddings, we exploit large-scale training data sourced from pathway databases.

To evaluate PathComplete, we create the first comprehensive evaluation dataset for
pathway extension methods. This dataset consists of 5,924 pathway extension problems
including pathways derived from pathway databases and from two mathematical models.
On this dataset, we compare PathComplete to six baselines including the current state-
of-the-art for pathway extension [Ahmed et al., 2021]. We find that for pathways sourced
from databases, PathComplete strongly outperforms all baselines, at least doubling all
metrics achieved by the next best method. On the pathways derived from mathematical
models, PathComplete still performs competitively, but in some cases, baselines based
on other types of embeddings perform better. Further, an expert in pathway curation
evaluated PathComplete’s proposed extensions for the two mathematical models. Here,
we find that including the proposed extensions in the pathway model would allow to
extend the model with further cellular functions that are controlled by the modelled
pathway.
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Figure 4.1: Overview of PathComplete. External resources are depicted as black boxes,
user input as green boxes, and the rest as red boxes. The text-mined embeddings are
contextualized in a heterogeneous network containing multiple node and edge types. This
network is used to compute reaction embeddings, which are in turn used as input to a
logistic regression model that computes an extension score for each reaction.

4.1 Materials and Methods

The general workflow of PathComplete is illustrated in Figure 4.1. We first give a high-
level overview of PathComplete’s workflow and then discuss its components in detail. As
input, PathComplete receives a set of candidate PPAs C that is derived from large-scale
text mining together with a set of PPAs that represent the input pathway. Its output
is a ranked list of extension PPAs that are probable extensions to the input pathway.
PathComplete picks out the most probable extension PPAs by first constructing a large
heterogeneous network that encodes contextual information about the candidate PPAs.
Then, it uses a GNN to compute embeddings of the PPA nodes within this network. We
train this GNN in a transfer learning setting by first pre-training it for a large number of
training pathways and then finetuning it for the specific input pathway. Using the PPA
embeddings computed by the pre-trained GNN, PathComplete trains a logistic regression
classifier that predicts how likely a given candidate PPA is to be a member of the input
pathway.

4.1.1 PPA network and Pre-training Data

For the pre-training of PathComplete, we require two types of resources: first, a network
of text-mined PPAs G and second, a large collection of sets of PPAs that represent gold-
standard pathways.

For the PPA network, we text-mine reactions from the biomedical literature by ap-
plying PEDL+ (described in Section 3.4), to all PubMed abstracts and PubmedCentral
full texts provided by PubtatorCentral as of May 202131 [Wei et al., 2019]. For this, we
first generate candidate pairs by constructing all 188,018,944 possible pairs of proteins
(A,B) with A ̸= B from the 13,712 proteins that occur in at least one of six prominent
pathway databases [Schaefer et al., 2009, Kandasamy et al., 2010, Romero et al., 2004,
Gillespie et al., 2022, Kanehisa et al., 2021, Yamamoto et al., 2011]. For each of these
pairs, we retrieve at most 1000 sentences in which A and B occur together, randomly
subsampling if there are more than 1000. Finally, we use PEDL+ to extract PPAs for

31https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/PubTatorCentral_BioCXML/
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A and B given each sentence and include the extracted PPA in our dataset if PEDL+
predicts the PPA for at least one sentence with a confidence of more than 0.5, which
yields 383,866 different PPAs. From this set of PPAs, which we call candidate set C,
PathComplete suggests extension PPAs for a given pathway. Detailed statistics for the
resulting dataset of text-mined PPAs can be found in Table 4.1.

Total phosph. expr. complex state transp. inter. catal.

PPAs 383,866 48,021 47,392 153,264 112,251 4,902 2,994 15,042
PMIDs 182,217 47,923 44,494 73,929 92,191 4,337 1,371 6,058
Proteins 18,823 6,094 6,573 9522 8,486 2745 1,191 2766
Avg. PPA / PMID 7.6 3.1 3.4 8.5 4 1.9 3.3 12.2
Std. PPA / PMID 52.5 5.1 7.3 78.4 8.6 2.2 5.1 45.8

Table 4.1: Statistics of the text-mined PPAs. ‘PPAs’ is the number of found PPAs for the
given type. ‘PMIDs’ is the number of PubMed articles in which at least one PPA of the
type was found. ‘Protein’ is the number of proteins involved in at least one PPA of the
type. ‘Avg. PPAs / PMID’ is the average number of PPAs per PMID for the type, whereas
‘Std. PPAs / PMID’ is the standard deviation. PPA types are abbreviated: ‘phosph.’
= controls-phosphorlyation-of, ‘expr.’ = controls-expression-of, ‘complex’ =
in-complex-with, ‘state’ = controls-state-change-of, ‘inter.’ = interacts-with,
‘catal.’ = catalysis-precedes.

We represent contextual information about the candidate PPAs C in a large directed
multigraph G = (V, E) with typed nodes V and typed edges E , where C ⊆ V. We construct
this network so that it (1) captures information about the text-mined PPAs and (2)
encodes contextual information about the proteins that are participants of the PPAs.
To achieve desideratum (1), we introduce three types of nodes, namely PPA, protein,
and article. We connect a PPA to its participating proteins by using the edge types
head and tail, where head is the subject of the association (typically the enzyme) and
tail the object (typically the substrate). For example, if the candidate PPAs include
‘PPM1D controls-state-change-of ATM’, then we would connect the PPA node representing
this PPA to the Protein node ‘PPM1D’ with an edge of type head and to the node
‘ATM’ with tail. Additionally, we introduce an article node for each PubMed article
in which at least one candidate PPA was found by the text mining procedure and use
in-article edges to connect a reaction to all PMIDs in which it was found. So, if
the text mining detected both the PPAs ‘PPM1D controls-state-change-of ATM’ and
‘ATM controls-phosphorylation-of MDM2’ in the article with PMID 18265945, then we
would connect the PPA nodes representing both PPAs to the article node ‘18265945’
each with an in-article edge. To encode contextual information about the proteins, i.e.
desideratum (2), we include the CC, CX, DP, GI, GN, PG and PI edges from the HumanNet v3
database [Kim et al., 2022a]. Two proteins are connected with an CC edge if they occur
significantly more frequently than expected together in the same PubMedCentral full
texts, whereas they are linked with CX if they are significantly co-expressed in microarray
and RNA-seq experiments. DP captures that two proteins share similar domain profiles
and GI that they share essentiality profiles across shRNA and CRISPR-Cas9 experiments
or that the BioGRID database [Stark et al., 2006] reports a genetic interaction between
them. A GN edge indicates that bacterial orthologs of the two connected proteins occur in
the same chromosomal neighbourhood across a wide range of bacterial genomes, whereas
PG is assigned if the existence or lack of proteins is correlated across species. Finally, a
PI edge is assigned if a literature-curated or high-throughput database reports a physical
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interaction between the proteins.

For the pre-training, we require a large number of gold-standard pathways P, each
pathway i defined by the set Pi, which contains the PPAs that constitute it. We obtain
the gold-standard pathways from the six pathway databases PID [Schaefer et al., 2009],
netpath [Kandasamy et al., 2010], HumanCyc [Romero et al., 2004], Reactome [Gille-
spie et al., 2022], KEGG [Kanehisa et al., 2021], and INOH [Yamamoto et al., 2011], in
their harmonised versions provided by PathwayCommons v1232 [Rodchenkov et al., 2020].
First, we remove all PPAs that could not be found by our text mining method.33 We
deduplicate pathways so that no two pathways in the dataset have the same set of PPAs.
Then, we divide the set of deduplicated pathways into pre-training and evaluation path-
ways in a 60%/40% fashion. Using these pre-training pathways, we generate a training
set consisting of all candidate reactions c ∈ C and associated label vectors yc ∈ RP which
indicate to which pathways c belongs. That is, yci = 1 if c ∈ Pi and 0 otherwise.

4.1.2 Pre-training PathComplete’s GNN

We use a GNN to compute one embedding hc for each candidate PPA. Specifically, we
opt for NARS [Yu et al., 2020], because of its high accuracy and computational efficiency.
NARS is a generalisation of SIGN [Rossi et al., 2020] to heterogeneous graphs that de-
couples the message-passing step of graph neural networks from the learning procedure
and makes it a preprocessing step, which renders it very computationally efficient. To
train NARS, we utilize a transfer-learning setup, in which we first pre-train the GNN on a
large collection of training pathways and then, in the fine-tuning step, we train a logistic
regression classifier on top of the pre-trained GNN.

We initialize NARS for pre-training as follows. First, we generate an initial embedding

h
(0)
v for every node in G by embedding a string representation of the node with a language

model pre-trained on biomedical articles to encode the semantic information about the
PPAs, protein names and PubMed articles. We opt for all-mpnet-base-v234 [Reimers and
Gurevych, 2019] because it performed well in a recent benchmark of different sentence
embedding models35 and was trained on biomedical texts36. For proteins and PPAs,
we use their canonical names as string representations, e.g. ’ATM’ or ’PPM1D controls
state change of ATM’. To transform PMIDs to text, we use the descriptions of the MeSH
terms that PubMed associates with the PMID separated by ’and’, e.g. ’Cholecystitis
and Cholecystitis, Acute and Humans’. In preliminary experiments, we tried adding
embeddings generated with the unsupervised network embedding method RotatE [Sun
et al., 2019], but found that this led to substantial drops in accuracy.

Then, still as pre-processing, NARS generates K random subgraphs of G by sampling
K times from the powerset of all edge types in G which results in K sets of edge types.
For each set of edge types k, NARS generates the subgraph Gk induced by retaining only
edges with types contained in k. This subgraph is then used to compute multiple layers
l of neighbourhood aggregations in which node representations are updated by averaging

32https://www.pathwaycommons.org/archives/PC2/v12/
33Note, that this will bias the results towards higher scores. However, it is a standard practice in the

evaluation of pathway extension methods [Ahmed et al., 2021] and does still allow for a fair comparison
of methods, as long as all use the same evaluation data.

34https://huggingface.co/sentence-transformers/all-mpnet-base-v2
35https://www.sbert.net/docs/pretrained_models.html, accessed 2022/10/24
36https://huggingface.co/sentence-transformers/all-mpnet-base-v2, accessed 2022/10/24
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the representations of all neighbouring nodes from the previous layer:

h
(l)
v,k =

∑
u∈Nk(v)

1

|Nk(v)|
h
(l−1)
u,k (4.1)

After initialization, we pre-train NARS on the pre-training data by optimizing the
learnable parameters of NARS (described below) in a standard supervised learning setting.

The pre-training dataset contains node representations h
(l)
c,k ∈ Rd for each candidate PPA

and an associated label vector yc, whose creation we described in Section 4.1.1. In each
pre-training step, we use NARS to compute one embedding hc per candidate PPA by
the following procedure. First, NARS computes a task-specific weighted average over the
representations derived from the sampled subgraphs to arrive at an aggregated embedding
for each node u and layer l:

h(l)c =

K∑
k

ak,l · h
(l)
c,k, (4.2)

where ak,l ∈ Rd are learnable weights. Then, it uses a SIGN network to aggregate the
representations from all layers into a single representation for node u:

hv = MLP0([MLP1(h
(1)
c ), ...,MLPl(h

(l)
c )]), (4.3)

where MLPl is a Multi-layer Perceptron (MLP) with PReLU activation [He et al., 2016]
and [·, ..., ·] is concatenation. Finally, we calculate the loss using a standard binary cross-
entropy loss, which corresponds to training a linear logistic classifier for each pathway in
a multitask setup in which all task losses are weighted by 1

n .

pci := p(c ∈ P∗
i |Pi, C) = σ(hc · wT

i + bi) (4.4)

L =
1

|C|N
∑
i,c

yci log pci + (1 − yci) log(1 − pci) (4.5)

After pre-training NARS in this fashion, we use it to compute an embedding vector hc
for each candidate with the same procedure as during training.

4.1.3 Fine-tuning PathComplete on an Input Pathway

To estimate the probability that a given candidate PPA c is a good extension for a given
pathway Pi, we use a simple logistic regression model [Hastie et al., 2009], trained on
the PPA embeddings hci derived from the pre-trained GNN. To train the logistic regres-
sion model, we use all known pathway members as positive examples and the remaining
candidates as negative examples. Formally, the label vector y is defined as

yi =

{
1 ci ∈ Pi

0, ci /∈ Pi

(4.6)

After training the model, we apply it to all candidate PPAs ci ∈ C, which yields the
probability of being a good extension for each candidate:

p(ci|Pi, C) = σ(hci · wT + b), (4.7)

where w, b ∈ Rd are the parameters of the logistic regression model and σ is the sigmoid
activation function. The output of PathComplete is the list of candidate PPAs ranked
according to p(ci|Pi, C) but with all PPAs of the original pathway, i.e. members of Pi,
removed.
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4.2 Results

4.2.1 Evaluation Scenarios

We create two different evaluation scenarios: database and mathematical. Each scenario
has its own dataset which in turn consists of multiple evaluation examples. Every example
contains the set of input PPAs and the set of extension PPAs. The set of input PPAs
defines the input pathway that is supposed to be extended by the model, whereas the set
of extension PPAs contains the gold-standard extension PPAs for the input pathway. See
Table 4.2 for statistics on the datasets for both scenarios and Figure 4.2 for an illustration
of the dataset creation. The datasets are available at https://github.com/leonweber/
pathcomplete.

Scenario
database mathematical

Pre-Train Examples 935 0
Validation Examples 358 0
Test Examples 5117 40
Pathways 1537 2
Sources 6 2
Unique PPAs 28,674 199
Avg. Input 244.3 92.6
Avg. Extension 62.4 3.5

Table 4.2: Dataset statistics for the two evaluation scenarios database and mathematical.
‘Sources’ is the number of databases for database or publications for mathematical from
which the pathways are sourced. ‘Unique PPAs’ is the number of unique PPAs across all
pathways. ‘Avg. Input/Extension‘ is the average number of input/extension PPAs per
pathway.

In the database scenario, we evaluate the accuracy of extensions for pathway databases
for which ample training data is available. To generate the dataset for this scenario, we
split the evaluation portion of the pre-training pathways described in Section 4.1.1 into
validation (25%) and testing pathways (75%). To generate the development data, we
produce at most three examples per pathway in the validation set by randomly selecting
30%, 50% and 90% of the PPAs as input and using the rest as extension PPAs. If the set
of input PPAs or the set of extension PPAs is empty, we discard the example. For the
test data, we proceed in the same manner, but repeat the procedure 5 times, yielding up
to 15 examples per pathway.

In the mathematical scenario, we gauge the ability to extend pathway models that
underlie mathematical models. We expect that such mathematical pathway models are
smaller and less exhaustive because the used modelling formalisms impose restrictions on
the size of the model [Heinrich and Schuster, 2012]. For this, we use a mathematical model
for the well-studied P53 system [Hat et al., 2016]. P53 is a transcription factor that plays
a crucial role in the cellular stress response and is therefore involved in several cellular
functions such as cell cylce arrest, DNA repair and apoptosis. A dysfunctional regulation
of this tumor suppressor protein can cause the onset of cancer. The P53 pathway has
been intensively studied both experimentally and by mathematical modelling [Vousden
and Prives, 2009, Batchelor and Loewer, 2017, Konrath et al., 2020]. For our evaluation,
we use a mathematical pathway model developed by Hat et al. [2016]. It describes the P53

79

https://github.com/leonweber/pathcomplete
https://github.com/leonweber/pathcomplete


4 EXTENDING PATHWAYS WITH TEXT-MINED PROTEIN-PROTEIN
ASSOCIATIONS

Figure 4.2: A large-scale evaluation dataset for pathway extension methods. The dataset
spans two scenarios, the database scenario, in which the extension method is trained on
pathways from the same database as the test pathways and the mathematical (models)
scenario, in which the method is tested on mathematical models of pathways.

response to DNA damage in presence of growth factors and the concomitant activation
of the PI3K-AKT signaling pathway. P53 is activated upon DNA damage and promotes
cell cycle arrest via p21 and apoptosis via BAX, respectively. This ordinary differential
equation (ODE) model consists of 33 variables and 101 parameters. For this model, we
use the transformation of Weber et al. [2020] into PPAs. After the transformation into
PPAs and the removal of all PPAs that were not extracted by PEDL+, the model contains
15 proteins and 34 PPAs.

As a second pathway, we take an ODE model of the cell cycle [Heldt et al., 2018]
that was extended with mechanisms deemed important for cellular senescence to model
the interplay between cell cycle and senescence by Chen [2022]. The original model con-
tains some key components of cell cycle progression that regulate G1 and S phase, such
as cyclins and cyclin-dependent kinases. Additionally, it includes the p21-based DNA
damage response module. Chen [2022] extended the model by introducing three mecha-
nisms that are thought to be important in the regulation of senescence. The first mech-
anism is the inhibition of the Cyclin D-CDK4/6 complex through P16 [Gabrielli et al.,
1999, Pei and Xiong, 2005, Sugiyama et al., 2008], the second is the histone modification
H3K9me3 [Braig et al., 2005], and the third is oncogene-induced DNA damage [Bartkova
et al., 2006, Lecona and Fernández-Capetillo, 2014]. The extended model contains 30
variables and 61 reactions, which we manually transform into PPAs. The resulting model
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contains 36 proteins and 172 PPAs after we removed all PPAs that were not detected by
PEDL+. See SM C.1 for a full description of the extension process, the resulting model
and the PPA formulation.

From each model, we construct evaluation examples with a leave-one-out strategy, in
which we select each reaction in turn and use all PPAs corresponding to the reaction as
the extension PPAs and the rest as input. We ignore PPA types in the evaluation to allow
for a fair comparison with Clarinet [Ahmed et al., 2021] which only supports the edge
types of positive and negative regulation. For both pathway models, we introduce two
additional evaluation settings, in which we retrieve documents related to the modelled
systems with a keyword search on PubMed. For the senescence model, we search for
‘senescence AND cell cycle’ and for the P53 model, we search for ’P53’ and retain only
PPAs extracted from the top 200/10,000 ranking articles. We include this retrieval-based
setting, because it is the standard setting in prior work [Sayed et al., 2018, Ahmed et al.,
2020, 2021], and in preliminary experiments, we found that predicting with the baseline
Clarinet on a single example would not terminate for several days when using the full set
of candidate PPAs.

4.2.2 Evaluation Metrics & Hyperparameters

We rely on standard evaluation metrics for ranking problems: precision@k, recall@k and
normalized discounted cumulative gain@100 (ndcg@100) [Manning et al., 2008]. To com-
pute precision@k and recall@k, we produce a list of k ∈ {10, 50, 100} extension PPAs per
evaluation pathway and then compute precision and recall values by micro averaging over
all evaluation pathways. ndcg@100 formalizes the intuition that the true extension PPAs
should be ranked as high as possible in the list of predicted PPAs. It achieves this by
computing the sum of the top 100 extensions’ relevancy scores (in our case 1 for correct
extensions and 0 for incorrect extensions), which are discounted by the logarithm of the
relative rank. Finally, the score is normalised to the range [0, 1]. Following previous
works [Ahmed et al., 2021], we remove all PPAs that were not found at least once by
PEDL+ from the input and evaluation sets.

The important hyperparameters of PathComplete are the number of sampled sub-
graphs K which we set to 10, the number of layers of neighbourhood aggregation which
we set to 5, the number of dimensions for the hidden representations dimh which we set
to 512, the dropout rate dropout which set to 0.3, and Adam’s [Kingma and Ba, 2015]
learning rate lr which we set to 3e-4. These hyperparameter choices are based on manual
hyperparameter tuning in preliminary experiments on the validation set of the database
scenario.

4.2.3 Baselines

We compare PathComplete to six baselines:

• k-Nearest Neighbours (kNN) extends an input pathway with the union of the
k most similar pathways in the training set. We measure the similarity of two
pathways by computing the Jaccard index between the sets of PPAs contained in
each pathway. We optimise k on the validation set of the database scenario.

• 1-member PPAs predicts all candidate PPAs that involve a protein which is also
involved in at least one of the input PPAs.
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• 2-member PPAs predicts all candidate PPAs for which both proteins are involved
in at least one of the input PPAs.

• RotatE uses PyKEEN [Ali et al., 2021b] to train a RotatE network embedding
model on the same network as we use for PathComplete with the hyperparameter
setting recommended by PyKEEN. This yields an embedding for each candidate
PPA. The prediction procedure is the same as for PathComplete.

• sBERT uses the PPA embeddings derived from the all-mpnet-base-v2 sentence
transformer that we also used to initialize the node embeddings in PathComplete.
The prediction procedure is the same as for PathComplete.

• Clarinet [Ahmed et al., 2021] in a version that we slightly modified from the original
implementation37 to allow easy tuning of hyperparameters. In preliminary experi-
ments, we found that Clarinet does not scale to all extension candidates and thus
requires filtering via retrieval, so we only evaluate it in the mathematical scenario.
We report scores for the best hyperparameter configuration per setting.

• RotatE + sBERT is an ensemble model in which we average the output proba-
bilities of RotatE and sBERT.

• PathComplete + sBERT is an ensemble model in which we average the output
probabilities of PathComplete and sBERT.

• PathComplete + sBERT + RotatE is an ensemble model in which we average
the output probabilities of PathComplete, sBERT, and RotatE.

In preliminary experiments, we observed that the embedding-based baselines and
PathComplete achieved higher ndcg@100 in the mathematical scenario when we removed
all PPAs that do not share at least one protein with the input pathway from the predic-
tions. Thus, we use this post processing for all embedding-based models in the mathe-
matical scenario.

4.2.4 Results

Results for the database scenario can be found in Table 4.3. PathComplete performs best
across all metrics, with improvements over the second-highest score ranging from 43.7 pp
to 17.3 pp. The relative gains over the next-best baseline are much more pronounced
for precision with 91%, 82%, and 74% respectively than for recall with 87%, 55%, and
50%. Interestingly, PathComplete performs especially well when outputting only the ten
highest-ranking elements, with a precision of 47.8% and a recall of 27.7%. This suggests
that it might be especially useful for rapidly inspecting whether the curated pathway
is missing a few important elements because the user has to examine only a handful
of predictions. kNN achieves the best results after PathComplete, with an ndcg@100 of
20.8% which indicates that training data sourced from pathway databases is indeed useful.
This suggests an explanation for the strong performance of PathComplete observed in the
database scenario: If a simple kNN classifier is already strong, then PathComplete might
be able to exploit this signal in the training data even more because it is much more
expressive. RotatE performs consistently better than sBERT and the ensemble RotatE
+ sBERT improves over both single models for three of the seven metrics including
ndcg@100.

37https://bitbucket.org/biodesignlab/clarinet/src/master/
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NDCG@100 P@10 P@50 P@100 R@10 R@50 R@100

kNN (k=2) 20.8 2.5 5.6 6.2 3.6 21.8 28.8
2-member PPAs 4.9 0.1 0.7 0.8 0.1 4.3 7.7
1-member PPAs 1.4 0 0 0 0 0 0.4

sBERT 6.5 3 2.7 2.5 2 7.3 11.7
RotatE 7.5 4.1 3.4 2.9 2.7 8.6 12.2
PathComplete 57.8 47.8 30.8 23.5 27.7 48.6 58.1

RotatE + sBERT 7.9 4 3.4 3 2.6 8.8 13.6
PathComplete + sBERT 44.1 34.5 23 18.1 19.5 39.1 49.2
PathComplete + RotatE 51.3 41 26.4 20.4 24.1 44 54.2
PathComplete + sBERT

+ RotatE
49.3 41.2 26.1 19.7 22.6 42.2 51.7

Table 4.3: Results for the database scenario. All scores are in percent. The best scores
per metric are printed in bold.

The results for the mathematical scenario can be found in Table 4.4. For both path-
way models, the best-performing models are based on logistic regression and embeddings.
PathComplete achieves the highest ndcg@100 score on the senescence pathway, whereas
the ensemble of RotatE and sBERT performs best for P53. Interestingly, the 2-member
PPAs baseline achieves the second highest score for the P53 pathway when using the top
10,000 retrieved documents but its score is halved for 200 and all documents. There is no
clear trend for the results on the full literature versus results using only PPAs extracted
from the documents retrieved with the PubMed search queries. On P53, methods per-
form generally best on the set of 10,000 retrieved documents, whereas the best result for
Senescence is achieved by PathComplete when using no retrieval at all. kNN performs
markedly worse than most other methods for both models which indicates that train-
ing data from pathway databases are not immediately useful for pathway extension on
mathematical models.

4.3 Discussion

4.3.1 Model Interpretation

We perform two experiments to interpret the contribution of the different components
of PathComplete and input features. First, we perform ablation experiments on the
development portion of the database scenario. In the first ablation, we train without the
edges derived from HumanNet and in the second, we train a model on a random network
with the same topology as the original, which we create by randomly swapping node ids.
Ablating the edges of HumanNet reduces the ndcg@100 score by 2 percentage points (pp)
and using a random graph by 3.4 pp. This suggests that the contribution of the reaction
context is relatively modest. To determine which network components have the strongest
influence on PathComplete’s predictions, we inspect the 1D convolution weights ak,l of
the pre-trained NARS. In Figure 4.3, we plot the sum of the absolute values of each ak,l,
because we expect them to be a proxy for the importance of the subset k and the layer l.
We perform this analysis for both the full PathComplete model and the version in which we
removed the HumanNet edges. The analysis shows that the final layer carries the largest
weight for both models, which suggests that a larger network context is important for the
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Figure 4.3: Sum of absolute values of convolution weights ak,l for subset k and layer l.
(a) is the full PathComplete model, while (b) is the version in which HumanNet edges
were removed from the network.
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P53
(200)

P53
(10,000)

P53
(Full)

Senescence
(200)

Senescence
(10,000)

Senescence
(Full)

kNN (k=2) 4 6.8 6.5 2.4 1.7 2.7
2-member PPAs 8.1 18.2 9.5 2.2 2.2 2.8
1-member PPAs 5 1.3 0.1 0.9 1.2 0.2
Clarinet 7.1 1.5 0.6 3.1

sBERT 10.3 16.2 10.2 2.6 5.4 8.5
RotatE 7.8 16.1 12.6 2.6 3.1 3.1
PathComplete 8.5 11.6 8.1 2.6 7.6 15.3

RotatE + sBERT 8.5 19.9 13.1 2.6 3.6 7.6
PathComplete + sBERT 9.1 15.2 11.4 2.6 7.8 13.5
PathComplete + RotatE 7.7 16.3 13.2 2.6 6.1 11.9
PathComplete + sBERT

+ RotatE
8.8 17.9 16.3 2.6 6.8 12.7

Table 4.4: Results for the mathematical scenario. All scores are ndcg@100 in per-
cent. (200) and (10,000) denote settings in which only reactions extracted from the
top 200/10,000 retrieved papers were used as extension candidates. The best scores per
setting are printed in bold. The bottom half of the table are logistic regression based
methods.

model. The interpretation of the importance of different edge types is complicated for the
full PathComplete model because every relation subset contains at least two edge types.
The model without HumanNet edges clearly assigns most importance to the relations
has head and in pmid. The preference for in pmid indicates that co-occurrence in the
same publications is a signal for co-occurrence in the same pathway. The high scores of
has head compared to the relatively low scores of has tail might show that the proteins
that control the PPAs in the pathway are more important for finding extensions than
those that are controlled.

4.3.2 Robustness to Domain Shift

Domain shift occurs when the training data is sampled from a different distribution
than the data that the model receives as input when it is eventually applied to unseen
data [Kouw and Loog, 2021]. We suspected that domain shift might be detrimental for
the transfer learning approach of PathComplete. To test this hypothesis, we simulate a
use case in which the pathway extension methods are used to extend pathway databases
for which it was not pre-trained. For this, we use the Panther database [Mi and Thomas,
2009], as provided by PathwayCommons, to generate test data the same way we created
the test data for the in-db scenario, with the only difference being that none of Path-
Complete’s pre-training pathways originates from Panther. The results can be found in
Table 4.5.

All evaluated methods perform better on the database data than on Panther, which
suggests that the extension problems are harder for Panther. However, the drop in per-
formance is especially pronounced for PathComplete with 57.8% to 12.2% ndcg@100,
when compared to RotatE + SBERT with 7.9% to 5.8% ndcg@100 which is the largest
drop among all methods that do not use the training data. Nevertheless, PathComplete’s
ndcg@100 score on Panther is still almost twice as large as that of the second-best method.
From this, we conclude that PathComplete’s supervised representation learning still works
better than the baselines when pre-training and evaluation databases differ. These results
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NDCG@100 P@10 P@50 P@100 R@10 R@50 R@100

kNN (k=2) 6.1 1.9 1.6 1.7 1.7 5.2 8.2
2-member PPAs 4.1 0.1 0.4 0.5 0.1 2 5.1
1-member PPAs 0 0 0 0 0 0 0

sBERT 5.1 2.3 2.2 1.7 1.9 6.1 8.5
RotatE 6.8 3.5 3.3 2.8 1.5 7.2 10.9
PathComplete 12.2 8.5 5.5 4.6 4.8 12.4 17.8

RotatE + sBERT 5.8 2.6 2.7 2.1 1.6 7 10.1
PathComplete + sBERT 11.2 7.3 4.7 4.0 4.1 11.3 16.6
PathComplete + RotatE 12.4 9.7 6 4.7 4.2 13.6 18.1
PathComplete + sBERT

+ RotatE
11.1 7.1 4.8 4.1 4 11.3 17.4

Table 4.5: Results for the Panther database from which no pathway was included in the
pre-training data. All scores are in percent. The best scores per metric are printed in
bold.

suggest that when one uses PathComplete to extend pathways from a database that was
not included in our pre-training data it would be beneficial to pre-train PathComplete
on this database before fine-tuning. Another interesting observation is that ensembling
has different effects in in-database vs cross-data-base settings. We did not observe any
improvements through ensembling in the database scenario, with the best ensemble (Path-
Complete + RotatE) scoring 6.5 pp ndcg@100 worse than PathComplete alone. On the
Panther dataset, however, PathComplete + RotatE achieves the highest ndcg@100 over
all models and performs 0.2 pp better than PathComplete. These results are further
corroborated by the mathematical scenario, where in four of the six evaluation scenarios,
an ensemble performs better than all single models.

4.3.3 Error Analysis for Mathematical Pathway Models

To better understand the performance of PathComplete in the mathematical scenario, we
manually checked PathComplete’s top 100 proposed PPAs for the first extension problem
of each of both pathway models. This allows us to assess whether the false positive
predictions could be useful additions to the model.38 Within these 200 PPAs we identified
60 that introduce proteins which play an important role in cellular functions that are
not covered by the model but still controlled by the pathway (category one), and 27
that introduce additional family members of proteins that are already included in the
corresponding pathway model (category two).

In the category one of the cell cycle model, PathComplete identified proteins involved
in the M phase of the cell cycle. In particular, one of the most frequently identified
proteins (in 26 out of 100 examples) is the transcription factor FOXM1, a protein which
plays a key role in cell cycle progression. As the analyzed pathway model captures the
cell cycle phases G1, S and G2, including the proposed proteins and their correspond-
ing PPAs would allow to create a more detailed and comprehensive model of the cell
cycle. For the P53 model, PathComplete found proteins that are crucial for additional
cellular functions in which P53 signalling is involved, i.e. the response to single-strand
breaks (ATR, CHEK1), DNA repair (MDC1, BARD1, CSNK1D) and its interplay with

38It would also make sense to inspect the false negative predictions. However, it is no immediately clear
how to explain why the model did not rank a given PPA highly, so we leave this analysis for future work.
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components of the cell cycle (CDK1, CDK2). Adding these components to the model
would allow capturing more cellular functions that are controlled by the P53 pathway.
In addition, we found for the P53 model a high number of PPAs capturing modifications
of P53 itself, which seems highly reasonable given the comprehensive regulation of P53
described in the literature [Hafner et al., 2019].

The second category contains additional family members of proteins that are already
included in the model. Dependent on their functional similarity, adding such additional
family members can expand the regulatory detail of modelled processes but could also
introduce redundant reactions to the model. See SM C.2 for the detailed results.

4.4 Related Work

We divide pathway extension methods into two categories, those that generate complete
pathway models or networks from the literature de novo and those that extend an already
existing pathway. When using de novo methods, the user typically has to provide a query,
which specifies the domain for which they want to create the pathway in form of a short
textual description or as keywords. Then, the query is used to retrieve texts that capture
the target domain and finally, the de novo tools employ information extraction methods to
extract pathway reactions which are used to build the pathway network after an optional
filtering step. For example, Padhoc [Casańı-Galdón et al., 2020] retrieves articles with a
keyword search using the PubMed best match algorithm [Fiorini et al., 2018], extracts
reactions with the text mining tool TEES [Björne, 2014] and then filters the result by
only retaining those that were extracted multiple times. Padhoc was evaluated in two
scenarios: Reconstructing E. coli database pathways using the literature that was cited
as evidence in the database and for constructing a human histone acetylation and a plant
biotic stress response pathway based on the literature retrieved with a keyword search.
Holtzapple et al. [2021] automatically generate a pathway for Glioblastoma multiforme
and verify an expert-curated network for the same disease by using reactions provided by
INDRA [Gyori et al., 2017] which were text-mined from a large portion of the publicly
available biological literature39. In both cases, the authors find that the resulting networks
conform to known graph properties of biological networks.

Extension methods, on the other hand, start from a user-provided input pathway
and extend it with reactions extracted from the literature or from databases. These
methods can be divided into two categories that we call property-based methods and
network-based methods. Property-based methods take two kinds of input: (1) a fully
simulatable model, for instance, a boolean model and (2) desired model properties, such
as ‘if the TCR signal is high, then IL-2 levels have to be low’ [Sayed et al., 2018] as input
and then find extensions that maximise the number of desired model properties. These
methods are typically evaluated by the number of satisfied desired properties and they
differ mainly in the extension mechanism: Sayed et al. [2018] use genetic algorithms to
select extensions from a list of candidates, whereas Liang et al. [2017] propose different
sets of extension reactions that are based on their distance from important elements in
the input model and let the user select the final extension set. Ahmed et al. [2020] use
graph-based clustering to construct sets of extension candidates and then scores them by
the number of satisfied desired properties. All of these property-based methods require
the model to be in a simulatable form and need user-defined desired properties, which
limits their applicability. For example, it makes them unsuitable for extending pathways
from pathway databases which typically cannot be simulated and do not have associated

39https://indra-db.readthedocs.io/en/latest/
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desired properties.

Extension methods that only require the input pathway input are applicable in more
scenarios. LitPathExplorer [Soto et al., 2018] is a visual analytics tool for pathway exten-
sion. It allows the user to enter a pathway model and interactively find literature-mined
reactions that are connected to the model. The authors qualitatively evaluated Lit-
PathExplorer in a user study involving three pathway curators, who all found it useful.

Clarinet [Ahmed et al., 2021] is a pathway extension method that uses graph-based
clustering to find sets of related extension reactions and then selects the clusters which are
strongly connected to the input pathway. Clarinet was evaluated in three case studies in
which it was used to recover reactions that were removed from manually curated pathways
for evaluation purposes. In this evaluation, its precision ranged from 50% to 85% and
recall from 63% to 100%. Because Clarinet is based on unsupervised machine learning, it
cannot exploit training data.

4.5 Conclusion

In this chapter, we propose PathComplete, the first method for pathway extension based
on supervised machine learning. PathComplete combines network-based representation
learning for PPAs with a novel multi-task learning scheme for pre-training GNNs for
pathway extension. To evaluate PathComplete, we construct the first large-scale evalu-
ation dataset for pathway extension methods. We find that for pathways sourced from
databases, PathComplete outperforms all baselines by a large margin. For pathways de-
rived from mathematical models, PathComplete performs competitively. We manually
evaluate PathComplete’s proposed extensions for the mathematical models and find that
a high fraction of them would allow to meaningfully extend the model.

In this work, we have represented pathways only as sets of PPAs. However, biochem-
ical reactions can be more complex than PPAs (see Chapter 5) and exploring pathway
extension for pathways composed of such complex reactions would be an interesting direc-
tion for future research. Moreover, pathway curation is inherently an interactive process,
because curators typically revise their modelling choices based on new reading material
or based on experimental data. This is not reflected by PathComplete, which assumes
that a pathway is extended in a single step. In principle, PathComplete can be ap-
plied interactively by using it again on the results of the revised pathway. However, one
might obtain better results by directly incorporating this interactivity into the learning
and prediction process, for instance by borrowing ideas from human-in-the-loop machine
learning [Monarch, 2021].
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5 Event-based Pathway Extension

In the previous chapters, we represented pathways as collections of binary protein-protein
associations (PPAs). However, this is a rather simplistic representation which ignores
important aspects of biochemical reactions. These frequently have multiple reactants,
products and enzymes. Furthermore, proteins can be modified by posttranslational mod-
ifications (PTMs) or may be part of a multi-protein complex, which can alter their be-
haviour. In this chapter40, we investigate event extraction as a more realistic approach to
biochemical reactions which can account for these complexities. Specifically, we focus on
the question of whether we can use pre-trained language models to extend a given par-
tial event structure, as a step towards event-based pathway extension. We address this
problem in the framework of conditional graph modification, in which a model is given an
input graph which it should modify according to natural language instructions [He et al.,
2020]. Specifically, we model the event structure as the input graph and each sentence
of a given biomedical article as a natural language instruction from which the model has
to deduce whether and how it should modify the graph. The state-of-the-art method
for conditional graph modification [He et al., 2020] first embeds both the graph and the
instructions with a joint encoder into an embedding h and then rebuilds the graph using
a separate generative model for graphs [You et al., 2018b] conditioned on h.

This approach achieves state-of-the-art results for three Scene Graph Modification
(SGM) data sets, which, to the best of our knowledge, were the only benchmark for
conditional graph modification at the time of writing. However, we identified two short-
comings of this approach: (i) The model has to newly generate also the parts of the
input graph that actually should be left unmodified and (ii) the model uses a separate
graph encoder in the generative decoder model, which does not share knowledge with the
encoder.

We propose EGraph (Extend, don’t rebuild the Graph), as an alternative formulation
of conditional graph modification in which we model it as a graph extension instead
of graph generation. To this end, we introduce the two special node labels ADD and
DEL which allow us to model node insertions, deletions and edge modifications in the
graph extension setting. We develop a model for this novel graph extension problem that
autoregressively solves a sequence labelling task for each node that is added to the graph.
This formulation addresses both shortcomings of the model of He et al. [2020]. First, it
precisely extends the graph without the need for rebuilding the unmodified parts. Second,
it models the graph as text which allows encoding the input text, the original graph
and the extension with the same encoder and enables the straightforward integration of
pre-trained language models such as BERT [Devlin et al., 2019]. Our proposed model
outperforms the state of the art for the three known benchmark data sets published by
a large margin, with improvements between 13 and 26 percentage points (pp). To test
how well our proposed method works for extending biomedical event structures based on
scientific text, we furthermore present a new, more challenging graph modification dataset
for this task. To this end, we transform data from an existing biomedical event extraction
task [Ohta et al., 2013] to a graph modification data set. Compared to the SGM data
sets, the resulting data set displays much larger linguistic variation in the instruction
texts and more complex graph structures. Our experiments show that the state of the art
fails to generalize on this data set, while our model can produce meaningful predictions.

40This chapter has been published as Weber et al. [2021a]. Compared to the published version, we
heavily edited the introduction and conclusion to place the chapter in the context of the thesis. We
performed only light editing for the remaining parts.
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We analyze our model via a detailed ablation study and analyze the errors with respect
to the input complexity, which allows us to precisely explain the improvements over state-
of-the-art and suggest routes for better future models.

To encourage further research on the challenging task of graph modification, we im-
plement the models in a modular fashion and make the code and the new biomedical
benchmark dataset available under an open-source license41.

5.1 Method

The task of graph modification, as formulated by He et al. [2020], is to modify an input
graph G into an output graph G′ according to natural language instructions t. To this
end, let G = (N , E) be a Directed-Acyclic Graph (DAG) consisting of nodes N and edges
E ⊆ N ×N , along with node labels tn ∈ LN ∪ {NONE} and edge labels te ∈ LE ∪ {NONE}.
We require the special NONE label because it allows the model to signal the end of the
generative process. G′ is defined analogously.

Figure 5.1: Rephrasing conditional graph modification as autoregressive sequence la-
belling. The substitution of the ‘blue’ node is replaced by the extension with the two
nodes ‘DEL’ and ‘ADD’. This graph extension problem is phrased as three autoregressive
steps of sequence labelling. The original nodes have brown background while the exten-
sion nodes are drawn in blue.

We develop a model to estimate p(G′ | t,G). We shall first present our approach for
the problem of graph extension, i.e., the case N ⊆ N ′ and E ⊆ E ′. We then reduce general
graph modification to this case. We consider three ways in which a graph can be modified:
a node can be added, a node can be removed, or one or more edges of an existing node
can be modified. We model all three cases by introducing the two special node labels
ADD and DEL which are used to model node insertions and deletions in a graph extension
setting. Both, ADD and DEL encode the argument that should be added or deleted via a
special theme edge.

5.1.1 Explanation by Example

A visual explanation of our method can be found in Figure 5.1 and we will use it as a
running example in the text. In this graph, we have the three nodes boy, shirt and blue

and the edges (shirt, on, boy) and (blue, color-of, shirt). We want to change
the colour of the shirt from blue to red. For this, we extend G by a DEL node with its

41https://github.com/leonweber/extend

91

https://github.com/leonweber/extend


5 EVENT-BASED PATHWAY EXTENSION

edge (DEL, theme, blue) and a red node with its edge (red, color-of, shirt). In
our autoregressive sequence labelling framework, this extension of the original graph by
two nodes is modelled as three successive calls to a sequence labelling model that receives
as input the input text and a linearized form of the current graph. In the first call to the
sequence labelling model, the input consists of the text and a linearization of the original
graph. As output, the model produces the first extension node with label DEL and one
edge to the node with the label blue (DEL, theme, blue). This is achieved by labelling
the [CLS] token as DEL and the linearized representation of the blue node with theme.
In the next step, the model receives as input the text and a linearized form of the now
partially extended graph and predicts the next extension by labelling [CLS] with ADD to
predict the node label. Additionally, the model predicts the two edges (ADD, theme,

red) and (red, color-of, shirt). The predicted edge (ADD, theme, red) reflects
the addition of a new node with the label red and is modelled by labelling the word ’red’
in the text with self. Note, that this also produces an anchoring of the red node to the
labelled span in the text, which signifies that the node red has a special relation with
this text span (see Section 5.1.2 for an explanation of node anchors). The edge (red,

color-of, shirt) is produced by labelling the linearized form of the shirt node with
color-of. After receiving the text and the further extended graph as input, the model
signals the end of the extension process by labelling [CLS] with NONE.

5.1.2 Graph Extension as Autoregressive Sequence Labelling

We formulate the graph extension problem autoregressively. That is, we extend the
provided graph one node at a time, together with the corresponding edges starting at the
node. Let N+ = N ′ \ N be the extension nodes in our graph, and π = (n+1 , n

+
2 , ..., n

+
N )

an ordering thereon. Note that the size N = |N+| of the extended graph is known only
during training, while at test time we abort the generative process after a fixed number of
steps which we treat as a hyperparameter or when the model predicts a node with label
NONE. We write G′

i = G′[N ∪ {n+j≤i}] for the subgraph induced by the union of all nodes

N from the original graph with the additional nodes up to n+i in π. Let

p(G′, π | t,G) =
N∏
i=1

p(n+i , {eij}j | t,G′
i−1), (5.1)

be the joint probability of G′ and the ordering π, where {eij}j are all edges from n+i
to all available nodes nj . As multiple orderings can lead to the same graph, the total
probability of a graph G′ is

p(G′ | t,G) =
∑
π

p(G′, π | t,G) (5.2)

where the sum is over all possible orderings.

In practice, marginalising over all possible orderings is infeasible. Therefore, we impose
two conditions on the ordering to reduce their number, often even making it unique.
First, π must be a topological ordering, which exists as G′ is a DAG. Second, we impose
an additional ordering of node labels, i.e., we require that nodes with labels that come
first in this ordering are always added before nodes with types that come later in the
ordering. In our running example, there are two possible topological orderings of the
extended graph, because both extension nodes could be added first. However, with our
second constraint, π is unique in this case.
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We estimate p(n+i , {eij}j | t,G′
i−1) by formulating it as a sequence labelling task over

a combination of the provided text t and a textual representation of G′
i−1. We solve the

resulting sequence labelling task with BERT. For this, we first linearize G′
i into a textual

representation tG′
i
. We treat the exact form of the linearization as a hyperparameter,

with the only constraint that every node n ∈ G′
i is represented by a unique span denoted

span(n). A possible linearization for the original graph in our running example would be
boy | shirt | blue | shirt on boy | blue color-of shirt. We use the lineariza-
tion to jointly predict the label of the added node n+i and its edges {eij}j . To generate
the prediction, we concatenate the instruction text t and the linearized graph tG′

i
in the

form ”[CLS] t [SEP] tG′
i
[SEP]”. The model predicts the label of n+i using the embed-

ding of BERT’s [CLS] token h[CLS]. Then, the model predicts the labels of the outgoing
edges of n+i to all possible target nodes j. This is achieved by marking j’s span in tG′

i

with the corresponding edge label (including NONE) in an IOB-tagging scheme. That is,
for producing a sequence labelling that represents the addition of the DEL node with its
edge (DEL, theme, blue), we would mark the [CLS] token as DEL and the token blue as
B-theme, with all other tokens being labelled as O. We then estimate the joint probability
of n+i ’s label and the labels of the edges eij from n+i to all possible target nodes j by
conditioning the edge probabilities on the node label. To this end, we first predict the
node label from the embedding of the [CLS] token :

p(n+i | t,G′
i−1) = softmax(WN · h[CLS]) (5.3)

We then predict the single-edge probabilities conditioned on the node label:

p(eij |n+i , t,G
′
i−1) =∏

k∈span(j)

softmax(W
(n+

i )
E · hk), (5.4)

where hk are the token embeddings of j’s span with k ranging over each token. For
modelling the joint probability, we assume independence between the edges:

p(n+i , {eij}j | t,G′
i−1) =

p(n+i | t,G′
i−1) ·

∏
j

p(eij |n+i , t,G
′
i−1),

(5.5)

where WN is the node-classification layer and W
(n+

i )
E the edge classification layers for each

node label. For training, we use the negative-log likelihood − log p(n+i , {eij}j | t,G′
i−1) as

our loss function, together with teacher forcing [Williams and Zipser, 1989]. For predic-
tion, we employ greedy search, choosing arg max p(n+i , {eij}j | t,G′

i−1) at each step.

In some applications, such as biomedical event extraction, it can be necessary to
anchor some nodes to the text, i.e. assign a specific span in t to a node [Oepen et al.,
2020]. For instance, this can be used to encode that a certain entity represented by a
node is expressed in a specific span in the text. Our proposed autoregressive sequence
labelling framework provides natural support for such a node anchoring, by including
edges to spans in t. This is modelled by labelling the anchor spans in t with the desired
edge type. Refer to Figure 5.1 for an example in which the ADD node, added in the second
pane, has an edge to the span ’red’ in t. This edge triggers the creation of one additional
node with label red which encodes the anchoring information.
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5.1.3 Modelling Graph Modification as Graph Extension

We now formulate the graph modification problem as described in He et al. [2020] as a
graph extension task. In contrast to the formulation as graph generation, this framework
does not require the model to reproduce the unmodified parts of the graph. We produce
an extended graph G′ from the original graph G, which contains information on the mod-
ifications to apply. From this graph, dataset-independent postprocessing produces the
modified graph Gm.

We consider three different ways in which G can be modified: (1) an existing node
n is deleted, (2) a node n is added and (3) one or more edges of an existing node n are
changed.

For case (1), we add a DEL node with a single theme edge to n. In the postprocessing,
we remove all nodes (and connected edges) that have edges from DEL nodes.

For case (2), we introduce an ADD node that adds n and all its outgoing edges. To
determine the label of the added node, we extend G by another node representing the
label of n. Modelling the label of added nodes in this way instead of predicting it directly,
allows us to optionally use anchor nodes to determine the labels of added nodes. This can
drastically reduce the size of the output space if the number of node labels is very large.
For instance, in our running example, we want to add a node with the label ’red’. The
proposed model can achieve this in two ways: The first option is depicted in Figure 5.1,
where it predicts the ADD node and marks the span ”red” in t as the special theme edge.
This is then interpreted as a generation of the ADD node and that of an anchor node with
label red. The second option is to first generate a node with label red and in a later
generation step the ADD node with a theme edge to the red node. Both lead to the same
graph (third pane in Figure 5.1), with the exception of the anchor edge, which would
only be present under the first option. In the postprocessing, we change the label of n
from ADD to the label of the additional label node and then remove the label node.

For case (3), we model modified edges of n as a sequence of deletions and additions42 by
deleting n and then adding it back with the modified edges using the operations described
in cases (1) and (2).

In the post-processing, we ignore all syntactically invalid instructions, for instance,
ADD nodes with missing or multiple theme edges or when an ADD node encodes an edge to
a node that was previously deleted.

5.1.4 Experimental Setup and Data

We evaluate our model on three data sets for SGM and a novel Biomedical Event Graph
Completion data set.

Scene Graph Modification: SGM is a task defined by He et al. [2020]. The model is
given a scene graph and modification instructions in natural language and has to produce
a new version of the graph that was modified according to the instructions. He et al.
[2020] published three data sets: MSCoco, GCC and CrowdSourced. The first two were
created synthetically from publicly available data sets [Lin et al., 2014, Sharma et al.,
2018], while the instructions of the third were generated via crowd sourcing. Data set
statistics can be found in Table 5.1.

We rephrase the graph modification task as a graph extension problem as described

42Note, that this can indeed require multiple deletions and additions in cases where n has incoming
edges from another v. Here the model has to additionally modify the edges of v, which triggers a recursive
process.
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MSCoco GCC Crowd PC13
Size 196k/2k/2k 400k/7k/7k 30k/1k/1k 4k/0.5k/1.5k
Avg. |N | 3±0.9 4±1.9 2.0±0.8 5.9 ±4.4
Avg. |Nm| 3±1.4 4±2.0 2.0±0.8 6.8 ±4.6
Avg. |E| 2±1.0 3±2.0 1.0±0.8 3.5 ±4.6
Avg. |Em| 2±1.4 3±2.0 1.0±0.8 4.8 ±5.0
OOV t (%) -/3/4 -/2/2 -/8/8 -/35/48
OOV N (%) -/4/4 -/3/3 -/11/10 -/64/67

Table 5.1: Data set statistics before transformation to graph extension. We report mean
and standard deviation for the graph statistics. OOV t and OOV N denote the percentage
of text tokens and node labels from the development/test set that do not appear in the
training set.

in Section 5.1.3. We found that in these data sets the labels of almost all extension
nodes appear in the modification prompts verbatim. Accordingly, we introduce additional
anchoring nodes by exact string matching of the node label with the textual instructions.
While this means that our model now has to add twice as many nodes (one anchor and
one ADD node per additional node), it allows us to reduce the output space for the node
label from 14,873 / 26,827 / 5,747 to three (ADD, DEL, and NONE) for the training sets of
MSCoco, GCC and CrowdSourced respectively.

The edges in all three SGM data sets are undirected but for our proposed framework
we require the graph to be directed. Thus, we transform the undirected graphs to DAGs
by defining the directions of edges between extension nodes and original nodes {n+, n}
with n+ ∈ N+, n ∈ N to go from n+ to n. The remaining directions are assigned
arbitrarily.

To create the textual linearization of a graph for SGM, we first add a representation
for each node by using its unique natural language label such as ‘shirt’ or ‘blue’. Then,
we add all (directed) edges (u, v) in the form <u> <edge-label> <v>, where <u> and <v>

are the representations of nodes u and v. See Figure 5.1 for a detailed example.

Biomedical Event Graph Completion: Biomedical Event Extraction is an in-
formation extraction task in which events that model biomedical processes have to be
extracted from text [Ohta et al., 2013]. These events are defined by their trigger (a typed
span in the text) and their arguments, which can be other events or named entities and
have a type called role. Together, all events and named entities in a given text form a
directed graph which we call Text-Event-Graph (TEG). The nodes of the TEG are com-
prised of all named entities and all events in the text with their provided labels. The
edges in the TEG always originate from event nodes and can have other event nodes or
entity nodes as targets. An example TEG can be found in Figure 5.2.

To construct the biomedical event graph completion data, we transform the BioNLP
2013 Pathway Curation (PC13) event extraction dataset [Ohta et al., 2013] into a graph
modification data set by randomly deleting event nodes and asking the model to recover
them. Specifically, we split the abstracts into sentences and then randomly delete between
zero and three event nodes, with the constraint that no more than 75% of the events can
be deleted. Every sentence together with its associated TEG forms a single example of
the biomedical event graph completion dataset. We treat event hedging (negation and
speculation) as special event nodes with one edge to the modified events. Furthermore,
we delete all triggers (which correspond to anchor nodes), so that we can also evaluate
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Figure 5.2: Creation of the PC13 data set. The event annotations are transformed into
the TEG and some nodes are randomly chosen as extension nodes (here in blue).

the method of He et al. [2020] which does not have support for anchor nodes.

Statistics of the resulting data set can be found in Table 5.1. Notably, the PC13
dataset differs considerably from the three SGM data sets in important respects. First,
the task presented by the dataset is a pure graph extension task as it is only necessary to
add nodes. Second, both original and modified graphs are much larger than the graphs
from all scene graph datasets both in terms of nodes and of edges. Third, the PC13 data
set is much smaller in terms of examples. Fourth, it possesses a much larger linguistic
variability which is reflected by a larger variability in node labels, because all named
entities of the text appear as nodes in the graph. This leads to a high number of node
labels and words in the text which appear in the dev/test set but not in the training
set (35-67% vs 8-11% in the CrowdSourced data set). Overall, we consider this data set
as considerably more challenging than the SGM data, which is reflected in much lower
performance in our experiments (see Section 5.2). Importantly, to correctly modify the
graph, the models frequently have to generate more than one node with multiple edges,
making it harder to achieve a prediction that is correct on the graph level than for the
SGM data sets, where the modifications are limited to a change of exactly one node.

For graph linearization, we first write out all entity nodes using their associated text
attributes. We append a linearization of each event e that consists of its label together
with all edges e, n in the form <edge-label> ( <n> ). If n is an event itself, we use its
linearization, which is possible because the graph is free of cycles. An example lineariza-
tion can be found in Figure 5.3.

Evaluation Metrics & Baselines: We follow He et al. [2020] and report the metrics
graph accuracy, node F1 and edge F1. For graph accuracy, we define a predicted graph
to be correct if it is isomorphic to the ground truth under the constraint that the labels
of nodes and edges match. Note, that this metric implements a binary decision per
graph and thus assumes a scenario where partially correct graphs are no more useful than
completely wrong ones. As such, it might be slightly biased against the generation-based
model of He et al. [2020], because every reconstruction error regardless of its severity will
lead to a decreased graph accuracy, which is especially pronounced for datasets with large
graphs like PC13.

In the SGM data sets, the labels of the nodes are typically unique in a given graph
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Figure 5.3: Illustration of a small BioNLP Text Event Graph, together with the associated
text and the resulting graph linearization. Red squares are entities and orange boxes are
events or event modifications.

and thus can be used to define precision and recall for nodes and edges in their standard
formulation. For PC13, there are usually multiple nodes with the same label, which makes
it necessary to use an alternative definition for whether an extension node n+ is present
in some reference graph Gr. We define that n+ ∈ Gr if the subgraph induced by n+ and
its descendants is isomorphic to a subgraph in Gr. We use the VF2 algorithm [Cordella
et al., 2001] as implemented by the networkx library [Hagberg et al., 2008] for checking
for subgraph isomorphism. Because each n+ corresponds to an event and the event is
fully specified by this descendant subgraph, this formulation corresponds to the standard
evaluation protocol in the BioNLP shared task series [Ohta et al., 2013] with the exception
of anchor nodes which we disregard to allow for a fair comparison to He et al. [2020].

We compare our model on all data sets with the best configuration reported by He
et al. [2020], which is a cross-attention model that jointly embeds text and graph with
a transformer. As an additional baseline, we use the CopySource baseline which simply
predicts the unmodified source graph.

Training Details: For the SGM data sets, we use the bert-base-uncased [Devlin
et al., 2019] model provided by HuggingFace transformers [Wolf et al., 2019] as our pre-
trained transformer. We optimize our models with Adam [Kingma and Ba, 2015] using
a batch size of 16 and a learning rate of 3e-5 for 100 epochs on CrowdSourced and for
20 epochs on the two other data sets. For PC13, we use the HuggingFace transformers’
version of BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext [Gu et al., 2022], a
version of BERT trained on biomedical texts, as the transformer and train for 100 epochs,
using a batch size of 16 and a learning rate of 3e-5. For all datasets, we abort the graph
extension process after 10 generated nodes.

We evaluate also a modified version of the model of [He et al., 2020] in which we
integrate a finetuned BERT component. To explain this modification, we use the notation
of [He et al., 2020] in which y ranges over the text tokens and x over the nodes of the
unmodified graph. For this, we use Flair [Akbik et al., 2019] together with the bert-base-
uncased model to calculate embeddings for tokens hy and nodes hx. To represent nodes,
we use the node label as input to BERT and if there are multiple subword tokens per
token or node label, we use the embedding of the first. Then, we fuse the original token
embeddings my ∈ Rd and node embeddings mx ∈ Rd with two newly introduced single
layer Multilayer Perceptrons:

97



5 EVENT-BASED PATHWAY EXTENSION

m′
y = W (2)

y · (ReLU(W (1)
y · [my, hy])) (5.6)

m′
x = W (2)

x · (ReLU(W (1)
x · [mx, hx])), (5.7)

where W
(1)
x ∈ Rd×d+768,W

(2)
x ∈ Rd×d,W

(1)
y ∈ Rd×d+768,W

(2)
y ∈ Rd×d and BERT are the

additional trainable parameters and [·] denotes concatenation. The resulting modified
token embeddings m′

y and node embeddings m′
x are then used in place of the original

ones leaving the rest of the implementation unchanged.

5.2 Results

5.2.1 Comparison with the State of the Art for Scene Graph Modification

Results for the SGM data sets can be found in Table 5.3. On all three benchmark data sets,
our proposed method outperforms the model of He et al. [2020] by 13 to 26 pp accuracy.
The improvement is especially pronounced on the CrowdSourced data set. We attribute
this stronger improvement to two characteristics of the data set that make it benefit
from using pre-trained language models. First, compared to the two other data sets,
CrowdSourced is the only non-synthetic one which leads to a larger linguistic variability.
Second, it is much smaller. For both characteristics, a pre-trained language model such
as BERT is an ideal solution, as it alleviates the need for large training data and was
exposed to a lot of linguistic variation during pretraining. We verified this hypothesis by
enriching the graph and text embeddings of the model of He et al. [2020] with fine-tuned
BERT embeddings which led to an improvement of 10pp on CrowdSourced, but yielded
diminished results on the two other SGM data sets.

To quantify the advantage that a graph extension formulation has over graph gen-
eration, we analyzed how many errors the model of He et al. [2020] made because it
incorrectly reconstructed the subgraph that should be left unmodified. As the weights of
the models reported in He et al. [2020] are not publicly available, we retrained a model
using the authors’ implementation and the reported choice of hyperparameters on the
CrowdSourced data set. For the 1000 development examples, the resulting model pro-
duced 403 incorrect graphs. Almost 50% of these errors (181) were due to incorrect
reconstructions of the original graph, whereas the proportion is only 16% for our model.
Note, that these reconstruction errors for our model can be either when the model erro-
neously deletes a node or when it wrongly changes the modifies of an existing node. This
confirms our hypothesis that reformulating graph modification as graph extension instead
of graph generation helps to avoid a large proportion of errors in reconstructing the parts
of the graph that should be left unmodified.

5.2.2 Performance in BioNLP Event Graph Completion

Results for the PC13 data set can be found in Table 5.2. Our proposed method achieves
a graph accuracy of 47.12% and improves upon the CopySource baseline by over 2 pp.
However, both in terms of Node F1 and Edge F1, CopySource performs better than
our method, which indicates that when our model wrongly extends a graph it does this
frequently by introducing more than one wrong node or edge. The model of He et al. [2020]
fails to produce meaningful predictions, achieving only 1.09% accuracy. We attribute this
to the high rates of tokens and node labels that appear in the test set but not in the
training set (48% of the tokens and 67% of the node labels). Because this model attempts
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Crowd Sourced MSCoco GCC
Node F1 Edge F1 Graph Acc Node F1 Edge F1 Graph Acc Node F1 Edge F1 Graph Acc

Copy Source 66.17 31.42 - 78.41 64.62 - 79.46* 66.32* -
Text2Text 78.59 52.68 52.15 91.47 72.74 64.42 - - -
Mod. GraphRNN 80.68 57.17 56.75 80.64 55.76 50.72 - - -
Graph Transformer 81.47 59.43 58.23 91.21 75.68 71.38 - - -
DCGCN 79.05 54.23 52.67 89.08 72.47 68.89 - - -

He et al. [2020] 83.69 62.1 60.9 95.4 86.52 82.97 93.84 57.68 52.5

EGraph (ours) 97.62 88.26 87.6 99.52 98.4 96.15 98.62 91.64 75.01
- BERT 95.44 82.13 82.7 99.36 98.2 95.45 98.52 91.55 73.66

Table 5.3: Comparison with state-of-the-art on the scene graph modification test sets. Baseline results are taken from He et al. [2020]
including missing values for CopySource and results for Modified Graph RNN [You et al., 2018b], Graph Transformer [Cai and Lam, 2020]
and DCGCN [Guo et al., 2019]. Results marked with a ‘*’ denote results obtained by us.
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to reproduce the whole graph and because it treats each node label as a class, it has no
appropriate mechanism for predicting modifications of graphs that have a large number of
unknown node labels. Additionally, we expect the model to struggle with a large number
of unknown tokens in the instruction, because it does not use pre-trained embeddings.
This hypothesis is supported by the fact that the model achieves 71.67% accuracy on
the PC13 train set as opposed to the 1.09% on the test set. Note, that this failure to
generalize cannot be explained purely by the absence of a pre-trained model component,
because our proposed model still performs much better when the pre-trained component
is ablated (see Section 5.3.1).

Node F1 Edge F1 Graph Acc

CopySource 93.59 84.67 44.88
He et al. [2020] 45.08 3.41 1.09
EGraph (ours) 91.38 80.54 47.12

Table 5.2: Results for the PC13 BioNLP-completion test set. Best results are in bold.

5.3 Discussion

5.3.1 Explaining the Performance Gains via Ablations

We performed an ablation study on the development sets of CrowdSourced and PC13
to identify the source of performance gains achieved by our model compared to He et al.
[2020]. Results can be found in Table 5.4. The ablation of the pre-trained language model
BERT, in which we used the same architecture as in our original model but initialized all
parameters from scratch, led to a decrease in accuracy of 4.9 pp on CrowdSourced and 6.8
pp on PC13. Note, that for PC13 the results without BERT are worse than the results of
the CopySource baseline in terms of graph accuracy, which confirms our hypothesis that
for this data set a pre-trained language model is required to generalize well.

We also investigated how important the type of graph linearization is. To this end,
we tested a variation of the linearization for each of the two data sets: For PC13, we
changed the proposed linearization that contains all information about the event graph
to text that is formulated closer to natural language. This has the potential advantage
that it is more similar to the data observed during pre-training, and the downside could
be that argument edges to other events may not be uniquely represented. For instance, we
would change regulation cause ( stat1 ) theme ( pathway participant ( ifn -

gamma ) ) to regulation of pathway containing ifn-gamma by stat1. This led to
a decrease in accuracy of roughly 2 pp, indicating that uniqueness and full information
in the graph linearization might be more important than natural-sounding language. For
CrowdSource, the linearization is already natural sounding and unique. We evaluated
a linearization without any edge representations, retaining only a list of the contained
nodes, to test whether our proposed model makes use of information relating to the graph
topology. This led to a pronounced drop in accuracy of roughly 26 pp, which verifies that
our proposed model makes use of the edge information and that a full representation of
the graph is required for strong performance on this data set.

Furthermore, we checked whether the conditioning of the edges on the node label is
beneficial, as it comes at the price of increasing the number of parameters in the output
layer by a factor of |Ln|. For this, we evaluate a variant of our model in which we treat
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CrowdSourced PC13
CopySource - 42.15
[He et al., 2020] 61.2 2.07
EGraph 87.60 48.35

- BERT 82.7 41.53
- anchors 83.7 -
- conditional loss 88.1 44.83
- edges in linearization 61.5 -
+ linearization in natural language - 46.28

Table 5.4: Accuracy scores for ablations on the CrowdSourced and PC13 dev sets. Best
results are in bold. ‘+’ / ‘-’ denote independent extensions / ablations of EGraph’s model
components.

the prediction of node label and edge labels as independent. For PC13, this leads to a
decrease of over 3 pp in accuracy, which we expected, because the allowed edge labels differ
strongly depending on the node label. On CrowdSourced, the ablation of this dependency
actually improved accuracy by roughly 0.5 pp. We hypothesize that this is because there
are only two node labels which can be predicted in this data set (ADD and DEL) and thus
there is no strong dependency between node and edge labels. This leads to redundant
parameters in the output layer which have to be learned from the same amount of training
data.

Finally, we suspected that a large factor of the improvements over the He et al. [2020]
model is the introduction of anchors, which essentially transforms the generative task of
predicting the node label into a discriminative sequence labelling task. To test this, we
perform an ablation in which we remove all anchors and instead extend the graph with
a node that has the appropriate label. As this drastically increases the number of node
labels, conditioning the edge labels on the node labels leads to out-of-memory exceptions
on a single Nvidia RTX 3090 with 24 GB of RAM. Thus, we use the unconditional
probabilities mentioned in the ablation of the conditional probability. We found that the
ablation of anchors indeed led to a notable drop of almost 4 pp in accuracy but that other
factors such as the pre-trained language model and the graph linearization had a much
larger effect.

5.3.2 Error analysis

We analyzed the performance for predicting missing nodes on the PC13 development set
with respect to various characteristics of the input data. Note, that here, precision, recall
and F1 are calculated with respect only to extension nodes, while node F1 is calculated
with respect to all nodes.

First, we investigated the effect of error accumulation. To test this, we analyzed how
the precision of a node behaves as a function of the step at which it was predicted (the
index in π, see 5.1.2). Surprisingly, we did not find a clear trend with precision being
roughly 51%, 33% and 50%, for the first, second and third step, respectively. However,
there was a strong trend for decreasing recall with the number of missing event nodes
in the graph with 54%, 34% and 17% for one, two and three missing nodes. This might
be because of the small number of training examples with multiple missing nodes (see
Table 5.1) or due to error accumulation.
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Additionally, we found a moderate negative correlation between the number of nodes in
the input graph G and precision (Pearson’s r = −0.47) and a stronger negative correlation
between the number of nodes and recall (Pearson’s r = −0.71). This indicates that one
route to further improve our proposed model might be to strengthen its ability to reason
about complex graphs.

We conjectured that ADD nodes would be much harder to predict than DEL nodes,
because DEL nodes have exactly one edge with only one possible edge label (theme),
whereas ADD nodes can have arbitrarily many edges. Indeed, we found that our proposed
model achieved an F1 score of over 97% for DEL nodes, as opposed to 76% for ADD nodes
on the development portion of the CrowdSourced data set, confirming our hypothesis.

5.4 Related Work

Generating graphs from natural language texts is a central problem in many subfields of
NLP. Many classical problems in NLP such as dependency parsing [Manning and Schütze,
2001] or relation classification [Vu et al., 2016] are text-to-graph problems, but with highly
restricted graph structures (e.g. nodes can be only words or named entities respectively).
The methods developed for these tasks are typically tailored to these structures and
cannot be used for other types of graphs. In contrast, our proposed method can handle
arbitrary directed acyclic graphs (DAGs).

There is also significant interest in developing methods that jointly embed graphs and
text to exploit graph-based information in NLP, especially for Question Answering based
on Knowledge Bases [Lin et al., 2019, Yasunaga et al., 2021]. However, these usually treat
the graph as a static source of information and cannot be used for generating or extending
graphs.

A task closer to our work in this regard is Cross-Framework Meaning Representation
Parsing [Oepen et al., 2019, 2020] (MRP). In this task, systems are required to parse text
into a general graph-based format in which nodes are not necessarily anchored in the text.
The major difference between MRP and our graph modification setting is that in MRP
the models always generate the full graph from scratch, while our method modifies an
already provided graph.

There is strong interest in graph generation also outside the NLP community, e.g.
for modelling arbitrary distributions of graphs [You et al., 2018b, Liao et al., 2019] or
for generating novel protein structures [Jin et al., 2018, You et al., 2018a]. However,
these methods neither do graph generation conditioned on textual input nor support the
modification of partial graphs.

To the best of our knowledge, the only model that was explicitly developed for mod-
ifying arbitrary graphs based on natural language instructions is the model by He et al.
[2020]. It uses a transformer [Vaswani et al., 2017] to jointly embed text and graph,
modelling the graph structure by restricting attention only to neighbouring nodes and
by adding edge label embeddings onto the node embeddings. Based on this joint embed-
ding, the modified graph is generated by a separate decoder based on the GraphRNN
architecture [You et al., 2018b]. While this architecture allows modelling graph modifi-
cation as graph generation, it also requires the model to generate the unmodified parts
of the graph again which leaves more room for errors, whereas we only extend the graph
leaving the unmodified parts untouched. Furthermore, this formulation uses two separate
graph encoders; the transformer for encoding the original graph and the GraphRNN for
encoding the partially generated graph. In contrast, our proposed method uses the same
encoder for encoding the given graph and its extensions, allowing for more parameter
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sharing and thus for potentially better graph representations. Our simpler architecture
makes the integration of BERT-style pre-trained language models [Devlin et al., 2019, Gu
et al., 2022] straightforward, however, this only partly explains the observed gains over
He et al. [2020] (see Section 5.3.1).

5.5 Conclusion

In this chapter, we investigate whether PLMs can learn to extend graphs that contain
event-based representations of biochemical reactions from text. While this is a step to-
wards event-based pathway extension, the TEGs typically are no full pathways which
can easily contain over 100 reactions (see Chapter 4), whereas the PC13 data studied in
this chapter on average has no more than 6 to 7 (see Table 5.1). Additionally, in PC13,
the input graph changes with each input sentence, whereas we would expect that in a
real-world pathway extension problem, the same pathway would be gradually extended
by combining information from different sentences or articles.

We have approached this event-based pathway extension problem using the framework
of conditional graph modification, in which a model modifies an input graph based on
natural language instructions. For this, we have developed a novel formulation of the
conditional graph modification problem as conditional graph extension. This allows us to
only generate the modified parts of the graph as opposed to rebuilding the full graph. Ad-
ditionally, our model uses only one encoder for both graph and text allowing for maximum
parameter sharing and can make use of pre-trained language models such as BERT. On
three benchmark datasets for conditional graph modification and on a newly introduced
biomedical event graph completion data the proposed model outperforms the state of
the art. Our error analysis highlights that performance degrades for larger input graphs.
Thus, it would be interesting to see whether a more structured graph representation could
improve results for complex input graphs [Kim et al., 2022b]. It might be also fruitful to
build on recent work that formulates structured prediction as a text-to-text translation
problem with strong results [Paolini et al., 2021], as this would allow to benefit from the
advances in large-scale generative language models [Black et al., 2022, Sanh et al., 2022].
Finally, it would be worthwhile to investigate whether these approaches would allow to
approach event-based pathway extension in a real-world scenario where the input and
output graphs are large, and the same graph is gradually modified by processing multiple
input texts. For this one would have to construct a suitable dataset, either by exploit-
ing large-scale corpora and existing pathway databases as in chapters three and four or
by manually constructing a gold-standard dataset with the help of experts in pathway
curation.
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6 Conclusion

In this thesis, we studied how text mining can assist pathway curators. We developed
deep-learning-based methods for extracting biochemical reactions from the biomedical
literature in the two different information extraction frameworks of relation extraction
and biomedical event extraction. Building on this, we investigated pathway extension
methods which can suggest to curators text-mined biochemical reactions that could be
informative for their curation project. We explored three different ways to achieve this,
first by filtering reactions based on user-defined keywords in Chapter 3, second by machine
learning suitable extensions from database-defined pathways in Chapter 4 and third by
directly learning the completion of event structures from annotated text in Chapter 5.
In these endeavours, we placed a special focus on evaluating not only the accuracy of
the developed methods but also to asses their usefulness by manual evaluation through
pathways curators. In this conclusion, we first summarize the individual chapters of this
thesis. Then, we discuss limitations and open questions of our contributions and the
opportunities for future research that they present.

In Chapter 2, we discussed both the biology and the computer science background of
this thesis. We described the biology of signalling and metabolic pathways and how cura-
tors create condensed information resources for pathways in form of cartoons, databases,
and mathematical models. Then, we detailed the deep learning theory that is behind the
methods developed in this thesis. A brief explanation of multi-task learning concludes
the second chapter.

We introduce PEDL, a method for the accurate extraction of protein-protein associa-
tions (PPA) from the biomedical literature, in Chapter 3. We explain how we designed
PEDL to be accurate despite the lack of a large-scale gold standard corpus for PPA
extraction, which we achieve by using a pre-trained language model and by combining
large-scale distantly-supervised data with small-scale gold standard data. In our experi-
ments, we find that PEDL’s accuracy compares favourably with the state of the art and
that it can detect PPAs missing from major pathway databases which implies that it
might be useful for database curators. Motivated by these results, we implement PEDL
as the user-friendly tool PEDL+ which allows extracting PPAs for proteins of interest
from a large portion of the biomedical literature with a single command. We evaluate
PEDL+ by applying it in two different projects on mathematical modelling of pathways.
The three involved curators rate 55.6% to 79.6% of the PPAs extracted by PEDL+ to be
helpful for their project.

When we apply a text-mining tool like PEDL+ to extract PPAs from all of the avail-
able biomedical literature, we can easily find hundreds of thousands of reactions and often
it is not clear which of them are relevant to a specific pathway curation project. In Chap-
ter 4, we explore how we can find important reactions by extending a user-provided input
pathway; a problem which is studied under the name pathway extension. We describe
PathComplete, the first pathway extension method that can learn what makes a PPA a
good extension from training data by leveraging a novel network-based transfer learning
approach. To compare PathComplete to six baselines, we propose the first large-scale
evaluation dataset for pathway extension methods. In our experiments, we find that – on
average – PathComplete outperforms all evaluated baselines, often doubling all evalua-
tion metrics of the next best method. Additionally, we manually analyze PathComplete’s
extensions for two pathways derived from mathematical models of prominent signalling
pathways and find that it can produce meaningful model extensions.

In chapters three and four, we represented pathway reactions as PPAs, which is a
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rather abstract representation that ignores many complexities of real biochemical reac-
tions. In Chapter 5, we, therefore, develop a joint model for complex reaction extraction
and pathway extension building on the framework of biomedical event extraction. Repre-
senting biochemical reactions as events allows for capturing much more of the complexities
of the true biochemical reactions that constitute pathways. We model the event-based
joint reaction extraction and pathway extension as a conditional graph modification task
and develop a novel method for this problem that outperforms the previous state-of-the-
art by 13 to 24 percentage points accuracy.

Overall, we conclude that text mining can be a useful tool for pathway curators that
can extract reactions from the literature and suggest additional literature-mined reactions
based on a partially-curated pathway. Thus, it can provide a more comprehensive view of
the literature relevant to a curation project than a manual literature search alone. While
the results of this thesis are mainly positive, there are limitations to our contributions
that should be addressed in future work to further enhance the usefulness of text-mining
tools for pathway curators. We will conclude the thesis with a discussion of the challenges
that we believe to be the most important ones.

6.1 Data Availability for Training and Evaluation

Even though PEDL and PEDL+ improve considerably on prior methods, they still issue
a number of false extractions and miss others. One key factor for this performance lim-
itation might be data scarcity or data quality issues. In recent years, machine learning
research has identified data quality as a key aspect for well-performing models next to
the architecture of the used models [Miranda, 2021]. This data-centric machine learning
research has shown that models can benefit substantially from increasing the amount of
training data [Hoffmann et al., 2022] and from improving the data quality [Lee et al.,
2022]. This poses a serious challenge to the development of text mining methods and
tools for pathway curators. The first area where this is a problem is the extraction of
biochemical reactions from text, as there is only limited gold-standard training data avail-
able that contains detailed annotations of biochemical reactions [Kim et al., 2011a, 2013,
Ohta et al., 2011, 2013]. To make things worse, these few available datasets contain a
substantial amount of inconsistent annotations [Ohta et al., 2013], which can degrade
the accuracy of the text-mining models [Richie et al., 2022]. In Chapter 3, we have ad-
dressed this data scarcity issue with the recourse to distantly supervised data, however, it
is not clear how distantly supervised models like PEDL compare to models with similar
architectures that were trained exclusively on gold-standard data. Thus, it would be an
opportunity for future research to compare these types of training data and determine
whether there are thresholds for quality and quantity of the gold-standard data that would
make the inclusion of distantly supervised data futile. This has been partially achieved
for the extraction of protein-chemical relations, where it has been shown that distantly
supervised data can degrade results when a large and consistent training dataset is avail-
able [Yoon et al., 2021]. Another promising route would be to exploit the capabilities of
large language models to learn from only a handful of examples that have been recently
demonstrated, which can yield NLP models that perform well in this few-shot regime [Liu
et al., 2022]. Finally, recent standardization efforts for BioNLP datasets made the creation
of meta datasets comprising multiple single datasets easy [Fries et al., 2022]. It would be
worthwhile to investigate, whether training on such meta datasets could improve results
for RE as it did for NER [Weber et al., 2021c].

The second area in which we observed data-related issues is pathway extension. Here,
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there is ample (pre-)training data available as we demonstrated in Chapter 4. However,
as our results show, the models’ accuracies quickly degrade if the pre-training and the
application databases are different from each other. This makes the evaluated pathway
extension methods less useful for extending pathway models derived from mathematical
models because training data for these types of models is not as readily available as it is
for database-derived models. While there are databases such as BioModels [Malik-Sheriff
et al., 2020] that house large collections of mathematical models in common formats,
their representation is much less unified than that of pathway databases that collect
non-simulatable models such as PathwayCommons [Rodchenkov et al., 2020] or Reac-
tome [Gillespie et al., 2022]. For instance, the proteins involved in the mathematical
models are frequently defined only via variable names within an Ordinary Differential
Equation (ODE) system which first would have to be mapped to database identifiers,
which is non-trivial [Wei et al., 2015]. Likewise, for mathematical models, reactions are
usually only implicitly defined by the rate equations of the ODE system and would have
to be derived from these to make them comparable to reactions extracted via text mining
tools.

Data scarcity is not only an issue during training models but also for evaluating them.
This is true, for both reaction extraction as well as for pathway extension models. The
lack of a large-scale gold-standard dataset means that robustly evaluating the models’
outputs in an automated fashion is a problem, which is why we relied on additional
manual evaluation through experts for PEDL and PEDL+ in Chapter 3. This problem is
exacerbated by the fact that the relation between evaluation results obtained on different
types of benchmarks is not clear because every evaluation effort has distinct shortcomings.
For example, distantly supervised extraction methods are usually evaluated by comparing
their outputs to gold-standard databases. Databases, however, are incomplete, which is
why one develops these extraction methods in the first place, and this leads to many
true predictions being erroneously scored as false positives [Weber et al., 2022]. The
informativeness of evaluations on large gold-standard datasets on the other hand can
be limited when it comes to performance in a real-world application scenario because
of domain shift [Ramponi and Plank, 2020]. The gold-standard evaluation would most
likely be a large-scale evaluation by the targeted users of the methods, i.e. by pathway
curators. This would have the additional benefit that one could evaluate the models
in more dimensions than just correctness, for instance, in terms of usefulness, as we
demonstrated in Chapter 3. However, thoroughly evaluating the correctness or usefulness
of biochemical reactions is very time-consuming and thus most manual evaluations are
limited to small sample sizes, which can lead to high variance in the estimates. One could
address this issue by designing user interfaces for the developed methods that incentivize
users to evaluate their outputs, for example by including support for the curation process
in the curation interface [Puig et al., 2020] or by using active-learning methods [Ein-Dor
et al., 2020]. We will discuss this idea in more detail in the next section (6.2).

6.2 Usability

For text-mining methods to be useful to pathway curators it is not enough that their
outputs are useful. The methods additionally have to be implemented in tools that allow
usage by non-expert users. For reaction extraction, we have taken a first step in this
direction by releasing PEDL+, but one could improve this in multiple ways. For one,
PEDL+ is implemented as a command-line application, which should be fine for users
that are used to interacting with the terminal but might pose a challenge for researchers
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that are accustomed to graphical user interfaces (GUIs). Additionally, as demonstrated
in Chapter 4, pathway extension is a natural next step after extracting large numbers of
biochemical reactions from the literature but it is not integrated into PEDL+. Future
work could address these open issues by implementing a pathway curation application as
a GUI, for example by using web development techniques similar to the work of Soto et al.
[2018] or to a Cytoscape [Smoot et al., 2011] plugin like that proposed by Puig et al. [2020].
Such an application would most likely benefit from providing support for interactive path-
way curation that allows the user to filter out unhelpful or incorrect reactions and, more
generally, to benefit from human-in-the-loop machine learning methods [Monarch, 2021]
These user actions could then be used as additional data for training and evaluation either
by simply regarding them as another dataset or by connecting the training process, the
output generation and the user feedback with active learning techniques [Ein-Dor et al.,
2020]. Such user feedback could also be used as additional feedback for pathway extension
methods because it would encode not only the correctness of the extracted reaction but
also its usefulness for the given project, which is exactly what pathway extension meth-
ods should optimize for. Another way in which pathway extension methods could benefit
from interactive user interfaces is that such interfaces could allow the user to visually
explore the extension outputs. For instance, our manual evaluation of PathComplete’s
results in Chapter 4 showed that the extensions suggested by the extension method can
be dominated by a few proteins such as P53 in the P53 pathway or FOXM1 in the senes-
cence pathway. When the user is not interested in these dominant proteins, then it might
be useful to allow them to hide all reactions involving these proteins to allow for easier
exploration of the remaining results.

It is an open question whether text mining tools as we developed in this thesis are truly
useful to pathway curators. In our experiments in Section 3.4, we found that three path-
way curators perceived the extractions of PEDL+ as helpful, but for robust evidence for
the usefulness of text mining, further research would be required. Most importantly, our
experiments had neither a measurable definition of usefulness nor a control group without
access to text mining tools, both hallmarks of randomised controlled trials which are con-
sidered to be the gold standard for evaluating interventions in medical research [Hariton
and Locascio, 2018].

6.3 Output Complexity

The third challenge is the inherent complexity of biochemical reactions in pathways. These
reactions often have several reactants, products and enzymes, whose state can be modi-
fied which then alters their behaviour within the reaction. We used PPAs as abstractions
of biochemical reactions in Chapters 3 and 4, which allowed us to ignore these complex-
ities in favour of more straightforward extraction models, whereas we addressed them
in Chapter 5 by framing pathway extension as a graph modification problem. However,
this graph modification approach is limited in several ways. First, the accuracy of our
proposed model drops rapidly as the number of extension reactions grows. This makes
it hard to apply to such graph extension problems that we investigated in Chapter 4
which can easily have more than ten extension nodes. One way to address this would be
to extend the methodology that we developed in Chapter 4 to more general representa-
tions of biochemical reactions like they can be found in BioPax [Demir et al., 2010] or
SBML [Hucka et al., 2003]. However, a prerequisite of this would be a method that can
accurately and robustly extract such BioPax-like reactions from the literature. Biomed-
ical event extraction (BEE) methods like DeepEventMine [Trieu et al., 2020] would be
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good candidates for this [Spranger et al., 2016], but they are limited by the quantity and
quality of the available BEE datasets (see Section 6.1). We have tried to address this
data-scarcity issue in past work by reformulating the BEE task as a question-answering
problem [Wang et al., 2020] and then applying distant supervision techniques for question
answering [Wang et al., 2022]. However, this approach has failed to produce extractions
that are as accurate as those of a specialised pipeline and thus it is still an open question
whether greater amounts of data or improvements in data quality can improve the accu-
racy of BEE methods. Another way forward would be to build on the few-shot capabilities
of large language models that we discussed in Section 6.1. However, for this, it is an open
question of how to best use large language models for such highly structured output as
biomedical events.

Additionally, there is a tension between the complexity of the extracted reactions
and their accuracy. While more complex reactions could be potentially more useful to
pathway curators, the accuracy of models that extract only very abstract representations
of reactions like PEDL should, all other things being equal, be higher than that of models
for more complex reactions. As there are different representations of biochemical reactions
with varying degrees of complexity [Franzese et al., 2019], it is an open and interesting
question, which of these would be the sweet spot with an optimal balance of accuracy
and usefulness.

6.4 Non-text-mining NLP for Pathway Curation

Text Mining is only one subfield of NLP that holds promise for supporting pathway
curation. For instance, there is the subfield of Question Answering (QA) [Jurafsky and
Martin, 2021, Chapter 23], where a machine reading model answers a question posed
by the user, often by finding relevant information in one or more documents. Such QA
models could be more general than the text-mining approach taken by this thesis, as we
showed that text-mining-like outputs can, in principle, be obtained by QA methods [Wang
et al., 2020, 2022]. In addition to these structured text-mining-like outputs, QA models
could also produce answers to more general questions about molecular biology like ‘Is
miR-21 related to carcinogenesis?’ or ‘Which is the most common disease attributed to
malfunction or absence of primary cilia?’ [Tsatsaronis et al., 2015]. Thus, the scope of
the user queries would not be restricted by the structures pre-defined by the text mining
approach. In our preliminary work [Wang et al., 2020, 2022], we found that the accuracy of
QA for extracting pathway reactions is limited compared to highly specialised text-mining
pipelines, which would have to be addressed before they can serve as a generalisation of
text mining.

The second subfield of NLP that could be useful to pathway curators is Information
Retrieval (IR), which studies how to select information resources, such as documents, that
are relevant to a user’s information need [Manning et al., 2008]. During the evaluation
of PEDL+ by pathway curators that we described in Section 3.4, the curators mentioned
that one aspect which made the extraction results helpful for them was that they allowed
discovering new literature that is closely related to their curation project. This literature
discovery based on user input is a typical topic studied by IR and thus it could be
worthwhile to devise an IR method that can directly search for literature relevant to a
curation project defined by a (partial) pathway or a keyword search.

The third subfield of NLP that might be relevant for supporting pathway curators is
multimodality [Zhang et al., 2020]. Biological entities such as proteins can be described
in more ways than just by text. For instance, a protein can be characterised as a sequence
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of amino acids which determines its shape and thus largely its function [Alberts et al.,
2015, Chapter 3]. Recent work has shown that relation extraction methods perform better
when they have access to these amino acid sequences in addition to the text supporting
the relation [Dutta and Saha, 2020]. Additionally, the information about biochemical
experiments that can be found in the text of papers is only a part of the results. More
information can be found in numerical representations of the measured data that are
frequently made available as supplementary files and can be often also accessed through
databases [Stark et al., 2006, Szklarczyk et al., 2021b]. Future research could use this
data to improve the accuracy of text mining methods for pathway curation, for instance
by augmenting the training data with it, or as an additional resource for evaluating text
mining results.

This outlook concludes our thesis, in which we have investigated how text mining can
be useful for pathway curators. We have developed methods for extracting biochemical
reactions from large amounts of scientific text and methods for making sense of these
extractions in the context of a concrete pathway curation project. We have demonstrated
the practical usefulness of the methods by applying them in research projects. We believe
that further improvements in model accuracy, data quality and user-interface design can
lead to a more widespread adoption of text-mining tools by pathway curators. This can,
we hope, improve the quality of pathway models and, ultimately, drive forward biomedical
research.
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C. Garrigos, M. Robledo, and C. Rodriguez-Antona. Advanced sporadic renal epithe-
lioid angiomyolipoma: Case report of an extraordinary response to sirolimus linked
to TSC2 mutation. BMC Cancer, 18(1):561, May 2018. ISSN 1471-2407. doi:
10.1186/s12885-018-4467-6.

M. Fey and J. E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
CoRR, abs/1903.02428, 2019.

116



REFERENCES

N. Fiorini, K. Canese, G. Starchenko, E. Kireev, W. Kim, V. Miller, M. Osipov,
M. Kholodov, R. Ismagilov, S. Mohan, J. Ostell, and Z. Lu. Best Match: New rel-
evance search for PubMed. PLoS Biology, 16(8):e2005343, Aug. 2018. ISSN 1545-7885.
doi: 10.1371/journal.pbio.2005343.

N. Franzese, A. Groce, T. M. Murali, and A. Ritz. Hypergraph-based connectivity mea-
sures for signaling pathway topologies. PLOS Computational Biology, 15(10):e1007384,
Oct. 2019. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1007384.

C. Friedman, P. Kra, H. Yu, M. Krauthammer, and A. Rzhetsky. GENIES: A natural-
language processing system for the extraction of molecular pathways from journal ar-
ticles. Bioinformatics (Oxford, England), 17(suppl 1):S74–S82, June 2001. ISSN 1367-
4803. doi: 10.1093/bioinformatics/17.suppl\ 1.S74.

J. A. Fries, L. Weber, N. Seelam, G. Altay, D. Datta, S. Garda, M. Kang, R. Su, W. Kusa,
S. Cahyawijaya, F. Barth, S. Ott, M. Samwald, S. Bach, S. Biderman, M. Sänger,
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Y. M. Park, N. Buso, N. Rodriguez, M. Hucka, and H. Hermjakob. BioModels—15
years of sharing computational models in life science. Nucleic Acids Research, 48(D1):
D407–D415, Jan. 2020. ISSN 0305-1048. doi: 10.1093/nar/gkz1055.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, Massachusetts, USA, 2001. ISBN 978-0-262-13360-9.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK, 1 edition, 2008.

M. Martens, A. Ammar, A. Riutta, A. Waagmeester, D. N. Slenter, K. Hanspers,
R. A. Miller, D. Digles, E. N. Lopes, F. Ehrhart, L. J. Dupuis, L. A. Winckers, S. L.
Coort, E. L. Willighagen, C. T. Evelo, A. R. Pico, and M. Kutmon. WikiPathways:
Connecting communities. Nucleic Acids Research, 49(D1):D613–D621, Jan. 2021. ISSN
0305-1048. doi: 10.1093/nar/gkaa1024.

H. K. Matthews, C. Bertoli, and R. A. M. de Bruin. Cell cycle control in cancer. Nature
Reviews. Molecular Cell Biology, 23(1):74–88, Jan. 2022. ISSN 1471-0080. doi: 10.
1038/s41580-021-00404-3.

124



REFERENCES

D. D. McDonald, S. E. Friedman, A. Paullada, R. Bobrow, and M. H. Burstein. Extending
biology models with deep NLP over scientific articles. In B. Fortuna, M. Grobelnik,
E. R. H. Jr., and M. J. Witbrock, editors, Knowledge Extraction from Text, Papers
from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, volume
WS-16-10 of AAAI Technical Report. AAAI Press, 2016.

H. Mi and P. Thomas. PANTHER Pathway: An Ontology-Based Pathway Database Cou-
pled with Data Analysis Tools. In Y. Nikolsky and J. Bryant, editors, Protein Networks
and Pathway Analysis, Methods in Molecular Biology, pages 123–140. Humana Press,
Totowa, NJ, 2009. ISBN 978-1-60761-175-2. doi: 10.1007/978-1-60761-175-2\ 7.

G. Michal and D. Schomburg. Biochemical Pathways: An Atlas of Biochemistry and
Molecular Biology. Wiley, Hoboken, New Jersey, United States, 2nd edition edition,
2012.

N. Mikuda, R. Schmidt-Ullrich, E. Kärgel, L. Golusda, J. Wolf, U. E. Höpken, C. Schei-
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B Supplement to Chapter 3

B.1 Annotation Guidelines

The goal of this analysis is to evaluate how well the compared models perform in evidence
prediction. A text span is called evidence for a given PPA between two proteins if the
relation between both proteins is asserted somewhere in it. For instance, if the given
PPA is ‘BTC in-complex-with ErbB4’, then a supporting text span for the PPA would be
‘BTC is a ligand of ErbB4’. A statement that would not be considered as support would
be ‘We estimate the expression of BTC and ErbB4’.

Biological background knowledge is disregarded and only explicitly stated facts are
considered. If a sentence reads ‘MAPK and its substrate MAP...’, then this does not
express a phosphorylation PPA, even though you know that MAPK is a kinase.

One mention per protein is marked in the text span. If the relation is expressed
between different mentions of the same proteins then the text span still counts as evidence.
The entity marking is only given for your convenience.

Sometimes the protein normalization (mapping from protein mention to database
id) might be wrong. In those cases, if the text span expresses the relation between
wrongly normalized proteins, this still counts as evidence, because we are not evaluating
a normalization method.

If it is ambiguous whether an expressed relation is direct or indirect, the text span
should be counted as evidence. If the stated relation is clearly indirect, the text span
shouldn’t be counted as evidence. For instance, ‘MEKK2 activates ERK5’ should be
considered as evidence, whereas ‘MEKK2 activates ERK5 via MKK5’ should not.

Complexes are frequently written down as ’ProteinA/ProteinB’. However, it is fre-
quently unclear whether this denotes a protein complex or means ‘ProteinA or ProteinB’.
If it is not obvious that this refers to a complex, the text span should not be counted as
evidence. For instance, ‘the dimer ProteinA/Protein’ should be considered as evidence,
whereas ‘We study ProteinA/ProteinB’, shouldn’t.

We provide a browser-based viewer for the predictions of the model. A screenshot can
be found in Figure SMB.1.

Figure B.1: The browser-based relation viewer used for annotation.
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C Supplement to Chapter 4

C.1 Curation of Senescence Model

Here, we describe the curation of the senescence model of Chen [2022], while the equations
of the model can be found in the next section. In order to develop a mathematical model
of oncogene-induced senescence, Chen [2022] use the cell cycle progression model from
Heldt et al. [2018] as basis to which the author adds three mechanisms for the regulation
of senescence.

Chen [2022] introduce three separate mechanisms for oncogene-induced senescence
(OIS) into the baseline model, where the rate of oncogene overexpression and degrada-
tion are modelled with the rates kOnco OE and kDeOnco. The first mechanism is the
upregulation of p16, the second is the histone modification H3K9me3 and the third is
direct induction of DNA damage.

There is evidence that the overexpression of the proto-oncogenes Ras and Myc can
induce P16-dependent OIS [Serrano et al., 1997, Drayton et al., 2003]. Chen [2022]
model this with the activation and upregulation of p16 synthesis by oncogenes (v55). P16
can bind and inhibit CDK4, CDK6, and the cyclin D-CDK4/6 complex [Gabrielli et al.,
1999, Pei and Xiong, 2005, Sugiyama et al., 2008]. Chen [2022] model the constitutive
degradation of P16 with rate kDeP16.

Rb-associated H3K9 methyltransferase Suv39h1 is also implicated in OIS, as it has
been shown that the oncogene Ras is unable to induce senescence when it is missing [Braig
et al., 2005]. In addition, Aagaard et al. [1999] have shown that Suv39h1 interacts with
heterochromatin protein 1 (Hp1) and that both proteins are involved in the inhibition
of the restinoblastoma protein (Rb) [Nielsen et al., 2001]. Chen [2022] introduce this
mechanism into their model by assuming that the Suv39h1-Hp1 complex associates with
Rb:E2f to form a new complex (SUV39:HP1:Rb:E2f). To keep the model consistent, E2f
is degraded from the complex and it dissociates to Suv39h1-Hp1 and unphosphorylated
Rb (v52). Additionally, Chen [2022] assume that oncogene overexpression regulates the
expression of Suv39h1-Hp1 (SUV39:HP1) with rate Syn Suv. Suv39h1 specifically methy-
lates lysine 9 of histone H3 (H3K9me3) [Rea et al., 2000]. There is evidence that H3K9me3
occupies some E2f promoters (CDK2, Cyclin E, Cyclin A, PCNA) [Narita et al., 2003,
Nielsen et al., 2001, Yu et al., 2018]. Thus, Chen [2022] assume that H3K9me3 modifi-
cation inhibits the synthesis rates of Cyclin E-CDK2, Cyclin A-CDK2 and PCNA with
coefficient In H3K9.

Oncogene overexpression can also lead to increased replication stress [Lecona and
Fernández-Capetillo, 2014] which triggers stress checkpoint protein kinases ATR and
CHK1 and then activates the p53-mediated DNA damage response [Matthews et al., 2022].
The stress checkpoint response has been implicated in the induction of OIS [Bartkova
et al., 2006]. Chen [2022] simplify this chain of events so that DNA damage acts as a
direct regulator of p53, and therefore, oncogene overexpression induces replication stress
with rate kGeDamOnco.

The final model contains 30 variables and 61 reaction rates. Its schematic is shown
in Figure SMC.1. The equations describing it are reproduced below with permssion from
Chen [2022] and the resulting PPA formulation can be found in Table C.1.
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C SUPPLEMENT TO CHAPTER 4

Figure C.1: SBGN [Le Novère et al., 2009] plot for the extended cell cycle model of Chen
[2022] reproduced with permission from the author. Chen [2022] introduce oncogene-
induced senescence via three mechanisms, which are shown in different colors. Extension
nodes are depicted as blue boxes. Reactions belonging to SUV39h1-dependent senescence
are shown in orange, those that belong to p16-dependent senescence in blue, and those
for oncogene overexpression induced replication stress in green. The synthesis and degra-
dation of oncogenes are shared among the three mechanisms and thus the links for these
reactions are rendered as purple.
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CCND1/CCND2/CCND3:CDK4/CDK6 controls-phosphorylation-of RB1/RBL1/RBL2
CCNE1/CCNE2:CDK2 controls-phosphorylation-of RB1/RBL1/RBL2
CCNA2/CCNA1:CDK2 controls-phosphorylation-of RB1/RBL1/RBL2
RB1/RBL1/RBL2 in-complex-with E2F1/E2F2/E2F3
TP53 controls-expression-of CDKN1A
E2F1/E2F2/E2F3 controls-expression-of CCNE1/CCNE2
E2F1/E2F2/E2F3 controls-expression-of CCNA2/CCNA1
E2F1/E2F2/E2F3 controls-expression-of FBXO5
FZR1 in-complex-with FBXO5
CCNE1/CCNE2:CDK2 controls-phosphorylation-of FZR1
CCNA2/CCNA1:CDK2 controls-phosphorylation-of FZR1
PCNA in-complex-with CDKN1A
PCNA in-complex-with ORC1/ORC2/ORC3/ORC4/ORC5/ORC6/CDC6/CDT1/MCM2/MCM3/MCM4/MCM5/MCM6/MCM7
CCNE1/CCNE2:CDK2 controls-phosphorylation-of ORC1/ORC2/ORC3/ORC4/ORC5/ORC6/CDC6/CDT1/MCM2/MCM3/MCM4/MCM5/MCM6/MCM7
CCNA2/CCNA1:CDK2 controls-phosphorylation-of ORC1/ORC2/ORC3/ORC4/ORC5/ORC6/CDC6/CDT1/MCM2/MCM3/MCM4/MCM5/MCM6/MCM7
CDKN1A in-complex-with ORC1/ORC2/ORC3/ORC4/ORC5/ORC6/CDC6/CDT1/MCM2/MCM3/MCM4/MCM5/MCM6/MCM7
SUV39H1/SUV39H2 controls-expression-of CCNE1/CCNE2
SUV39H1/SUV39H2 controls-expression-of CCNA2/CCNA1
CCNE1/CCNE2:CDK2 in-complex-with CDKN1A
CCNA2/CCNA1:CDK2 in-complex-with CDKN1A
SUV39H1/SUV39H2 controls-expression-of PCNA
SUV39H1/SUV39H2:CBX3/CBX5/CBX1 in-complex-with RB1/RBL1/RBL2:E2F1/E2F2/E2F3
CDK4/CDK6 in-complex-with CDKN2A
SUV39H1/SUV39H2:CBX3/CBX5/CBX1:

RB1/RBL1/RBL2:E2F1/E2F2/E2F3
controls-state-change-of H3-3A/H3-5/H3Y1/H3C15/H3C1/H3-4

Table C.1: PPAs for the senescence model. ‘A/B’ means that the PPA holds for both proteins A and B, whereas ‘A:B’ means that the PPA
holds for the protein complex consisting of proteins A and B.
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Reproduced with permission from Chen [2022]
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When components form a complex, it is represented by a colon (:). 

Rate equations 
 
	

Reaction rate name Reaction rate 
V1	 Phosphorylation of Rb (kPhRbCd*cycD:cdk4/6 +kPhRbCe*cycE:cdk2 

+kPhRbCa*cycA:cdk2)*Rb_u 
V2	 Phosphorylation Rb in Rb:E2F 

complexes 
(kPhRbCd*cycD:cdk4/6 +kPhRbCe*cycE:cdk2 
+kPhRbCa*cycA:cdk2)*Rb_u:E2f 

V3	 Dephosphorylation of Rb kDpRb*Rb_p 
V4	 Synthesis of E2F kSyE2f + kSyE2fE2f*E2f/ (jSyE2f + E2f) 
V5	 Degradation of E2F kDeE2f*E2f 
V6	 Degradation of E2F in Rb:E2F 

complexes 
kDeE2f*Rb:E2f 

V7	 Association/dissociation of Rb 
and E2F 

kAsRbE2f*Rb_u*E2f-kDsRbE2f*Rb:E2f 

V8	 Synthesis of p21 kSyP21+kSyP21P53*p53 
V9	 Synthesis of CycE kSyCe*E2f* In_H3K9  /( In_H3K9  +H3K9me3) 
V10	 Synthesis of CycA kSyCa*E2f* In_H3K9  /( In_H3K9  +H3K9me3) 
V11	 Association/dissociation of 

CycE:Cdk2 and p21 
kAsCyP21*cycE:cdk2*p21 -
kDsCyP21*cycE:cdk2:p21 

V12	 Association/dissociation of 
CycA:Cdk2 and p21 

kAsCyP21*cycA:cdk2*p21 -
kDsCyP21*cycA:cdk2:p21 

V13	 Degradation of p21 in 
CycE:Cdk2:p21 complexes 

(kDeP21 + kDeP21Cy*Skp2*(cycE:cdk2 
+cycA:cdk2) +kDeP21aRc*Cdt2*pre RC act) 
*cycE:cdk2:p21 

V14	 Degradation of p21 in 
CycA:Cdk2:p21 complexes 

(kDeP21 
+kDeP21Cy*Skp2*(cycE:cdk2+cycA:cdk2) 
+kDeP21aRc*Cdt2*pre RC act) 
*cycA:cdk2:p21 

Reproduced with permission from Chen [2022]



V15	 Degradation of CycE in 
CycE:Cdk2 complexes 

(kDeCe +kDeCeCa*cycA:cdk2) *cycE:cdk2 

V16	 Degradation of CycE in 
CycE:Cdk2:p21 complexes 

(kDeCe + kDeCeCa*cycA:cdk2) *cycE:cdk2:p21 

V17	 Degradation of CycA in 
CycA:Cdk2 complexes 

(kDeCa + kDeCaC1*APC_cdh1) *cycA:cdk2 

v18	 Degradation of CycA in 
CycA:Cdk2:p21 complexes 

(kDeCa + kDeCaC1*APC_cdh1) 
*cycA:cdk2:p21 

V19	 Degradation of free p21 kSyP21 +kSyP21P53*p53 
V20	 Synthesis of Emi1 kSyE1*E2f 
V21	 Degradation of Emi1 kDeE1*Emi1 
V22	 Association/dissociation of 

Emi1:APC/C^Cdh1 complexes 
kAsE1C1*Emi1 *APC_cdh1 -kDsE1C1 
*Emi1:APC_cdh1 

V23	 Degradation of Emi1 in 
Emi1:APC/C^Cdh1 complexes 

kDeE1C1 *Emi1:APC_cdh1 

V24	 Phosphorylation of free 
APC/C^Cdh1 

(kPhC1 + kPhC1Ce*cycE:cdk2 + 
kPhC1Ca*cycA:cdk2)*APC_cdh1 

V25	 Phosphorylation of 
APC/C^Cdh1 in 
Emi1:APC/C^Cdh1 complexes 

(kPhC1 + kPhC1Ce*cycE:cdk2 + 
kPhC1Ca*cycA:cdk2)*Emi1:APC_cdh1 

V26	 Dephosphorylation of 
APC/C^Cdh1 

kDpC1*APC_cdh1_p 

V27	 Nuclear import of active PCNA kImPc * In_H3K9  /( In_H3K9  +H3K9me3) 
V28	 Nuclear export of active PCNA kExPc*PCNA act 
V29	 Nuclear export of inactive 

PCNA 
kExPc*PCNA inact 

V30	 Association/dissociation of 
PCNA and p21 

kAsPcP21*PCNA act*p21 -kDsPcP21*PCNA 
inact 

V31	 Degradation of p21 in 
PCNA:p21 complexes 

(kDeP21 + kDeP21Cy*Skp2*(cycE:cdk2 
+cycA:cdk2) + kDeP21aRc*Cdt2*pre RC 
act)*PCNA inact 

V32	 Association/dissociation of 
active PCNA and replication 
complexes 

kAsRcPc*PCNA act*pre RC primed 
-kDsRcPc*pre RC act 

V33	 Association/dissociation of 
inactive PCNA and replication 
complexes 

kAsRcPc*PCNA inact*pre RC primed  
-kDsRcPc*pre RC inact 

V34	 Phosphorylation/priming of 
replication complexes 

(kPhRc  *(cycE:cdk2+cycA:cdk2)^n  / 
(jCy^n+(cycE:cdk2+cycA:cdk2)^n))*pre RC 

V35	 Dephosphorylation of 
replication complexes 

kDpRc*pre RC primed 

V36	 Association/dissociation of 
p21 and replication complexes 

kAsPcP21*pre RC act*p21 -kDsPcP21*pre RC 
inact 

V37	 Degradation of p21 in inactive 
replication complexes 

(kDeP21 + kDeP21Cy*Skp2*(cycE:cdk2 
+cycA:cdk2) + kDeP21aRc*Cdt2*pre RC act) 
*pre RC inact 



V38	 Dissassembly of RC 1*pre RC*(DNA>1) +0.5*pre RC*(DNA==1) 
V39	 Dissassembly of pRC 1*pre RC primed*(DNA>1) +0.5*pre RC 

primed*(DNA==1) 
V40	 Dissassembly of aRC 1*pre RC act*(DNA>1) +0.5*pre RC 

act*(DNA==1) 
V41	 Dissassembly of iRC 1*pre RC inact*(DNA>1) +0.5*pre RC 

inact*(DNA==1) 
V42	 Synthesis of DNA kSyDna*pre RC act 
V43	 Synthesis of p53 kSyP53 
V44	 Degradation of p53 (kDeP53  / (jP53 + DNA damage))*p53 
V45	 Oncogene Overexpression 

induce DNA damage 
OID*OncoOE 

V46	 Induction of DNA damage by 
replication 

kGeDamArc*pre RC act 

V47	 Synthesis of APC/C^Cdh1 
activity probe 

kSyPr 

V48	 Degradation of APC/C^Cdh1 
activity probe 

(kDePr+kDeCaC1*APC_cdh1)*activity -probe-
APC 

V49	 Repair of DNA damage (kReDam  + kReDamP53*p53 / (jDam + DNA 
damage))*DNA damage 	

Extended senescence-related 
reaction rate 

 

V50	 Synthesis of Suv39:hp1 Syn_Suv*OncoOE 
V51	 Degradation of Suv39:hp1 kDeSuv*Suv39h1 
V52	 Degradation of E2f in 

Suv39:hp1:Rb:E2f complex 
kDeE2f*Suv39:hp1:Rb:E2f 

V53	 Association of 
Suv39:hp1:Rb:E2f complex 

As_SuvRb*Suv39h1*Rb:E2f 

V54	 Association/dissociation of 
CDK4/6:p16 

As_cdk4p16*cycD:cdk4/6*p16 
-kDsCdk4P16*cycD:cdk4/6:p16 

V55	 Synthesis of P16 Syn_p16*Onco_OE 
V56	 Degradation of p16 kDeP16*p16 
V57	 Oncogene overexpression kOnco_OE 
V58	 Degradation of oncogene  kDeOnco*OncoOE 
V59	 Induction of H3k9me3 Ind_H3K9*SUV39:HP1:Rb:E2f 
V60	 Degradation of H3K9me3 kDeMe3*H3K9me3 
V61	 Oncogene-induced DNA 

Damage 
kGeDamOnco*OncoOE 

 

Parameters 
Parameter Value Units Label 
Skp2  1 AU relative SCF^Skp2 level 
Cdt2  1 AU relative CRL4^Cdt2 level 
kSyE2f      0.03 AU/min constitutive E2F synthesis 

Reproduced with permission from Chen [2022]



kSyE2fE2f   0.04 AU/min E2F-dependent E2F synthesis 
jSyE2f      0.2 AU Michaelis-Menten constant for E2F synthesis 
kAsRbE2f   5 1/(AU*min) association of Rb and E2F 
kDsRbE2f    0.005 1/min dissociation of Rb:E2F complexes 
kDeE2f      0.05 1/min constitutive E2F degradation 
kPhRbCd     0.2 1/(AU*min) CycD:CDK4/6-mediated Rb phosphorylation 
kPhRbCe     0.3 1/(AU*min) CycE:CDK2-mediated Rb phosphorylation 
kPhRbCa     0.3 1/(AU*min) CycA:Cdk2-mediated Rb phosphorylation 
kDpRb       0.05 1/min dephosphorylation of Rb 
kSyE1     0.005 1/min constitutive Emi1 synthesis 
kDeE1C1   0.005 1/min Cdh1-mediated Emi1 degradation 
kDeE1    0.0005 1/min constitutive Emi1 degradation 
kPhC1    0 1/min constitutive Cdh1 phosphorylation 
kPhC1Ce   0.01 1/(AU*min) CycE-mediated Cdh1 phosphorylation 
kPhC1Ca  1 1/(AU*min) CycA-mediated Cdh1 phosphorylation 
kDpC1     0.05 1/min Cdh1 dephosphorylation 
kAsE1C1  10 1/(AU*min) association of Emi1 and Cdh1 
kDsE1C1   0.01 1/min dissociation of Emi1:Cdh1 complexes 
kSyP21      0.002 AU/min constitutive p21 synthesis 
kSyP21P53   0.008 1/min p53-dependent synthesis of p21 
kDeP21     0.0025 1/min constitutive p21 degradation 
kDeP21Cy    0.007 1/(AU*min) cyclin:CDK2-mediated p21 degradation (Skp2-

dependent) 
kDeP21aRc  1 1/(AU*min) aRC-mediated p21 degradation (Cdt2-

dependent) 
kSyCe       0.01 1/min constitutive CycE synthesis 
kSyCa       0.02 1/min constitutive CycA synthesis 
kAsCyP21   1 1/(AU*min) association of cyclin:CDK2 and p21 
kDsCyP21    0.05 1/min dissociation of cyclin:CDK2:p21 complexes 
kDeCe       0.004 1/min constitutive CycE degradation 
kDeCa       0.01 1/min constitutive CycA degradation 
kDeCeCa     0.015 1/(AU*min) CycA:CDK2-mediated CycE degradation 

(Skp2-dependent) 
kDeCaC1    2 1/(AU*min) Cdh1-mediated CycA degradation 
kImPc       0.003 AU/min PCNA import into the nucleus 
kExPc       0.006 1/min PCNA export from the nucleus 
kPhRc       0.1 1/min cyclin:CDK2-mediated 

phosphorylation/priming of RCs 
kDpRc       0.05 1/min dephosphorylation of pRCs 
jCy         1.8 AU CDK2 threshold for the 

phosphorylation/priming of RCs 
n          6 AU hill coefficient for the 

phosphorylation/priming of RCs 
kAsRcPc     0.01 1/(AU*min) association of phosphorylated/primed RCs 

and PCNA 



kDsRcPc     0.001 1/min dissociation of pRC:PCNA complexes 
kAsPcP21   100 1/(AU*min) association of PCNA and p21 
kDsPcP21    0.01 1/min dissociation of PCNA:p21 complexes 
kSyDna     0.0093 1/min DNA synthesis by aRCs 
kSyP53      0.05 AU/min constitutive p53 synthesis 
kDeP53      0.05 AU/min DNA damage-dependent degradation of p53 
jP53        0.01 AU inhibition constant of p53 degradation by 

DNA damage 
kGeDam      0.001 AU/min replication-independent DNA damage 
kGeDamArc   0.012 1/min replication-dependent DNA damage 
kGeDamOnco 0.0012 AU/min Oncogene-induced DNA damage 
kReDam      0.001 1/min p53-independent DNA damage repair 
kReDamP53   0.005 1/min p53-dependent DNA damage repair 
jDam        0.5 AU DNA damage threshold for repair 
kSyPr       0.01 AU/min constitutive synthesis of Cdh1-activity probe 
kDePr      0.0001 1/min constitutive degradation of Cdh1-activity 

probe 
Syn_Suv     0.0008  AU/min constitutive Suv39:hp1 expression 
As_SuvRb    0.001  1/(AU*min) association of Suv39:hp1:Rb:E2f complex 
kDeSuv      0.025 1/min constiutive Suv39:hp1 degradation 
Ind_H3K9      0.05 AU/min constitutive H3k9me3 induction 
kDeMe3      0.005  AU/min degradation of H3k9me3  
Syn_p16      0.001  AU/min constitutive P16 synthesis 
kDeP16      0.02 1/min constitutive degradation of p16 
kDeOnco     0.025 1/min Oncogene degradation 
In_H3K9    0.1  AU coefficient for inhibition Cyclin E/A and PCNA 

by H3K9me3 
As_cdk4p16 5 1/(AU*min) association of Cdk4:p16 
kDsCdk4P16 0.005 1/(AU*min) dissociation of Cdk4:p16 
kOnco_OE   0.1  AU setting Oncogene overexpression 
OID  0.0012  AU setting if Oncogene induce DNA damage 
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C.2 Detailed Error Analysis for Mathematical Models

The error analyses for the mathematical models can be found in Tables SMC.2 and SMC.3.
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C.2 Detailed Error Analysis for Mathematical Models

Protein1 PPA Protein2 Protein1 PPA Protein2

1 ATM controls-phosphorylation-of MDM4 51 TRIM28 controls-state-change-of TP53

2 ATM controls-state-change-of MDM4 52 TP53 controls-expression-of STMN1

3 ATM controls-expression-of MDM2 53 ATM controls-phosphorylation-of ABL1

4 ABL1 controls-phosphorylation-of MDM2 54 ELP2 controls-state-change-of MDM2

5 ABL1 controls-state-change-of MDM2 55 DYRK2 controls-phosphorylation-of TP53

6 MDM4 controls-state-change-of MDM2 56 CREBBP controls-state-change-of TP53

7 TP53 controls-expression-of TP53AIP1 57 MAPK8 controls-state-change-of TP53

8 ATR controls-phosphorylation-of MDM2 58 TP53 in-complex-with USP7

9 ATR controls-state-change-of MDM2 59 ABL1 controls-phosphorylation-of MDM4

10 TP53 controls-expression-of MDM4 60 PPM1D controls-expression-of MDM2

11 CDK2 controls-state-change-of MDM2 61 NOC2L controls-state-change-of TP53

12 CDK2 controls-phosphorylation-of MDM2 62 PRKAB1 controls-phosphorylation-of TP53

13 MDM2 in-complex-with TP53 63 PIM1 controls-phosphorylation-of MDM2

14 USP7 controls-state-change-of MDM2 64 PRMT5 controls-state-change-of TP53

15 CSNK1D controls-phosphorylation-of TP53 65 CDK1 controls-state-change-of TP53

16 KAT2B controls-state-change-of TP53 66 KAT8 controls-state-change-of TP53

17 ATR controls-phosphorylation-of TP53 67 PRKAB1 controls-state-change-of TP53

18 CHEK1 controls-phosphorylation-of TP53 68 USP7 controls-phosphorylation-of MDM2

19 CDK1 controls-phosphorylation-of MDM2 69 PIN1 controls-state-change-of TP53

20 ATR controls-state-change-of TP53 70 ATM controls-state-change-of ABL1

21 CHEK1 controls-state-change-of TP53 71 AKT1S1 controls-state-change-of TP53

22 CHEK2 controls-state-change-of TP53 72 PPM1A controls-state-change-of TP53

23 MDM2 in-complex-with YY1 73 TP53 controls-expression-of TP53INP1

24 CSNK1D controls-state-change-of TP53 74 BANP controls-state-change-of TP53

25 CDK1 controls-state-change-of MDM2 75 CDKN2A controls-phosphorylation-of MDM2

26 MDM2 in-complex-with TRIM28 76 CDK1 controls-phosphorylation-of TP53

27 MDM2 in-complex-with RPL23 77 MAPK14 controls-state-change-of TP53

28 CHEK2 controls-phosphorylation-of TP53 78 EP300 controls-state-change-of TP53

29 TP53 in-complex-with MDM2 79 MAPK14 controls-phosphorylation-of TP53

30 CREBBP in-complex-with MDM2 80 PRKDC controls-phosphorylation-of TP53

31 YY1 controls-state-change-of TP53 81 TP53 controls-expression-of DNM1L

32 CDKN2A controls-state-change-of MDM2 82 ATM controls-phosphorylation-of DYRK2

33 CDKN2A in-complex-with MDM2 83 PIM1 controls-state-change-of MDM2

34 KAT5 controls-state-change-of TP53 84 TP53INP1 controls-phosphorylation-of TP53

35 PIN1 controls-phosphorylation-of TP53 85 ATM controls-state-change-of DYRK2

36 ATM controls-phosphorylation-of CHEK2 86 UBE2D2 controls-state-change-of TP53

37 EP300 in-complex-with MDM2 87 PRMT5 controls-phosphorylation-of TP53

38 MDM2 in-complex-with RPL11 88 ABL1 controls-state-change-of MDM4

39 TP53 controls-expression-of CCNG1 89 MDM2 in-complex-with USP7

40 BARD1 controls-phosphorylation-of TP53 90 TP53 controls-state-change-of PPM1D

41 MDM2 in-complex-with RPL5 91 TP53 controls-expression-of CDK1

42 PRKCD controls-state-change-of TP53 92 CSNK2A1 controls-state-change-of TP53

43 USP7 controls-state-change-of TP53 93 TP53 controls-expression-of BRMS1L

44 BARD1 controls-state-change-of TP53 94 MYCN controls-expression-of MDM2

45 PRKCD controls-phosphorylation-of TP53 95 MDC1 controls-phosphorylation-of TP53

46 UBE2D1 controls-state-change-of TP53 96 KDM1A controls-state-change-of TP53

47 MDM2 controls-state-change-of NEDD8 97 CCNG1 controls-state-change-of TP53

48 DYRK2 controls-state-change-of TP53 98 TP53 controls-expression-of AEN

49 MDC1 controls-state-change-of TP53 99 ATM controls-phosphorylation-of CHEK1

50 ATM controls-state-change-of CHEK2 100 MYCN controls-expression-of TP53

Table C.2: Error analysis for the P53 pathway in the mathematical scenario. Proteins
that would introduce additional functions into the model are marked green. Additional
members of protein families that are already present in the model are marked purple. P53
is marked grey. 151
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Protein1 PPA Protein2 Protein1 PPA Protein2

1 CDKN2A controls-phosphorylation-of RB1 51 RBL2 in-complex-with RBBP4

2 CDKN2A controls-state-change-of RB1 52 NBN controls-state-change-of FOXM1

3 CDKN1A controls-state-change-of RB1 53 CCNA2 controls-expression-of MYBL2

4 RB1 controls-expression-of CCNA2 54 CDK2 controls-state-change-of HIF1A

5 CDK6 controls-state-change-of HDAC1 55 CDK1 in-complex-with BCL2L1

6 CDK4 controls-state-change-of HDAC1 56 RBL2 in-complex-with KCNIP3

7 CCND1 controls-state-change-of FOXM1 57 FOXM1 controls-expression-of CDC25B

8 CDK4 controls-state-change-of FOXM1 58 ATM controls-state-change-of E2F1

9 CDK6 controls-state-change-of FOXM1 59 CDK2 controls-state-change-of MYBL2

10 CDK4 controls-phosphorylation-of FOXM1 60 CHEK1 controls-phosphorylation-of CDK1

11 CDK1 controls-state-change-of FOXM1 61 KCNIP3 in-complex-with RBL2

12 PCNA controls-state-change-of RBL2 62 ATM controls-phosphorylation-of E2F1

13 CDK4 in-complex-with FOXM1 63 E2F4 in-complex-with RBBP4

14 CCNE2 controls-expression-of CCNA2 64 FOXM1 controls-expression-of CCNB2

15 CDK4 controls-phosphorylation-of HDAC1 65 CDK6 controls-expression-of FOXM1

16 CDK1 controls-phosphorylation-of FOXM1 66 CHEK2 controls-state-change-of CDK1

17 CDK6 controls-phosphorylation-of HDAC1 67 RBBP4 in-complex-with RBL2

18 CCND1 controls-phosphorylation-of FOXM1 68 MAPK14 controls-phosphorylation-of CDKN1A

19 RBL2 in-complex-with E2F4 69 RB1 in-complex-with RBBP4

20 PCNA controls-phosphorylation-of RBL2 70 RBBP4 in-complex-with RBL1

21 LMNA controls-phosphorylation-of RB1 71 PLK1 controls-state-change-of CHEK2

22 RBL1 in-complex-with E2F4 72 RBL1 in-complex-with RB1

23 CDK1 in-complex-with PCNA 73 CDC25B controls-state-change-of CHEK2

24 CDK4 controls-expression-of FOXM1 74 FOXM1 controls-expression-of PLK1

25 LMNA controls-state-change-of RB1 75 E2F1 controls-expression-of RRM2

26 E2F4 in-complex-with RBL2 76 GSK3B controls-expression-of CCND1

27 CCND3 controls-state-change-of FOXM1 77 CCND3 controls-phosphorylation-of FOXM1

28 E2F4 in-complex-with RBL1 78 RBL2 in-complex-with FOXM1

29 PCNA controls-state-change-of RB1 79 HBP1 controls-expression-of CDKN2A

30 E2F1 controls-phosphorylation-of RB1 80 ATR controls-phosphorylation-of FOXM1

31 PCNA controls-phosphorylation-of RB1 81 MAX in-complex-with MYC

32 CDKN2A in-complex-with MOV10 82 SKP2 controls-state-change-of CDKN1A

33 RBL1 in-complex-with E2F5 83 CDKN2A in-complex-with PRC1

34 E2F1 controls-state-change-of RB1 84 FOXM1 controls-expression-of CENPF

35 CDK6 controls-phosphorylation-of FOXM1 85 FOXM1 controls-expression-of NEK2

36 E2F1 controls-expression-of CDKN1A 86 FOXO3 controls-expression-of CCNG2

37 CHEK1 controls-state-change-of RAD51 87 CCNA2 controls-phosphorylation-of MYBL2

38 RBL2 controls-expression-of E2F4 88 CDC7 controls-phosphorylation-of MCM2

39 E2F5 in-complex-with RBL1 89 FOXM1 in-complex-with RBL1

40 MYC controls-expression-of CDKN1A 90 RB1 in-complex-with RBL1

41 FOXM1 in-complex-with RBL2 91 CDK2 controls-state-change-of SKP2

42 RBBP4 in-complex-with TFDP1 92 CHEK1 controls-phosphorylation-of WEE1

43 CHEK1 controls-state-change-of CDK1 93 CDK2 controls-transport-of CCNB1

44 CDC7 controls-state-change-of CLSPN 94 RBBP4 in-complex-with RB1

45 CDK2 controls-state-change-of CCNB1 95 CHEK2 controls-phosphorylation-of CDC25B

46 MAPK14 controls-state-change-of CDKN1A 96 FOXM1 controls-expression-of BIRC5

47 CDK1 controls-state-change-of CCNB1 97 E2F4 controls-expression-of MYBL2

48 FOXM1 controls-expression-of CCNE2 98 FOXM1 controls-expression-of AURKB

49 MCM4 in-complex-with MCM5 99 HBP1 controls-expression-of CDKN1A

50 CHEK1 controls-state-change-of CDKN1C 100 CDC7 controls-state-change-of MCM2

Table C.3: Error analysis for the Senescence pathway in the mathematical scenario. Pro-
teins that would introduce additional functions into the model are marked green. Ad-
ditional members of protein families that are already present in the model are marked
purple. 152
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Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin
Nr. 42/2018 am 11.07.2018, angegebenen Hilfsmittel angefertigt habe.

Ort, Datum, Unterschrift

154


	1 Introduction
	1.1 Motivation
	1.2 Goals and Contributions
	1.3 Outline
	1.4 Published Material and Contributions from Co-Authors

	2 Background
	2.1 Biochemical Pathways
	2.1.1 Signalling Pathways & Metabolic Pathways
	2.1.2 Pathway Databases
	2.1.3 Mathematical Models of Pathways

	2.2 Deep Neural Networks
	2.2.1 Graph-based Deep Learning
	2.2.2 Transformers
	2.2.3 Multitask Learning

	2.3 Natural Language Processing
	2.3.1 Preprocessing of Natural Language
	2.3.2 Pre-trained Language Models
	2.3.3 Information Extraction
	2.3.4 Distant Supervision
	2.3.5 Biomedical Natural Language Processing


	3 Extracting Protein-Protein Associations
	3.1 Method
	3.1.1 PPA Prediction as Multi-instance Learning
	3.1.2 Data
	3.1.3 Baselines
	3.1.4 Evaluation Details

	3.2 Results
	3.2.1 Prediction of Protein-Protein Associations
	3.2.2 Evidence Prediction
	3.2.3 Analysis of New Predictions

	3.3 Discussion
	3.3.1 Importance of Gold-standard Data
	3.3.2 Comparison to EVEX
	3.3.3 Importance of Using Multiple Sentences
	3.3.4 Error Analysis

	3.4 PEDL+: PEDL as a User-Friendly Command-Line Application
	3.4.1 Implementation
	3.4.2 Evaluation & Results

	3.5 Related Work
	3.6 Conclusion

	4 Extending Pathways with Text-mined Protein-Protein Associations
	4.1 Materials and Methods
	4.1.1 PPA network and Pre-training Data
	4.1.2 Pre-training PathComplete's GNN
	4.1.3 Fine-tuning PathComplete on an Input Pathway

	4.2 Results
	4.2.1 Evaluation Scenarios
	4.2.2 Evaluation Metrics & Hyperparameters
	4.2.3 Baselines
	4.2.4 Results

	4.3 Discussion
	4.3.1 Model Interpretation
	4.3.2 Robustness to Domain Shift
	4.3.3 Error Analysis for Mathematical Pathway Models

	4.4 Related Work
	4.5 Conclusion

	5 Event-based Pathway Extension
	5.1 Method
	5.1.1 Explanation by Example
	5.1.2 Graph Extension as Autoregressive Sequence Labelling
	5.1.3 Modelling Graph Modification as Graph Extension
	5.1.4 Experimental Setup and Data

	5.2 Results
	5.2.1 Comparison with the State of the Art for Scene Graph Modification
	5.2.2 Performance in BioNLP Event Graph Completion

	5.3 Discussion
	5.3.1 Explaining the Performance Gains via Ablations
	5.3.2 Error analysis

	5.4 Related Work
	5.5 Conclusion

	6 Conclusion
	6.1 Data Availability for Training and Evaluation
	6.2 Usability
	6.3 Output Complexity
	6.4 Non-text-mining NLP for Pathway Curation

	A Software Acknowledgements
	B Supplement to Chapter 3
	B.1 Annotation Guidelines

	C Supplement to Chapter 4
	C.1 Curation of Senescence Model
	C.2 Detailed Error Analysis for Mathematical Models



\documentclass[a4paper,11pt,twoside]{article}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage{multirow}
\usepackage{url}
\usepackage{fancyhdr}
\usepackage{color}
\usepackage{mathrsfs}
\usepackage{bbm}
\usepackage{booktabs}
\usepackage{arabtex}
\usepackage{utf8}
\usepackage{tabto}
\usepackage{array}
\usepackage{pbox}
\usepackage{caption}
\usepackage{bibentry}
\usepackage{scrextend}
\usepackage{pdfpages}
\usepackage{colortbl}
\usepackage{afterpage}
\usepackage[hidelinks,pdfa]{hyperref}

\usepackage[a4paper, margin=1.2in]{geometry}

% Ensures figures are places in the right sections
\usepackage[section]{placeins}

% Make figures more likely to stay on pages with text
\renewcommand{\floatpagefraction}{.8}
\renewcommand{\topfraction}{.8}
\renewcommand{\textfraction}{.15}
\setcounter{totalnumber}{1}

\usepackage{chngcntr}
\counterwithin{figure}{section}
\counterwithin{table}{section}
\counterwithin{equation}{section}

\pagestyle{fancy}

\fancyhf{}
\fancyhead[LE]{\leftmark}
\fancyhead[RO]{\rightmark}
\fancyfoot[C]{\thepage}

\fancypagestyle{list_abbrv}{
 \fancyhead[LE]{LIST OF ACRONYMS}
 \fancyhead[RO]{LIST OF ACRONYMS}
 \fancyfoot[C]{\thepage}
}

\newlength{\colwidth}
\setlength{\colwidth}{240.0pt}

% Option to add spacing between paragraphs
\setlength{\parskip}{0.1em}

\newcommand{\citeneeded}{$^{\color{blue} \text{[Citation needed]}}$}

\DeclareMathOperator{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator{\sign}{sign}
\newcommand\given[1][]{\ #1\vert\ }

\newcommand{\loss}{\ensuremath{L}}
\newcommand{\entity}[1]{#1}


% Space after table caption
\usepackage{caption}
\captionsetup[table]{skip=10pt}
\usepackage[utf8]{inputenc}
% \usepackage[style=apa,backend=biber,uniquename=false,doi=false,isbn=false,url=false,eprint=false]{biblatex}
\usepackage{natbib}
\usepackage{pdflscape}
\usepackage{widetable}
\usepackage{makecell}

%% adapt to requirements of HU Bibliothek
\usepackage{hyperxmp}[2020/03/01]
\usepackage{embedfile}[2020/04/01]

\title{Text Mining for Pathway Curation}
\author{Weber-Genzel, Leon}

\hypersetup{
    pdflang=en,
    bookmarksnumbered=true,
    pdfapart=3,
    pdfaconformance=B
}

\embedfile[afrelationship={/Source},ucfilespec={\jobname.tex},mimetype={application/x-tex}]{\jobname.tex}


% \addbibresource{Thesis.bib}

\hyphenation{Netz-werke}
\hyphenation{Mo-dels}

%Create an OutputIntent in order to correctly specify colours
\immediate\pdfobj stream attr{/N 3} file{sRGB.icc}
\pdfcatalog{%
  /OutputIntents [
    <<
      /Type /OutputIntent
      /S /GTS_PDFA1
      /DestOutputProfile \the\pdflastobj\space 0 R
      /OutputConditionIdentifier (sRGB)
      /Info (sRGB)
    >>
  ]
}


\begin{document}

\begin{titlepage}
   \begin{center}
       \vspace*{1cm}
       {\Large \textbf{Text Mining for Pathway Curation}}
       \vspace{1.6cm}

       DISSERTATION\\
       \vspace{1cm}

       
       zur Erlangung des akademischen Grades\\
       
       \vspace{0.8cm}
       
       doctor rerum naturalium\\
       im Fach Informatik\\
       
       \vspace{0.8cm}
       
       eingereicht an der\\
       Mathematisch-Naturwissenschaftlichen Fakultät\\
       der Humboldt-Universität zu Berlin\\
       
       \vspace{0.8cm}
       von\\
       \textbf{M.Sc. Leon Weber-Genzel}\\
   \end{center}
   \vfill
        
   \noindent
   Präsidentin der Humboldt-Universität zu Berlin:\\
   Prof. Dr. Julia von Blumenthal
   
   \vspace{0.8cm}
   
   \noindent
   Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät:\\
   Prof. Dr. Caren Tischendorf
   
   \vspace{0.8cm}
    
   \noindent
   Gutachter:innen:
   \begin{enumerate}
    \item Prof. Dr. Ulf Leser, Humboldt-Universität zu Berlin
    \item Prof. Dr. Alan Akbik, Humboldt-Universität zu Berlin
    \item Prof. Sophia Ananiadou, PhD, University of Manchester
   \end{enumerate}
   
   \vspace{0.8cm}
   
   \noindent
   Datum der Disputation: 07.09.2023\\
   
   \vspace{0.5cm}
\end{titlepage}
\thispagestyle{empty}
\cleardoublepage


% \clearpage
\thispagestyle{empty}
\cleardoublepage

\input{sections/00-abstract}

\thispagestyle{empty}
\cleardoublepage

\tableofcontents

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/01-introduction}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/02-background}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/03-pedl}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/04-pathcomplete}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/05-extend}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/06-conclusion}

\clearpage
\thispagestyle{empty}
\null\newpage

\bibliographystyle{abbrvnat}
\bibliography{Thesis}

\appendix

\thispagestyle{empty}
\cleardoublepage

\input{sections/A-software-acknowledgments.tex}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/B-appendix-03.tex}

\clearpage
\thispagestyle{empty}
\null\newpage

\input{sections/C-appendix-04.tex}

\clearpage
\thispagestyle{empty}
\null\newpage

\section*{Selbstständigkeitserklärung}
\thispagestyle{plain}
Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42/2018 am 11.07.2018, angegebenen Hilfsmittel angefertigt habe.

~

~

~

\footnotesize{Ort, Datum, Unterschrift}




\end{document}


