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Abstract

In the process of designing a physical object, the mechanical stability under a given
load case is an essential requirement in nearly every area of application. Stability
can be quantified mathematically by suitable criteria based on the mechanical stress
tensor, aiming at the prevention of damage in each point within the physical object.
This thesis deals with the development of a framework for the solution of optimal
design problems with pointwise stress constraints, where the mechanical behavior is
described by a linear elasticity model.
First, a regularization of the optimal design problem is introduced, which comprises a
modification of the stress constraints as well as a penalty approach. This perturbation
of the original problem represents a central element for the success of a solution
method. After analyzing the perturbed problem with respect to the existence of
solutions, a line search type gradient descent scheme is developed based on an implicit
design representation via a level set function. The core of the optimization method is
provided by the topological gradient, which quantifies the effect of an infinitesimal
small topological perturbation of a given design on an objective functional. Since
the developed approach is a method in function space, the numerical realization is
a crucial step towards its practical application. The discretization of the state and
adjoint equation provide the basis for developing a finite-dimensional version of the
optimization scheme, in particular the topological gradient.
In the last part of the thesis, numerical experiments are conducted in order to assess the
performance of the developed algorithm. First, the stress-constrained minimum volume
problem for the L-Beam geometry, which is a well-known benchmark example in
topology optimization, is addressed. An emphasis is put on examining the effect of the
proposed regularization. Afterwards, the multiphysical design of an electrical machine
is addressed. In addition to the pointwise constraints on the mechanical stress, the
maximization of the mean torque is considered in order to improve the electromagnetic
performance of the machine. The success of the numerical tests demonstrate the
potential of the developed design method in dealing with real industrial problems.
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Zusammenfassung

Während des Designprozesses physischer Gegenstände stellt die mechanische Stabilität
in nahezu jedem Anwendungsbereich eine essentielle Anforderung dar. Stabilität kann
mittels geeigneter Kriterien, die auf dem mechanischen Spannungstensor basieren,
mathematisch quantifiziert werden. Dies dient dem Ziel der Vermeidung von Schädi-
gung in jedem Punkt innerhalb des Gegenstands. Die vorliegende Arbeit behandelt
die Entwicklung einer Methode zur Lösung von Designoptimierungsproblemen mit
punktweisen Spannungsrestriktionen, wobei das mechanische Verhalten mittels eines
linearen Elastizitätsmodells beschrieben wird.
Zunächst wird eine Regularisierung des Optimierungsproblems eingeführt, welche
sowohl eine Modifikation der Spannungsrestriktionen, als auch einen Penalty-Ansatz
umfasst. Diese Störung des Ausgangsproblems stellt einen zentralen Baustein für
den Erfolg einer Lösungsmethode dar. Nach der Analyse des Problems hinsichtlich
der Existenz von Lösungen wird ein Gradientenabstiegsverfahren basierend auf einer
impliziten Designdarstellung entwickelt. Den Kern des Optimierungsverfahrens stellt
der topologische Gradient dar, welcher die Auswirkung einer infinitesimal kleinen
topologischen Störung eines gegebenen Designs auf ein Zielfunktional quantifiziert. Da
der entwickelte Ansatz eine Methode im Funktionenraum darstellt, ist die numerische
Realisierung ein entscheidender Schritt in Richtung der praktischen Anwendung. Die
Diskretisierung der Zustandsgleichung und der adjungierten Gleichung bildet die
Basis für eine endlich-dimensionale Version des Optimierungsverfahrens.
Im letzten Teil der Arbeit werden numerische Experimente durchgeführt, um die
Leistungsfähigkeit des entwickelten Algorithmus zu bewerten. Zunächst wird das
Problem des minimalen Volumens unter punktweisen Spannungsrestriktionen anhand
der L-Balken Geometrie untersucht. Ein Schwerpunkt wird hierbei auf die Unter-
suchung der Regularisierung gelegt. Danach wird das multiphysikalische Design einer
elektrischen Maschine adressiert. Zusätzlich zu den punktweisen Restriktionen an
die mechanischen Spannungen wird die Maximierung des mittleren Drehmoments
berücksichtigt, um das elektromagnetische Verhalten der Maschine zu optimieren. Der
Erfolg der numerischen Tests demonstriert das Potential der entwickelten Methode in
der Behandlung realistischer industrieller Problemstellungen.
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Notation

N The set of natural numbers
R, R+

0 The real and non-negative real numbers
Rd The d-dimensional vector space of real numbers
Rd×d, Rd×d

sym The vector space of quadratic and symmetric matrices on the
real numbers

δij Kronecker delta symbol
Br(x) Open ball with radius r > 0 and center x ∈ Rd

x ≪ y x ∈ R is much smaller than y ∈ R

∂Ω Boundary of a set Ω ⊂ Rd

Ω̄ Closure of a set Ω ⊂ Rd

|Ω| The d-dimensional Lebesgue measure of a set Ω ⊂ Rd

χΩ Characteristic function of a set Ω ⊂ Rd

diam(Ω) Diameter of a set Ω ⊂ Rd

vT Transpose of a vector v ∈ Rd

v · w Inner product of vectors v, w ∈ Rd

v⊗ w Dyadic product of vectors v, w ∈ Rd

|v| Euclidean norm of a vector v ∈ Rd

I Identity matrix
A : B Frobenius inner product of matrices A, B ∈ Rd×d

tr[A] Trace of a matrix A ∈ Rd×d

I Fourth-order identity tensor
span(v1, ..., vN) Span of a set of vectors {v1, ..., vN}
dim(V) Dimension of a space V
∥·∥V Norm on a Banach space V
V∗ Dual space of a Banach space V
⟨·, ·⟩V∗,V Duality pairing between V and V∗

u|Ω Restriction of a function u to a set Ω
JuK Jump of a function u across an interface
n Outer unit normal vector
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∂n Normal derivative
∇ Gradient operator as column vector
ϵ(u) Symmetric gradient of u
div Divergence operator
curl Curl operator
o(·) Landau (little-o) asymptotic notation
O(·) Landau (big-O) asymptotic notation
→ Strong convergence
⇀ Weak convergence
⊂⊂ Compactly contained
Ck(D, Rm) Space of k-times continuously differentiable functions on D

with Ck(D) := Ck(D, R)

Ck,β(D, Rm) Functions in Ck(D, Rm) whose k-th derivative is Hölder con-
tinuous of order 0 < β ≤ 1, Ck,β(D) := Ck,β(D, R)

Lp(D, Rm) Lebesgue space of p-times integrable functions with 1 ≤ p ≤
∞, Lp(D) := Lp(D, R)

Lp
loc(D, Rm) Lebesgue space of p-times locally integrable functions with

1 ≤ p ≤ ∞, Lp
loc(D) := Lp

loc(D, R)

Hk,p(D, Rm) Sobolev space of order k > 0 with 1 ≤ p ≤ ∞, Hk,p(D) :=
Hk,p(D, R)

a.e. Almost everywhere
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1. Introduction

1.1. Motivation

A fundamental task in the manufacturing process of a physical object, given the
knowledge of its basic functionality, is the determination of its design. The design,
or shape, should be chosen in such a way that the object operates in an optimal
way with respect to a priori selected criteria. Until the last century, an iterative and
experimental procedure was necessary in order to determine the shape of an object.
Based on the experience and intuition of experts, an initial design was chosen for a
specific application and improved iteratively by experiments. For several decades,
the availability of computers increasingly shifts the design process from the real
to the virtual world. In a first major step, the real-world experiments have been
replaced by simulations, which are based on physical models. This step has been
significant, since it makes the design process less dependent on the expensive and
time-consuming construction and testing of prototypes. At this point, the generation
of designs still relies on the experience and intuition of experts and solely the design
validation is performed virtually. In a natural way, the next major development
step addressed the automated generation of suggestions, which is known as design
optimization. Increasing computational resources on the one hand, as well as advances
in mathematical techniques on the other hand, enable more and more the generation
of free shapes, which do not rely on an underlying parameterization. This procedure is
particularly useful, if the optimal design is non-intuitive or if experience with respect
to the given physical object and the chosen design criteria is lacking.
A specific application of design optimization, clarifying the need for sophisticated
methods, is the case of electrical machines. With the purpose of energy conversion,
electrical machines are employed all over the world in nearly every area of everyday’s
life and industry. Due to this broad use, the optimal design of electrical machines is
of utmost importance, especially with regards to energy efficiency. The aim of this
design criterion is essentially to keep the energy conversion losses as low as possible.
It is crucial to note that a suboptimal design is tantamount to a waste of energy,
stressing the need for design optimization methods. The aspect of energy efficiency
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1. Introduction

is particularly important with regards to the challenge of becoming independent of
fossil energy sources, where electrical machines play a key role. Another important
aspect is the usage of a minimal amount of material, in particular with regards to
rare-earth elements. Consuming as little material as possible is not only necessary for
environmental reasons, but also in terms of manufacturing costs.
Besides energy efficiency, additional design criteria from different physical domains
need to be taken into account in the design process, resulting in multiphysical problems.
This is not only the case for electrical machines, but for mainly every real physical
object. The complexity of multiphysical design problems manifests itself in a difficulty
of using human intuition in the solution process, which emphasizes the necessity
of developing modern and automated design methods. Particularly for the case
of conflicting criteria, design optimization methods allow to inspire engineers with
novel and non-intuitive design ideas. Further, it is fascinating from a mathematicians
perspective to be capable of generating innovative designs with having only little
expertise in engineering applications.
In practice, an important design criterion is the mechanical stability of a physical object,
which needs to be considered for all applications involving the presence of mechanical
forces. Employing the concept of failure criteria, mechanical stability is commonly
addressed by stress constraints. Despite the practical relevance of this problem class,
its treatment by design optimization methods is often avoided due to the inherent
large number of constraints and the need of keeping a sharp transition between the
material phase and void, which is crucial for a reliable and accurate stress assessment
of a design. Therefore, the following problem prototype

min
Ω ∈ O

J (Ω)

s.t. F [Ω] ≤ σ̄ in Ω

will be the subject of this thesis, where O represents the set of admissible designs,
J : O → R is a functional to be minimized and σ̄ > 0 is a maximum admissible
stress. Further, given a design Ω ∈ O, F [Ω] : Ω → R denotes a pointwise failure
criterion, which is a function of the stress tensor and quantifies the failure of design Ω
with respect to the applied mechanical forces. The problem under consideration falls
into the class of problems with pointwise constraints on the gradient of the state, which is
known to be challenging in the field of optimal control, see [89] and [81], due to a low
regularity of the associated Lagrange multipliers involved in the optimality conditions.
More precisely, the multipliers and adjoint variables are known to be Borel measures,
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1.2. Topology Optimization

or even derivatives of Borel measures, which are difficult to approximate. Problems
with a similar mathematical structure arise in various applications, for instance if
thermal effects have to be taken into account and the temperature gradients need to be
controlled locally.
The development of a design optimization method for solving the generic problem
prototype allows to treat specific applications. This thesis demonstrates that topology
optimization methods can be applied successfully for the realistic industrial design of an
electrical machine considering pointwise stress constraints. This is a novelty compared
to existing works, see for instance [65], where only the unconstrained case has been
addressed and, consequently, mechanical stability can not be guaranteed.

1.2. Topology Optimization

Several different approaches for the solution of design optimization problems have
been developed over the past decades. In the following, a brief overview of the
established methods is presented. Before we begin with the discussion of different
methods, it should be mentioned that the optimization variables are typically chosen
as the nodes or elements of a triangulation of the underlying domain. In certain
applications, for instance in the case of problems involving local stress constraints,
a high resolution of the triangulation is necessary, which leads to a large number of
optimization variables. Due to the large-scale nature of design optimization problems,
the focus in this section will be on gradient-based algorithms. Global optimization
techniques, however, can be useful in certain situations, see [125]. For an overview of
evolutionary design optimization methods, the reader is referred to the monograph
[139]. For approaches based on integer programming, the reader is referred to [132] an
the references therein.
The class of sizing or parametric optimization methods has been developed first for the
solution of optimal design problems. Within this approach, the basis geometrical
features, more precisely the shape and topology of a design, are fixed a priori. Only
a finite, and usually small, number of design parameters are then determined to be
optimized. Examples for such parameters are angles between geometrical parts or the
thickness of bars. An overview of techniques concerning the latter example, which is
known as truss optimization, can be found in the review article [26]. The next step in
the solution of optimal design problems has been the class of shape optimization meth-
ods. While the topology of designs is still fixed for this type of methods, the boundary
is allowed to be deformed in a flexible manner. For details on this approach, the reader
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1. Introduction

is referred to the monographs [129], [76] and [36]. The dependency of optimal designs
on the initial shape gave rise to the development of the class of topology optimization
methods. Within this approach, algorithms are capable of altering the topology of a
design throughout the optimization process. Therefore, this class of methods provides
the most flexible tool for the solution of optimal design problems. A brief overview
of topology optimization approaches, which is based on the review articles [82], [119]
and [126], is presented in the following.
The first topology optimization approach, which has been proposed by Bendsøe and
Kikuchi in 1988, is the homogenization method, see [27]. Instead of considering classical
shapes with a sharp transition at the boundary via characteristic functions, generalized
shapes with intermediate material densities are allowed. This enlargement of the
feasible set of designs is achieved by considering the limits of sequences of classical
designs, which can be thought of as composite materials. We mention that these
generalized shapes are characterized by the material density distribution as well as
a homogenized tensor representing the periodic microstructure of the underlying
domain. This tensor describes the material characteristics on a micro scale, such as
the shape of holes contained in each cell of the microstructure. For further details
regarding the homogenization method, the reader is referred to the monograph [2].
In 1989, Bendsøe introduced the density method for topology optimization for the
minimum compliance problem subject to a volume constraint, see [25]. The density
method relies on the relaxation of the binary variables, describing a distribution of
two different materials within a prescribed domain, to intermediate density variables.
This step allows the use of standard techniques from continuous optimization in the
solution process, whereas only discrete methods are available for binary optimization
variables. In contrast to the homogenization method, a penalization of the stiffness
tensor is employed for avoiding intermediate densities in the material distribution,
which make the physical interpretation as well as the actual manufacturing of designs
difficult. Commonly, the Solid Isotropic Material with Penalization (SIMP) approach is
employed, representing a specific power-law penalization type. The main idea behind
this approach is that material with intermediate density contributes only little to the
overall stiffness, but has a high price in terms of material consumption. Further details
on the density method can be found in the monograph [28].
Another approach for solving optimal design problems is the level set method, see [109],
which has been proposed by Osher and Santosa in 2001 in the context of topology
optimization. In contrast to the density method, this approach relies on a material
distribution without intermediate densities. This is achieved by the use of an implicit
design representation, provided by a level set function. The evolution of this func-

4



1.3. Outline of the Thesis

tion is steered by a velocity field, based on shape sensitivities, in the course of the
optimization process. In order to perform modifications of the level set function, a
Hamilton-Jacobi equation is used. Note that in practice holes in the design can vanish,
but hardly be created by using the level set method, which is simply a consequence of
using shape derivatives for guiding the optimization process. The reader is referred to
[38] and [6] for further details.
The phase field method for topology optimization has been proposed by Bourdin and
Chambolle in 2003, see [33]. Like the density method, the phase field approach relies
on a material distribution with intermediate densities. However, instead of employing
a material penalization scheme, an additional term is added to the objective functional
in order to prevent intermediate densities. Commonly, a double well potential is used
in the literature. Further details on the phase field method can be found in [30].
Another method for solving optimal design problems, which is chosen in this work,
relies on the concept of topological gradients. Essentially, this approach provides the
sensitivity for the creation of an infinitesimal small topological perturbation within a
given design. Therefore, topological gradients allow to explicitly modify the topology
of a design in a rigorous and systematic fashion. This approach provides a powerful
tool for the solution of the problem class under investigation for several reasons. First,
in contrast to the standard level set method and shape optimization approaches, topo-
logical gradients allow a maximum design flexibility. Moreover, the use of topological
gradients allows to represent a material distribution without intermediate densities.
This is particularly important for problems with pointwise stress constraints, since
stresses at the boundary of a physical object can be assessed accurately. Since this
approach will be used in this thesis and further details are given in Section 4.1, the
reader is referred to the monographs [105] and [106] at this point.
Concluding this section, we remark that literature reviews on topology optimization
approaches on the specific class of optimal design problems with stress constraints
are provided in Section 7.1. Moreover, a review on existing methods for design
optimization of an electrical machine is given in Section 8.1.

1.3. Outline of the Thesis

This thesis is concerned with the solution of stress-constrained optimal design problems
based on a level set algorithm and the concept of topological gradients. The main
contributions of this work are the following:

• A regularization of the original problem, based on an extension of the pointwise

5



1. Introduction

stress constraints, is introduced, which has a stabilizing effect on the numerical
scheme.

• We provide a numerical realization of the optimization algorithm, in particular the
discretization of the topological gradient, tailored to the class of stress-constrained
optimal design problems.

• ”Topological derivative-based and level-set methods [...] show tremendous
promise, but have not reached the stage of regular industrial applications as yet.”
We face this gap between academia and industrial practice, observed by Rozvany
in the review article [119], by employing the developed approach for the realistic
multiphysical design of an electrical machine. Note that there are only a few
works addressing industrial applications of the topological derivative method,
for instance [43] and [117].

The thesis is organized as follows. In the first part, the formulation and analysis of
the optimal design problem is addressed. We begin with stating the original stress-
constrained problem in Chapter 2. Motivated by the no-structure problem, an extension
of the stress constraints to the air phase, along with a penalty approach, is proposed
in Chapter 3. The resulting unconstrained optimal design problem is analyzed with
respect to the existence of local minima.
The second part of the thesis addresses a method for the solution of the regularized
problem. An essential ingredient of the approach is provided by the topological
gradient of the penalty term, which is treated in Chapter 4. This sensitivity serves
as the core of a level set-based optimization scheme, which is introduced in Chapter
5. Up to this point, the optimization algorithm is a method in function space. The
discretization and numerical realization of the algorithm is discussed in Chapter 6,
which is a crucial requirement for its practical implementation.
In the third part, the developed method is investigated by numerical experiments.
We begin with examining the effect of the regularization by studying the stress-
constrained minimum volume problem in Chapter 7. Observing a stabilizing effect
of the regularization on the numerical scheme, we proceed by the multiphysical and
stress-constrained design of an electrical machine.

6



Part I.

Problem Formulation and Analysis
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2. Problem Statement

2.1. Elasticity Model

A crucial step in the development of a topology optimization method, which is capable
of dealing with stress constraints, is the mathematical description of stresses in a
solid body. The basis for stress assessment is a model for the structural mechanical
behavior of a solid body under applied forces. Within this thesis, the linear elasticity
problem, also known Navier-Lamé equations, is employed for the mechanical modeling,
which is a common procedure in the field of structural analysis and design with local
stresses, see for instance [23]. In contrast to the case of plasticity, an elastic body is
characterized by the property of changing its shape and size under subjected forces
and returning to its initial configuration, if the applied forces stop acting, see [45].
The linearity of the Navier-Lamé equations is based on the assumptions of only small
deformations occurring in the elastic body and a linear relationship between strains
and stresses, known as Hooke’s law, see [45]. In addition to these assumptions, the
material is assumed to be isotropic throughout this work and a two-dimensional plane
stress setting is considered. For a detailed background regarding the Navier-Lamé
equations, including a derivation from the full elasticity model, the reader is referred
to the monographs [34] and [45].
In shape and topology optimization, a common way of representing the distribution of
material and air is the weak phase approach, which is also referred to as soft phase or
ersatz material approach in literature, see e.g. [5]. Essentially, this approach comprises a
generalization from constant to discontinuous material coefficients in the Navier-Lamé
equations, resulting in an interface problem. Let us consider a bounded Lipschitz domain
D ⊂ R2 representing the hold-all domain with boundary partitioning ∂D = ΓD ∪ ΓN,
where ΓD ∩ΓN = ∅ and ΓD is assumed to be of positive surface measure. The main idea
of the weak phase approach is to separate D into an open subset Ω ⊂ D, representing
a solid body, and its complement D \Ω, which represents void. Throughout this work,
the sets Ω and D \Ω will be referred to as material phase and weak phase, respectively.
For a given material distribution Ω, the two different phases are distinguished via a
discontinuous coefficient function αΩ : D → R, defined by

9



2. Problem Statement

αΩ(x) :=

⎧⎨⎩1, x ∈ Ω,

α, x ∈ D \Ω,
(2.1)

with 0 < α≪ 1. Due to the assumption of isotropy, the solid body is characterized by
a constant elasticity tensor

C = 2µI + λ(I⊗ I), (2.2)

with Lamé constants µ, λ > 0, the fourth-order identity tensor I and (I⊗ I)M := tr[M]I
for M ∈ Rd×d with I denoting the identity matrix. The elasticity tensor within the
entire domain D is now defined by

CΩ := αΩC, (2.3)

where αΩ accounts for the given material distribution. For f ∈ C0,β(D, R2) with
β > 0, the displacements u : D → R2 are a consequence of applied volume forces
fΩ : D → R2, defined by

fΩ := αΩ f , (2.4)

as well as traction forces g ∈ L2(ΓN, R2) and a prescribed displacement uD ∈
L2(ΓD, R2) on the boundary, where the space L2(∂D, R2) denotes the image of the
trace operator on H1(D, R2), see [61, p. 258]. Note that the assumption of Hölder
continuity of function f will be necessary for the sensitivity analysis in the second part
of this thesis.

Remark 2.1. From a physical point of view, the weak phase D \Ω behaves similarly to air,
since its Lamé coefficients are close to zero due to (2.1). More precisely, the behavior of the weak
phase is comparable to foam or a sponge. Note that α must be chosen small enough in order to
approximate the behavior of the solid body sufficiently accurately. On the other hand, α should
not be chosen too small with regards to numerical algorithms.

For ΓI := ∂Ω representing the interface and

ϵ(u) :=
1
2

(︂
∇uT +∇u

)︂
, (2.5)

denoting the linearized strain tensor, the behavior of the solid body is modeled via the
following transmission problem:
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2.2. Analysis of the State System

−div CΩϵ(u) = fΩ, in D, (2.6a)

u = uD, on ΓD, (2.6b)

CΩϵ(u) · n = g, on ΓN, (2.6c)

JuK = 0, on ΓI , (2.6d)

JCΩϵ(u) · nK = 0, on ΓI . (2.6e)

Note that n denotes the outer unit normal vector and JhK := h+|ΓI − h−|ΓI is the jump
of a function h across the interface ΓI , where h+ and h− represent the restrictions of
h to the respective subdomains. The weak phase approach is chosen over modeling
only the material phase for two reasons. First, different shapes Ω can be represented
via a fixed hold-all domain and varying coefficient functions. The main benefit is the
possibility of working on a fixed mesh in numerical settings. The second aspect is the
option to compute sensitivities for design changes not only in the material phase, but
also in air. As a result, optimization algorithms with the capability of removing and
adding material can be designed.

2.2. Analysis of the State System

Given the Sobolev space H1(D, R2), we define the subspace

V := {v ∈ H1(D, R2) : γ(v)|ΓD = 0}, (2.7)

where γ : H1(D, R2) → L2(∂D, R2) denotes the trace operator, see [61, p. 258] for
details. A standard procedure in the analysis of an elliptic partial differential equation
is to investigate its weak formulation, see [61] for further information. For an open
subset Ω ⊂ R2, let us define the bilinear form

aΩ(v, w) :=
∫︂

D
CΩϵ(v) : ϵ(w)dx (2.8)

and the linear form

lΩ(w) :=
∫︂

D
fΩ · wdx +

∫︂
ΓN

g · wds (2.9)

for functions v, w ∈ H1(D, R2).

Remark 2.2. The explicit dependency of the bilinear form aΩ and the linear form lΩ on an
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2. Problem Statement

open set Ω reflects the main purpose of this work, which is the computation of optimal designs.
While Ω may be considered fixed in this section, it will play the role of an optimization variable
in the following section.

The following definition provides the basis for a meaningful notion of solution.

Definition 2.1. Let an open subset Ω ⊂ D be given. A function u ∈ H1(D, R2) is called a
weak solution of the partial differential equation (2.6), if it satisfies

aΩ(u, v) = lΩ(v), ∀v ∈ V , (2.10)

and u|ΓD = uD holds in the trace sense.

The remaining section is devoted to the question, whether a unique weak solution of
(2.6) exists. As it is common in the theory of partial differential equations, the Lemma
of Lax-Milgram (cf. [61]) from the field of functional analysis is employed to establish
existence results. Therefore, we need to verify the assumptions of the Lax-Milgram
Lemma by investigating properties of the bilinear form aΩ and the linear form lΩ.

Lemma 2.1. The bilinear form aΩ : V × V → R, defined in (2.8), is coercive and bounded, i.e.
there exist constants c0, c1 > such that

aΩ(v, v) ≥ c0∥v∥2
H1(D,R2),

|aΩ(v, w)| ≤ c1∥v∥H1(D,R2)∥w∥H1(D,R2),

for all v, w ∈ H1(D, R2).

Proof. The proof is standard and can be found in [22, Corollary 8.1]. We mention that
the weak phase parameter α, defined in (2.1), enters the first inequality via the relation
c0 = αc̃0 for a constant c̃0 > 0. Hence, the requirement α > 0 is essential in order to
ensure the coercivity of the bilinear form.

Lemma 2.2. The linear form lΩ : V → R, defined in (2.9), is bounded.

Proof. The proof is standard and relies on Hölder’s inequality and the fact that αΩ ≤ 1
in D.

Having the two previous lemmas at hand, we are in the position to show existence
and uniqueness of a weak solution of the Navier-Lamé equations.
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2.2. Analysis of the State System

Theorem 2.1 (Existence and Uniqueness). Let an open subset Ω ⊂ D be given and assume
the Dirichlet boundary ΓD to be of positive surface measure. Then, for every f ∈ L2(D, R2),
g ∈ L2(ΓN, R2) and uD ∈ L2(ΓD, R2), there exists a unique solution u ∈ H1(D, R2) of
problem (2.10).

Proof. The first step is the splitting of u into

u = u0 + û, (2.11)

with a function û ∈ H1(D, R2), which is assumed to satisfy the condition û|ΓD = uD,
and a function u0 ∈ V , which fulfills the condition u0|ΓD = 0 by definition of V . Based
on equation (2.11), a weak solution of (2.6) can be characterized by

aΩ(u0, v) = lΩ(v)− aΩ(û, v), ∀v ∈ V . (2.12)

Note that the splitting of u into a homogeneous and an inhomogeneous part is
necessary in order to define the bilinear form aΩ on the Hilbert space V . This is not
the case for the set {v ∈ H1(D, R2) : v|ΓD = uD} due to the absence of a vector space
structure. In Lemma 2.1, it has been shown that the bilinear form aΩ : V × V → R is
coercive and bounded. Further, it is straightforward to see that the linear form

l̃Ω(v) := lΩ(v)− aΩ(û, v)

is bounded on V due to the boundedness of aΩ and lΩ. Hence, all assumptions of the
Lax-Milgram lemma, see for instance [61], are fulfilled, which ensures the existence of
a unique solution.

An essential requirement for formulating the optimal design problem in the following
section as well as the topological asymptotic expansion later on is a certain regularity
property of the solution u ∈ H1(D, R2). Due to the discontinuity of the material
coefficient (2.1) and potential reentrant corners of the boundary ∂D, we can not expect
higher global regularity, see [74] and [93]. However, the assumed Hölder continuity of
the volume force guarantees a local regularity property of u.

Lemma 2.3. Let Ω ⊂ D be open and assume f ∈ C0,β(D, R2) for β > 0. Further, let
u ∈ H1(D, R2) be the unique solution of problem (2.10). Then, it holds

u ∈ C2,β(V, R2) (2.13)

for every open V ⊂⊂ D \ ∂Ω.
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2. Problem Statement

Proof. The assertion follows from [93, Theorem 1] and the Sobolev embedding theorem,
see for instance [61].

2.3. Optimal Design Problem

The goal of this work is the development of a design method focusing on failure
prevention and material strength. Failure occurs in a structure, if the acting forces exceed
a certain range. The consequences of this situation are irreversible plastic deformations
or the initiation and propagation of cracks. The load a structure can carry depends
on the materials it is made of. For more detailed information on the topic of material
failure, the reader may refer to [73] or [53].
A commonly used criterion in structural design is the mechanical compliance due to its
simple mathematical structure, which is introduced in the following.

Definition 2.2. Let u ∈ H1(D, R2) be the solution of problem (2.10). The total potential
energy

C(u) :=
∫︂

D
fΩ · udx +

∫︂
ΓN

g · uds (2.14)

is called compliance.

The compliance is, however, not well suited for designing structures, which need to
be fail-safe with respect to a prescribed load case. The reason for this drawback is its
global nature, whereas actually local criteria are necessary. The basis for quantifying
failure of a structure is the stress tensor

σ(u) := Cϵ(u), (2.15)

where C is the elasticity tensor, defined in (2.2), and ϵ(u) represents the strain tensor
to displacement u, defined by (2.5). If the stress is below a certain threshold, the elastic
limit or stress limit, the structure does not fail and shows purely elastic behavior. From
an application point of view, exceeding the elastic limit typically occurs in regions of
local stress concentrations within an elastic structure. This behavior can be observed
for instance in the case of loaded solid bodies with sharp reentrant corners.
Safety with respect to failure is formalized mathematically by ensuring that the stress
level is below the elastic limit in every point within the structure under consideration.
Fundamental for this formalization is the definition of a failure function.

Definition 2.3. Let σ̄ > 0 be given. We call the mapping Fσ̄ : R2×2
sym → R+

0 , defined by
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2.3. Optimal Design Problem

Fσ̄(σ) := f
(︂σ

σ̄

)︂
, (2.16)

a failure function to elastic limit σ̄, if f : R2×2
sym → R+

0 has the structure

f (σ) :=
1
2

Dσ : σ + d3tr[σ], (2.17)

with a fourth order tensor D = d1I + d2I⊗ I and numbers d1, d2, d3 ∈ R.

We are now in the position to formalize, whether a point x of a structure is within the
elastic range or, in other words, if the solid body in x is safe with respect to failure.
This is given, if the stress tensor σ = σ(x) fulfills the inequality

Fσ̄(σ) ≤ 1, (2.18)

for an elastic limit σ̄ depending on the characteristics of the material under considera-
tion.

Remark 2.3. The quadratic structure of function f , defined in (2.17), reflects the common
procedure of squaring standard failure criteria such as the von Mises criterion or the maximum
principal stress criterion. This property facilitates the mathematical treatment of optimal design
problems involving stress constraints. For further details regarding specific failure criteria, the
reader is referred to [73].

Before posing the optimal design problem it is necessary to define the feasible set.
This decision determines, which classes of designs are allowed within the optimization
process. Note that, so far, Ω ⊂ D has only been assumed to be open. We choose

O := {Ω ⊂ D : Ω open with uniformly Lipschitz continuous boundary} (2.19)

as feasible set. For the definition of a Lipschitz continuous boundary the reader is
referred to [79, Definition 2.4.5]. The elements Ω ∈ O will be called designs or shapes
throughout this work.

Remark 2.4. The uniform Lipschitz property of designs in O is chosen in order to establish
existence results of local minimizers of the subsequent optimal design problem. More precisely,
the Lipschitz property together with a suitably chosen topology ensures the compactness of
O. This will be the key for extracting convergent subsequences within a minimizing sequence
technique.
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2. Problem Statement

Remark 2.5. In the definition of the feasible set (2.19), we allow all subsets of the hold-all
domain with uniformly Lipschitz continuous boundary. In certain applications, however,
additional geometric restrictions may be imposed. Typically, admissible designs are required to
be contained in a fixed design domain due to practical restrictions, which will be the case for the
applications in the last part of this thesis. We omit this technical detail at this point for the sake
of conciseness.

Let us proceed by posing the optimal design problem. For a given objective functional

J : O → R, (2.20)

the stress-constrained problem reads as follows:

inf
Ω∈O

J (Ω) (2.21a)

s.t. aΩ(u, v) = lΩ(v), ∀v ∈ V , (2.21b)

Fσ̄(σ(u)) ≤ 1 a.e. in Ω. (2.21c)

Note that a.e. is an abbreviation for the term almost everywhere, indicating that the
inequality (2.21c) holds in every point within Ω \V, where V ⊂ Ω is an arbitrary set
of Lebesgue measure zero. We mention that the notion optimal control problem will be
used equivalently to the term optimal design problem throughout this work, indicating
that the unknown in problem (2.21) may be interpreted as control variable.

Remark 2.6. The pointwise stress constraint (2.21c) may be restricted to the part of design Ω,
which is contained in a fixed subset of the hold-all domain D. Excluding a certain part from the
area, where stress constraints are imposed, can be reasonable for instance in the neighborhood of
boundary forces.

Due to the existence and uniqueness of solutions of the Navier-Lamé system, each
design Ω ∈ O can be identified with an associated displacement uΩ ∈ H1(D, R2) for
fixed data. This relation is formalized in the following definition.

Definition 2.4. We call the mapping

S : O → H1(D, R2) (2.22)

Ω ↦→ uΩ, (2.23)

which assigns the unique solution uΩ to a design Ω ∈ O, control-to-state operator.
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2.3. Optimal Design Problem

The operator S is called solution operator in the context of partial differential equations
and control-to-state operator in the context of optimal control problems. The stress
constraints in (2.21c) can be written in compact form by

Fσ̄[Ω](x) := Fσ̄(σ(uΩ(x))) (2.24)

with Fσ̄ : O → H1(D). Hence, as it is standard in optimal control theory, see for
instance [137] or [89], problem (2.21) can be reduced as follows:

inf
Ω∈O

J (Ω) (2.25a)

s.t. Fσ̄[Ω] ≤ 1 a.e. in Ω. (2.25b)

Remark 2.7. Note that objective functional J may be dependent on uΩ, or the solution of an
additional partial differential equation, as well. In this case, a structure of the form

J (Ω) := J(Ω, S(Ω))

is typically given.

It is convenient to shift the pointwise stress constraints to the feasible set as follows

Oσ̄ := {Ω ∈ O : Fσ̄[Ω] ≤ 1 a.e. in Ω}, (2.26)

resulting in the following optimal control problem:

inf
Ω∈Oσ̄

J (Ω). (2.27)

Clearly every design Ω ∈ O can be classified as either failed or not failed. The set
Oσ̄ ⊂ O contains all designs which are classified as not failed, since the pointwise
stress constraints are fulfilled. It is important to note that the existence of solutions
of optimal control problem (2.25) depends on the choice of σ̄. If the elastic limit is
chosen to small, there might be no design which fulfills the pointwise stress constraints.
Consequently, the set Oσ̄ is empty in this situation.

Remark 2.8. Note that the pointwise evaluation of stresses in (2.26) within a design Ω ∈ O
is a well-defined operation due to the regularity of the state variable. The Hölder continuity
of the volume forces f ensures sufficient interior regularity of the state, see (2.13). Moreover,
according to [93, Theorem 1], the regularity holds up to the boundary of design Ω, if the
boundary is sufficiently regular.
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3. Regularization and Analysis of the

Optimal Design Problem

The main focus of this work is the solution of optimal design problem (2.25). A
fundamental step towards the development of efficient algorithms is its regularization.
Essentially, this procedure perturbs problem (2.25) with the aim of replacing it with
another problem, which is easier to handle. The regularization of optimal design
problem (2.25) in this thesis comprises two steps. First, the set of feasible designs is
restricted by extending the stress constraints from the material phase to the entire
domain. In a second step, a penalty approach is employed in order to replace the
constrained problem by an unconstrained approximation involving a penalty term.
Finally, the resulting problem will be analyzed with respect to the existence of solutions.

3.1. The No-Structure Problem

A crucial step in the regularization of the generic stress-constrained optimal design
problem (2.25) is the modification of the set of feasible designs. Within this section,
we will examine the specific case of stress-constrained volume minimization in order
to motivate this modification. Typically, this problem is formulated as follows in the
literature

inf
Ω∈Oσ̄

J (Ω) =
∫︂

D
χΩdx, (3.1)

where the feasible set Oσ̄ is defined in (2.26). Note that the minimum volume problem
will be investigated in more detail in Chapter 7.
It is immediately clear that the empty set Ω∗ = ∅ is feasible, since, by definition, there
are no stress constraints and it is not possible to find another design in O with less
volume. Consequently, problem (3.1) has a trivial and global solution, which is the
empty set. In other words, as it has been stated in [126] as one of the major difficulties
in stress-constrained topology optimization,
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3. Regularization and Analysis of the Optimal Design Problem

”if one wants to minimize stress, the best structure is no structure.”

However, as it is stated in [126], ”the ’no structure’ problem is often alleviated by
combining the stress constraint with an compliance objective or simply ignored”.
Indeed, to the author’s best knowledge, there are no works dealing explicitly with this
important aspect of stress-constrained problems. Hence, this work contributes to the
understanding and solution of the no-structure problem.
Let us proceed by addressing the root of the no-structure problem. Clearly, the trivial
solution Ω∗ = ∅ of problem (3.1) does not make sense from a practical point of
view. Consequently, problem (3.1) needs to be modified in an appropriate manner.
More precisely, the feasible set needs to be restricted in order to exclude unreasonable
designs. Therefore, we aim at identifying a set

Õσ̄ ⊂ Oσ̄,

containing all physically reasonable designs. A first and straightforward idea might be
to exclude solely the empty set from Oσ̄. This modification, however, does not solve
the problem, since creating very little material at the boundary part ΓD or ΓN might
solve the minimum volume problem. Instead, it seems to be more reasonable to allow
only designs, which connect the boundary parts ΓD and ΓN. This condition ensures
that the design part, where the structure is clamped, will be attached to the part, where
the boundary force is applied. Therefore, the modified feasible set is chosen as

Õσ̄ = {Ω ∈ Oσ̄ : ΓD ∪ Ω̄ ∪ ΓN is connected}, (3.2)

revealing that the no-structure problem is rather a connectivity problem.

3.2. Extension of Stress Constraints

An essential question at this point is, how the connectivity condition in (3.2) can be
realized within a numerical algorithm. In the works [124] and [75], where a stochastic
optimization approach is chosen, an explicit connectivity check is performed. In the
case of gradient-based optimization algorithms, however, the incorporation of such a
mechanism is difficult. Hence, it is necessary to formulate the connectivity condition
indirectly via additional constraints in the optimal design problem.
In order to identify appropriate constraints, it is important to examine the consequences
of a violation of the connectivity condition. Clearly, rather low displacements will
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occur at the Dirichlet boundary ΓD, where the structure is clamped. In contrast, very
large displacements will occur at the Neumann boundary ΓN, where the applied forces
are acting. As as result, given the case of a violation of the connectivity condition, very
large displacement gradients occur within the weak phase. Summarizing, it can be
observed that very large displacements in the material phase and very large stresses in
the weak phase occur, if the boundary part ΓD is detached from ΓN.
Having the previous considerations in mind, we can immediately identify two differ-
ent options for imposing additional constraints in order to ensure the connectivity
condition. It is straightforward to see that the first option is to impose displacement
constraints within the material phase. Note that this is indirectly achieved by combining
the objective functional with a compliance term, which is a known strategy in literature,
see [119]. Assuming the absence of volume forces, the compliance reads

C(uΩ) =
∫︂

ΓN

g · uΩds,

where g : ΓN → R2 represents the boundary forces and uΩ ∈ H1(D, R2) denotes
the displacement field to design Ω. Clearly, in case of a connectivity violation the
compliance is larger by several orders of magnitude compared to the connected case.
The second option for ensuring connectivity is to impose additional stress constraints
within the weak phase.
In this thesis, we choose the second option and extend the pointwise stress constraints
to the weak phase. The reason for this choice is that the pointwise constraints of the
resulting optimal control problem, in contrast to the option of imposing additional
displacement constraints, share the same mathematical structure in the material phase
and the weak phase. This will be particularly useful in the derivation of the topological
gradient, which consequently has the identical structure in both phases.
Hence, we proceed by perturbing the original problem (2.25) by extending the stress
constraints to the weak phase as follows:

inf
Ω∈O

J (Ω) (3.3a)

s.t. Fσ̄[Ω] ≤ 1 a.e. in Ω, (3.3b)

Fσ̄[Ω] ≤ µ a.e. in D \ Ω̄, (3.3c)

where µ ≥ 1 acts as scaling coefficient for the elastic limit in the air phase. Note
that the purpose of introducing the coefficient µ is the ability to control the trade-
off between preventing the connectivity problem on the one hand and obtaining a
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reasonably accurate approximation of the original problem (2.25) on the other hand. If
µ is chosen too small, for instance µ = 1, the solution of the perturbed problem (3.3)
might be quite different from a solution of the original problem (2.25). If, however, µ is
chosen much larger than 1, the connectivity of a solution of problem (3.3) might not be
achieved. Hence, the choice of coefficient µ is essential, and will be discussed in the
following section in more detail. Note that the same elasticity tensor C is used in the
definition of failure criterion Fσ̄ in both phases. Consequently, the phase difference in
the constraints of (3.3) is considered only via the different stress limits.

Remark 3.1. The feasible set of the perturbed problem (3.3) is a subset of the feasible set of
the original problem (2.25), as it has been demanded in the previous section. Moreover, it can
be observed that large displacement gradients are not allowed in problem (3.3), if the scaling
coefficient of the elastic limit is chosen appropriately. Consequently, the empty set is not a
feasible solution of problem (3.3) due to the presence of stress constraints in the weak phase.

So far, only theoretical aspects with respect to the formulation of stress-constrained
optimal design problems have been discussed. The effect of additional stress constraints
in the weak phase on the performance of a numerical algorithm, however, is unclear at
this point. We will investigate this interesting aspect via numerical experiments in the
last part of this thesis.

3.3. Penalty Approach

The second step in the regularization of problem (2.25) consists of tackling the chal-
lenges, which are caused by the pointwise nature of the stress constraints via a penalty
method. The basic idea of this approach is to replace the constrained problem (3.3) by
an unconstrained approximation involving a penalty term, which is easier to solve. This
unconstrained problem represents a key ingredient in this thesis as it will serve as the
basis for the development of a numerical solution scheme. In the field of constrained
optimization, penalty methods are a commonly used concept, see [104] or [138] for
further details. We mention that the Moreau-Yosida regularization is a widely used
penalty strategy in the context of optimal control problems with pointwise constraints
on the state or its gradient, see for instance [81] and [89].
Let us begin by constructing a penalty term for the approximation of the constrained
problem (3.3). In order to distinguish the material phase and the weak phase, two
different penalty terms, corresponding to each phase, are introduced. The difference
between both terms is in the stress limit, which is given by µ ≥ 1 in the weak phase,
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and additionally a weighting coefficient κ ≥ 0 for the penalty term in the weak phase.
For a penalty parameter γ ≥ 0, the resulting problem reads

inf
Ω∈O

J (Ω) + γ

[︃∫︂
Ω

Φ (Fσ̄[Ω](x)) dx + κ
∫︂

D\Ω
Φ
(︂

µ−1Fσ̄[Ω](x)
)︂

dx
]︃

, (3.4)

where the mapping Φ : R→ R+
0 , defined by x ↦→ max(0, x− 1), represents a penalty

function. The underlying idea of minimization problem (3.4) is that the penalty
terms contribute to the objective functional, if the constraints are violated, and vanish
otherwise. For further details regarding the concept of penalty functions, the reader is
referred to [104].

Remark 3.2. The choice of the penalty parameter γ is a challenging task in practical realizations.
On the one hand, it should not be chosen too small in order to ensure that the contribution of
the penalty term is significant enough. On the other hand, it should not be chosen too large in
order to prevent a domination of the penalty term, which can cause ill-conditioning of problem
(2.25), see for instance [104]. A typical way of circumventing these issues is to solve a sequence
of problems, where γ is chosen rather small initially. This procedure is commonly referred to
as continuation method. The core idea is to increase γ sequentially and use the solution of the
previous optimization problem as initial guess. Note that for γ = 0, the unconstrained problem
is recovered.

An essential and challenging step within the numerical realization of optimization
schemes is the selection of parameters. Therefore, aiming at the presence of as few
independent parameters as possible in problem (3.4), we proceed with the explicit
choice of µ and κ. Regarding the stress limit in the weak phase, we perform a coupling

µ = h(γ)

between µ and the penalty parameter γ via a continuous and monotonically increasing
function h : R+

0 → R+
0 . This coupling between µ and γ is performed in order to ensure

the connectivity of designs on the one hand and the approximation of solutions of
the original problem (2.25) on the other hand. Let us assume that problem (3.4) is
solved via a continuation method, see Remark 3.2, for the subsequent explanation. In
the beginning of the continuation procedure, where γ is chosen small, we aim at the
connectivity of solutions of problem (3.4). More precisely, the stress limit µ needs to be
chosen sufficiently small in order to penalize large displacement gradients in the weak
phase and thus guarantee connectivity. Contrarily, in the course of the continuation
procedure, where γ is chosen rather large, we aim at approximating solutions of the
original problem (2.25). If µ is chosen too small in this situation, local minima of the
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original problem might be excluded from the feasible set. Since the connectivity of
solutions of the perturbed problem (3.3) is clearly an indispensable requirement, it is
important to ensure that h does not grow too fast in the course of the continuation
in γ. Therefore, we suggest choices of the function h with at most linear growth, for
instance h(γ) = γ or h(γ) =

√
γ.

Concerning the coefficient of the penalty term with respect to the weak phase, we
choose

κ = α,

where α denotes the weak phase coefficient, see (2.1). This choice is reasonable, since it
takes the discrepancy of the elasticity tensor between material and weak phase into
account. As a result, the penalty terms in problem (3.4) can be expressed as follows∫︂

Ω
Φ (Fσ̄[Ω]) dx + α

∫︂
D\Ω

Φ
(︂

h(γ)−1Fσ̄[Ω]
)︂

dx =
∫︂

D
αΩΦ

(︁
β

γ
ΩFσ̄[Ω]

)︁
dx,

where αΩ has been defined in (2.1) and the function β
γ
Ω is defined by

β
γ
Ω(x) :=

⎧⎨⎩1, x ∈ Ω,

h(γ)−1, x ∈ D \Ω.
(3.5)

The next step comprises the approximation of the non-differentiable penalty function Φ
in problem (3.4) by a smooth function Φp : R+

0 → R+
0 with parameter p > 1. This

approximation is necessary for the topological sensitivity analysis of the penalty term,
which will be addressed in the subsequent chapter. As a smooth approximation, we
employ the function

Φp(x) := (1 + xp)1/p − 1, p > 1, (3.6)

which has been used in different works, see for instance [17] or [49]. A visualization of
Φp is provided in Figure 3.1 for different choices of the approximation parameter p.

Remark 3.3. A requirement in the topological sensitivity analysis of the penalty term in
problem (3.4) is the regularity property Φp ∈ C2,β(R+

0 ) for β > 0. Any other approximation
of penalty function Φ, which satisfies this property, can be chosen as well.

Having discussed the approximation of the penalty function Φ, we proceed by stating
the following regularized optimal control problem

inf
Ω∈O

Jγ(Ω) := J (Ω) + γPγ(Ω), (3.7)
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Figure 3.1.: Smooth penalty function Φp for different approximation parameters p.

with

Pγ(Ω) :=
∫︂

D
αΩΦp

(︁
β

γ
ΩFσ̄[Ω]

)︁
dx, (3.8)

which will play a central role in this thesis.
An essential question, which will be addressed in the last part of this thesis, is how
the presence of additional stress constraints in the weak phase affects a numerical
optimization scheme. In other words, we are interested in comparing the solution of
the original problem (2.25) with the solution of problem (3.3), where additional stress
constraints in the weak phase have been introduced. For this purpose, analogously to
(3.7), we perform a regularization of the original problem (2.25) as follows

inf
Ω∈O

J (Ω) + γP(Ω), (3.9)

where the penalty term is defined by

P(Ω) :=
∫︂

D
χΩΦp (Fσ̄[Ω]) dx. (3.10)

Note that problem (3.9) can be obtained from (3.4) for κ = 0.

Remark 3.4. We mention that the no-structure problem does still occur for the penalized
problem (3.9). If we choose the objective functional in (3.9) as the volume term, we obtain the
minimization problem

inf
Ω∈O

∫︂
D

χΩdx + γ
∫︂

Ω
Φp (Fσ̄[Ω]) dx,

which still has a global minimum at Ω∗ = ∅ for every γ ≥ 0.
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3. Regularization and Analysis of the Optimal Design Problem

3.4. Existence of Local Minima

Having stated the design problem (2.25) and its regularized version (3.7), the first step
towards its solution is the investigation of its theoretical properties. More precisely, the
question of existence of solutions is of interest as it is a prerequisite for the development
of numerical schemes. Therefore, we are interested to answer the following questions:
Do both the original problem (2.25) and the perturbed problem (3.7) posses solutions?
If this is the case, how are the solutions of both problems related? It is important to
mention that, speaking of solutions, we always have local minima in mind. This is
a consequence of the non-convex nature of the problems under investigation and an
intrinsic property of design optimization problems.
It is known that the question of existence of solutions in the context of shape and
topology optimization is a delicate issue, see [79] and [36] for further details. In
general, and unless the feasible set and its topology are chosen appropriately, existence
of solutions can not be guaranteed. An intuitive example for non-existence in the
case of the minimum compliance problem can be found in [79] on page 139, where
oscillations of the boundary can be observed. However, there are several options
for obtaining existence results concerning objective functional and feasible set, see
[36, p. 121]. The first possibility relies on conditions of the objective functional, e.g.
a monotonically decreasing functional with respect to the set inclusion. Second, a
perimeter term may be added to the objective in order to ensure regularity of feasible
shapes. The last option is the restriction of the feasible set by imposing geometric
conditions on the shapes.
We follow the last approach and impose a uniform Lipschitz property on each design
of the feasible set O, as it has been done in (2.19). Having chosen the feasible set,
the choice of a topology on O remains. This is an important aspect concerning
compactness, which is of utmost importance for the question of existence of solutions.
We mention that the choice of topology is an important and difficult task, since there
is no ”natural” topology on sets of domains (cf. [79]). Once a topology is selected, a
meaningful definition for convergence of domains can be given, which is fundamental
for theoretical aspects. In this work, we rely on the convergence in the sense of
Hausdorff and on the convergence in the sense of characteristic functions. While the
former is standard and well known, a definition of the latter is given in the following.

Definition 3.1. Let Lp
loc(R

d) denote the space of locally Lebesgue integrable functions on Rd,
see [8, Definition 3.13], and consider a sequence of measurable sets (En)n∈N in Rd. We say
that (En)n∈N converges to a measurable set E ⊂ Rd in the sense of characteristic functions, if
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3.4. Existence of Local Minima

χEn → χE in Lp
loc(R

d), ∀p ∈ [1, ∞) (3.11)

for n→ ∞.

The following compactness theorem will play a central role in the investigation of
existence of solutions.

Theorem 3.1 (Compactness of feasible set). Let O be defined as in (2.19) and consider a
sequence (Ωn)n∈N in O. Then, there exists a shape Ω ∈ O and a subsequence (Ωnk)k∈N,
which converges to Ω in the sense of Hausdorff and in the sense of characteristic functions.
Moreover, Ω̄nk and ∂Ωnk converge to Ω̄ and ∂Ω, respectively, in the sense of Hausdorff.

Proof. A proof can be found in [79, Theorem 2.4.10] on page 56.

A fundamental aspect for investigating existence of solutions are properties of the
control-to-state operator, since stresses depend on the design via the solution of the
elasticity problem. The following theorem deals with the continuity of the control-to-state
operator.

Theorem 3.2 (Continuity of Control-to-State Operator). Let a topology on O be defined
via the convergence in the sense of characteristic functions. Then the control-to-state operator
S : O → H1(D, R2), defined in Definition 2.4, is continuous.

The proof follows Theorem 1.4.1 and Theorem 1.4.4 from [36] and is provided here for
the sake of completeness.

Proof. Let us recall that the state S(Ω) = u ∈ H1(D, R2) to design Ω ∈ O is defined as
the unique solution of the partial differential equation

aΩ(u, v) = lΩ(v), ∀v ∈ V , (3.12)

where aΩ and lΩ are defined by (2.8) and (2.9), and V denotes the subspace of
H1(D, R2), which has been defined in (2.7). We consider a sequence (Ωn)n∈N ⊂ O
and a design Ω ∈ O such that Ωn → Ω if n → ∞, where the convergence is meant
in the sense of characteristic functions. For convenience, the corresponding states
are abbreviated un := S(Ωn) and u := S(Ω). The central equality to be shown is the
following:

lim
n→∞

S(Ωn) = S(Ω). (3.13)
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3. Regularization and Analysis of the Optimal Design Problem

The Lax-Milgram lemma guarantees the uniform boundedness of the sequence (un)n∈N ⊂
H1(D, R2), i.e.

∥un∥H1(D,R2) ≤ c, ∀n ∈N, (3.14)

for a constant c > 0. Since H1(D, R2) is a Hilbert space, a subsequence (unk)k∈N ⊂
H1(D, R2) can be extracted with

unk ⇀ u∗ in H1(D, R2) (3.15)

and u∗ ∈ H1(D, R2), where (3.15) denotes the weak convergence of the sequence
unk towards u∗, see [8, Definition 6.1]. Note that the index k will be dropped in the
following. The remaining proof consists of two major steps. First, it needs to be shown
that u = u∗. Second, it must be verified that the convergence in (3.15) is actually strong.
We begin proofing the identity u = u∗ by showing that the sequence of coefficient
functions αΩn converges pointwise towards αΩ, where the coefficient function is defined
in (2.1). Since Ωn → Ω in the sense of characteristic functions, it follows immediately
χΩn → χΩ a.e. in D for n → ∞. Due to the equality αΩ(x) = (1− α)χΩ(x) + α, we
obtain

αΩn → αΩ a.e. in D. (3.16)

As a result, it follows αΩn∇v→ αΩ∇v a.e. in D for an arbitrary function v ∈ H1(D, R2).
Further, since ∥αΩn∥L∞(D) ≤ 1 by definition, we obtain the uniform bound

∥αΩn∇v∥L2(D,R2×2) ≤ ∥∇v∥L2(D,R2×2). (3.17)

Lebesgue’s Theorem yields the convergence

αΩn∇v→ αΩ∇v in L2(D, R2×2) (3.18)

for n→ ∞.
We are now in the position to pass to the limit in the weak formulation of the partial
differential equation. Since the weak convergence (3.15) implies ϵ(un) ⇀ ϵ(u∗), where
ϵ(v) := 1

2

(︁
∇vT +∇v

)︁
denotes the symmetric gradient of a function v ∈ H1(D, R2),

we obtain the following:

aΩn(un, v) =
∫︂

D
αΩnCϵ(v) : ϵ(un)dx n→∞−−−→

∫︂
D

αΩCϵ(v) : ϵ(u∗)dx = aΩ(u∗, v). (3.19)
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3.4. Existence of Local Minima

Using similar arguments, the limit passage holds for the linear form as well:

lΩn(v) =
∫︂

D
αΩn f · vdx +

∫︂
ΓN

g · vds (3.20)

n→∞−−−→
∫︂

D
αΩ f · vdx +

∫︂
ΓN

g · vds = lΩ(v). (3.21)

Combining the results yields

aΩ(u∗, v) = lΩ(v), ∀v ∈ V , (3.22)

which reveals that u∗ is actually the unique solution to design Ω, which implies the
identity u = u∗.
As mentioned before, we proceed by showing that the convergence (3.15) is strong in
H1(D, R2). Since the strong convergence un → u in L2(D, R2) follows immediately
from the weak convergence in H1(D, R2), it suffices to show

∇un → ∇u in L2(D, R2×2) (3.23)

for n→ ∞. Due to the coercivity of aΩn , which has been shown previously in order to
apply the lemma of Lax-Milgram, it follows:

c∥∇un −∇u∥2
L2 ≤aΩn(un − u, un − u)

= aΩn(un, un − u)− aΩ(u, un − u)⏞ ⏟⏟ ⏞
(a)

+ aΩ(u, un − u)− aΩn(u, un − u)⏞ ⏟⏟ ⏞
(b)

.

Further, since αΩn f → αΩ f in L2(D, R2) and un → u in L2(D, R2) we get for the first
term:

(a) = lΩn(un − u)− lΩ(un − u)

=
∫︂

D
(αΩn − αΩ) f · (un − u)dx

n→∞−−−→ 0.

In the same manner, wo obtain for the second term

(b) =
∫︂

D
(αΩ − αΩn)Cϵ(u) : ϵ(un − u)dx n→∞−−−→ 0,
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3. Regularization and Analysis of the Optimal Design Problem

which finally shows the strong convergence ∇un → ∇u in L2(D, R2×2).

Having shown continuity of the control-to-state operator S, we address the penalty
term (3.8) and investigate its continuity properties. For the subsequent analysis, we
introduce the following structure

Pγ(Ω) := Pγ(Ω, uΩ) = Pγ(Ω, S(Ω)), (3.24)

where the functional in (3.24) is defined as follows

Pγ : O × H1(D, R2)→ R

(Ω, u) ↦→
∫︂

D
jΩ (σ(u)) dx, (3.25)

where σ(u) = Cϵ(u) represents the stress tensor with elasticity tensor C. For Ω ∈ O,
the density function in (3.25) is defined by

jΩ : R2×2 → R

d ↦→ j(d)χΩ + j∗(d)(1− χΩ), (3.26)

with functions

j(d) := Φp (Fσ̄ (d)) , j∗(d) := αΦp

(︂
h(γ)−1Fσ̄ (d)

)︂
,

where α and h(γ) are defined in (2.1) and (3.5), respectively and Fσ̄ is the failure
function (2.24). We proceed investigating properties of functional Pγ, which will be
essential in the existence proof of local minima.

Lemma 3.1. The functional Pγ : O × H1(D, R2) → R, defined in (3.25), is bounded from
below and lower semicontinuous.

Proof. The boundedness from below follows directly from the definition of penalty
function Φp, which is non-negative. Regarding lower semicontinuity, we consider
sequences

(Ωn)n∈N ⊂ O, (un)n∈N ⊂ H1(D, R2),

with Ωn
n→∞−−−→ Ω in the sense of characteristic functions and un

n→∞−−−→ u in H1(D, R2)

with limits Ω ∈ O and u ∈ H1(D, R2). The linearity of jΩ in the characteristic function
χΩ together with the continuity of j and j∗ reveals
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3.4. Existence of Local Minima

∫︂
D

jΩ (σ(u)) dx =
∫︂

D
lim

n→∞
jΩn (σ(un)) dx.

Since the functions j and j∗ are non-negative, we can apply Fatou’s Lemma and obtain
the inequality

∫︂
D

jΩ (σ(u)) dx ≤ lim inf
n→∞

∫︂
D

jΩn (σ(un)) dx,

which is precisely the lower semicontinuity of Pγ.

We are now in the position to proof existence of local minima for the regularized
optimal control problem (3.7).

Theorem 3.3. Let the set O be defined as in (2.19) and consider a functional J : O → R,
which is lower semicontinuous and bounded from below. Furthermore, let the functional Pγ be
defined as in (3.8). Then, for γ ∈ [0, ∞), the optimization problem

min
Ω∈O

Jγ(Ω) = J (Ω) + γPγ(Ω)

admits at least one solution.

Proof. Since Pγ is bounded from below according to Lemma 3.1, the existence of an
infimum of Jγ is guaranteed. Therefore, a minimizing sequence (Ωn)n∈N ⊂ O can be
chosen:

lim
n→∞
Jγ(Ωn) = inf

Ω∈O
Jγ(Ω). (3.27)

The remaining proof is devoted to the question, whether the infimum is contained in O.
Due to the choice of the feasible set O, more precisely the uniform Lipschitz property,
Theorem 3.1 ensures the existence of a shape Ω∗ ∈ O and a convergent subsequence
(Ωnk)k∈N such that

Ωnk
n→∞−−−→ Ω∗ (3.28)

in the sense of Hausdorff or in the sense of characteristic functions. Hence, the
compactness of O allows to select a candidate for a minimizer.
Due to the continuity of operator S, see Theorem 3.2, and the lower semicontinuity of
Pγ, see Lemma 3.1, we obtain the following inequality
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3. Regularization and Analysis of the Optimal Design Problem

Jγ(Ω∗) = J (Ω∗) + γPγ(Ω∗) ≤ lim inf
n→∞

J (Ωn) + γPγ(Ωn, S(Ωn))

= lim inf
n→∞

Jγ(Ωn) = inf
Ω∈O
Jγ(Ω),

which concludes the proof.

Having shown existence of solutions of the penalized problem (3.7), the next step is
the analysis of the constrained problem (2.27).

Theorem 3.4. Let σ̄ > 0 be given and assume that the set

Oσ̄ = {Ω ∈ O : Fσ̄[Ω] ≤ 1 a.e. in Ω}

is nonempty. Moreover, consider a functional J : Oσ̄ → R, which is lower semicontinuous
and bounded from below. Then the constrained optimal control problem

min
Ω∈Oσ̄

J (Ω)

admits at least one solution.

Before we proof the theorem, an example for a nonempty setOσ̄ is provided, containing
at least one non-trivial element besides the empty set.

Example 3.1. Assume the hold-all domain D ⊂ R2 to be free of geometrical singularities,
which is for instance the case, if D has a smooth boundary or is of rectangular shape. Further,
setting Ω = D, we obtain

αΩ ≡ 1

in the entire domain D for the weak phase coefficient, which is defined by (2.1). For sufficiently
smooth data of the partial differential equation (2.6), in particular the assumed Hölder continuity
f ∈ C0,β(D, R2) of the volume forces, we obtain by global regularity uΩ ∈ C2,β(D, R2), for
uΩ denoting the solution of (2.6). Consequently, the gradient of uΩ, and thus the stress tensor
σ(uΩ), can be evaluated pointwise and takes finite values within the entire domain D. As a
result, we can find a value 0 < σ̄ < ∞, which satisfies the inequality

max
x∈D
Fσ̄[Ω](x) < 1.

Clearly, for this choice of the elastic limit σ̄, we obtain D ∈ Oσ̄ by definition (2.26).
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The chapter is concluded by the proof of Theorem 3.4.

Proof. Since the functional J is bounded from below and the feasible set Oσ̄ is
nonempty, we can find a sequence (Ωn)n∈N ⊂ Oσ̄ with

lim
n→∞
J (Ωn) = inf

Ω∈Oσ̄

J (Ω). (3.29)

Since Ωn ∈ Oσ̄ for every n ∈N, the inequality

Fσ̄[Ωn] ≤ 1 a.e. in Ωn (3.30)

holds by definition. Due to the compactness of O, a subsequence (Ωnk)k∈N
⊂ Oσ̄ and

a shape Ω∗ ∈ O can be selected with

Ωnk
k→∞−−−→ Ω∗ (3.31)

in the sense of characteristic functions. We drop the index k for the rest of the proof
for the sake of readability. Note that the convergence (3.31) implies immediately

χΩn
n→∞−−−→ χΩ∗ a.e. in D. (3.32)

The lower semicontinuity of functional J implies the inequality

J (Ω∗) ≤ lim inf
n→∞

J (Ωn).

The central question in this proof is now, whether Ω∗ ∈ Oσ̄ or, in other words, if the
inequality

Fσ̄[Ω∗] ≤ 1 a.e. in Ω∗

holds. Essentially, this corresponds to the set Oσ̄ being closed.
Let us begin by investigating the limit of sequence (Fσ̄[Ωn])n∈N and set un := S(Ωn)

and u∗ := S(Ω∗). Due to (3.31) and the continuity of solution operator S, the conver-
gence un → u∗ in H1(D, R2) can be inferred for n→ ∞. A standard argument shows
that ∇un → ∇u∗ a.e. in D for n→ ∞ along a subsequence and thus the convergence

σ(un)→ σ(u∗) a.e. in D

holds. The continuity of the failure function Fσ̄, which is defined in Definition 2.3,
implies
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Fσ̄[Ωn]→ Fσ̄[Ω∗] a.e. in D. (3.33)

Note that the convergences (3.32) and (3.33) as well as inequality (3.30) hold only
pointwise almost everywhere in D. Therefore, we proceed by choosing an element
x ∈ Ω∗ with the properties

χΩn(x) n→∞−−−→ χΩ∗(x), (3.34)

Fσ̄[Ωn](x) n→∞−−−→ Fσ̄[Ω∗](x), (3.35)

as well as the inequality

Fσ̄[Ωn](x) ≤ 1, ∀n ≥ n0, (3.36)

with a finite number n0 ∈ N, which exists due to (3.30) and the convergence (3.34).
More precisely, (3.34) implies the existence of n0 ∈N with χΩn(x) = 1 for all n ≥ n0,
since χΩ∗(x) = 1 and χΩn(x) ∈ {0, 1} for all n ∈ N by definition. Consequently, it
follows x ∈ Ωn for all n ≥ n0.
Due to convergence (3.35) and inequality (3.36) we infer by standard arguments that
the limit is bounded as well, more precisely

Fσ̄[Ω∗](x) ≤ 1. (3.37)

Since this procedure holds for almost every x ∈ Ω∗, inequality (3.37) is valid pointwise
almost everywhere in Ω∗, which concludes the proof.
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Topology Optimization Method
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4. Topological Gradient

4.1. Introduction

The solution of problem (3.7), which falls into the category of optimal design problems,
is a challenging subject. As it is the case for many complex problems, there exist
various fundamentally different solution approaches. Essentially, two directions can
be chosen at this point. The first option is the class of gradient-based optimization
approaches, where sensitivities are required for designing an iterative scheme. The
second class comprises methods, which do not rely on sensitivity information. Typical
approaches are stochastic optimization algorithms (cf. [139]) and integer programming
methods, see for example [131]. Note that gradient-free algorithms require descretizing
the design domain and hence always fall into the category of first-discretize-then-
optimize methods. In this thesis, a gradient-based approach is employed. This is a
common choice within the field of optimal design due to the high dimensionality of
the solution spaces.
A central ingredient for the development of a gradient-based optimization algorithm is
the sensitivity of the objective functional under consideration. The sensitivity, or gradi-
ent, is employed as a search direction within a descent scheme, aiming at iteratively
decreasing the objective functional. Unlike the case of standard finite-dimensional
optimization problems, there is no natural notion of gradients for optimal design
problems. This is a consequence of the lack of algebraic structure of the design space,
which is the set of all feasible designs. As a result, it is not a priori clear in the context
of optimal design, what a direction or perturbation is. Commonly, two different types of
perturbations are considered. The first type is the smooth perturbation of the boundary
of a given design, which allows to define the shape gradient of an objective functional.
We refer the interested reader to the monograph [129] for further details, in particular
on the subject of shape sensitivity analysis. The second type is the perturbation of
the interior of a given design, which corresponds to the creation of a small hole. This
is the basis for the notion of topological gradients. Note that this term refers to the
change of topology of a design, which goes along with the creation of a hole. It is
important to mention that optimization algorithms based on shape sensitivities are not
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fully capable of changing the topology of designs. Clearly, this a major drawback since
only parts of the design space can be explored by an optimization algorithm based on
shape gradients. Therefore, in order to obtain the maximum flexibility of deforming
given designs, the concept of topological gradients is employed in this thesis. It has to
be mentioned at this point that the topological sensitivity analysis is mathematically
more involved as it is the case for shape sensitivities. Consequently, the gain in design
flexibility comes at the price of a rather complex and detailed analysis.
The topological gradient has its origin in the pioneering works of Eschenauer et al.
(1994) and Schumacher (1995), see [58] and [122], where it has been introduced as
bubble method for the special case of linear elasticity and a certain structure of the
objective functional. In 1999, the concept was generalized and given a mathematically
rigorous framework by Sokołowski and Żochowski, see [127]. Essentially, the topologi-
cal gradient quantifies the sensitivity of a design-dependent functional with respect to
infinitesimal small topological perturbations. The topological gradient is formalized in
the subsequent definition, where we follow [72].

Definition 4.1 (Topological Gradient). Consider a bounded domain D ⊂ Rd, d = 2 or 3,
and let J : O → R be a shape functional on a set O, which contains open sets in D. Consider
an open set Ω ∈ O and a point of perturbation z ∈ Ω. For a fixed open and bounded subset
ω ⊂ Rd containing the origin and a radius ρ > 0, we define the perturbed set Ωρ := Ω \ ω̄ρ

with ωρ := z + ρω. Let the following asymptotic expansion

J (Ωρ) = J (Ω) + DTJ [Ω](z) f (ρ) + o( f (ρ)) (4.1)

be satisfied for an arbitrarily small ρ > 0 with a function f (ρ) > 0, f (ρ) → 0 and
o( f (ρ))/ f (ρ) → 0 as ρ → 0. The quantity DTJ [Ω](z) is called the topological gradi-
ent of shape functional J at design Ω and point of perturbation z.

In the following, a simple example is presented in order to obtain an intuitive under-
standing for the topological gradient.

Example 4.1. Let the functional

J (Ω) := |Ω|

quantify the volume, i.e. the Lebesgue measure, of a design Ω ∈ O. Simple calculations yield
the equalities

J (Ωρ)−J (Ω) = |Ωρ| − |Ω| = −|ωρ| = −ρd|ω|,
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revealing that (4.1) holds with f (ρ) = |ω|ρd and topological gradient

DTJ [Ω] = −1. (4.2)

Note that the topological gradient (4.2) is independent of design Ω as well as the point of
perturbation z ∈ Ω.

The previous example allows to evaluate the objective functional J immediately. In
most applications, however, J depends on a design Ω via a state variable uΩ. In
these situations, a state equation needs to be solved in order to evaluate objective
functional J . A challenging task will be the topological asymptotic analysis for this
type of problem. The key, and major difficulty, will be the asymptotic behavior of the
topologically perturbed state variable, which represents the solution of an underlying
partial differential equation. In other words, the sensitivity of the control-to-state
operator has to be investigated in order to obtain the topological gradient.
Two different interpretations of topological perturbations are available in the presence
of a state equation. Early works, for instance [127] and [72], considered the creation
of holes inside the underlying domain and the specification of boundary data on
the boundary of the created hole ωρ. In this case, both Dirichlet and Neumann
conditions may be imposed, leading to different sensitivities DTJ in the topological
asymptotic expansion (4.1). This case is referred to as singular perturbation in [105]. The
second case considers perturbations Ωρ implicitly via a varying coefficient in the state
system, which is defined on a fixed hold-all domain. This situation firstly has been
addressed by Amstutz in 2006, see [11], and establishes a link between the singular
perturbation approach and works related to the identification of inhomogeneities from
measurements, see e.g. [40]. Here, interface conditions have to be included in the state
system, accounting for a jump of the coefficient in the differential operator. Instead
of interpreting the perturbation of Ω as creation of a hole, this case corresponds to a
material inhomogeneity in Ωρ. Therefore, a generalization of the perturbed shape

Ωρ :=

⎧⎨⎩Ω \ ω̄ρ, if z ∈ Ω,

Ω ∪ωρ, if z ∈ D \ Ω̄,

depending on the location of the point of perturbation, is possible. This approach is
referred to as configurational perturbation in [105]. Clearly, there is a connection between
singular and configurational perturbations. As mentioned in [105], the topological
gradient in the configurational perturbation setting coincides with the sensitivity for
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a singular perturbation with a Neumann condition on the boundary of the hole, if
the material coefficient in the inclusion ωρ tends to zero. In this thesis, we follow the
configurational approach. Note that the elasticity model within the configurational
approach has been introduced as weak phase model in Section 2.1. The advantages of
this modeling approach are, as described previously, the possibility of working on a
fixed mesh in numerical algorithms as well as the option of designing bi-directional
optimization schemes.
Moreover, we note that several generalizations of the topological gradient have been
made in the past. In [87], a second order topological expansion has been performed.
Further, more general state equations have been addressed compared to the standard
case of partial differential equations. In [84] and [86], the cases of a linear complemen-
tarity problem and a variational inequality, respectively, have been considered.
The development of topology optimization algorithms relies on the availability of
topological gradients in every point within the hold-all domain simultaneously. An
efficient way of computing the sensitivities for all points of perturbations at once is
offered by the adjoint method, which is a standard tool in optimal control theory, see
[138] for further details. Essentially, the solution of a linear system, called adjoint
equation, in addition to the solution of the unperturbed state equation is sufficient for
obtaining the full topological gradient.
This chapter is dedicated to the topological asymptotic analysis of a certain class of
objective functionals. We will consider stress-based objectives, more precisely function-
als depending on the gradient of the displacement, subject to the equations of linear
elasticity. In order to provide insights into the development of sensitivities for this
class of problems, a short literature review is given in the following.
The majority of works on topological gradients and its application within optimization
algorithms for the elasticity case consider solely objectives, which depend on the state.
Most commonly used is the mechanical compliance or total potential energy. However,
literature gets scarcer for the case of objective functionals, which depend on the gradi-
ent of the state. The first work [127] addressing stress-based objective functionals was
published by Sokołowski and Żochowski in 1999. Here, quadratic yield criteria have
been considered for isotropic material and two space dimensions within the singular
perturbation framework. The results of [127] have been extended in two directions.
First, an extension to a three-dimensional setting was investigated by Sokołowski and
Żochowski in 2001, see [128]. The second direction concerns the application of the
topological gradient from [127] in an optimization scheme. This has been examined by
Allaire and Jouve in 2008, see [4], using a level set method, coupling shape and topo-
logical gradients, for the optimization of stress-based objectives. Further, topological
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gradients for a non-quadratic objective, related to the von Mises stress criterion, has
been investigated by Amstutz and Novotny in 2010 for the 2D case, isotropic material
and the configurational perturbation approach, see [17]. It is important to note that the
objective functional from [17] stems from a penalization of pointwise constraints on the
gradient of the state. Hence, following a penalty approach, [17] enables the solution
of topology optimization problems with local stress constraints. A similar problem,
considering a Drucker-Prager type yield criterion instead of a von Mises criterion, has
been treated in 2012 by Amstutz et al., see [18]. Both [17] and [18] are mainly based
on ideas from Amstutz, published in 2010 in [12]. Here, the topological gradient of a
functional, resulting from the penalization of pointwise nonlinear constraints on the
gradient of the state, has been investigated for the Laplace equation. Applications
of the results regarding the von Mises case [17] have been considered by Lopes and
Novotny in 2016, Santos et al. in 2017 and Novotny et al. in 2019, see [99], [120]
and [106]. Considering the optimization of compliant mechanisms and multiple load
cases, the main difference to [17] is the limit passage in the topological gradient of
the artificial material coefficient. In 2013, a quadratic stress-based objective functional
has been treated by Schneider and Andrä for anisotropic material, the configurational
perturbation approach and a 3D setting, see [121]. It is worth mentioning, that [121]
rigorously establishes a link between the topological gradient and results from the
field of micromechanics, more precisely Eshelby’s Theorem and the elastic moment
tensor. The results from [121] have been extended to arbitrary, non-quadratic objec-
tives by Delgado and Bonnet in 2015, see [51]. The techniques for performing the
asymptotic expansion in [51] are based on the works from [31] and [7]. To the authors
best knowledge, [51] is the most general work on the topological gradient in linear
elasticity for objective functionals depending on the gradient of the state. In particular,
all previously cited works are contained in [51] as special cases. For this reason, the
methods developed in [51] are employed in this thesis.

4.2. Problem Setting

In this section, the problem class under investigation is introduced. We will investigate
the topological asymptotic expansion for an objective functional of abstract structure,
which contains the regularized functional (3.8) as special case. Regarding the state
equation, a generalization of interface problem (2.10) is performed in terms of spatial
dimension and material properties. Moreover, the class of topology perturbations will be
fixed, which is the basis for identifying the topological gradient.
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State Equation

The state system of the optimal control problem under consideration, which is a
generalization of the interface problem (2.10), is introduced in the following. We
consider a smooth and bounded hold-all domain D ⊂ Rd with d = 2 or 3, again
with boundary partitioning ∂D = ΓD ∪ ΓN, where ΓD ∩ ΓN = ∅ and ΓD is assumed
to be of positive surface measure. Furthermore an open subset Ω ⊂ D is considered,
representing a design. As in the previous part of this thesis, the sets Ω and D \Ω
represent two different material phases within the hold-all domain, which are separated
by the material interface ∂Ω. Within the domain D, we define the elasticity tensor

CΩ := CmatχΩ + CairχD\Ω (4.3)

for a material distribution Ω with fourth-order tensors Cmat and Cair, which are
required to be positive definite and satisfy the minor and major symmetry properties.
Note that a fourth-order tensor C is positive definite if A : CA > 0, ∀A ∈ Rd×d, A ̸= 0,
satisfies minor symmetries if M : CN = M : CNT, M : CN = MT : CN and has the
major symmetry property if M : CN = N : CM for all M, N ∈ Rd×d. We mention that
the elasticity tensors, in contrast to the previous part, are allowed to be anisotropic.
Analogously to Chapter 2, we define the bilinear form

aΩ(u, v) :=
∫︂

D
CΩϵ(u) : ϵ(v)dx (4.4)

for u, v ∈ H1(D, Rd). Similarly to the elasticity tensor (4.3), we generalize the volume
forces of the elasticity problem as follows

fΩ := f matχΩ + f airχD\Ω, (4.5)

with functions f mat, f air ∈ C0,β(D, Rd) for β > 0. Further, given a traction force
g ∈ L2(ΓN, Rd), we define the linear form

lΩ(v) :=
∫︂

D
fΩ · vdx +

∫︂
ΓN

g · vds (4.6)

for v ∈ H1(D, Rd). Finally, for a prescribed boundary displacement uD ∈ L2(ΓD, Rd)

and the Sobolev space

V := {v ∈ H1(D, Rd) : v|ΓD = 0}, (4.7)
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an element u ∈ H1(D, Rd) is characterized as a solution of the state equation, if the
equality

aΩ(u, v) = lΩ(v), ∀v ∈ V (4.8)

is satisfied and u|ΓD = uD holds in the trace sense. Since equation (4.8) possesses a
unique solution for every open Ω ⊂ D, we will refer to this solution by uΩ as in the
previous chapter.

Objective Functional

Analogously to the state system, a generalization of the penalty term (3.8) will be
introduced in the following. For an open subset Ω ⊂ D of the hold-all domain and
the corresponding solution uΩ ∈ H1(D, Rd) of the state equation (4.8), the objective
functional in reduced form

J (Ω) := JΩ(uΩ, ϵ(uΩ)) (4.9)

with the following structure

JΩ : H1(D, Rd)× L2(D, Rd×d)→ R

(u, e) ↦→
∫︂

D
jΩ(x, u(x), e(x))dx (4.10)

will be considered throughout this chapter. Moreover, the density function in functional
(4.10) is defined by

jΩ := jmatχΩ + jairχD\Ω, (4.11)

where the functions jmat, jair : D×Rd ×Rd×d → R are assumed to be twice differen-
tiable in all their arguments. Further, all second derivatives of jmat and jair are assumed
to be in C0,η(D×Rd ×Rd×d) for η > 0. Given v ∈ H1(D, Rd) and h ∈ L2(D, Rd×d),
the partial derivatives of JΩ are defined as follows:

∂u JΩ(u, e)(v) :=
∫︂

D
∂u jΩ(x, u(x), e(x)) · v(x)dx, (4.12)

∂e JΩ(u, e)(h) :=
∫︂

D
∂e jΩ(x, u(x), e(x)) : h(x)dx. (4.13)
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Topology Perturbations

We proceed by introducing topological perturbations of a given open subset Ω ⊂
D. Throughout this chapter, we consider a smooth and bounded domain ω ⊂ Rd

containing the origin. Further, let a radius ρ > 0 and a point of perturbation z ∈ D \ ∂Ω
be given. We define the scaled and shifted set

ωρ := z + ρω (4.14)

as well as the perturbed design

Ωρ :=

⎧⎨⎩Ω \ ω̄ρ, if z ∈ Ω,

Ω ∪ωρ, if z ∈ D \ Ω̄,
(4.15)

which depends on the location of the point of perturbation. Based on (4.15), the
perturbed state equation

aΩρ
(u, v) = lΩρ

(v), ∀v ∈ V , (4.16)

is stated. We will use the following abbreviations

Cρ := CΩρ
, aρ := aΩρ

, fρ := fΩρ
, lρ := lΩρ

, uρ := uΩρ
(4.17)

throughout this chapter for simplicity. Similarly, concerning objective functional (4.10),
the quantities

jρ := jΩρ
, Jρ := JΩρ

(4.18)

are introduced. The difference between the elasticity tensors is defined by

Cδ := C1 −C0, (4.19)

where the following tensors

C0 :=

⎧⎨⎩Cmat, if z ∈ Ω,

Cair, if z ∈ D \ Ω̄,
C1 :=

⎧⎨⎩Cair, if z ∈ Ω,

Cmat, if z ∈ D \ Ω̄
(4.20)

depend on the point of perturbation z ∈ D \ ∂Ω, more precisely its location within the
hold-all domain. Similarly, concerning the volume forces, we define the difference
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fδ := f 1 − f 0, (4.21)

where again the following functions

f 0 :=

⎧⎨⎩ f mat, if z ∈ Ω,

f air, if z ∈ D \ Ω̄,
f 1 :=

⎧⎨⎩ f air, if z ∈ Ω,

f mat, if z ∈ D \ Ω̄
(4.22)

contain the dependency on the different material phases. In the same spirit, the
difference

jδ := j1 − j0 (4.23)

is defined with the functions

j0 :=

⎧⎨⎩jmat, if z ∈ Ω,

jair, if z ∈ D \ Ω̄,
j1 :=

⎧⎨⎩jair, if z ∈ Ω,

jmat, if z ∈ D \ Ω̄
(4.24)

regarding the density functions in (4.10).

4.3. Asymptotic Analysis of the Perturbed State Variable

The goal of this chapter is the asymptotic expansion of objective functional J , defined
by (4.9), with respect to a topological perturbation of a given design Ω. More precisely,
for the perturbed design Ωρ, defined by (4.15), the main task will be the investigation
of the difference

J (Ωρ)−J (Ω), (4.25)

aiming at identifying the topological gradient. A major challenge within the analysis
of (4.25) lies in examining the impact of the topological perturbation on the system
dynamics. In particular, we need to analyze the asymptotic behavior of the perturbed
state variable, which is caused by a topological perturbation of the material distribution.
Hence, the asymptotic expansion of the difference

uρ − u0, (4.26)

where uρ is the solution to (4.16), will be the key to the derivation of the topological
gradient. Let us begin studying the asymptotic behavior of (4.26) in the following
lemma.
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4. Topological Gradient

Lemma 4.1. Let uρ be the solution of the perturbed state equation (4.16) and let u0 denote the
unperturbed state, i.e. the solution of problem (4.8). Then, the following estimate holds:

∥uρ − u0∥H1(D,Rd) = O(ρd/2). (4.27)

Proof. Since uρ solves problem (4.16) and u0 is the solution to (4.8), the identity

aρ(uρ, v)− a0(u0, v) = lρ(v)− l0(v), ∀v ∈ V

holds and it follows immediately:

aρ(uρ − u0, v) = a0(u0, v)− aρ(u0, v) + lρ(v)− l0(v), ∀v ∈ V . (4.28)

Testing equation (4.28) with v := uρ − u0 and employing the triangle inequality yields
the following estimate:

aρ(uρ − u0, uρ − u0) ≤
⃓⃓⃓⃓∫︂

ωρ

Cδϵ(u0) : ϵ(uρ − u0)dx
⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂
ωρ

fδ · (uρ − u0)dx
⃓⃓⃓⃓

,

where Cδ and fδ have been defined in (4.19) and (4.21), respectively. For ρ small enough
and z ∈ D \ ∂Ω denoting the point of perturbation, the assumed regularity of the
volume force (4.5) implies the existence of a number η > 0 such that ωρ ⊂ Bη(z) and

ϵ(u0)|Bη(z)
∈ C0(Bη(z)),

which yields the existence of a constant

c := max
x∈Bη(z)

|Cδϵ(u0(x))| < ∞.

Hence, employing Hölder’s inequality, the following estimate is obtained:

⃓⃓⃓⃓∫︂
ωρ

Cδϵ(u0) : ϵ(uρ − u0)dx
⃓⃓⃓⃓
≤∥Cδϵ(u0)∥L2(ωρ)∥ϵ(uρ − u0)∥L2(ωρ)

≤c|ωρ|1/2∥uρ − u0∥H1(ωρ)
.

Using the continuity of fδ in a neighborhood of z, a similar estimate can be shown:⃓⃓⃓⃓∫︂
ωρ

fδ · (uρ − u0)dx
⃓⃓⃓⃓
≤ ∥ fδ∥L2(ωρ)∥uρ − u0∥L2(ωρ)≤ c̃|ωρ|1/2∥uρ − u0∥H1(ωρ)

,

where c̃ > 0. A combination of the previous inequalities yields the following estimate:
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4.3. Asymptotic Analysis of the Perturbed State Variable

aρ(uρ − u0, uρ − u0) ≤ C|ωρ|1/2∥uρ − u0∥H1(ωρ)
≤ C|ωρ|1/2∥uρ − u0∥H1(D),

with C > 0. The coercivity of bilinear form aρ, which is precisely the inequality

C∥uρ − u0∥2
H1(D)≤ aρ(uρ − u0, uρ − u0),

concludes the proof.

We will see later on, in particular in the proof of Lemma 4.5, that the convergence rate
in (4.27) is not sufficient for quantifying the impact of the topological perturbation
on the state variable. Therefore, a correction term for uρ − u0 is necessary in order to
obtain a convergence rate of o(ρd/2) instead of O(ρd/2). Before this correction term is
addressed, we need to introduce the following function space on Rd.

Definition 4.2. For d ≥ 1, define the space

W̃ :=
{︂

w ∈ H1
loc(R

d, Rd) : ∇w ∈ L2(Rd, Rd×d)
}︂

,

with H1
loc(R

d, Rd) defined as in [8, Definition 3.13]. The Beppo-Levi space on Rd is defined as
the quotient space

W := W̃/R, (4.29)

where all constant functions are factored out.

The following lemma addresses the structure of the Beppo-Levi space. For a proof, the
interested reader is referred to [52].

Lemma 4.2. Let a norm on the spaceW be defined by

∥[u]∥W := ∥∇u∥L2(Rd,Rd×d), (4.30)

where [u] ∈ W is an equivalence class and u ∈ [u] denotes a representative. Then the
Beppo-Levi spaceW , equipped with norm (4.30), is a Hilbert space.

A central component of the correction term for uρ − u0 will be the following partial
differential equation in weak formulation, which is posed on the entire space Rd

Find vX ∈ W ,
∫︂

Rd
Cωϵ(vX) : ϵ(w)dx = −

∫︂
ω

CδX : ϵ(w)dx, ∀w ∈ W , (4.31)
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for a given matrix X ∈ Rd×d
sym, Cδ as in (4.19) and

Cω := C0χRn\ω̄ + C1χω. (4.32)

Remark 4.1. The partial differential equation (4.31) is known as free space transmission
problem in the literature, see for instance the monographs [9] and [10] of Ammari and Kang,
where the asymptotic expansion of a topologically perturbed displacement field with applications
to the detection of elastic inclusion in structures is addressed.

Existence and uniqueness of a solution of problem (4.31) is guaranteed by the subse-
quent lemma.

Lemma 4.3. For every X ∈ Rd×d
sym , there exists a unique solution vX ∈ W of the free space

transmission problem (4.31).

Proof. The claim follows from the Lax-Milgram Lemma together with Lemma 4.2 and
the coercivity of the elasticity tensors C0, C1.

Let us proceed with the construction of an approximation of uρ − u0. For x ∈ Rd and
ρ > 0, we define

Gρ(x) := ρvX

(︃
x− z

ρ

)︃
, (4.33)

where vX denotes the solution of (4.31) with X := ϵ(u0(z)).

Lemma 4.4. Let uρ be the solution of the perturbed state equation (4.16) and let u0 denote the
unperturbed state, i.e. the solution of problem (4.8). Further, let Gρ ∈ W be defined in (4.33).
Then, the following estimate holds:

∥uρ − u0 − Gρ∥H1(D,Rd) = o(ρd/2). (4.34)

Proof. A proof can be found in [50].

Remark 4.2. Estimate (4.34) shows that the perturbed state variable behaves approximately as

uρ − u0 ≈ Gρ (4.35)

for small ρ > 0 with asymptotic growth rate o(ρd/2). For this reason, (4.33) is usually referred
to as leading contribution of the inner approximation of uρ − u0 in the literature, see for
instance [7] and [51].
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We proceed with the introduction of the elastic moment tensor, which is an essen-
tial ingredient for quantifying the perturbation of the state variable with respect to
topological perturbations of the underlying material distribution.

Definition 4.3 (Elastic Moment Tensor). Let X ∈ Rd×d
sym be given and let vX ∈ W denote

the solution to the free space transmission problem (4.31). The fourth-order tensor E, defined by

EX :=
∫︂

ω
Cδ (X + ϵ(vX)) dx, (4.36)

is called the elastic moment tensor.

As in the case of the free space transmission problem, the monographs of Ammari and
Kang, see [9] and [10], provide a solid background on properties of the elastic moment
tensor for isotropic material. The following asymptotic expansion will turn out to be
crucial in the analysis of objective functional (4.9) and connects the perturbed state uρ

with the elastic moment tensor E.

Lemma 4.5. For any vector field w ∈ C2(U, Rd), where U ⊂ D is a neighborhood of z ∈ D,
the asymptotic expansion∫︂

ωρ

Cδϵ(uρ) : ϵ(w)dx = ρdEϵ(u0(z)) : ϵ(w(z)) + o(ρd) (4.37)

holds for arbitrarily small ρ > 0, where the elastic moment tensor E is defined in (4.36).

Proof. We begin by splitting the left hand side of (4.37) as follows

∫︂
ωρ

Cδϵ(uρ) : ϵ(w)dx =
∫︂

ωρ

Cδϵ(u0 + Gρ) : ϵ(w)dx +
∫︂

ωρ

Cδϵ(uρ − u0 − Gρ) : ϵ(w)dx,

(4.38)
with Gρ defined in (4.33) and set X := ϵ(u0(z)). Concerning the first term in (4.38), the
following identities hold

∫︂
ωρ

Cδϵ(u0 + Gρ) : ϵ(w)dx =
∫︂

ωρ

Cδ(X + ϵ(Gρ)) : ϵ(w(z))dx + o(ρd)

=ρdϵ(w(z)) :
∫︂

ω
Cδ(X + ϵ(vX))dy + o(ρd)

=ρdϵ(w(z)) : EX + o(ρd), (4.39)

where the regularity of u0 and w at z as well as a standard integral transformation
have been used. Regarding the second term in (4.38), we obtain the following estimate
by applying Hölder’s inequality:
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∫︂
ωρ

Cδϵ(uρ − u0 − Gρ) : ϵ(w)dx ≤ c∥ϵ(w)∥L2(ωρ)∥ϵ(uρ − u0 − Gρ)∥L2(ωρ).

Due to estimate (4.34) and the inequality

∥ϵ(w)∥L2(ωρ)≤ cρd/2,

it follows ∫︂
ωρ

Cδϵ(uρ − u0 − Gρ) : ϵ(w)dx = o(ρd), (4.40)

which concludes the proof.

Note that the elastic moment tensor arises naturally in (4.39) within the preceding
proof. Furthermore, it can be noticed that (4.40) acts as remainder within (4.38), reveal-
ing the importance of the inner approximation Gρ.

Sensitivity of the Control-to-State Operator

Let us take a different perspective at this point and employ the preceding results for
investigating differentiability properties of the control-to-state operator

S : O → H1(D, Rd)

Ω ↦→ uΩ,

which has been introduced in Definition 2.4. In Theorem 3.2 of the previous chapter,
continuity of the control-to-state operator S with respect to convergence in the sense
of Hausdorff or in the sense of characteristic functions has already been shown. The
question of differentiability and a sensitivity of operator S arises naturally at this point.
As it has been pointed out in the introduction of this chapter, it is a priori not clear
what a direction, and hence a sensitivity, in the context of optimal design problems
actually is. Clearly, a meaningful notion of directions relies on the type of perturbations
of a given design Ω. Within this chapter, the class of topological perturbations, see
the previous section for details, has been chosen in order to define the topological
gradient. For a point of perturbation z ∈ D \ ∂Ω, a sequence of perturbed designs is
given by (Ωρ)ρ>0. The following lemma shows that this sequence converges towards
the unperturbed design Ω in the sense of characteristic functions.
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Lemma 4.6. Let a design Ω ∈ O, a radius ρ > 0 and a point of perturbation z ∈ D \ ∂Ω be
given. Further, let the perturbed design Ωρ be defined as in (4.15). Then, it holds

Ωρ
ρ→0−−→ Ω

in the sense of characteristic functions.

Proof. Assume p ∈ [1, ∞). Elementary calculations and the definition of the perturbed
design (4.15) show

∥χΩρ
− χΩ∥

p
Lp(D)

=
∫︂

D
|χΩρ

− χΩ|pdx =
∫︂

ωρ

1dx = |ωρ|
ρ→0−−→ 0,

which proofs the claim.

The preceding lemma, together with Theorem 3.2, reveals that the mapping

ρ ↦→ uρ = S(Ωρ) (4.41)

is continuous. Note that this is reflected in estimate (4.27), which states that

⃦⃦
uρ − u0

⃦⃦
H1(D,Rd)

ρ→0−−→ 0.

Let us go a step further and examine the differentiability of (4.41) by analyzing the
asymptotic behavior of the mapping

ρ ↦→
S(Ωρ)− S(Ω)

ρd/2 (4.42)

where a limit is guaranteed by (4.27). For the candidate

ρ ↦→
Gρ

ρd/2 , (4.43)

where Gρ is defined by (4.33), estimate (4.34) implies immediately⃦⃦⃦⃦
uρ − u0

ρd/2 −
Gρ

ρd/2

⃦⃦⃦⃦
H1(D,Rd)

ρ→0−−→ 0.

Consequently, we observe the asymptotic behavior

S(Ωρ)− S(Ω)

ρd/2 ≈
Gρ

ρd/2

for small ρ > 0.
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4.4. Topological Asymptotic Expansion of the Objective

Functional

Having investigated the asymptotic behavior of the perturbed state variable in the pre-
vious section, we continue with the topological asymptotic expansion of the objective
functional (4.9). Before stating the main theorem, the adjoint equation

Find p ∈ V , aΩ(v, p) = ∂u JΩ(uΩ, ϵ(uΩ))(v) + ∂e JΩ(uΩ, ϵ(uΩ))(ϵ(v)) ∀v ∈ V ,
(4.44)

is introduced with uΩ denoting the solution of (4.8), V defined in (4.7) and JΩ the
functional (4.10) with its partial derivatives defined by (4.12) and (4.13). It is straight-
forward to verify that the right hand side of equation (4.44) defines a bounded linear
form. Hence, the lemma of Lax-Milgram ensures the existence of a unique solution of
(4.44), which will be denoted by pΩ ∈ V and referred to as adjoint state.

Theorem 4.1. Let an objective functional J of type (4.9), an open set Ω ⊂ D, a smooth and
bounded domain ω ⊂ Rd containing the origin and a point of perturbation z ∈ D \ ∂Ω be
given. Further, let uΩ ∈ H1(D, Rd) denote the solution of the state equation (4.8) as well as
pΩ ∈ V the solution of the adjoint equation (4.44). Assume that there exist δ > 0 and β > 0
such that uΩ, pΩ ∈ C2,β(Bδ(z)) and abbreviate u := uΩ(z), p := pΩ(z). Furthermore, let
vX denote the solution of (4.31) for X = ϵ(uΩ(z)), E the elastic moment (4.36) and let jδ
and fδ be defined by (4.23) and (4.21), respectively. Then, functional J allows an asymptotic
expansion of the form (4.1) with f (ρ) = ρd. Moreover, the topological gradient of J is given
by the following expression

DTJ [Ω](z) =|ω|jδ(z, u, ϵ(u)) + |ω| fδ(z) · p−Eϵ(u) : ϵ(p)

+ ∂e jδ(z, u, ϵ(u)) :
∫︂

ω
ϵ(vX)dx (4.45)

+
∫︂

Rd\ω
G0(z, ϵ(vX))dx +

∫︂
ω
G1(z, ϵ(vX))dx,

where the functions G i : Rd ×Rd×d → R, for i ∈ {0, 1}, are defined by

G i(z, h) := ji(z, u, ϵ(u) + h)− ji(z, u, ϵ(u))− ∂e ji(z, u, ϵ(u)) : h. (4.46)

The proof of Theorem 4.1 is based on the analysis of the difference J (Ωρ)− J (Ω).

52



4.4. Topological Asymptotic Expansion of the Objective Functional

First, we rewrite the difference in the following form:

J (Ωρ)−J (Ω)

=Jρ(u0, ϵ(u0))− J0(u0, ϵ(u0)) (4.47)

+Jρ(uρ, ϵ(uρ))− Jρ(u0, ϵ(uρ))− ∂u Jρ(u0, ϵ(u0))(uρ − u0) (4.48)

+Jρ(u0, ϵ(uρ))− Jρ(u0, ϵ(u0))− ∂e Jρ(u0, ϵ(u0))(ϵ(uρ − u0)) (4.49)

+∂u Jρ(u0, ϵ(u0))(uρ − u0) + ∂e Jρ(u0, ϵ(u0))(ϵ(uρ − u0)). (4.50)

In the following lemmas, we will analyze each term of the preceding equation sep-
arately. As a result, we can observe how each term contributes to the topological
gradient (4.45).

Lemma 4.7. Let the assumptions of Theorem 4.1 be satisfied. Further, let the perturbed objective
functional Jρ be defined by (4.18). Then, the following asymptotic expansion holds:

Jρ(u0, ϵ(u0))− J0(u0, ϵ(u0)) = ρd|ω|jδ(z, u0(z), ϵ(u0(z))) + o(ρd).

Proof. The proof is straightforward and can be found in [50].

Lemma 4.8. Let the assumptions of Theorem 4.1 be satisfied. Further, let the perturbed objective
functional Jρ be defined by (4.18) and let uρ ∈ H1(D, Rd) denote the perturbed state variable,
i.e. the solution to problem (4.16). Then, the following asymptotic expansion holds:

Jρ(uρ, ϵ(uρ))− Jρ(u0, ϵ(uρ))− ∂u Jρ(u0, ϵ(u0))(uρ − u0) = o(ρd).

Proof. A proof can be found in [50].

Lemma 4.9. Let the assumptions of Theorem 4.1 be satisfied. Further, let the perturbed objective
functional Jρ be defined by (4.18) and let uρ ∈ H1(D, Rd) denote the perturbed state variable,
i.e. the solution to problem (4.16). Then, the asymptotic expansion

Jρ(u0, ϵ(uρ))− Jρ(u0, ϵ(u0))− ∂e Jρ(u0, ϵ(u0))(ϵ(uρ − u0))

=ρd
[︃∫︂

Rd\ω
G0(z, ϵ(vX))dx +

∫︂
ω
G1(z, ϵ(vX))dx

]︃
+ o(ρd),

holds, where G0,G1 are defined in (4.46) and vX is the solution of problem (4.31) with
X = ϵ(u0(z)).
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Proof. A proof can be found in [50].

Lemma 4.10. Let the assumptions of Theorem 4.1 be satisfied. Further, let the perturbed
objective functional Jρ be defined by (4.18) and let uρ ∈ H1(D, Rd) denote the perturbed state
variable, i.e. the solution to problem (4.16). Moreover, let p0 ∈ V denote the adjoint state, i.e.
the solution of problem (4.44). Then, the asymptotic expansion

∂u Jρ(u0, ϵ(u0))(uρ − u0) + ∂e Jρ(u0, ϵ(u0))(ϵ(uρ − u0))

=ρd
[︃
|ω| fδ(z) · p0(z)−Eϵ(u0(z)) : ϵ(p0(z)) + ∂e jδ(z, u0(z), ϵ(u0(z))) :

∫︂
ω

ϵ(vX)dx
]︃

+ o(ρd)

holds, where E denotes the elastic moment tensor, defined by (4.36), and vX is the solution of
problem (4.31).

Proof. We begin the proof by splitting the expression in Lemma 4.10 into two parts as
follows:

∂u Jρ(u0, ϵ(u0))(uρ − u0) + ∂e Jρ(u0, ϵ(u0))(ϵ(uρ − u0))

=∂u J0(u0, ϵ(u0))(uρ − u0) + ∂e J0(u0, ϵ(u0))(ϵ(uρ − u0)) (4.51)

+∂u[Jρ − J0](u0, ϵ(u0))(uρ − u0) + ∂e[Jρ − J0](u0, ϵ(u0))(ϵ(uρ − u0)). (4.52)

Let us examine the term (4.51) first. The definition of the adjoint equation (4.44) yields
immediately

∂u J0(u0, ϵ(u0))(uρ − u0) + ∂e J0(u0, ϵ(u0))(ϵ(uρ − u0)) = a0(uρ − u0, p0),

where a0 := aΩ is an abbreviation for the unperturbed bilinear form. Further, by
subtracting the unperturbed state equation (4.8) from the perturbed problem (4.16),
the following identity is obtained:

aρ(uρ − u0, w) = (lρ − l0)(w)− (aρ − a0)(u0, w), ∀w ∈ V . (4.53)

Straightforward calculations, equality (4.53) and the asymptotic expansion (4.37) reveal
the following identities:
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a0(uρ − u0, p0)

=aρ(uρ − u0, p0)−
∫︂

ωρ

Cδϵ(uρ − u0) : ϵ(p0)dx

=(lρ − l0)(p0)− (aρ − a0)(u0, p0)−
∫︂

ωρ

Cδϵ(uρ − u0) : ϵ(p0)dx

=(lρ − l0)(p0)−
∫︂

ωρ

Cδϵ(uρ) : ϵ(p0)dx

=ρd|ω| fδ(z) · p0(z)− ρdEϵ(u0(z)) : ϵ(p0(z)) + o(ρd),

which shows the asymptotic behavior of the term (4.51). Expression (4.52) can be
treated as in [51].

Remark 4.3. It is interesting to note that the topological gradient (4.45) simplifies significantly,
if the objective functional (4.10) depends solely on the state, not on its gradient. More precisely,
let us assume the objective functional to be of the following structure

JΩ(u) :=
∫︂

D
jΩ(x, u(x))dx.

This structure is given in many applications, for example in the case of a compliance type
functional. It can be observed that the topological gradient (4.45) in this situation becomes

DTJ [Ω](z) = |ω|jδ(z, uΩ(z)) + |ω| fδ(z) · pΩ(z)−Eϵ(uΩ(z)) : ϵ(pΩ(z)). (4.54)

This expression is particularly interesting with regards to the numerical computation of the
topological gradient. The only non-trivial part in (4.54) is the elastic moment tensor E, which
can be represented in closed form in certain cases. The analytical computation of tensor E will
be investigated in the subsequent section.

4.5. Representation of the Topological Gradient in Closed

Form

In the previous section, the topological asymptotic expansion of the objective functional
(4.9) has been performed and its topological gradient (4.45) derived. An essential part
of formula (4.45) is the solution vX ∈ W of the free space transmission problem
(4.31). Note that also the elastic moment tensor E, defined in (4.36), depends on vX.
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Therefore, regarding the practical computation of the topological gradient, it remains
to investigate how vX can be represented analytically. First, we recall the free space
transmission problem (4.31) with X ∈ Rd×d

sym for the reader’s convenience

Find vX ∈ W ,
∫︂

Rd
Cωϵ(vX) : ϵ(w)dx = −

∫︂
ω

CδX : ϵ(w)dx, ∀w ∈ W ,

where W denotes the Beppo-Levi space (4.29) and Cω and Cδ are defined by (4.32)
and (4.19), respectively.

Eshelby’s Inhomogeneity and Inclusion Problem

In (4.33), we employed the solution vX of the free space transmission problem (4.31)
for the construction of the inner approximation of the perturbed state variable. Besides
the topological asymptotic analysis of shape functionals, (4.31) plays an important
role in the field of micromechanics where it is known as Eshelby’s inhomogeneity problem
(cf. [103]). Due to its central importance, several approaches for the solution of the
inhomogeneity problem have been developed in the past decades. We will make use
of these results in order to obtain an analytic expression for the solution vX of (4.31)
under certain assumptions regarding the shape of ω and the properties of the elasticity
tensors.
As a first step, we introduce an additional problem, which is known as Eshelby’s
inclusion problem for given constant eigenstrain τ ∈ Rd×d

sym:

Find vτ ∈ W ,
∫︂

Rd
C0ϵ(vτ) : ϵ(w)dx =

∫︂
ω

C0τ : ϵ(w)dx, ∀w ∈ W . (4.55)

In the literature, the solution of (4.55) is often referred to as Eshelby’s solution. A brief
note on the physical intuition behind the term eigenstrain is given in the following
remark.

Remark 4.4. The term eigenstrain has been coined by T. Mura (cf. [103]). From a physical
point of view, it refers to strains in infinite bodies, which are not caused by external forces.
A typical example of eigenstrains is thermal expansion. Here, a part ω of the considered
body is subjected to temperature changes. If ω wasn’t surrounded by material, the change in
temperature would result in a change of the displacement field. Since ω is part of an infinite
body, however, internal stresses are generated.

It can be observed that the inhomogeneity problem (4.31) and the inclusion problem
(4.55) are of a similar structure, but have certain differences. The subsequent remark
deals with the differences from a physical point of view.
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Remark 4.5 (Inclusion and Inhomogeneity). It is common in micromechanics to distinguish
between inclusions and inhomogeneities, see for instance [103] or [59]. A part ω of a body
under consideration is called inclusion, if the entire body consists of homogeneous material and
an eigenstrain is applied within ω. In contrast, a part ω is referred to as inhomogeneity, if the
material properties within ω differ from those of the remaining body.

The basic idea of the following procedure is now to investigate the solution of problem
(4.55), which has several useful properties, and to connect it with the solution of
Eshelby’s inhomogeneity problem. First, the existence of a solution of the inclusion
problem needs to be examined.

Lemma 4.11. For any eigenstrain τ ∈ Rd×d
sym , Eshelby’s inclusion problem (4.55) possesses a

unique solution. Moreover, the solution operator

τ ↦→ vτ (4.56)

is a linear mapping.

Proof. Existence and uniqueness of a solution can be shown in a standard fashion
by application of the Lax-Milgram theorem. The linearity of mapping (4.56) follows
immediately from the fact that the right hand side of problem (4.55) is linear in τ.

Inclusions of Ellipsoidal Shape

Having introduced the inclusion problem (4.55), we proceed investigating its solution
vτ as well as the connection to the inhomogeneity problem (4.31). An important step
towards an explicit formula for vτ is the restriction of the inclusion ω. For this purpose,
we assume the inclusion to be of ellipsoidal shape from now on, which is a central
requirement in the subsequent theorem. Note that the elasticity tensors C0 and C1 are
allowed to be anisotropic at this point. Together with the linearity of mapping (4.56),
the following statements concerning Eshelby’s inclusion problem can be formulated.

Theorem 4.2 (Eshelby’s theorem). Assume the inclusion ω to be an ellipsoid for d = 3 and
an ellipse for d = 2. Let further an arbitrary eigenstrain τ ∈ Rd×d

sym be given and let vτ denote
the solution of the inclusion problem (4.55). Then, there exists a mapping S : Rd → L(Rd×d

sym ),
called Eshelby tensor, such that

ϵ(vτ)(x) = S(x)τ, ∀x ∈ Rd\∂ω, (4.57)

with
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S(x) :=

⎧⎨⎩Sint, x ∈ ω,

Sext(x), x ∈ Rd\ω̄,
(4.58)

where Sint is a constant tensor.

Proof. A proof has been given in the publications of Eshelby, see [59] and [60] for
isotropic material. For the anisotropic case, we refer the reader to [103].

The importance of Theorem 4.2, which was proven by Eshelby in his pioneering work
[59], lies in the insight that the strain of vτ is constant inside an inclusion of ellipsoidal
shape. The tensors Sint and Sext in (4.58) are called interior and exterior Eshelby tensor,
respectively.

Remark 4.6. Note that the solution of Eshelby’s inclusion problem (4.55) is entirely determined
by the elasticity tensor C0 as well as the inclusion ω. Consequently, Eshelby’s tensor S encodes
the properties of the background material and the shape of the inclusion.

The following result links Eshelby’s inhomogeneity problem to the inclusion problem.
As a consequence, identity (4.57) from Eshelby’s theorem can be employed for the
solution of the inhomogeneity problem.

Theorem 4.3 (Equivalent inclusion method). Let the inhomogeneity ω be an ellipsoid for
d = 3 and an ellipse for d = 2 and consider an arbitrary matrix X ∈ Rd×d

sym . Then, the
fourth order tensor C−1

δ (C0 + CδSint) is invertible. Further, the solution of Eshelby’s inclusion
problem (4.55) is related to the solution of Eshelby’s inhomogeneity problem (4.31) by the
identity

vX = vτ, (4.59)

where

τ = −(C0 + CδSint)−1CδX.

The equivalent inclusion method goes back to J. Eshelby, see [59]. A recent proof can
be found in [121], which is repeated here for convenience.

Proof. Starting from problem (4.55) with the unique solution vτ ∈ W , we obtain the
identity∫︂

Rd
C0ϵ(vτ) : ϵ(w)dx =

∫︂
ω

C0τ : ϵ(w)dx±
∫︂

ω
C1ϵ(vτ) : ϵ(w)dx, ∀w ∈ W .
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Rearranging terms and utilizing (4.57) yields∫︂
Rd

Cωϵ(vτ) : ϵ(w)dx =
∫︂

ω
(C0 + CδSint)τ : ϵ(w)dx, ∀w ∈ W ,

revealing the equality

vτ = vX (4.60)

with X := −C−1
δ (C0 + CδSint)τ. It remains to show that C−1

δ (C0 + CδSint) is invertible
or, in other words, that the mapping

τ ↦→ C−1
δ (C0 + CδSint)τ (4.61)

is bijective. Since (4.61) maps between the same finite-dimensional space, that is
Rd×d

sym, it suffices to show that (4.61) is injective. Let us therefore assume that C−1
δ (C0 +

CδSint)τ = 0 holds. Due to the linearity of the mapping X ↦→ vX, the equality vX = 0
follows immediately. Further, due to (4.60), we obtain vτ = 0. The linearity of (4.56)
finally implies τ = 0.

Using the results above, we arrive at an expression for the strain of the solution of
Eshelby’s inhomogeneity problem in closed form.

Corollary 4.1. Assume ω and X to be defined as in the previous theorem and let vX be the
solution of Eshelby’s inhomogeneity problem (4.31). Then, the identity

ϵ(vX)(x) = −S(x)(C0 + CδSint)−1CδX (4.62)

holds for all x ∈ Rd\∂ω, where S is defined in (4.58).

Proof. The statement follows immediately from the application of the equivalent inclu-
sion method (4.59) and Eshelby’s theorem (4.57).

In the same manner, an analytical expression for the elastic moment tensor (4.36) is
found.

Corollary 4.2. Let ω be as in the previous theorem. Then, the elastic moment tensor E is of
the following form:

E = |ω|C0(C0 + CδSint)−1Cδ. (4.63)

Proof. Let X ∈ Rd×d
sym be arbitrary. Since the elastic moment tensor E is defined as an

integral over ω in (4.36) and ϵ(vX) is constant inside ω according to (4.62), we obtain
the following identity:
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EX = |ω|
[︁
Cδ −CδSint(C0 + CδSint)−1Cδ

]︁
X.

Further, we observe

CδSint = (C0 + CδSint)−C0 ⇐⇒ CδSint(C0 + CδSint)−1 = I−C0(C0 + CδSint)−1,

which concludes the proof.

Isotropic Material and Circular Inhomogeneity

The derived analytical expressions reveal that both the solution of the inhomogeneity
problem (4.31), as well as the elastic moment tensor (4.36), depend only on the elasticity
tensors and Eshelby’s tensor (4.58). Consequently, the computation of Eshelby’s tensors
needs to be investigated at this point. In the general case of anisotropic material,
expressions in closed form for the tensors Sint and Sext are not available. Instead,
numerical procedures have to be employed in practical realizations, see [103] and [50].
If the material tensors C0 and C1 are isotropic, however, analytic expressions for Sint and
Sext can be found. These formulas have first been provided by Eshelby in [59] and [60].
Although expressions in closed form are available if the inhomogeneity is of ellipsoidal
shape, we restrict the setting at this point to a circular inhomogeneity. The reason for
this restriction is the fact that the resulting formulas for Sint and Sext become simpler,
which is particularly convenient when it comes to the practical realization. Moreover,
the simple case of circular inhomogeneities is sufficient in the context of topology
optimization algorithms based on topological gradients. Since the model problem
in this thesis is posed in the two-dimensional space, we will omit the formulas for
the three-dimensional case at this point. However, we remark that the corresponding
formulas can be found in [121].

Lemma 4.12. Let ω = B1(0) ⊂ R2 and assume the elasticity tensor C0 of the background
material to be isotropic with Poisson’s ratio ν = λ0

2(λ0+µ0)
. Then, the interior Eshelby tensor

Sint can be represented in closed form by

Sint =
3− 4ν̄

4(1− ν̄)
I +

4ν̄− 1
8(1− ν̄)

I⊗ I, (4.64)

with
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ν̄ :=

⎧⎨⎩ν, (plane strain assumption),
ν

1+ν , (plane stress assumption).
(4.65)

Moreover, let x ∈ R2\ω̄ and set ρ := 1
|x| , x̄ := ρx. For T ∈ R2×2

sym , the exterior Eshelby tensor
can be written in closed form as follows

Sext(x)T =
ρ2

8(1− ν̄)

[︂
(ρ2 + 4ν̄− 2)tr[T]I + 2(ρ2 − 4ν̄ + 2)T

+ 4(1− ρ2)Tx̄ · x̄I + 4(1− 2ν̄− ρ2)tr[T]x̄⊙ x̄

+ 16(ν̄− ρ2)x̄⊙ Tx̄ + 8(3ρ2 − 2)x̄ · Tx̄x̄⊙ x̄
]︂
,

(4.66)

with

y⊙ z :=
1
2
(y⊗ z + z⊗ y),

for y, z ∈ R2.

Proof. Proofs of the identities (4.64) and (4.66) are available in the literature, see for
instance [103] and [97].

As stated in (4.65), the plane strain and plane stress case needs to be distinguished in
the computation of Eshelby’s tensors. Clearly, this is necessary regarding the elasticity
tensor as well.

Remark 4.7. In plane elasticity, i.e. in the two dimensional case, the conversion of elastic
moduli needs to be handled carefully. More precisely, it has to be distinguished between plane
strain and plane stress assumptions in the Lamé coefficients µ, λ, which determine the elasticity
tensor

C = 2µI + λI⊗ I

in the presence of isotropic material. In the plane strain case, the connection between the Lamé
coefficients (µ, λ) and (E, ν), where E denotes Young’s modulus and ν represents Poisson’s
ratio, is given as follows:

µ =
E

2(1 + ν)
, λ =

νE
(1 + ν)(1− 2ν)

.

Conversely, in the plane stress case, the following relations hold:

µ =
E

2(1 + ν)
, λ =

νE
1− ν2 .
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Note that the formulas for the general 3D case coincide with the 2D plan strain case. Further
details on the difference between plane strain and plane stress assumptions can be found in [47].

Having a formula in closed form for the interior Eshelby tensor at hand, see (4.64), the
elastic moment tensor can be computed analytically as well.

Corollary 4.3. Assume ω = B1(0) ⊂ R2. Further, let the elasticity tensors of the background
material C0 and the inhomogeneity C1 be isotropic, i.e.

C0 = 2µ0I + λ0I⊗ I, C1 = 2µ1I + λ1I⊗ I,

and assume

µ1

µ0
=

λ1

λ0
:= r.

Then, the elastic moment tensor (4.36) is given by

E = |ω|C0P, (4.67)

where

P :=
(r− 1)(k + 1)

2(kr + 1)

[︃
2I +

(r− 1)(k− 2)
k + 2r− 1

I⊗ I
]︃

and

k :=
3µ0 + λ0

µ0 + λ0
.

Proof. Due to the formula (4.63), it suffices to show

(C0 + CδSint)−1Cδ = P.

The first step is to verify the identity

(C0 + CδSint)−1Cδ =
bδ

b0 + bδt
I +

1
2

[︃
aδ

a0 + aδs
− bδ

b0 + bδt

]︃
I⊗ I

with

aδ := a1 − a0, a0 := λ0 + µ0, a1 := λ1 + µ1,

bδ := b1 − b0, b0 := µ0, b1 := µ1,
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and

s :=
2

k + 1
, t :=

k
k + 1

,

where the formula (4.64) for the interior Eshelby tensor is used. In a second step,
straightforward calculations reveal the equalities

bδ

b0 + bδt
=

(r− 1)(k + 1)
kr + 1

,
1
2

[︃
aδ

a0 + aδs
− bδ

b0 + bδt

]︃
=

(r− 1)2(k− 2)(k + 1)
2(kr + 1)(k + 2r− 1)

,

which conclude the proof.

Remark 4.8. It is worth mentioning that (4.67) coincides with the formula for the elastic
moment tensor Pω,r in [11, p. 98], which in turn has been checked to be identical with the
elastic moment tensor of Ammari and Kang in [9] and [10].

Remark 4.9. It can be observed in (4.64) and (4.67) that the isotropy of the elasticity tensors is
inherited to the interior Eshelby tensor Sint as well as the elastic moment tensor E.
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5.1. Introduction

This chapter addresses the solution of optimization problem (3.7), introduced in the
beginning of this thesis, by means of a numerical algorithm. For this purpose, we
consider the generic topology optimization problem

min
Ω∈O
J (Ω), (5.1)

where J : O → R is a shape functional on a set of admissible designs O ⊂ P(D),
which are contained in the power set of a Lipschitz domain D ⊂ R2. In order to
solve the minimization problem (5.1), a descent scheme is employed. The core of the
presented method is the topological gradient, see (4.1), serving as a descent direction in
the iterative algorithm. Since the topological gradient is not a gradient in the classical
sense, but rather a directional derivative, the selection of appropriate optimization
algorithms is not straightforward. This issue will be discussed in more detail later on.
Let us assume for this chapter that the topological gradient of objective functional J
exists for every design Ω ∈ O and every point of perturbation within D \ ∂Ω. The
essential question arises at this point, how it can be used for topology optimization
or, in other words, how it can be used to solve optimization problem (5.1). Two
fundamentally different approaches are available in the literature, which are described
briefly in the following.
The first approach is an extension of a shape optimization scheme. The field of shape
optimization addresses the minimization of shape functionals over a set of designs with
fixed topology. Hence, the admissible set is smaller compared to the admissible set in
the topology optimization case, where different topologies are allowed. A common
approach for the solution of shape optimization problems consists in a descent scheme,
where a descent direction is provided by shape sensitivities. These objects are a
measure for the sensitivity of a shape functional with respect to smooth boundary
perturbations of a given design Ω. For details on shape optimization, we refer the
reader to the monograph [129] by Sokołowski and Zolésio. One approach within the
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field of shape optimization is the level set method, based on the works of Osher and
Sethian, see [108] and [123]. Fundamental for this method is the implicit representation
of a given design Ω ∈ O by a level set function ψ : D → R via

Ω = {x ∈ D : ψ(x) > 0}, D\Ω̄ = {x ∈ D : ψ(x) < 0}.

The basic idea of the level set method is to control the evolution of the level set function
ψ by a Hamilton-Jacobi equation (cf. [123]) in a fictitious time, corresponding to the
iterations of an optimization algorithm. The velocity field in the Hamilton-Jacobi equa-
tion involves shape sensitivities, which are thus responsible for steering the evolution
of ψ. The shape sensitivities can be of different type. Allaire et al. investigated the
level set method using shape gradients, see [6]. Furthermore, approaches involving
second order shape information, known as shape Hessians, have been examined by
Hintermüller and Ring, see [88].
Numerical realizations have demonstrated that the level set method using shape sensi-
tivities is capable of solving the shape optimization problem satisfactorily. However,
topological changes of the generated designs can still decrease the value of the objec-
tive functional. The reason for this is that the algorithm is not capable of performing
topological changes. Thus, the topology of the designs, generated by the level set algo-
rithm, is highly dependent on the initial topology. This observation is not surprising,
considering the fact that only shape sensitivities are used in the optimization scheme.
In practice, the merging of holes is possible with the level set method. The creation of
new holes, at least for the two dimensional case, is impossible, see [6].
As a consequence of this observation, it becomes clear that a mechanism for topological
changes needs to be incorporated in the level set method. More precisely, the algorithm
has to be designed in such a way that a design after convergence is stationary in a
certain topological sense. The appropriate tool for this task has been discovered to
be provided by the topological gradient. An extension of the level set method using
shape sensitivities by the topological gradient has been investigated by Burger et al. in
[37] and Allaire et al. in [3]. The main idea of these approaches consists in choosing an
initial design, applying the level set method using shape sensitivities and assessing a
topological stationarity measure of the resulting design. The stationarity measure is
based on the topological gradient and will be discussed in more detail later on. If the
design is not topologically stationary, a change of topology is performed by the creation
of small holes. The locations of these holes are chosen according to the minimal values
of the topological gradient. Different strategies concerning the number of created holes
may be employed, where either one or several holes are created simultaneously. This
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procedure is repeated as long as topological changes decrease the objective functional.
Further, the topological gradient as a tool for automatized initialization prior to shape
optimization has been addressed by Hintermüller and Laurain in [83] and [85].
Besides the extension of the level set method with shape sensitivities, a second algo-
rithm, using topological gradients only, is available in the literature. Different variants
have been proposed by Hintermüller in [80] and Amstutz and Andrä in [14]. Both
works rely, as in the previously presented method, on an implicit description of a
design Ω ∈ O by a level set function ψ. In contrast to the previously described scheme,
this algorithm requires solely topological sensitivities. An advantage over the first
approach is therefore that the shape sensitivity analysis of objective functional J
becomes obsolete. It is important to notice that, even though this approach is referred
to as level set algorithm in the literature, it is fundamentally different from the standard
level set method from shape optimization. While in the case of shape optimization,
the evolution of the level set function is controlled by a Hamilton-Jacobi equation,
a fixed-point equation is employed in the topology optimization case. The second
algorithm, using only topological sensitivities, is chosen for solving the topology
problem at hand in this work. The reader, interested in the analysis of the algorithm,
is referred to [13].

5.2. Level Set Algorithm

The following definition is essential for the development of a topology optimization
algorithm and addresses the implicit representation of an arbitrary design via a level
set function.

Definition 5.1 (Level set function). Let a design Ω ∈ O be given. The level set function
ψ ∈ C0(D) associated to Ω is defined implicitly by the following relations:

Ω = {x ∈ D : ψ(x) > 0}, D\Ω̄ = {x ∈ D : ψ(x) < 0}. (5.2)

As every design Ω ∈ O can be represented by a level set function ψ = ψΩ ∈ C0(D),
we can formulate the optimal design problem (5.1) with the level set function as
optimization variable. Introducing the functional J̄ : C0(D) → R, which is defined
by the relation J̄ (ψΩ) = J (Ω), we can formulate the minimization problem (5.1) as
follows:

min
ψ∈C0(D)

J̄ (ψ).
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5. Topology Optimization Scheme

Having the development of a numerical optimization algorithm for the solution of
(5.1) in mind, the determination of a descent direction is a central task. The base for
this quantity will be provided by the topological gradient, which has been introduced
in the previous chapter, see Definition 4.1. Given a material distribution Ω ∈ O, we
recall that the topological gradient DTJ [Ω] : D \ ∂Ω → R indicates, if a change of
topology decreases the objective functional. This is the case for a point of perturbation
z ∈ D \ ∂Ω, if DTJ [Ω](z) < 0 holds true. Within this chapter, we assume the
topological gradient to be continuous in the material phase Ω as well as the weak
phase D \ Ω̄, which allows the pointwise evaluation in both phases. In the following,
we distinguish two cases:

1. Assume z ∈ Ω. According to definition (5.2), property ψ(z) > 0 holds true. In
order to change the topology in z, the sign of the level set function ψ has to be
reversed in a neighbourhood of z. As we assumed DTJ [Ω](z) < 0, the change
of topology can be achieved by adding a multiple of DTJ [Ω] to ψ. Note that this
situation corresponds to the creation of a weak component in the hard phase Ω.

2. Assume z ∈ D\Ω̄, i.e. ψ(z) < 0. In this case, a positive quantity needs to be added
to the level set function in order to reverse the sign of ψ in a neighbourhood
of z. As DTJ [Ω](z) < 0, a multiple of −DTJ [Ω] is a possible choice. The
interpretation of this case is the insertion of a hard component in the soft phase.

These observations motivate the following definition.

Definition 5.2 (Topological descent direction). Let the level set function ψ ∈ C0(D)

associated to a design Ω ∈ O be given and consider the topological gradient DTJ [Ω] of the
shape functional J : O → R. The topological descent direction gψ : D \ ∂Ω→ R is defined
as follows for every x ∈ D \ ∂Ω:

gψ(x) :=

⎧⎨⎩DTJ [Ω](x), ψ(x) > 0,

−DTJ [Ω](x), ψ(x) < 0.
(5.3)

Remark 5.1. Note that the topological descent direction is not defined explicitly on the interface
∂Ω between hard and weak phase in (5.3). In numerical realizations, however, explicit values
are determined via gradient filtering. This issue will be discussed in the subsequent chapter.

In the following, optimality conditions regarding the topological gradient are discussed.

Definition 5.3. Consider a shape functional J : O → R. A design Ω ∈ O is called stationary
in the topological sense, if the property
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DTJ [Ω](x) > 0 (5.4)

holds for all x ∈ D \ ∂Ω.

It is important to notice at this point that stationarity in the topological sense can not
be expressed via a vanishing gradient, as it is the case in standard theory of continuous
optimization. The reason for this is that the topological gradient is not a gradient
in the classical sense. As definition (5.4) indicates, it corresponds to the notion of
directional derivatives. The direction in this situation is Ωρ, the design Ω perturbed at
z with radius ρ > 0 small enough. Since the direction Ωρ, characterized by the point of
perturbation z, is an intrinsic part of the topological gradient, it is impossible to isolate
an object, behaving like a gradient from the theory of continuous optimization. Note
that this is a fundamental difference to the field of shape gradients. Here, a shape
gradient, independent of a direction can be isolated. This result regarding the shape
gradient is known as structure theorem, details can be found in [129].

Remark 5.2. The stationarity condition (5.4) provides a sufficient local optimality criterion. If
the property (5.4) is weakened to

DTJ [Ω](x) ≥ 0,

a necessary local optimality criterion is obtained.

The following result provides an equivalent characterization of stationarity in the
topological sense.

Lemma 5.1. Let the level set function ψ ∈ C0(D) associated to a design Ω ∈ O be given and
consider the topological descent direction gψ : D \ ∂Ω→ R. The design Ω is stationary, if and
only if the equation

sign[gψ(x)] = sign[ψ(x)] (5.5)

holds for all x ∈ D\∂Ω.

Proof. The assertion follows immediately from (5.4), the definition of the level set
function (5.2) and the topological descent direction (5.3).

Corollary 5.1. Assume that there exists c > 0, such that the following equation

ψ(x) = c · gψ(x) (5.6)

holds for all x ∈ D \ ∂Ω. Then, Ω is a stationary design.
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5. Topology Optimization Scheme

Having different characterizations of stationarity of a design Ω ∈ O or, equivalently, of
the associated level set function ψ ∈ C0(D) at hand, the construction of an algorithm
for the solution of (5.1) is investigated. First, we observe that the level set function cψ

represents the design Ω ∈ O, independent of the choice of c > 0. In order to prevent
the level set function to take large values, and thus aiming at numerical stability, the
following condition is imposed

∥ψ∥L2(D) = 1, (5.7)

where the L2-norm is employed. As a consequence, the stationarity condition (5.6) can
be written equivalently by the equation

ψ(x) =
gψ(x)
∥gψ∥L2(D)

, (5.8)

which is required to hold for all x ∈ D\∂Ω.

The next step is the construction of an update scheme for the iterative solution of the
optimal design problem (5.1), aiming at the stationarity condition (5.8). Therefore,
given an index i ∈ N, we consider a current iterate ψi ∈ C0(D) with the topological
descent direction gψi and assume ∥ψi∥L2(D) = 1. The aim is now the construction of
an update ψi+1 based on the level set function ψi and the descent direction gψi , which
is again required to fulfill the equality ∥ψi+1∥L2(D) = 1 due to (5.7). Since the main
intention regarding the update step is to achieve a decrease of the objective functional,
i.e. J̄ (ψi+1) < J̄ (ψi), we construct ψi+1 by adding a multiple of gψi to the current
iterate ψi. Note that the topological descent direction has been introduced for exactly
this purpose, see the discussion in the beginning of this section. Hence, we define the
update of the current level set function as follows

ψi+1 := αiψi + βi
gψi

∥gψi∥L2(D)
,

with coefficients αi, βi ∈ R+
0 controlling the trade-off between current level set function

and descent direction. Within an iterative scheme, the coefficients αi and βi need to be
chosen appropriately in order to obtain a decrease of the objective functional. Based
on a parameter κi ∈ (0, 1] and the angle

θi := arccos

[︄
(ψi, gψi)L2(D)

∥gψi∥L2(D)

]︄
(5.9)

between the level set function ψi and the descent direction gψi , we set the coefficients
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as follows

αi :=
sin((1− κi)θi)

sin(θi)
, βi :=

sin(κiθi)

sin(θi)
, (5.10)

which guarantees the required property ∥ψi+1∥L2(D) = 1. For details regarding the
derivation of αi and βi using the rules of trigonometry, we refer the reader to [14] or
[62]. Employing (5.10), we obtain the following update scheme

ψi+1 =
1

sin(θi)

[︄
sin((1− κi)θi)ψi + sin(κiθi)

gψi

∥gψi∥L2(D)

]︄
, (5.11)

where κi can be interpreted as a line search parameter. Note that θi vanishes, if the
optimality condition (5.8) is satisfied. Hence, θi can be used as a stationarity criterion
in the topology optimization algorithm. The resulting algorithm can be interpreted as
a descent scheme, where gψ provides a descent direction, and is sketched in Algorithm
5.1.

Algorithm 5.1: Level set-based topology optimization algorithm
Input: Initial design Ω0, tolerance ϵθ

Output: Solution Ω∗ of topology optimization problem (5.1)
1 Generate initial level set function ψ0 from Ω0
2 Compute the descent direction gψ0 according to (5.3)
3 Compute the angle θ0 according to (5.9)
4 Set i← 0
5 while θi ≥ ϵθ do
6 Set κ ← 1, ψtemp ← ψi,Jtemp ← J̄ (ψi)
7 while Jtemp ≥ J̄ (ψi) do

8 Update: ψtemp = 1
sin(θi)

[︃
sin((1− κ)θi)ψi + sin(κθi)

gψi
∥gψi∥L2(D)

]︃
9 Objective evaluation: Jtemp ← J̄ (ψtemp)

10 Step reduction: κ ← κ
2

11 Set ψi+1 ← ψtemp
12 Compute the descent direction gψi+1 according to (5.3)
13 Compute the angle θi+1 according to (5.9)
14 Set i← i + 1;

15 Reconstruct design Ω∗ from level set function ψi
16 return Ω∗

The update scheme (5.11) can be derived alternatively via an ordinary differential
equation, which is discussed in the following remark.
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Remark 5.3. Let us introduce a fictitious optimization time t ≥ 0, corresponding to a
continuous version of a discrete iteration index. Further, let us replace the level set function
ψ(x) by ψ(t, x) and analogously the descent direction gψ(x) by gψ(t, x). Since gψ is an
indicator for topological stationarity, a natural choice of controlling the dynamics of ψ is the
following ordinary differential equation:

ψ(0, ·) = ψ0,
∂ψ

∂t
= gψ, ∀t > 0, (5.12)

where ψ0 represents the initial design. Note that a requirement for (5.12) to settle in a stationary
state is ∂ψ

∂t = 0. This is the case, if gψ vanishes. However, this condition contradicts property
(5.4). For this reason, the ordinary differential equation (5.12) is extended by

∂ψ

∂t
= gψ −

(ψ, gψ)

∥ψ∥2 ψ, (5.13)

where the right hand side is the orthogonal projection of gψ on the orthogonal complement of
ψ. It can be verified that the level set function in (5.13) has unitary norm for every t ≥ 0.
Moreover, if the right hand side of (5.13) vanishes, the stationarity condition (5.6) is fulfilled,
see [14]. An explicit Euler scheme on the unit sphere for (5.13) leads to the update regime
(5.11).

We mention that two assumptions concerning the problem setting have been made
in this chapter. First, the hold-all domain D has been assumed to be a subset of the
two-dimensional space. Second, the distribution of precisely two materials has been
addressed. The following remark deals with the generalization of these restrictions.

Remark 5.4. Algorithm 5.1 can be generalized straightforwardly to the three-dimensional case,
if the corresponding topological gradient is available. For one iteration, this has been done by
Gangl and Sturm in [71]. Moreover, the level set algorithm can be extended in order to optimize
the distribution of more than two materials. For details regarding this topic, the interested
reader is referred to [66] and [118].
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6. Numerical Realization

6.1. Introduction

The aim of this chapter is the numerical solution of the regularized optimal design prob-
lem (3.7) using the level set algorithm from the previous chapter. Since the numerical
solution comprises replacing the infinite-dimensional problem by a finite-dimensional
approximation, all objects involved in the optimization scheme are required in discrete
form. Therefore, the discretization of the level set function (5.2), the topological descent
direction (5.3) and the objective functional in (3.7) will be the subject of investigation
within this chapter.
Before we begin with the discretization of all relevant objects, the main ideas regarding
the numerical realization will be sketched. In particular, the relation between the
infinite-dimensional problem and its discrete counterpart will be discussed briefly. Further,
the specific content of this chapter with regards to this greater context will be clarified.
Let us denote the set of admissible continuous designs by O as in (2.19) and let us
refer to the set of discrete designs by Oh for a discretization parameter h > 0. The exact
definition of a discrete design will be omitted here for the sake of simplicity and stated
later on. It may be useful for the intuition, however, to think of discrete designs as sets
with a piecewise linear boundary, which is bound to a triangulation of the underlying
hold-all domain. Let us consider a sequence of discrete designs

(Ωh)h>0, (6.1)

with Ωh ∈ Oh denoting a solution of the finite-dimensional approximation of problem
(3.7). Note that sequence (6.1) is generated by a numerical algorithm in a practical
setting. The existence of solutions to the discrete design problems is assumed at this
point, which is reasonable since existence for the continuous case has been addressed
in Chapter 3 and properties of infinite-dimensional objects are typically inherited to
the discrete case. A question, which arises naturally at this point, is whether sequence
(6.1) converges towards a continuous design for a vanishing discretization parameter.
In other words, one might ask if there exists a design Ω∗ ∈ O with
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Ωh → Ω∗, if h→ 0 (6.2)

for an appropriately chosen norm. A crucial task, provided that convergence (6.2)
holds, is to identify properties of design Ω∗. The most important question at this point
is probably, whether Ω∗ is a local minimum of the continuous optimal design problem
(3.7). This property is clearly a requirement for the design of a numerical optimization
scheme. An important aspect within these considerations is the limiting behavior of
the associated discrete states uh ∈ Vh, where Vh denotes the discrete state space for
discretization parameter h > 0. Note that a discrete design Ωh and discrete state uh

are connected via the equation

aΩh(uh, vh) = lΩh(vh), ∀vh ∈ Vh, (6.3)

which is the discrete variant of state equation (2.10). The reader, who is familiar with
the finite element method, will have noticed that the bilinear form and linear form in (6.3)
are not constant, but vary with Ωh. This situation is commonly known as variational
crime, see for instance [35]. It should be mentioned that these considerations are
classical questions from the field of numerical analysis.
The preceding considerations show that the numerical realization comprises several
complex aspects concerning theory as well as practice. Since the investigation of all
different questions exceeds the scope of this thesis, we will not examine the limiting
behavior (6.2) of a sequence of discrete designs (6.1) for a vanishing mesh size. Instead,
the scope of this chapter is the practical algorithmic computation of a discrete solution
for a fixed discretization parameter. This is a crucial step towards the numerical
experiments, which will be conducted and discussed in the following chapters. We
mention at this point that, to the author’s best knowledge, there are no works available
dealing explicitly with the numerical realization of algorithms for solving stress-
constrained topology optimization problems. Since this aspect is crucial for a practical
realization, in particular for the presence of pointwise stress constraints, this chapter
aims at closing this gap in the literature.
We will begin by discussing the numerical solution of the involved partial differential
equations, which are the direct and adjoint state equations. This is a fundamental
step in the evaluation of the objective functional as well as the computation of the
topological descent direction. The major focus at this point will be the assembly
process and the discrete elasticity tensor, especially with regards to the presence of
stress constraints. Having the discrete direct and adjoint state at hand, we can address
the discretization of all objects which appear directly in the optimization algorithm.
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In this step, the computation of the topological gradient will turn out to be crucial.
Further, we discuss several aspects concerning the practical implementation of the
developed method within an object-oriented framework on a computer.

6.2. Numerical Solution of Interface Problems

An essential part of the gradient-based algorithm for solving optimal design problem
(3.7) is a numerical scheme for the solution of the involved partial differential equations.
The problems to be solved are the state equation (2.10) and the adjoint equation (4.44),
which form the basis for the computation of the objective functional as well as the
topological gradient. In this section, we address the discretization of both problems
as well as the assembly of the resulting discrete systems via the finite element method.
The case of mesh elements, which are intersected by the material interface, will be of
particular interest. For a thorough background on the numerical solution of partial
differential equations with the finite element method, the reader is referred to the
monographs [34], [35] and [46]. Let us assume within this chapter that the hold-all
domain D ⊂ R2 is a polygonal Lipschitz domain and Th an admissible triangulation
of D, see [34, Definition 5.1] for details.

Remark 6.1. It is essential for an admissible triangulation that the underlying domain is of
polygonal shape. Clearly, this assumption is unrealistic when it comes to real-world applications,
for instance in the case of an electrical machine. Note that the polygonal domain D may be
imagined as an approximation of a real geometry, facilitating the mathematical treatment. For
details on the finite element method regarding domains with non-polygonal boundaries, we refer
the reader to [34] or [22].

Finite Element Approach

We choose the vector-valued finite element space of second order

Vh := S2(Th)
2 := {v ∈ C0(D, R2) : v|T ∈ P2(T, R2), ∀T ∈ Th} (6.4)

as a finite-dimensional conformal approximation of the Sobolev space V := H1(D, R2)

with nodal basis {ϕ1, ..., ϕM}, where M := dimVh. For the definition of the nodal basis
of a Lagrangian finite element space, we refer the reader to [34, Definition 5.5].

Remark 6.2. The choice of second order finite elements is a common procedure in structural
engineering and provides an excellent trade-off between accuracy and computational effort, in
particular with regards to stress analysis.
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We will consider an arbitrary design Ω ∈ O, representing the material distribution
within the hold-all domain D, throughout this section in order to discuss the discretiza-
tion of the relevant interface problems. Note that we explicitly choose a continuous
design for the sake of generality, since the set of discrete designs, which will be
introduced in the subsequent section, is contained in the set of continuous designs
O. Nevertheless, in the numerical realization of the level set algorithm, the state and
adjoint equation will of course be solved with respect to a given discrete design. We
mention at this point that the discretization of a design, which represents the control
variable of problem (3.7), and the state are not necessarily related and can be chosen
independently. The discrete state

uh =
M

∑
i=1

Uiϕi ∈ Vh,

with scalars Ui ∈ R, i = 1, ..., M, denotes the unique solution of the following system
of linear equations

M

∑
i=1

UiaΩ(ϕi, ϕj) = aΩ(uh, ϕj) = lΩ(ϕj), 1 ≤ j ≤ M, (6.5)

where the bilinear form aΩ and the linear form lΩ have been defined in (2.8) and (2.9),
respectively.

Remark 6.3. Note that the discretization of the state equation (2.10) is addressed in (6.5).
Regarding the following discussion, the adjoint equation (4.44) may be considered just as
well by replacing the linear form lΩ by the corresponding right hand side of (4.44), where
transposing the bilinear form aΩ(·, ·) in (6.5) is not necessary due to the symmetry of the
elasticity tensor.

This system of linear equations can be represented equivalently by

AΩU = bΩ, (6.6)

with vector U = (U1, ..., UM)T ∈ RM, stiffness matrix AΩ ∈ RM×M, defined by

Aij
Ω := aΩ(ϕi, ϕj), 1 ≤ i, j ≤ M, (6.7)

and load vector bΩ ∈ RM, which is defined similarly by

bj
Ω := lΩ(ϕj), 1 ≤ j ≤ M. (6.8)
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It can be observed immediately that the solution of the discrete system (6.5) is equivalent
to the solution of the system of linear equations (6.6) in RM. Concerning techniques for
the solution of the discrete system, in particular the advantages of direct and indirect
solvers, the reader is referred to [34].

Accuracy of Discrete Approximations

Let us proceed by focusing on the assembly process of stiffness matrix AΩ for Ω ∈ O
with interface Γ := ∂Ω. Note that the assembly of the load vector bΩ follows the same
procedure. For 1 ≤ i, j ≤ M, the corresponding entry of the stiffness matrix reads

Aij
Ω = aΩ(ϕi, ϕj) =

∫︂
D

CΩϵ(ϕi) : ϵ(ϕj)dx = ∑
T∈Th

∫︂
T

CΩϵ(ϕi) : ϵ(ϕj)dx, (6.9)

where the elasticity tensor is defined by

CΩ = C0χΩ + C1χD\Ω. (6.10)

It can be observed on the discrete level that, given a quadrature rule {(wp, xp)}P
p=1 on T

with weights wp ∈ R and integration points xp ∈ R2 for 1 ≤ p ≤ P, an approximation
of the corresponding summand in (6.9) reads

∫︂
T

CΩϵ(ϕi) : ϵ(ϕj)dx ≈
P

∑
p=1

wpCΩ(xp)ϵ(ϕi(xp)) : ϵ(ϕj(xp)). (6.11)

If a mesh element T ∈ Th is entirely occupied by phase Ω or its complement D \Ω,
the assembly on T is straightforward due to the smoothness of C0 and C1. If, however,
T is intersected by the interface Γ, we have to face the discontinuity of CΩ on T. The
assignment of values of the material coefficient CΩ in this situation will be the subject
of the following discussion. An example of an intersected element is provided in
Figure 6.1.

Figure 6.1.: Intersected triangle T with interface Γ and six quadrature points.
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First, the effect of a discontinuous material coefficient within the interior of a mesh
element on a numerical algorithm needs to be clarified. Essentially, the answer is in
the accuracy of approximations of the continuous state variable, being generated by a
numerical scheme. In order to specify this thought, we consider the solution of the
continuous problem (2.10), which is denoted by u ∈ V , as well as the discrete state
uh ∈ Vh, which is the solution of the discrete problem (6.5). A key question at this
point is, given a discretization parameter h > 0, how close the discrete solution uh is to
the exact solution u or, formulated slightly different, how small parameter h needs to
be chosen in order to achieve a certain approximation accuracy.

Remark 6.4. Note that the term accuracy in this context is to be understood as the convergence
rate ∥u− uh∥= O(hα) of sequence (uh)h for a vanishing discretization parameter h > 0 and
exponent α > 0. Clearly, this convergence rate is determined by the specific choice of the
numerical scheme, which is employed for generating the discrete solutions uh ∈ Vh, where
parameter h refers to the mesh size of the underlying triangulation.

Let us assume for a moment that the material coefficient is globally smooth in the entire
domain D and the discrete solution belongs to uh ∈ Sk(Th)

2 for k ≥ 1. In this case,
standard finite element theory, see for instance [34, Theorem 6.4], offers the a priori
estimate

∥u− uh∥V= O(hk), (6.12)

if the solution u belongs to the space Hk+1(D, R2). Consequently, the convergence rate
of the approximative solutions is determined by the regularity of the true solution and
can be improved by increasing the order k ∈N of the finite element space.
This estimate, however, is not valid in the case of interface problems with intersected
mesh elements. Indeed, the a priori estimate

∥u− uh∥V= O(h1/2), (6.13)

holds in this situation, see for instance [20]. The most interesting implication of this
estimate is probably that the convergence rate of a standard finite element scheme can
not be improved by increasing the polynomial degree k. It is important to note that
this problem does not occur, if the interface Γ is resolved by the mesh Th, see [21]. This
is the case, if the interface is aligned with the mesh faces and there is no occurrence of
intersected elements.
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Strategies for the Assignment of Material Coefficients

Having the convergence rates (6.12) and (6.13) in mind, we come back to the assignment
of material coefficients on intersected elements within the assembly of the stiffness
matrix. We will discuss several assignment strategies with a major focus on an accurate
stress computation within the optimization algorithm, which is of utmost importance
for obtaining realistic results in the subsequent chapters. Essentially, there are three
options for dealing with the discontinuity of the material coefficient, if the triangulation
as well as the basis of the finite element space are assumed to be constant. We will
briefly introduce and describe the three options in the following and discuss the effect
on the stress constraints afterwards.

1. Assignment based on element centroid
The first option is to assign an intersected element entirely to one of the two
material phases based on the position of its centroid. This procedure has been
performed in [65] within a topology optimization scheme based on a level set
approach. Note that this strategy leads to a jagged interface. A visualization of
this assignment strategy is provided by the left graphic in Figure 6.2.

2. Harmonic averaging
The second option consists in an averaging of the material coefficient on inter-
sected elements. This strategy is by far the most common choice in the field of
level set-based design optimization, see for instance [6] and [14], offering the
advantage of optimal convergence rates of finite element approximations, see
[63]. Unfortunately, this procedure is not physically reasonable in every situation.
For the class of fluid-structure-interaction problems for instance, the averaging of
the material coefficient corresponds to the mixing of fluid and solid. We refer to
the middle graphic in Figure 6.2 for an illustration.

3. Discontinuous material coefficient
The third strategy is to perform the assembly in a standard fashion, accepting
the discontinuity of the elasticity tensor and hence the low convergence rate of
finite element approximations. This assignment strategy is visualized by the right
graphic in Figure 6.2.
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Figure 6.2.: Material assignment strategies for intersected element. Left: Assignment
based on element centroid. Middle: Harmonic averaging. Right: Discontin-
uous material coefficient.

Having the three options for material assignment at hand, the question arises, which
one should be chosen within an algorithm for the solution of an optimal design problem
with stress constraints. First, let us recall that the aim of incorporating stress constraints
into the optimal control problem is the prevention of material failure. In other words,
stress constraints are used to quantify, and thus be able to control, material failure.
Further, it is known that in many situations failure occurs initially at the boundary of
a loaded structure and propagates into the interior. An example for this phenomenon
is crack initiation and propagation, see the discussion in Section 2.3 for further details.
Consequently, as the boundary of the loaded structure is represented by the interface Γ
in this work, it is important to guarantee an accurate stress computation in this area. In
the following, the different strategies of material assignment are assessed with respect
to the computation of stresses at the interface. Note that the same elasticity tensor is
employed within the partial differential equation and the computation of stresses in a
postprocessing step.
As mentioned above, one has to face a jagged interface if the first material assignment
strategy is chosen. This procedure, stemming essentially from a manipulation of the
interface, leads to artificial stress peaks at the interface. Consequently, a reasonable
design might be rejected within the update step of the optimization algorithm due to a
jagged distortion of the interface.
In contrast, the second strategy may lead to unrealistic low stresses in intersected
elements. This is a consequence of the averaging procedure and the weak phase
approach, which has been described in Section 2.1. As a result, a design in this
situation can be accepted by the update regime of the optimization algorithm, although
its true stress values at the interface are much larger than predicted.
As a result, the assembly in standard fashion is selected in this thesis. Being aware of the
convergence rate (6.13) of an finite element approximation, this procedure is chosen

80



6.3. Discrete Optimization Algorithm

due to its comparable accurate stress computation. The low convergence rate will be
taken into account in the numerical experiments by choosing an appropriately fine
triangulation.
It is important to note that the different strategies above have been developed under
the premise of a fixed triangulation and a fixed basis of the finite element space. Of course,
methods with optimal convergence rates are available if either the triangulation or the
basis of the finite element space are allowed to be modified in order to resolve the
interface. Several approaches for the numerical solution of interface problems have
been developed in the past and will be summarized in the following. First, the category
of fitted methods will be described briefly. All approaches in this category rely on a
mesh modification during the numerical solution of interface problems. One approach
to deal with moving interfaces, which is widely used in shape optimization, consists
of manipulating a given mesh by moving its vertices. This method is commonly
referred to as mesh morphing in the literature. Further approaches are the local mesh
refinement at the interface as well as the generation of a completely new mesh, which
a priori resolves the interface. Moreover, several approaches have been proposed for
numerically treating interface problems by the modification of the basis of finite element
spaces. These approaches are summarized under the category of unfitted methods. The
extended finite element method relies on the enrichment of the finite element space by
additional basis functions, see e.g. [24]. Originally, the extended finite element method
has been developed for the numerical investigation of crack propagation within the
field of elasticity. A similar approach is provided by the immersed finite element method.
In contrast to the extended finite element method, the number of basis functions is kept
constant and the existing basis functions with support at the interface are modified.
We refer the reader to [98] for details. Another approach has been developed in [64]
in the context of fluid-structure interaction. This method relies on a local adaptation
of the finite element space in an implicit parametric way for a mesh consisting of
quadrilaterals. Note that this approach has been modified for the case of triangles and
applied in the context of shape and topology optimization in [65].

6.3. Discrete Optimization Algorithm

Having discussed the approximation of the direct and adjoint state, the next step is
the numerical computation of the level set function, the topological gradient and the
objective functional.
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Discrete Designs

Since the level set function is the basis for computing the descent direction and evaluating
the objective functional, its discretization will be discussed first. Note that the relation
between designs and level set functions has been introduced in (5.2) in the previous
chapter. The space

Wh := S1(Th), (6.14)

where Th is the same triangulation as in the previous section, is chosen for the
discretization of the level set function. Hence, the discrete state and the level set
function share the identical triangulation. Due to the polynomial order of the space
Wh, the interface

Γh = {x ∈ D : ψh(x) = 0}

of a discrete level set function ψh ∈ Wh is a polygonal chain. More precisely, the interface
is continuous across edges and a line segment on every intersected mesh element.

Remark 6.5. It is important to see that space (6.14) is not a priori determined for the
discretization of the space of level set functions, but is chosen explicitly at this point. The first
reason for choosing (6.14) is the global continuity of functions ψh ∈ Wh, which is necessary for
defining a meaningful interface. Moreover, the polynomial degree is chosen as low as possible in
order to reduce the computational burden in a practical implementation. Note that the values
of the level set function on the nodes of space Wh, which coincide in this situation with the
vertices Nh of mesh Th, are the optimization variables of the level set algorithm. Lastly, an
interface consisting of line segments can be resolved by a local mesh refinement using standard
elements.

For any discrete level set function ψh ∈ Wh, the associated discrete design Ωh ⊂ D is
determined as in the continuous setting by

Ωh = {x ∈ D : ψh(x) > 0}. (6.15)

Consequently, the set of discrete designs can be defined as follows

Oh := {Ωh ⊂ D : ∃ψh ∈ Wh with Ωh = ψ+
h }, (6.16)

where ψ+
h := {x ∈ D : ψh(x) > 0}.

Remark 6.6. Note that the set Oh is contained in the set of continuous designs O if the
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uniform Lipschitz property in (2.19) is satisfied. It can be verified that this property is given,
if the angle of interface Γh is bounded away from zero on each intersected edge. As it can
be observed in (6.16), we did not incorporate such a condition in the definition of Oh. We
recall at this point that the Lipschitz property in the continuous case has been necessary for
guaranteeing compactness of O and certain effects, such as boundary oscillations, may occur
for the limit of a sequence in O. Since we did not observe any negative effects in the numerical
experiments, however, the incorporation of a condition concerning the Lipschitz property has
not been necessary. We mention at this point that the use of a fixed triangulation within the
optimization process prevents oscillations of the boundary.

Discontinuity of Topological Descent Direction

For the remaining section, we consider an arbitrary objective functional J : O → R,
which allows a topological asymptotic expansion as defined in Definition 4.1. In
the optimization algorithm, which has been introduced in the previous chapter, the
topological descent direction is responsible for generating updates of the level set function.
The descent direction gψ : D \ ∂Ω→ R is repeated in the following for convenience

gψ(x) =

⎧⎨⎩DTJ [Ω](x), ψ(x) > 0,

−DTJ [Ω](x), ψ(x) < 0,

where ψ : D → R is the level set function and DTJ [Ω] : D \ ∂Ω → R denotes the
topological gradient of objective functional J , which has been specified in Definition
4.1. We proceed with the discretization of the topological descent direction, which is
an essential step in the realization of the level set-based optimization scheme. The
first aspect to be addressed is the choice of a suitable discrete space for the descent
direction. This choice is determined by the discrete space of the level set function,
since the DOF vectors need to be added within the update step of the optimization
scheme. Consequently, the discrete descent direction needs to be an element of the
space Wh, as it is the case for the level set function. The central task is therefore to
define the values of the discrete descent direction at the nodes of the first order finite
element spaceWh, which coincide with the mesh vertices.
Let us recall that the gradient of the direct and adjoint state form the basis of the
topological gradient, see for example expression (4.45) for the stress-based objective
functional (4.9). Further, the computation of the discrete state uh ∈ Vh and the discrete
adjoint state ph ∈ Vh have been addressed in the previous section. It can be observed
immediately that the gradient of the discrete state belongs to the space
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∇uh ∈ {w ∈ L2(D, R2×2) : w|T ∈ P1(T, R2×2), ∀T ∈ Th},

which holds analogously for the discrete adjoint state. Hence, we can see that the global
continuity gets lost with differentiation in the case of standard Lagrange finite element
functions. Consequently, the discontinuity of ∇uh and ∇ph at mesh vertices and edges
needs to be taken into account in the computation of the discrete descent direction
at mesh vertices. Fundamental for the definition of a discrete descent direction is the
observation that smoothness of the direct and adjoint state is given in the interior of
mesh elements. Therefore, the central question at this point is the following: How
can the discrete topological descent direction at a mesh vertex be defined based on
information of values in the interior of the surrounding mesh elements?
Interestingly, this question is of importance in the postprocessing of certain quantities,
for instance strains and stresses, in finite element software as well. The step of ob-
taining a continuous version of the discontinuous gradient ∇wh, where wh ∈ Sk(Th)

2

describes the displacement field, is commonly referred to as gradient recovery in the
context of finite elements. The reader is referred to [142] for details concerning the
practical realization and to [1] for a rather theoretical background. Note that the conti-
nuity of strains and stresses is necessary for a reasonable visualization. The procedure
for gradient recovery usually comprises the following steps. First, the order of the
Lagrange finite element space for the field quantity wh is chosen, which determines
the set of mesh nodes uniquely. Second, the values of the gradient ∇wh on each node
is computed based on the values of the gradient within the neighborhood of the node.
Third, the total function can be computed, and hence visualized, by interpolation in
the chosen finite element space. Clearly, the second step is crucial and determines the
quality of the recovered gradient. Moreover, this step can be performed in various
manners and is not determined a priori. A simple and straightforward strategy, which
is proposed in the literature, see for instance [142], is the evaluation of ∇wh in the
node of interest on each neighboring element and an averaging over all values. Note
that for polynomial orders k > 1, this procedure is only necessary for nodes, which are
located on the boundary of mesh elements. This strategy provides the first approach
for the investigation in this chapter.

Strategies for Discretization of Topological Descent Direction

Let us come back to the discretization of the topological descent direction and formalize
the setting appropriately in order to formulate the computation strategies. We consider
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a vertex z ∈ Nh and the surrounding element patch Pz = {Tz
1 , ..., Tz

M} ⊂ Th. As
mentioned previously, the first strategy evaluates the descent direction in vertex z on
each patch element and averages over the computed values. For given discrete level
set function ψh ∈ Wh, the discrete descent direction gh,1 ∈ Wh in vertex z is defined as
follows

gh,1(z) :=
1
M

M

∑
i=1

gψh |Ti(z), (6.17)

where gψh is defined as above, see (5.3).
Let us continue by proposing a second strategy for the recovery of the discrete descent
direction. The main motivation behind the introduction of a second computation
strategy is the exploitation of information in a neighborhood of vertex z ∈ N. Note
that so far, solely values of gψh in vertex z have been used. Essentially, we propose
to select a set of sampling points {xi

1, ...xi
P} on each element Tz

i for 1 ≤ i ≤ M and
average over all patch elements and all sampling points within those elements. The
discrete descent direction gh,2 in this situation is defined as follows in vertex z:

gh,2(z) :=
1

MP

M

∑
i=1

P

∑
p=1

gψh(xi
p). (6.18)

Remark 6.7. The averaging process in (6.17) and (6.18) can be interpreted as a filter for the
discrete descent direction. Definition (6.18) can be generalized straightforwardly by averaging
over all sampling points within a given filter radius R > 0, instead of averaging over the
sampling points within the neighboring element patch.

The practical implementation of a numerical scheme requires the consideration of its
computational cost. This aspect is addressed in the following remark for both proposed
strategies.

Remark 6.8. It can be observed that only one evaluation per element of the descent direction
gψh is necessary in (6.17). In contrast, the topological descent direction needs to be evaluated in
each sampling point within an element in the case of strategy (6.18). Note that the number of
sampling points P > 1 needs to be chosen carefully in order to keep the computational effort in
a reasonable order. This is particularly important in the case of stress-based objectives due to
the numerical integration, which needs to be performed in each evaluation of the topological
gradient (4.45).

An important aspect in the comparison of strategy (6.17) and (6.18) is the consideration
of the interface Γh in the computation of the descent direction. To be more precise,
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let us consider the situation of an element patch surrounding vertex z ∈ Nh, which is
intersected by the interface. This setting is visualized in the Figure 6.3.

Figure 6.3.: Element patch surrounding vertex z ∈ Nh, which is intersected by Γh.

It is straightforward to see that the first recovery strategy (6.17) is not affected by the
presence or absence of the interface Γh in element patch Pz. In the second recovery
strategy (6.18) however, the change of material phases is considered via the sign
manipulation of the topological gradient in (5.3). Intuitively spoken, the information
about the interface Γh being close to vertex z is encoded in strategy (6.18). The
difference between the two recovery strategies is visualized in Figure 6.4.

Figure 6.4.: Comparison of recovery strategies for discrete descent direction in vertex
z ∈ Nh. Left: Strategy (6.17). Right: Strategy (6.18).

The influence of the gradient recovery strategy has been studied via numerical ex-
periments and the results are visualized in Figure 6.5. We consider the well-known
minimum compliance minimization under a volume constraint

min
Ω ∈ O

C(Ω) =
∫︂

ΓN

g · uΩdS

s.t.
∫︂

D
χΩdx ≤ V,

(6.19)

where the compliance has been introduced in (2.14), uΩ denotes the solution of the
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state system (2.10) and V > 0 is the volume bound. Note that we study the minimum
compliance problem instead of problems with stress constraints at this point, since the
results allow a clear demonstration of the main effects concerning the gradient recovery
strategy. At the end of this section, however, we will discuss the different strategies
with regards to problems involving stress constraints. Regarding the experiments, we
chose the L-Beam geometry as geometrical domain and the absence of volume forces.
The iterates in Figure 6.5 have been generated using the level set-based optimization
scheme from the previous chapter, where the topological gradient of the compliance
term is provided by (4.54).
Two major effects can be observed in Figure 6.5. First, recovery strategy (6.17) leads to
the presence of various small and isolated material parts, as it can be seen in the case of
iteration eight and ten. This effect is present during the optimization procedure and
vanishes, if the algorithm is close to convergence. In contrast, the designs generated by
recovery strategy (6.18) are less affected by small and isolated parts. For iteration eight,
a large isolated material part can be observed. From iteration ten on, however, the
designs are connected. The second major effect concerns the smoothness of the interface.
Clearly, a higher degree of smoothness can be observed in case of recovery strategy
(6.18). The achieved smoothness is particularly impressive for the final iteration. Note
that both observed effects are closely linked to the previously discussed capability of
the employed recovery strategy in detecting the interface.
Most importantly for the aim of this thesis, however, is the observation that only
recovery strategy (6.18) is successful in the presence of local stress constraints. Numerical
tests have shown that the optimization algorithm stops after a few iterations, if
strategy (6.17) is used for the discretization of the topological descent direction. A
possible explanation for this observation is the importance of a smooth interface in the
presence of local stress constraints. As a result of the preceding studies, all numerical
experiments in the following chapters will be conducted with recovery strategy (6.18).
We mention that a different strategy for gradient recovery, which might be interesting to
investigate for the solution of problems involving stress constraints, has been proposed
in [15].
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Figure 6.5.: Effect of gradient recovery strategies for iterations 8, 10 and 52. Left: First
option. Right: Second strategy.
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6.4. Implementation Remarks

This section provides useful hints concerning an efficient implementation, in particular
with regards to the topological gradient (4.45).

Tensor Construction

The first aspect to be considered is the handling of isotropic fourth-order tensors,
which are introduced rigorously in the following definition.

Definition 6.1. A fourth-order tensor A is called isotropic, if there exist a1, a2 ∈ R such that
the identity

A = a1I + a2I⊗ I

holds with I denoting the fourth-order identity tensor and (I⊗ I)M := tr[M]I for a matrix
M ∈ Rd×d.

We assume the case of isotropic material and an inhomogeneity of circular shape in
order to exploit the closed form expressions, which have been derived in Section 4.5.
In particular, we are interested in implementing the elastic moment tensor

EM = |ω|C0(C0 + CδSint)−1CδM,

with a matrix M ∈ Rd×d
sym, as well as the term

ϵ(vX)(x) = −S(x)(C0 + CδSint)−1CδX,

with a matrix X ∈ Rd×d
sym, which is the strain of the solution of problem (4.31). Note

that Eshelby’s tensor S is given in (4.58) in abstract form.
Due to the assumed material isotropy and the circular inhomogeneity, Eshelby’s tensor
S can be stated in closed form, see (4.64) and (4.66). Consequently, the expressions
above can be entirely computed in closed form prior to the implementation. This has
been already done for the elastic moment tensor in (4.67). Note that this is the case for
most publications as well, see for example [17] and [99].
The reader, who is experienced in software development and practical implementation
of algorithms, will have noticed how error-prone this procedure can get. Therefore,
despite the possibility of calculating the elastic moment tensor and the solution of the
free space transmission problem by hand, we recommend a different procedure at this
point. An elegant way is the separation of tensor representation and algebraic operations
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on the set of isotropic tensors within an object-oriented framework.
The basic idea is quite simple and natural. In a first step, the isotropic fourth-order
tensors C0, C1 and Sint need to be initialized. Note that every isotropic tensor is entirely
determined by two real numbers by definition. The required objects E and ϵ(vX) are
then constructed by applying algebraic operations, more precisely addition, multipli-
cation and inversion, on these tensors. It should be mentioned at this point that the
exterior Eshelby tensor Sext requires special treatment, as it is not representable as
isotropic tensor in standard form, see (4.66).
In the following, the two required classes are described briefly. First, a class repre-
senting isotropic tensors of fourth order needs to be implemented. Each instance of
this class is initialized by two doubles a1, a2 ∈ R. In order to facilitate the algebraic
operations, which will be part of the second class, a conversion of isotropic tensors to
a different representation is assigned to the first class. For this purpose, we introduce
the isotropic fourth-order tensors

J :=
1
d

I⊗ I, K := I− J, (6.20)

where d ∈N denotes the spatial dimension.

Remark 6.9. Given a matrix M ∈ Rd×d, the decomposition

M = JM + KM

can always be performed by definition of J and K. Note that JM is usually referred to as
volumetric part and KM is known as the deviatoric part of M.

The following lemma provides rules for the conversion between different tensor
representations.

Proposition 6.1. Let an isotropic tensor

A = a1I + a2I⊗ I

be given with a1, a2 ∈ R. Using the tensors J and K, A can be represented as follows:

A = (da2 + a1)J + a1K. (6.21)

Conversely, an isotropic tensor

B = b1J + b2K
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can be represented in standard form as follows:

B = b2I +
b1 − b2

d
I⊗ I. (6.22)

Proof. The identity (6.21) follows from basis algebraic rules

A = a1I + a2I⊗ I = a1I + a2dJ + a1J− a1J

= a1(I− J) + a1J + a2dJ = a1K + (a1 + a2d)J,

as it is the case for equality (6.22):

B = b1J + b2K = b1J + b2I− b2J = b2I + (b1 − b2)J = b2I +
b1 − b2

d
I⊗ I.

The second class is in charge of performing algebraic operations on the set of fourth-
order isotropic tensors. Essentially, this class contains routines for addition, multiplica-
tion and inversion of isotropic tensors. It is convenient within the multiplication and
inversion routines to use the internal conversions (6.21) and (6.22) between different
representations of isotropic tensors. The advantage of converting an isotropic tensor
to the representation based on the tensors J, K is the simplicity regarding algebraic
manipulations. In the following, several auxiliary statements concerning J and K are
provided.

Lemma 6.1. Let the isotropic fourth-order tensors J and K be defined by (6.20). The following
equalities hold:

JJ = J, KK = K, JK = KJ = 0. (6.23)

Proof. Let M ∈ Rd×d be given. Regarding the first equality in (6.23), we obtain

JJM =
1
d2 (I⊗ I)(I⊗ I)M =

1
d2 (I⊗ I)tr[M]I =

1
d2 tr[M]tr[I]I =

1
d

tr[M]I = JM,

where tr[I] = d has been employed. Concerning the second identity in (6.23), we
observe

KKM = (I− J)(I− J)M = IIM− IJM− JIM + JJM = (I− J)M = KM,
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where the previously shown equality JJ = J has been used. The third identity in (6.23)
follows straightforwardly from applying JJ = J.

The following statements provide useful rules regarding the multiplication and inver-
sion of isotropic tensors.

Proposition 6.2 (Multiplication of isotropic fourth-order tensors). Let two isotropic
fourth-order tensors

A = a1J + a2K, B = b1J + b2K

be given with a1, a2, b1, b2 ∈ R. The following identity holds:

AB = BA = a1b1J + a2b2K.

Proof. The claim follows from

AB

=(a1J + a2K)(b1J + b2K) = a1b1JJ + a1b2JK + a2b1KJ + a2b2KK = a1b1J + a2b2K,

where the identities in (6.23) have been employed.

Corollary 6.1 (Inversion of isotropic fourth-order tensors). Let an isotropic tensor

A = a1J + a2K

be given with a1, a2 ∈ R. If a1 ̸= 0 and a2 ̸= 0, the inverse A−1 of A exists and reads as
follows:

A−1 = a−1
1 J + a−1

2 K.

Numerical Integration

The term ∫︂
R2\ω

G0(z, ϵ(vX(x)))dx (6.24)

in the topological gradient, see (4.45), requires special attention due to its unbounded
area of integration. In particular, a numerical scheme is necessary in order to approxi-
mate the integral (6.24). Two aspects are important to notice at this point. First, the
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strain of the solution of the free space transmission problem ϵ(vX) is not constant
outside the unit circle ω. This, in contrast, is the case for points inside ω. Second, it
should be mentioned that the integral (6.24) takes a finite value. This is a consequence
of ϵ(vX) having a fast enough decay at infinity, which becomes clear by the exterior
Eshelby tensor Sext, see (4.66).
A natural step towards the computation of integral (6.24) is the transformation of its
area of integration. Let us denote the integrand by

f (x) := G0(z, ϵ(vX(x)))

for convenience. In a first step, a change from Cartesian to polar coordinates is
performed:

∫︂
R2\ω

f (x)dx =
∫︂ 2π

0

∫︂ ∞

1
r f (r cos θ, r sin θ)drdθ.

Furthermore, the interval [1, ∞] is substituted by the finite set [0, 1] as follows

∫︂ 2π

0

∫︂ ∞

1
r f (r cos θ, r sin θ)drdθ =

∫︂ 1

0

1
r3

∫︂ 2π

0
f (r−1 cos θ, r−1 sin θ)dθdr,

and we obtain finally

∫︂
R2\ω

f (x)dx =
∫︂
[0,1]2

2π

r3 f (r−1 cos(2πθ), r−1 sin(2πθ))dθdr, (6.25)

which allows to use a quadrature rule on the unit square [0, 1]× [0, 1] for the numerical
integration.
The next step is to ask for a numerical scheme in order to approximate integral (6.25).
Tests have shown that different 1D quadrature rules for radius and angle perform
best. More precisely, a Gauss quadrature for the radius and a composite trapezium
rule, i.e. a Newton-Cotes quadrature, for the angle show excellent performance. For
details regarding 1D quadrature rules, we refer the reader to [133]. Denoting the Gauss
quadrature points and weights by

(ri)
N
i=1 ⊂ [0, 1], (wr

i )
N
i=1,

and the Newton-Cotes points and weights

(θj)
M
j=1 ⊂ [0, 1], (wθ

j )
M
j=1,

we obtain the two-dimensional quadrature rule
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∫︂ 1

0

∫︂ 1

0
f̃ (θ, r)dθdr ≈

N

∑
i=1

M

∑
j=1

wr
i wθ

j f̃ (ri, θj) (6.26)

for f̃ (r, θ) := 2π
r3 f (r−1 cos(2πθ), r−1 sin(2πθ)).

Exact Integration for Quadratic Objective Functionals

Due to the complicated structure of the topological gradient (4.45) for stress-based
functionals, a practical implementation is error-prone and needs to be handled carefully.
An important step within the implementation is the validation of the topological
gradient using finite differences, which will be explained in more detail later on.
A step, which is recommended prior to the validation of the full gradient, is the
validation of integral (6.24) for two reasons. First, the integrand in (6.24) involves
the exterior Eshelby tensor Sext, see (4.66), which is rather complicated and needs to
be hard coded. Second, the numerical integration routine, which has been described
previously, needs to be assessed. It is important to notice at this point that the accuracy
in computing integral (6.24) determines the quality of gradient (4.45).
The strategy in validating the unbounded integral is to consider a special class of
objectives, more precisely quadratic objective functionals, and to derive a closed
formula of integral (6.24). This analytical expression allows then the comparison with
the result of the numerical integration routine. Let us consider a quadratic integrand

j0(d) :=
1
2

Bd : d,

with an isotropic tensor B for an arbitrary symmetric matrix d ∈ R2×2
sym. Furthermore,

let the elasticity tensors be defined by

Ci := αiC, i ∈ {0, 1},

with constants α0, α1 ∈ R. Then, we see that the integrand in (6.24) becomes

G0(z, d) = j0(ϵ(u(z)) + d)− j0(ϵ(u(z)))− ∂d j0(ϵ(u(z))) : d = j0(d).

Moreover, due to equality (4.62), we obtain the following identity:

∫︂
R2\ω

G0(z, ϵ(vX(x)))dx =
∫︂

R2\ω
j0(Sext(x)[C0 + CδSint]−1CδX)dx.

For the case of a Mises stress criterion, i.e. B = CCB̃ with
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B̃ := 3I− I⊗ I,

it has been shown in [17] that

∫︂
R2\ω

j0(Sext(x)[C0 + CδSint]−1CδX)dx

=
π

β2

[︄
5(2CX : CX− tr[CX]2) + 3

(︃
1 + ηα

1 + ζα

)︃2

tr[CX]2
]︄

,

with the following real numbers:

α :=
α1

α0
, η :=

3− ν

1 + ν
, ζ :=

1 + ν

1− ν
, β :=

α1 − α0

ηα1 + α0
.
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7. Volume Minimization under Local

Stress Constraints

7.1. Introduction

The aim of this chapter is the application of the previously developed level set-based
optimization method, relying on the topological gradient (4.45), to the solution of the
minimum volume problem under local stress constraints

min
Ω ∈ O

J (Ω) =
∫︂

D
χΩdx (7.1a)

s.t. Fσ̄[Ω] ≤ 1 a.e. in Ω, (7.1b)

where the set of feasible designs O is chosen as in (2.19) and the failure function Fσ̄ is
defined in (2.24).
Investigating problem (7.1) is a natural first step towards the solution of more complex
optimal design problems with stress constraints. The reasons for this choice are three-
fold: First, there is no partial differential equation involved in objective functional (7.1a)
representing the volume. As a result, the computational cost of evaluating objective
functional (7.1a) and its topological gradient is low. Additionally, the topological
gradient possesses a very simple structure. The second reason is the ease of intuitive
interpretation of numerical solutions. More precisely, it is possible to decide immedi-
ately, whether a solution to the minimum volume problem is physically reasonable
or not. Note that this is not the case for every problem, especially for the case of
problems involving multiphysical phenomena, which will be discussed in the subse-
quent chapter. Third, the majority of works dealing with stress constraints consider
the minimum volume problem. Consequently, the success and performance of the
developed approach can be compared to existing results, which have been achieved
using fundamentally different methods. Nevertheless, let us keep in mind at this point
that the case of volume minimization is just a first step and the aim of this thesis is the

99



7. Volume Minimization under Local Stress Constraints

realistic design optimization of an electrical machine under stress constraints.
In the following, a brief literature review on existing works concerning design opti-
mization methods for the minimum volume problem with local stress constraints is
given. Note that only gradient-based methods are considered. For approaches based
on integer programming techniques, we refer to [134] and the references therein. An
intensively studied approach within the field of topology optimization is the class
of density-based methods including the well-known SIMP and RAMP method, see for
instance [28] or [126]. We recall that the main idea of density-based methods consists
in allowing intermediate densities for the design representation, which makes the
resulting optimization problems accessible to standard mathematical programming
techniques. The first approach for treating stress-constrained problems within the class
of density-based methods has been proposed by Duysinx and Bendsøe (1998), see [55].
An emphasis is put on the investigation and discussion of suitable models for local
stresses, in particular for intermediate densities. Further, a so-called ϵ-relaxation (cf.
[42]) is applied in order to resolve the singularity phenomenon, which is inherent to
density-based methods for stress-constrained problems and will be described briefly
below. Moreover, the local stress constraints are treated immediately, without the use
of a penalty approach or similar techniques. In Le et al. (2009), a different model for
describing the local stresses has been chosen, see [96]. The advantage of this choice
is an immediate prevention of the singularity problem. Furthermore, the maximum
norm on the stresses, which corresponds to a local stress constraint imposed on the
entire domain, is approximated by the p-norm. Technical extensions of the numerical
scheme, which are referred to as normalization and regional clustering, are necessary
in order to obtain a reasonable approximation of the maximum stress value. The latest
approach for solving stress-constrained problems within the class of density-based
methods has been proposed by Salazar de Troya and Tortorelli (2018), see [49] as well as
[48] for further details. In contrast to [96], a penalty approach has been chosen in order
to tackle the large number of stress constraints. Moreover, adaptive mesh refinement
is employed within the optimization algorithm in order to achieve a more accurate
stress assessment, particularly with regards to intermediate densities. Concerning
the class of homogenization methods, one approach for solving the stress-constrained
minimum volume problem has been proposed by Allaire et al. (2004), see [5]. However,
the minimization of a global stress-based criterion with quadratic structure has been
addressed instead of the case of local stress constraints. Another well-known approach
in topology optimization is the phase-field method, see for instance [30] or [33]. The
solution of the stress-constrained minimum volume problem using the phase-field
method has been addressed by Burger and Stainko (2006), see [39] and [130]. A refor-
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mulation and relaxation of the local stress constraints is performed, which results in
purely linear constraints. This approach offers the advantage of a uniform constraint
qualification, which is not the case for the ϵ-relaxation technique. Furthermore, several
works dealing with the level set method and shape gradients are available. Note that
the level set method in this context is not the algorithm from Chapter 5, but relies on
a Hamilton-Jacobi equation in the spirit of [108] instead. The first approach within
this class has been proposed by Allaire and Jouve (2008), see [4]. As in [5], not the
case of local stress constraints is investigated, but the minimization of a stress-based
criterion. In [56], Emmendoerfer and Fancello (2014) proposed a method based on a
reformulation of the stress constraints and an augmented Lagrangian approach. This
method has been extended in [57] by employing a reaction-diffusion equation instead
of a Hamilton-Jacobi equation. Another approach has been presented by Picelli et al.
(2018), see [114] and [115]. Here, a stress aggregation using the p-norm approach has
been chosen in combination with several technical numerical extensions as in [96]. The
last class of methods addresses the application of the topological gradient applied within
the level set-based algorithm, which has been described in Chapter 5. Amstutz and
Novotny (2010) proposed the first approach for solving stress-constrained problems
involving the topological gradient, see [17]. Fundamental in this work is the use of a
penalty approach as well as a weighted combination of the resulting penalty term and
the compliance. Moreover, the topological gradient of the stress-based penalty term
is derived for a von Mises stress criterion. In [18], Amstutz et al. (2012) extended the
work of [17] to a Drucker-Prager stress constraint.
The method, which is chosen for the solution of optimal design problems with stress
constraints in this thesis is based on a level set representation and the topological
gradient. In the following, the reasons for the choice of this approach are described.
In particular, it will be discussed why this approach is chosen over the various differ-
ent methods. Let us begin with all approaches, which allow intermediate densities
in the design variables. These are the density-based methods, the homogenization
method and the phase-field method. One main drawback of these methods in the
solution of stress-constrained problems is clearly the difficulty of assessing stresses
in regions with intermediate densities. More precisely, the question arises how the
stress can be defined physically reasonable in this case. Further, the lack of a clear
design boundary makes the reliable stress computation difficult. The second major
drawback of approaches involving intermediate densities is the so-called singularity
problem. This phenomenon is described in [41] for truss optimization problems and
in [55] for density-based topology optimization problems. Essentially, the singularity
phenomenon refers to the effect of optimal solutions being located in degenerated
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parts of the design space. This is a consequence of the fact that the stress in a bar of
a truss structure tends to a finite, non-zero value if the diameter of the bar tends to
zero. The same effect holds for the stress in a mesh element within a density-based
approach, if the density tends to zero. It has been observed and discussed, see [41] and
[55], that optimization algorithms are unable to approximate these optimal solutions in
a reliable way due to a lack of constraint qualification. Instead, the obtained numerical
solutions often show very thin bars or elements of low density, respectively. As a
consequence, the optimal design problem needs to be perturbed in a certain manner,
which is not a priori clear.
All methods, which rely on the level set method and shape gradients do not allow
intermediate densities and are thus not affected of the previously described problems.
It is clear, however, that the shape gradient does not allow for topological changes of
the design in an automatic fashion. Therefore, the approach involving the topological
gradient combined with the level set-based optimization scheme is an excellent choice
for the treatment of stress-constrained problems.
There are three major challenges in the treatment of optimal design problems involving
local stress constraints. The first difficulty is the large number of constraints and hence
the computational complexity, which is simply caused by the local nature of stress
constraints. This difficulty is tackled with a penalty approach in this thesis, see Section
3.2. The second challenge is an accurate and reliable stress assessment, in particular at the
boundary of a design. This difficulty is caused by the highly nonlinear behavior of
local stresses with respect to design perturbations (cf. [96], [49]). Intuitively speaking,
small variations of a given design often result in large changes of the local stresses.
Note that this is not the case for many other, especially global, criteria such as the
mechanical compliance of a structure. We face this difficulty with a level set-based
design representation, which results in a sharp material interface and hence a clear
design boundary. Further, the recovery strategy in the discretization of the topological
gradient ensures a certain smoothness of the interface, see the previous chapter for
details. The third challenge is the formulation of the minimum volume problem with
stress constraints. As it has been mentioned in [126] and explained in Section 3.2, a
trivial and global solution of problem (7.1) is the empty set. Therefore, a regularization
is crucial in order to obtain reasonable results. The choice of this regularization is the
main concern of this chapter and will be investigated by numerical experiments.
The starting point and basis for the investigation of an appropriate regularization of
problem (7.1) is the work of Amstutz and Novotny (2010), see [17]. Two different
perturbations of the original stress-constrained minimum volume problem have been
performed in their work. First, a penalty approach has been applied in order to
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approximate the original problem by another one involving a penalty term. Second,
the objective functional, consisting of the volume and the penalty term, is extended by
the mechanical compliance. Clearly, both perturbations are introduced in order to over-
come the challenge of posing the minimum volume problem in a physically reasonable
manner. However, several important aspects remain unanswered. In the construction
of the stress-based penalty term in [17], an extension of the stress constraints to the
entire domain is performed. Note that this step corresponds to a perturbation of the set
of feasible designs. It remains unclear, however, what the effect of this extension really
is and if it is necessary. Moreover, the compliance term is added to the original problem
without further explanations. Investigating the necessity of the compliance term is of
particular interest with regards to practical applications, since it changes the resulting
solution drastically. Let us keep in mind at this point, that the aim of this thesis is to
design an electrical machine in terms of efficiency. Clearly, the extension of the optimal
design problem by a compliance term affects the electromagnetic performance and
thus the efficiency of the resulting optimal design. In addition to the investigation of
these questions, a modified penalty term compared to [17] is proposed in this thesis.
While the penalty parameter in [17] is solely used as a weighting coefficient, it is
additionally coupled with the stress limit in the air phase, see Section 3.2 for a detailed
explanation. The main idea behind this modification is that the regularized problem
tends towards the original problem for large penalty parameters.

7.2. Optimal Design Problem and Topological Gradient

The purpose of this section is to state the optimal design problems, which will be
investigated by numerical experiments in the subsequent section and provide the
necessary mathematical setting. Aiming at the comparison of the regularized optimal
design problem (3.7) with problem (3.9), where stresses are only considered in the
material phase, the state system as well as the failure criterion will be stated in the
following. Moreover, we will apply Theorem 4.1 for the derivation of the topological
gradient, which is of central importance for the optimization scheme.

Optimal Design Problem

The state system of the stress-constrained minimum volume problem is represented by
the elasticity equation (2.10) in weak formulation. Aiming at conducting numerical
experiments in the following, we need to select specific data within the generic system
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(2.10). Throughout this chapter, we assume homogeneous Dirichlet data as well as the
absence of volume forces. Note that these choices are made for comparability with
existing works on the solution of the stress-constrained minimum volume problem.
Hence, the state uΩ ∈ V to design Ω ∈ O is the unique solution of the following
problem: ∫︂

D
CΩϵ(uΩ) : ϵ(v)dx =

∫︂
ΓN

g · vds, ∀v ∈ V , (7.2)

where the elasticity tensor CΩ is defined by (2.3), g ∈ L2(ΓN, R2) and

V = {v ∈ H1(D, R2) : γ(v)|ΓD = 0}

denotes the Sobolev space with homogeneous Dirichlet data.
We proceed by selecting a specific failure criterion, which forms the basis for defining
the pointwise stress constraints. Throughout this chapter, for a given elastic limit σ̄ > 0,
we consider the von Mises criterion

Svm(σ) ≤ σ̄, (7.3)

where the von Mises stress is defined by

Svm(σ) :=

√︃
1
2

Dσ : σ, (7.4)

with the fourth-order tensor D := 3I− I⊗ I.

Remark 7.1. The von Mises criterion is employed for quantifying failure in ductile materials,
for instance metal or steel. From a physical perspective, (7.3) states that yielding, and thus
inelastic deformation, begins when the strain energy density of distortion reaches the critical
value σ̄. Therefore, (7.3) is also known as maximum distortion criterion. Further information
regarding the von Mises criterion and the comparison to different failure criteria can be found
in [53] and [73].

Remark 7.2. We choose the von Mises criterion within this chapter for the sake of compara-
bility. Typically, algorithms for solving the stress-constrained minimum volume problem are
benchmarked with respect to the L-Beam geometry, which will be introduced in the subsequent
section, and the von Mises criterion, see for instance [55], [17] and [49].

In order to match the framework from Part I, we need to square inequality (7.3) and
obtain

f (σ) :=
1
2

Dσ : σ ≤ σ̄2,
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which fits into the definition of failure function (2.17). Analogously to (2.24), we set

Fσ̄[Ω] = Fσ̄(σ(uΩ)) =
1
σ̄2 f (σ(uΩ)) (7.5)

for a design Ω ∈ O and the associated state uΩ ∈ V . Based on the failure function
(7.5) in reduced form, we can formulate the minimum volume problem with pointwise
stress constraints as in (2.25), where the objective functional

J (Ω) :=
∫︂

D
χΩdx (7.6)

is chosen as the volume of Ω.
Within this chapter, a major focus is directed towards investigating the effect of
additional stress constraints in the weak phase, which have been introduced in Section
3.2. Therefore, we will compare the numerical solution of the regularized optimal
design problem (3.7) and its counterpart (3.9), where stresses are only considered in
the material phase, in the subsequent section. For the sake of readability, we recall
both problems under investigation. Given a penalty parameter γ > 0, the regularized
problem (3.7) reads

min
Ω ∈ O

J (Ω) + γPγ(Ω), (7.7)

with the penalty term

Pγ(Ω) =
∫︂

D
αΩΦp

(︁
β

γ
ΩFσ̄[Ω]

)︁
dx, (7.8)

where αΩ and β
γ
Ω have been defined in (2.1) and (3.5), respectively, and the penalty

function Φp is defined by (3.6). In contrast, considering solely stresses in the material
phase, problem (3.9) reads

min
Ω ∈ O

J (Ω) + γP(Ω), (7.9)

with the penalty term

P(Ω) =
∫︂

D
χΩΦp (Fσ̄[Ω]) dx. (7.10)

Before we turn to the topological gradient with respect to both optimal design prob-
lems, the existence of local minima needs to be guaranteed. It is straightforward to verify
that the functional (7.6) is bounded from below and continuous, where convergence of
sets is understood in the sense of characteristic functions, see Definition 3.1. Hence,
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the application of Theorem 3.3 ensures the existence of solutions for (7.7) and (7.9).

Topological Gradient

Having specified the optimal design problems under investigation, we proceed with
deriving the topological gradient of the associated objective functionals. Essentially,
this step comprises the application of Theorem 4.1 to the previously defined penalty
terms (7.8) and (7.10). Since the structure of both penalty terms is similar, we will
treat only problem (7.7) in detail. The difference to penalty term (7.10) is stated briefly
within a remark.
For the presentation of the topological gradient, we consider a design Ω ∈ O, a point
of perturbation z ∈ D \ ∂Ω and the circular inhomogeneity ω = B1(0). Due to the
linearity of the differential operation associated to the topological gradient, we observe
that

DTJ [Ω](z) + γDTPγ[Ω](z) (7.11)

is equal to the topological gradient of the objective functional in (7.7) at design Ω and
point of perturbation z. As shown in Example 4.1, the topological gradient for the
volume functional reads as follows:

DTJ [Ω](z) =

⎧⎨⎩−1, z ∈ Ω,

1, z ∈ D \ Ω̄.

Further, the topological gradient of the penalty term Pγ can be obtained by applying
Theorem 4.1. In a first step, we observe that penalty term (7.8) is a special case of the
generic objective functional (4.9). In order to match the structure of objective (4.9), we
denote the penalty term (7.8) as follows

Pγ(Ω) = PΩ(ϵ(uΩ)) =
∫︂

D
jΩ(ϵ(uΩ))dx, (7.12)

with density function jΩ = jmatχΩ + jairχD\Ω as in (4.11) and

jmat(d) := Φp(Fσ̄(Cd)), jair(d) := αΦp(h(γ)−1Fσ̄(Cd)).

for d ∈ R2×2.

Remark 7.3. The only difference for penalty term (7.10) is the definition of the density function
jair(d) := 0 in the weak phase.
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Moreover, the adjoint state pΩ ∈ V for penalty term (7.8) to given state uΩ ∈ V is the
unique solution to

aΩ(v, pΩ) = ∂ePΩ(ϵ(uΩ))(ϵ(v)) ∀v ∈ V , (7.13)

which is the adjoint equation (4.44) for the given specific setting. Note that the bilinear
form aΩ(·, ·) has been defined in (2.8).
We proceed by verifying the assumptions of Theorem 4.1. Due to the volume forces
in (7.2), which are constantly zero, the state uΩ is smooth in a neighborhood of the
point of perturbation z. As a result, and due to the smoothness of penalty function
(3.6), the right hand side of the adjoint equation (7.13) is locally smooth. Hence, by
elliptic regularity, the assumption regarding the adjoint state pΩ is satisfied as well in
a neighborhood of the point of perturbation.
Hence, abbreviating the pointwise evaluation of the strain of the direct and adjoint
state by U := ϵ(uΩ(z)), P := ϵ(pΩ(z)), the application of Theorem 4.1 yields

DTPγ[Ω](z) =π jδ(U)−EU : P + π∇jδ(U) : ϵ(vX(0))

+
∫︂

R2\ω
G0(z, ϵ(vX))dx +

∫︂
ω
G1(z, ϵ(vX))dx,

(7.14)

where jδ has been defined in (4.23), E is the elastic moment tensor (4.36), vX denotes
the solution of problem (4.31) and G0,G1 are defined as in (4.46).
Furthermore, since the case of isotropic elasticity tensors and a circular inclusion ω is
considered, tensor E and function ϵ(vX) can be stated in closed form. Similar to the
density function in (7.12), we set

CΩ = CmatχΩ + CairχD\Ω,

with

Cmat := C, Cair := αC,

where C is defined as in (2.1) and α > 0 is the weak phase parameter (2.1) in the
elasticity model. Defining the difference between the elasticity tensors Cδ as in (4.19),
we obtain

ϵ(vX)(x) = −S(x)(C0 + CδSint)−1CδX,

see (4.62), as well as the following formula
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E = |ω|C0(C0 + CδSint)−1Cδ

for the elastic moment tensor, see (4.63). The corresponding formulas for the Eshelby
tensor S, cf. (4.58), in the case of isotropic material are stated in (4.64) and (4.66).

7.3. Numerical Experiments

In this section, experiments are conducted in order to investigate the numerical solution
of optimal design problem (7.9) as well as problem (7.7), where the pointwise stress
constraints are extended to the entire hold-all domain. The experimental procedure
comprises two major steps. First, the topological gradient of both problems is validated
by examining the finite differences with respect to a decreasing radius of the inclusion.
This step is necessary in order to verify that the topological gradient, as well as its
implementation, is correct. Note that this step is crucial due to the high complexity
of the topological gradient. Second, after having validated the topological gradients,
the level set-based optimization scheme from Chapter 5 is applied for examining the
numerical solution of both optimal design problems. The central insights will be
summarized briefly in observation environments.
Throughout this section, we investigate the numerical algorithm for the case of the
L-beam example, which is visualized in Figure 7.1. The L-beam is commonly studied in
order to assess the performance of numerical schemes for the solution of the minimum
volume problem with pointwise stress constraints, see [126]. We chose the length of
the vertical and horizontal beams as 2.5 m and the width as 1 m. Further, the structure
is clamped at the top and a vertical load of 50 N/m is applied over the load region of
length 0.02 m around the coordinate (2.5, 0.5), which results in an applied force of 1 N.
In the vicinity of the load region and the boundary, where the L-beam is clamped no
design changes are allowed. More precisely, a strip with height 0.02 m at the top and
a half circle with radius 0.1 m around the point (2.5, 0.5) are defined as non-design
area. Note that this area is necessary in order to prevent that the load regions become
disconnected from the main structure in the course of the optimization procedure.
Concerning the material properties of the L-beam, a Young’s modulus of E = 1 MPa
and a Poisson’s ratio of ν = 0.3 are chosen together with a weak phase parameter of
α = 10−3. These parameters are usually chosen for the L-Beam example in literature,
see for instance [17], [96] and [49], which allows comparing the results of different
works. Note that this choice of parameters is purely academic and does not aim at
modeling real materials.
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1 1.5
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Figure 7.1.: Geometry of L-beam with design area in gray and non-design area in
black.

Validation of the Topological Gradient

We begin the numerical experiments by validating the topological gradients for differ-
ent scenarios in a fixed point of perturbation z ∈ D \ ∂Ω, where Ω ⊂ D represents the
material distribution in the unperturbed configuration. The validation is performed
for both penalty terms (7.8) and (7.10). Moreover, we distinguish the creation of a hole
within the material phase and, vice versa, the creation of material within the air phase.
In the former case, where z ∈ Ω, we choose the unperturbed material distribution as
Ω = D, which means that the entire domain is filled by material. In the latter case,
where z ∈ D \ Ω̄, we choose domain D to be entirely occupied by air except for small
subsets in the vicinity of the load regions, which are visualized as black domains in
Figure 7.2. Note that distinguishing the location of z is crucial since the topological
gradient for both material and air as background phase is necessary for the successful
application of the level set-based optimization scheme. All combinations of both
penalty terms and both cases regarding the point of perturbation z are investigated,
which results in four different scenarios.
The validation procedure is straightforward and will be sketched exemplarily in the
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Figure 7.2.: Sketch of geometrical setup containing holes with center z for gradient
validation (left) and zoom to meshed hole area (right).

following for penalty term P , defined by (7.10). First, for radius ρ > 0 and the
perturbed material configuration Ωρ ⊂ D defined by (4.15), we recall the topological
asymptotic expansion (4.1) of functional P

P(Ωρ) = P(Ω) + DTP [Ω](z)ρ2 + o(ρ2),

which is guaranteed by Theorem 4.1 with topological gradient DTP [Ω], stated in (7.14).
Based on the asymptotic expansion, we define the finite difference

∆P [Ω](z, ρ) :=
P(Ωρ)−P(Ω)

ρ2 (7.15)

in order to obtain direct approximations of the topological gradient at point z. Then,
the error measure for assessing the discrepancy between the topological gradient and
the finite differences is chosen as follows

e(ρ) :=
|∆P [Ω](z, ρ)− DTP [Ω](z)|

|DTP [Ω](z)| , (7.16)

where a normalization by the value of the topological gradient is used for the purpose
of comparability between the different scenarios.
The validation setup for the L-beam comprises a total number of 8 holes with decreasing
radii and is illustrated in Figure 7.2 together with a picture of the meshed area around
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the point of perturbation. We chose the different hole radii in decreasing order as 160,
80, 40, 20, 10, 5, 2.5 and 1.25 mm. In the numerical simulations, a stress limit of σ̄ = 3
Pa is chosen, which is below the stress value at the point of perturbation. This choice
has been made in order to guarantee that all terms in the topological gradient (7.14)
are positive and hence taken into account in the validation. Moreover, in the case of
penalty term (7.8) we chose the coefficient h(γ) = 1 for simplicity.
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Figure 7.3.: Results of gradient validation for eight different radii.

The validation results are plotted in Figure 7.3. It can be observed that the error
measure is close to 10−3 for a sufficiently small radius in all different scenarios,
showing that the topological gradients as well as their implementations are correct.
Furthermore, it is interesting to compare the values of the topological gradient for
the different scenarios. In the case of creating a hole within the material phase, the
values DTP [Ω](z) = 30.41 and DTPγ[Ω](z) = 30.48 are obtained, which shows a
high accordance between both penalty terms. In contrast, for the case of creating a
material inclusion within the air phase, we obtain the values DTP [Ω](z) = 0.72 and
DTPγ[Ω](z) = −2773.85. Note that a discrepancy in the case of material creation is
not surprising, since the dominating part of domain D is occupied by air, where the
penalty terms (7.10) and (7.8) differ by definition.
The most interesting observation at this point, however, is that the topological gradients
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have different signs, and thus differ qualitatively, in the case of material creation. The
implication of this situation is of particular importance for the optimization scheme
from Chapter 5. If penalty term (7.10) is employed for the optimization process, the
topological gradient takes a positive value in z. As it has been discussed in Chapter
5, design changes near the point of perturbation z will not be performed within the
optimization algorithm. If, however, penalty term (7.8) is employed, the topological
gradient is negative at the point of perturbation z. Consequently, the optimization
scheme will perform a design change near z as it decreases the value of the objective
functional. This observation indicates, that the solution of problem (7.7), where the
penalty term Pγ is employed, might differ significantly from the solution of problem
(7.9).

Observation 7.1. The topological gradient of penalty term (7.8) differs qualitatively from the
topological gradient of penalty term (7.10) for a point of perturbation within the weak phase.
This discrepancy is of particular importance for the design evolution within the level set-based
optimization scheme.

Optimization Setup

Before the numerical solution of problems (7.7) and (7.9) is addressed, the setup and
parameters regarding the optimization algorithm need to be fixed. The area, where the
stress constraints are enforced, is chosen to be identical with the design area, which is
represented by the gray domain in Figure 7.1. This choice is reasonable, since the high
stresses near loads are unavoidable and should not be taken into account for the stress
assessment. Further, the initial design for the optimization scheme is chosen to be
the entire domain in all experiments within this chapter. For the following numerical
experiments, a stress limit of σ̄ = 60 Pa is chosen and the parameter, which controls
the approximation accuracy of the penalty function (3.6) is set to p = 50. Concerning
the numerical integration, which needs to be performed within the evaluation of
topological gradient (7.14), we chose N = 30 and M = 60 integration points for the
discretization of the radius and the angle, respectively. For the details on the numerical
integration, we refer to Section 6.4, in particular to quadrature rule (6.26). In the
optimization algorithm from Chapter 5, we set the initial line search parameter to
κ0 = 1 and update a current parameter κ by κ/2.
We use the number of vertices, where the topological gradient of the total objective
functional is negative as a convergence measure instead of the angle θ between level set
function and descent direction, see (5.9). More precisely, the convergence measure is
defined as
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ϵc :=
|{n ∈ Nh : DTP [Ω](n) < 0}|

|Nh|
, (7.17)

where Nh is the set of mesh vertices. The optimization algorithm is terminated, if ϵc is
below a chosen threshold. Note that this is a discrete variant of the stationarity criterion
(5.4). We chose to employ convergence measure (7.17) instead of (5.9), since it behaves
more robust in the numerical solution of the stress-constrained minimum volume
problem. Additionally, the algorithm is terminated, if a decrease of the objective
functional has not been achieved after 20 step reductions within the line search scheme.
Note that this number has been determined heuristically and is based on the experience
from numerical tests.
Before proceeding with the presentation of the numerical results, the necessary details
concerning the continuation strategy of penalty parameter γ are given. First, we recall
that in problem (7.9), parameter γ simply acts as a weighting coefficient for the penalty
term. In problem (7.7), however, γ additionally serves for scaling the stress limit in the
weak phase. The main idea of a continuation strategy within a penalty approach is to
solve a sequence of optimization problems, where the penalty parameter is increased
gradually and the solution of the previous problem is used as an initial guess for the
current problem. Within this procedure, a strategy for tuning the penalty parameter
needs to be selected. On the one hand, the penalty parameter should not be chosen
too low in order to respect the constraints. On the other hand, it should not be chosen
too large, which typically leads to convergence problems. For details on the penalty
approach and the continuation method, we refer to the discussion in Section 3.3. For
the following experiments, we employ

h(γ) :=
γ

γ0
(7.18)

as coefficient function in the penalty term (7.8), where γ0 represents the initial penalty
parameter. Note that a reasonable choice of function h can not be determined a priori
and is therefore based on the experience from numerical tests.

Effect of Stress Constraints in the Weak Phase

We begin the presentation of the experimental results by comparing the numerical
solution of problem (7.9) and (7.7) for a fixed penalty parameter. We chose γ0 = 1000
and γ0 = 10 for the solution of problem (7.9) and (7.7), respectively. Note that the
difference in the order of magnitude is necessary due to the different penalty terms. In
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Figure 7.4, the optimization history of both problems is visualized. Moreover, Figure
7.5 shows the designs in the final iteration.
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Figure 7.4.: Optimization history for the solution of problems (7.9) and (7.7).

114



7.3. Numerical Experiments

Figure 7.5.: Designs in final iteration for fixed parameter γ. Left: Result for problem
(7.9) with constraints only in material phase. Right: Result for problem
(7.7) with constraints in entire domain.

In the case of problem (7.9), where stress constraints are imposed only in the material
phase, it can be observed that the optimization scheme does not converge. The
algorithm terminates after 126 iterations with ϵc = 0.26. This is clearly reflected in
the design of the final iteration, see Figure 7.5, which shows perforations and small
isolated parts. Nevertheless, it can be stated that the topological gradient directs the
algorithm to a plausible structure due to the availability of information regarding
the local stresses. In the case of problem (7.7), with stress constraints imposed in
both material and air phases, the optimization algorithm converges and behaves
differently compared to the previously discussed case. More precisely, the algorithm
terminates after 161 iterations with ϵc = 2.23× 10−3. Further, the volume and the
penalty term begin to settle after 65 iterations, see Figure 7.4. Concerning the maximum
normalized stress and the number of constraint violations in the material phase, we
can observe large fluctuations. This is simply a consequence of the highly nonlinear
behavior of pointwise stress constraints, where small design changes result in large
stress variations. Summarizing, a stabilizing effect on the numerical scheme can be
observed, if the pointwise stress constraints are extended to the entire computational
domain. Moreover, the choice of penalty parameter γ turns out to be simpler for
the case of problem (7.7), where stress constraints are present in both phases. The
numerical algorithm can be observed to be successful for a rather large interval of
penalty parameters. In the case of problem (7.9), however, the choice of γ is a quite
delicate task. Only values of γ within a very small interval lead to results, which tend
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7. Volume Minimization under Local Stress Constraints

towards a plausible structure. Based on the previous observations and the excellent
results for the extension of the stress constraints to the entire domain, we will focus on
the solution of problem (7.7) for the remainder of this chapter. Hence, problem (7.9)
will not be investigated further, since it does not lead to satisfactory results.
We continue with several details concerning the numerical solution of problem (7.7).

(a) Iteration 6. (b) Iteration 9. (c) Iteration 16.

(d) Iteration 30. (e) Iteration 40. (f) Iteration 50.

(g) Iteration 59. (h) Iteration 62. (i) Iteration 80.

Figure 7.6.: Design evolution for the numerical solution of problem (7.7) with stress
constraints in the entire domain.
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7.3. Numerical Experiments

In Figure 7.6, the designs at nine iterations are depicted. First, we remark that the
design evolution behaves quite slowly compared to the minimum compliance problem,
which will be discussed later on for the sake of comparability. Second, it can be
observed that the algorithm removes material in regions of low stresses first, for
instance at the left upper corner of the L-beam. In contrast, the design in areas with
large stress values, for instance the area around the reentrant corner, is altered rather at
the end of the optimization process. Lastly, and probably most interesting, we observe
that the area containing the stress singularity at the reentrant corner is isolated in the
course of the optimization and completely removed after the isolation has been carried
out.

Observation 7.2. The regularized problem (7.8), which comprises an extension of the pointwise
stress constraints to the weak phase, is solved successfully by the level set algorithm. Since this
is not the case for problem (7.10), a stabilizing effect of the additional stress constraints on the
numerical scheme can be stated.

Observation 7.3. The optimal design problem (7.7), which comprises a volume term and
the stress-based penalty term, was solved successfully. This result reveals that an additional
compliance term, which is commonly employed for preventing the no-structure problem (cf.
[119]), is not necessary for solving the stress-constrained minimum volume problem.
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Figure 7.7.: Von Mises stress field for design in Figure 7.5 (prior to continuation in γ).

Continuation in Penalty Parameter

At this point, it is crucial to examine the local stresses in the final iteration in order
to assess the success of the numerical scheme. In particular, it needs to be verified if
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7. Volume Minimization under Local Stress Constraints

the pointwise stress constraints are satisfied. In Figure 7.7, we can observe constraint
violations in five different vertices, all of them located at the lowest design part with a
maximum von Mises stress of 66.5 Pa.
Although this is already a very good result and close to the desired solution, we are
interested in obtaining designs, which do fulfill the imposed constraints. Therefore,
we proceed by investigating the continuation in penalty parameter γ. By increasing γ

successively, we aim at adapting the design in Figure 7.5 such that the stress constraints
are satisfied. Continuing from the design in Figure 7.5, we chose the sequence of
penalty parameters 5× 102, 5× 103, 7.5× 103, 2× 104, 5× 105. Note that this choice is a
result of several experiments. However, a strategy for determining values of γ in an
automated fashion can be developed, as it is typically done within penalty approaches.

0.0e+00

6.0e-05

1e-5

2e-5

3e-5

4e-5

5e-5

V
o
n

M
is

e
s

S
tr

e
ss

[M
P

a
]

Figure 7.8.: Design (left) and corresponding stress field (right) after continuation in
penalty parameter γ.

In Figure 7.8, the effects of the continuation in γ become clear immediately. Compared
to the result in Figure 7.5, we can observe that the design becomes thicker in general,
but is qualitatively unchanged. More precisely, the volume is increased from 0.54 m2

to 0.75 m2. This change in the design leads to the desired constraint satisfaction with a
maximum pointwise von Mises stress of 59.6 Pa and a vanished penalty term. Note
that the penalty term vanishes due to coefficient h(γ), which scales the stress limit
in the weak phase. If we choose h(γ) = 1, the penalty term can be observed to
be positive, even if the stress constraints in the material phase are satisfied. As a
result, the optimization algorithm continues enforcing the design, even if the pointwise
constraints in the material phase are already satisfied due to the presence of artificial
stress constraints in air. Preventing this behavior by choosing h(γ) as in (7.18) is an
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7.3. Numerical Experiments

important aspect in order to guarantee that only as much material as necessary is used.

Observation 7.4. The continuation in γ leads to an enforcement of the design, which has been
obtained by an optimization procedure with fixed initial penalty parameter, until the pointwise
constraints are satisfied and the penalty term vanishes. During the process of continuation, the
initial design remains qualitatively unchanged.

Stress Verification

An important aspect concerning the result of the continuation in γ (cf. Figure 7.8) is a
realistic stress assessment. Let us recall that all experiments are conducted on a fixed
mesh, which results in intersections of the interface and mesh elements in the course
of the optimization. As discussed in the previous chapter, these intersections lead to
a loss of accuracy in the finite element approximation of the displacement field, in
particular at the interface of the level set function. Additionally, it is unclear a priori
what the impact of the weak phase on the stresses actually is.
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Figure 7.9.: Stress verification with fitted mesh and removed weak phase.

Therefore, we need to address the question, how the von Mises stress field behaves, if
the weak phase is deleted and the material phase is meshed properly. Only after these
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7. Volume Minimization under Local Stress Constraints

adaptations, the stress analysis will be sufficiently reliable for modeling the actual
manufactured component realistically. The adaptations are performed by extracting
the material phase based on the level set description and employing a reasonably
fine and fitted mesh. The result of the stress analysis is shown in Figure 7.9, where
the stress field of the material phase is visualized. It can be observed that the stress
constraint is violated only in two vertices at the lowest part of the design with a
maximum von Mises stress of 61.9 Pa. Note that this very satisfactory result has been
achieved without any postprocessing of the level set function.

Comparison with Minimum Compliance Design

The last aspect within this section addresses the comparison of the obtained stress
design with the solution of the commonly studied minimum compliance problem,
which has been stated in (6.19). For the purpose of comparability, we set the volume
bound V in the minimum compliance problem to exactly the volume of the obtained
stress design. In Figure 7.10, the design as well as the corresponding stress field are
shown for the minimum compliance problem.
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Figure 7.10.: Design (left) and stress field (right) for minimum compliance problem.

We can observe clear differences in the design compared to the solution of the stress-
constrained minimum volume problem, see Figure 7.8. Most prominent, the stress
concentration at the reentrant corner with a maximum von Mises stress of 136.2 Pa
is present in this experiment. This observation shows the necessity of incorporating
stress constraints for certain applications. Additionally, a large variation of the stress
level can be observed.
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Figure 7.11.: Optimization history for the solution of the minimum compliance prob-
lem.

In contrast, the stress level is more homogeneous in the entire design for the case of the
stress design. Clearly, the algorithm is capable to design the structure in such a manner
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7. Volume Minimization under Local Stress Constraints

that the stresses are distributed over the structure. In Figure 7.11, the optimization
history for the minimum compliance problem is shown. It can be observed that
the algorithm approximates a local minimum much faster than for the previously
investigated minimum volume problems with stress constraints. Indeed, the volume
stabilizes after 20 iterations and only minor design changes are performed afterwards.
The reason for this difference is that large steps in the algorithm are possible, since
the compliance is less sensitive to design changes than the stress field. For the stress-
constrained problems, however, small step sizes are necessary in order to be able to
control the stress levels appropriately. This difference in the step size can be observed
in the last plot of Figure 7.11, where the line search iterations for both problems are
shown. Clearly, a much larger number of step reductions within the line search is
necessary for the case of the minimum volume problem with stress constraints.

7.4. Discussion

Having reported on the numerical experiments in the previous section, the results
will be summarized briefly in the following. First, the topological gradient of both
penalty terms under investigation, more precisely (7.8) and (7.10), have been validated.
This has been done for the creation of a hole in the material phase as well as for the
inclusion of material in the weak phase. The examination of both cases is crucial since
the optimization algorithm relies on the sensitivities for both cases. An interesting
observation is the qualitative discrepancy of the topological gradient for both penalty
terms in the case of an inclusion of material in the weak phase. This suggests that
the design evolution will differ significantly during the optimization procedure for
both penalty terms. The subsequent step addressed the numerical solution of problem
(7.9) and (7.7) with the level set-based optimization scheme. For problem (7.9), where
the penalty term is constructed as an integral over the material phase, it could be
observed that the optimization algorithm does not converge. Moreover, the design in
the final iteration shows a large number of perforations and small isolated material
parts. Nonetheless, the rough shape of the evolving structure shows the characteristic
features of a typical stress design. In this sense, the minimization of problem (7.9)
seems not to be completely unreasonable, despite the problem of the trivial and
global solution being the empty set. We proceeded by examining the numerical
solution of problem (7.7), where the stress constraints have been extended to the entire
computational domain. This regularization has been introduced in order to overcome
the no-structure problem. It could be observed that a penalty term of this type leads
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to a convergent optimization algorithm, which is capable of satisfying the pointwise
stress constraints. Consequently, it can be concluded that the extension of the stress
constraints is sufficient for alleviating the no-structure problem. In particular, a further
regularization with a compliance term is not necessary for the solution of the minimum
volume problem. A crucial part of the optimization method is the continuation in
penalty parameter γ in order to generate designs which fulfill precisely the pointwise
stress constraints. Moreover, we could observe that the incorporation of the coefficient
function h(γ) in problem (7.7) leads to a vanishing penalty term for the specific choice
(7.18), if the stress constraints in material are satisfied. The resulting effect is that
the algorithm terminates, as soon as the pointwise constraints are fulfilled and no
unnecessary material is used. Moreover, function h(γ) allows to connect problem
(7.7) with the original minimum volume problem with pointwise stress constraints
in the material phase. While a small parameter γ is necessary in the beginning of
the optimization procedure in order to guarantee convergence, large values for γ

lead to vanishing constraints in the air phase. Consequently, the original problem
is approximated successfully for large penalty parameters. Finally, the stresses for
the obtained design have been checked in a more precise and realistic simulation.
Essentially, the mesh has been fitted to the design boundary in order to remove
intersected mesh elements and the weak phase has been deleted. The stress analysis
shows high accordance with the predicted stress values and only a minor constraint
violation in two vertices could be observed.
After having summarized the results of the numerical experiments, the main findings
compared to Amstutz and Novotny (2010), see [17], are stated. Note that their work
has been one of the starting points for the research, which has been conducted in
this thesis. First, novel insights concerning the no-structure problem are gained by
investigating the regularization of the original stress-constrained minimum volume
problem. It could be shown that an extension of the pointwise constraints to the
weak phase is a crucial step in order to obtain a convergent numerical scheme. Note
that we had to address the topological gradient of a large class of penalty terms in
order to be able to solve problem (7.9). Further, the incorporation of a compliance
term in the optimal design problem is not necessary for solving the stress-constrained
minimum volume problem. Second, we modified the penalty term by introducing the
coefficient function h(γ). This modification has the effect of a vanishing penalty term,
if the stress constraints are fulfilled in the material phase. Consequently, combined
with a continuation method in the penalty parameter γ, the function h(γ) ensures
that the original problem with pointwise stress constraints in the material phase is
approximated by the regularized problem (7.7).
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7. Volume Minimization under Local Stress Constraints

The aim of this thesis is a method for the solution of generic stress-constrained optimal
design problems, where the minimum volume problem is only a special case. Therefore,
the question arises, if the regularizing effect of the stress constraint extension to the air
phase is limited to the minimum volume problem or holds for different problems as
well. We will investigate this question in the following chapter, where the multiphysical
design of an electrical machine under pointwise stress constraints is addressed.
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8. Multiphysical Design of an Electrical

Machine

8.1. Introduction

In the previous chapter, the solution of the minimum volume problem with pointwise
stress constraints for the L-beam geometry, which is a standard benchmark problem
in stress-constrained topology optimization, has been investigated. In this chapter,
we turn towards a more challenging problem, which has, to the author’s best knowl-
edge, not been addressed in literature so far. The problem under investigation is
the multiphysical design of the rotor of an electrical machine. More precisely, the
aim is to maximize the average torque of the machine, which is an electromagnetic
quantity, subject to pointwise constraints on the first principal stress in the rotor, which
is a quantity from the domain of structural mechanics and can be used to assess the
mechanical stability of the rotor in operation mode. The purpose of this chapter is
twofold. First, the developed method is employed for the solution of a real industrial
problem with relevance to practitioners and engineers. This is particularly important,
since, in contrast to the widely used SIMP method, the application of topological gra-
dients seems to be mostly restricted to academic problems so far. To the author’s best
knowledge, only the works [43] and [117] address industrial applications of topological
gradients. Second, the regularizing effect of stress constraints in the air phase will be
examined for the case of torque maximization. In particular, it will be investigated,
whether the regularization has a stabilizing effect on the numerical scheme, as it has
been observed in the previous chapter for the stress-constrained minimum volume
problem and the L-beam geometry.
Before the optimal design problem is formulated, a short overview of the existing
literature on shape and topology optimization for electrical machines is given. Note
that only sensitivity-based approaches are considered in the following. One of the
earliest works dealing with topology optimization for electrical machines has been
published by Takahashi et al. in 2010, see [135], which uses the ON/OFF method.
This approach has been introduced in [107] and relies on discrete sensitivities and a
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8. Multiphysical Design of an Electrical Machine

heuristic optimization scheme. In [135], the minimization of the torque ripple, which is
a term from engineering and describes undesirable periodic fluctuations of the torque,
as well as the case of average torque maximization have been addressed. In [68], Gangl
and Langer (2012) employed the ON/OFF method for the minimization of a criterion,
which is related to the smooth rotation of the rotor of a permanent synchronous
machine. The concept of shape derivatives has been employed for the optimization of
an electrical machine by Gangl et al. in 2015, see [69], where the objective is again
related to the smoothness of the rotation of the rotor. Another approach based on
shape derivatives and isogeometric analysis can be found in [102], where Merkel et
al. (2021) considered the minimization of the total harmonic distortion of an interior
permanent magnet synchronous machine. In 2012, Choi et al. considered the rotor pole
design of an electrical machine using the phase field method, see [44]. Further, the SIMP
approach has been employed by Kuci et al. (2019) for the torque ripple minimization of
an interior permanent magnet synchronous machine, see [95]. Gangl et al. (2016) used
the concept of topological gradients for the minimization of an electromagnetic objective
functional, see [65] and [67].
We remark at this point that all existing works take solely electromagnetic quantities
into account. To the author’s best knowledge, multiphysical shape or topology op-
timization has not been addressed so far for the design of electrical machines. The
consideration of multiphysical effects, however, is crucial for obtaining realistic machine
designs due to a well known conflict between electromagnetic and mechanical criteria,
see for instance [100] or [136]. This conflict between electromagnetics and structural
mechanics is meant in the sense that certain design features, which are favorable
for one domain, have a negative effect on the performance with respect to the other
domain. This challenge in the design process of electrical machines highlights the
practical relevance of topology optimization and demonstrates the actual potential of
the developed method.
Let us clarify briefly, which aspects of the design of an electrical machine are novel
compared to the stress-constrained minimum volume problem. First, a nonlinear system
dynamic needs to be taken into account in order to model the electromagnetic behavior
of the machine. This nonlinearity in the state system, which is a simplified version of
Maxwell’s equations, is caused by the nonlinear behavior of magnetic fields in ferro-
magnetic material. The consequence of the nonlinear state system is a challenging and
computationally expensive objective evaluation and sensitivity computation. Further,
as it has been mentioned previously, the maximization of the average torque subject to
local stress constraints is a multiphysical design problem. In contrast to the minimum
volume problem, obtained solutions might not be intuitively plausible anymore due to
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the previously mentioned conflict between electromagnetic and structural mechanical
design criteria. This aspect comprises the chance of generating novel, and up to now
unknown, design ideas.
The structure within this chapter is chosen as follows. First, the electromagnetic and
structural mechanical modeling of electrical machines is addressed. Based on the de-
rived physical models and quantities, the optimal design problem is formulated. Since
the obtained problem matches the framework from the first chapters, the developed
methods can be applied. As in the case of volume minimization, we will investigate
existence of local minima of the optimal control problem and derive its topological
gradient. Numerical experiments are conducted in order to investigate the performance
of the numerical scheme for the design of a permanent magnet synchronous machine.
In particular, the choice of the penalty term will be examined and discussed.

8.2. Modeling of Permanent Magnet Synchronous

Machines

A first and fundamental step towards designing an electrical machine is understanding
and describing its essential physical functionality. Therefore, in this section, we will
provide an overview of the most common types of electrical machines and explain
the functionality of the important class of permanent magnet synchronous machines
(PMSM), which will be considered throughout this chapter, in more detail. Further,
an electromagnetic model as well as a structural mechanical model for describing the
behavior of the considered machine type will be derived and discussed.
Electrical machines fall into the category of electromechanical energy converters, see for
instance the monograph [29]. If electrical energy is converted to mechanical energy, a
machine is called an electric motor and, in case of conversion from mechanical energy
to electrical energy, a machine is referred to as electric generator. Electrical machines
can be categorized as either rotating or linear, depending on the type of mechanical
movement in operation mode. For the rotating case, a machine consists of a fixed part,
which is commonly referred to as stator, and a rotating inner part, which is called
rotor. Essentially, magnetic fields of certain types are generated in the stator as well as
the rotor and the interaction between both fields is used for generating a mechanical
rotation of the rotor. We will discuss the operation principle of a specific type of
rotating machines in more detail below. Further, the class of synchronous machines is
distinguished from induction machines, which are of asynchronous type. The former
class, in contrast to induction machines, is characterized by a synchronous rotation of
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8. Multiphysical Design of an Electrical Machine

Figure 8.1.: 2D cross-section of an interior PMSM. The stator consists of iron (brown)
and coils (green) and is separated by the airgap (blue) from the rotor, which
consists of iron and magnets (yellow).

the rotor and the rotating magnetic field of the stator. An important subcategory of
these machines is the class of permanent magnet synchronous machines, where the rotor
contains permanent magnets in order to generate a constant magnetic field. In contrast
to reluctance machines or hysteresis machines, this type offers the advantages of high
power densities and efficiency, see for instance [78] or [136]. Concerning the rotor
arrangement, the permanent magnets can be either buried in the interior of the rotor
or mounted on its surface. The class of interior permanent magnet synchronous machines,
in contrast to the surface-mounted type, has the advantage of high torques and low
cost, see [54] and [91]. A sketch of the two-dimensional cross-section of an interior
permanent magnet synchronous machine, which will be considered throughout this
chapter, is visualized in Figure 8.1.
The magnet arrangement for an interior PMSM is a delicate task and has a significant
impact on the performance of the machine. The specific size and location of the
magnets in Figure 8.1 is known as V-shape in engineering, referring to the constellation
of two neighboring magnets. It has been demonstrated in [78] that the V-shape, in
contrast to different arrangements, ”has the broadest area of high efficiency and, thus,
the best energy consumption in a mixed driving scenario of a small battery electric
vehicle”. This property makes the V-shaped interior PMSM an ideal candidate for
the experiments within this chapter. We mention that the exact parameters regarding
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magnet size, position and angle within the V-shape arrangement are not fixed a priori,
but need to be chosen for the given problem at hand. In case of the machine in Figure
8.1, these parameters are the result of a parametric multi-objective optimization with
respect to criteria from different physical domains.
Besides the previously mentioned positive properties of interior permanent magnet
synchronous machines, which are high power density, high torque and overall effi-
ciency, there are of course less favorable characteristics compared to different machines
types. The probably most severe disadvantage of an interior PMSM is the low mechanical
robustness of the rotor caused by centrifugal forces in operating mode, for instance [91]
and [77]. This lack of mechanical stability is a consequence of the specific arrangement
of steel and permanent magnets within the rotor and will be discussed in more detail
later on. Note that the mechanical robustness is a very important aspect, since it affects
directly the maximum allowable rotational speed of the machine. We highlight at this
point that our approach tackles this well-known challenge in the design of an interior
PMSM by considering the mechanical stresses.
We proceed by explaining the basic functionality of a permanent magnet synchronous
machine in more detail. The stator, which is the outer part in Figure 8.1, is fixed and
consists of a steel core as well as electromagnetic coils, which are typically made of
copper. The purpose of these coils is the generation of a rotating magnetic field, which
is realized by supplying an alternating current flow of the same amplitude and fre-
quency to each coil. We recall from the theory of electromagnetism that an alternating
current flow in a coil induces an alternating magnetic flux density, see for instance
[29]. Choosing a suitable phase difference for the alternating currents of the different
coils and taking the spatial distribution of the coils into account, the interaction of
the sinusoidal magnetic flux densities results in a rotating stator field. In Figure 8.1,
the phase difference between the coils is visualized via three different types of green.
The illustration indicates that the current flow in all coils of the same color is identical
and a phase shift of 120° characterizes the differences between two coils of different
colors. Note that machines involving stators of this type are commonly referred to as
three-phase machines. We mention at this point that in many applications, in particular
if the current source is a battery, an inverter is necessary for transforming direct to
alternating currents. Furthermore, the rotor of a PMSM consists of a steel core and
permanent magnets, which create a constant magnetic field. For a suitable arrangement
of the permanent magnets, the interaction between the constant rotor field and the
rotating magnetic field, induced by the stator, results in a mechanical rotation of the
rotor. This rotational force can be transferred to other mechanical devices via the rotor
shaft, which is attached to the rotor and located in its center.
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The goal of the remaining section is to derive a model for describing the behavior
of a permanent magnet synchronous machine. Instead of modeling the entire three-
dimensional object, we will consider only a two-dimensional cross section. This is a
common procedure in the modeling process of a PMSM and provides a very good
trade-off between model accuracy and computational complexity. We will see later on
that the model assumptions, which allow the reduction of dimensions, are reasonable.
Moreover, two physical domains will be taken into account in the modeling process. First,
the electromagnetic behavior, more precisely the magnetic field, is a quantity of interest.
Second, the structural mechanical behavior will be considered by the displacement
field. Note that displacements occur due to centrifugal forces in the rotor, which are
caused by mechanical rotation. The ultimate goal is to define the torque of the electrical
machine and the principal stress in the rotor in order to formulate an optimal design
problem, which will be addressed in the following section. Note that more than the
two mentioned physical domains need to be considered in practice. Taking acoustic
effects into account is important in the design of electrical machines in order to prevent
undesirable sounds, especially at high rotational speeds. Moreover, thermal effects are
usually considered in the design process in order to keep heating of certain machine
parts as low as possible and prevent material damage. However, it is known from
engineering experience that the consideration of only electromagnetic and structural
mechanical effects provides a sufficiently accurate approximation of the real machine
for obtaining a first realistic design. We specify that a realistic design in this context
has to be understood as manufacturable and mechanically robust, which allows to
actually manufacture the designed machine for testing purposes. A modification of
the design with respect to thermal and acoustic effects, however, is of course necessary
in order to obtain a machine for everyday use. Additionally, we will assume a constant
rotational speed of the permanent magnet synchronous machine. This assumption covers
an important operation case of electrical machines and allows to employ stationary
models. Note that the consideration of variable rotational speeds, which results in
instationary and hence more complex models, is of interest for describing the starting
phase or speed variations of a machine.

Electromagnetics

Let us begin with modeling the electromagnetic behavior of a permanent magnet
synchronous machine. In the following, several simplifications of Maxwell’s equations
will be conducted and the necessary assumptions discussed, which results in the
magnetostatic problem.
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Electromagnetic phenomena are modeled by Maxwell’s equations, which describe the
relation between electric and magnetic fields (cf. [90] or [92]):

curl H = J +
∂D
∂t

, (8.1)

curl E = −∂B
∂t

, (8.2)

div B = 0, (8.3)

div D = ρ. (8.4)

The quantities in the system of partial differential equations (8.1) - (8.4) are called the
magnetic field intensity H, the magnetic flux density B, the electric field intensity E,
the electric flux density D, the electric current density J and the electric charge density
ρ. Note that all objects in Maxwell’s equations depend on a point in space x ∈ R3 and
time t ∈ R+

0 .
The equations (8.1) - (8.4) are connected via material laws, which are formalized by the
following constitutive relations

B = µH + M, (8.5)

D = ϵE + P, (8.6)

J = σE + Je, (8.7)

where M denotes the magnetization, P represents the electric polarization and Je is
an impressed current density. In general, the magnetic permeability µ, the electric
permittivity ϵ and the conductivity σ are matrices depending nonlinearly on H and
E. For the rest of this chapter, however, we assume isotropic material behavior such
that these matrices become scalar quantities. Furthermore, we neglect hysteresis effects
in all involved materials. It is common to describe the relation between H and B by
the reciprocal of the magnetic permeability, which is called the magnetic reluctivity ν,
implying the equation

H = ν(B−M). (8.8)

In certain materials, such as air, copper or permanent magnets, the reluctivity ν takes
constants values. In ferromagnetic materials, however, ν = ν(|B|) is a nonlinear
function of the magnitude of the magnetic flux density B. Details regarding this
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function will be provided later on.
It is a common procedure in the modeling of electrical machines to consider the
low-frequency case of electromagnetism, see for instance [94], which allows to neglect
displacement currents compared to the current density:

⃓⃓⃓⃓
∂D
∂t

⃓⃓⃓⃓
≪ |J|.

In this situation, equation (8.4) decouples from the other equations. Further, since the
magnetic flux density is divergence free according to (8.3), a magnetic vector potential A
exists such that

B = curl A, (8.9)

where the vector potential A is unique up to a gradient field. Moreover, due to the
assumption of a constant rotational speed, all quantities in Maxwell’s equations can
be assumed as time-independent. These assumptions, together with the equations (8.1),
(8.2), (8.5) and (8.7) yield the vector potential formulation of the magnetostatic problem:

curl [ν(|curl A|)curl A] = Je + curl [νM]. (8.10)

In order to complete the partial differential equation (8.10) by suitable boundary
conditions, an underlying bounded Lipschitz domain D ⊂ R3 is introduced, which
represents the three-dimensional permanent magnet synchronous machine. We assume
the boundary of D to consist of two parts ΓB and ΓH with ∂D = ΓB ∪ ΓH and ΓB ∩ ΓH =

∅. With n denoting the outer unit normal vector to ∂D, the following boundary
conditions are chosen (cf. [111]):

B · n = 0, on ΓB, (8.11)

H × n = 0, on ΓH. (8.12)

We mention that condition (8.11) ensures the normal component of the flux density B
to vanish on ΓB and condition (8.12) guarantees the tangential component of the field
intensity H to vanish on ΓH. Moreover, additional properties concerning B and H need
to be specified in the presence of different materials, which leads to discontinuities of
the reluctivity function. Denoting ΓI the material interfaces within D, the following
interface conditions are imposed (cf. [111])
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JB · nK = 0, JH × nK = 0 on ΓI , (8.13)

where J f K represents the jump of a function f across the interface ΓI .
The last step in the simplification of Maxwell’s equation is the reduction of (8.10) to a
two-dimensional problem. This procedure can be applied under several assumptions and
aims at reducing the computational cost within numerical computations by considering
only a two-dimensional cross-section of the actual three-dimensional object. The first
assumption concerns the underlying domain and requires the geometrical structure

D = Dem × (−l, l),

with l ≫ diam(Dem), where the superscript in Dem ⊂ R2 refers to the physical domain
of electromagnetics. Second, the following assumptions regarding the structure of
H, M and Je are made

Je =

⎛⎜⎝ 0
0

J3(x1, x2)

⎞⎟⎠ , H =

⎛⎜⎝H1(x1, x2)

H2(x1, x2)

0

⎞⎟⎠ , M =

⎛⎜⎝M1(x1, x2)

M2(x1, x2)

0

⎞⎟⎠ , (8.14)

for (x1, x2) ∈ Dem. It results immediately from the equations (8.8) and (8.9) that the
magnetic vector potential is of the form

A =

⎛⎜⎝ 0
0

A3(x1, x2)

⎞⎟⎠ . (8.15)

Introducing the abbreviations u := A3, M⊥ := (−M2, M1)
T and observing the identi-

ties

B · n = ∇u · τ, H × n = ν(x, |∇u|)∇u · n,

with the tangential unit vector τ, we obtain the two-dimensional magnetostatic problem:
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−div [ν(x, |∇u|)∇u] = J3 − div [νM⊥], in Dem, (8.16a)

u = 0, on ΓD, (8.16b)

ν(x, |∇u|)∇u · n = 0, on ΓN, (8.16c)

JuK = 0, on ΓI , (8.16d)

Jν(x, |∇u|)∇u · nK = 0, on ΓI . (8.16e)

It is important to note that a solution of the magnetostatic problem (8.16) describes the
magnetic field for one fixed rotor position or one fixed point in time, respectively. For a
given fixed rotor position, the current density J3 takes a constant value within each
coil and vanishes in the remaining domain. If the rotor position is varied, these values
need to be updated in order to account for the sinusoidal shape of the currents. Note
that the rotating magnetic field in the stator can be influenced by adapting the current
density. Further, the magnetization M of the permanent magnets in the rotor, which
is not affected by changes of the rotor position, is constant within each magnet and
vanishes otherwise.
We proceed by introducing a subdivision of the two-dimensional domain Dem in order
to take different materials into account. First, we divide Dem into two subdomains
Ωd ⊂ Dem and Ωn ⊂ Dem with Ωd ∩Ωn = ∅ as follows

Dem = Ωd ∪Ωn.

We will consider changes of the material distribution solely within the design domain
Ωd and keep the material distribution fixed within the no-design domain Ωn. Moreover,
we will allow only two materials, namely ferromagnetic material and air, within the
design domain. Hence, for a given material distribution, we can further split the design
domain as follows

Ωd = Ω ∪
(︂

Ωd \Ω
)︂

,

where Ω denotes the ferromagnetic part and Ωd \Ω refers to the subset of Ωd, which is
occupied by air. We mention that Ω will serve as optimization variable in the optimal
design problem, which will be introduced in the subsequent section. Regarding
the no-design domain Ωn, where the material distribution is fixed, we allow for
more than two different materials. More precisely, we introduce the subdomains
Ωf, Ωa, Ωc, Ωm ⊂ Dem with the following relation
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Dem = Ωf ∪Ωa ∪Ωc ∪Ωm

in order to represent the parts of the no-design domain, which are occupied by
ferromagnetic material, air, copper and magnets. The geometrical setup along with
the material distribution is depicted in Figure 8.2. Note that we consider only a
45°-segment of the cross-section in all numerical computations due to the periodicity
of coils and permanent magnets in the machine arrangement, see Figure 8.1.

Figure 8.2.: Hold-all domain of the electromagnetic model (45°-segment of PMSM
cross-section) with ferromagnetic material in rotor and stator (brown), coils
(green), permanent magnets (yellow), the airgap between rotor and stator
(blue) and the design domain (gray).

Based on the subdivision of Dem, we specify the reluctivity function by

νΩ(x, |∇uem|) :=

⎧⎨⎩ν̂(|∇uem|), x ∈ Ωf ∪Ω,

ν0, x ∈ Dem \ (Ω ∪Ωf) ,
(8.17)

where the subscript in νΩ is chosen in order to clarify the dependency on design
Ω ⊂ Ωd. The constant ν0 characterizes the reluctivity in air, copper and the permanent
magnets.

Remark 8.1. Note that the actual reluctivity coefficient of copper and magnet differ from the
constant ν0. However, since the realistic reluctivity constants are close to ν0, we omit the
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distinction at this point for the sake of readability. In all numerical experiments, which will be
presented within this chapter, we employed the realistic constants.
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Figure 8.3.: B-H-curve of ferromagnetic material (Courtesy of Robert Bosch GmbH).

In ferromagnetic material, the reluctivity is characterized by the nonlinear function
ν̂. Usually, ν̂ is described via a so-called B-H-curve, relating the flux density B and
the field intensity H. According to the constitutive relations of Maxwell’s equations,
assuming the absence of permanent magnetization, these quantities are connected by
the equation

B = µ(|H|)H,

where µ denotes the magnetic permeability. This relation can be described by a function
f : R+

0 → R+
0 , defined by

f (|H|) = |B|,

which is precisely the previously mentioned B-H-curve. Note that the relation between
the function f and reluctivity ν̂ is given by

ν̂(s) :=
f−1(s)

s
, (8.18)

for s ∈ R+
0 . The specific B-H-curve, which has been used for the numerical experiments

within this chapter, is shown in Figure 8.3. For further details on B-H-curves, in
particular the aspect of interpolation from measured data points, the reader is referred
to [112].
Having modeled the behavior of the magnetic field in (8.16), we proceed by defining
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the torque of an electrical machine at a fixed rotor position. First, given rmin, rmax > 0,
an additional domain Ωg := {x ∈ R2 : rmin < ∥x∥ < rmax} ⊂ Ωa is introduced, which
represents the air gap between rotor and stator. This area is particularly important in
the generation of mechanical forces. For a given magnetic field uem, the torque of the
electrical machine (cf. [19]) is defined by the functional

T(uem) :=
∫︂ 2π

0

∫︂ rmax

rmin

UP(r, φ)T MT(r, φ)UP(r, φ)drdφ, (8.19)

with the abbreviation

UP(r, φ) := ∇uem(r cos(φ), r sin(φ)),

and the matrix MT defined by

MT(r, φ) := r
ν0

rmax − rmin

(︄
sin(φ) cos(φ) sin(φ)2

− cos(φ)2 − sin(φ) cos(φ)

)︄
,

where ν0 is the reluctivity in air. Furthermore, we define the derivative of T at uem in
direction of v as follows:

∂uT(uem)(v) := 2
∫︂ 2π

0

∫︂ rmax

rmin

UP(r, φ)T MT(r, φ)VP(r, φ)drdφ, (8.20)

where VP(r, φ) := ∇v(r cos(φ), r sin(φ)). Definition (8.19) is based on the observation,
that the torque can be computed by a line integral over a circular ring within the air
gap. While this quantity is independent of the radius of the circular ring if uem is given
exactly, it varies for numerical approximations of uem. For this reason, the torque is
averaged over the whole cross sectional area of the air gap, leading to more reliable
results in practical simulations. This approach is known as eggshell method, coined by
the shape of the air gap. Further details can be found in [19, p. 56].

Structural Mechanics

Having stated and discussed the electromagnetic model for describing the behavior of
a permanent magnet synchronous machine, we proceed with the structural mechanical
model. Here, the quantity of interest is the mechanical displacement within the
electrical machine, again at constant rotational speed. Displacements, and therefore
mechanical stresses, occur solely in the rotor area due to centrifugal forces, which are
caused by rotation. Since the mechanical behavior at constant speed does not change
with the rotor position, all mechanical quantities are independent of the rotor angle.
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As in the case of the electromagnetic model, we begin with choosing a two-dimensional
hold-all domain Dsm ⊂ R2, where the superscript refers to the physical domain of
structural mechanics. Since mechanical forces are present only within certain parts of
the machine, more precisely the rotor area, we require Dsm to be entirely contained
in the hold-all domain of the electromagnetic model and choose Dsm ⊂ Dem. In
addition, we exclude the permanent magnet area from the hold-all domain, since the
magnets are not critical with respect to material failure and will be fixed throughout the
optimization process. Further, we choose the design domain to be entirely contained in
the hold-all domain, which means Ωd ⊂ Dsm. The remaining part of Dsm, which will
not be altered in the course of the optimization, is assumed to be composed of steel
only. The hold-all domain of the structural mechanical model is depicted in Figure 8.4.

5.2 cm

Figure 8.4.: Hold-all domain of the mechanical model (45°-segment of rotor cross-
section excluding permanent magnets) with non-design area (black) con-
taining steel only and design area Ωd (gray).

It can be observed in Figure 8.4 that certain areas of Dsm are part of the design domain
Ωd, whereas the material distribution in other parts will not be allowed to change
during the optimization process. Let us clarify briefly, why the distribution of design
area and non-design area has been chosen in this manner. As it will be explained in
more detail below, mechanical boundary forces are acting on the shaft hole, which
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is represented by the inner boundary, as well as on the magnet boundaries due to
replacement loads. It is precisely the vicinity of these boundaries, which is chosen as
non-design area in order to guarantee a physically reasonable setup throughout the
optimization process. Clearly, the boundary data needs to be modified if the material
distribution of the corresponding boundary is changed, which is an undesired step
within the optimization. Note that the small iron bars on the inner and outer sides
of the permanent magnets are known as noses in engineering and chosen here as
non-design domain in order to obtain realistic results. The practical purpose of the
noses is to fix the magnets and ensure that they will stay in place if the machine
operates. Furthermore, a rather large non-design domain around the shaft has been
chosen in order to keep the computational effort, more precisely the computation of
the topological gradient, in a reasonable order of magnitude. We mention that this
area has not been chosen arbitrarily, but is based on experience from numerical tests
revealing that design alterations do not occur in this region for the chosen criteria from
the domains of electromagnetics and structural mechanics.
The plane stress equations of linear elasticity (2.6) are chosen for modeling the structural
mechanical behavior of a two-dimensional cross section of the rotor. Note that the
assumption of linearity is justified, since only small displacements occur in the rotor
up to a certain rotational speed. Furthermore, the plane stress assumption within the
reduction of dimensions is valid, if the axial dimension of the rotor is much smaller
than the diameter of a two-dimensional cross section. Although this assumption seems
to be false at first sight, it actually holds due to the manufacturing process of the
machine. More precisely, the rotor is composed of many thin metal sheets of uniform
thickness between 0.2 mm and 0.5 mm, called lamellas in engineering, which are
pressed together during the production process. Therefore, the computational cross
section can be thought of as one iron sheet, where the plane stress assumption is valid.
Note that this manufacturing technique, which is based on stamping the desired rotor
shape from a thin metal sheet, is advantageous in terms of design flexibility compared
to the standard procedure of milling or casting the entire rotor from a single metal
block. In particular, the stamping process enables to manufacture a large class of
designs, which may not be manufacturable by standard techniques. We emphasize
at this point the strength of topology optimization for finding novel rotor designs,
which can actually be manufactured in mass production. Having verified the model
assumptions, we state the plane stress equations of linear elasticity again for the sake
of convenience and refer to (2.6) for detailed explanations:
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−div CΩϵ(usm) = fΩ, in Dsm, (8.21a)

usm = uD, on ΓD, (8.21b)

CΩϵ(usm) · n = g, on ΓN, (8.21c)

JusmK = 0, on ΓI , (8.21d)

JCΩϵ(usm) · nK = 0, on ΓI . (8.21e)

In interface problem (8.21), the unknown usm : Dsm → R2 represents the displacement
field. Further, analogously to Section 2.1, the elasticity tensor depends on the design Ω
and is defined by

CΩ := αΩC,

where the weak phase coefficient function is defined by

αΩ(x) :=

⎧⎨⎩1, x ∈ Ω ∪
(︁

Dsm \Ωd)︁ ,

α, x ∈ Ωd \Ω,

with α ≪ 1. For details regarding (8.21), in particular the elasticity tensor C or the
weak phase approach, the reader is referred to Section 2.1.
We proceed by explaining the data in interface problem (8.21), which represent the
applied forces in the rotor of the electrical machine in operating mode. Due to the
rotation at constant speed ω > 0, centrifugal forces f : Dsm → R2, defined by

f (x) := ρω2x, (8.22)

are acting as volume forces within the entire rotor domain, where ρ denotes the
density of iron. Additionally, constant displacements uD : ΓD → R2 are prescribed on the
boundary of the shaft hole, see Figure 8.4 for details. This deformation is a consequence
of the manufacturing process, where the shaft is pressed into the shaft hole in order to
attach both components to each other. Note that a cooling of the shaft is performed
in practice prior to this assembly step in order to decrease the shaft size. Once the
shaft has revolved to its normal state, this step results in a safe assembly of both
components, which is particularly important with regards to high speed applications.
On the remaining part of the boundary, which is ΓN, Neumann conditions are imposed.
Taking the excluded permanent magnets into account, g : ΓN → R2 contributes as
replacement load with additional centrifugal forces on the exterior magnet cavities and
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vanishes on the remaining boundary part.
Having modeled the behavior of the mechanical displacements in the rotor, we proceed
by defining a suitable failure criterion. The purpose of a failure criterion, which is a
function of the stress tensor, is to quantify material failure and ensure mechanical
stability of the machine in the design process. We refer to Section 2.3 for further details
on this aspect. Throughout this chapter, the maximum principal stress criterion, also
known as Rankine criterion (cf. [73]), is chosen for quantifying material failure. The
first principal stress Sp : R2×2 → R, which is the first eigenvalue of a given stress
tensor σ ∈ R2×2, is defined as follows:

Sp(σ) :=
σ11 + σ22

2
+

√︄(︃
σ11 − σ22

2

)︃2

+ σ2
12. (8.23)

In the following section, the first principal stress will serve as the basis for defining the
local stress constraints in the optimal design problem.

8.3. Optimal Design Problem

In the previous section, the electromagnetic torque and the mechanical principal stress
for a permanent magnet synchronous machine have been derived based on physical
models. The aim of this section is the formulation of an optimal design problem,
which relies on these quantities. In a first step, the partial different equations will be
analyzed with regards to existence and uniqueness. Based on these considerations,
solution operators can be defined, which allows the reduction of the objectives. As a
result, an optimal design problem is obtained, which fits into framework of Section 2.3.
In particular, the structure of problem (2.25) is obtained, enabling the application of
the developed solution methods. Finally, the existence of local minima of the optimal
design problem is examined.

Electromagnetics

We begin by analyzing the weak formulation of the magnetostatic problem (8.16). A
function uem ∈ H1

0(Dem) is a weak solution of the partial different equation (8.16), if it
solves ∫︂

Dem
AΩ(x,∇uem) · ∇vdx = ⟨F, v⟩ ∀v ∈ H1

0(Dem), (8.24)

where
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AΩ(x,∇uem) := νΩ(x, |∇uem|)∇uem, (8.25)

and the right hand side is defined by

⟨F, v⟩ :=
∫︂

Dem
J3v + νmM⊥ · ∇vdx.

Further, for

a(y) := ν̂(|y|)y, y ∈ R2,

with its Jacobian

∂ua(y) :=

⎧⎨⎩ν̂(|y|)I + ν̂′(|y|)
|y| y⊗ y, y ̸= (0, 0)T,

ν̂(|y|)I, y = (0, 0)T,
(8.26)

we define the derivative of AΩ as follows:

∂uAΩ(x,∇uem) :=

⎧⎨⎩∂ua(∇uem), z ∈ Ω,

ν0 I, z ∈ Ωd \ Ω̄.
(8.27)

The following theorem ensures the existence of a unique solution of (8.24) under certain
conditions on the reluctivity function in ferromagnetic material.

Theorem 8.1. Assume that there exist constants ν, ν > 0, such that the reluctivity function
ν̂ : R+

0 → R+, defined in (8.17), satisfies the following conditions:

(ν̂(s)s− ν̂(t)t)(s− t) ≥ ν(s− t)2, ∀s, t ∈ R+
0 , (8.28)

|ν̂(s)s− ν̂(t)t| ≤ ν|s− t|, ∀s, t ∈ R+
0 . (8.29)

Then, there exist a unique solution uem ∈ H1
0(Dem) of problem (8.24) and there exists a

constant c > 0 such that the following estimate holds:

∥uem∥H1
0(Dem) ≤ c ∥F∥H−1(Dem) . (8.30)

Proof. A detailed proof is given in [110], which is sketched briefly in the following.
Conditions (8.28) and (8.29) are precisely the definitions of strong monotonicity and
Lipschitz continuity of the mapping s ↦→ ν̂(s)s. Consequently, the operator AΩ :
H1

0(Dem)→ (H1
0(Dem))∗, which is defined by ⟨AΩw, v⟩ :=

∫︁
Dem AΩ(x,∇w) · ∇vdx, is

strongly monotone and Lipschitz continuous, see [110]. The theorem of Zarantonello,
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which is a nonlinear version of the Lax-Milgram lemma, ensures the existence of a
unique solution as well as estimate (8.30). A proof of the theorem of Zarantonello can
be found in [140].

Remark 8.2. Conditions (8.28) and (8.29) can be guaranteed by imposing conditions on the
B-H-curve f , which is particularly convenient for practical applications. The requirements
regarding B-H-curve f can be found in [112].

Analogously to (2.22) in the elasticity case, Theorem 8.1 allows to define a solution
operator

Sem : O → H1
0(Dem) (8.31)

Ω ↦→ uem
Ω , (8.32)

which associates the unique solution uem
Ω to a design Ω ∈ O. Consequently, we can

reduce the torque functional T : H1
0(Dem)→ R, which has been defined in (8.19), as

follows:

T (Ω) := T(uem
Ω ). (8.33)

In order to introduce the average torque for one rotor rotation of the electrical machine,
a finite set of angles

{φ1, ..., φN} ⊂ [0, 2π) (8.34)

is introduced, representing the rotor positions. Further, the torque at a given angle
φ ∈ [0, 2π) is defined by

Tφ(Ω) := T(uem
Ω,φ), (8.35)

where uem
Ω,φ ∈ H1

0(Dem) denotes the unique solution of (8.24) associated to design
Ω ∈ O and rotor angle φ. Clearly, the data in problem (8.24) needs to be modified in
order to account for changes in the rotor angle. The values of the reluctivity νΩ and
the magnetization M remains unchanged, solely the spatial rotation needs to be taken
into account. In the case of the current density J3, the values need to be modified in
order to obtain a sinusoidal current shape in the coils. Based on the set of angles (8.34)
and the reduced functional (8.35), the average torque for design Ω ∈ O is defined by
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J (Ω) := − 1
N

N

∑
i=1
Tφi(Ω), (8.36)

representing an approximation of the average torque for one continuous rotation. Note
the negative sign in (8.36), which has been added in order to account for the fact that
the torque is intended to be maximized in the optimization.

Remark 8.3. The average torque has been chosen as objective functional for the optimal control
problem, as it aims at maximizing the torque of the permanent magnet synchronous machine
for a given amount of electrical energy. However, we could have chosen a different objective
functional without any impact on the theory, which will be introduced subsequently. An
objective, which is related to the smoothness of the rotation, can be found in [65].

Structural Mechanics

The analysis of elasticity problem (8.21) has already been treated in Section 2.2. The
existence of a unique solution usm ∈ H1(Dsm, R2) of the weak formulation (2.10) is
ensured by Theorem 2.1, where the weak phase coefficient needs to fulfill the condition
α > 0. Consequently, we can define a solution operator

Ssm : O → H1(Dsm, R2)

Ω ↦→ usm
Ω ,

which assigns a design Ω ∈ O to the associated displacement. As for the generic
failure function (2.24), a reduced principal stress field Sp[Ω] : Dsm → R is defined by

Sp[Ω](x) := Sp(σ(usm
Ω (x))), (8.37)

where the first principal stress has been defined in (8.23).

Problem Formulation

Having defined the average torque functional (8.36) and the principal stress field (8.37)
in reduced form, we are in the position to formulate the optimal design problem.
Given a stress limit σ̄ > 0 and the set of feasible designs

O := {Ω ⊂ Ωd : Ω open with uniformly Lipschitz continuous boundary}, (8.38)
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the optimal design problem reads as follows:

min
Ω ∈ O

J (Ω) (8.39a)

s.t. Sp[Ω] ≤ σ̄ a.e. in Ω. (8.39b)

Comparing problem (8.39) with the generic stress-constrained optimal design problem
(2.25), we can observe that the constraint (8.39b) does not match with the constraint
structure in the generic problem (2.25). More precisely, the first principal stress (8.23)
is not of quadratic structure as it is the case for a failure function (2.17). Therefore, in
order to obtain a problem, which fits into the generic framework, we will characterize
the constraint in (8.39) equivalently. First, we observe for σ ∈ R2×2 that the inequality

Sp(σ) ≤ σ̄, (8.40)

where Sp is defined in (8.23), can be expressed equivalently by means of the two
inequalities

(︃
σ11 − σ22

2

)︃2

+ σ2
12 ≤

(︃
σ̄− σ11 + σ22

2

)︃2

, (8.41)

σ11 + σ22

2
≤ σ̄, (8.42)

and define the functions

f 1(σ) :=
1
2

Dσ : σ + tr[σ], f 2(σ) :=
1
2

tr[σ],

with D := I− I⊗ I. Hence, analogously to the definition of failure function (2.16), the
inequalities (8.41) and (8.42) can be expressed in the form

F1
σ̄(σ) ≤ 1,

F2
σ̄(σ) ≤ 1,

with Fi
σ̄(σ) := f i(σ̄−1σ) for i = 1, 2. Finally, by setting F i

σ̄[Ω] := Fi
σ̄(σ(u

sm
Ω )), the

optimal control problem (8.39) can be formulated equivalently as follows
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min
Ω ∈ O

J (Ω) (8.43a)

s.t. F 1
σ̄ [Ω] ≤ 1 a.e. in Ω, (8.43b)

F 2
σ̄ [Ω] ≤ 1 a.e. in Ω, (8.43c)

where the structure of the constraints matches with the failure function (2.16). Analo-
gously to Section 3.2, the stress constraints (8.43b) and (8.43c) are extended to the entire
domain and a penalty approach is performed. Therefore, we obtain the regularized
optimal design problem

min
Ω ∈ O

Jγ(Ω) := J (Ω) + γP1(Ω) + γP2(Ω), (8.44)

where the penalty terms are defined by

Pi(Ω) :=
∫︂

Dsm
αΩΦp

(︂
β

γ
ΩF

i
σ̄[Ω]

)︂
dx, (8.45)

for i = 1, 2.

Existence of Local Minima

Before we proceed by deriving the topological gradient of the regularized problem
(8.44), we need to ensure the existence of local minima. The framework for this task is
provided by Theorem 3.3, where continuity and boundedness from below has been
assumed for the generic functional J . Within this chapter, the objective is the reduced
torque functional

J (Ω) = − 1
N

N

∑
i=1
Tφi(Ω) = − 1

N

N

∑
i=1

T(uem
Ω,φi

),

see (8.36). It can be observed immediately that functional T : H1
0(Dem)→ R, defined

by (8.19), is continuous. The essential question at this point is therefore, whether
the solution uem

Ω,φ of the magnetostatic problem is continuous in Ω ∈ O. Clearly, this
property is equivalent to the continuity of the solution operator of the magnetostatic
problem Sem : O → H1

0(Dem), defined by (8.31). The following proposition ensures
the continuity of operator Sem under mild assumptions concerning the regularity of
solutions of the magnetostatic problem.
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Proposition 8.1. Assume that there exists ϵ > 0, such that the operator Sem : O → H1
0(Dem),

defined by (8.31), satisfies

∥Sem(Ω)∥H1+ϵ(Dem)∩H1
0(Dem) ≤ c, ∀ Ω ∈ O,

where the constant c > 0 depends only on the domain Dem and the data of problem (8.24).
Then, the solution operator Sem is continuous.

Proof. A proof is given in Proposition 3.3 in [69].

Before we proceed, the global regularity assumption uem
Ω ∈ H1+ϵ(Dem) for ϵ > 0 in

Proposition 8.1 is discussed. It is known that the regularity of solutions of interface
problems is determined by the right hand side, the boundary of the underlying domain
and the shape of the subdomains with respect to the different material phases, see
[93] or [113]. Since the data in problem (8.24) as well as the boundary of Dem are
sufficiently smooth, the limiting factor in the given case is clearly the shape of the
subdomains or, in other words, the smoothness of the interface. In [113], the global
H1+ϵ-regularity is shown under certain assumptions regarding the interface. Hence,
we mention at this point that the required conditions regarding the interface might be
a limitation in certain situations.

Remark 8.4. As in Section 3.4 on the existence of solutions for the generic stress-constrained
optimal design problem, convergence in O is to be understood in the sense of Hausdorff or in
the sense of characteristic functions.

The continuity of T together with Proposition 8.1 ensures the continuity of objec-
tive functional J . Moreover, the boundedness from below of objective J follows
immediately from the estimate

∥Sem(Ω)∥H1
0(Dem) = ∥u

em
Ω ∥H1

0(Dem) ≤ c ∥F∥H−1(Dem) , ∀ Ω ∈ O,

see (8.30).

Remark 8.5. Note that functional F represents the right hand side of the magnetostatic equation
(8.24) and contains the current density as well as the magnetization. The interpretation of
estimate (8.30) with respect to J is therefore simply that the amount of torque, i.e. mechanical
energy, is determined by the amount of electrical energy, which is provided to the machine.

The following theorem addresses the existence of solutions for the regularized optimal
design problem (8.44).
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Theorem 8.2. Let the feasible set O be defined as in (8.38) and consider the functional
J : O → R, defined by (8.36). Further, let P1 and P2 be defined as in (8.45). Then, for a
penalty parameter γ ≥ 0, the optimal design problem (8.44)

min
Ω ∈ O

Jγ(Ω) = J (Ω) + γP1(Ω) + γP2(Ω)

admits at least one solution.

Proof. Lemma 3.1 ensures the boundedness from below as well as the lower semi-
continuity of the penalty terms P1 and P2. In Proposition 8.1, the continuity of the
control-to-state operator (8.31) has been shown. Together with the continuity of the
torque functional T, which has been defined in (8.19), the continuity of J follows.
Since a continuous functional is lower semicontinuous by definition and due to the
boundedness from below of objective functional J , the assumptions of Theorem 3.3
are satisfied and we obtain the existence of a local minimum for problem (8.44).

8.4. Topological Gradient

In the previous section, the regularized optimal design problem (8.44) has been
formulated. Aiming at its numerical solution, the topological gradient of the objective
functional Jγ will be derived in this section. We will derive the topological gradient
according to definition (4.1) with f (ρ) = ρ2. In a first step, we observe that the equality

DTJγ[Ω] = DTJ [Ω] + γDTP1[Ω] + γDTP2[Ω] (8.46)

holds due to linearity of the corresponding differential operator. The different terms in
(8.46) will be treated separately in the following.

Electromagnetics

The topological gradient of the average torque functional

DTJ [Ω] = − 1
N

N

∑
i=1

DTTφi [Ω]

will be treated first. For the sake of conciseness, we will derive the topological gradient
for a fixed rotor position and drop the angle in the following. Hence, we are interested
in a formula for the topological gradient
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8.4. Topological Gradient

DTT [Ω] = DT [T(Sem(Ω))] , (8.47)

where the functional T has been defined in (8.19) and the solution operator Sem is
given in (8.31).

Remark 8.6. In contrast to the solution operator Ssm of the elasticity equation (2.10), Sem

comprises the nonlinearity of the magnetostatic equation (8.24). This leads to a challenging
derivation of the topological gradient of (8.47), which is reflected in its complex mathematical
structure.

The topological gradient for functionals of type (8.47) has been derived in [70], as well
as in [71] for the three-dimensional case. Hence, we will solely state the results in
this thesis and refer to [70] and [71] for the derivation and further details. Before the
topological gradient is stated, several objects need to be introduced.
The adjoint state pem ∈ H1

0(Dem) to functional (8.33) is the solution of the equation

∫︂
Dem

∂uAΩ(x,∇uem
Ω )∇φ · ∇pemdx = −∂uT(uem)(φ), ∀φ ∈ H1

0(Dem), (8.48)

where the derivatives of AΩ and T have been defined in (8.27) and (8.20), respectively,
and uem

Ω ∈ H1
0(Dem) is the unique solution of problem (8.24). The existence and

uniqueness of a solution of problem (8.48) can be proven in a standard fashion by
applying the Lax-Milgram Theorem. For a given design Ω ∈ O, we will denote the
unique solution of the adjoint equation (8.48) by pem

Ω ∈ H1
0(Dem). At this point, the

abbreviations

U := ∇uem
Ω (z), P := ∇pem

Ω (z) (8.49)

are set for convenience. Further, we introduce the functions

a0(y) :=

⎧⎨⎩ν̂(|y|)y, z ∈ Ω,

ν0y, z ∈ Ωd \ Ω̄,
a1(y) :=

⎧⎨⎩ν0y, z ∈ Ω,

ν̂(|y|)y, z ∈ Ωd \ Ω̄,

depending on the location of z ∈ Ωd \ ∂Ω, which represents the point of topological
perturbation. We will need a0 and a1 in order to distinguish between the phases Ω and
Ωd \Ω in the topological gradient. Moreover, the operator

Aω(x, y) :=

⎧⎨⎩a1(y), x ∈ ω,

a0(y), x ∈ R2 \ω,
(8.50)
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on the entire space R2 is defined. Based on the previous definitions, the variation of the
direct state H ∈ BL(R2) is introduced as the solution of

∫︂
R2

[Aω(x,∇H + U)−Aω(x, U)] · ∇φdx = −
∫︂

ω
[a1(U)− a0(U)] · ∇φdx, (8.51)

∀φ ∈ BL(R2), where BL(R2) denotes the Beppo-Levi space, see [70]. Similarly, we
introduce the variation of the adjoint state K ∈ BL(R2) as the solution of the following
equation:

∫︂
R2

∂uAω(x, U)∇φ · ∇Kdx = −
∫︂

ω
[∂ua1(U)− ∂ua0(U)]∇φ · Pdx, (8.52)

∀φ ∈ BL(R2), where the derivatives ∂uAω and ∂ua1, ∂ua2 are defined analogously to
(8.27) and (8.26), respectively. Note that both (8.51) and (8.52) possess a unique solution,
which has been proven in [70]. We are now in the position to give a formula for the
topological gradient (8.47), which requires certain regularity assumptions of the direct
and adjoint state as well as additional assumptions concerning the reluctivity function.
The topological gradient (8.47) is presented in the following theorem.

Theorem 8.3. Let a design Ω ∈ O, an open and bounded set ω ⊂ R2 containing the origin
and a point of perturbation z ∈ Ωd \ ∂Ω be given. Assume that the reluctivity function ν̂,
defined in (8.17), satisfies condition (8.28) and (8.29). Moreover, assume that ν̂ ∈ C2(R+

0 ),
ν̂′(0) = 0 and that there is a constant c > 0 such that ν̂′(s) ≤ c and ν̂′′ ≤ c for all s ∈ R+

0 .
Further, let uem

Ω ∈ H1
0(Dem) denote the solution of problem (8.24) and let pem

Ω ∈ H1
0(Dem)

denote the solution of the adjoint problem (8.48) and let U, P ∈ R2×2 be defined as in (8.49).
Assume that uem

Ω ∈ C1,α(Bδ(z)), pem
Ω ∈ C1(Bδ(z)) for some δ > 0 and 0 < α < 1 and

∇pem
Ω ∈ L∞(Dem, R2). Then the topological gradient of objective functional (8.47) at design

Ω and point of perturbation z reads as follows

DTT [Ω](z) = [a1(U)− a0(U)] ·
∫︂

ω
P +∇Kdx (8.53)

+
∫︂

R2
[Aω(x,∇H + U)−Aω(x, U)− ∂uAω(x, U)(∇H)] · (P +∇K)dx,

(8.54)

where H ∈ BL(R2) and K ∈ BL(R2) denote the solutions to (8.51) and (8.52), respectively.

Proof. A proof can be found in [70].

150



8.4. Topological Gradient

Before we proceed, the assumptions in Theorem 8.3 are discussed. We recall that the
reluctivity ν̂ in ferromagnetic material is defined via the B-H-curve, see (8.18), which
is based on measurements in practical applications. The B-H-curve, which has been
used in this thesis, has been obtained by a suitable interproximation of the measured
data points, see [112] for further details on the interproximation technique. As a result,
we obtain ν̂ ∈ C2(R+

0 ) with ν̂′(s) ≤ c and ν̂′′ ≤ c for all s ∈ R+
0 . Additionally, the

conditions (8.28) and (8.29) have been verified.
Furthermore, it can be observed that the right hand side of the magnetostatic problem
(8.24) is only supported in the coil and magnet areas and vanishes in the remaining
part of the hold-all domain. Consequently, the right hand side is a smooth function on
the design domain, which implies uem

Ω ∈ C1,α(Bδ(z)) for δ > 0 and 0 < α < 1, see the
monograph [101, Theorem 3.20]. Similarly, we observe that the torque functional (8.19)
is defined as an integral over the air gap, which is not contained in the design domain.
Hence, the right hand side of the adjoint equation (8.48) is smooth within the design
domain, which implies pem

Ω ∈ C1(Bδ(z)) for some δ > 0 by elliptic regularity.

Remark 8.7. The objective functional T, which is related to T via T = T(Sem), is defined
as an integral over the air gap, see (8.19). The topological gradient (8.53), (8.54) has been
stated under the assumption that the air gap is not part of the design domain. If, however, the
objective functional is defined as an integral over the design domain, the term

∫︁
R2 |∇H|2dx

needs to be added to the topological gradient, see [70].

We will focus on the term (8.53) of the topological gradient in the following, aiming at
obtaining an analytical formula for the practical implementation. It can be observed
that the variation of the adjoint state K, which is the solution to (8.52), depends linearly
on P. This observation can be exploited to show the existence of a so-called polarization
matrixM =M(ω, ∂ua0(U), ∂ua1(U)) with the property

[a1(U)− a0(U)] ·
∫︂

ω
P +∇Kdx = UTMP, (8.55)

which has been proven in [65]. The following proposition shows that an analytical
formula for matrixM is obtained, if a circular shape of ω is assumed. Note that ω has
been allowed to be an open and bounded set of arbitrary shape up to this point.

Proposition 8.2. Denote λ1 := ν̂(|U|), λ2 := ν̂(|U|) + ν̂′(|U|)|U| and let the rotation
matrix R ∈ R2×2 around the angle between U and the x-axis be defined via the relation

U = R

(︄
|U|
0

)︄
.
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If ω = B1(0), the polarization matrix M ∈ R2×2, defined by the equality (8.55), can be
expressed as follows:

M :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
π(ν0 − λ1)R

⎛⎝λ2+
√

λ1λ2
ν0+
√

λ1λ2
0

0 λ1+
√

λ1λ2
ν0+
√

λ1λ2

⎞⎠ RT, if z ∈ Ω,

2πν0R

⎛⎝λ1−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

⎞⎠ RT, if z ∈ Ωd \ Ω̄.

Proof. A proof can be found in [65], see Proposition 4.72 and Proposition 4.75.

Furthermore, we remark that a strategy for an efficient numerical implementation of
the term (8.54) has been developed in [65] and [70].

Structural Mechanics

Having treated the torque functional, we proceed with the derivation of the topological
gradient of the penalty terms P1 and P2, defined in (8.45), by applying Theorem 4.1.
As in the previous chapter, we denote the penalty terms for i ∈ {1, 2} by

Pi(Ω) = Pi
Ω(ϵ(u

sm
Ω )) =

∫︂
Dsm

jiΩ(ϵ(u
sm
Ω ))dx,

with density function jiΩ = jmat
i χΩ + jair

i χDsm\Ω as in (4.11) and

jmat
i (d) := Φp(Fi

σ̄(Cd)), jair
i (d) := αΦp(h(γ)−1Fi

σ̄(Cd)),

for d ∈ R2×2. Further, the adjoint state psm
Ω ∈ V for the penalty term (8.45) to the state

usm
Ω ∈ H1(Dsm, R2) is the unique solution of the following problem:

aΩ(v, psm
Ω ) = ∂ePi

Ω(ϵ(u
sm
Ω ))(ϵ(v)) ∀v ∈ V , (8.56)

which is the adjoint equation (4.44) for the given specific setting. Note that the bilinear
form aΩ(·, ·) has been defined in (2.8).
Before the topological gradient is stated for a point of perturbation z ∈ Ωd \ ∂Ω, the
assumptions of Theorem 4.1 are verified. Since the centrifugal forces (8.22) are smooth
in the entire rotor domain, the state usm

Ω is smooth in a neighborhood of the point
of perturbation z. Moreover, due to the choice of penalty function Φp, the required
regularity of the adjoint state psm

Ω in a neighborhood of z follows as well. Therefore,
the application of Theorem 4.1 yields
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DTPi[Ω](z) =π jδ(ϵ(usm
Ω (z)))−Eϵ(usm

Ω (z)) : ϵ(psm
Ω (z)) + π∇jδ(ϵ(usm

Ω (z))) : ϵ(vX(0))

+
∫︂

R2\ω
G0(z, ϵ(vX))dx +

∫︂
ω
G1(z, ϵ(vX))dx,

where jδ has been defined in (4.23), E is the elastic moment tensor (4.36), vX denotes
the solution of problem (4.31) and G0,G1 are defined as in (4.46). The computation
of the elastic moment tensor E and the function ϵ(vX) is performed analogously to
Section 7.2.

8.5. Numerical Experiments

The aim of this section is the numerical solution of the regularized problem (8.44)
for the case of an electrical machine. A major point of interest is the effect of the
chosen regularization, where the pointwise stress constraints are extended to the entire
computational domain, on the level set-based optimization scheme. While, in the
previous chapter, this approach showed excellent performance for the solution of the
minimum volume problem and the L-beam geometry, it is unclear at this point how
the algorithm performs in the case of stress-constrained torque maximization for an
electrical machine. Moreover, the effect of two different initial designs, visualized in
Figure 8.5, will be examined by numerical experiments.

Figure 8.5.: State-of-the-art design (left) and naive design (right) consisting of steel
(black), air pockets (gray) and rectangular permanent magnets (white) for
numerical experiments.

The left image in Figure 8.5 represents a typical and widely used rotor design of

153



8. Multiphysical Design of an Electrical Machine

an interior permanent magnet synchronous machine, which will be referred to as
state-of-the-art design throughout this section. The reason for its broad use in industrial
practice is the good comprise between electromagnetic and structural mechanical
criteria. In order to explain this compromise in more detail, we will refer to the air
regions, visualized in gray, as air pockets. Further, the thin steel region between the
permanent magnets as well as the steel parts between the outer air pockets and the air
gap will be referred to as bridges. One major electromagnetic design criterion is the
torque, which is generated in the air gap between rotor and stator, see for instance
[29]. We remark that the importance of the air gap in generating the torque is reflected
in the definition of functional (8.19). Hence, in order to obtain a high torque, the
magnetic flux within the machine needs to be concentrated in the air gap. This insight
is precisely the reason for the use of air pockets, which decrease the magnetic flux
leakage in the rotor due to the low magnetic permeability of air compared to steel. An
entire prevention of rotor flux leakage, however, is impossible due to the steel bridges.
This is explained in [100] as follows: ”Each bridge effectively creates a magnetic short
circuit across the permanent magnets, thereby reducing the magnets’ contribution to
the overall air-gap flux.” Note that an optimal flux behavior is achieved, if the bridges
are removed entirely. However, this would clearly be problematic from a structural
mechanical point of view due to the lack of stability, especially at high rotational
speeds. Therefore, design engineers aim at choosing the bridges as thin as possible
in order to obtain high torques while keeping the rotor mechanically stable. Further
information on this topic can be found in [100], [141] and [77]. The question, whether
fundamentally different shapes of the air pockets and bridges exist, arises naturally
at this point. We address this question in the following and investigate, if the level
set algorithm is capable of improving the state-of-the-art design in terms of average
torque and local stresses.
The second initial design, which will be employed for the numerical experiments, is
visualized in the right image of Figure 8.5. Since this design does not contain any air
pockets and is, excluding the permanent magnet area, entirely occupied by steel, it
will be referred to as naive design. In this case, it will be particularly interesting how
the algorithm performs, as no prior expert knowledge regarding the shape of the air
pockets is provided by the initial design.

Optimization Setup

Before we begin reporting on the numerical investigations, the experimental setup will
be fixed. The machine type under investigation is a three-phase permanent magnet
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synchronous machine with four pole pairs. The sketch of a two-dimensional cross-
section, more precisely a 45◦-segment, is shown in Figure 8.2. Note that considering
only this part of the entire domain within the optimization procedure is sufficient due
to the symmetries of the machine setup. Throughout this section, a constant rotational
speed of ω = 17000 revolutions per minute is assumed, which is a typical maximum
speed for electrical machines used in battery electric passenger vehicles. We recall that
the rotational speed affects directly the mechanical forces within the rotor. Further, the
iron parts of the rotor and stator are assumed to consist of steel of the type M330-50A,
which is normed by the EN 10106 and standard in the manufacturing of electrical
machines in industry. Note that the steel type determines the material characteristics
for all physical domains.
Concerning the geometrical setup, an outer and inner stator radius of 116 mm and
79.2 mm as well as an outer and inner rotor radius of 78.6 mm and 26.5 mm is chosen.
This results in a diameter of 232 mm for the entire machine and a thickness of 0.6 mm
for the air gap between rotor and stator. We mention at this point that the size of the
air gap affects the torque significantly. More precisely, the smaller the air gap, the
higher the torque, see for instance [136]. Clearly, a certain minimum thickness of the
air gap is necessary in order to prevent a collision between rotor and stator at high
rotational speeds, caused by centrifugal forces and the resulting material expansion
within the rotor. This emphasizes the importance of considering mechanical stability
in the rotor design, as it affects directly the allowable diameter of the air gap and thus
the maximum torque. Further, the design domain is depicted in Figure 8.4, where the
regions around the shaft and the magnets are excluded in order to guarantee physical
consistency throughout the optimization, see the discussion in Section 8.2 for details.
Moreover, stress constraints are imposed on the entire structural mechanical hold-all
domain, which corresponds to the rotor area excluding the permanent magnets. Note
that guaranteeing the stress criterion being satisfied in the entire rotor area is crucial
in order to obtain a realistic and fail-safe design.
Further, the data concerning the electromagnetic model needs to be set. The B-H-curve
of the ferromagnetic material in stator and rotor is depicted in Figure 8.3, determining
the reluctivity function ν̂. In air and copper, the reluctivity is given by the constant
ν0 = 107/4π m/H. In the permanent magnets, the reluctivity takes the constant value
νm = ν0/1.05 m/H. Moreover, the alternating currents in the coils are represented by a
sinusoidal function of amplitude 1556 A and frequency 1133 Hz, where the latter is de-
termined by the number of pole pairs and the rotational speed. Taking the phase shift
between the different coils into account, the current density J3 is chosen accordingly
for each rotor position. Further, the magnetization M is assumed to be perpendicular
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to the longer edge of the permanent magnets with a magnitude of 1.216 T. For the
computation of the mean torque, a total number of N = 15 rotor positions is considered
with a difference of 1◦ between the angles of two neighboring rotor positions, which
results in the consideration of a 15◦ rotation. Note that this is sufficient for determining
the mean torque, since the torque signal repeats periodically after a 15◦ rotation due
to the 45◦ periodicity of rotor and stator as well as the use of three-phase currents.
The magnetostatic problem (8.24) has been solved using Newton’s method, where
the linearized equations as well as the adjoint problem (8.48) have been discretized
using first order Lagrangian finite elements. Further, an harmonic averaging procedure
(cf. Section 6.2) has been employed for computing the reluctivity in intersected mesh
elements. Moreover, the second gradient recovery strategy (6.18) from Section 6.3 has
been used for the discretization of the topological gradient.
Additionally, the parameters for the structural mechanical model need to be fixed in
order to compute the stress criterion. An elastic modulus of E = 2.0× 105 MPa and
a Poisson ratio of ν = 0.3 are used for computing the elasticity tensor. Moreover, a
weak phase parameter of α = 10−3 is employed for considering the difference between
steel and air. Together with the rotational speed ω, the density of steel ρf = 7.65× 103

kg/m3 is employed for computing the centrifugal forces (8.22). Further, the magnet
replacement load is determined by the density ρm = 8.415× 103 kg/m3 as well as the
length and height of 17 mm and 7 mm, respectively, of the permanent magnets. More-
over, a radial displacement with a magnitude of 60 µm is prescribed at the boundary
representing the shaft hole. Throughout this chapter, an elastic limit of σ̄ = 500 MPa is
chosen in the stress constraints, which represents the yield stress of the specific steel
type under consideration.
Concerning the optimization scheme, the same settings as in the previous chapter
are employed. This concerns the parameter of the penalty function, the number of
integration points within the computation of the topological gradient, the step size
control of the algorithm and the choice of h(γ) = γ/γ0. Moreover, the convergence
criterion (7.17) is chosen as in the previous chapter. A mesh with 41653 vertices and
76024 elements in the entire machine area as well as 25084 vertices and 48546 elements
in the design domain has been used within the optimization.
An important aspect in the implementation of the numerical algorithm is the compu-
tation of the topological gradient of the mean torque, which has been addressed in
Theorem 8.3. Within this work, we only implemented the first term of the topological
gradient (8.53) and neglected the second term (8.54). The reason for this decision is
that the second term is small compared to the first term for the application under
investigation, see [16]. Moreover, the numerical treatment of the second term (8.54)
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requires a lot of technical implementation effort due to the necessity of precomputing
look-up tables in an offline stage, see [65] and [16]. This effort is justified by no means
compared to the gained numerical accuracy for the topological gradient in a practical
application.
Furthermore, a feature for symmetrizing the topological gradient in the entire rotor
area along the symmetry axis at 22.5◦ has been implemented. We performed the sym-
metrization by averaging the values of the topological gradient in two symmetrically
related vertices. Note that the magnetic field, and thus the topological gradient of the
torque, is not symmetric along the symmetry axis for a fixed rotor position. Since we
simulate rotations only in one direction, which corresponds to motor operation of the
machine, the resulting topological gradient of the mean torque remains asymmetric. It
follows that the use of this sensitivity within the level set-based optimization algorithm
from Chapter 5 leads to asymmetric designs. We mention that the symmetrization is
performed for two reasons. First, the enforced symmetry property is common for the
machine type under consideration and enables a comparison of our results with exist-
ing works from literature. Second, looking at the symmetrization from an engineering
point of view, the machine is designed optimally for both rotation directions and hence
for motor and generator operation.

State-of-the-art Design

Having described the experimental setup, we turn towards the numerical results. First,
we report on the experiments, where the initial guess is provided by the start-of-the-art
design. In Figure 8.6, the first principal stress field and the magnitude of the magnetic
field of the state-of-the-art design are visualized.
Before we address the numerical solution of the optimal control problem (8.44), the
state-of-the-art design is assessed in terms of mean torque and local first principal
stresses. Based on the numerical solution of the magnetostatic problem (8.24) and
the linear elasticity problem (2.10), a mean torque of 625.3 Nm and a maximum first
principal stress of 659.9 MPa is determined. As it can be observed in Figure 8.6, the
maximum stress occurs in the bridge between the two permanent magnets. Note that
the occurring stress can be reduced by simply increasing the thickness of the bridge.
However, as it has been explained in the beginning of this section, an increase of the
bridge thickness results in an immediate reduction of the achievable mean torque due
to magnetic flux leakage in the rotor. In a first step towards the solution of (8.44), the
unconstrained torque maximization problem
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Figure 8.6.: State-of-the-art design with steel in black, air pockets in gray, permanent
magnets in white (first row, left), principal stress field (first row, right) and
magnetic field (second row).

min
Ω ∈ O

J (Ω)

is addressed. We are interested in examining the solution of this problem using the level
set-based optimization scheme from Chapter 5 in order to get an idea of an optimal
design for the unconstrained case. Furthermore, we can determine the mean torque in
the unconstrained case, which provides an upper limit for the stress-constrained case.

The numerical scheme converged after 25 iterations with convergence measure ϵc =

0.0096 and a mean torque of 737.2 Nm for the final design. In Figure 8.7, the final
design along with the corresponding magnetic field is visualized. It can be observed
that the algorithm creates air in three main areas. The first major air domain is between
the permanent magnets, where the bridge of the initial design has been removed.
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Figure 8.7.: Result of unconstrained torque maximization. Material distribution with
steel in black, air pockets in gray, permanent magnets in white (left) and
magnetic field (right).

Second, air is created between the outer sides of the magnets and the rotor outer
contour in radial direction by removing the outer bridges. Third, feather-shaped
air holes are created between the permanent magnets and the rotor outer contour.
From an electromagnetic point of view, these design features are highly desirable due
to a reduced rotor flux leakage and, consequently, an optimal concentration of the
magnetic field in the air gap. From a structural mechanical point of view, however, this
design is clearly problematic. It can be observed that the material part between the
permanent magnets and the outer contour is barely attached to the remaining part of
the rotor. More precisely, the only connections are the small noses at the sides of the
permanent magnets. Note that the solution of the elasticity system is unreasonable in
this situation, since the assumption of small displacements does not hold anymore. For
this reason, a stress analysis is omitted. Summarizing, we can observe that the results
for the unconstrained case confirm and illustrate the well-known conflict between
electromagnetic and structural mechanical design criteria, which has been discussed
in the beginning of this section. In particular, an optimal magnetic flux behavior is
achieved by entirely removing the central and outer bridges. For the optimization
algorithm, this poses a major challenge with the opportunity of creating novel and
inspiring designs. Furthermore, we note that the no-structure problem does not occur
for the case of torque maximization. While for the unconstrained minimum volume
problem, the trivial and global solution is the empty set, a highly non-trivial result is
obtained in the case of unconstrained torque maximization. Nevertheless, the challenge
of low design connectivity can be observed for the example under consideration.
We proceed with the results for the stress-constrained torque maximization problem (8.44),
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8. Multiphysical Design of an Electrical Machine

where an initial penalty parameter of γ0 = 2.0× 107 has been chosen. The numerical
optimization algorithm converged after 54 iterations with convergence measure ϵc =

0.022. An electromagnetic analysis reveals a mean torque of 691.5 Nm for the obtained
final design, which yields an increase of 10.7 % compared to the initial state-of-the-art
design. Furthermore, we observe a maximum first principal stress of 497.6 MPa for
the final design and thus a stress reduction of 24.6 % compared to the state-of-the-art
design. We emphasize that this excellent result has been obtained without the necessity
of applying a continuation strategy since the stress constraints are satisfied already for
the initial penalty parameter. In Figure 8.8, the final design is visualized along with
the first principal stress field and the magnetic field for a fixed rotor position.
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Figure 8.8.: Result of stress-constrained optimization with state-of-the-art design as
initial guess. Material distribution with steel in black, air pockets in gray,
permanent magnets in white (first row, left), principal stress field (first row,
right) and magnetic field (second row).

Analogously to the previous chapter on the minimum volume problem, we performed
a realistic stress assessment within the rotor domain by considering only the material

160



8.5. Numerical Experiments

phase and an appropriately refined mesh. As in the previous chapter, this step is
conducted in order to eliminate the impact of intersected mesh elements and the
surrounding weak phase. Note that only the stress field for the realistic setting is
visualized in Figure 8.8 since the corresponding visualization for the original setting,
where the weak phase is included, does not contain additional insights. The realistic
stress analysis reveals a maximum first principal stress of 646.1 MPa, which occurs at
the boundary of the small air holes near the middle bridge between the two permanent
magnets. Although this is significantly above the stress limit of 500 MPa, we observe
that the constraint violation occurs only in very few vertices. We emphasize that
these stress peaks can be eliminated easily by smooth modifications of the boundary
or a filling of the small air holes without a significant reduction of the mean torque.
Furthermore, we highlight that the critical rotor area, which comprises in particular the
bridges, shows stress levels around 500± 15 MPa. Moreover, as it could be observed for
the minimum volume problem in the previous chapter, a satisfying distribution of the
stress levels is achieved by the algorithm and local stress concentrations are prevented.
Summarizing, it can be stated that the obtained design satisfies the stress criterion very
well and violations of the constraints can be eliminated by minor design modifications.
Note that postprocessing routines are commonly used in the practical application of
shape and topology optimization methods prior to an actual manufacturing of the
optimized design.
Regarding the changes between the initial and the final design, several observations
can be made. First, the middle bridge between the permanent magnets is maintained
and modified to an X-shape, which is a major difference to the unconstrained case.
This modification results in an improved mechanical stability, since the maximum
stress within the bridge is decreased due to its curved shape. Second, the outer bridges
and air pockets are modified. More precisely, we can observe that the initial shape
of the outer air pockets is adapted and additional holes are created within the outer
bridges. Furthermore, it can be observed that the initial air pocket, which can still
be identified, is divided by a thin steel connection between magnet nose and outer
bridge. These modifications result in a complex and non-intuitive structure of the outer
bridges and air pockets, which contribute significantly to the gain of mean torque due
to a reduced rotor flux leakage. Note that a similarity to the unconstrained case can
be observed in this region, where the algorithm entirely removed the outer bridges.
For the constrained case, the algorithm keeps as much material as possible in order to
guarantee for mechanical stability. Third, as in the unconstrained case, we can observe
the creation of feather-shaped air pockets at the magnet boundaries in radial direction.
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Figure 8.9.: Optimization history for state-of-the-art design with stress constraints.
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(a) Iteration 2. (b) Iteration 5.

(c) Iteration 8. (d) Iteration 12.

(e) Iteration 15. (f) Iteration 23.

Figure 8.10.: Design evolution for state-of-the-art design as initial guess.
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Therefore, we can conclude that this modification leads to an increase of the mean
torque and has a rather low effect on the mechanical stability of the rotor, since the
stresses are comparably low in this area. Summarizing, it can be stated that the design
shows similarities with the unconstrained case and all qualitative differences contribute
to mechanical stability.
We highlight at this point that the feather-shaped air pockets represent a design feature,
which has been unknown so far in the engineering literature. Therefore, in cooperation
with Robert Bosch GmbH, a patent application with patent number DE102022203615A1
has been submitted to the German Patent and Trade Mark Office and is currently in
the examination process. This result demonstrates the potential and capability of the
developed topology optimization method in finding novel and non-intuitive designs.
The optimization history for the stress-constrained problem is shown in Figure 8.9
and, in addition, the design evolution of the optimization process is visualized in
Figure 8.10 by means of six different iterations. Both figures demonstrate clearly the
connection between variations of the mean torque and the creation of air pockets. In
Figure 8.9, a large increase of the mean torque can be observed in the beginning of
the optimization process, in particular between iteration 1 and 5 as well as between
iteration 10 and 16. In Figure 8.10, we can observe that large air pockets are created in
precisely these iterations. Furthermore, a significant increase of the maximum principal
stress can be observed for the relevant iterations, which shows that an improvement
of the mean torque is performed at the cost of a decrease of the mechanical stability.
As it can be observed in the corresponding plot in Figure 8.9, the maximum stress is
improved by comparably small design variations after the creation of these large air
pockets. Note that, similarly to the minimum volume problem, high fluctuations of
the maximum principal stress and the number of constraint violations occur due to
the highly nonlinear behavior of the pointwise stress constraints, which means that
small design variations can result in a large variation of the maximum stress. Further,
it can be observed that a thin steel connection grows through the initial air hole to the
magnet nose at the outer side of the permanent magnets. This demonstrates clearly
the ability of the optimization algorithm to create material within the air phase.

Observation 8.1. The regularized design problem (8.44) is solved successfully by the level
set-based optimization algorithm. Hence, as it has been observed already in the case of volume
minimization, the extension of the pointwise stress constraints to the weak phase has a stabilizing
effect on the optimization scheme.
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Naive Design

Let us proceed by investigating the results of the stress-constrained torque optimization
for the naive design as initial guess. In the following investigations, the initial penalty
parameter has been chosen as γ0 = 3.0× 107. The numerical scheme converged after 43
iterations with convergence measure ϵc = 0.043. Further, the mean torque is improved
from 557.3 Nm to 688.2 Nm.

Figure 8.11.: Result of stress-constrained optimization with naive design as initial
guess. Initial (left) and final design (right) with steel (black) and air
pockets (gray).

In Figure 8.11, the initial design is visualized together with the final design. It can be
observed that the result shares many similarities with the design in Figure 8.8, which
is the result of the stress-constrained optimization with respect to the state-of-the-art
design. The only major qualitative differences are the large air pockets at the outer
sides of the permanent magnets, which are not divided by a thin steel component. It
is remarkable that all main characteristic features, in particular the X-shaped middle
bridge between the magnets, the complex outer bridges and air pockets as well as the
feather-shaped air holes can be observed for the naive initial design, where no prior
expert knowledge is available.
In Figure 8.12, the first principal stress field for both the initial and the final design is
visualized. For the initial design, a maximum first principal stress of 1045.1 MPa is
obtained. Unsurprisingly, the stress concentrations occur around the reentrant corners
of the magnet pockets, as it is typically observed for geometrically constrained domains.
For the final design and the initial penalty parameter, a maximum first principal stress
of 492.7 MPa is obtained with respect to the mesh containing the weak phase. The
realistic stress assessment, which is conducted only within the material phase with an

165



8. Multiphysical Design of an Electrical Machine

0.0e+00

5.0e+02

100

200

300

400
F

ir
st

P
ri
n

ci
p

a
lS

tr
e

ss
[M

P
a

]

0.0e+00

5.0e+02

100

200

300

400

F
ir
st

P
ri
n

ci
p

a
lS

tr
e

ss
[M

P
a

]

Figure 8.12.: Result of stress-constrained optimization with naive design as initial guess.
First principal stress field of the initial (left) and final design (right).

appropriately refined mesh, is depicted in Figure 8.12. We can observe a maximum
principal stress of 681.1 MPa, which occurs at the boundary of the small air holes at
the middle bridge. As in the previous case, the constraint violation in the realistic
stress computation occurs only on very few vertices and can be eliminated by minor
design modifications in a postprocessing step. In Figure 8.13, the magnitude of the
magnetic flux density is visualized for both the initial and the final design.
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Figure 8.13.: Result of stress-constrained optimization with naive design as initial guess.
Magnetic field of the initial (left) and final design (right).

Observation 8.2. The result of the optimization scheme for the naive design as initial guess
can be observed to be qualitatively very similar to the result with respect to the state-of-the-art
design. This demonstrates that the developed method is capable of generating complex and
non-intuitive structures without the availability of expert knowledge.
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8.6. Discussion

Having reported on the numerical experiments in the previous section, the results
will be summarized briefly in the following. As for the stress-constrained minimum
volume problem, which has been investigated in the previous chapter, a key in solving
the stress-constrained torque maximization problem (8.39) has turned out to be the
extension of the pointwise stress constraints to the weak phase. More precisely,
combined with the penalty approach from Section 3.3, the level set-based optimization
scheme could be observed to converge. In addition to the stabilizing effect on the
numerical scheme, it could be observed that the obtained designs are connected
and isolated parts are prevented. Furthermore, in contrast to the stress-constrained
minimum volume problem, a continuation in the penalty parameter has not been
necessary, as the pointwise constraints have been satisfied immediately for the initial
penalty parameter. The realistic stress assessment, which has been conducted on
a refined and fitted mesh, revealed that the stress levels are around 500±15 MPa
in all critical areas. More precisely, the constraints are violated only in very few
vertices, which can be resolved easily by minor modifications in a postprocessing
step. Regarding the results with the state-of-the-art design as initial guess, the mean
torque could be improved and the maximum first principal stress could be decreased
significantly. In three main areas within the rotor, in particular in the neighborhood
of the steel bridges, the creation of complex and non-intuitive structures could be
observed. Moreover, the optimization result for the naive design as initial guess shows
large similarities with the result for the state-of-the-art design as initial guess. This
demonstrates that the developed method is capable of approximating non-intuitive
designs without any prior expert knowledge.
So far, solely topology optimization approaches involving electromagnetic criteria have
been investigated for the design of electrical machines in the literature. These works
have shown promising results, but do not provide realistic designs. The multiphysical
topology optimization method, which has been developed in this chapter, represents
a successful extension of the existing works, in particular of the approach in [65],
with respect to mechanical stability. The results in this chapter show novel and
complex design structures, which represent a sophisticated comprise between the
electromagnetic and mechanical design criteria. These results demonstrate the power
and potential of topological gradients and level set methods in solving real industrial
problems. Furthermore, we highlight that this potential is emphasized by a patent
application for a novel rotor design of an interior permanent magnet synchronous
machine, which has been submitted to the German Patent and Trade Mark Office.
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Conclusion

In this thesis, a framework for the solution of generic stress-constrained optimal design
problems has been developed and applied successfully to the realistic design of an
electrical machine.
A key aspect of the approach has turned out to be the regularization of the original
optimal design problem. Motivated by the no-structure problem for the specific case
of stress-constrained volume minimization, a perturbation of the original problem has
been proposed in order to exclude undesirable global solutions from the feasible set.
Essentially, this perturbation consists of an extension of the pointwise stress constraints
from the material phase to the weak phase. Moreover, a penalty approach has been
chosen in order to replace the problem with pointwise constraints by an unconstrained
approximation. This regularized problem has been analyzed with respect to the exis-
tence of local minima, which is the basis for the development of solution methods.
The topological gradient for the penalty term, resulting from the regularization, has
been derived and utilized as the core of a level set-based descent scheme. This approach
is particularly well suited for problems with local stress constraints due to the inherent
sharp interface between the material and air phase. An emphasis is put on the numeri-
cal realization of the optimization scheme, which is defined in the infinite-dimensional
setting up to this point. The approximation of the state system with respect to a fixed
mesh has been discussed as well as the discretization of the topological gradient. For
the latter, the importance of a filtering scheme has been observed, in particular for
the case of stress-constrained problems. Further, important aspects concerning the
practical implementation of the overall scheme have been provided.
The discretization of the optimization algorithm enables investigating the regulariza-
tion, more precisely the effect of stress constraints in the weak phase, via numerical
experiments. Two penalty terms, the first term with and the second term without
constraints in the weak phase, have been examined for the specific case of stress-
constrained volume minimization. In a first step, the topological gradient of both
functionals has been validated by a comparison with the corresponding finite differ-
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ences. Within the validation, significant qualitative differences have been observed
between the two terms, in particular for a topological perturbation in the air phase.
This observation has been confirmed by the optimization results. In the first case,
where only stress constraints in the material phase have been imposed, convergence
problems could be observed, resulting in a perforated design with small isolated parts.
In contrast, very satisfying results have been obtained for the second case, where
the stress constraints are imposed in the entire hold-all domain. Hence, it could be
observed that the extension of the stress constraints to the weak phase has a stabilizing
effect on the numerical scheme.
We utilized this novel insight for addressing a real industrial application, namely
the multiphysical design of the rotor of a permanent magnet synchronous machine.
First, we observed that our approach is capable of improving a state-of-the-art rotor
design. Second, it was shown that a naive initial guess leads to a very similar design.
This is a remarkable result, since no a priori expert knowledge has been available
for the optimization process. Finally, our obtained designs have resulted in a patent
application, which reflects the potential and novelty of the developed approach.

Future Work

The research in this thesis may be extended and refined in the following directions:

• Uncertainty quantification and robust optimization
The probably most interesting aspect regarding future research addresses the
consideration of stochastic effects and robust optimization. This topic is par-
ticularly important for the problem class under investigation, since local stress
constraints are highly sensitive to design variations. The case of uncertainties in
the mechanical loads seems to be a promising approach, especially with regards
to the designs with filigree structures, which have been obtained in Chapters 7
and 8. A starting point for this direction, in particular concerning the application
to electrical devices, may be the works [116] and [32].

• 3D setting
Addressing the three-dimensional case, instead of considering a two-dimensional
cross section, can be reasonable in certain applications. The topological gradient
of the stress-based penalty term for the three-dimensional setting is covered by
Theorem 4.1. Moreover, regarding the application to electrical machines, the
topological gradient of the torque functional has been derived in [71] for the
three-dimensional case. Using an appropriate modification of the step size control
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within the level set-based algorithm, a generalization of the method should be
possible immediately.

• Adaptive mesh refinement
A strategy for adaptive mesh refinement with the goal of a resolved material
interface during the optimization process is interesting for two reasons. First, a
refinement strategy is useful in order to reduce the computational burden. This
aspect is of particular interest, if the three-dimensional setting is tackled. Second,
a resolved material interface is expected to improve the accuracy of the stress
computation at the interface, which may further enhance the reliability of the
approach.

• Additional objectives for rotor design
A natural step in the improvement of the topology optimization method for
rotor design comprises the consideration of additional objectives from different
physical domains. Although the criteria from electromagnetics and structural
mechanics in Chapter 8 lead to very satisfying results already, the consideration
of thermal and acoustic effects is interesting from an application point of view.

• Multi-material rotor design
In Chapter 8, the permanent magnets in the rotor of the electrical machine have
been assumed to be fixed and thus excluded from the design domain. Due to
this assumption, the optimal distribution of ferromagnetic material and air has
been addressed. It is possible, however, to extend the design domain to the entire
rotor area and consider the optimal distribution of three materials. We refer to
[66] and [118], where the level set algorithm from Chapter 5 has been extended
to the multi-material case.
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tizitätstheorie. Springer Berlin Heidelberg, 2007.

[35] S. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer New York, 1994.

[36] D. Bucur and G. Buttazzo. Variational Methods in Shape Optimization Problems.
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