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Zusammenfassung

Limit-Orderbücher sind das Standardinstrument der Preisbildung in modernen Fi-
nanzmärkten. Während Strom traditionell in Auktionen gehandelt wird, gibt es Intraday-
Strommärkte wie beispielsweise den SIDC-Markt, in welchem Käufer und Verkäufer über
Limit-Orderbücher zusammentreffen. In dieser Arbeit werden wir stochastische Modelle
von Limit-Orderbüchern auf der Grundlage der zugrundeliegenden Marktmikrostruktur
entwickeln. Einen besonderen Schwerpunkt legen wir dabei auf die Berücksichtigung
besonderer Merkmale der Intraday-Strommärkte, die sich zum Teil deutlich von denen
der Finanzmärkte unterscheiden.

Die in dieser Arbeit entwickelten Modelle beginnen mit einer realistischen und
mikroskopischen (eventweisen) Beschreibung der Marktdynamik. Große Preisände-
rungen über kurze Zeiträume (Preissprünge) werden ebenso berücksichtigt wie be-
grenzte grenzüberschreitende Aktivitäten. Diese mikroskopischen Modelle sind im
Allgemeinen zu rechenintensiv für praktische Anwendungen. Das Hauptziel dieser Ar-
beit ist es daher, geeignete Approximationen dieser mikroskopischen Modelle durch
sogenannte Skalierungsgrenzprozesse herzuleiten. Zu diesem Zweck werden sorgfältig
Skalierungsannahmen formuliert und in die mikroskopischen Modelle eingebaut. Diese
Annahmen ermöglichen es uns, ihr Hochfrequenzverhalten zu untersuchen, vorausge-
setzt, dass die Größe eines einzelnen Auftrags gegen Null konvergiert, während die
Auftragseingangsrate gegen unendlich tendiert.

Aus mathematischer Sicht sind die mikroskopischen Modelle zeitdiskrete Prozesse,
die durch zeitkontinuierliche Prozesse approximiert werden. Die Approximation erfolgt
dabei im Sinne einer schwachen Konvergenz von Prozessen in der Skorokhod-Topologie
im Raum der càdlàg-Funktionen. Auf diese Weise entwickeln wir funktionale Grenz-
wertsätze für (un-)endlich dimensionale Semimartingale.

Die Kalibrierung mathematischer Modelle ist aus Anwendersicht eines der Hauptan-
liegen. Dabei ist bekannt, dass Änderungspunkte (abrupte Schwankungen) in hochfre-
quenten Finanzdaten vorhanden sind. Falls sie durch endogene Effekte verursacht
wurden, muss bei der Schätzung solcher Änderungspunkte die Abhängigkeit von den
zugrundeliegenden Daten berücksichtigt werden. Daher erweitern wir im letzten Teil
dieser Arbeit die bestehende Literatur zur Erkennung von Änderungspunkten, so dass
auch zufällige, von den Daten abhängige Änderungspunkte durch bereits bekannte
Teststatistiken und Schätzer für die Lage und Größe von Änderungspunkten gehandhabt
werden können.





Abstract

Limit order books are the standard instrument for price formation in modern financial
markets. While electricity has traditionally been traded through auctions, there are
intraday electricity markets, such as the SIDC market, in which buyers and sellers
meet via limit order books. In this thesis, stochastic models of limit order books are
developed based on the underlying market microstructure. A particular focus is set on
incorporating unique characteristics of intraday electricity markets, some of which are
quite different from those of financial markets.

The developed models in this thesis start with a realistic and microscopic (event-
wise) description of the market dynamics. Large price changes over short time periods
(price jumps) are taken into account, as well as limited cross-border activities. These
microscopic models are generally computationally too intensive for practical applications.
The main goal of this thesis is therefore to derive suitable approximations of these
microscopic models by so-called scaling limits. For this purpose, appropriate scaling
assumptions are carefully formulated and incorporated into the microscopic models
which allow us to study their high-frequency behavior when the size of an individual
order converges to zero while the order arrival rate tends to infinity.

Mathematically, the microscopic models are discrete-time processes approximated
by continuous-time processes. In this thesis, the approximation is in terms of weak con-
vergence of processes in the Skorokhod topology in the space of càdlàg functions. Thus,
we develop functional limit theorems toward (in-)finite dimensional semimartingales.

Calibration of mathematical models is one of the main concerns from a practitioner’s
point of view. It is well known that change points (abrupt variations) are present in
high-frequency financial data. If they are caused by endogenous effects, the dependence
on the underlying data must be considered when estimating such change points. In the
final part of this thesis, we extend the existing literature on change point detection
so that random change points depending on the data can also be handled by already
known test statistics and estimators for the location and size of change points.
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Introduction

In modern financial markets, buyers and sellers are typically matched using a continuous
trading mechanism based on limit order books (LOBs). Limit order books are records
of unexecuted buy and sell orders displayed at different price levels awaiting execution
(cf. Figure A). The highest price a potential buyer is willing to pay is called the best bid
price, whereas the best ask price is the smallest price of all placed sell orders. Incoming
limit orders can be placed at many different price levels, while incoming market orders
are matched against standing limit orders according to a set of priority rules. In most
limit order books, submitted orders at more competitive prices (“price priority”) and
displayed orders over hidden orders at the same price level (“display priority”) are
executed first. Orders with the same display status and submission price are usually
served on a first-come-first-serve basis.

Figure A: Illustration of the state of a limit order book model.

The development of realistic and at the same time tractable models for the dynamics
of limit order books is a challenging task bearing in mind the rapid increase in trading
activities. A promising approach to construct realistic model dynamics is to consider the
underlying market microstructure. A realistic inclusion of the market microstructure,
however, often reduces the tractability of these models. Yet, stochastic analysis provides
us with powerful tools to approximate these microscopic models through tractable
scaling (“high-frequency”) limits.

But even beyond financial markets, there are markets based on a continuous order
matching mechanism. While electricity is traditionally traded through auctions, the
integrated European intraday electricity market “Single Intraday Coupling” (SIDC),
launched in June 2018, is an important example of such a market. Even though order
matching is handled through a limit order book, this market, however, has quite different
characteristics than the purely financial markets. Those include, for example, extreme
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price movements over short time periods, time-inhomogeneities, and strong dependencies
on external influences such as the infeed of renewables.

The thesis on hand develops new stochastic models for limit order books that accom-
modate several of the characteristics of intraday electricity markets with continuous
trading. In the following, we present the literature background from both mathematical
and modeling perspectives. We then give overviews of the three chapters of this thesis
and emphasize the mathematical hurdles and innovations. Finally, we synthesize the
results of the three chapters and formulate the main contribution of this thesis.

Background of this thesis
It is well known that the inclusion of market microstructure is essential for proper
modeling of financial markets based on limit order books (cf. e.g. [6, 15, 39]). There are
recent empirical studies (cf. [37,55]) which suggest that this also applies to intraday
electricity markets with a continuous matching mechanism. In mathematical finance,
one research objective is to introduce a microscopic (“event-by-event”) description of
limit order book dynamics. Imposing suitable scaling constants to this system, one is
interested in studying its scaling behavior when the number of orders gets large while
each of them is of negligible size.

Mathematically, the microscopic model can be interpreted as a high- or infinite
dimensional, discrete-time stochastic process. The goal is to formulate appropriate
scaling assumptions that allow to establish the functional convergence of its piecewise
constant interpolation toward a continuous-time stochastic limit process. To familiarize
ourselves with the mathematical foundations of this thesis, let us recall the most famous
example of a functional convergence theorem: Donsker’s theorem, a functional extension
of the central limit theorem, which shows the weak convergence of linear or piecewise
constant interpolation of a scaled random walk toward a standard Brownian motion.
While weak convergence of random variables is a fairly known concept in probability
theory, the meaning of weak convergence of stochastic processes is a more delicate
concept. In fact, the traditional mode of convergence is weak convergence of the laws
of processes, considered as random elements of some functional space imposed with a
complete separable metric topology. For example, if a linear interpolation of the scaled
random walk is considered, Donsker’s theorem is stated with respect to the topological
space (C([0, T ],R), ∥ · ∥∞), the space of continuous functions f : [0, T ] → R endowed
with the topology induced by the sup norm ∥f∥∞ := supt∈[0,T ] |f(t)|. If, in contrast, a
piecewise constant interpolation of the scaled random walk is considered, the paths
are contained in the function space D([0, T ],R), the space of càdlàg (an acronym for
“continue à droite, limite à gauche”, i.e., right-continuous with left limits) functions.
However, the space D([0, T ],R) endowed with the uniform topology is not separable
and hence not suitable for studying the weak convergence of stochastic processes.

A more suitable topology for the space of càdlàg functions is the Skorokhod (J1-)
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topology1. Following its definition in Billingsley [8], let ΛT denote the class of increasing,
continuous mappings of [0, T ] onto itself. Then, elements fn, n ∈ N, of D([0, T ],R)
converge to a limit f in the Skorokhod topology if and only if there exist functions λn ∈
ΛT , n ∈ N, such that limn→∞ fn(λn(t)) = f(t) uniformly in t and limn→∞ λn(t) = t
uniformly in t. In words, while two functions f and g are close to each other in
the uniform topology if the graph of f(t) can be carried onto the graph of g(t) by
a uniformly small perturbation of the ordinates, with the abscissas kept fixed, the
Skorokhod topology additionally allows a uniformly small deformation of the time
scale imposed by an element of ΛT . Since the space of càdlàg functions endowed with
the Skorokhod topology is complete and separable, the Skorokhod topology is indeed
more suitable than the uniform topology to study the weak convergence of stochastic
processes in the space of càdlàg functions. For limit processes with sample paths in
C([0, T ],R) such as the Brownian motion, one might still establish convergence in the
space of càdlàg functions with respect to the uniform topology if the concept of weak
convergence is slightly changed in order to tackle the non-separability of the space2.
If the limit process itself has discontinuities of the first kind (i.e. jumps), establishing
functional convergence in the space (D([0, T ],R), ∥ · ∥∞) in general fails as the topology
is in many cases too strong and hence, the Skorokhod topology must be used. In this
thesis, we establish the weak convergence of sequences of stochastic processes with
respect to the space of càdlàg functions endowed with the Skorokhod topology.

The standard strategy to derive weak convergence of stochastic processes is to prove
the following conditions: verify tightness of the sequence of stochastic processes relative
to the considered topological space, establish the convergence of the finite-dimensional
distributions, and identify the finite-dimensional distributions of the limit process.

The functional convergence of stochastic processes toward more general limit pro-
cesses including possibly infinite dimensional semimartingales has been studied by
several authors. To name just a few of them, important works in this area include
Billingsley [8], Jacod and Shiryaev [50], Kurtz and Protter [57, 58], and Whitt [85, 86].
From a purely mathematical point of view, this theory is the groundwork for this thesis.

The existing literature on limit order books is quite extensive (cf. e.g. Abergel et al.
[1] for an overview). In economics and econometrics, limit order books have already
been studied for several decades. Some early works include Stigler [75] and Garman
[33]. More recent empirical studies of limit order book dynamics can be found in Cont
[18], Hautsch and Huang [39], and Huang et al. [45].

One approach to model the working of a limit order book is to specify the behavior
and preferences of various types of agents (cf. e.g. Parlour [70], Foucault et al. [30],
and Roşu [73]). These models give insights into the price formation mechanism in limit
order markets, but depend on unknown parameters of traders’ preferences and are
therefore hard to calibrate for application purposes.

1also Skorokhod J1-topology to differentiate between the Skorokhod J2-, M1-, and M2-topologies
2In Billingsley [8, Section 6], the concept of weak◦ convergence of probability measures has been

introduced, an analogue of the classical concept of weak convergence of probability measures for
non-separable topological spaces.
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Another approach is to describe the working of a limit order book by so-called zero-
intelligence models which are based on the notion of flows: orders are not submitted by
an agent following a specific strategic behavior, but are viewed as an arriving flow whose
properties can be determined through empirical observations. Some empirical studies
of the order flow of limit order books can be found in Bouchaud et al. [11], Farmer et
al. [29], and Mike and Farmer [65]. More recently, the development of zero-intelligence
models in a mathematical rigorous manner has attracted quite a lot of researchers. One
popular approach is based on a microscopic description of the order flow as done in e.g.,
Luckock [62], Cont et al. [22], Cont and de Larrard [19, 20], Muni Toke [79, 80], and
Kelly and Yudovina [54]. Under simplifying assumptions, order events are modeled by
basic Poisson processes (cf. e.g. [20,22,79,80]) which allow for nice analytical results (cf.
e.g. [20]). A generalization that allows the model dynamics to depend on the current
state of the limit order book is studied in Muni Toke and Yoshida [82, 83] by including
state dependencies to the intensities of the point processes. More generally, Hawkes
processes are used to model the order events in limit order markets (cf. e.g. Muni
Toke and Pomponio [81], Lallouache and Challet [59], and Lu and Abergel [61]). All
these models preserve the discrete nature of the dynamics at high-frequencies but can
become computationally challenging as one tries to incorporate realistic dynamics.

To overcome the drawbacks of these models, some researchers deal with continuum
approximations of the order book, describing it through its time-dependent density
satisfying either certain partial differential equations (cf. Lasry and Lions [60], Chayes
et al. [16], Caffarelli [13], Burger et al. [12]) or certain stochastic partial differential
equations (cf. Keller-Ressel and Müller [53], Markowich [63], and Cont and Müller [21]).

Starting from a microscopic description of order book dynamics, one can introduce
suitable scaling constants and study its scaling behavior when the number of orders
gets large while each of them is of negligible size. The scaling limit can then either
be described through a system of (partial) differential equations (in the “fluid” limit,
where random fluctuations vanish), through a system of stochastic (partial) differential
equations (in the “diffusion” limit, where random fluctuations dominate), or through
a mixture thereof. Deriving a deterministic high-frequency limit for limit order book
models guarantees that the scaling limit approximation stays tractable in view of
practical applications. Such an approach is pursued by Horst and Paulsen [43], Horst
and Kreher [40], and Gao and Deng [32]. The absence of arbitrage considerations,
however, encourages price approximations by diffusion processes. As discussed in [19],
depending on the market and/or stock of interest either a fluid or diffusive volume
approximation seems to be appropriate. Horst and Kreher [42] studied the approximation
of microscopic order book dynamics by both diffusive price and volume processes in the
scaling limit. Their consideration of a diffusive infinite dimensional volume process is not
suitable for practical applications, as e.g., the uniqueness of a solution to the established
infinite dimensional stochastic differential equation is in general not guaranteed. The
authors in [19] guaranteed that their diffusive volume approximation stays tractable,
considering only the standing volumes at the top of the book and hence reducing the
state space of the limit order book to a finite-dimensional space. Imposing suitable
scaling assumptions, they prove that the bid and ask queue lengths are given in the
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scaling limit by a planar Brownian motion in the first quadrant with reflections to the
interior at the boundaries. In contrast to [40, 42], they also determine the evolution of
prices implicitly through the volume dynamics. As the tick size is constant, prices have
to be approximated in the scaling limit by a pure jump process with jump times equal
to those of the volume dynamics.

In terms of modeling, the papers [19,40,42] serve as the starting point of the models
studied in this thesis.

For application purposes, the calibration of mathematical models is of great interest.
It is well known (cf. e.g. [66]) that change points are present in high-frequency financial
data. If they are endogenously caused, the estimation of such change points must take
into account the dependence on the underlying data. Therefore, in the final part of
this thesis we move away from modeling limit order books and develop a theory for
detecting structural changes in the model parameters of time series data.

The existing literature on change point detection is huge and has a long history. One
of the first works has been published in 1955 by Page [69]. The available literature
provides statistical tests for deciding whether or not the underlying time series data
contain change points. To mention only a few prominent works, see, for example,
Andrews [2], Csörgő and Horváth [23], and Bai and Perron [4]. While many authors
build their tests assuming that the change point occurs only in a single model parameter
(typically in its mean, cf. e.g. Jiang et al. [51], or in its variance, cf. e.g. Aue et al. [3],
Spokoiny [74]), Horváth [44], Gombay and Horváth [34–36], and Csörgő and Horváth
[23] provide likelihood ratio-based tests that check for simultaneous changes in the
parameters of quite general parametric distributions. Mathematically, the methods
used to study change points usually rely on order statistics and exploit limit theorems
from extreme value theory. Despite the pure testing problem, the existing literature also
allows for estimation of the location and size of the change and constructs confidence
intervals. Instead of considering time series data, we want to mention that some authors
are concerned with the detection of change points in the parameters of continuous-time
diffusions or more general Itô-semimartingales (cf. e.g. Iacus and Yoshida [47], Jiang
et al. [51], Bibinger et al. [7]). In particular, [7] provide tools for the non-parametric
change point detection in the volatility process of an Itô-semimartingale.

The book by Csörgő and Horváth [23] not only provides a comprehensive introduction
to the theory of change point detection, it also serves as the starting point for the
theory developed in the final part of this thesis.

Chapter 1: Jump diffusion approximation for the price dynamics of a fully
state dependent limit order book model
The absence of arbitrage considerations favors price approximations through diffusion
processes. At the same time, large price jumps occur with positive probability even
in liquid markets (cf. [9]). From an economic perspective (cf. e.g. [28,52]), such price
jumps (especially large price drops) are understood as market reactions to highly
unexpected, exogenous news. The empirical study in [9] suggests that most real price
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jumps cannot be attributed to exogenous news, which is why they are understood
as endogenous shocks. Regardless of the actual cause of large price jumps, existing
price approximations typically do not account for the possibility of such extreme price
movements, which can lead to poor approximations if the underlying dynamics include
price jumps. Moreover, the inclusion of large price jumps is essential if one wants to
approximate the price dynamics of intraday electricity markets with continuous trading.
Since these markets are typically quite illiquid, large price movements over short time
periods occur particularly frequently. For this reason, we establish an approximation
of the prices in limit order book dynamics by jump diffusion processes in the scaling
limit. In the subsequent overview, we concentrate on one-sided LOB-dynamics, i.e., the
dynamics of the best bid price, the buy side volume density function relative to the
best bid price, and the order arrival times. In Chapter 1, full LOB-dynamics with two
price processes, two volume density functions, and a time process are studied.

For each n ∈ N, we construct the microscopic (one-sided) LOB-dynamics S(n) as
follows: let ∆x(n) > 0 be the tick size, ∆v(n) > 0 the individual impact of an order on
the state of the book, and T > 0 a finite time horizon. We assume that both, ∆x(n)

and ∆v(n) tend to zero as n → ∞. Moreover, we introduce the time scaling parameter
∆t(n) > 0 with ∆t(n) → 0 as n → ∞, which ensures that the time between consecutive
order arrivals tends to zero. For n ∈ N, we introduce a Z-valued process (J (n)

k , k ⩾ 1)
that describes the number of ticks the bid price changes due to incoming order events.
Moreover, the L2(R)-valued process (M (n)

k , k ⩾ 1) represents the size of an order
placement/cancellation at the buy side volume density function due to an incoming
order event. Finally, the (0,∞)-valued process (φ(n)

k , k ⩾ 1) specifies the duration
between consecutive order events. Then, the microscopic one-sided LOB-dynamics is
given by the piecewise constant interpolation

S(n)(t) := S
(n)
k for t ∈

[︂
τ

(n)
k , τ

(n)
k+1

)︂
∩ [0, T ],

of the E := R × L2(R) × [0, T ]-valued random variables S(n)
k :=

(︂
B

(n)
k , v

(n)
k , τ

(n)
k

)︂
,

k ∈ N0, with deterministic initial state S(n)
0 := (B(n)

0 , v
(n)
0 , 0), and

B
(n)
k = B

(n)
0 +

k∑︂
j=1

J
(n)
j ∆x(n),

v
(n)
k (x) = v

(n)
0

(︂
x−B

(n)
k +B

(n)
0

)︂
+

k∑︂
j=1

M
(n)
j

(︂
x−B

(n)
k +B

(n)
j−1

)︂
∆v(n),

τ
(n)
k =

k∑︂
j=1

φ
(n)
j ∆t(n).

Here, B(n)
k describes the best bid price, v(n)

k the buy side volume density function
relative to the best bid price, and τ

(n)
k the time after k order events.
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While conditions to derive limit theorems toward fluid or diffusion processes are
generally well-understood (cf. e.g. [40,42]), to the best of our knowledge this is not true
for a jump diffusion limit. The main novelty is therefore to come up with a new set of
assumptions that allows for a jump diffusion approximation of the price dynamics in the
scaling limit. In Chapter 1, we allow the jump sizes to vary across different states of the
limit order book, but we require the jump intensities to be approximately the same. This
indeed allows for a jump diffusion approximation of the price dynamics in the scaling
limit, as the driver becomes independent of the order book dynamics (cf. Assumption
1.6). In order to ensure the tractability of our high-frequency approximation, we approx-
imate the Hilbert-space valued volume dynamics and the [0, T ]-valued time dynamics
in the scaling limit by processes of fluid-type. The combination of the diffusive price
approximation from [42] with the fluid-type approximation for the volumes from [40]
requires a completely new idea for proving weak convergence. Since the state process of
the limit order book takes values in an infinite dimensional Hilbert space and its limit
process contains discontinuities, we have to apply many not so well-known extensions
of otherwise well-known results about the convergence of probability measures in the
Skorokhod space (cf. Kurtz and Protter [58] and Whitt [85,86]).

Now, under appropriate high-frequency assumptions and after introducing the co-
efficient functions p : E → R, r : E → R+, θ : E × [−M,M ] → R, for M > 0,
f : E → L2(R), φ : E → (0, 1], the finite measure Q on B(R), and the deterministic
initial state of the limit dynamics S0 = (B0, v0, 0), we establish the following functional
convergence theorem for the microscopic order book dynamics.

Theorem (cf. Theorem 1.2.6). Under appropriate high-frequency assumptions, the mi-
croscopic LOB-dynamics S(n) converges weakly in the Skorokhod topology on D([0, T ], E)
to S = η ◦ ζ, where

ζ(t) := inf{s > 0 : τη(s) > t}, t ∈ [0, T ],

is a random time change and η = (Bη, vη, τη) is the unique strong solution of the
coupled diffusion-fluid system

Bη(t) = B0 +
∫︂ t

0
p(η(u))du+

∫︂ t

0
r(η(u))dZ(u) +

∫︂ T

0

∫︂ M

−M
θ(η(u−), y)µQ(du, dy),

vη(t, x) = v0 (x−Bη(t) +B0) +
∫︂ t

0
f [η(u)] (x−Bη(t) +Bη(u)) du,

τη(t) =
∫︂ t

0
φ(η(u))du,

for all t ∈ [0, T ], x ∈ R, where Z is a standard Brownian motion and µQ is a homoge-
neous Poisson random measure with intensity measure λ×Q, independent of Z. Here,
λ denotes the Lebesgue measure on [0, T ].

7



We want to mention, that this limit order book approximation allows for a quite
general dependence structure, where all coefficient functions are allowed to depend
on current prices, volumes, and time. The usefulness of this dependence structure is
illustrated in a detailed simulation study where the probabilities of different price
movements as well as the limit order sizes and cancellations depend on the spread and
standing volumes, especially on order imbalances (cf. Section 1.3).

The following figure depicts the evolution of the bid and ask prices and of the buy
side volume density function of simulated full order book dynamics.

Figure B: The evolution of the bid and ask prices (left) and of the buy side
volume density function in absolute coordinates (right).

Chapter 2: A cross-border market model with limited transmission
capacities
At the latest with the introduction of the integrated European intraday electricity
market SIDC, the need has arisen to couple multiple markets with each other, i.e., to
allow market participants of different countries to trade with each other on a cross-border
basis. In this market, the transmission capacities that enable transactions between
market participants of different countries are limited. Therefore, the ability to execute
cross-border trades may be prohibited if available transmission capacities are occupied.
Motivated by the SIDC market dynamics, we introduce cross-border market dynamics
between two countries based on limit order books.

For each n ∈ N, we construct the microscopic cross-border market dynamics S(n) as
follows: let F and G be two countries that can trade with each other on a cross-border
basis. Moreover, let δ > 0 be the tick size, T > 0 a finite time horizon, and ∆v(n) > 0 the
average order size. Throughout, we assume the time intervals between two consecutive
order arrivals to be of equal length ∆t(n) > 0 and that both scaling parameters ∆t(n)

and ∆v(n) tend to zero as n → ∞. Moreover, let κ−, κ+ > 0 be the total available
transmission capacities in direction F to G and vice versa. Then, the microscopic
cross-border market dynamics is given by the piecewise constant interpolation

S(n)(t) := S
(n)
k for t ∈

[︂
k∆t(n), (k + 1)∆t(n)

)︂
∩ [0, T ],
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of E := R2 × R4
+ × R-valued random variables S(n)

k := (B(n)
k , Q

(n)
k , C

(n)
k ), k ∈ N0, with

deterministic initial state S(n)
0 ∈ E. The process B(n) = (BF,(n), BG,(n)) describes the

dynamics of the best bid prices in countries F and G, Q(n) describes the number
of unexecuted limit orders at the best bid/ask queues in countries F and G, and
C(n) describes the net number of executed cross-border trades between F and G over
time. The best ask price process AI,(n) of country I = F,G is for simplicity modeled
by AI,(n) := BI,(n) + δ. Hence, for each n ∈ N, the microscopic cross-border market
dynamics S(n) := (S(n)(t))t∈[0,T ] are given by two bid and ask price processes, two bid
and ask queue length processes, and a capacity process.

In order to describe how incoming market and limit orders at the best bid and ask
prices change the state of S(n), it is not only important to differentiate if an incoming
order effects the state of the best bid or ask queue, we also need to keep track of the
origin of each incoming order. Therefore, let (i, I) ∈ {b, a} × {F,G} be one out of four
order events that change the state of our market dynamics and let (V i,I,(n)

k , k ⩾ 1)
denote the incoming order sizes of type (i, I), for each n ∈ N.

Our starting point is to study the evolution of the net order flow process X(n) :=
(Xb,F,(n), Xa,F,(n), Xb,G,(n), Xa,G,(n)), where

Xi,I,(n)(t) :=
⌊T/∆t(n)⌋∑︂

k=1
X
i,I,(n)
k 1[k∆t(n),(k+1)∆t(n))(t) and X

i,I,(n)
k :=

k∑︂
j=1

V
i,I,(n)
j .

Imposing appropriate high-frequency assumptions, we approximate the net order flow
process by a four-dimensional linear Brownian motion X in the scaling limit.

Next, we construct the so-called active (resp. inactive) order book dynamics ˜︁S(n) (resp.
≈
S(n)) based on the order flow X(n) and on sequences of random variables R+,(n) :=
(R+,(n)

k )k⩾1 and R−,(n) := (R−,(n)
k )k⩾1 describing the sizes of the best bid and ask

queues after price changes. The active dynamics ˜︁S(n) (resp. inactive dynamics
≈
S(n))

describes the evolution of the cross-border market if cross-border trades are allowed (resp.
prohibited). The construction of the active/inactive dynamics through appropriate
functions ˜︁Ψ and

≈
Ψ from the underlying order flow X(n) and the sequences R+,(n)

and R−,(n) and the analysis of the continuity sets of these functions are the major
challenges in Chapter 2. In more detail, we characterize the bid/ask components of
the active volume dynamics between successive price changes as a series of solutions
to the one-dimensional Skorokhod problem following successive reflections from the
axes. This allows us to still apply the continuous mapping approach even though the
reflection matrix in the definition of the active volume dynamics does not fulfill the
usual regularity conditions considered in the literature of semimartingale reflecting
Brownian motions (cf. e.g. Varadhan and Williams [84], Taylor and Williams [77], and
Ernst et al. [27]). In this way, we are able to identify the limit process of the volume
dynamics between consecutive price changes as a solution of a reflected stochastic
differential equation with absorption. Then, we can deduce a functional convergence
result for the active dynamics to a continuous-time limit process ˜︁S by an application of
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the continuous mapping theorem. Similarly, we derive a limit theorem for the inactive
dynamics to a continuous-time limit process

≈
S.

Finally, we construct the microscopic cross-border market dynamics from the ac-
tive/inactive dynamics by introducing suitable sequences of stopping times (ρ(n)

l )l⩾0

and (σ(n)
l )l⩾1 that indicate the start of an active respectively inactive regime. Denoting

by (ρl)l⩾0 and (σl)l⩾1 their limits, we are ready to state the main result of Chapter 2.

Theorem (cf. Theorem 2.5.1). Under appropriate high-frequency assumptions, the
piecewise constant interpolation of the microscopic dynamics S(n) converges weakly in
the Skorokhod topology on D([0, T ], E) to a continuous-time regime switching process
S, whose dynamics are described as follows: let l ⩾ 1.

◦ In each active regime [ρl−1, σl), S behaves as ˜︁S starting in S(ρl−1). In words,
the volume dynamics follows a four-dimensional linear Brownian motion in
the positive orthant with oblique reflection at the axes. Each time two queues
simultaneously hit zero, the process is reinitialized at a new value in the interior
of R4

+. The bid price dynamics follows a two-dimensional pure jump process with
jump times equal to those of the volume dynamics. In particular, its components
(i.e. the bid prices of both countries) agree on [ρl−1, σl). The dynamics of the
capacity process follows a bounded continuous process of finite variation.

◦ In each inactive regime [σl, ρl), S behaves as
≈
S starting in S(σl). In words,

the volume dynamics follows a four-dimensional linear Brownian motion in the
interior of R4

+. Each time it hits one of the axes, the two components corresponding
to the origin of the depleted component are reinitialized at a new value in (0,∞)2

while the others stay unchanged. The bid price dynamics follows a two-dimensional
pure jump process whose components jump on hits of the corresponding components
of the volume process of the axes. In particular, its components (i.e. the bid prices
of both countries) do almost surely not jump simultaneously. The dynamics of the
capacity process stays constant and equal to either −κ− or κ+.

Our model is a further development of the reduced-form representation of a national
limit order book in Cont and de Larrard [19]. To this end, we analyze the dynamics of
two national limit order books together with a two-sided capacity process over time.
Since the transmission capacities that allow for cross-border trades are limited, our
model alternates between regimes in which cross-border trades are allowed (active
regimes) and regimes in which market orders can only be matched with standing volumes
of the same origin (inactive regimes). While the volumes and prices are approximated
as in [19] in the scaling limit by a diffusion limit and a pure jump limit, respectively, our
newly introduced capacity process converges to a bounded continuous process of finite
variation. Instead of only inferring the individual convergence of prices and volumes as
in [19], we prove weak convergence of the joint market dynamics. In doing so, we even
establish weak convergence of the prices in the Skorokhod J1-topology instead of the
slightly weaker Skorokhod M1-topology used in [19].

The evolution of the cross-border market dynamics is depicted in Figure C.
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Figure C: The cross-border market model based on two LOBs: the queue size
processes at the best bid (top left) and best ask price (top right), the
bid price processes (bottom left), and the capacity process (bottom
right). The white and gray areas illustrate the different regimes in
which cross-border trades are possible (white) or prohibited (gray).

Based on this approximation of the dynamics of a cross-border market between
two countries, we can study the effect of coupling two markets on the evolution of
the limit order books. First, we discuss different market situations of our model in a
detailed simulation study. Second, we compare the active and inactive dynamics by
simulating the mean number of price changes and the mean bid price ranges in the
active and inactive dynamics. Finally, we discuss a theoretical result on the conditional
distribution of the duration between price changes (cf. Proposition 2 and Remark 2
in [19]) for the shared order book. We conclude that coupling two markets always
increases the standing volumes as the unexecuted limit orders from the national order
books are summarized in a shared order book. This usually leads to more liquidity
and thus fewer price changes and smaller bid price ranges. However, the change in the
trading behavior (indicated by the drift and volatility parameters of the net order flow
process) might amplify or cancel out this effect.

Chapter 3: Parametric change point detection with random occurrence of
the change point
The time of a regime switch from an active to an inactive regime in our cross-border
market model in Chapter 2 is modeled by a stopping time depending on the observable
order sizes and on the total available transmission capacities. The latter are not publicly
available and therefore often unknown. In order to estimate the time of a regime switch,
the existing literature on change point detection has to be extended to also cover
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randomly occurring change points possibly depending on the data.
We consider independent observations X1, · · · , Xn with values in Rm that are (not

necessarily identical) normally distributed. Let θj := θ(µj ,Σj) ∈ Rm × Rm×m denote
a transformation of the mean µj ∈ Rm and covariance matrix Σj ∈ Rm×m of the
distribution of Xj . Moreover, we assume that the data contain at most one change
point. Then, we want to test the null hypothesis “no change point”

H0 : θ1 = · · · = θn

against the alternative “there exists one change point”

H1 : There exists a k∗
n ∈ {1, · · · , n− 1} such that

θ1 = · · · = θk∗
n

̸= θk∗
n+1 = · · · = θn.

In contrast to the existing literature (cf. e.g. Csörgő and Horváth [23]), we allow that the
true location of the change point k∗

n is random. In [23] test statistics (Sn(k), 1 ⩽ k ⩽ n)
based on the log-likelihood ratio have been introduced, i.e., Sn(k) = − log Λk, for
k = 1, · · · , n, where

Λk :=
supθ0∈Θ

∏︁
1⩽i⩽n f(Xi; θ0)

sup
θ

(1)
0 ,θ

(2)
0 ∈Θ

∏︁
1⩽i⩽k f(Xi; θ(1)

0 ),∏︁k<i⩽n f(Xi; θ(2)
0 )

.

Here, f(·, θ) denotes the normal density function with respect to the parameter θ ∈
Θ ⊂ Rm × Rm×m. They suggest to use the maximally selected log-likelihood ratio to
reject H0 if

Sn := max
1⩽k⩽n

Sn(k)

is large. Since under the null hypothesis no change point occurs in the data, we can
apply the stated limit results in [23] for the test statistic Sn under the null hypothesis.

If the null hypothesis has been rejected, the fact that k∗
n is random becomes a

challenge. Let θ(1) and θ(2) denote the true values of the parameters before and after
the change. Our main idea to tackle the randomness in k∗

n is to study the limiting
behavior of (Sn(k), 1 ⩽ k ⩽ n − 1) uniformly for all possible choices of the change
point. Therefore, we include a second time parameter in the test statistics such that
(Sn(k, k∗), 1 ⩽ k, k∗ ⩽ n− 1) depends on two time parameters, namely the true and
estimated location of the change point. An application of Taylor’s formula of the first
order allows us to rewrite

Sn(k, k∗) − µn(k, k∗) = Zn(k, k∗) +Rn(k, k∗) for k, k∗ ∈ {1, · · · , n− 1},

where µn(k, k∗) is asymptotically the mean of Sn(k, k∗), Rn(k, k∗) is the remainder
of Lagrange form, and Zn(k, k∗) denotes the transformed test statistic. Moreover, let
δ denotes some transformation of the size of the change ∥θ(1) − θ(2)∥. In Chapter 3,
we focus on the setting in which the size of the change in the parameter vanishes (in
particular δ → 0), but nδ2/ log log(n) → ∞ as n → ∞. This setting is crucial to describe
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the minimum detectable size of a change in the parameter relative to the sample size.
Moreover, we assume that the change point occurs in “the middle of the data”, i.e.,
we assume that the change point fraction λ∗

n := k∗
n/n satisfies |λ∗

n − λ∗| = oP((nδ2)−1)
and λ∗ is a random variable which takes its values almost surely in a closed subset of
(0, 1). Then, under appropriate high-frequency assumptions, our main achievement is
to obtain a limit result for the piecewise constant interpolation Zn := (Zn(t, λ))t,λ∈[0,1]
of the transformed test statistic (Zn(k, k∗) : 1 ⩽ k, k∗ ⩽ n− 1).

Theorem (cf. Theorem 3.4.4). Under the alternative and appropriate high-frequency
assumptions, we have

1√
nδ2

Zn ⇒ Z∗

in the Skorokhod topology on D([0, 1]2,R), where Z∗ is a Gaussian process with mean
zero and covariance function

c((t, λ), (t′, λ′)) = σ2
A

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − λ)(1 − λ′) min
{︂

t
1−t ,

t′

1−t′
}︂
, if t ⩽ λ, t′ ⩽ λ′

(1 − λ)λ′ min
{︂
t(1−t′)
(1−t)t′ , 1

}︂
, if t ⩽ λ, t′ > λ′

λ(1 − λ′) min
{︂

(1−t)t′
t(1−t′) , 1

}︂
, if t > λ, t′ ⩽ λ′

λλ′ min
{︂

1−t
t ,

1−t′
t′

}︂
, if t > λ, t′ > λ′

,

for ((t, λ), (t′, λ′)) ∈ [0, 1]2 × [0, 1]2 \ {((1, 1), (1, 1))} and c((1, 1), (1, 1)) = 0, and σ2
A

depends on the limit θA of the true parameters θ(1), θ(2) before and after the change.

The hard part of the proof is to establish the convergence of the finite-dimensional
distributions. This, however, can be nicely simplified by an application of the famous
fourth moment theorem by Nualart and Peccati [68].

After establishing the above limit theorem, it is indeed straight-forward to derive
the consistency, the convergence rate, and the limit distribution of the estimator for
the fractional change point

λ̂n := 1
n

arg max
1⩽k⩽n−1

Sn(k)

under the alternative, where the fractional change point is given by λ∗
n := k∗

n/n. In
particular, we are able to derive the convergence rate (nδ2)−1 and the limit distribution
for the deviation δ2(k̂n − k∗

n) stated in Csörgő and Horváth [23] for a deterministic
location of a change point. The estimator k̂n is given by k̂n := nλ̂n. Finally, we validate
our theoretical results in a simulation study, in which we also discuss important gener-
alizations of our model framework: extensions to weakly dependent observations and
non-parametric change point detection in the volatility process of an Itô-semimartingale.
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Main contribution of this thesis
The thesis on hand derives two analytically tractable descriptions of macroscopic limit
order book dynamics (prices, standing volumes, and capacities) from the underlying
microscopic dynamics (individual order events) that incorporate several characteristics
being present in intraday electricity markets with continuous trading. In Chapter 1, we
put emphasis on modeling quite general dynamics of a single contract in a national limit
order book and differentiate between price changing order events of different magnitude
and non-price changing order events. We allow the price and volume dynamics to
depend on the current state (e.g., current spread and order imbalance) and incorporate
a time-inhomogeneity. Approximating the price dynamics by a jump diffusion in the
scaling limit is appealing from empirical observations and allows to study the effects
of large price jumps on the evolution of the limit order book dynamics. While all
quantities can be estimated from order flow data, the model does not give any insights
in the price formation process. To obtain an understanding of the price evolution, prices
dynamics should be implicitly determined by the volume dynamics. For this reason, in
Chapter 2, we develop a simple queuing model for the limit order book dynamics of two
countries in which price changes are caused due to a full depletion of the (cumulative)
best bid or ask queues. This allows us to study the effect of coupling two limit order
markets on price evolution and traded volume.

The two models follow fundamentally different approaches and the merging of them
into a joint analytically tractable model is anything but trivial. Nevertheless, both
models are interesting from a practitioner’s point of view. For application purposes,
neither model is generally preferable to the other, and the selection of the appropriate
model depends on the underlying problem and available data.

Additionally, this thesis generalizes the existing literature on change point detection
in parametric models to randomly occurring change points, where the location of the
change point might depend on the underlying data. This is of great importance for the
calibration of both models derived in this thesis as high-frequency data are known to
contain change points. In particular, this extension allows us to estimate the time of a
regime switch in the cross-border market model in Chapter 2 if only order flow data
are available.
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1 Jump diffusion approximation for the
price dynamics of a fully state dependent
limit order book model

Published as Kreher, D., & Milbradt, C., (2023). Jump Diffusion Approximation for
the Price Dynamics of a Fully State Dependent Limit Order Book Model. In SIAM
Journal on Financial Mathematics (Vol. 14, Issue 1, pp. 1-51). Society for Industrial
& Applied Mathematics (SIAM). https: // doi. org/ 10. 1137/ 20m1380922 .

This chapter includes an extensive version of the author’s accepted manuscript (Post-
print).

We study a microscopic limit order book model, in which the order
dynamics depends on the current best bid and ask price and the current
volume density functions, simultaneously, and derive its macroscopic
high-frequency dynamics. As opposed to the existing literature on scaling
limits for limit order book models, we include price changes which do not
scale with the tick size in our model to account for large price movement,
being for example triggered by highly unforeseen events. We show that,
when the size of an individual limit order and the tick size tend to zero
while the order arrival rate tends to infinity, the microscopic limit order
book model dynamics converges to two one-dimensional jump diffusion
processes describing the prices coupled with two infinite dimensional
fluid processes describing the standing volumes at the buy and sell side.

1.1 Introduction
Electronic limit order books are widely used tools in economics to carry out transactions
in financial markets. They are records, maintained by an exchange or specialist, of
unexecuted orders awaiting execution. Motivated by the tremendous increase of trading
activities, stochastic analysis provides powerful tools for understanding the dynamics
of a limit order book via the description of suitable scaling (“high-frequency”) limits.
Scaling limits allow for a tractable description of the macroscopic dynamics (prices and
standing volumes) derived from the underlying microscopic dynamics (individual order
arrivals). While modeling liquid stock markets, prices are typically approximated in
the scaling limit by diffusion processes (cf. e.g. [5, 20,42,46]). At the same time, there
is a broad consensus that (large) jumps may occur as responses to highly unexpected
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1.1. INTRODUCTION

news (cf. [9, 28,52]). In this chapter, we specify reasonable microscopic dynamics of a
limit order book which takes the possibility of such surprising news flows into account.
Introducing suitable scaling constants, we derive the functional convergence of the
microscopic model to a coupled system of two one-dimensional jump diffusions and
two infinite dimensional stochastic fluid processes, describing the price and volume
dynamics, respectively.

At any given point in time, a limit order book depicts the number of unexecuted buy
and sell orders at different price levels (cf. Figure 1.1). The highest price a potential
buyer is willing to pay is called the best bid price, whereas the best ask price is the
smallest price of all placed sell orders. Incoming limit orders can be placed at many
different price levels, while incoming market orders are matched against standing limit
orders according to a set of priority rules.

Figure 1.1: Illustration of the state of a limit order book model.

One popular approach to study limit order books is based on event-by-event descrip-
tions of the order flow as done in e.g., [20, 22,32, 40–43,54,62]. The derived stochastic
systems typically yield realistic models as they preserve the discrete nature of the
dynamics at high frequencies, but turn out to be computationally challenging. They
also give only little insight into the underlying structure of the order flow. To overcome
the drawbacks of these models, some researchers deal with continuum approximations
of the order book, describing it through its time-dependent density satisfying either
certain partial differential equations as in [12,13,16,60] or certain stochastic partial
differential equations as in [21,63].

Combining these two approaches, one can introduce suitable scaling constants in
the microscopic order book dynamics and study its scaling behavior when the number
of orders gets large while each of them is of negligible size. The scaling limit can
then either be described through a system of (partial) differential equations (in the
“fluid” limit, where random fluctuations vanish), through a system of stochastic (partial)
differential equations (in the “diffusion” limit, where random fluctuations dominate), or
through a mixture thereof. Deriving a deterministic high-frequency limit for limit order
book models guarantees that the scaling limit approximation stays tractable in view of
practical applications. Such an approach is pursued by Horst and Paulsen [43], Horst
and Kreher [40], and Gao and Deng [32]. In contrast, a diffusion limit for the order book
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1.1. INTRODUCTION

dynamics can be found in Cont and de Larrard [20] or Horst and Kreher [42]. While
[20] only analyzes the volumes standing at the top of the book, [42] takes the whole
standing volumes into account leading to both, a diffusive price and a diffusive volume
approximation. Depending on the market and/or stock of interest either a fluid or a
diffusive volume approximation seems to be appropriate. However, a diffusive infinite
dimensional volume process makes practical applications more difficult, as e.g., the
uniqueness of a solution to the infinite dimensional stochastic differential equation
need not guaranteed (cf. [42]). On the other hand, absence of arbitrage considerations
encourage price approximations by diffusion processes.

Our model is a further development of the model considered in [40] and [42], where
the order book dynamics are influenced by both, current bid and ask prices as well
as standing volumes of the bid and sell sides. This is a reasonable starting point as
there is considerable empirical evidence (cf. e.g. [6, 15,39]) that the state of the order
book, especially the order imbalance at the top of the book, has a noticeable impact on
order dynamics. In [40] and [42] the authors start from an event-by-event description
of a limit order market based on the submission of market orders, limit orders, and the
cancellation thereof. Their description allows them to write down the evolution of the
bid and ask price and the buy and sell side volume density functions, which are both
denoted in relative price coordinates. Denoting volumes in relative price coordinates is
appealing from a modeling point of view as the empirical distribution of limit order
placements at a given distance from the best price is almost stationary (cf. [10,22]). An
important simplifying assumption made in [40,42] is that all price changes are assumed
to be equal to the tick size and hence become infinitely small in the limit. This seems
to be appropriate in an efficient market setting with high liquidity (cf. [29]). However,
if the sizes of all price changes become negligible in the limit, there is no possibility to
include jumps in the macroscopic price approximation. Even in highly liquid markets,
price jumps occur with positive probability (cf. [9]). As discussed in several empirical
studies (cf. e.g. [28,52]) price jumps may be caused by exogenous news. However, most
of them cannot be shown to be related to unforeseen news and are understood as
endogenous shocks (cf. [9]). No matter what causes large price movements, there is a
need for an approximation which takes price jumps into account. In addition, such a
model also allows for a reasonable approximation of intraday electricity markets with a
continuous trading mechanism (such as the SIDC market), where extreme price spikes
during a trading day can be observed: Figure 1.2 depicts the EPEX SPOT intraday
prices from one single day. Comparing the minimum and maximum intraday prices
paid for one single delivery time (products for different delivery times are carried out
through different order books), huge differences occur and prices can become negative.
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Figure 1.2: Extreme price differences occur between minimum and maximum intra-
day prices in the German intraday electricity market.

Motivated by these facts, we extend the results of [40,42] in two ways. First, we take
their event-by-event description of a limit order book model and include price changes
which do not scale to zero. While doing so, we allow the jump sizes to vary across
different states of the LOB, but we require the jump intensities to be approximately the
same. This indeed allows for a jump diffusion approximation of the price dynamics in
the scaling limit, as the driver becomes independent of the order book dynamics. Second,
we combine the diffusive price approximation from [42] with the fluid approximation
for the relative volume density process from [40]. Therefore, we end up with two one-
dimensional stochastic differential equations describing the bid and ask price dynamics
coupled with two infinite dimensional fluid processes approximating the relative volume
dynamics of the bid and ask side in the scaling limit. Conditionally on the price
movements, the latter behave like deterministic PDEs, since random fluctuations of the
queue sizes vanish. However, they are still random because their coefficients depend on
the whole limit order book dynamics, including prices. To give the reader an intuition
for our model, we perform a simulation study of the full order book dynamics in Section
1.3, in which we allow the probabilities of different price movements as well as the limit
order sizes and cancellations to depend on the spread and standing volumes, especially
on order imbalances.

Mathematically, we derive a limit theorem which goes beyond the standard theory
of finite-dimensional, diffusive limit processes with continuous sample paths. First, our
state process takes values in an infinite dimensional Hilbert space, which requires to
apply results from Kurtz and Protter [58]. Second, while conditions to derive limit
theorems toward diffusion processes (in finite dimensions) are generally well-understood,
to the best of our knowledge this is not true for a jump diffusion limit. Therefore,
one of our main mathematical achievements is to formulate the correct assumptions,
which allow to derive such a limit process. Furthermore, to deal with the possible
discontinuities of the limit process we need to apply many not so well-known extensions
of otherwise well-known results about the convergence of probability measures in the
Skorokhod space, which can be found in [85,86]. Last but not least, while the correct
scaling assumptions to obtain a diffusive-fluid system can readily be deduced from
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[40,42], the mixture of the two results requires a totally new idea of the proof.
To this end, we first approximate the sequence of discrete-time limit order book models

S(n) by a sequence of discrete-time processes ˜︁S(n), in which we replace the random
fluctuations in the volume dynamics by their conditional expectations. This simplifies
the subsequent analysis as the new infinite dimensional system ˜︁S(n) is driven by two
independent one-dimensional noise processes. However, the original volume processes
v

(n)
b and v

(n)
a describe the volume dynamics relative to the best bid and ask price,

respectively, and therefore do not only depend on the previous order book dynamics,
but also on the current prices. This prevents us from directly applying convergence
results for infinite dimensional semimartingales.1 To bypass this problem, we construct
approximate order book dynamics with respect to absolute volume functions, denoted˜︁S(n),abs, through a random shift in the location variable. This allows us to apply results
of Kurtz and Protter [58] on the weak convergence of stochastic integrals in infinite
dimensions and to prove that ˜︁S(n),abs converges weakly in the Skorokhod topology to the
unique solution of a coupled diffusion-fluid system. Finally, exploiting the properties of
the Skorokhod topology, we can conclude the weak convergence of our original discrete
order book dynamics S(n) to S being the unique solution of a coupled diffusion-fluid
system.

1.1.1 Jump diffusion approximation of the prices: empirical evidence
Additionally to the references about the occurrence of jumps in equity prices cited
above, we provide some empirical motivation for our model based on order book data
from the European intraday electricity market SIDC. On SIDC electricity contracts
with different durations (hour, half-hour, quarter-hour) and delivery times are traded
through different order books. In the following, we analyze data from the German
market area for the hourly product with delivery time 1 pm from March 5, 2020.2
Considering the evolution of the best bid and ask prices during the last five hours
before closing, we observe the occurrence of an extreme price increase over a short time
period shortly after 12 pm.

1Indeed, for this reason in [42] the absolute volume function is taken as part of the state variable.
However, as argued above from a modeling point of view taking the relative volume function is
more sensible.

2The data is publicly available at https://www.epexspot.com/
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Figure 1.3: Evolution of the best bid and ask price of the hour product with
delivery time 1 pm from the German SIDC market area on March
5, 2020.

We observe similar price evolutions for other durations and delivery times. This
provides some first empirical evidence for the occurrence of price jumps in intraday
electricity markets and suggests that any reasonable model of intraday electricity price
dynamics should take (large) price jumps into account.

1.1.2 Outline of Chapter 1
The remainder of Chapter 1 is structured as follows: Section 1.2 describes a microscopic,
stochastic model for a two-sided limit order book. Moreover, we introduce assumptions
under which we are able to establish a scaling limit for the model dynamics and state
our main result. In Section 1.3 we present a simulation study of the full order book
dynamics. As our assumption for the large price jumps (cf. Assumption 1.6 in Section
1.2) might be rather technical at first sight, we provide three examples of jump behaviors
in Section 1.4 which are supported by our model. In Section 1.5 we state a proof sketch
of our main theorem, whereas the technical details are presented in Section 1.6.

Notation. In the following, λ denotes Lebesgue measure and εx denotes Dirac
measure at x ∈ R, i.e., for any A ∈ B(R) we have εx(A) = 1 if x ∈ A and εx(A) = 0
otherwise. For a discrete-time stochastic process X := {Xk : k ∈ N0} let δXk :=
Xk −Xk−1, k ∈ N, denote the k-th increment of X. For any continuous-time stochastic
process Y, let ∆Y (t) := Y (t) − Y (t−) denote the jump of Y at time t > 0. Moreover,
for any R-valued function f : E → R, we denote by f+(x) := max{f(x), 0} and
f−(x) := − min{f(x), 0} the positive and negative part of the function f, respectively.
Furthermore, for any x, y ∈ R let us denote by x∨y := max{x, y} and x∧y := min{x, y}.
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1.2. THE MICROSCOPIC MODEL

1.2 The microscopic model
In what follows, we fix some finite time horizon T > 0 and introduce the Hilbert space

E := R × L2(R) × R × L2(R) × [0, T ],
∥(b, v, a, w, t)∥2

E := |b|2 + ∥v∥2
L2 + |a|2 + ∥w∥2

L2 + |t|2.

We describe the random evolution of a sequence of limit order book models through
a sequence of E-valued stochastic processes S(n) = (B(n), v

(n)
b , A(n), v

(n)
a , τ (n)), where

for each n ∈ N the R-valued processes B(n), A(n) specify the dynamics of the best bid
and ask prices, the L2(R)-valued processes v(n)

b , v
(n)
a specify the dynamics of the buy

and ask side volume density functions relative to the best bid and ask price, and the
[0, T ]-valued process τ (n) describes the dynamics of the order arrival times. For each
n ∈ N, S(n) is defined on a probability space (Ω(n),F (n),P(n)), where we will write E
and P instead of E(n) and P(n).

Remark 1.2.1. In order to simplify the subsequent analysis, we include the order
arrival times τ (n) in the state dynamics of our LOB model. In the same manner, one can
also include additional exogenous factor processes: let Y (n) be an Rd-valued stochastic
process with almost surely càdlàg sample paths. Then, the state space of the LOB model
(S(n), Y (n)) is given by

E′ := E × Rd, ∥ · ∥2
E′ := ∥ · ∥2

E + ∥ · ∥2
Rd .

To derive a high-frequency approximation under this more general setting, additional
conditions on the convergence of Y (n) as n → ∞ have to be satisfied. The factor process
Y (n) can be used to model external influences on the LOB-dynamics, such as the infeed
of renewables in intraday electricity markets, the performance of a stock index in equity
markets, or political influences on general market conditions.

The order book changes due to arriving market and limit orders and due to cancella-
tions, where we differentiate between so-called passive limit orders that are placed on
top of standing volumes and aggressive limit orders that are placed inside the spread. In
the n-th model, the k-th order event occurs at a random point in time τ (n)

k . Throughout,
we assume that τ (n)

0 = 0 for all n ∈ N. The time between two consecutive order events
will tend to zero as n → ∞. Furthermore, we introduce the tick size ∆x(n) and the
average size of a passive limit order placement ∆v(n), which are both assumed to tend
to zero as n → ∞. We put x(n)

j := j∆x(n) for j ∈ Z and define the interval I(n)(x) as

I(n)(x) :=
[︂
x

(n)
j , x

(n)
j+1

)︂
for x(n)

j ⩽ x < x
(n)
j+1. (1.2.1)

Further, we denote by ∆x(n)Z := {x(n)
j : j ∈ Z} the ∆x(n)-grid. In order to model

placements of limit orders inside the spread, the relative volume density functions v(n)
b

and v(n)
a are defined on the whole real line. We refer to the volumes standing at negative
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1.2. THE MICROSCOPIC MODEL

distances from the best bid/ask price as the shadow book (cf. Figure 1.4). The idea
of the shadow book is taken from [43] and was subsequently also used in [5, 40–42]. It
has to be understood as a technical tool to model the conditional distribution of the
size of limit order placements inside the spread. Each current volume density function
of the visible book is extended in a sufficiently “smooth” way to the left to obtain
a well-defined scaling limit for the volume functions. The shadow book follows the
same dynamics as the volumes of the visible book and becomes part of the visible
book through price changes (cf. Example 1.1 below). Needless to say, the shadow book
cannot be observed in real world markets, but this does not play a role for our analysis
(cf. also Remark 1.2.3 below).

Figure 1.4: Ask-side volume density function in relative coordinates; green:
standing volume; grey: shadow book.

1.2.1 The initial state
In the n-th model, the initial state of the limit order book is given by a (positive) best bid
price B(n)

0 ∈ ∆x(n)Z, a (positive) best ask price A(n)
0 ∈ ∆x(n)Z satisfying B(n)

0 < A
(n)
0 ,

and non-negative buy and ask side volume density functions v(n)
b,0 , v

(n)
a,0 ∈ L2(R), which

are given relative to the best bid and ask price. Here, v(n)
b,0 and v(n)

a,0 are supposed to be
deterministic step functions which only jump at points in ∆x(n)Z. To be precise,

∫︂ x
(n)
j+1

x
(n)
j

v
(n)
a,0 (x)dx

represents the liquidity available at time t = 0 for buying (sell side of the book) at a
price which is j ∈ N0 ticks above the best ask price. Similarly,

∫︂ x
(n)
l+1

x
(n)
l

v
(n)
b,0 (x)dx
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1.2. THE MICROSCOPIC MODEL

gives the liquidity available at time t = 0 for selling (buy side of the book) at a price
which is l ∈ N0 ticks below the best bid price.3

At time t = 0 the state of the limit order book is deterministic for all n ∈ N and is
denoted by

S
(n)
0 :=

(︂
B

(n)
0 , v

(n)
b,0 , A

(n)
0 , v

(n)
a,0 , 0

)︂
∈ E.

In order to prove a convergence result for the microscopic order book sequence to a
high-frequency limit, we need to state convergence assumptions on the initial values.

Assumption 1.1 (Convergence of the initial states). There exist a constant L > 0
and non-negative functions vb,0, va,0 ∈ L2(R) such that for any x, ˜︁x ∈ R and I = b, a,

∥vI,0(· + x) − vI,0(· + ˜︁x)∥L2 ⩽ L|x− ˜︁x| (1.2.2)

and ⃦⃦⃦
v

(n)
I,0 − vI,0

⃦⃦⃦
L2

−→ 0. (1.2.3)

Also, there exist B0, A0 ∈ R+ with B0 ⩽ A0 such that B(n)
0 → B0 and A(n)

0 → A0. We
denote S0 := (B0, vb,0, A0, va,0, 0) ∈ E.

If vI,0 ∈ L2(R), I = b, a, is Lipschitz-continuous with constant L > 0 and has compact
support in [−M,M ] for M > 0, then (1.2.2) is satisfied for the constant 2L

√
M > 0,

i.e., for x, ˜︁x ∈ R, we have

∥vI,0(· + x) − vI,0(· + ˜︁x)∥L2 ⩽ L
⃦⃦⃦
1[−2M,2M ](·)|x− ˜︁x|

⃦⃦⃦
L2

⩽ 2L
√
M |x− ˜︁x|.

Furthermore, (1.2.2) and (1.2.3) together imply a similar Lipschitz condition for the
v

(n)
I,0 , n ∈ N, up to a deterministic sequence (an)n∈N converging to zero: for any x, ˜︁x ∈ R,

it holds⃦⃦⃦
v

(n)
I,0 (· + x)−v(n)

I,0 (· + ˜︁x)
⃦⃦⃦
L2
⩽ 2

⃦⃦⃦
v

(n)
I,0 −vI,0

⃦⃦⃦
L2

+∥vI,0(· + x)−vI,0(· + ˜︁x)∥L2⩽ an+L|x−˜︁x|.

1.2.2 Event types and arrival times
The order book changes due to incoming order events. In the n-th model, the consecutive
times of incoming order events are described by

τ
(n)
k = τ

(n)
k−1 + φ

(n)
k ∆t(n), k ∈ N, (1.2.4)

where (φ(n)
k )k⩾1 is a sequence of positive random variables that (scaled by ∆t(n)) specify

the duration between two consecutive order events and ∆t(n) goes to zero as n → ∞.
Further, we denote by N (n)

t the random number of incoming order events in [0, t] for
any t ⩽ T .

3Note that we choose to model the standing volumes at the bid side through the positive instead of
the negative half-line so that we can treat both volume density functions in the same manner.
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In the following, we will differentiate between four types of events that may change
the state of the book at each time τ (n)

k :

A. Either a market sell order of size equal to the first ξ(n)
k queues of the bid volumes

arrives, which forces the best bid price to decrease by ξ(n)
k ticks and the relative

bid side volume density function to shift ξ(n)
k ticks to the left, or an aggressive

buy limit order is placed inside the spread, which forces the best bid price to
increase by ξ(n)

k ticks and the relative bid side volume density function to shift
ξ

(n)
k ticks to the right.

B. A passive buy limit order placement of size ∆v(n)

∆x(n)ω
(n)
k at price level π(n)

k relative
to the best bid price occurs. If ω(n)

k < 0, this corresponds to a cancellation of
volume.

C. Either a market buy order of size equal to the first ξ(n)
k queues of the ask volumes

arrives, which forces the best ask price to increase by ξ(n)
k ticks and the relative

ask side volume density function to shift ξ(n)
k ticks to the left, or an aggressive

sell limit order is placed inside the spread, which forces the best ask price to
decrease by ξ(n)

k ticks and the relative ask side volume density function to shift
ξ

(n)
k ticks to the right.

D. A passive sell limit order placement of size ∆v(n)

∆x(n)ω
(n)
k at price level π(n)

k relative
to the best ask price occurs. If ω(n)

k < 0, this corresponds to a cancellation of
volume.

The event types A and C lead to price changes of the best bid respectively ask price
and will be called active order events. Here, the Z-valued random variable ξ(n)

k specifies
the number of ticks the respective price process changes. In contrast, the event types B
and D do not lead to changes in the best bid and ask price and will be referred to as
passive order events. The effect of market orders that do not lead to a price change is
equivalent to a cancellation of standing volume. Here, the R-valued random variables
ω

(n)
k and π(n)

k specify the size and the location of a placement/cancellation, which does
not result in a price change. In the following, event types are determined by a field of
random variables (ϕ(n)

k )k,n∈N taking values in the set {A,B,C,D}.

1.2.3 State dynamics of the order book
The price dynamics of the LOB-models can be described as follows: for each k, n ∈ N,

B
(n)
k = B

(n)
k−1 + 1{︂

ϕ
(n)
k

=A
}︂∆x(n)ξ

(n)
k ,

A
(n)
k = A

(n)
k−1 + 1{︂

ϕ
(n)
k

=C
}︂∆x(n)ξ

(n)
k .

(1.2.5)
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In what follows, we denote by δB(n)
k := B

(n)
k −B

(n)
k−1 and δA(n)

k := A
(n)
k −A

(n)
k−1, k ∈ N,

the bid respectively ask price change caused by the k-th order event. Next, we define
the placement/cancellation operator in the following way:

M
(n)
b,k (x) := ω

(n)
k

∆x(n)1
{︂
x∈I(n)(π(n)

k
)
}︂1{︂

ϕ
(n)
k

=B
}︂,

M
(n)
a,k (x) := ω

(n)
k

∆x(n)1
{︂
x∈I(n)(π(n)

k
)
}︂1{︂

ϕ
(n)
k

=D
}︂. (1.2.6)

Then, the dynamics of the volume density function relative to the best bid4 and ask
price, respectively, are described by

v
(n)
b,k (x) = v

(n)
b,k−1

(︂
x− δB

(n)
k

)︂
+ ∆v(n)M

(n)
b,k (x),

v
(n)
a,k (x) = v

(n)
a,k−1

(︂
x+ δA

(n)
k

)︂
+ ∆v(n)M

(n)
a,k (x),

(1.2.7)

for x ∈ R. On a first sight, this approach could potentially lead to negative volumes.
However, this can be avoided by imposing additional assumptions on the joint conditional
distribution of the random variables ϕ(n)

k , ω
(n)
k , and π

(n)
k (cf. Assumption 1.8 below).

For example, volume cancellations can be modeled to be proportional to the standing
volume as done in our simulation study in Section 1.3. Note that this is possible since
we allow the limit order book dynamics to depend on the current prices and volumes
simultaneously.

The volume changes take place in the visible or shadow book, depending on the
sign of π(n)

k . If π(n)
k ⩾ 0, then the visible book changes; if π(n)

k < 0, then the place-
ment/cancellation takes place in the shadow book. The shadow book interacts with the
visible book through price changes which shift the relative volume density functions.
The following example illustrates the working of the shadow book.

Example 1.1 (The shadow book). Suppose that the k-th incoming order event is a
limit order placement into the shadow book one tick above the current best bid price,
i.e.,

ϕ
(n)
k = B, π

(n)
k = −∆x(n), and ω

(n)
k > 0.

Furthermore, suppose that the (k+1)-th event is an aggressive buy limit order placement
in the spread up to two ticks above the best bid price, i.e., ϕ(n)

k+1 = A and ξ
(n)
k+1 = 2.

Then,
B

(n)
k+1 = B

(n)
k + 2∆x(n) = B

(n)
k−1 + 2∆x(n)

and for all x ∈
[︂
∆x(n), 2∆x(n)

)︂
corresponding to standing volumes one tick above the

4The bid price changes must be subtracted from the state variable since the standing volumes of the
bid side are modeled through the positive half-line of its volume density function.
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current best bid price,

v
(n)
b,k+1(x) = v

(n)
b,k

(︂
x− 2∆x(n)

)︂
= v

(n)
b,k−1

(︂
x− 2∆x(n)

)︂
+ ∆v(n)

∆x(n)ω
(n)
k ,

while for all x /∈
[︂
∆x(n), 2∆x(n)

)︂
,

v
(n)
b,k+1(x) = v

(n)
b,k

(︂
x− 2∆x(n)

)︂
= v

(n)
b,k−1

(︂
x− 2∆x(n)

)︂
.

For each n ∈ N, the microscopic limit order book dynamics are defined through the
piecewise constant interpolation

S(n)(t) := S
(n)
k for t ∈

[︂
τ

(n)
k , τ

(n)
k+1

)︂
∩ [0, T ] (1.2.8)

of the E-valued random variables

S
(n)
k :=

(︂
B

(n)
k , v

(n)
b,k , A

(n)
k , v

(n)
a,k , τ

(n)
k

)︂
, k ∈ N0.

Finally, we introduce the σ-field F (n)
0 := {Ø,Ω(n)}, F (n)

k := σ(φ(n)
j , ϕ

(n)
j , ω

(n)
j , π

(n)
j , ξ

(n)
j :

j ⩽ k) for each k, n ∈ N, and assume that S(n)
k is F (n)

k -measurable. In what follows, we
denote B(n) := (Ω(n),F (n), (F (n)

k )k⩾0,P(n)) for all n ∈ N.

Remark 1.2.2. The state and time dynamics of our model are driven by the random
variables (φ(n)

k ) (event times), (ϕ(n)
k ) (event types), (ω(n)

k ) (sizes of passive orders),
(π(n)
k ) (relative price levels of passive orders), and (ξ(n)

k ) (sizes of price changes). In
particular, the process S(n), n ∈ N, is adapted to the filtration G(n) = (G(n)

t )t∈[0,T ],
where G(n)

t := F (n)
N

(n)
t

for t ∈ [0, T ].

1.2.4 A high-frequency approximation of the microscopic model
In this section we state our assumptions regarding the distributional properties of the
arrival times, price changes, and order placement/cancellations as well as an assumption
on the relation between the scaling parameters ∆t(n),∆x(n), and ∆v(n), which will
allow us to derive a high-frequency limit. We then present our main result.

First, we assume that the second moment of the unscaled interarrival times is
uniformly bounded, which ensures that the random fluctuations of the order arrival
time dynamics will vanish in the high-frequency limit. Moreover, we assume that the
conditional expectation of each interarrival time only depends on the current state of
the order book.

Assumption 1.2 (Conditions on interarrival times).

i) It holds supk,n∈N E
[︃(︂
φ

(n)
k

)︂2
]︃
< ∞.
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ii) Moreover, there exist measurable, bounded functions φ(n) : E → (0,∞), n ∈ N,
such that

E
[︂
φ

(n)
k

⃓⃓⃓
F (n)
k−1

]︂
= φ(n)

(︂
S

(n)
k−1

)︂
a.s.

iii) Furthermore, there exists a Lipschitz continuous function φ : E → (0, 1] with
Lipschitz constant L > 0 such that

sup
s∈E

⃓⃓⃓
φ(n)(s) − φ(s)

⃓⃓⃓
→ 0 as n → ∞.

Remark 1.2.3. We note that by definition not only the visible book, but also the
shadow book is adapted to the filtration (F (n)

k )k∈N0 . Therefore, the filtration (F (n)
k )k∈N0

(resp. G(n)) must not be misunderstood as the market filtration. Especially, while from
a mathematical point of view Assumption 1.2 ii) is sufficient for the derivation of a
Markovian high-frequency limit process (cf. Theorem 1.2.6 below), in applications the
function φ(n) will only depend on the visible book as it is the case in our simulation
study (cf. Section 1.3). Moreover, Assumption 1.2 ii) should be interpreted in the correct
way: the conditional expectation of the interarrival times does neither depend on future
spread placements through the shadow book (which would be absurd, anyway) nor on
the past evolution of the order book, but only on its current state. In the same way
Assumptions 1.3 ii) and 1.4 should be understood.

Next, we present our assumption on the conditional expectations of the place-
ment/cancellation operator of the volume dynamics. It is of the same flavor as the one
for the interarrival times and ensures that the random fluctuations generated by the
volume dynamics will vanish in the high-frequency limit as well.

Assumption 1.3 (Conditions on placements/cancellations).

i) It holds supk,n∈N E
[︃(︂
ω

(n)
k

)︂2
]︃
< ∞.

ii) There exist measurable functions f (n)
b , f

(n)
a : E → L2(R), n ∈ N, such that for all

k ∈ N,

f
(n)
b

[︂
S

(n)
k−1

]︂
(·) = 1

∆x(n)E

⎡⎣ω(n)
k 1{︂

ϕ
(n)
k

=B
}︂1{︂

· ∈I(n)(π(n)
k

)
}︂ ⃓⃓⃓F (n)

k−1

⎤⎦ a.s.

f (n)
a

[︂
S

(n)
k−1

]︂
(·) = 1

∆x(n)E

⎡⎣ω(n)
k 1{︂

ϕ
(n)
k

=D
}︂1{︂

· ∈I(n)(π(n)
k

)
}︂ ⃓⃓⃓F (n)

k−1

⎤⎦ a.s.

iii) There exist bounded, Lipschitz continuous functions fb, fa : E → L2(R) with
Lipschitz constant L > 0 such that as n → ∞,

sup
s∈E

{︂⃦⃦⃦
f

(n)
b [s] − fb[s]

⃦⃦⃦
L2

+
⃦⃦⃦
f (n)
a [s] − fa[s]

⃦⃦⃦
L2

}︂
→ 0,
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for any x, ˜︁x ∈ R, I = b, a,

sup
s∈E

∥fI [s](· + x) − fI [s](· + ˜︁x)∥L2 ⩽ L|x− ˜︁x|,

and
sup
s∈E

∥fI [s](·)1[r,∞)(| · |)∥L2
r→∞−→ 0.

As we aim to derive a jump-diffusion-type limit for the price dynamics, the assumption
for the price changes will be of a different form. We differentiate between so-called
small and large price changes. Small price changes are assumed to become negligible as
the number of orders gets large. This framework is analyzed in [40–43], where all price
changes are assumed to be equal to ±∆x(n) and ∆x(n) → 0. In order to take more
extreme price movements into account, we include large price changes in our model,
which do not converge to zero as n → ∞. The following assumption introduces the
scaling of the conditional first and second moments of the small price jumps and the
scaling of the conditional probabilities of the large price jumps.

Assumption 1.4 (Conditions on the price changes). Let (δn)n∈N ⊂ R+ be a null
sequence that satisfies ∆x(n) ⩽ δn for all n ∈ N.

i) There exist bounded, measurable functions p(n)
b , p

(n)
a : E → R and r(n)

b , r
(n)
a : E →

R+ such that for all k ∈ N,

E

⎡⎣(ξ(n)
k )21{︂

ϕ
(n)
k

=A
}︂1{︂

0<∆x(n)
⃓⃓
ξ

(n)
k

⃓⃓
⩽δn

}︂⃓⃓⃓⃓⃓F (n)
k−1

⎤⎦ = ∆t(n)

(∆x(n))2 (r(n)
b (S(n)

k−1))2 a.s.

E

⎡⎣(ξ(n)
k )21{︂

ϕ
(n)
k

=C
}︂1{︂

0<∆x(n)
⃓⃓
ξ

(n)
k

⃓⃓
⩽δn

}︂⃓⃓⃓⃓⃓F (n)
k−1

⎤⎦ = ∆t(n)

(∆x(n))2 (r(n)
a (S(n)

k−1))2 a.s.

and

E

⎡⎣ξ(n)
k 1{︂

ϕ
(n)
k

=A
}︂1{︂

0<∆x(n)
⃓⃓
ξ

(n)
k

⃓⃓
⩽δn

}︂⃓⃓⃓⃓⃓F (n)
k−1

⎤⎦ = ∆t(n)

∆x(n) p
(n)
b (S(n)

k−1) a.s.

E

⎡⎣ξ(n)
k 1{︂

ϕ
(n)
k

=C
}︂1{︂

0<∆x(n)
⃓⃓
ξ

(n)
k

⃓⃓
⩽δn

}︂⃓⃓⃓⃓⃓F (n)
k−1

⎤⎦ = ∆t(n)

∆x(n) p
(n)
a (S(n)

k−1) a.s.

Further, there exists another null sequence (ηn)n∈N ⊂ R+ with δn/ηn → 0 such
that for all n ∈ N, s ∈ E, we have

min
{︂
r

(n)
b (s), r(n)

a (s)
}︂
> ηn.
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ii) For all n ∈ N and j ∈ Z, there exist measurable, bounded functions k(n)
b,j , k

(n)
a,j :

E → R+ with k(n)
b,j ≡ k

(n)
a,j ≡ 0 whenever |x(n)

j | ⩽ δn, such that for all j ∈ Z with
|x(n)
j | > δn

P
[︂
∆x(n)ξ

(n)
k = x

(n)
j , ϕ

(n)
k = A

⃓⃓
F (n)
k−1

]︂
= ∆t(n)k

(n)
b,j (S(n)

k−1),

P
[︂
∆x(n)ξ

(n)
k = x

(n)
j , ϕ

(n)
k = C

⃓⃓
F (n)
k−1

]︂
= ∆t(n)k

(n)
a,j (S(n)

k−1).

The null sequence δn separates the price changes into two regimes. First, we have
the regime of prices changes becoming negligible in the limit. The second one describes
those which do not scale to zero. The null sequence ηn is introduced for technical
reasons only, because it guarantees that the diffusion component does not vanish in the
n-th model, which will simplify the convergence proof of the price changes becoming
negligible in the limit toward a diffusion process.

Remark 1.2.4. We note that Assumption 1.4 i) is a generalization of the assumptions
made in [40–43], where a further scaling parameter ∆p(n) = o(1) is introduced that
controls the proportion of price changes among all events. Ensuring that this proportion
relates to the other scaling parameters as (∆x(n))2∆p(n) ≈ ∆t(n), Assumption 2.1 in
[42] implies indeed a scaling of order ∆t(n) for the second moments of price changes
as we demand in the first two equations in Assumption 1.4 i). Note however, that
Assumption 1.4 does not necessarily imply that the proportion of price changing events
converges to zero. Indeed, suppose that all four events happen with equal probability
independently of anything else and that δn = ∆x(n). Then Assumption 1.4 i) is satisfied
with ∆t(n) = (∆x(n))2. Furthermore, our small price changes can be of order larger
than ∆x(n) if the probability of price changing events goes to zero. To see this, suppose
that A and C events occur with equal probability ∆t(n)/∆x(n) (which goes to zero by
Assumption 1.7 below) and that |ξ(n)

k | ≈ (∆x(n))−1/2, in which case Assumption 1.4 i)
also holds true.

The next assumption guarantees that the coefficient functions p(n)
b , p(n)

a , r
(n)
b , and

r
(n)
a satisfy the right limiting behavior.

Assumption 1.5 (Convergence assumptions corresponding to the small jumps). There
exist bounded, Lipschitz continuous functions pb, pa : E → R and rb, ra : E → R+ with
Lipschitz constant L > 0 such that as n → ∞, it holds that

sup
s∈E

{︂⃓⃓⃓
p

(n)
b (s) − pb(s)

⃓⃓⃓
+
⃓⃓⃓
p(n)
a (s) − pa(s)

⃓⃓⃓
+
⃓⃓⃓
r

(n)
b (s) − rb(s)

⃓⃓⃓
+
⃓⃓⃓
r(n)
a (s) − ra(s)

⃓⃓⃓}︂
→ 0.

Next, we need to specify assumptions that guarantee the convergence of the large
jumps. To this end, we first construct kernels K(n)

b ,K
(n)
a : E× B(R) → R+ representing

the conditional distributions of the large price changes by setting

K
(n)
b (s,A) :=

∑︂
j∈Z

1A(x(n)
j )k(n)

b,j (s), K(n)
a (s,A) :=

∑︂
j∈Z

1A(x(n)
j )k(n)

a,j (s) (1.2.9)
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forA ∈ B(R) and s ∈ E. In particular, for s ∈ E and I = b, a, we have K(n)
I (s, I(n)(x)) =

k
(n)
I,j (s) if x(n)

j ⩽ x < x
(n)
j+1. The following assumption guarantees that in the limit the

driving jump measures do not depend on the order book dynamics, which is necessary
to derive a jump diffusion for the prices as opposed to more general (and more complex)
semimartingale dynamics in the limit. We will assume that the driving jump measures
have compact support in [−M,M ]. To define their discrete approximations later on,
we introduce for all n ∈ N the set Z(n)

M := {j ∈ Z : −M ⩽ x
(n)
j ⩽M}.

Assumption 1.6 (Convergence assumptions corresponding to the large jumps). There
exist kernels Kb,Ka : E×B(R) → R+ satisfying Kb(s, {0}) = Ka(s, {0}) = 0 for all s ∈
E as well as finite measures Qb, Qa on B(R) with compact support in [−M,M ] satisfying
Qb({0}) = Qa({0}) = 0 and measurable, bounded functions θb, θa : E × [−M,M ] → R
such that for I = b, a,

i) for every s ∈ E the map x ↦→ θI(s, x) is uniformly equicontinuous and for every
y ∈ [−M,M ] either θI(s, y) = 0 or x ↦→ θI(s, x) is strictly increasing in an open
neighborhood of y5;

ii) for all s ∈ E and all A ∈ B([−M,M ]),

QI(A) = KI(s, θI(s,A)) +QI({x ∈ A : θI(s, x) = 0}), (1.2.10)

where θI(s,A) := {θI(s, x) : x ∈ A}6.

iii)

sup
s∈E

∑︂
j

⃓⃓⃓
K

(n)
I

(︂
s, θI

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
−KI

(︂
s, θI

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂⃓⃓⃓
−→ 0.

iv) There exists a constant L > 0 such that for all s, ˜︁s ∈ E and y ∈ [−M,M ],

|θI(s, y) − θI(˜︁s, y)| ⩽ L∥s− ˜︁s∥E .
Moreover, setting for all n ∈ N,

θ
(n)
I (s, x(n)

j ) :=

⎡⎢⎢⎢θI(s, x
(n)
j )

∆x(n)

⎤⎥⎥⎥ · ∆x(n), s ∈ E, j ∈ Z(n)
M , (1.2.11)

we have
v) for all s ∈ E and i ∈ N with K

(n)
I (s, {x(n)

i }) > 0 there exists a unique j ∈ Z(n)
M

such that
x

(n)
i = θ

(n)
I (s, x(n)

j );
5In fact, strictly decreasing would work as well. For the ease of exposition we consider the increasing

case.
6For notational simplicity, we write θI(s, [x(n)

j , x
(n)
j+1)), j ∈ Z, and always think of the well-defined sets

θI(s, [x(n)
j , x

(n)
j+1) ∩ [−M, M ]), j ∈ Z, for all s ∈ E.
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vi)

sup
s∈E

∑︂
j

∫︂
[x(n)

j ,x
(n)
j+1)

⃓⃓⃓⃓
⃓1{︂θ(n)

I (s,x(n)
j )=0

}︂ − 1{︂
θI(s,x)=0

}︂⃓⃓⃓⃓⃓QI(dx) −→ 0.

Together, part ii) and part iii) of Assumption 1.6 require the distribution of some
transformation of the large jumps to converge to a limit that is independent of the
state s ∈ E. This should be compared to Assumption 1.4 i), where we indirectly require
that the distribution of the standardized small price changes converges to a standard
Gaussian law.

Remark 1.2.5.

i) We require Qb and Qa to be compactly supported on [−M,M ], so that we can take
the separable space Cb([−M,M ]) of bounded, continuous functions on [−M,M ]
as test functions, which will be important to be able to apply the results from
Kurtz and Protter [58].

ii) For I = b, a, Assumption 1.6 v) asks for bijectivity of the discretized coefficient
function θ

(n)
I on the support of the measure K(n)

I (s, ·). Of course, we need surjec-
tivity to get a representation of the sum of large jumps as a discrete stochastic
integral. Injectivity will allow us to map the large jumps of the respective price
process uniquely to the jumps of the corresponding integrator defined below.

The advantage in working with Qb and Qa instead of Kb and Ka is that they are
independent of the order book dynamics. The key requirement in Assumption 1.6 is the
validity of equation (1.2.10), which may look a little bit mysterious in the beginning.
It says that the jump sizes of Kb, Ka may vary across different states s ∈ E, but that
the jump intensities stay the same, modulo the modification of jump sizes, as long as
the jump size does not vanish to zero. In Section 1.4, we provide explicit examples of
different jump behaviors satisfying Assumption 1.6.

For later use, we will extend the definition of θ(n)
I , I = b, a, to the whole interval

[−M,M ] by linear interpolation, i.e., we set for all s ∈ E, x(n)
j ⩽ x < x

(n)
j+1,

θ
(n)
I (s, x) := θ

(n)
I (s, x(n)

j ) +
x− x

(n)
j

∆x(n)

(︂
θ

(n)
I (s, x(n)

j+1) − θ
(n)
I (s, x(n)

j )
)︂
. (1.2.12)

Then, for s ∈ E, the map x ↦→ θ
(n)
I (s, x) is continuous with bounded support, hence

bounded.
The next assumption introduces the crucial relation between the different scaling

parameters ∆t(n),∆x(n), and ∆v(n). It is a mixture of the scaling assumption in [40]
for the parameters ∆t(n) and ∆v(n) and the one in [42] for the parameters ∆t(n), ∆x(n),
and ∆p(n); the latter, however, occurs only implicitly in Assumption 1.4. Because of
this assumption, an approximation of the price dynamics by a jump diffusion together
with an approximation of the volume dynamics by a fluid process can be obtained in
the high-frequency limit.
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Assumption 1.7 (Relation between the scaling parameters). There exists a constant
C > 0 such that

lim
n→∞

∆t(n)

∆x(n) = 0 and lim
n→∞

∆t(n)

∆v(n) = C.

In what follows, we will assume that C = 1. Any other constant would require further
constants in the limiting dynamics.

With all these preparation done, we can now state our main result.

Theorem 1.2.6 (Main result). Under Assumptions 1.1–1.7 the microscopic LOB-
dynamics S(n) converges weakly in the Skorokhod topology to S = η ◦ ζ, where ζ(t) :=
inf{s > 0 : τη(s) > t}, t ∈ [0, T ], is a random time change and η = (Bη, vηb , A

η, vηa , τ
η)

is the unique strong solution of the coupled diffusion-fluid system

Bη(t) = B0 +
∫︂ t

0
pb(η(u))du+

∫︂ t

0
rb(η(u))dZb(u)

+
∫︂ t

0

∫︂
[−M,M ]

θb(η(u−), y)µQb (du, dy),

vηb (t, x) = vb,0(x− (Bη(t) −B0)) +
∫︂ t

0
fb[η(u)](x− (Bη(t) −Bη(u)))du,

Aη(t) = A0 +
∫︂ t

0
pa(η(u))du+

∫︂ t

0
ra(η(u))dZa(u)

+
∫︂ t

0

∫︂
[−M,M ]

θa(η(u−), y)µQa (du, dy),

vηa(t, x) = va,0(x+Aη(t) −A0) +
∫︂ t

0
fa[η(u)](x+Aη(t) −Aη(u))du,

τη(t) =
∫︂ t

0
φ(η(u))du,

(1.2.13)

for all t ∈ [0, T ], x ∈ R, where Zb, Za are independent standard Brownian motions
and µQb , µ

Q
a are independent homogeneous Poisson random measures with intensity

measures λ × Qb and λ × Qa, independent of Zb, Za. Here, λ denotes the Lebesgue
measure on [0, T ].

We present a proof sketch of our main theorem in Section 1.5 whereas the technical
details are given in Section 1.6.

Remark 1.2.7. Let the assumptions of Theorem 1.2.6 be satisfied and suppose that
there exist functions hb, ha : E → R such that θI(s, x) = hI(s)x, I = b, a, for all s ∈ E
and x ∈ [−M,M ]. Then the dynamics of the prices simplifies to

Bη(t) = B0 +
∫︂ t

0
pb(η(u))du+

∫︂ t

0
rb(η(u))dZb(u) +

∫︂ t

0
hb(η(u−))dLb(u),

Aη(t) = A0 +
∫︂ t

0
pa(η(u))du+

∫︂ t

0
ra(η(u))dZa(u) +

∫︂ t

0
ha(η(u−))dLa(u)

32



1.2. THE MICROSCOPIC MODEL

for t ∈ [0, T ], where Lb, La are one-dimensional, independent Lévy processes with jumps
in [−M,M ].

Corollary 1.2.8. Let the assumptions of Theorem 1.2.6 be satisfied. Further, assume
that for I = b, a the functions vI,0 : R → R+ and fI [s] : R → R+, s ∈ E, are twice
continuously differentiable. Then the microscopic LOB-dynamics S(n) converges weakly
in the Skorokhod topology to S = (B, vb, A, va, τ), starting in S0, and being the unique
strong solution of the following coupled SDE–SPDE system: for (t, x) ∈ [0, T ] × R,

dB(t) = pb(S(t))
φ(S(t)) dt+ rb(S(t))ζ1/2(t)d ˜︁Zb(t) +

∫︂ M

−M
θb(S(t−), y)˜︁µQb (dt, dy),

dvb(t, x) =
(︄

−∂vb
∂x

(t, x)pb(S(t)) + 1
2
∂2vb
∂x2 (t, x)(rb(S(t)))2 + fb[S(t)](x)

)︄
1

φ(S(t))dt

− ∂vb
∂x

(t, x)rb(S(t))ζ1/2(t)d ˜︁Zb(t) + (vb(t−, x− ∆B(t)) − vb(t−, x)) ,

dA(t) = pa(S(t))
φ(S(t)) dt+ ra(S(t))ζ1/2(t)d ˜︁Za(t) +

∫︂ M

−M
θa(S(t−), y)˜︁µQa (dt, dy),

dva(t, x) =
(︄
∂va
∂x

(t, x)pa(S(t)) + 1
2
∂2va
∂x2 (t, x)(ra(S(t)))2 + fa[S(t)](x)

)︄
1

φ(S(t))dt

+ ∂va
∂x

(t, x)ra(S(t))ζ1/2(t)d ˜︁Za(t) + (va(t−, x+ ∆A(t)) − va(t−, x)) ,

dτ(t) = dt,

where ˜︁ZI , I = b, a, are independent Brownian motions and ˜︁µQb and ˜︁µQa are independent,
integer-valued random jump measures with compensators ˜︁νQI (dt, dy) = (φ(S(t)))−1dt×
QI(dy) for I = b, a, and ζ(t) =

∫︁ t
0(φ(S(u)))−1du. Here, ∆B(t) := B(t) − B(t−) and

∆A(t) := A(t) −A(t−) denote the jump of the best bid and ask price at time t > 0.

Note that the above SPDEs for the volume processes are degenerate. If we condition
the volume dynamics on the price movements, they behave like deterministic PDEs,
since random fluctuations of the queue sizes vanish in the high frequency limit. The
proof of the above corollary is postponed to Section 1.6.3.

In order to guarantee that the bid and ask price, the spread, and the volume density
functions do not become negative, certain conditions on the joint distribution of the
driving variables have to be satisfied, which are specified in the following assumption.

Assumption 1.8 (Conditions to guarantee non-negative prices, spread, and volumes).

i) For all k, n ∈ N it holds

P
[︂
∆x(n)ξ

(n)
k ⩾ A

(n)
k−1 −B

(n)
k−1, ϕ

(n)
k = A

⃓⃓⃓
F (n)
k−1

]︂
= 0,

P
[︂
∆x(n)ξ

(n)
k ⩽ B

(n)
k−1 −A

(n)
k−1, ϕ

(n)
k = C

⃓⃓⃓
F (n)
k−1

]︂
= 0.
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ii) For all k, n ∈ N it holds that

P
[︂
∆x(n)ξ

(n)
k ⩽ −B(n)

k−1, ϕ
(n)
k = A

⃓⃓⃓
F (n)
k−1

]︂
= 0.

iii) For all k, n ∈ N it holds that

P
[︂
v

(n)
b,k−1(π(n)

k ) ⩽ −ω(n)
k , ϕ

(n)
k = B

⃓⃓⃓
F (n)
k−1

]︂
= 0,

P
[︂
v

(n)
a,k−1(π(n)

k ) ⩽ −ω(n)
k , ϕ

(n)
k = D

⃓⃓⃓
F (n)
k−1

]︂
= 0.

The following corollary of Theorem 1.2.6 is a direct consequence of the weak conver-
gence result S(n) ⇒ S and the characterization of the limit S.

Corollary 1.2.9. Let the assumptions of Theorem 1.2.6 be satisfied. Then:

i) Under Assumption 1.8 i), we have

ra(s) = rb(s) = 0, pa(s) ⩾ 0 ⩾ pb(s) ∀ s = (a, v, a, w, t) ∈ E,

and the spread stays non-negative, i.e., for all t ∈ [0, T ], A(t) ⩾ B(t) a.s. If in
addition also B(n)

0 , A
(n)
0 ⩾ 0 for all n ∈ N and Assumption 1.8 ii) holds, we have

rb(s) = 0, pb(s) ⩾ 0 ∀ s = (0, v, a, w, t) ∈ E

and the bid and ask prices stay non-negative, i.e., for all t ∈ [0, T ], B(t), A(t) ⩾ 0
a.s.

ii) Under Assumption 1.8 iii), we have

∥f−
b [s](·)1{v(·)=0}∥L2 = 0, ∥f−

a [s](·)1{w(·)=0}∥L2 = 0 ∀ s = (b, v, a, w, t) ∈ E

and both volume density functions are non-negative, i.e., for all t ∈ [0, T ],

∥v−
a (t)∥L2 = ∥v−

b (t)∥L2 = 0 a.s.

1.3 Simulation study
In this section, we present a simulation study of the order book dynamics introduced
in the previous section. It demonstrates the usefulness of the general dependence
structure, where all coefficient functions are allowed to depend on current prices and
volumes. Such dependencies are plausible according to the observations in [6,15,39].
Among others, the simulation study shows the impact of endogenously and exogenously
triggered large jumps in the price dynamics.

Let ∆p(n) = o(1) denote a scaling parameter that controls the proportion of active
order events among all events (cf. also Remark 1.2.4). Further, let us fix some h > 0.
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For each s = (b, vb, a, va, t) ∈ E, we define the spread Sp(s) and an order imbalance
factor Im(s) via

Sp(s) := a− b and Im(s) := VolBid(s)
VolBid(s) + VolAsk(s)

with
VolBid(s) :=

∫︂ h

0
vb(x)dx and VolAsk(s) :=

∫︂ h

0
va(x)dx.

In the following, we denote Sp(n)
k := Sp(S(n)

k ),

VolBid(n)
k := VolBid(S(n)

k ), VolAsk(n)
k := VolAsk(S(n)

k ), Im(n)
k := Im(S(n)

k ).

For simplicity, let the order arrival times be equidistant and deterministic, i.e., τ (n)
k =

t
(n)
k := k∆t(n) for all k = 0, · · · , Tn := ⌊T/∆t(n)⌋. Moreover, we assume that all small

price changes are of size ±∆x(n), while the sizes of the large price changes may depend
on the current state of the book through the spread and the cumulative volumes at the
top of the book.

Let us set γn(x) := exp(−γ1(x− ∆x(n))) for some γ1 > 0. We allow the probabilities
of the small price changes to depend on the current imbalance factor and spread as

P
[︂
ξ

(n)
k+1 = 1, ϕ(n)

k+1 = A
⃓⃓
F (n)
k
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k

)︂ )︂
+
(︂
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(︂
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k

)︂ )︂
,

P
[︂
ξ

(n)
k+1 = 1, ϕ(n)

k+1 = C
⃓⃓
F (n)
k

]︂
∆p(n) = ∆x(n)Im(n)

k γn
(︂
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)︂
+
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
,

and

P
[︂
ξ

(n)
k+1 = −1, ϕ(n)

k+1 = A
⃓⃓
F (n)
k

]︂
∆p(n) = ∆x(n)

(︂
1 − Im(n)

k

)︂
γn
(︂
Sp(n)

k

)︂
+
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
P
[︂
ξ

(n)
k+1 = −1, ϕ(n)

k+1 = C
⃓⃓
F (n)
k

]︂
∆p(n) = ∆x(n)

(︂
1 − Im(n)

k

)︂ (︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
+
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
.

The above four probabilities sum up to 4∆p(n)
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
+ ∆x(n)∆p(n). This

choice of the conditional distribution for the occurrence of small price changes guarantees
that the bid and ask price do not cross. If the spread is small, the first and second term
of these probabilities are approximately of the same size. Moreover, the probability of
an upward price change is increasing with the imbalance factor, i.e., a price increase
is more likely to occur if the standing volume at the top of buy side is significantly
higher than the standing volume at the top of the sell side. This behavior of the price is
motivated by the empirical observations in e.g., [14,87]. Moreover, if the spread is equal
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to ∆x(n) the probabilities of observing an increase in the best bid price or a decrease
in the best ask price are zero. For large spreads, the conditional probabilities are all
dominated by their second term and hence are all of similar size. Here, the parameter
γ1 > 0 controls the influence of the spread on the order book dynamics. In particular,
we obtain the following feedback functions:

p
(n)
b

(︂
S

(n)
k

)︂
= −(1−Im(n)

k )+
(︂
1−γn

(︂
Sp(n)

k

)︂ )︂
, p(n)

a

(︂
S

(n)
k

)︂
= Im(n)

k −
(︂
1−γn

(︂
Sp(n)

k

)︂ )︂
,

and (︂
r

(n)
b (S(n)

k )
)︂2

= 2
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
+ O(∆x(n)),(︂

r(n)
a (S(n)

k )
)︂2

= 2
(︂
1 − γn

(︂
Sp(n)

k

)︂ )︂
+ O(∆x(n)).

Note that for all s ∈ E with Sp(s) = ∆x(n), the diffusion coefficients vanish, while
the drift of the bid price is negative and the drift of the ask price is positive. This
guarantees that the prices move apart if the spread equals ∆x(n).

Next, let us turn to the conditional probabilities of observing large price changes.
In our setting, it is important that the jump intensities are independent of the order
book dynamics. Nevertheless, the jump sizes are allowed to vary across different states
of the book. In order to ensure that the bid and ask prices do not cross, the jump
sizes of the bid and ask must depend on the current spread. Moreover, small standing
volumes at the top of the bid or ask side increase the size of a large jump. As noted
in Remark 1.2.1 the jump behavior might also be influenced by external factors. To
model such external influences, we take a discretized Poisson process (Y (n)

k )k⩾0 with
intensity parameter σ > 0, which only jumps at times {t(n)

k : k = 1, · · · , Tn} and fix
some threshold level κ > 0. If Y (n)

k crosses the threshold level, jump sizes increase
significantly by a factor 1 + η1 ⩾ 1, for some η1 ∈ N0.

Altogether, the sizes of the large price jumps depending on the current state s ∈ E
and external influence y ∈ N0 are modeled as follows: take η2 > 0 and j+

b , j
+
a , j

−
b , j

−
a ∈

∆x(n)Z with j+
b , j

+
a > ∆x(n) and j−

b , j
−
a < −∆x(n). Then we define

J+
b (s, y) = min

{︂
ρ(y)j+

b , Sp(s) − ∆x(n)
}︂
, J+

a (s, y) =
⌊︄

ρ(y)η2j
+
a

VolAsk(s)∆x(n)

⌋︄
∆x(n),

J−
a (s, y) = max

{︂
ρ(y)j−

a , −Sp(s) + ∆x(n)
}︂
, J−

b (s, y) =
⌊︄

ρ(y)η2j
−
b

VolBid(s)∆x(n)

⌋︄
∆x(n),

where ρ(y) := 1 + η11(y > κ) and η1, η2 control the impact of the external factor and
the cumulative standing volumes, respectively, on the size of the large jumps. Now, for
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non-negative λ+
b , λ

−
b , λ

+
a , and λ−

a ∈ [0, 1] with λ+
b + λ−

b + λ+
a + λ−

a = 1, we set
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⃓⃓
F (n)
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]︂
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b 1
{︂
x

(n)
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b
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k
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)
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b
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k
,Y
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)
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∆t(n) = λ+

a 1
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k
)
}︂ + λ−

a 1
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x

(n)
j =J−

a (S(n)
k

,Y
(n)

k
)
}︂.

Hence, with probability ∆t(n) a large price change occurs. These choices of probabilities
for the large price jumps yield the following feedback functions: for I = b, a, we have

KI

(︂
S

(n)
k , Y

(n)
k , dx

)︂
= λ−

I εJ−
I (S(n)

k
,Y

(n)
k

)(dx) + λ+
I εJ+

I (S(n)
k

,Y
(n)

k
)(dx),

QI(dx) = λ−
I ε−1(dx) + λ+

I ε1(dx)

and

θI
(︂
S

(n)
k , Y

(n)
k , x

)︂

=

⎧⎪⎪⎨⎪⎪⎩
J−
I (S(n)

k , Y
(n)
k ) : x ∈ (−∞,−1]

J−
I (S(n)

k , Y
(n)
k ) + x+1

2 {J+
I (S(n)

k , Y
(n)
k ) − J−

I (S(n)
k , Y

(n)
k )} : x ∈ (−1, 1)

J+
I (S(n)

k , Y
(n)
k ) : x ∈ [1,∞)

.

In the following, we denote by p(n)
k+1 := P[ϕ(n)

k+1 ∈ {A,C}|F (n)
k ] the conditional probability

of a price changing event at time t(n)
k+1 which is uniquely determined by the previous

equations. Now, let us turn to the limit order placements. For simplicity, we assume that
they are always of size 10 and are normally distributed around the best bid respectively
ask price, i.e.,

P
[︂
ϕ

(n)
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(n)
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1
2πe

−y2
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Moreover, cancellation of volume is supposed to be proportional to the current volume:
for all x ⩽ 0,

P
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(n)
k+1 = B, ω
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P
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k+1 = D, ω
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F (n)
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= 1 − Im(n)
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v
(n)
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1[︂
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]︂(x) 1
2πe
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We have chosen the limit order placements and cancellations in such a way that a
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high imbalance factor results in more order placements at the ask side and more
order cancellations at the bid side, while a small imbalance factor leads to more order
placements at the bid side and more order cancellations at the ask side. This induces
an equalizing effect. Supposing ∆v(n) = ∆t(n), the coefficient functions of the relative
volume densities are given by

f
(n)
b

(︂
S

(n)
k , x

)︂
=
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(n)
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b,k (y)
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dy,

f (n)
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(︂
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k , x
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∆x(n)
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2π
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{︃
10 · Im(n)

k − va,k(y)
2

(︂
1 − Im(n)

k

)︂}︃
e−y2

dy.

We run two different simulations of the above specified model. For both, we suppose
that ∆x(n) = n−1, ∆p(n) = n−1/2, ∆t(n) = (∆x(n))2∆p(n) = n−5/2 and choose

n = 100, h = 0.55, γ1 = 1, η2 = 100, T = 2.

In a first simulation we further choose η1 = 0 and λ−
b = 1, λ+

b = λ−
a = λ+

a = 0, i.e., only
downward jumps at the best bid price are possible and there is no external factor.
Moreover, we start with a bid price B0 = 6.9, an ask price A0 = 7, and with a limit
order book that has a severe imbalance at time t = 0 : standing volumes at the bid
side are much higher than standing volumes at the ask side, i.e., we choose

v0,b(x) = 0.0075(x− 4)2(x+ 4)21[−4,4](x), va,0(x) = 0.0025(x− 4)2(x+ 4)21[−4,4](x).

For these parameter values, Figure 1.5 shows the evolution of the best bid and ask
prices over time, while Figure 1.6 depicts the evolution of the absolute volume density
functions ub and ua of the visible book over time, where

ub(x) = vb(−x+B)1{x⩽B}, ua(x) = va(x−A)1{x⩾A}.

Figure 1.5: The evolution of the best bid (blue) and the best ask price (yellow).
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The evolution of the prices is influenced by the spread as well as the imbalance factor.
We start with a quite small spread and a large imbalance factor implying very small
price volatilities, a slightly negative drift of the best bid price, and a positive drift of the
best ask price. Hence, the prices move apart from each other. At t ≈ 0.4, we observe a
price drop in the best bid price which heavily increases the spread between bid and ask.
Therefore, both prices become more volatile, but imbalances are still significant. After
a second price drop in the best bid price at t ≈ 0.7, the huge spread now dominates the
price evolution and the spread decreases. In the last quarter, we observe a similar price
evolution of the best bid and ask price, which is caused by the fact that the imbalance
factor and the spread stabilize around 0.5 and ln(2), respectively.

In Figure 1.6 we observe that the cumulative volumes at the top of both sides of the
limit order book converge. In this simulation study the sell side volume approaches
the bid side volume because we have chosen the size of the order placements much
greater than the size of average cancellations for the initial volume density functions. If
placements would be of smaller size, the opposite effect could be observed, i.e., the buy
side volumes at the top of the book would decrease to approach the sell side volumes
at the top of the book. Moreover, the price drops in the bid price lead to a significant
decrease of order volumes at the top of the bid side and hence to a decrease of the
volume imbalance factor, which subsequently forces the spread to narrow again.

Figure 1.6: The evolution of the bid side (left) and ask side (right) volume
density functions (in absolute coordinates; visible books only).

In a second simulation, starting from the same initial values, we allow jumps in all
directions (λ+

b = λ−
a = 0.15, λ−

b = λ+
a = 0.35) and assume a rather strong dependence

of the jump sizes on the external factor Y (n) by choosing η1 = 9 and κ = 10, i.e., after
Y (n) hits the threshold, the absolute value of the jump sizes increases by the factor 10.
We depict the corresponding bid and ask price evolution of two runs of our simulation
in Figure 1.7. In both runs Y (n) hits the threshold shortly after t = 1.
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Figure 1.7: The evolution of the best bid (blue) and the best ask price (yellow).

1.4 Examples of large price jumps
In this section we provide three examples of jump distributions that satisfy the rather
technical Assumption 1.6. They are toy examples and not meant to mimic asset price
jumps observed in real data, but rather to illustrate the range of jump distributions
supported by our model.
Example 1.2 (Jumps at the ask follow a state-dependent shifted continuous distribu-
tion). Let M > 0 and suppose that δn = ∆x(n) and (∆x(n))−1 ∈ N. Fix some continuous
distribution function F on B([−M,M ]) and two Lipschitz continuous, bounded functions
µ, σ : E → R such that σ(s) ⩾ 1 for all s ∈ E. If j ∈ Z\{−1, 0, 1} is such that there
exists an i ∈ Z(n)

M with

σ(s)x(n)
i ⩽ x

(n)
j − µ(s) < σ(s)x(n)

i + ∆x(n),

the distribution of the large price jumps at the best ask is given by

k
(n)
a,j (s) = F

(︂[︂
x

(n)
i , x

(n)
i+1

)︂
∩ [−M,M ]

)︂
.

If none such i ∈ Z exists, we set k(n)
a,j (s) = 0. Note that all k(n)

a,j ’s are well-defined as
the intervals [σ(s)x(n)

i , σ(s)x(n)
i + ∆x(n)), i ∈ N, are non-overlapping due to σ(s) ⩾ 1.

Then define for all A ∈ B(R),

Ka(s,A) := F

(︃{︃
x− µ(s)
σ(s) : x ∈ A

}︃
∩ [−M,M ]

)︃
, Qa(A) := F (A ∩ [−M,M ]),

and for all x ∈ [−M,M ],
θa(s, x) := σ(s)x+ µ(s).

Then, for all A ∈ B([−M,M ]),

Ka

(︂
s, θa(s,A)

)︂
= F (A) = Qa(A).
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Hence, Assumption 1.6 ii) is satisfied. By the Lipschitz continuity of µ, σ : E → R, we
have for all s, ˜︁s ∈ E and x ∈ [−M,M ]

|θa(s, x) − θa(˜︁s, x)| ⩽ |µ(s) − µ(˜︁s)| +M |σ(s) − σ(˜︁s)| ⩽ L(1 +M)∥s− ˜︁s∥E
and therefore, Assumption 6 iv) holds true. By construction, note that also the Assump-
tions 1.6 i) and v) are satisfied. Hence, we can apply Lemma 1.6.1 and obtain for all
s ∈ E and j ∈ Z,
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yielding the validity of Assumption 1.6 iii). Finally, as n → ∞,
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Therefore, Assumption 1.6 vi) holds true as well.

Example 1.2 shows that jump intensities can follow quite general distribution func-
tions. Moreover, observe that if µ(s) − Mσ(s) > b − a for all s = (b, vb, a, va, t) ∈ E,
then the (negative) jumps of the ask price will never lead to a crossing of bid and
ask prices. While θa(s, ·) is linear for all s ∈ E in the above example, we note that in
general also non-linear transformations are possible. In the next example we discuss a
non-linear transformation of the jump sizes.

Example 1.3 (Large proportional price drops at the bid, if bid prices are greater
or equal to one). Let M > 1/2 and suppose that (∆x(n))−1 ∈ 2N. Further, we set
Eb⩾1 := {(b, vb, a, va, t) ∈ E : b ⩾ 1}. Then, for all j ∈ Z and s ∈ E, we describe the
distribution of the large price jumps at the best bid price by

K
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2 ,− b∧2M
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0 : else
.
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For all A ∈ B(R), we set

Kb(s,A) =
{︄
ε−1/2

(︁{︁
x

b∧2M : x ∈ A
}︁)︁

: s ∈ Eb⩾1

0 : else
, Qb(dx) = ε−1/2(dx),

and for all x ∈ [−M,M ],

θb(s, x) = (b1{b⩾1} ∧ 2M)x.

Then we have for b ⩾ 1,
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= Kb(s, θb(s,A)) = Kb

(︂
s,
{︂

(b ∧ 2M)x : x ∈ A
}︂)︂

= ε−1/2(A) = Qb(A)

and for b < 1,

Kb(s, θb(s,A)) +Qb({x ∈ A : θb(s, x) = 0}) = Qb({x ∈ A : θb(s, x) = 0}) = Qb(A).

Hence, Assumption 1.6 ii) is satisfied. By construction, note that also the Assumptions
1.6 i), iv), and v) are fulfilled. Furthermore, by Lemma 1.6.1 we have
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and hence also Assumption iii) is satisfied. Finally, Assumption 1.6 vi) holds true since

sup
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While in the above two examples the driving jump distribution in the pre-limit does
not depend on n, the next example shows that this is generally possible. Indeed, even a
slight dependence on s ∈ E in the pre-limit is allowed as long as it vanishes for n → ∞.
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Example 1.4 (Poisson approximation to binomial-distributed jumps at the ask,
bounded by state-dependent levels). Suppose that (∆x(n))−1 ∈ N and M ∈ N. Let
pn : E → (0, 1) and m0,M0 : E → N satisfy

sup
s∈E

|npn(s) − λ| → 0, M ⩾M0(s) ⩾ m0(s) ⩾ 1 ∀ s ∈ E,

|m0(s) −m0(˜︁s)| ⩽ L∥s− ˜︁s∥E , |M0(s) −M0(˜︁s)| ⩽ L∥s− ˜︁s∥E ∀ s, ˜︁s ∈ E.

For s ∈ E let the distribution of the large price jumps at the ask be described by

K(n)
a (s, dx)

:=
M0(s)∑︂
k=m0(s)

(︄
n

k +M −M0(s)

)︄
(pn(s))k+M−M0(s)(1 − pn(s))n−k−M+M0(s)εk(dx).

Then,

Ka(s, dx) :=
M0(s)∑︂
k=m0(s)

e−λ λk+M−M0(s)

(k +M −M0(s))!εk(dx), Qa(dx) :=
M∑︂
k=1

e−λλ
k

k! εk(dx)

and for M0(s) := M −M0(s) +m0(s),

θa(s, x) :=

⎧⎪⎪⎨⎪⎪⎩
x−M +M0(s) : x ∈ [M0(s),M ]
m0(s) · (x−M0(s) + 1) : x ∈ (M0(s) − 1,M0(s))
0 : x ∈ [−M,M0(s) − 1]

satisfy for any A ∈ B([−M,M ]),

Ka(s, θa(s,A)) = Ka(s, {x−M +M0(s) : x ∈ A}) = Qa(A ∩ [M0(s),M ])

and

Qa({x ∈ A : θa(s, x) = 0}) = Qa(A ∩ [1,M0(s) − 1]) = Qa(A) −Qa(A ∩ [M0(s),M ]).

Hence, Assumption 1.6 ii) is satisfied. By construction also Assumptions 1.6 i) and v)
hold. Moreover,

sup
s∈E

∑︂
j

⃓⃓⃓
Ka

(︂
s, θa

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂)︂ )︂
−K(n)

a

(︂
s, θa

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂)︂ )︂⃓⃓⃓

= sup
s∈E

M∑︂
k=M0(s)

⃓⃓⃓⃓
⃓e−λλ

k

k! −
(︄
n

k

)︄
(pn(s))k(1 − pn(s))n−k

⃓⃓⃓⃓
⃓ ⩽ sup

s∈E
2n(pn(s))2 → 0,

i.e., Assumption 1.6 iii) is satisfied. If s, ˜︁s ∈ E satisfy M0(s) −m0(s) = M0(˜︁s) −m0(˜︁s),
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then

|θa(s, x)−θa(˜︁s, x)| ⩽ |M0(s)−M0(˜︁s)|+|m0(s)−m0(˜︁s)| ⩽ 2L∥s−˜︁s∥E ∀ x ∈ [−M,M ].

If s, ˜︁s ∈ E satisfy M0(s) −m0(s) > M0(˜︁s) −m0(˜︁s), then we have for all x ∈ [−M,M ]
the estimate

|θa(s, x) − θa(˜︁s, x)| ⩽ |M0(s) −M0(˜︁s)| +Mε(︁
M(s)−1,M(˜︁s))︁({x})

⩽ |M0(s) −M0(˜︁s)| +M |m0(˜︁s) −M0(˜︁s) −m0(s) +M0(s) + 1|
⩽ (1 + 2M)|M0(s) −M0(˜︁s)| + 2M |m0(˜︁s) −m0(s)|
⩽ (1 + 4M)L∥s− ˜︁s∥E .

Hence, Assumption 1.6 iv) holds. Finally, we note that for all x(n)
j ∈ N we have

θ
(n)
a (s, x(n)

j ) = θa(s, x(n)
j ). As Qa only charges N, this shows that Assumption 1.6 vi) is

also satisfied.

Example 1.4 illustrates very well the restrictions imposed on the limiting jump
distribution through Assumption 1.6: while the range of jump sizes (parameterized
through m0 and M0) can differ across states, the λ determining the jump intensities
has to be constant and cannot depend on the state s ∈ E. This is necessary to obtain
jump diffusion dynamics – rather than more general (and even more complicated)
semimartingale dynamics – in the high-frequency limit.

1.5 Proof sketch of the main theorem
In this section, we present a step-by-step proof sketch of Theorem 1.2.6. It should give
the reader an overview about the proof strategy and the main methods. The technical
details can be found in Section 1.6.

Step 1: State and time separation

By making use of the time change theorem, we can simplify our subsequent analysis to
equidistant, deterministic order arrival times, where the time intervals between two
consecutive order arrivals are of length ∆t(n). To this end, we set t(n)

k := k∆t(n) for
k ∈ N0, Tn := ⌊T/∆t(n)⌋, and define the state process η(n) via

η(n)(t) :=
Tn∑︂
k=0

S
(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(t), t ∈ [0, T ].

Introducing the process

τη,(n)(u) :=
Tn∑︂
k=0

τ
(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(u), u ∈ [0, T ],
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we define the time process ζ(n) via

ζ(n)(t) := inf
{︂
u > 0 : τη,(n)(u) > t

}︂
∧ (Tn + 1)∆t(n), t ∈ [0, T ].

The advantage of the state and time separation is that we can focus on first ana-
lyzing the convergence of the state process η(n), for which we will prove the following
convergence result (cf. Steps 2-5 below).

Proposition 1.5.1. Let the assumptions of Theorem 1.2.6 be satisfied. Then, η(n)

converges weakly in the Skorokhod topology to η = (Bη, vηb , A
η, vηa , τ

η) being the unique
strong solution of the coupled diffusion-fluid system in (1.2.13).

Let us now define the composition of the state process η(n) with the time process
ζ(n) as

S(n),∗(t) := η(n)
(︂
ζ(n)(t) − ∆t(n)

)︂
, t ∈ [0, T ].

Relying on a time change argument for processes with discontinuities, our main result
readily follows from statements ii) and iii) of the following corollary.

Corollary 1.5.2. Let Assumptions 1.1–1.7 be satisfied. Then,

i) ζ(n) ⇒ ζ in the Skorokhod topology, where ζ−1(t) = τη(t) =
∫︁ t

0 φ(η(u))du,

ii) S(n),∗ ⇒ η ◦ ζ =: S in the Skorokhod topology, and

iii) as n → ∞,

P
[︄

sup
t∈[0,T ]

⃦⃦
S(n),∗(t) − S(n)(t)

⃦⃦
E
> 0

]︄
→ 0.

In the subsequent steps we present a sketch of the proof of Proposition 1.5.1. To this
end, let us define η(n) :=

(︂
Bη,(n), v

η,(n)
b , Aη,(n), v

η,(n)
a , τη,(n)

)︂
, where for t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
∩

[0, T ],

Bη,(n)(t) = B
(n)
k , v

η,(n)
b (t, ·) = v

(n)
b,k ,

Aη,(n)(t) = A
(n)
k , vη,(n)

a (t, ·) = v
(n)
a,k , τη,(n)(t) = τ

(n)
k .

(1.5.1)

Step 2: Representation of the LOB-dynamics as a stochastic difference equation
and convergence of its integrators

To prove Proposition 1.5.1, we will apply results of Kurtz and Protter [58] about the
convergence of stochastic differential equations in infinite dimension. To this end, we
rewrite the discrete-time dynamics of η(n) in the form of a proper stochastic difference
equation, whose driving processes converge to limit processes which are independent of
the order book sequence. First, we decompose

Bη,(n)(t) = B
(n)
0 +Bη,s,(n)(t) +Bη,ℓ,(n)(t), Aη,(n)(t) = A

(n)
0 +Aη,s,(n)(t) +Aη,ℓ,(n)(t),
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where Bη,s,(n), Aη,s,(n) and Bη,ℓ,(n), Aη,ℓ,(n) describe the price dynamics of the small
and large price changes, respectively, i.e.,

Bη,s,(n)(t) :=
⌊t/∆t(n)⌋∑︂
k=1

δB
(n)
k 1{︂⃓⃓⃓

δB
(n)
k

⃓⃓⃓
⩽δn

}︂, Aη,s,(n)(t) :=
⌊t/∆t(n)⌋∑︂
k=1

δA
(n)
k 1{︂⃓⃓⃓

δA
(n)
k

⃓⃓⃓
⩽δn

}︂,
Bη,ℓ,(n)(t) :=

⌊t/∆t(n)⌋∑︂
k=1

δB
(n)
k 1{︂⃓⃓⃓

δB
(n)
k

⃓⃓⃓
>δn

}︂, Aη,ℓ,(n)(t) :=
⌊t/∆t(n)⌋∑︂
k=1

δA
(n)
k 1{︂⃓⃓⃓

δA
(n)
k

⃓⃓⃓
>δn

}︂.
Next, observe that we can write the price dynamics of the small price changes Bη,s,(n)

and Aη,s,(n) as

Bη,s,(n)(t) :=
⌊t/∆t(n)⌋∑︂
k=1

{︂
p

(n)
b (S(n)

k−1)∆t(n) + r
(n)
b (S(n)

k−1)δZ(n)
b,k

}︂
,

Aη,s,(n)(t) :=
⌊t/∆t(n)⌋∑︂
k=1

{︂
p(n)
a (S(n)

k−1)∆t(n) + r(n)
a (S(n)

k−1)δZ(n)
a,k

}︂
,

(1.5.2)

where Z(n)
I,k := ∑︁k

j=1 δZ
(n)
I,j for I = b, a and

δZ
(n)
b,j :=

δB
(n)
j 1{0<|δB(n)

j |⩽δn} − ∆t(n)p
(n)
b (S(n)

j−1)

r
(n)
b (S(n)

j−1)
,

δZ
(n)
a,j :=

δA
(n)
j 1{0<|δA(n)

j |⩽δn} − ∆t(n)p
(n)
a (S(n)

j−1)

r
(n)
a (S(n)

j−1)
.

Then, Proposition 1.5.3 states that the processes

Z
(n)
b (t) :=

Tn∑︂
k=1

Z
(n)
b,k 1

[︂
t
(n)
k
,t

(n)
k+1

)︂(t), Z(n)
a (t) :=

Tn∑︂
k=1

Z
(n)
a,k1

[︂
t
(n)
k
,t

(n)
k+1

)︂(t), (1.5.3)

for t ∈ [0, T ], converge to two independent Brownian motions and therefore the
integrators in (1.5.2) converge to processes that are independent of the order book
dynamics.

Proposition 1.5.3. Let Assumptions 1.4 and 1.7 be satisfied. Then, as n → ∞, the
process (Z(n)

b , Z
(n)
a ) converges weakly in the Skorokhod topology to a standard planar

Brownian motion (Zb, Za). In particular, Zb and Za are independent.

Let us now turn to the processes Bη,ℓ,(n), Aη,ℓ,(n) corresponding to the price dynamics
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of the large price changes. First, note that their joint jump measure is given by

µη,(n)([0, t], dx, dy)

:=
⌊t/∆t(n)⌋∑︂
k=1

⎡⎣1{︂⃓⃓⃓
δB

(n)
k

⃓⃓⃓
>δn

}︂ε(δB(n)
k

,0)(dx, dy) + 1{︂⃓⃓⃓
δA

(n)
k

⃓⃓⃓
>δn

}︂ε(0,δA(n)
k

)(dx, dy)

⎤⎦
for all t ∈ [0, T ], since A and C events do not occur simultaneously. Setting for all
t ∈ [0, T ],

µ
η,(n)
b ([0, t], dx) := µη,(n)([0, t], dx, {0}), µη,(n)

a ([0, t], dy) := µη,(n)([0, t], {0}, dy),

we can rewrite Bη,ℓ,(n) and Aη,ℓ,(n) as

Bη,ℓ,(n)(t) =
∫︂
R
x µ

η,(n)
b ([0, t], dx) and Aη,ℓ,(n)(t) =

∫︂
R
y µη,(n)

a ([0, t], dy)

for all t ∈ [0, T ]. Then the compensator νη,(n) of µη,(n) is given by

νη,(n)([0, t], dx, dy)

:=
⌊t/∆t(n)⌋∑︂
k=1

[︂
∆t(n)K

(n)
b

(︂
S

(n)
k−1, dx

)︂
ε0(dy) + ∆t(n)K(n)

a

(︂
S

(n)
k−1, dy

)︂
ε0(dx)

]︂
for t ∈ [0, T ]. Similarly equation (1.2.10) in Assumption 1.6 will be our starting point to
construct a sequence of discrete-time integrators, which converges to a limit independent
of the order book dynamics. Given the finite measures Qb, Qa introduced in Assumption
1.6, for technical convenience we assume for all n ∈ N the existence of two independent,
homogeneous Poisson random measures µQ,(n)

I , on B(n), for I = b, a, with intensity
measures QI , I = b, a. For all n ∈ N we now consider the random jump measure

µJ
(n) (dt, dx, dy) := µJ

(n)
b (dt, dx) ε0(dy) + µJ

(n)
a (dt, dy) ε0(dx),

where for I = b, a, t ∈ [0, T ], and A ∈ B([−M,M ]) we define

µJ
(n)
I ([0, t], A) :=

⌊t/∆t(n)⌋∑︂
k=1

∑︂
j: x(n)

j ∈A

µ
η,(n)
I

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
,
{︂
θ

(n)
I

(︁
S

(n)
k−1, x

(n)
j

)︁}︂ )︂

+
⌊t/∆t(n)⌋∑︂
k=1

∑︂
j: x(n)

j ∈A

µ
Q,(n)
I

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
,
[︂
x

(n)
j , x

(n)
j+1

)︂)︂
1{︂

θ
(n)
I

(︁
S

(n)
k−1,x

(n)
j

)︁
=0
}︂.

(1.5.4)

Then the compensator of µJ(n) is given by

νJ
(n) (dt, dx, dy) := νJ

(n)
b (dt, dx) ε0(dy) + νJ

(n)
a (dt, dy) ε0(dx),
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with

νJ
(n)

I ([0, t], A) :=
⌊t/∆t(n)⌋∑︂
k=1

∑︂
j: x(n)

j ∈A

ν
η,(n)
I

(︂ [︂
t
(n)
k , t

(n)
k+1

)︂
,
{︂
θ

(n)
I

(︂
S

(n)
k−1, x

(n)
j

)︂}︂)︂

+
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)∑︂
j

1{︂
θ

(n)
I (S(n)

k−1,x
(n)
j )=0

}︂QI(︂ [︂x(n)
j , x

(n)
j+1

)︂ )︂ (1.5.5)

being the compensator of µJ(n)
I for I = b, a and (t, A) ∈ [0, T ] × B([−M,M ]). Here,

ν
η,(n)
I denotes the compensator of µη,(n)

I for I = b, a. Now, as stated in Lemma 1.5.4
below, we found a representation of Bη,ℓ,(n), Aη,ℓ,(n) in terms of the coefficient functions
θ

(n)
b , θ

(n)
a introduced in Assumption 1.6 and the random jump measures µJ(n)

b , µJ
(n)
a

introduced in (1.5.4).

Lemma 1.5.4. Let Assumptions 1.4 and 1.6 hold. Then,

Bη,ℓ,(n)(t) =
∫︂ t

0

∫︂
[−M,M ]

θ
(n)
b (η(n)(u−), y)µJ(n)

b (du, dy) a.s.

Aη,ℓ,(n)(t) =
∫︂ t

0

∫︂
[−M,M ]

θ(n)
a (η(n)(u−), y)µJ(n)

a (du, dy) a.s.
(1.5.6)

For all n ∈ N, we construct a stochastic processX(n), indexed by [0, T ]×Cb([−M,M ]2),
in the following way: for all t ∈ [0, T ], g ∈ Cb([−M,M ]2), I = b, a, we set

X(n)(t, g) :=
∫︂

[−M,M ]2
g(x, y)µJ(n)([0, t], dx, dy). (1.5.7)

The following theorem proves the convergence of the (X(n))n∈N and thereby shows that
the sequences (µJ(n)

I )n∈N, I = b, a, converge to two independent, homogeneous Poisson
random measures.

Theorem 1.5.5. Assume that Assumptions 1.4 and 1.6 are satisfied. Then for any
m ∈ N and any g1, · · · , gm ∈ Cb([−M,M ]2) it holds that(︂

X(n)(·, g1), · · · , X(n)(·, gm)
)︂

⇒ (X(·, g1), · · · , X(·, gm)) (1.5.8)

in D(Rm; [0, T ]) with

X(t, g) :=
∫︂

[−M,M ]2
g(x, 0)µQb ([0, t], dx) + g(0, y)µQa ([0, t], dy),

for g ∈ Cb([−M,M ]2), t ∈ [0, T ], where µQI , I = b, a, are independent, homogeneous
Poisson random measures with intensity measures given by λ×QI , I = b, a, respectively.

48



1.5. PROOF SKETCH OF THE MAIN THEOREM

Remark 1.5.6. The processes X(n), n ∈ N, and X can be interpreted as semimartingale
random measures: we can define for any A ∈ B([−M,M ]2) and t ∈ [0, T ], X(t, A) :=
X(t,1A) = µQ([0, t], A). Then X is a semimartingale random measure in the sense of
Kurtz and Protter (cf. Section 2 in [58]), indexed by [0, T ] × B([−M,M ]2).

Now, let us turn to the time and volume dynamics τη,(n), vη,(n)
b , and v

η,(n)
a . First

note, that they can be rewritten for k = 0, . . . , Tn and x ∈ R as follows:

τ
(n)
k = ∆t(n)

k∑︂
j=1

φ(n)(S(n)
j−1) +R

(n)
φ,k,

v
(n)
b,k (x) = v

(n)
b,0

(︂
x−

(︂
B

(n)
k −B

(n)
0

)︂)︂
+ ∆v(n)

k∑︂
j=1

f
(n)
b

[︂
S

(n)
j−1

]︂ (︂
x−

(︂
B

(n)
k −B

(n)
j−1

)︂)︂
+R

(n)
b,k (x),

v
(n)
a,k (x) = v

(n)
a,0

(︂
x+A

(n)
k −A

(n)
0

)︂
+ ∆v(n)

k∑︂
j=1

f (n)
a

[︂
S

(n)
j−1

]︂ (︂
x+A

(n)
k −A

(n)
j−1

)︂
+R

(n)
a,k(x),

where

R
(n)
b,k (x) := ∆v(n)

k∑︂
j=1

(︂
M

(n)
b,j − f

(n)
b [S(n)

j−1]
)︂ (︂
x−

(︂
B

(n)
k −B

(n)
j−1

)︂)︂
,

R
(n)
a,k(x) := ∆v(n)

k∑︂
j=1

(︂
M

(n)
a,j − f (n)

a [S(n)
j−1]

)︂ (︂
x+A

(n)
k −A

(n)
j−1

)︂
,

(1.5.9)

and

R
(n)
φ,k := ∆t(n)

k∑︂
j=1

(︂
φ

(n)
j − φ(n)(S(n)

j−1)
)︂
. (1.5.10)

Let us denote R(n)
I (t) := R

(n)
I,k , I = b, a, φ, if t(n)

k ⩽ t < t
(n)
k+1. According to the next

proposition, the random fluctuations of the time and volume dynamics vanish in the
high-frequency limit.

Proposition 1.5.7. Under Assumptions 1.2, 1.3, and 1.7, we have

E
[︄

sup
k⩽Tn

⃓⃓⃓
R

(n)
φ,k

⃓⃓⃓2]︄
→ 0 and E

[︄
sup
k⩽Tn

⃦⃦⃦
R

(n)
I,k

⃦⃦⃦2

L2

]︄
→ 0 for I = b, a.

In particular, the L2(R)–valued processes R(n)
I = (R(n)

I (t))t∈[0,T ], I = b, a, and the
[0, T ]–valued process R(n)

φ = (R(n)
φ (t))t∈[0,T ] converge weakly in the Skorokhod topology

to the zero process.
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Altogether, we can write the microscopic LOB-dynamics as a stochastic difference
equation, i.e., for all x ∈ R and k = 0, . . . , Tn,

B
(n)
k = B

(n)
0 +

k∑︂
j=1

(︄
p

(n)
b (S(n)

j−1)∆t(n) + r
(n)
b (S(n)

j−1)δZ(n)
b,j

+
∫︂ M

−M
θ

(n)
b (S(n)

j−1, y)µJ(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

v
(n)
b,k (x) = v

(n)
b,0

(︂
x−

(︂
B

(n)
k −B

(n)
0

)︂)︂
+ ∆v(n)

k∑︂
j=1

f
(n)
b

[︂
S

(n)
j−1

]︂ (︂
x−

(︂
B

(n)
k −B

(n)
j−1

)︂)︂
+R

(n)
b,k (x),

A
(n)
k = A

(n)
0 +

k∑︂
j=1

(︄
p(n)
a (S(n)

j−1)∆t(n) + r(n)
a (S(n)

j−1)δZ(n)
a,j

+
∫︂ M

−M
θ(n)
a (S(n)

j−1, y)µJ(n)
a

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

v
(n)
a,k (x) = v

(n)
a,0

(︂
x+A

(n)
k −A

(n)
0

)︂
+ ∆v(n)

k∑︂
j=1

f (n)
a

[︂
S

(n)
j−1

]︂ (︂
x+A

(n)
k −A

(n)
j−1

)︂
+R

(n)
a,k(x),

τ
(n)
k = ∆t(n)

k∑︂
j=1

φ(n)(S(n)
j−1) +R

(n)
φ,k,

and we have shown in Proposition 1.5.3, Proposition 1.5.5, and Proposition 1.5.7 that its
integrators converge to limit processes that do not depend on the order book dynamics.

Step 3: A first approximation of the microscopic state process η(n)

Proposition 1.5.7 suggests, that the fluctuations of the time and volume dynamics vanish
in the high-frequency limit. Based on this observation, we introduce a new sequence
( ˜︁S(n)
k )k⩾0 of order book models in which the random innovations M (n)

I,k , k ∈ N, are
replaced by the approximations fI [ ˜︁S(n)

k−1], k ∈ N, and v
(n)
I,0 is replaced by its limit vI,0,

for both I = b, a. Moreover, each φ
(n)
k is replaced by the approximation φ( ˜︁S(n)

k−1) and
we replace ∆v(n) by ∆t(n) as they are of the same order by Assumption 1.7. Therefore,
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we define ˜︁S(n)
k = ( ˜︁B(n)

k , ˜︁v(n)
b,k ,

˜︁A(n)
k , ˜︁v(n)

a,k , ˜︁τ (n)
k ) for k = 0, . . . , Tn as

˜︁B(n)
k = B

(n)
0 +

k∑︂
j=1

(︄
p

(n)
b

(︂ ˜︁S(n)
j−1

)︂
∆t(n) + r

(n)
b

(︂ ˜︁S(n)
j−1

)︂
δZ

(n)
b,j

+
∫︂ M

−M
θ

(n)
b

(︂ ˜︁S(n)
j−1, y

)︂
µJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

˜︁v(n)
b,k (x) = vb,0

(︂
x−

(︂ ˜︁B(n)
k −B

(n)
0

)︂)︂
+

k∑︂
j=1

fb
[︂ ˜︁S(n)

j−1

]︂ (︂
x−

(︂ ˜︁B(n)
k − ˜︁B(n)

j−1

)︂)︂
∆t(n),

˜︁A(n)
k = A

(n)
0 +

k∑︂
j=1

(︄
p(n)
a

(︂ ˜︁S(n)
j−1

)︂
∆t(n) + r(n)

a

(︂ ˜︁S(n)
j−1

)︂
δZ

(n)
a,j

+
∫︂ M

−M
θ(n)
a

(︂ ˜︁S(n)
j−1, y

)︂
µJ

(n)
a

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

˜︁v(n)
a,k (x) = va,0

(︂
x+ ˜︁A(n)

k −A
(n)
0

)︂
+

k∑︂
j=1

fa
[︂ ˜︁S(n)

j−1

]︂ (︂
x+ ˜︁A(n)

k − ˜︁A(n)
j−1

)︂
∆t(n),

˜︁τ (n)
k =

k∑︂
j=1

φ
(︂ ˜︁S(n)

j−1

)︂
∆t(n).

For all n ∈ N, we denote ˜︁η(n)(t) := ˜︁S(n)
k , if t(n)

k ⩽ t < t
(n)
k+1. The next proposition

states that the interpolated state process η(n) is approximately equal to ˜︁η(n) as n → ∞.

Proposition 1.5.8. If Assumptions 1.1–1.7 are satisfied, then

E
[︄

sup
k⩽Tn

⃦⃦⃦
S

(n)
k − ˜︁S(n)

k

⃦⃦⃦2

E

]︄
→ 0.

In particular, the process η(n) − ˜︁η(n) converges weakly in the Skorokhod topology to the
zero process.

Step 4: Limit theorem for the state process with respect to absolute volumes

Note that the dynamics of ˜︁v(n)
b and ˜︁v(n)

a defined above are not given in standard
semimartingale form due to the time dependent shift in the x-variable. This prevents us
from directly applying convergence results for infinite dimensional semimartingales. To
overcome this issue, we first prove an intermediate convergence result for the discrete-
time order book sequence with respect to absolute volumes. Therefore, let us define
the approximated absolute volume dynamics

˜︁u(n)
b,k (x) := ˜︁v(n)

b,k

(︂
−x+ ˜︁B(n)

k

)︂
, ˜︁u(n)

a,k(x) := ˜︁v(n)
a,k

(︂
x− ˜︁A(n)

k

)︂
, k = 0, · · · , Tn. (1.5.11)
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Then we introduce ˜︁S(n),abs
k = ( ˜︁B(n)

k , ˜︁u(n)
b,k ,

˜︁A(n)
k , ˜︁u(n)

a,k , ˜︁τ (n)
k ), k = 0, · · · , Tn, and note that

a priori the coefficient functions in the dynamics of ˜︁S(n),abs are still functions of ˜︁S(n) and
hence in particular of the approximated relative volume dynamics ˜︁v(n)

b and ˜︁v(n)
a . For this

reason, we introduce a shift operator ψ : E → E such that for all s = (b, v, a, w, t) ∈ E,

ψ(s) := (b, v(−(· − b)), a, w(· − a), t) .

Then, ψ( ˜︁S(n),abs
k ) = ˜︁S(n)

k for all k = 0, · · · , Tn and we can rewrite the dynamics of˜︁S(n),abs in such a way that all coefficient functions directly depend on ˜︁S(n),abs:

˜︁B(n)
k = B

(n)
0 +

k∑︂
j=1

(︄
p

(n)
b

(︂
ψ( ˜︁S(n),abs

j−1 )
)︂

∆t(n) + r
(n)
b

(︂
ψ( ˜︁S(n),abs

j−1 )
)︂
δZ

(n)
b,j

+
∫︂

[−M,M ]
θ

(n)
b

(︂
ψ( ˜︁S(n),abs

j−1 ), y
)︂
µJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

˜︁u(n)
b,k (x) = v0(−x+B

(n)
0 ) +

k∑︂
j=1

fb
[︂
ψ( ˜︁S(n),abs

j−1 )
]︂

(−x+ ˜︁B(n)
j−1)∆t(n),

˜︁A(n)
k = A

(n)
0 +

k∑︂
j=1

(︄
p(n)
a

(︂
ψ( ˜︁S(n),abs

j−1 )
)︂

∆t(n) + r(n)
a

(︂
ψ( ˜︁S(n),abs

j−1 )
)︂
δZ

(n)
a,j

+
∫︂

[−M,M ]
θ(n)
a

(︂
ψ( ˜︁S(n),abs

j−1 ), y
)︂
µJ

(n)
a

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

˜︁u(n)
a,k(x) = v0(x−A

(n)
0 ) +

k∑︂
j=1

fa
[︂
ψ( ˜︁S(n),abs

j−1 )
]︂

(x− ˜︁A(n)
j−1)∆t(n),

˜︁τ (n)
k =

k∑︂
j=1

φ
(︂
ψ( ˜︁S(n),abs

j−1 )
)︂

∆t(n).

For all n ∈ N, we define its piecewise constant interpolation as ˜︁η(n),abs(t) := ˜︁S(n),abs
k ,

if t(n)
k ⩽ t < t

(n)
k+1, for t ∈ [0, T ]. Now the following theorem shows the convergence of˜︁η(n),abs. The proof is an application of the results in Kurtz and Protter [58].
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Theorem 1.5.9. Let Assumptions 1.1-1.7 be satisfied. Then the interpolation of
the approximated LOB-dynamics with respect to the absolute volume density function˜︁η(n),abs converges weakly in the Skorokhod topology to ηabs = (Bη, uηb , A

η, uηa, τ
η) being

the unique strong solution to the coupled SDE system:

Bη(t) = B0 +
∫︂ t

0
pb
(︂
ψ(ηabs(u))

)︂
du+

∫︂ t

0
rb
(︂
ψ(ηabs(u))

)︂
dZb(u)

+
∫︂ t

0

∫︂
[−M,M ]

θb
(︂
ψ(ηabs(u−)), y

)︂
µQb (du, dy),

uηb (t, x) = vb,0(−x+B0) +
∫︂ t

0
fb
[︂
ψ(ηabs(u))

]︂
(−x+Bη(u)) du,

Aη(t) = A0 +
∫︂ t

0
pa
(︂
ψ(ηabs(u))

)︂
du+

∫︂ t

0
ra
(︂
ψ(ηabs(u))

)︂
dZa(u)

+
∫︂ t

0

∫︂
[−M,M ]

θa
(︂
ψ(ηabs(u−)), y

)︂
µQa (du, dy),

uηa(t, x) = va,0(x−A0) +
∫︂ t

0
fa
[︂
ψ(ηabs(u))

]︂
(x−Aη(u)) du,

τη(t) :=
∫︂ t

0
φ(ψ(ηabs(u)))du

(1.5.12)

for all (t, x) ∈ [0, T ]×R, where Zb, Za are two independent, standard Brownian motions
and µQb , µQa are two independent, homogeneous Poisson random measures with intensity
measures λ×Qb and λ×Qa, respectively, independent of Zb and Za.

Step 5: End of the proof

With a slight abuse of notation, by the Skorokhod representation theorem we may
assume that ˜︁η(n),abs converges almost surely in the Skorokhod topology to ηabs. Hence,
there exists a sequence of continuous, strictly increasing functions γn : [0, T ] → [0, T ]
with supt∈[0,T ] |γn(t) − t| → 0 such that

sup
t∈[0,T ]

⃦⃦⃦˜︁η(n),abs(γn(t)) − ηabs(t)
⃦⃦⃦
E

→ 0 a.s. (1.5.13)

Then, we have

sup
t∈[0,T ]

⃦⃦⃦
ψ
(︂˜︁η(n),abs(γn(t))

)︂
− ψ(ηabs(t))

⃦⃦⃦
E

⩽ sup
t∈[0,T ]

{︂ ⃓⃓⃓ ˜︁B(n)(γn(t)) −Bη(t)
⃓⃓⃓
+
⃓⃓⃓ ˜︁A(n)(γn(t)) −Aη(t)

⃓⃓⃓
+
⃦⃦⃦˜︁u(n)

b

(︂
γn(t),−(· − ˜︁B(n)(γn(t)))

)︂
− uηb (t,−(· −Bη(t)))

⃦⃦⃦
L2

+
⃦⃦⃦˜︁u(n)

a

(︂
γn(t), · − ˜︁A(n)(γn(t))

)︂
− uηa(t, · −Aη(t))

⃦⃦⃦
L2

+
⃓⃓⃓˜︁τ (n)(γn(t)) − τη(t)

⃓⃓⃓ }︂
.

(1.5.14)
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Applying Assumptions 1.1 and 1.3 iii), observe that for any x, ˜︁x and I = b, a, we have

∥uηI (t, · + x) − uηI (t, · + ˜︁x)∥L2

⩽ ∥vI,0(· + x) − vI,0(· + ˜︁x)∥L2

+
∫︂ t

0

⃦⃦⃦
fI [ψ(ηabs(u))](· + x) − fI [ψ(ηabs(u))](· + ˜︁x)

⃦⃦⃦
L2
du

⩽ L|x− ˜︁x| + T sup
s∈E

∥fI [s](· + x) − fI [s](· + ˜︁x)∥L2

⩽ L(1 + T )|x− ˜︁x|

(1.5.15)

and note that a similar estimate also holds true for ˜︁u(n)
I , I = b, a. Hence, we can bound⃦⃦⃦˜︁u(n)

b

(︂
γn(t),−(· − ˜︁B(n)(γn(t)))

)︂
− uηb (t,−(· −Bη(t)))

⃦⃦⃦
L2

⩽
⃦⃦⃦˜︁u(n)

b (γn(t), ·) − uηb (t, ·)
⃦⃦⃦
L2

+
⃦⃦⃦
uηb

(︂
t,−(· − ˜︁B(n)(γn(t)))

)︂
− uηb (t,−(· −Bη(t)))

⃦⃦⃦
L2

⩽
⃦⃦⃦˜︁u(n)

b (γn(t), ·) − uηb (t, ·)
⃦⃦⃦
L2

+ L(1 + T )
⃓⃓⃓ ˜︁B(n)(γn(t)) −Bη(t)

⃓⃓⃓
.

An analogous estimate holds for the ask side. Plugging these bounds into equation
(1.5.14) and applying (1.5.13), it follows that

sup
t∈[0,T ]

⃦⃦⃦
ψ
(︂˜︁η(n),abs(γn(t))

)︂
− ψ

(︂
ηabs(t)

)︂⃦⃦⃦
E

→ 0 a.s.

Hence, ˜︁η(n) = ψ(˜︁η(n),abs) ⇒ ψ(ηabs) =: η which solves (1.2.13). Therefore, Proposition
1.5.1 holds true. An application of Corollary 1.5.2 finishes the proof of Theorem 1.2.6.

1.6 Technical details
Proof of Corollary 1.5.2. According to Proposition 1.5.1, η(n) converges weakly in the
Skorokhod topology to η := (Bη, vηb , A

η, vηa , τ
η) being the unique strong solution of the

coupled diffusion-fluid system in (1.2.13). Since φ(n), φ are strictly positive, τη,(n), τη

are increasing (resp. strictly increasing) and therefore,

ζ(n)(t) = (τη,(n))−1(t) = inf{u > 0 : τη,(n)(u) > t} and ζ(t) = (τη)−1(t)

exist and are increasing. Moreover, ζ is continuous and even strictly increasing. By
Corollary 13.6.4 in Whitt [86], the inverse map is continuous at strictly increasing
functions. By the continuous mapping theorem we therefore conclude that (ζ(n), η(n)) ⇒
(ζ, η) in the Skorokhod topology. Especially, this proves i).

Since ζ is continuous and strictly increasing almost surely and since η is continuous
at time ζ(T ) almost surely, Theorem 3.1 in Whitt [85] yields the continuity of the
composition map in (ζ, η) in the Skorokhod topology. Hence, we can apply the continuous
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mapping theorem to conclude that

S(n),∗ = η(n) ◦ (ζ(n) − ∆t(n)) ⇒ η ◦ ζ =: S

in the Skorokhod topology, which proves ii).
Finally, it follows from Theorem 12.5 in [8] that τη,(n)(T ) converges weakly to τη(T )

and hence

P
[︄

sup
t∈[0,T ]

⃦⃦
S(n),∗(t) − S(n)(t)

⃦⃦
E
> 0

]︄
= P

[︂
τη,(n)(T ) > T

]︂
→ P [τη(T ) > T ] = 0,

since by Assumption 1.2 iii),

τη(T ) =
∫︂ T

0
φ(η(t))dt ⩽ T.

This proves iii).

Proof of Proposition 1.5.3. First note that for all n ∈ N, k ⩽ Tn,

∆x(n)
⃓⃓⃓
p

(n)
b (S(n)

k−1)
⃓⃓⃓

(︂
r

(n)
b (S(n)

k−1)
)︂2 =

∆x(n)
⃓⃓⃓⃓
⃓E
[︄
δB

(n)
k 1{︂

0<|δB(n)
k

|⩽δn

}︂⃓⃓⃓F (n)
k−1

]︄⃓⃓⃓⃓
⃓

E
[︄
(δB(n)

k )21{︂
0<|δB(n)

k
|⩽δn

}︂⃓⃓⃓F (n)
k−1

]︄ ⩽ 1 a.s.

Together with Assumption 1.4, this gives the bound

∆t(n)(p(n)
b (S(n)

k−1))2

(r(n)
b (S(n)

k−1))2
⩽

∆t(n)

∆x(n)

⃓⃓⃓
p

(n)
b (S(n)

k−1)
⃓⃓⃓
,

which converges to zero by Assumption 1.7. A similar bound holds for p(n)
a and r

(n)
a .

Hence, for all t ∈ [0, T ] and I = b, a,

⌊t/∆t(n)⌋∑︂
k=1

E
[︃(︂
δZ

(n)
k,I

)︂2 ⃓⃓
F (n)
k−1

]︃
=

⌊t/∆t(n)⌋∑︂
k=1

∆t(n)
(︂
r

(n)
I (S(n)

k−1)
)︂2

−
(︂
∆t(n)p

(n)
I (S(n)

k−1)
)︂2

(︂
r

(n)
I (S(n)

k−1)
)︂2

=
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)

⎛⎜⎝1 −
∆t(n)

(︂
p

(n)
I (S(n)

k−1)
)︂2

(︂
r

(n)
I (S(n)

k−1)
)︂2

⎞⎟⎠ → t.

Moreover, as A and C events do not occur simultaneously, we have for all t ∈ [0, T ],

⌊t/∆t(n)⌋∑︂
k=1

E
[︂
δZ

(n)
b,k δZ

(n)
a,k |F (n)

k−1

]︂
= −

⌊t/∆t(n)⌋∑︂
k=1

(∆t(n))2p
(n)
b (S(n)

k−1)p(n)
a (S(n)

k−1)
r

(n)
b (S(n)

k−1)r(n)
a (S(n)

k−1)
→ 0.
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Finally, we observe that for all ε > 0 and I = b, a,

⌊t/∆t(n)⌋∑︂
k=1

E
[︃
|δZ(n)

I,k |21{|δZ(n)
I,k

|>ε}

]︃
⩽

⌊t/∆t(n)⌋∑︂
k=1

E
[︃
|δZ(n)

I,k |21{︁ δn
ηn
>ε
}︁]︃

⩽
δn
εηn

⌊t/∆t(n)⌋∑︂
k=1

E|δZ(n)
I,k |2 ⩽

tδn
εηn

,

which converges to zero by Assumption 1.3 i). As (δZ(n)
b,k , δZ

(n)
a,k )k,n is a triangular

martingale difference array, we may conclude by the functional limit theorem that
(Z(n)

b , Z
(n)
a ) ⇒ (Zb, Za) in the Skorokhod topology, where Zb and Za are independent

Brownian motions.

Proof of Lemma 1.5.4. We state the proof for Bη,ℓ,(n). The definition of µJ(n)
b yields∫︂ t

0

∫︂
[−M,M ]

θ
(n)
b (η(n)(u−), y)µJ(n)

b (du, dy)

=
⌊t/∆t(n)⌋∑︂
k=1

∫︂
[−M,M ]

θ
(n)
b (S(n)

k−1, y) µJ(n)
b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
, dy

)︂
(1)=

⌊t/∆t(n)⌋∑︂
k=1

∑︂
j∈Z(n)

M

θ
(n)
b (S(n)

k−1, x
(n)
j )µη,(n)

b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
,
{︂
θ(n)(︁S(n)

k−1, x
(n)
j

)︁}︂)︂

(2)=
⌊t/∆t(n)⌋∑︂
k=1

∑︂
j∈Z

x
(n)
j µ

η,(n)
b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
,
{︂
x

(n)
j

}︂)︂
=
∫︂
R
y µ

η,(n)
b ([0, t], dy) = Bη,ℓ,(n)(t),

where in (1) we used the definition of µJ(n)
b noting that it only charges the grid points

x
(n)
j , j ∈ Z(n)

M , and in (2) we used Assumption 1.6 vi).

In order to prove the convergence of the driving jump measures to a limit independent
of the order book dynamics, we first need a technical result regarding the coefficient
function θ and its approximations θ(n). Note that this result has already been applied
in Section 1.4.

Lemma 1.6.1. Let Assumptions 1.6 i) and v) be satisfied. Then for all j ∈ Z(n)
M ,

I = b, a, and s ∈ E,

K
(n)
I

(︂
s,
{︁
θ

(n)
I (s, x(n)

j )
}︁)︂

= K
(n)
I

(︂
s, θI

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
.

Proof. Let I = b, a. First, suppose that K(n)
I

(︂
s,
{︁
θ

(n)
I (s, x(n)

j )
}︁)︂

> 0. We want to show
that in this case,

θ
(n)
I (s, x(n)

j ) ∈ θI
(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂ )︂
. (1.6.1)
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In fact, by definition

θ
(n)
I (s, x(n)

j ) ∈
[︂
θI(s, x(n)

j ), θI(s, x(n)
j ) + ∆x(n)

)︂
.

Suppose that θI(s, x(n)
j+1) < θI(s, x(n)

j ) + ∆x(n) (otherwise, the relation in (1.6.1) is
already satisfied). Then,

θ
(n)
I (s, x(n)

j+1) =

⎡⎢⎢⎢θI(s, x
(n)
j+1)

∆x(n)

⎤⎥⎥⎥∆x(n) ⩽

⎡⎢⎢⎢θI(s, x
(n)
j ) + ∆x(n)

∆x(n)

⎤⎥⎥⎥∆x(n) = θ
(n)
I (s, x(n)

j )+∆x(n).

By Assumption 1.6 v), we must have equality in the above line, which implies that

θI(s, x(n)
j+1) > θ

(n)
I (s, x(n)

j ).

Hence, (1.6.1) is satisfied. Second, suppose that there exists x ∈
[︂
x

(n)
j , x

(n)
j+1

)︂
with

θI(s, x) ∈ ∆x(n)Z and K
(n)
I (s, θ(s, x)) > 0. Then by Assumption 1.6 v) there exists

i ∈ N with θI(s, x) = θ
(n)
I (s, x(n)

i ). By strict monotonicity of θI (cf. Assumption 1.6 i))
we have

θ
(n)
I (s, x(n)

j ) =

⎡⎢⎢⎢θI(s, x
(n)
j )

∆x(n)

⎤⎥⎥⎥∆x(n) ⩽
⌈︃
θI(s, x)
∆x(n)

⌉︃
∆x(n) = θI(s, x)

and

θ(s, x) =
⌈︃
θI(s, x)
∆x(n)

⌉︃
· ∆x(n) <

⎡⎢⎢⎢θI(s, x
(n)
j+1)

∆x(n)

⎤⎥⎥⎥ · ∆x(n) = θ
(n)
I (s, x(n)

j+1).

Hence, we must have i = j, i.e., θI(s, x) = θ
(n)
I (s, x(n)

j ).

Proof of Theorem 1.5.5. From (1.5.5) we have for all g ∈ Cb([−M,M ]), t ∈ [0, T ], and
I = b, a,

∫︂
[−M,M ]

g(y)νJ(n)
I ([0, t], dy) =

⌊t/∆t(n)⌋∑︂
k=1

∆t(n) ∑︂
j∈Z(n)

M

g(x(n)
j )K(n)

I

(︂
S

(n)
k−1,

{︂
θ

(n)
I

(︂
S

(n)
k−1, x

(n)
j

)︂}︂)︂

+
⌊t/∆t(n)⌋∑︂
k=1

∆t(n) ∑︂
j∈Z(n)

M

g(x(n)
j )1{︂

θ
(n)
I (S(n)

k−1,x
(n)
j )=0

}︂QI(︂ [︂x(n)
j , x

(n)
j+1

)︂ )︂
.
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First, from Lemma 1.6.1 we see that

⌊t/∆t(n)⌋∑︂
k=1

∆t(n) ∑︂
j∈Z(n)

M

g(x(n)
j )K(n)

I

(︂
S

(n)
k−1,

{︂
θ

(n)
I

(︂
S

(n)
k−1, x

(n)
j

)︂}︂)︂

=
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)∑︂
j

g(x(n)
j )K(n)

I

(︂
S

(n)
k−1, θI

(︂
S

(n)
k−1,

[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
.

Next, we bound

I(1)
n :=

⌊t/∆t(n)⌋∑︂
k=1

∆t(n)∑︂
j

g(x(n)
j )

[︂
K

(n)
I

(︂
S

(n)
k−1, θI

(︂
S

(n)
k−1,

[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
−KI

(︂
S

(n)
k−1, θI

(︂
S

(n)
k−1,

[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂]︂
by

|I(1)
n | ⩽ t · ∥g∥∞ · sup

s∈E

∑︂
j

⃓⃓⃓
K

(n)
I

(︂
s, θI

(︂
s,
[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
−KI

(︂
s, θI

(︂
s,
[︂
x

(n)
j−1, x

(n)
j

)︂ )︂)︂⃓⃓⃓
,

which converges to zero by Assumption 1.6 iii). Moreover, we note that also

I(2)
n :=

⌊t/∆t(n)⌋∑︂
k=1

∆t(n) ∑︂
j∈Z(n)

M

g(x(n)
j )

∫︂ x
(n)
j+1

x
(n)
j

⎛⎝1{︂
θ

(n)
I (S(n)

k−1,x
(n)
j )=0

}︂ − 1{︂
θI(S(n)

k−1,x)=0
}︂⎞⎠QI(dx)

goes to zero by Assumption 1.6 vi). Therefore,∫︂
[−M,M ]

g(y)νJ(n)
I ([0, t], dy)

=
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)∑︂
j

g(x(n)
j )

[︂
KI

(︂
S

(n)
k−1, θI

(︂
S

(n)
k−1,

[︂
x

(n)
j , x

(n)
j+1

)︂ )︂)︂
+QI

(︂{︂
x ∈

[︂
x

(n)
j , x

(n)
j+1

)︂
: θI

(︂
S

(n)
k−1, x

)︂
= 0

}︂)︂ ]︂
+ I(1)

n + I(2)
n

(1)=
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)∑︂
j

g(x(n)
j )QI

(︂[︂
x

(n)
j , x

(n)
j+1

)︂)︂
+ I(1)

n + I(2)
n → t

∫︂
[−M,M ]

g(y)QI(dy),

where in (1) we used Assumption 1.6 ii). By the definition of the measure µJ(n) we
then also have∫︂

[−M,M ]2
g(x, y)νJ(n)([0, t], dx, dy) → t

∫︂
[−M,M ]2

g(x, y) [Qb(dx)ε0(dy) +Qa(dy)ε0(dx)] .
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As a Poisson random measure is uniquely determined by its intensity measure we
conclude by Theorem 2.6 in [58] that for any g1, · · · , gm ∈ Cb([−M,M ]2),(︂

X(n)(·, g1), · · · , X(n)(·, gm)
)︂

⇒ (X(·, g1), · · · , X(·, gm))

in D(Rm; [0, T ]) with

X(t, g) :=
∫︂

[−M,M ]2
g(x, y)

[︂
µQb ([0, t], dx)ε0(dy) + µQa ([0, t], dy)ε0(dx)

]︂
,

where µQI , I = b, a, are two independent Poisson random measures with intensity
measure λ×QI for I = b, a, respectively.

Remark 1.6.2. Carefully inspecting the above proof, we see that we have actually
shown for I = b, a the almost sure estimate⃓⃓⃓⃓
⃓⃓⃓∫︂ M

−M
g(y)νJ(n)

I

(︂ [︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂
− ∆t(n) ∑︂

j∈Z(n)
M

g(x(n)
j )QI

(︂ [︂
x

(n)
j , x

(n)
j+1

)︂ )︂⃓⃓⃓⃓⃓⃓⃓ = o
(︂
∥g∥∞∆t(n)

)︂
,

which will be used later in the proof of Proposition 1.5.8 (cf. Section 1.6.1) and Section
1.6.4.

The following technical lemma is used in the subsequent proof of Proposition 1.5.7
and provides an estimate for Hilbert space valued, discrete-time martingales. It is a
direct consequence of Theorem 6.1 in [71]:

Lemma 1.6.3. Let H be a Hilbert space. Then there exists a constant C > 0 such that
for every H-valued, discrete-time martingale X with X0 = 0, we have

E
(︄

sup
i⩾1

∥Xi∥2
H

)︄
⩽ CE

[︄ ∞∑︂
i=1

∥Xi −Xi−1∥2
H

]︄
.

Proof of Proposition 1.5.7. First, we observe that

⃦⃦⃦
R

(n)
b,k

⃦⃦⃦
L2

=

⃦⃦⃦⃦
⃦⃦∆v(n)

k∑︂
j=1

(︂
M

(n)
b,j − f

(n)
b [S(n)

j−1]
)︂

(· +B
(n)
j−1)

⃦⃦⃦⃦
⃦⃦
L2

=:
⃦⃦⃦ ˜︁R(n)

b,k

⃦⃦⃦
L2
.

Therefore, it is enough to prove the result for
(︂ ˜︁R(n)

b,k

)︂
k⩾0

. By Assumption 1.3 ii), this
sequence is a martingale with values in L2(R), since for all x ∈ R,

E
[︂(︂ ˜︁R(n)

b,k − ˜︁R(n)
b,k−1

)︂
(x)
⃓⃓⃓
F (n)
k−1

]︂
=E

[︂
∆v(n)

(︂
M

(n)
b,k − f

(n)
b [S(n)

k−1]
)︂
(x+B

(n)
k−1)

⃓⃓⃓
F (n)
k−1

]︂
= 0 a.s.

Applying Lemma 1.6.3 as well as Assumptions 1.3 i) and 1.7, there exists C > 0 such
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that

E
[︄

sup
k⩽Tn

∥ ˜︁R(n)
b,k ∥2

L2

]︄
⩽ CE

[︄
Tn∑︂
k=1

∥ ˜︁R(n)
b,k − ˜︁R(n)

b,k−1∥2
L2

]︄

= CE
[︄
Tn∑︂
k=1

⃦⃦⃦
∆v(n)

(︂
M

(n)
b,k − f

(n)
b [S(n)

k−1]
)︂⃦⃦⃦2

L2

]︄
⩽ CTn(∆v(n))2 sup

k⩽Tn

E
[︂⃦⃦⃦

(M (n)
b,k )2

⃦⃦⃦
L1

]︂
⩽ CT

(∆v(n))2

(∆t(n))2
∆t(n)

∆x(n) sup
k⩽Tn

E
[︂
(ω(n)
k )2

]︂
→ 0.

Hence,E
[︂
supk⩽Tn

∥R(n)
b,k ∥2

L2

]︂
→ 0. Analogously, one can show that E

[︂
supk⩽Tn

∥R(n)
a,k∥2

L2

]︂
→ 0. Next, observe that also

R
(n)
φ,k := ∆t(n)

k∑︂
j=1

(︂
φ

(n)
j − φ(n)(S(n)

j−1)
)︂

defines a martingale and by Lemma 1.6.3 we have

E
[︄

sup
k⩽Tn

⃓⃓⃓
R

(n)
φ,k

⃓⃓⃓2]︄
⩽ CE

[︄
Tn∑︂
k=1

⃓⃓⃓
R

(n)
φ,k −R

(n)
φ,k−1

⃓⃓⃓2]︄

= CE
[︄
Tn∑︂
k=1

⃓⃓⃓
∆t(n)

(︂
φ

(n)
k − φ(n)(S(n)

k−1)
)︂⃓⃓⃓2]︄

⩽ CT∆t(n) sup
k⩽Tn

E
[︃(︂
φ

(n)
k

)︂2
]︃

→ 0,

where we applied Assumption 1.2 i).

1.6.1 Proof of Proposition 1.5.8
In order to prove the claim, we will introduce two further candidates for approximations
of (S(n)

k )k⩾0 – namely (S(n)
k )k⩾0 and (Ŝ(n)

k )k⩾0. We define S(n)
k = (B(n)

k , v
(n)
b,k , A

(n)
k , v

(n)
a,k ,

τ
(n)
k ) for k = 0, . . . , Tn as

B
(n)
k := B

(n)
k , A

(n)
k := A

(n)
k , τ

(n)
k :=

k∑︂
j=1

φ(S(n)
j−1)∆t(n)
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v
(n)
b,k (x) := vb,0

(︂
x−

(︂
B

(n)
k −B

(n)
0

)︂)︂
+

k∑︂
j=1

fb
[︂
S

(n)
j−1

]︂ (︂
x−

(︂
B

(n)
k −B

(n)
j−1

)︂)︂
∆t(n),

v
(n)
a,k(x) := va,0

(︂
x+

(︂
A

(n)
k −A

(n)
0

)︂)︂
+

k∑︂
j=1

fa
[︂
S

(n)
j−1

]︂ (︂
x+

(︂
A

(n)
k −A

(n)
j−1

)︂)︂
∆t(n).

Note that the coefficient functions in the dynamics of S(n)
k still depend on the original

LOB sequence. In the second approximation Ŝ
(n)
k = (B̂(n)

k , v̂
(n)
b,k , Â

(n)
k , v̂

(n)
a,k , τ̂

(n)
k ), k =

0, · · · , Tn, the diffusion coefficient and the coefficient of the compensated jumps depend
on the approximated LOB-dynamics ( ˜︁S(n)

k )k⩾0, whereas all other coefficients still depend
on the original LOB sequence, i.e., for k = 0, . . . , Tn,

B̂
(n)
k := B

(n)
0 +

k∑︂
j=1

(︄
p

(n)
b

(︂
S

(n)
j−1

)︂
∆t(n) + r

(n)
b

(︂ ˜︁S(n)
j−1

)︂
δZ

(n)
b,j

+
∫︂

[−M,M ]
θ

(n)
b

(︂ ˜︁S(n)
j−1, y

)︂ (︂
µJ

(n)
b − νJ

(n)
b

)︂ (︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂
+
∫︂

[−M,M ]
θ

(n)
b

(︂
S

(n)
j−1, y

)︂
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

v̂
(n)
b,k (x) := vb,0

(︂
x−

(︂
B̂

(n)
k −B

(n)
0

)︂)︂
+

k∑︂
j=1

fb
[︂
S

(n)
j−1

]︂ (︂
x−

(︂
B̂

(n)
k − B̂

(n)
j−1

)︂)︂
∆t(n),

Â
(n)
k := A

(n)
0 +

k∑︂
j=1

(︄
p(n)
a

(︂
S

(n)
j−1

)︂
∆t(n) + r(n)

a

(︂ ˜︁S(n)
j−1

)︂
δZ

(n)
a,j

+
∫︂

[−M,M ]
θ(n)
a

(︂ ˜︁S(n)
j−1, y

)︂ (︂
µJ

(n)
a − νJ

(n)
a

)︂ (︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂
+
∫︂

[−M,M ]
θ(n)
a

(︂
S

(n)
j−1, y

)︂
νJ

(n)
a

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄
,

v̂
(n)
a,k (x) := va,0

(︂
x+

(︂
Â

(n)
k −A

(n)
0

)︂)︂
+

k∑︂
j=1

fa
[︂
S

(n)
j−1

]︂ (︂
x+

(︂
Â

(n)
k − Â

(n)
j−1

)︂)︂
∆t(n),

τ̂
(n)
k := τ

(n)
k .

In what follows, let (an)n∈N be a deterministic null sequence possibly changing from
line to line. Further, we write A ≲ B if A ⩽ CB for some deterministic constant C > 0.
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Step 1: We prove that (S(n)
k )k⩾0 is indeed an approximation for (S(n)

k )k⩾0. Applying
Proposition 1.5.7 as well as Assumptions 1.1, 1.2, 1.3 iii), and 1.7, we see that

E
[︄

sup
k⩽Tn

⃦⃦⃦
S

(n)
k − S

(n)
k

⃦⃦⃦2

E

]︄
⩽ 4∥v(n)

b,0 − vb,0∥2
L2

+ 4E
[︄

sup
k⩽Tn

⃦⃦⃦ k∑︂
j=1

(︂
fb[S(n)

j−1] − f
(n)
b [S(n)

j−1]
)︂

∆v(n)
⃦⃦⃦2

L2

]︄
+ 4E

[︄
sup
k⩽Tn

⃦⃦⃦
R

(n)
b,k

⃦⃦⃦2

L2

]︄

+ 4∥v(n)
a,0 − va,0∥2

L2

+ 4E
[︄

sup
k⩽Tn

⃦⃦⃦ k∑︂
j=1

(︂
fa[S(n)

j−1] − f (n)
a [S(n)

j−1]
)︂

∆v(n)
⃦⃦⃦2

L2

]︄
+ 4E

[︄
sup
k⩽Tn

⃦⃦⃦
R

(n)
a,k

⃦⃦⃦2

L2

]︄

+ 2E
[︄

sup
k⩽Tn

⃓⃓⃓ k∑︂
j=1

(︂
φ(S(n)

j−1) − φ(n)(S(n)
j−1)

)︂
∆t(n)

⃓⃓⃓2]︄
+ 2E

[︄
sup
k⩽Tn

⃓⃓⃓
R

(n)
φ,k

⃓⃓⃓2]︄
+ an

≲ ∥v(n)
b,0 − vb,0∥2

L2 + ∥v(n)
a,0 − va,0∥2

L2 + E
[︄

sup
k⩽Tn

⃦⃦⃦
R

(n)
b,k

⃦⃦⃦2

L2

]︄
+ E

[︄
sup
k⩽Tn

⃦⃦⃦
R

(n)
a,k

⃦⃦⃦2

L2

]︄

+ (∆v(n))2

(∆t(n))2

[︄
sup
s∈E

⃦⃦⃦
fb[s] − f

(n)
b [s]

⃦⃦⃦2

L2
+ sup
s∈E

⃦⃦⃦
fa[s] − f (n)

a [s]
⃦⃦⃦2

L2

]︄

+ sup
s∈E

⃓⃓⃓
φ(s) − φ(n)(s)

⃓⃓⃓2
+ E

[︄
sup
k⩽Tn

⃓⃓⃓
R

(n)
φ,k

⃓⃓⃓2]︄
+ an → 0.

Step 2: We prove upper bounds for the pathwise L2(R)-errors of the approximated
volume functions. Let (S(n)

k )k⩾0 and ( ˜︁S(n)
k )k⩾0 be given as above. For all k ⩽ Tn,

applying equation (1.2.2) in Assumption 1.1, we have⃦⃦⃦
vb,0

(︂
· −

(︂
B

(n)
k −B

(n)
0

)︂)︂
− vb,0

(︂
· −

(︂ ˜︁B(n)
k −B

(n)
0

)︂)︂⃦⃦⃦
L2

⩽ L
⃓⃓⃓
B

(n)
k − ˜︁B(n)

k

⃓⃓⃓
.

Further, using the Lipschitz-continuity of fb : E × R → R in both variables, cf. As-
sumption 1.3 iii), we have⃦⃦⃦⃦
⃦⃦ k∑︂
j=1

(︂
fb[S(n)

j−1](· − (B(n)
k −B

(n)
j−1)) − fb[ ˜︁S(n)

j−1](· − ( ˜︁B(n)
k − ˜︁B(n)

j−1))
)︂

∆t(n)

⃦⃦⃦⃦
⃦⃦
L2

⩽ ∆t(n)
k∑︂
j=1

{︂⃦⃦⃦
fb[S(n)

j−1](· − (B(n)
k −B

(n)
j−1)) − fb[ ˜︁S(n)

j−1](· − (B(n)
k −B

(n)
j−1))

⃦⃦⃦
L2

+
⃦⃦⃦
fb[ ˜︁S(n)

j−1](· − (B(n)
k −B

(n)
j−1)) − fb[ ˜︁S(n)

j−1](· − ( ˜︁B(n)
k − ˜︁B(n)

j−1))
⃦⃦⃦
L2

}︂
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⩽ ∆t(n)
k∑︂
j=1

L
{︂⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+
⃓⃓⃓
B

(n)
k −B

(n)
j−1 −

(︂ ˜︁B(n)
k − ˜︁B(n)

j−1

)︂⃓⃓⃓}︂

⩽ ∆t(n)
k∑︂
j=1

2L
⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ LT
⃓⃓⃓
B

(n)
k − ˜︁B(n)

k

⃓⃓⃓
.

Combining both bounds, we conclude that

⃦⃦⃦
v

(n)
b,k − ˜︁v(n)

b,k

⃦⃦⃦
L2

≲
⃓⃓⃓
B

(n)
k − ˜︁B(n)

k

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E
. (1.6.2)

Similarly, one can show that⃦⃦⃦
v̂

(n)
b,k − ˜︁v(n)

b,k

⃦⃦⃦
L2

≲
⃓⃓⃓
B̂

(n)
k − ˜︁B(n)

k

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

{︂⃓⃓⃓
B̂

(n)
j−1 − ˜︁B(n)

j−1

⃓⃓⃓
+
⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

}︂ (1.6.3)

and ⃦⃦⃦
v

(n)
b,k − v̂

(n)
b,k

⃦⃦⃦
L2

≲
⃓⃓⃓
B

(n)
k − B̂

(n)
k

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

⃓⃓⃓
B

(n)
j−1 − B̂

(n)
j−1

⃓⃓⃓
≲ sup

j⩽k

⃓⃓⃓
B

(n)
j − B̂

(n)
j

⃓⃓⃓
.

(1.6.4)

Analogous estimates hold for the approximating processes on the ask side.

Step 3: We prove upper bounds for the differences of the price and time coefficient
functions. Let i ⩽ Tn. Since (δZ(n)

b,j )j⩾0 defines a martingale difference array, we can
apply Doob’s inequality for p = 2 and Assumption 1.5 to conclude

E

⎡⎣sup
k⩽i

(︄
k∑︂
j=1

(︂
r

(n)
b (S(n)

j−1) − r
(n)
b ( ˜︁S(n)

j−1)
)︂
δZ

(n)
b,j

)︄2⎤⎦
≲ E

⎡⎣ i∑︂
j=1

(︂
r

(n)
b (S(n)

j−1) − r
(n)
b ( ˜︁S(n)

j−1)
)︂2

∆t(n)

⎤⎦
≲ ∆t(n)

i∑︂
j=1

E
⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E
+ an. (1.6.5)
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For the drift component, using the Lipschitz-continuity of pb, we have

sup
k⩽i

⃓⃓⃓⃓
⃓⃓ k∑︂
j=1

(︂
p

(n)
b (S(n)

j−1) − p
(n)
b ( ˜︁S(n)

j−1)
)︂

∆t(n)

⃓⃓⃓⃓
⃓⃓ ⩽ ∆t(n)

i∑︂
j=1

⃓⃓⃓
p

(n)
b (S(n)

j−1) − p
(n)
b ( ˜︁S(n)

j−1)
⃓⃓⃓

⩽ L∆t(n)
i∑︂

j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ an. (1.6.6)

Analogously for the time component and using the Lipschitz-continuity of φ, we conclude

sup
k⩽i

⃓⃓⃓⃓
⃓⃓ k∑︂
j=1

(︂
φ(S(n)

j−1) − φ( ˜︁S(n)
j−1)

)︂
∆t(n)

⃓⃓⃓⃓
⃓⃓ ⩽ L∆t(n)

i∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ an. (1.6.7)

For the compensated jumps, we can argue as follows:

E

⎡⎣sup
k⩽i

(︄
k∑︂
j=1

∫︂ M

−M

(︂
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
)︂ (︂

µJ
(n)
b − νJ

(n)
b

)︂ (︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄2⎤⎦
(1)
≲

i∑︂
j=1

E

⎡⎣(︄∫︂ M

−M

(︂
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
)︂ (︂

µJ
(n)
b − νJ

(n)
b

)︂ (︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄2
⎤⎦

≲
i∑︂

j=1
E

⎡⎣(︄∫︂ M

−M

⃓⃓⃓
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
⃓⃓⃓
µJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄2
⎤⎦

+
i∑︂

j=1
E

⎡⎣(︄∫︂ M

−M

⃓⃓⃓
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
⃓⃓⃓
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄2
⎤⎦

(2)=
i∑︂

j=1
E
[︄∫︂ M

−M

⃓⃓⃓
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
⃓⃓⃓2
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂]︄

+
i∑︂

j=1
E

⎡⎣(︄∫︂ M

−M

⃓⃓⃓
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
⃓⃓⃓
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂)︄2
⎤⎦

(3)
≲

i∑︂
j=1

E
[︃(︃⃦⃦⃦

S
(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E
+ (∆x(n))2

)︃
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, [−M,M ]

)︂]︃

+
i∑︂

j=1
E
[︃(︂(︂ ⃦⃦⃦

S
(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ ∆x(n)
)︂
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, [−M,M ]

)︂)︂2]︃
(4)
≲ ∆t(n)(1 + ∆t(n))

i∑︂
j=1

E
[︃(︃⃦⃦⃦

S
(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E
+ (∆x(n))2

)︃ (︂
Qb
(︂
[−M,M ]

)︂
+ an

)︂]︃

≲ ∆t(n)
i∑︂

j=1
E
⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E
+ an. (1.6.8)
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In (1) we applied the Burkholder-Davis-Gundy inequality for p = 2 (cf. Theorem
IV.4.48 in [72]). In (2) we used the fact that µJ(n) is an integer valued random measure,
which only increases at times t(n)

k , k = 0, . . . , Tn, and that νJ(n) is the compensator of
µJ

(n) . Finally, in (3) we applied the uniform Lipschitz-estimate for θ (cf. Assumption
1.6 v)) and in (4) we used the estimate in Remark 1.6.2 with g ≡ 1.

Finally, applying Assumption 1.6 iv) and the estimate in Remark 1.6.2, we have

sup
k⩽i

⃓⃓⃓⃓
⃓
k∑︂
j=1

∫︂ M

−M

(︂
θ

(n)
b (S(n)

j−1, y) − θ
(n)
b ( ˜︁S(n)

j−1, y)
)︂
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, dy

)︂ ⃓⃓⃓⃓⃓
≲

i∑︂
j=1

(︃⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ ∆x(n)
)︃
νJ

(n)
b

(︂[︂
t
(n)
j , t

(n)
j+1

)︂
, [−M,M ]

)︂

≲ ∆t(n)
i∑︂

j=1

(︃⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ ∆x(n)
)︃ (︂

Qb
(︂
[−M,M ]

)︂
+ an

)︂

≲ ∆t(n)
i∑︂

j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ an. (1.6.9)

Again, analogous estimates hold for the respective processes on the ask side.

Step 4: We prove that (Ŝ(n)
k )k⩾0 is indeed an approximation for (S(n)

k )k⩾0. Applying
equations (1.6.3),(1.6.6), (1.6.7), and (1.6.9), we conclude⃦⃦⃦
Ŝ

(n)
k − ˜︁S(n)

k

⃦⃦⃦
E

⩽
⃓⃓⃓
B̂

(n)
k − ˜︁B(n)

k

⃓⃓⃓
+
⃦⃦⃦
v̂

(n)
b,k − ˜︁v(n)

b,k

⃦⃦⃦
L2

+
⃓⃓⃓
Â

(n)
k − ˜︁A(n)

k

⃓⃓⃓
+
⃦⃦⃦
v̂

(n)
a,k − ˜︁v(n)

a,k

⃦⃦⃦
L2

+
⃓⃓⃓
τ̂

(n)
k − ˜︁τ (n)

k

⃓⃓⃓
≲
⃓⃓⃓
B̂

(n)
k − ˜︁B(n)

k

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

⃓⃓⃓
B̂

(n)
j−1 − ˜︁B(n)

j−1

⃓⃓⃓
+
⃓⃓⃓
Â

(n)
k − ˜︁A(n)

k

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

⃓⃓⃓
Â

(n)
j−1 − ˜︁A(n)

j−1

⃓⃓⃓

+ ∆t(n)
k∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+
⃓⃓⃓
τ̂

(n)
k − ˜︁τ (n)

k

⃓⃓⃓

≲ sup
j⩽k

⃓⃓⃓
B̂

(n)
j − ˜︁B(n)

j

⃓⃓⃓
+ sup

j⩽k

⃓⃓⃓
Â

(n)
j − ˜︁A(n)

j

⃓⃓⃓
+ ∆t(n)

k∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ sup
j⩽k

⃓⃓⃓
τ̂

(n)
j − ˜︁τ (n)

j

⃓⃓⃓

≲ ∆t(n)
k∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

+ an

≲ ∆t(n)
k∑︂
j=1

(︂⃦⃦⃦
S

(n)
j−1 − Ŝ

(n)
j−1

⃦⃦⃦
E

+
⃦⃦⃦
Ŝ

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦
E

)︂
+ an.

Applying a discrete version of the Gronwall Lemma (cf. e.g., Lemma 4.34 in [25]), we
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have for all k ⩽ Tn,

⃦⃦⃦
Ŝ

(n)
k − ˜︁S(n)

k

⃦⃦⃦
E
≲ ∆t(n)

k∑︂
j=1

⃦⃦⃦
S

(n)
j−1 − Ŝ

(n)
j−1

⃦⃦⃦
E

+an ≲ sup
j⩽k−1

⃦⃦⃦
S

(n)
j − Ŝ

(n)
j

⃦⃦⃦
E

+an. (1.6.10)

Now equations (1.6.5), (1.6.8), and (1.6.10) yield for i ⩽ Tn,

E
[︄
sup
k⩽i

(︂
B̂

(n)
k −B

(n)
k

)︂2
]︄
≲ ∆t(n)

i∑︂
j=1

E
⃦⃦⃦
S

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E
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≲ ∆t(n)
i∑︂
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(︃
E
⃦⃦⃦
S

(n)
j−1 − Ŝ

(n)
j−1

⃦⃦⃦2

E
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⃦⃦⃦
Ŝ

(n)
j−1 − ˜︁S(n)

j−1

⃦⃦⃦2

E

)︃
+ an

≲ ∆t(n)
i∑︂
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E
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sup
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⃦⃦⃦
S

(n)
l − Ŝ

(n)
l

⃦⃦⃦2

E

]︄
+ an (1.6.11)

and a similar estimate holds for the best ask price and its approximation. Hence, we
can conclude for all i ⩽ Tn that

E
[︄
sup
k⩽i

⃦⃦⃦
Ŝ

(n)
k − S

(n)
k

⃦⃦⃦2

E

]︄
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[︄
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(︂
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(n)
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(n)
k

)︂2
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(︂
Â
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k

)︂2
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⃓⃓⃓
τ
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(n)
a,k − v

(n)
a,k

⃦⃦⃦2

L2

]︄
+ E

[︄
sup
k⩽i

⃦⃦⃦
v

(n)
a,k − v

(n)
a,k

⃦⃦⃦2

L2

]︄)︄
(1)
≲ E

[︄
sup
k⩽i

(︂
B̂

(n)
k −B

(n)
k

)︂2
]︄

+ E
[︄
sup
k⩽i

(︂
Â

(n)
k −A

(n)
k

)︂2
]︄

+ an

(2)
≲ ∆t(n)

i∑︂
j=1

E
[︄

sup
l⩽j−1

⃦⃦⃦
S

(n)
l − Ŝ

(n)
l

⃦⃦⃦2

E

]︄
+ an.

In (1) we plugged in the estimate in (1.6.4) and used step 1, while in (2) we used
(1.6.11). With the discrete Gronwall Lemma (cf. Lemma 4.34 in [25]) we conclude

E
[︄
sup
k⩽i

⃦⃦⃦
S

(n)
k − Ŝ

(n)
k

⃦⃦⃦2

E

]︄
≲ an

⎛⎝1 + ∆t(n)
i∑︂

j=1
e
∑︁i

m=j+1 C∆t(n)

⎞⎠ → 0 as n → ∞.
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Step 5: The result now follows from

E
[︄

sup
k⩽Tn

⃦⃦⃦
S

(n)
k − ˜︁S(n)

k

⃦⃦⃦2

E

]︄
⩽ 2E

[︄
sup
k⩽Tn

⃦⃦⃦
S

(n)
k − Ŝ

(n)
k

⃦⃦⃦2

E

]︄
+ 2E

[︄
sup
k⩽Tn

⃦⃦⃦
Ŝ

(n)
k − ˜︁S(n)

k

⃦⃦⃦2

E

]︄
(1)
≲ E

[︄
sup
k⩽Tn

⃦⃦⃦
S

(n)
k − Ŝ

(n)
k

⃦⃦⃦2

E

]︄
+ an → 0

as n → ∞, where (1.6.10) is used in (1). Then, step 4 yields the final convergence.

1.6.2 Proof of Theorem 1.5.9
In this section we give the proof of Theorem 1.5.9 applying results of Kurtz and
Protter [58] about the convergence of infinite dimensional SDEs. Therefore, let us
first construct the stochastic integral such that we can directly apply their results. In
terms of the stochastic processes Z(n)

I , I = b, a introduced in (1.5.3) and X
(n)
I (t, g) :=∫︁

[−M,M ] g(y)µJ(n)
I ([0, t], dy), t ∈ [0, T ], g ∈ Cb([−M,M ]), for I = b, a, we define, for any

n ∈ N, t ∈ [0, T ], and g1, g2 ∈ Cb([−M,M ]),

Y (n)(t, g1, g2) :=
(︂
t
(n)
k , Z

(n)
b,k , Z

(n)
a,k , X

(n)
b (t, g1), X(n)

a (t, g2)
)︂
, t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
. (1.6.12)

We formalize the stochastic integral with respect to Y (n) in Section 1.6.4.
According to the estimate in (1.5.15), it is enough to define our coefficient functions

G(n) on the subspace ˜︁E ⊂ E, where

˜︁E :={(b, vb, a, va, t) ∈ E :
∥vI(· + x) − vI(· + ˜︁x)∥L2 ⩽ L(1 + T )|x− ˜︁x|, ∀x, ˜︁x ∈ R, I = b, a}.

The space ˜︁E endowed with the norm ∥ · ∥E is a closed subspace of E and hence again
a Banach space. We define the coefficient functions G(n) : ˜︁E → Ê (see Section 1.6.4 for
the definition of the space Ê) via

G(n) :=
(︂
G

(n)
b , G(n)

a , G
(n)
t

)︂
where

G
(n)
b :=

(︂
G

(n),1
b , G

(n),2
b , 0, G(n),4

b , 0; G(n),6
b , 0, 0, 0, 0

)︂
,

G(n)
a :=

(︂
G(n),1
a , 0, G(n),3

a , 0, G(n),5
a ; G(n),6

a , 0, 0, 0, 0
)︂
,

G
(n)
t :=

(︂
G

(n),1
t , 0, 0, 0, 0

)︂
,
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and for s = (b, vb, a, va, t) ∈ ˜︁E, x ∈ R, and y ∈ [−M,M ], we define

G
(n),1
b (s) := p

(n)
b (ψ(s)), G(n),1

a (s) := p(n)
a (ψ(s)),

G
(n),2
b (s) := r

(n)
b (ψ(s)), G(n),3

a (s) := r(n)
a (ψ(s)),

G
(n),4
b (s, y) := θ

(n)
b (ψ(s), y), G(n),5

a (s, y) := θ(n)
a (ψ(s), y),

and

G
(n),6
b (s, x) := fb[ψ(s)](−(x−b)), G(n),6

a (s, x) := fa[ψ(s)](x−a), G(n),1
t (s) := φ(ψ(s)).

The first five components of G(n)
b and G(n)

a describe the coefficient functions correspond-
ing to the price, whereas their last five components describe the coefficient functions of
the volume dynamics. Note that G(n),6

I , I = b, a, and G
(n),1
t are independent of n ∈ N,

which results from our construction of the approximated limit order book dynamics in
step 3 of Section 1.5. Then the microscopic state dynamics can be represented as

˜︁η(n),abs(t) = S
(n),abs
0 +

∫︂ t

0

∫︂
[−M,M ]

G(n)
(︂˜︁η(n),abs(u−), y

)︂
Y (n)(du, dy),

for t ∈ [0, T ], where S(n),abs
0 := (B(n)

0 , vb,0(−x+B
(n)
0 ), A(n)

0 , va,0(x−A
(n)
0 ), 0).

Further, the candidate for the limit of the coefficient functions G(n) is given by

G := (Gb, Ga, Gt) : ˜︁E → Ê

where Gb, Ga and Gt are defined in the same way as G(n)
b , G

(n)
a and G

(n)
t but their

components are defined for s = (b, vb, a, va, t) ∈ ˜︁E, x ∈ R and y ∈ [−M,M ] by

G1
b(s) := pb(ψ(s)), G1

a(s) := pa(ψ(s)),
G2
b(s) := rb(ψ(s)), G3

a(s) := ra(ψ(s)),
G4
b(s, y) := θb(ψ(s), y), G5

a(s, y) := θa(ψ(s), y)

and

G6
b(s, x) := fb[ψ(s)](−(x− b)), G6

a(s, x) := fa[ψ(s)](x− a), G1
t (s) = φ(ψ(s)).

The next lemma proves that G is indeed the limit of the coefficient functions G(n).

Lemma 1.6.4. Let Assumptions 1.2, 1.3, 1.5, and 1.6 be satisfied. Then, as n → ∞,

sup
s∈˜︁E ∥G(n)(s) −G(s)∥Ê → 0.
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Proof. By the definition of the Ê-norm, for all s ∈ ˜︁E, we have

∥G(n)(s) −G(s)∥2
Ê

≲ |φ(ψ(s)) − φ(ψ(s))|2 + sup
I=b,a

|p(n)
I (ψ(s)) − pI(ψ(s))|2 + sup

I=b,a
|r(n)
I (ψ(s)) − rI(ψ(s))|2

+ sup
I=b,a

(︄
sup

y∈[−M,M ]

⃓⃓⃓
θ

(n)
I (ψ(s), y) − θI(ψ(s), y)

⃓⃓⃓)︄2

+ sup
I=b,a

∥fI [ψ(s)] − fI [ψ(s)]∥2
L2 .

As the shift operator ψ maps elements of ˜︁E to E, we can apply Assumptions 1.2, 1.5,
and 1.6 to conclude that each summand converges to zero. This finishes the proof.

Considering the coefficient functions only on the subspace ˜︁E ensures that their limits
are still Lipschitz continuous as compositions of the Lipschitz-continuous functions pb,
pa, rb, ra, θb, θa, φ and (shifted) fb, fa with ψ. This will be necessary to prove the
relative compactness of the stochastic integral later on.

Lemma 1.6.5. Let Assumptions 1.2, 1.3, 1.5, and 1.6 be satisfied. Then G : ˜︁E → Ê
defined above is Lipschitz-continuous. Especially, if (sn), s ⊂ D( ˜︁E; [0, T ]) are such that
supu⩽T ∥sn(u) − s(u)∥E → 0, then also supu⩽T ∥G(sn(u)) −G(s(u))∥Ê → 0.

Proof. By Assumptions 1.2, 1.3, 1.5 and 1.6 the functions pI , rI , θI , fI , for I = b, a, and
φ are Lipschitz continuous. Hence, for any s = (b, vb, a, va, t), ˜︁s = (˜︁b, ˜︁vb, ˜︁a, ˜︁va, ˜︁t) ∈ ˜︁E,

∥G(˜︁s) −G(s)∥2
Ê
⩽ L2∥ψ(˜︁s) − ψ(s)∥2

E

⩽ L2
{︂

|˜︁b− b|2 +
⃦⃦⃦˜︁vb(−(· − ˜︁b)) − vb(−(· − b))

⃦⃦⃦2

L2

+ |˜︁a− a|2 + ∥˜︁va(· − ˜︁a) − va(· − a)∥2
L2 + |˜︁t− t|2

}︂
⩽ L2

{︃
2∥˜︁s− s∥2

E + 2
⃦⃦⃦
vb(−(· − ˜︁b)) − vb(−(· − b))

⃦⃦⃦2

L2
+ 2 ∥va(· − ˜︁a) − va(· − a)∥2

L2

}︃
⩽ L2

{︂
2∥˜︁s− s∥2

E + 2(L2(1 + T )2)
(︂
|˜︁b− b|2 + |˜︁a− a|2

)︂}︂
⩽ 2L2(1 + L2(1 + T )2) ∥˜︁s− s∥2

E .

Moreover, this implies that

sup
u⩽T

∥G(sn(u)) −G(s(u))∥Ê ⩽ C sup
u⩽T

∥sn(u) − s(u)∥E → 0,

if sn, s ∈ D( ˜︁E; [0, T ]) satisfy supu⩽T ∥sn(u) − s(u)∥E → 0 as n → ∞.

With this preparation done, we are ready to present the proof of Theorem 1.5.9.

Proof of Theorem 1.5.9. We first note that ˜︁η(n),abs takes values in the Banach space
( ˜︁E, ∥ · ∥E). Hence, we can restrict ourselves to this space and prove the statement in
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Theorem 1.5.9 only in the closed subspace D( ˜︁E; [0, T ]). We need to show three things:
the sequence (˜︁η(n),abs)n∈N is relative compact, any limit point satisfies

Bη(t) = B0 +
∫︂ t

0
pb
(︂
ψ(ηabs(u−))

)︂
du+

∫︂ t

0
rb
(︂
ψ(ηabs(u−))

)︂
dZb(u)

+
∫︂ t

0

∫︂
[−M,M ]

θb
(︂
ψ(ηabs(u−), y

)︂
µQb (du, dy),

uηb (t, x) = vb,0(−x+B0) +
∫︂ t

0
fb
[︂
ψ(ηabs(u−))

]︂
(−(x−Bη(u−))) du,

Aη(t) = A0 +
∫︂ t

0
pa
(︂
ψ(ηabs(u−))

)︂
du+

∫︂ t

0
ra
(︂
ψ(ηabs(u−))

)︂
dZa(u)

+
∫︂ t

0

∫︂
[−M,M ]

θa
(︂
ψ(ηabs(u−), y

)︂
µQa (du, dy),

uηa(t, x) = va,0(x−A0) +
∫︂ t

0
fa
[︂
ψ(ηabs(u−))

]︂
(x−Aη(u−)) du,

τη(t) =
∫︂ t

0
φ(ψ(ηabs(u−)))du,

(1.6.13)

for (t, x) ∈ [0, T ] × R, and there exists at most one solution ηabs = (Bη, uηb , A
η, uηa, τ

η)
of (1.6.13).

In order to prove the first two things, we will apply Theorem 7.6 in [58]. Let us
verify its conditions: thanks to Proposition 1.5.3 and Proposition 1.5.5, we have for
any m ∈ N and g1, · · · , gm ∈ Cb([−M,M ]2),

(Z(n)
b , Z(n)

a ) ⇒ (Zb, Za),
(︂
X(n)(·, g1), · · · , X(n)(·, gm)

)︂
⇒ (X(·, g1), · · · , X(·, gm))

in D(R2; [0, T ]) andD(Rm; [0, T ]), respectively. Since (Zb, Za) is a standard planar Brow-
nian motion, its paths are almost surely continuous. Hence, Corollary 3.33 in [50] implies
the joint convergence of the integrators (Z(n)

b , Z
(n)
a ) and (X(n)(·, g1), · · · , X(n)(·, gm))

for any m ∈ N and g1, · · · , gm ∈ Cb([−M,M ]2). By Theorem 1.5.5, X(·, g) is a pure
jump Lévy process for all g ∈ Cb([−M,M ]2). Hence, the quadratic covariation of X(·, g)
with ZI , I = b, a, is equal to zero almost surely and X is independent of (Zb, Za). More-
over, the sequence of integrators is uniformly tight by Lemma 1.6.6. By Assumption
1.1, we have

S
(n),abs
0 → (B0, vb,0(−(· −B0)), A0, va,0(· −A0), 0) = Sabs0 .

Since Sabs0 is deterministic, we conclude that (S(n),abs
0 , Y (n)) ⇒ (Sabs0 , Y ) in the Sko-

rokhod topology. Lemma 1.6.4 and Lemma 1.6.5 imply that G(n), n ∈ N, and G satisfy
Condition C.2 of [58]. Moreover, as the shift operator ψ maps elements of ˜︁E to E,
it is sufficient to prove the boundedness and compactness requirements with respect
to the unshifted coefficient functions considered on the larger space E. To this end,
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Assumptions 1.2 iii), 1.3 iii), 1.4, and 1.6 imply that for I = b, a,

sup
n∈N

sup
s∈E

{︂
|p(n)
I (s)| + |r(n)

I (s)| +
⃦⃦
θ

(n)
I (s, ·)

⃦⃦
L∞ +

⃦⃦
f

(n)
I [s]

⃦⃦
L2 + |φ(n)(s)|

}︂
< ∞.

The required compactness condition of the sequence of coefficient functions (G(n))n∈N
can be show as follows: applying the Heine-Borel theorem, we conclude the compact-
ness condition for the coefficient functions (p(n)

I )n∈N, (r(n)
I )n∈N, for I = b, a, and φ.

Next, a combination of the Fréchet-Kolmogorov theorem with the equicontinuity and
equitightness of fI , I = b, a, cf. Assumption 1.3 iii), yields the compactness condition
for the coefficient functions fI , I = b, a. Last, the Arzelà-Ascoli theorem in combination
with Assumption 1.6 i) ensures that the compactness condition is satisfied for the
coefficient functions (θ(n)

I )n∈N, I = b, a. Hence, the requirements of Theorem 7.6 in
[58] are satisfied and we may conclude that the sequence (S(n),abs

0 , ˜︁η(n),abs, Y (n))n∈N is
relatively compact and any limit point satisfies (1.6.13).

Next, we will show uniqueness of a strong solution to (1.6.13) by a standard Gronwall
argument. Therefore, suppose η = (B, vb, A, va, τ), ˜︁η = ( ˜︁B, ˜︁vb, ˜︁A, ˜︁va, ˜︁τ) are two strong
solutions to (1.6.13). Then the Lipschitz-continuity of G by Lemma 1.6.5 implies:

E
[︄
sup
s⩽t

⃓⃓⃓
B(s) − ˜︁B(s)

⃓⃓⃓2]︄

⩽ 4E
[︄
sup
s⩽t

{︄⃓⃓⃓⃓∫︂ s

0
(pb(ψ(η(u−))) − pb(ψ(˜︁η(u−)))) du

⃓⃓⃓⃓2
+
⃓⃓⃓⃓∫︂ s

0
(rb(ψ(η(u−))) − r(ψ(˜︁η(u−)))) dZb(u)

⃓⃓⃓⃓2
+
⃓⃓⃓⃓
⃓
∫︂ s

0

∫︂
[−M,M ]

(θb(ψ(η(u−)), y) − θb(ψ(˜︁η(u−)), y))
(︂
µQb − νQb

)︂
(du, dy)

⃓⃓⃓⃓
⃓
2

+
⃓⃓⃓⃓
⃓
∫︂ s

0

∫︂
[−M,M ]

(θb(ψ(η(u−)), y) − θb(ψ(˜︁η(u−)), y)) νQb (du, dy)
⃓⃓⃓⃓
⃓
2
⎫⎬⎭
⎤⎦

(1)
≲ T

∫︂ t

0
E |pn(ψ(η(u−))) − pb(ψ(˜︁η(u−)))|2 du+

∫︂ t

0
E |rb(ψ(η(u−))) − rb(ψ(˜︁η(u−)))|2 du

+ TQb([−M,M ])
∫︂ t

0

∫︂
[−M,M ]

E |θb(ψ(η(u−)), y) − θb(ψ(˜︁η(u−)), y)|2Qb(dy) du

+
∫︂ t

0

∫︂
[−M,M ]

E |θb(ψ(η(u−)), y) − θb(ψ(˜︁η(u−)), y)|2Qb(dy) du

(2)
≲
∫︂ t

0
E ∥η(u−) − ˜︁η(u−)∥2

E du.

Here, in (1) we applied the Burkholder-Davis-Gundy inequality for p = 2 and that
νQb = λ×Qb is the compensator of the Poisson jump measure µQb . In (2) we applied
the Lipschitz-continuity of the coefficient function G. Similarly, it can be shown that
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E[sups⩽t |A(s) − ˜︁A(s)|2] ≲
∫︁ t

0 E∥η(u−) − ˜︁η(u−)∥2
Edu and E[sups⩽t ∥vI(s) − ˜︁vI(s)∥2

L2 ] ≲∫︁ t
0 E∥η(u−) − ˜︁η(u−)∥2

Edu for I = b, a, and E[sups⩽t |τ(s) − ˜︁τ(s)|2] ≲
∫︁ t

0 E∥η(u−) −˜︁η(u−)∥2
Edu. An application of Gronwall’s Lemma (cf. e.g., Lemma 2.7 in [78]) yields

that η = ˜︁η almost surely. Now, Corollary 7.8 in [58] yields the existence of a unique
strong solution of (1.6.13) in the space ( ˜︁E, ∥ · ∥E).

Hence, ˜︁η(n),abs ⇒ ηabs in D( ˜︁E; [0, T ]), where ηabs is the unique solution to (1.6.13).
Since ˜︁E ⊂ E is closed, we moreover deduce the weak convergence in D(E; [0, T ]).

Finally, denote by D the random set of times of discontinuities of ηabs. Since all
discontinuities of ηabs are generated by two independent Poisson random measure µQb
and µQa , which have no fixed times of discontinuity, the set D is at most countable
almost surely. Hence, (1.6.13) is almost surely equivalent to (1.5.12).

1.6.3 Proof of Corollary 1.2.8
Proof of Corollary 1.2.8. Thanks to Theorem 1.2.6, S(n) converges weakly in the Sko-
rokhod topology to S = η ◦ ζ, where η = (Bη, vηb , A

η, vηa , τ
η) is the unique strong

solution to the system given in (1.2.13) and ζ(t) := inf{s > 0 : τη(s) > t}.
First, we will show that η solves the following coupled SDE-SPDE system: for

(t, x) ∈ [0, T ] × R,

dBη(t) = pb(η(t))dt+ rb(η(t))dZb(t) +
∫︂

[−M,M ]
θb(η(t−), y)µQb (dt, dy),

dvηb (t, x) =
(︄

−
∂vηb
∂x

(t, x)pb(η(t)) + 1
2
∂2vηb
∂x2 (t, x) (rb(η(t)))2 + fb[η(t)](x)

)︄
dt

−
∂vηb
∂x

(t, x)rb(η(t))dZb(t) +
(︂
vηb (t−, x− ∆Bη(t)) − vηb (t−, x)

)︂
,

dAη(t) = pa(η(t))dt+ ra(η(t))dZa(t) +
∫︂

[−M,M ]
θa(η(t−), y)µQa (dt, dy),

dvηa(t, x) =
(︄
∂vηa
∂x

(t, x)pa(η(t)) + 1
2
∂2vηa
∂x2 (t, x) (ra(η(t)))2 + fa[η(t)](x)

)︄
dt

+ ∂vηa
∂x

(t, x)ra(η(t))dZa(t) +
(︂
vηa(t−, x+ ∆Aη(t)) − vηa(t−, x)

)︂
,

dτη(t) = φ(η(t))dt.

(1.6.14)

Since both, vb,0 and fb[s], are twice continuously differentiable, we can apply Itô’s
formula for semimartingales with jumps (cf. Theorem II.7.32 in [72]) and obtain for
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any x ∈ R,

vb,0(x− (Bη(t) −B0))

= vb,0(x) −
∫︂ t

0
v′
b,0(x− (Bη(s−) −B0))dBη(s)

+ 1
2

∫︂ t

0
v′′
b,0(x− (Bη(s) −B0)) (rb(η(s)))2 ds+

∑︂
0<s⩽t

{︂
vb,0(x− (Bη(s) −B0))

− vb,0(x− (Bη(s−) −B0)) + v′
b,0(x− (Bη(s−) −B0))∆Bη(s)

}︂
as well as∫︂ t

0
fb[η(u)](x− (Bη(t) −Bη(u)))du

=
∫︂ t

0
fb[η(u)](x)du−

∫︂ t

0

(︃∫︂ s

0
f ′
b[η(u)](x− (Bη(s−) −Bη(u)))du

)︃
dBη(s)

+ 1
2

∫︂ t

0

(︃∫︂ s

0
f ′′
b [η(u)](x− (Bη(s) −Bη(u)))du

)︃
(rb(η(s)))2 ds

+
∑︂

0<s⩽t

{︃∫︂ s

0
(fb[η(u)](x− (Bη(s) −Bη(u))) − fb[η(u)](x− (Bη(s−) −Bη(u)))) du

+
(︃∫︂ s

0
f ′
b[η(u)](x− (Bη(s−) −Bη(u)))du

)︃
∆Bη(s)

}︃
.

Combining both equations and using that vηb (t, x) = vηb (t−, x−∆Bη(t)) for all t ∈ [0, T ],
we conclude that

vηb (t, x) = vb,0(x) −
∫︂ t

0

∂vηb
∂x

(s−, x)dBη(s) + 1
2

∫︂ t

0

∂2vηb
∂x2 (s, x) (rb(η(s)))2 ds

+
∫︂ t

0
fb[η(s)](x)ds+

∑︂
0<s⩽t

∂vηb
∂x

(s−, x)∆Bη(s) +
∑︂

0<s⩽t

(︁
vηb (s, x) − vηb (s−, x)

)︁
= vb,0(x) +

∫︂ t

0

(︄
−
∂vηb
∂x

(s, x)pb(η(s)) + 1
2
∂2vηb
∂x2 (s, x) (rb(η(s)))2 + fb[η(s)](x)

)︄
ds

−
∫︂ t

0

∂vηb
∂x

(s, x)rb(η(s))dZb(s) +
∑︂

0<s⩽t

(︁
vηb (s−, x− ∆Bη(s)) − vηb (s−, x)

)︁
.

Similarly, we can show that vηa solves the SPDE dvηa and also Bη, Aη, and τη solve the
SDEs dBη, dAη, and dτη. Hence, the solution η of the system in (1.2.13) indeed solves
the stated SDE-SPDE system in (1.6.14).

By the definition of ζ, observe that ζ = (τη)−1. Hence,

ζ ′(t) =
(︂
(τη)−1

)︂′
= 1

(τη)′((τη)−1(t)) = 1
φ(η ◦ ζ(t)) = 1

φ(S(t)) .

Since ζ is a continuous time change, the processes S, ZI , I = b, a, and X(·, g) for
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g ∈ Cb([−M,M ]2) are adapted to ζ in the sense of Definition 10.13 in [49]. In particular,
for I = b, a, we have by Theorem 10.17 in [49] that

⟨ZI ◦ ζ, ZI ◦ ζ⟩t = ⟨ZI , ZI⟩ζ(t) = ζ(t),

since ZI , I = b, a, are standard Brownian motions. Moreover, by Theorem 10.27 in [49],
there exists an integer-valued random jump measure ˜︁µQI such that for all t ∈ [0, T ],

XI(ζ(t), g) :=
∫︂

[−M,M ]
g(y)µQI ([0, ζ(t)], dy) =

∫︂
[−M,M ]

g(y)˜︁µQI ([0, t], dy),

whose compensator is given by ˜︁νQI (dt, dy) = (φ(S(t)))−1dt×QI(dy). Finally, we can
apply Proposition 10.21 and Theorem 10.27 in [49] and conclude for all bounded,
continuous functions g1 : E → R, g2 : E × [−M,M ] → R, and t ∈ [0, T ],∫︂ ζ(t)

0
g1(η(u))du =

∫︂ t

0
g1(S(u))(φ(S(u)))−1du,∫︂ ζ(t)

0
g1(η(u))dZI(u) =

∫︂ t

0
g1(S(u))ζ1/2(u)d ˜︁ZI(u),∫︂ ζ(t)

0

∫︂
[−M,M ]

g2(η(u), y)µQI (du, dy) =
∫︂ t

0

∫︂
[−M,M ]

g2(S(u), y)˜︁µQI (du, dy),

where ˜︁Zb, ˜︁Za are again two independent standard Brownian motions, independent of˜︁µQb , ˜︁µQa . Combining these observations with the the fact that η solves the the system
in (1.6.14), we conclude that S, starting in S0, indeed solves the stated SDE-SPDE
system.

1.6.4 Construction of the stochastic integral
In this section we introduce the stochastic integrals with respect to Y (n) and Y .
The concept of integration follows [58]. Let Z(n)

b , Z
(n)
a , and X(n) be the processes

introduced in (1.5.3) and (1.5.7), respectively. Further, let us introduce X(n)
I (t, g) :=∫︁

[−M,M ] g(y)µJ(n)
I ([0, t], dy) for t ∈ [0, T ], g ∈ Cb([−M,M ]), and I = b, a. Then we define

the sequence of integrators Y (n) as in (1.6.12) by putting for any n ∈ N, t ∈ [0, T ], and
g1, g2 ∈ Cb([−M,M ]),

Y (n)(t, g1, g2) :=
(︂
t
(n)
k , Z

(n)
b,k , Z

(n)
a,k , X

(n)
b (t, g1), X(n)

a (t, g2)
)︂
, t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
. (1.6.15)

Since the processes Z(n)
b , Z

(n)
a , and X(n) are semimartingales on the stochastic basis˜︁B(n) = (Ω(n),F (n), ˜︁G(n) = ( ˜︁G(n)
t )t⩾0,P(n)), where ˜︁G(n)

t = F (n)
⌊t/∆t(n)⌋, we conclude that

Y (n) defines a semimartingale on ˜︁B(n). As integrands for Y (n) we consider càdlàg,
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( ˜︁G(n)
t )-adapted processes, which take their values in the space

Ê := Êb × Êa × Êt with ∥(X1, X2, X3)∥2
Ê

:= ∥X1∥2
Êb

+ ∥X2∥2
Êa

+ ∥X3∥2
Êt

where

Êb := (R × R × {0} × Cb([−M,M ]) × {0}) ×
(︂
L2(R) × {0} × {0} × {0} × {0}

)︂
,

Êa := (R × {0} × R × {0} × Cb([−M,M ])) ×
(︂
L2(R) × {0} × {0} × {0} × {0}

)︂
,

Êt := R+ × {0} × {0} × {0} × {0},

endowed with the norms

∥((a1, a2, 0, a4, 0), (a6, 0, 0, 0, 0))∥2
Êb

:= |a1|2 + |a2|2 + ∥a4∥2
∞ + ∥a6∥2

L2(R),

∥((a1, 0, a3, 0, a5), (a6, 0, 0, 0, 0))∥2
Êa

:= |a1|2 + |a3|2 + ∥a5∥2
∞ + ∥a6∥2

L2(R),

∥(a1, 0, 0, 0, 0)∥2
Êt

:= |a1|2.

(1.6.16)

In Kurtz and Protter [58], the integrands are allowed to take their values in more
general spaces where all components are allowed to be unequal to zero. Since the
discrete volume dynamics have a much easier structure than the integrals considered in
[58], it is simply not necessary to consider e.g., L2(R)-valued integrals whose integrators
are indexed by [0, T ] × Cb([−M,M ]2). Therefore, we reduce our considerations to this
much easier setting. We define S(n)

Ê
as the set of processes a(n) := (a(n)

b , a
(n)
a , a

(n)
t ) :

Ω × [0, T ] × R × [−M,M ] → Ê := Êb × Êa × Êt that are of the form

a
(n)
b (t, x, y) :=

(︄(︂
a

(n),1
b (t), a(n),2

b (t), 0, a(n),4
b (t, y), 0

)︂
,
(︂
a

(n),6
b (t, x), 0, 0, 0, 0

)︂)︄
,

a(n)
a (t, x, y) :=

(︄(︂
a(n),1
a (t), 0, a(n),3

a (t), 0, a(n),5
a (t, y)

)︂
,
(︂
a(n),6
a (t, x), 0, 0, 0, 0

)︂)︄
,

a
(n)
t (t, x, y) :=

(︂
a

(n),1
t (t), 0, 0, 0, 0

)︂
(1.6.17)

for càdlàg and ( ˜︁G(n)
t )-adapted processes a(n),1

b , a(n),1
a , a

(n),2
b , a

(n),3
a , a(n),4

b , a(n),5
a , a(n),6

b ,
a

(n),6
a and a

(n),1
t . For a(n) ∈ S

(n)
Ê

with the representation as above, the integral with
respect to Y (n) (which we will interpret as semimartingale random measure as mentioned
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in Remark 1.5.6) is given as∫︂ t

0

∫︂
[−M,M ]

a(n)(u−, x, y)Y (n)(du, dy)

:=
(︄ ⌊t/∆t(n)⌋∑︂

k=1
a

(n),1
b (t(n)

k −)∆t(n) +
⌊t/∆t(n)⌋∑︂
k=1

a
(n),2
b (t(n)

k −)δZ(n)
b,k

+
⌊t/∆t(n)⌋∑︂
k=1

∫︂
[−M,M ]

a
(n),4
b (t(n)

k −, y)µJ(n)
b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
, dy

)︂
,

⌊t/∆t(n)⌋∑︂
k=1

a
(n),6
b (t(n)

k −, x) ∆t(n),

⌊t/∆t(n)⌋∑︂
k=1

a(n),1
a (t(n)

k −)∆t(n) +
⌊t/∆t(n)⌋∑︂
k=1

a(n),3
a (t(n)

k −)δZ(n)
a,k

+
⌊t/∆t(n)⌋∑︂
k=1

∫︂
[−M,M ]

a(n),5
a (t(n)

k −, y) µJ(n)
a

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
, dy

)︂
,

⌊t/∆t(n)⌋∑︂
k=1

a(n),6
a (t(n)

k −, x)∆t(n),

⌊t/∆t(n)⌋∑︂
k=1

a
(n),1
t (t(n)

k −)∆t(n)
)︄
.

Similarly, let Zb, Za be two independent standard Brownian motions and let Xb, Xa

be given by XI(t, g) :=
∫︁

[−M,M ] g(y)µQI ([0, t], dy) for t ∈ [0, T ], g ∈ Cb([−M,M ]), and
I = b, a. Further, let (Ft)t∈[0,T ] be any filtration to which

Y (t, g1, g2) = (t, Zb(t), Za(t), Xb(t, g1), Xa(t, g2)) , g1, g2 ∈ Cb([−M,M ]), (1.6.18)

is adapted. We will denote by SÊ the set of Ê-valued processes a of the form (1.6.17),
for which, a1

b , a
1
a, a

2
b , a

3
a, a

4
b , a

5
a, a

6
b , a

6
a and a1

t are càdlàg, (Ft)-adapted processes. The
integral of a ∈ SÊ with respect to Y is then defined by∫︂ t

0

∫︂
[−M,M ]

a(u−, x, y)Y (du, dy)

:=
(︄∫︂ t

0
a1
b(u−)du+

∫︂ t

0
a2
b(u−)dZb(u) +

∫︂ t

0

∫︂
[−M,M ]

a4
b(u−, y)µQb (du, dy),

∫︂ t

0
a6
b(u−, x)du,

∫︂ t

0
a1
a(u−)du+

∫︂ t

0
a3
a(u−)dZa(u)

+
∫︂ t

0

∫︂
[−M,M ]

a5
a(u−, y)µQa (du, dy),

∫︂ t

0
a5
a(u−, x)du,

∫︂ t

0
a1
t (u−)du

)︄
.

In order to prove the relative compactness of our processes in the proof of Theorem
1.5.9, we need to show that Y (n) is uniformly tight in the sense of [58].
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Theorem 1.6.6. Suppose Assumptions 1.4, 1.6, and 1.7 are satisfied. Then the sequence
(Y (n))n∈N is uniformly tight, i.e.,

Ht =
⋃︂
n

{︄ ⃦⃦⃦⃦
⃦
∫︂ t

0

∫︂ M

−M
a(n)(u−, x, y)Y (n)(du, dy)

⃦⃦⃦⃦
⃦
E

: a(n) ∈ S(n)
Ê
, sup
s⩽t

∥a(n)(u)∥Ê ⩽ 1 a.s.

}︄

is stochastically bounded for all t ∈ [0, T ].

Proof. To prove that the sequence (Y (n))n∈N is indeed uniformly tight, it suffices to
show that for any t ∈ [0, T ] there exists a constant C(t) such that for all n ∈ N and
a(n) ∈ S(n)

Ê
with supu⩽t ∥a(n)(u)∥Ê ⩽ 1,

E
⃦⃦⃦⃦
⃦
∫︂ t

0

∫︂
[−M,M ]

a(n)(u−, x, y)Y (n)(du, dy)
⃦⃦⃦⃦
⃦
E

⩽ C(t). (1.6.19)

Therefore, let a(n) ∈ S(n)
Ê

satisfying supu⩽t ∥a(n)(u)∥Ê ⩽ 1. This gives us the following
estimates. First,

E

⃓⃓⃓⃓
⃓⃓⌊t/∆t(n)⌋∑︂

k=1
a

(n),1
b (t(n)

k −)∆t(n)

⃓⃓⃓⃓
⃓⃓ ⩽ ∆t(n)

⌊t/∆t(n)⌋∑︂
k=1

E
⃓⃓⃓
a

(n),1
b (t(n)

k −)
⃓⃓⃓
⩽ t.

Second, using the triangular inequality we have

E

⃦⃦⃦⃦
⃦⃦⌊t/∆t(n)⌋∑︂

k=1
a

(n),6
b (t(n)

k −, ·)∆t(n)

⃦⃦⃦⃦
⃦⃦
L2

⩽
⌊t/∆t(n)⌋∑︂
k=1

∆t(n) E
⃦⃦⃦
a

(n),6
b (t(n)

k −, ·)
⃦⃦⃦
L2

⩽ t.

Third, we recall that a(n)(t) is ( ˜︁G(n)
t )-adapted. Thus a(n)(t(n)

k −) ∈ F (n)
k−1 for all k ⩽ Tn

and we have

E

⎛⎝⌊t/∆t(n)⌋∑︂
k=1

a
(n),2
b (t(n)

k −)δZ(n)
b,k

⎞⎠2

= ∆t(n)
⌊t/∆t(n)⌋∑︂
k=1

E
(︂
a

(n),2
b (t(n)

k −)
)︂2

⩽ t.

Fourth, since νJ(n)
b is the compensator of the random jump measure µJ(n)

b and applying
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the estimate in Remark 1.6.2, we have

E

⃓⃓⃓⃓
⃓⃓⌊t/∆t(n)⌋∑︂

k=1

∫︂
[−M,M ]

a
(n),4
b (t(n)

k −, y)µJ(n)
b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
, dy

)︂⃓⃓⃓⃓⃓⃓
⩽ E

⎡⎣⌊t/∆t(n)⌋∑︂
k=1

∫︂
[−M,M ]

⃓⃓⃓
a

(n),4
b (t(n)

k −, y)
⃓⃓⃓
νJ

(n)
b

(︂[︂
t
(n)
k , t

(n)
k+1

)︂
, dy

)︂⎤⎦
⩽

⌊t/∆t(n)⌋∑︂
k=1

∆t(n)
(︄∫︂

[−M,M ]
E
⃓⃓⃓
a

(n),4
b (t(n)

k −, y)
⃓⃓⃓
Qb(dy) + an

)︄

⩽ Qb([−M,M ])
⌊t/∆t(n)⌋∑︂
k=1

∆t(n)E
[︄

sup
y∈[−M,M ]

⃓⃓⃓
a

(n),4
b (t(n)

k −, y)
⃓⃓⃓]︄

+ an t

⩽ (Qb([−M,M ]) + an) t ⩽ Ct

for some C > 0, independent of n, since Qb is a finite measure by Assumption 1.6
and (an)n∈N is a deterministic null-sequence. The remaining terms can be bounded in
the same way. Combining all these upper bounds, we have shown that (1.6.19) holds,
yielding the claim.

78



2 A cross-border market model with
limited transmission capacities

Submitted as Kreher, D., & Milbradt, C., A cross-border market model with limited
transmission capacities. In Mathematical Finance. Wiley.

This chapter includes the author’s manuscript (Preprint).

We develop a cross-border market model between two countries in which
the transmission capacities that enable transactions between market
participants of different countries are limited. Starting from two so-called
reduced-form representations of national limit order book dynamics, we
allow incoming market orders to be matched with standing volumes
of the foreign market, resulting in cross-border trades. We introduce
a microscopic model that consists of two bid and ask price processes,
four queue length processes that describe the number of unexecuted
limit orders at the best bid and ask prices, and a capacity process. The
latter counts the net number of executed cross-border trades over time.
Since the transmission capacities in our model are limited, our model
alternates between regimes in which cross-border trades are possible
and regimes in which incoming market orders can only be matched
against limit orders of the same origin. If the size of an individual
order converges to zero while the order arrival rate tends to infinity,
we derive a continuous-time limit approximation of our microscopic
market dynamics. If transmission capacities are available, the limit
process behaves as follows: the volume dynamics is a four-dimensional
linear Brownian motion in the positive orthant with oblique reflection at
the axes. Each time two queues simultaneously hit zero, the process is
reinitialized at a new value in the interior of R4

+. The capacity dynamics
turns out to be a bounded continuous process of finite variation. Since
the tick size in our model is constant, the price dynamics follows a
two-dimensional pure jump process with jump times equal to those of
the volume approximation. The usefulness of the ability to transact
across borders is illustrated through a simulation study.

79



2.1. INTRODUCTION

2.1 Introduction
Limit order books (LOBs) are a standard tool for price formation in modern financial
markets. They are records of unexecuted buy and sell orders awaiting execution. While
the recent financial mathematical literature is concerned with limit order book models
for a single market, real-world opportunities to trade on multiple markets simultaneously
require more complex model structures. For example, the introduction of the integrated
European intraday electricity market “Single Intraday Coupling” (SIDC) has created
the need to describe the effects of coupling multiple markets, i.e., when cross-border
interactions are allowed between market participants of different countries. Due to
limited transmission capacities in the SIDC, market participants could be temporarily
prohibited from trading across borders. In this work, we introduce microscopic cross-
border market dynamics between two countries which are based on limit order books.
In particular, we limit the total number of cross-border trades. Unfortunately, the
resulting microscopic market dynamics are too complex to get a good understanding of
the effects of coupling multiple markets. For this reason, we introduce suitable scaling
constants to our microscopic model. If the size of an individual order converges to
zero while the order arrival rate tends to infinity, we show that our model can be
approximated by a tractable, continuous-time regime switching process. Using this
continuous-time approximation, we investigate the impacts of coupling two markets on
price evolution in a detailed simulation study.

At any given point in time, a limit order book depicts the number of unexecuted buy
and sell orders at different price levels (cf. Figure 2.1). The highest price a potential
buyer is willing to pay is called the best bid price, whereas the best ask price is the
smallest price of all placed sell orders. Incoming limit orders can be placed at many
different price levels, while incoming market orders are matched against standing limit
orders according to a set of priority rules.

Figure 2.1: Illustration of the state of a limit order book model.

For purely financial markets the financial mathematical literature already provides
powerful tools for analyzing limit order books. One approach to study limit order books is
based on an event-by-event description of the order flow as done in [20,22,32,40–43,54,62].
The derived stochastic systems typically yield realistic models as they preserve the
discrete nature of the dynamics at high frequencies but turn out to be computationally
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challenging. To overcome the drawbacks of these models, some researchers deal with
continuum approximations of the order book, describing it through its time-dependent
density satisfying either certain partial differential equations (cf. [12, 13, 16, 60]) or
certain stochastic partial differential equations (cf. [21, 63]).

Combining these two approaches, one can introduce suitable scaling constants to the
microscopic order book dynamics and study its scaling behavior when the number of
orders gets large while each of them is of negligible size. The scaling limit can then either
be described through a system of (partial) differential equations (in the “fluid” limit,
where random fluctuations vanish), through a system of stochastic (partial) differential
equations (in the “diffusion” limit, where random fluctuations dominate), or through a
mixture thereof. Deriving a deterministic high-frequency limit for microscopic limit
order book models guarantees that the scaling limit approximation stays tractable
in view of practical applications. Such an approach is pursued by Horst and Paulsen
[43], Horst and Kreher [40], and Gao and Deng [32]. However, the absence of arbitrage
considerations encourages price approximations by diffusion processes. As discussed in
Cont and de Larrard [19], depending on the market and/or stock of interest either a
fluid or a diffusive volume approximation seems to be appropriated. Horst and Kreher
[42] studied the approximation of microscopic order book dynamics by both diffusive
price and volume processes in the scaling limit. However, their consideration of a
diffusive infinite dimensional volume process is not suitable for practical applications,
as e.g., the uniqueness of a solution to the established infinite dimensional stochastic
differential equation is in general not guaranteed. For this reason, in Chapter 1 we
have studied diffusive price approximations coupled with infinite dimensional fluid type
volume approximations. This model yields realistic price approximations while the
approximations of the infinite dimensional volumes are still tractable. The authors in
[19] guaranteed that their diffusive volume approximation stays tractable considering
only the standing volumes at the top of the book and hence reducing the state space
of the limit order book to a finite-dimensional space. Moreover, the price dynamics is
implicitly determined by the volume dynamics. As the tick size is constant, prices in
the high-frequency limit must be approximated by pure jump processes and not by
diffusion type processes.

In our work, we introduce a first model of a cross-border market between two countries
based on limit order books. Our model is a further development of the one considered
in Cont and de Larrard [19] in which the order flow directly effects the price evolution.
The authors studied a reduced-form representation of a limit order book, i.e., in which
the order book dynamics is given by the best bid and ask prices as well as the number
of standing limit orders at the best bid respectively ask price (cf. Figure 2.2). With
this reduction of the state space, a diffusion type limit for the queue lengths has been
derived. In more detail, under heavy traffic conditions the authors prove that the bid
and ask queue lengths are given in the high-frequency limit by a planar Brownian
motion in the first quadrant with inward jumps at hits of the boundaries. At the same
time, the price processes are implicitly determined by the volume dynamics and turn
out to be pure jump processes whose jump times equal to those of the corresponding
volume processes.
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Figure 2.2: Illustration of a limit order book model with a reduced-state space.

We extend their model in multiple ways. First, we analyze the reduced-form repre-
sentations of two limit order book models over time. Second, we allow market orders
to be matched with standing volumes of the limit order book of the foreign country
which leads to cross-border trades. Finally, motivated by the limitation of transmission
capacities in the SIDC, we limit the total number of cross-border trades. This might
lead to structural changes in the trading behavior and market matching mechanism as
market orders can only be matched with domestic standing volumes if all capacities are
occupied. For this reason, we need to keep track of the origin of each incoming order
and introduce a capacity process that counts the net number of executed cross-border
trades over time. Our microscopic model is therefore described by two best bid and ask
queue size processes, two best bid and ask price processes, and a two-sided capacity
process. Both, the price and capacity dynamics are determined implicitly by the queue
size dynamics as follows: if one queue would become negative due to an incoming
market order, the corresponding queue is set to zero and the remaining order size is
depleted from the corresponding queue in the foreign market as long as both, enough
standing volume and transmission capacity remain. This leads to a cross-border trade.
If the cumulative best bid or ask queue would be depleted by an incoming market order,
all queues are reinitialized by random variables (representing the depth of the books)
and the price processes change by one tick. Each time a cross-border trade has been
executed, the capacity process is updated. Now, starting in a so-called active regime in
which cross-border trading is possible, we switch to a so-called inactive regime if the
capacity process hits one of its boundaries (and hence the total number of cross-border
trades has been executed). Then, in the inactive regime, market participants can only
execute market orders against limit orders of the same origin. While in the active
regime the best bid and ask prices of both national limit order books coincide, they
become different in the inactive regime. With a simple trick of an efficient allocation
of capacities, it is possible to switch back to an active regime. Based on this micro-
scopic cross-border market model, by introducing appropriate scaling constants, we
establish a high-frequency approximation in which the limit approximation is given by
a continuous-time regime switching processes.

The limit process behaves during active regimes as follows: the volume dynamics
is a four-dimensional linear Brownian motion in the positive orthant with oblique
reflection at the axes. Each time two queues simultaneously hit zero, the process is
reinitialized at a new value in the interior of R4

+. The bid (resp. ask) price dynamics
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behaves as a two-dimensional pure jump process with jump times equal to those of
the volume process. The capacity dynamics turns out to be a bounded continuous
process of finite variation that is constructed from the local times at zero of the volume
process components. In contrast, during inactive regimes, the volume dynamics behaves
like a four-dimensional linear Brownian motion in the interior of R4

+. Each time it
hits one of the axes, the two components corresponding to the origin of the depleted
component are reinitialized at a new value in (0,∞)2 while the others stay unchanged.
The bid (resp. ask) price dynamics follows a two-dimensional pure jump process whose
components jump at hitting times of the corresponding components of the volume
process of the axes. In particular, they follow two different one-dimensional pure jump
processes which do almost surely not jump simultaneously.

The high-frequency approximation during inactive regimes can be deduced from the
results in [19]. To study the scaling behavior of the cross-border market dynamics during
active regimes, we characterize the bid/ask components of the volume dynamics between
successive price changes as a series of solutions to the one-dimensional Skorokhod
problem following successive reflections from the axes. This allows us to still apply the
continuous mapping approach even though our reflection matrix in the definition of
the active volume dynamics does not fulfill the usual regularity conditions considered
in the literature of semimartingale reflecting Brownian motions, cf. e.g., [27, 77, 84]. In
this way, we are able to identify the limit process of the volume dynamics between
consecutive price changes as a solution of a reflected stochastic differential equation
with absorption. Thereafter, we can derive limit results for the price and capacity
dynamics during active regimes.

Figure 2.3: The cross-border market model based on two LOBs: the queue
size processes at the best bid (top left) and best ask price (top
right), the bid price processes (bottom left), and the capacity
process (bottom right). The white areas represent the active
regimes whereas the gray ones represent the inactive regimes.
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The evolution of our cross-border market dynamics is depicted in Figure 2.3. We
discuss the behavior of our cross-border market model in different market situations
through a detailed simulation study. Moreover, we study the effects of coupling two
markets on price evolution by comparing the mean number of price changes and the
mean bid price ranges in simulated active and simulated inactive dynamics.

2.1.1 Model dynamics: empirical evidence
In this subsection, we motivate that the order flow, the trading behavior in neighboring
countries, and the limitation of transmission capacities all have a considerable effect
on the evolution of limit order books in a cross-border market and hence, should be
included to any reasonable model. We analyze order book data1 (from March 05, 2020),
trade book data1 (from June 30, 2020), and capacity flow data2 (from January 2021).

Incorporation of the order flow and rise in trading liquidity: empirical studies (cf.
e.g. [37, 55]) suggest that the incorporation of the market microstructure is crucial
in any realistic model of intraday electricity markets with continuous trading. In [55]
updated weather forecasts, trade volume, and the demand quote are identified as the
main price-driving factors in the German intraday market. Similarly, it is shown in [37]
that not only fundamentals, but also trading behavior are important determinants of
the liquidity available in intraday electricity markets.

Moreover, the coupling of multiple intraday electricity markets has increased trading
volumes compared to the time before the introduction of the SIDC (cf. Figure 2.4a).
At the same time, the overall number of trades in the SIDC is steadily growing and has
increased more than fivefold (from around 3.5 million to 18 million) since the launch of
the SIDC in June 2018 (cf. Figure 2.4b). This might be explained, on the one hand,
by the 2nd and 3rd go-live waves in November 2019 and September 2021, and, on the
other hand, by the growing acceptance of the SIDC which is supported by e.g., the
rising share of renewable energy in the European energy mix. We note that the 4th and
5th go-live waves are already planed coupling Greece and Slovakia with the other SIDC
countries. Going forward, we expect this trend toward more liquid intraday electricity
markets to continue as we anticipate a rising share of renewables in the European
energy mix, an expansion of grid capacities, and a merging of products with different
delivery durations into a single market.

1The data set is publicly available at EPEX SPOT. We consider the German and Austrian market
area and hour products for different delivery times.

2The data set is publicly available at the at OMIE and focuses on France and Spain.
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(a) Trading volume (in thousand MWh) be-
fore and after the 2nd go-live wave.

(b) Overall number of trades (in million)
per quarter of the SIDC.

Figure 2.4: Rise in trading liquidity due to the launch of the SIDC.

At the same time, the main share of order and trading volume over the trading
session appears in the last few hours before closing. This can be seen in Figure 2.5a in
which we depict the cumulative trading volumes and execution prices of the trade book
(from March 05, 2020) for expiry 2 pm over time. The increase of liquidity also yields
relatively small bid-ask spreads compared to other electricity markets with continuous
trading. In Figure 2.5b, we depict the best bid and ask prices (from June 30, 2020) for
expiry 2 pm over the last three hours before closing. It shows that bid-ask spreads are
most of the time smaller than one euro.

(a) Cumulative trading volume (blue area)
and execution prices (orange line).

(b) Mean bid-ask spreads per minute (in
the last three hours before closing).

Figure 2.5: Executed trades and bid-ask spreads in the German continuous
intraday electricity market for expiry 2 pm.

We expect the spreads to become smaller if the liquidity in the SIDC increases.
In summary, even if these markets are still very illiquid compared to many financial
markets, the development of the past years shows a clear trend toward significantly
more liquid intraday electricity markets.

In the recent financial mathematical literature, a standard approach is to approxi-
mate the typically intractable microscopic limit order book dynamics by well-studied,
tractable continuous-time scaling limits if the number of order events is large while
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each individual order is of negligible size. This might be a reasonable modeling as-
sumption for highly liquid financial markets. Models for intraday electricity markets
with continuous trading should include the market microstructure, i.e., each individual
market and limit order. To obtain a good understanding of these markets, we will also
study its high-frequency behavior after carefully formulating and incorporating scaling
assumptions. The continuous increase in trading liquidity in the SIDC gives hope that
the resulting limit approximations will gain plausibility in the future.

Influence of the trading behavior in the neighboring countries: coupling multiple
national limit order books and the resulting possibility to match incoming market orders
with standing volumes of foreign limit order books influence the trading behaviors. To
see that, we compare the transaction flow between the German and Austrian market
area. In Figure 2.6, we depict the number of transactions in the German respectively
Austrian market area with focus on the buy and sell areas of transactions in form of
two Sankey diagrams. In each diagram, the buy areas are depicted on the left and the
sell areas on the right axis. “XBID” refers to products in which one part of a trade
was made by a trading member of a different exchange (as opposed to EPEX SPOT).
We observe that for both, the German and Austrian market area, the other country is
the main importer of electricity in comparison to other countries. At the same time,
Austria exports four times more electricity to Germany than it domestically transacts.
We therefore expect Austria’s trading activities to be heavily dependent on the German
trading behavior. In contrast, Germany exports comparably few electricity to other
countries and most of its transactions are made domestically.

(a) Germany (b) Austria

Figure 2.6: Sankey diagram depicting the number of SIDC trades for delivery
time 7 pm relative to the different buy and sell market areas. Buy
areas are depicted on the left and sell areas on the right axis.

Studying the transaction flow over time reveals the same picture. In Figure 2.7, we
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depict the cumulative trading volumes and execution prices relative to the execution
time. We observe that the cumulative quantity in the German market area is much
higher (over five times higher) than in the Austrian market area. The dashed gray
lines in Figure 2.7 denote the last transaction between Austria and Germany which
coincides with the last cross-border trade in both market areas.

In both pictures, we observe that the execution prices rapidly change after the last
transaction between Germany and Austria. The behavior of the prices in both market
areas indicates that traders from Germany could buy electricity for a smaller price
while traders from Austria could sell electricity for a higher price due to the coupling.
Additionally, in both pictures the execution prices recover after short time to their
old levels. The rapid change of the execution prices in both market areas indicates
that the coupling has a high influence on the trading behavior in this market situation.
We further observe a decrease in the number of transactions in the Austrian market
area after the last trade with Germany. This effect is hardly observable in the German
market area. The higher liquidity in the German intraday market may be a reasonable
explanation for that.

(a) Germany (b) Austria

Figure 2.7: Transactions for the German and Austrian market area for delivery
time 7 pm. The y-axis displays the executed trades: prices (left)
and accumulated volumes (right). The time stamps are presented
on the x-axis. The dotted gray line depicts the last executed trade
between Germany and Austria.

Occupation of transmission capacities: to move toward a fully integrated European
electricity market, the major obstacle to overcome is the limitation of transmission
capacities. If national markets decouple during a trading session due to the full occu-
pation of capacity, cross-border trading between them is prohibited. Different energy
generation in different European countries, such as e.g., the utilization of nuclear or
renewable energy resources, yields huge price differences in the national order books
and hence motivate participants to buy or sell energy on the foreign market for the
best price. The rapid change of the prices in Figure 2.7 after the last cross-border
trade between Germany and Austria indicates a full occupation of the transmission
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capacity in our considered data set. Moreover, the available transmission capacities
are typically occupied at the end of a trading session: Figure 2.8 shows that in most
continuous intraday electricity markets in January 2021, the transmission capacities
between France and Spain are occupied at the end of the trading session.

Transmission system operators expand the existing grid capacities. However, the
different utilization of resources and the rising share of renewables in the European
energy mix will probably still yield an occupation of transmission capacities in the
future. Hence, incorporating a limitation of cross-border trading is necessary to develop
an understanding of the SIDC market dynamics.

Figure 2.8: Available transmission capacity (yellow) and its occupation in
direction Spain to France and vice versa in January 2021.

2.1.2 Outline of Chapter 2
The remainder of chapter is structured as follows: in Section 2.2 we specify the discrete-
time cross-border market dynamics S(n) and state conditions that guarantee its conver-
gence to a continuous-time limit. Moreover, we introduce the active market dynamics˜︁S(n) (resp. the inactive market dynamics

≈
S(n)) describing the evolution of the cross-

border market dynamics when cross-border trades are possible (resp. prohibited).
Thereafter, in Section 2.3, we analyze the active dynamics and derive a functional
convergence result for it. In Section 2.4, we provide an overview for analyzing the
inactive market dynamics and state the corresponding limit result. Finally, in Section
2.5, with help of the convergence results for ˜︁S(n) and

≈
S(n), we present our main re-

sult and prove that the cross-border market dynamics S(n) converges weakly in the
Skorokhod topology to a continuous-time regime switching process. In Section 2.6, we
discuss different market situations of our model in simulations and study the impact of
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coupling two markets on price evolution. Many technical proofs are stated in Section 2.7.

Notation. We denote by R+ := [0,∞) and R− := (−∞, 0] the positive and negative
real half-line, respectively. Moreover, for each x ∈ Rd, d ⩾ 1, we denote by ∥x∥2 :=∑︁d
i=1 x

2
i the euclidean norm in Rd, and for ω ∈ D([0, T ],Rd), ∥ω∥∞ := supt∈[0,T ] ∥ω(t)∥

the sup norm. For [a, b] ⊂ [0, T ], we further denote ∥ω∥[a,b] := ∥ω |[a,b] ∥∞. Furthermore,
for stochastic processes X and Y we write X ≃ Y if they have the same finite-
dimensional distributions. In what follows, we encounter projections onto a single or
onto multiple coordinates of a function ω ∈ D([0, T ],Rk) or a vector x ∈ Rk. Therefore,
let π(k)

j : D([0, T ],Rk) → D([0, T ],R), k ⩾ 1, denote the j-th projection map, i.e., for
ω = (ω1, · · · , ωk) ∈ D([0, T ],Rk), we have that

π
(k)
j ω = ωj ∈ D([0, T ],R), for 1 ⩽ j ⩽ k.

With a little abuse of notation, we also write π(k)
j x = xj , for x = (x1, · · · , xk) ∈ Rk,

1 ⩽ j ⩽ k. Further, let us denote by π
(k)
i,j : D([0, T ],Rk) → D([0, T ],R2), k ⩾ 2, the

(i, j)-th projection map, i.e., π(k)
i,j ω = (ωi, ωj) ∈ D([0, T ],R2), 1 ⩽ i, j ⩽ k. Again, for

x ∈ Rk, we write π(k)
i,j x = (xi, xj) ∈ R2. Finally, we introduce the following short hand

notations: πj := π
(4)
j and πi,j := π

(4)
i,j for 1 ⩽ i, j ⩽ 4. Moreover, πF := π1,2, πG := π3,4,

πb := π1,3, and πa := π2,4. These projections will be used to determine the standing
volumes at the bid and ask price of one country or at the bid/ask price of both countries
from the four-dimensional queue size dynamics.

2.2 The microscopic market dynamics
Let us fix some finite time horizon T > 0, the tick size δ > 0, and the space E :=
R2×R4

+×R. Let us consider two neighboring countries F (“France”) andG (“Germany”).
Each of these countries has a national limit order book through which it can trade its
goods domestically. Moreover, as long as enough transmission capacities remain, market
orders can also be matched against the standing volumes of the foreign limit order book
(G is the foreign country for orders with origin F and vise versa). In the following,
we describe the cross-border market dynamics by an extension of the reduced-form
representation of a limit order book model introduced by Cont and de Larrard [19]
to two possibly interacting limit order books. In more detail, we describe the random
evolution of a sequence of cross-border market models through a sequence of E-valued
stochastic processes S(n) := (S(n)(t))t∈[0,T ] with

S(n)(t) =
(︂
B(n)(t), Q(n)(t), C(n)(t)

)︂
,

where for each n ∈ N, the R2-valued process B(n) := (BF,(n), BG,(n)) specifies the dynam-
ics of the best bid prices in F and G, the R4

+-valued process Q(n) := (Qb,F,(n), Qa,F,(n),
Qb,G,(n), Qa,G,(n)) specifies the dynamics of standing volumes at the best bid/ask price
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in F and G, and the R-valued process C(n) describes the (scaled) net number of cross-
border trades. We will refer to C(n) as the capacity process of the cross-border market
model S(n). In the following, for all n ∈ N, the bid price process B(n) takes values
in the subspace (δZ)2 ⊂ R2, where δZ := {jδ : j ∈ Z} denotes the δ-grid. Moreover,
the best ask price process A(n) := (AF,(n), AG,(n)) is implicitly given by the best bid
price process as we set AI,(n) = BI,(n) + δ for I = F,G and all n ∈ N. Throughout, we
assume that all random variables are defined on some common, complete probability
space (Ω,F ,P).

Remark 2.2.1 (Constant spread condition in a reduced-form model). Motivated by
the reduced-form representation of a limit order book model (cf. Cont and de Larrard
[19,20]), we assume that the spread is of fixed size δ > 0 for all t ∈ [0, T ] and n ∈ N.
Keeping the spread fixed over time is crucial as we only concentrate on modeling limit
order placements outside the spread. However, this is not so unrealistic as a closing
of a spread greater than one tick happens very quickly in liquid markets (cf. e.g. the
empirical study in [19]). A frequently used assumption in recent literature dealing with
high-frequency approximations of microscopic limit order book dynamics is that the
tick size converges to zero as n → ∞ (cf. e.g. [40, 42] and the model introduced in
Chapter 1). However, for the reduced-form model, this would yield a zero spread as well
as constant price processes in the high-frequency limit. For this reason, we also fix the
tick size δ > 0 for all n ∈ N.

The cross-border market dynamics change due to arriving market orders and limit
orders at the best bid and ask queues in F respectively G. For simplicity, we assume the
time intervals between two consecutive order arrivals to be of equal length ∆t(n) > 0.
This assumption is also frequently used in other recent literature on limit order book
models (cf. e.g. [40, 42]). Note that extensions to randomly spaced arrival times are
possible as has been done in [5, 19, 43] but this will not be in the focus of our analysis.
Then, there are Tn := ⌊T/∆t(n)⌋ such events taking place at times

t
(n)
k := k∆t(n), k = 1, · · · , Tn.

We assume that ∆t(n) goes to zero as n → ∞, i.e., the number of orders increases as
n → ∞. Furthermore, we introduce the average size of a limit order placement, which
we denote by ∆v(n) > 0. As ∆t(n), it is assumed to tend to zero as n → ∞. In the
following, we specify the sequence of order book models for which we establish a scaling
limit when the average limit order size tends to zero while the number of order events
tends to infinity.

2.2.1 The initial state
In the n-th model, the initial state of the cross-border market model is given by
(positive) best bid prices BF,(n)

0 , B
G,(n)
0 ∈ δZ, non-negative queue sizes Q(n)

0 := (Qb,F,(n)
0 ,

Q
a,F,(n)
0 , Q

b,G,(n)
0 , Q

a,G,(n)
0 ) ∈ (∆v(n)N)4, and initially occupied capacity C(n)

0 ∈ ∆v(n)Z.
For simplicity, we choose C(n)

0 = 0 for all n ∈ N. Since we are interested in studying
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the cross-border market dynamics when the transmission capacities are limited, we
introduce κ− > 0 denoting the total quantity of transmission capacity in direction F
to G (i.e. exports from F ) and κ+ > 0 denoting the total quantity in direction G to F
(i.e. imports to F ). Since C(n)

0 = 0, we therefore assume that at time t = 0 cross-border
trading is possible. Moreover, if cross-border trading is allowed, it is natural to assume
that the bid prices of F and G coincide, so we further assume that BF,(n)

0 = B
G,(n)
0 for

all n ∈ N. Hence, at time t = 0, the state of the cross-border market is deterministic
for all n ∈ N and is denoted by

S
(n)
0 :=

(︂(︂
B
F,(n)
0 , B

F,(n)
0

)︂
,
(︂
Q
b,F,(n)
0 , Q

a,F,(n)
0 , Q

b,G,(n)
0 , Q

a,G,(n)
0

)︂
, 0
)︂

∈ E.

In order to prove a convergence result for the microscopic model to a high-frequency
limit, we need to state the following convergence assumptions on the initial values.

Assumption 2.1 (Convergence of the initial state). There exist BF
0 ∈ δZ and Q0 :=

(Qb,F0 , Qa,F0 , Qb,G0 , Qa,G0 ) ∈ (0,∞)4 such that BF,(n)
0 → BF

0 and Q(n)
0 → Q0 as n → ∞.

In the following, we denote S0 := ((BF
0 , B

F
0 ), (Qb,F0 , Qa,F0 , Qb,G0 , Qa,G0 ), 0) ∈ E.

Note that under this assumption, neither the initial cumulative best bid queue nor
the initial cumulative best ask queue is zero. This prevents an occurrence of a price
changing event at time t = 0.

2.2.2 Event types, order sizes, and the depth of the limit order books
The cross-border market dynamics change by incoming order events. In order to deter-
mine their effects on the state of the cross-border market dynamics S(n), we introduce
two sequences of random variables (ϕ(n)

k )k=1,··· ,Tn and (ψ(n)
k )k=1,··· ,Tn determining the

type and the origin of an incoming order, i.e., for all k = 1, · · · , Tn,

ϕ
(n)
k ∈ {b, a}, ψ

(n)
k ∈ {F,G},

and ϕ(n)
k = b (resp. ϕ(n)

k = a) if the k-th incoming order event affects the bid side (resp.
the ask side) of a limit order book and ψ(n)

k = F (resp. ψ(n)
k = G) if the k-th incoming

order has origin F (resp. origin G). Dependent on the evaluation of the random vector
(ϕ(n)
k , ψ

(n)
k ) ∈ {b, a} × {F,G}, we observe four different order events which change the

state of S(n). For k = 1, · · · , Tn the following two order events correspond to possible
transactions in direction F to G (i.e. exports from F ):

(b,F) A market sell / limit buy order with origin F arrives.
(a,G) A market buy / limit sell order with origin G arrives.

The next two order events correspond to possible transactions in direction G to F (i.e.
imports to F ):

(b,G) A market sell / limit buy order with origin G arrives.
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(a,F) A market buy / limit sell order with origin F arrives.

In the following, we refer to the evaluation of the random vector (ϕ(n)
k , ψ

(n)
k ) as the type of

the k-th order. Further, we denote by IEx := {(b, F ), (a,G)} and IIm := {(a, F ), (b,G)}
the order types corresponding to possible exports from F or imports to F , respectively.

Next, let us introduce the random sequence (V (n)
k )k=1,··· ,Tn representing the sizes of

incoming orders and let us denote by

V
i,I,(n)
k := V

(n)
k 1{︂(︂

ϕ
(n)
k
,ψ

(n)
k

)︂
=(i,I)

}︂
the order sizes of incoming orders of type (i, I) ∈ {b, a} × {F,G}, k = 1, · · · , Tn.
Throughout, we assume that V (n)

k ∈ {−∆v(n),∆v(n)} for all k = 1, · · · , Tn and n ∈ N.
Note that V (n)

k = ∆v(n) if the k-th order is a limit order placement at the best bid or
ask price and V

(n)
k = −∆v(n) if the k-th order is a market order.

In order to derive a heavy traffic approximation for the cross-border market model
S(n), we need to state further assumptions to our model. First, we present an assumption
on the mean and covariance structure of (V i,I,(n)

k , (i, I) ∈ {b, a} × {F,G})k=1,··· ,Tn . In
particular, we allow a dependence structure corresponding to strong (or uniform) mixing
of the incoming orders. Combined with the right scaling relation between ∆v(n) and
∆t(n), this assumption guarantees that the partial sums of the order sizes verify a
certain version of Donsker’s theorem for a dependent sequence of random variables (cf.
[8, Theorem 19.1]). Note, that this dependence condition can be replaced by a ρ-mixing
condition as discussed in [8, Theorem 19.2] and is therefore stronger than the α-mixing
condition.
Assumption 2.2 (Sequence of order sizes). For all n ∈ N, (V i,I,(n)

k , (i, I) ∈ {b, a} ×
{F,G})k=1,··· ,Tn is a stationary, uniform mixing array of random variables. Moreover,

i) there exist µi,I,(n) ∈ R, σi,I,(n) > 0 for all (i, I) ∈ {b, a} × {F,G} such that

E
[︂
V
i,I,(n)

1

]︂
=
(︂
∆v(n)

)︂2
µi,I,(n),

Var
[︂
V
i,I,(n)

1

]︂
+ 2

Tn∑︂
k=2

Cov
[︂
V
i,I,(n)

1 , V
i,I,(n)
k

]︂
=
(︂
∆v(n)

)︂2 (︂
σi,I,(n)

)︂2

as well as σ(i,I),(j,J),(n) ∈ R for all (i, I), (j, J) ∈ {b, a}×{F,G} with (i, I) ̸= (j, J)
such that

2 Cov
[︂
V
i,I,(n)

1 , V
j,J,(n)

1

]︂
+ 2

Tn∑︂
k=2

(︂
Cov

[︂
V
i,I,(n)

1 , V
j,J,(n)
k

]︂
+ Cov

[︂
V
i,I,(n)
k , V

j,J,(n)
1

]︂)︂
=
(︂
∆v(n)

)︂2
σ(i,I),(j,J),(n).

ii) For all (i, I) ∈ {b, a} × {F,G}, there exist µi,I ∈ R, σi,I > 0 and for all
(i, I), (j, J) ∈ {b, a} × {F,G} with (i, I) ̸= (j, J) there exist σ(i,I),(j,J) ∈ R such
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that as n → ∞, we have(︂
µi,I,(n), σi,I,(n)

)︂
→
(︂
µi,I , σi,I

)︂
and σ(i,I),(j,J),(n) → σ(i,I),(j,J).

iii) For all (i, I), (j, J) ∈ {b, a} × {F,G} with (i, I) ̸= (j, J), the corresponding corre-
lation coefficient

ρ(i,I),(j,J) := σ(i,I),(j,J)

σi,Iσj,J
satisfies

⃓⃓⃓
ρ(i,I),(j,J)

⃓⃓⃓
< 1.

The dependence structure given in the above assumption either requires that the
sequence of order sizes becomes independent as n → ∞ or asks for m-dependence
of the sequence of order sizes for all n ∈ N large enough, for any m ∈ N fixed, i.e.,
(V (n)

1 , · · · , V (n)
k ) and (V (n)

k+j , · · · , V (n)
k+j+l) are independent for all k, l ∈ N for large n

whenever j > m. This dependence structure is frequently referred in the literature
as weak dependence. The third statement in the above assumption requires that the
partial sums of the order sizes corresponding to different order types converge to limits
with different underlying Brownian motions, i.e., a perfect correlation between their
scaling limits is prohibited.

The next assumption introduces the critical scaling assumption under which the
partial sums of the order sizes verify a functional central limit theorem. A similar
assumption is stated in e.g. [20, 42].

Assumption 2.3 (Relation between the scaling parameters). There exists a constant
C > 0 such that

lim
n→∞

∆t(n)(︁
∆v(n))︁2 = C.

In what follows, we assume that C = 1. Note, that each other constant would simply
lead to further constants in the scaling limit.

In order to describe the dynamics of the queue size process Q(n), we need to charac-
terize its value after price changes. In the following, we allow the sizes of the queue
lengths after a price change to depend on the current state of the queue length process.
This is motivated by pegged limit orders which are typically observed in electronic
trading platforms. Let (τ (n)

k )k⩾1 be the sequence of stopping times at which we observe
price changes in our cross-border market dynamics S(n).

Assumption 2.4 (Size of the order queues after price changes).

i) For all n ∈ N, there exist independent sequences of iid random variables (ϵ+,(n)
k )k⩾1

and (ϵ−,(n)
k )k⩾1 with values in (0,∞)4, where ϵ+,(n)

1 ∼ f+
n and ϵ

−,(n)
1 ∼ f−

n for
some probability distributions (f+

n )n∈N, (f−
n )n∈N. Moreover, there exists a function

Φ(n) : R4
+ × R4

+ → (∆v(n)N)4 such that

∃α > 0, ∀ (x, y) ∈ R4
+ × R4

+, ∀ j = 1, 2, 3, 4, πjΦ(n)(x, y) ⩾ απjy.
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Furthermore, the queue sizes after the k-th price change are equal to R+,(n)
k or

R
−,(n)
k depending on whether the k-th price change is a price increase or decrease,

where for all k ⩾ 1, we set

R
+,(n)
k := Φ(n)

(︂
Q(n)(τ (n)

k −), ϵ+,(n)
k

)︂
,

R
−,(n)
k := Φ(n)

(︂
Q(n)(τ (n)

k −), ϵ−,(n)
k

)︂
.

(2.2.1)

ii) Additionally, there exist probability distributions f+ and f− on (0,∞)4 and
Φ ∈ C2 (︁R4

+ × R4
+, (0,∞)4)︁, such that

(f+
n , f

−
n ) ⇒ (f+, f−) and ∥Φ(n) − Φ∥∞ → 0, as n → ∞.

Remark 2.2.2. With minor modifications, we could also allow in the subsequent
analysis that the distributions determining the queue sizes after price changes depend
on the origin of the queue whose depletion caused the price change. For notational
reasons, we will not include this to our model.

In the next subsections, for all n ∈ N, we describe the dynamics of the cross-border
market model S(n) as follows: if there are enough transmission capacities remain, the
national LOBs are coupled, i.e., incoming market orders can be matched against the
standing volumes of the national and foreign limit order book. As the capacities in both
directions are limited by κ−, κ+ > 0, it may happen that the national LOBs decouple,
i.e., market orders can only be matched against limit orders with the same origin.
Hence, our cross-border market model switches between the following two regimes:

• the active regime in which the LOBs of F and G are coupled, and
• the inactive regime in which the LOBs of F and G are decoupled.

In order to describe how S(n) behaves during its different regimes, we introduce the
active dynamics ˜︁S(n) and inactive dynamics

≈
S(n) describing the evolution of the two

national LOBs as if we were in the active respectively inactive regime for the whole
trading period.

2.2.3 Description of the active dynamics
In this subsection, we introduce for each n ∈ N the active dynamics given by the
piecewise constant interpolation

˜︁S(n)(t) =
Tn∑︂
k=0

˜︁S(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(t), t ∈ [0, T ],

of the E-valued random variables

˜︁S(n)
k :=

(︂ ˜︁B(n)
k , ˜︁Q(n)

k , ˜︁C(n)
k

)︂
, k ∈ N0,
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where ˜︁B(n)
k denotes the bid prices of F and G, ˜︁Q(n)

k denotes the sizes of the best bid
respectively ask queues in F and G, and ˜︁C(n)

k denotes the net number of cross-border
trades after k order events. Note that ( ˜︁C(n)

k )k=0,··· ,Tn describes net number of cross-
border trades in an unlimited setting, i.e., as if κ− = κ+ = ∞. Since the national
LOBs are coupled in the active dynamics, we may suppose that ˜︁BF,(n)

k = ˜︁BG,(n)
k for

all k = 0, · · · , Tn and n ∈ N. For the same reason, we have chosen the initial best bid
prices to coincide in Assumption 2.1. Moreover, we allow a national order queue to be
equal to zero as long as the corresponding order queue in the foreign market is strictly
larger than zero. Keeping this in mind, we can summarize the national order books in
a shared order book (cf. Figure 2.9).

B B+δ

B B+δ

B B+δ

Qb,G

Qa,G

Qb,F Qa,F

Qb,G

Qb,F Qa,F

Qa,G

Figure 2.9: Summary of the national order books in a shared order book,
provided the national markets are coupled.

Next, we specify how incoming orders change the state of the active dynamics.
Therefore, let us denote by (˜︁τ (n)

l )l⩾1 the sequences of stopping times at which we
observe a price change in ( ˜︁S(n)

k )k=0,··· ,Tn . Further, we introduce the sequences of random
variables representing the order sizes after a price change, for l ⩾ 1, by

˜︁R+,(n)
l := Φ(n)

(︃ ˜︁Q(n)
⌊˜︁τ (n)

l
−/∆t(n)⌋

, ϵ
+,(n)
l

)︃
, ˜︁R−,(n)

l := Φ(n)
(︃ ˜︁Q(n)

⌊˜︁τ (n)
l

−/∆t(n)⌋
, ϵ

−,(n)
l

)︃
.

Let l(k) denote the number of price changes after k order events in ( ˜︁S(n)
k )k=0,··· ,Tn .

Then, ( ˜︁S(n)
k )k=0,··· ,Tn evolves as follows: let ˜︁S(n)

0 ∈ (δZ)2 × (∆v(n)N)4 × ∆v(n)Z ⊂ E

with ˜︁BF,(n)
0 = ˜︁BG,(n)

0 be the deterministic initial state and denote by ˜︁Qi,(n)
k := ˜︁Qi,F,(n)

k +˜︁Qi,G,(n)
k the cumulative queue of type i = b, a after k ⩾ 1 order events. If the k-th

incoming order is of type (b, F ), then

˜︁S(n)
k =

(︂ ˜︁S(n)
k−1 +

(︂
(0, 0), (V (n)

k , 0, 0, 0), 0
)︂)︂

1{︂˜︁Qb,F,(n)
k−1 ⩾−V (n)

k

}︂1{︂˜︁Qb,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁S(n)

k−1 +
(︂
(0, 0), (0, 0, V (n)

k , 0), V (n)
k

)︂)︂
1{︂˜︁Qb,F,(n)

k−1 <−V (n)
k

}︂1{︂˜︁Qb,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁B(n)

k−1 − (δ, δ), ˜︁R−,(n)
l(k) , ˜︁C(n)

k−1

)︂
1{︂˜︁Qb,F,(n)

k−1 =−V (n)
k

}︂1{︂˜︁Qb,G,(n)
k−1 =0

}︂
+
(︂ ˜︁B(n)

k−1 − (δ, δ), ˜︁R−,(n)
l(k) , ˜︁C(n)

k−1 + V
(n)
k

)︂
1{︂˜︁Qb,F,(n)

k−1 =0
}︂1{︂˜︁Qb,G,(n)

k−1 =−V (n)
k

}︂.
(2.2.2)
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If the k-th incoming order is of type (a, F ), then

˜︁S(n)
k =

(︂ ˜︁S(n)
k−1 +

(︂
(0, 0), (0, V (n)

k , 0, 0), 0
)︂)︂

1{︂˜︁Qa,F,(n)
k−1 ⩾−V (n)

k

}︂1{︂˜︁Qa,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁S(n)

k−1 +
(︂
(0, 0), (0, 0, 0, V (n)

k ),−V (n)
k

)︂)︂
1{︂˜︁Qa,F,(n)

k−1 <−V (n)
k

}︂1{︂˜︁Qa,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁B(n)

k−1 + (δ, δ), ˜︁R+,(n)
l(k) , ˜︁C(n)

k−1

)︂
1{︂˜︁Qa,F,(n)

k−1 =−V (n)
k

}︂1{︂˜︁Qa,G,(n)
k−1 =0

}︂
+
(︂ ˜︁B(n)

k−1 + (δ, δ), ˜︁R+,(n)
l(k) , ˜︁C(n)

k−1 − V
(n)
k

)︂
1{︂˜︁Qa,F,(n)

k−1 =0
}︂1{︂˜︁Qa,G,(n)

k−1 =−V (n)
k

}︂.
(2.2.3)

If the k-th incoming order is of type (b,G), then

˜︁S(n)
k =

(︂ ˜︁S(n)
k−1 +

(︂
(0, 0), (0, 0, V (n)

k , 0), 0
)︂)︂

1{︂˜︁Qb,G,(n)
k−1 ⩾−V (n)

k

}︂1{︂˜︁Qb,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁S(n)

k−1 +
(︂
(0, 0), (V (n)

k , 0, 0, 0),−V (n)
k

)︂)︂
1{︂˜︁Qb,G,(n)

k−1 <−V (n)
k

}︂1{︂˜︁Qb,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁B(n)

k−1 − (δ, δ), ˜︁R−,(n)
l(k) , ˜︁C(n)

k−1

)︂
1{︂˜︁Qb,G,(n)

k−1 =−V (n)
k

}︂1{︂˜︁Qb,F,(n)
k−1 =0

}︂
+
(︂ ˜︁B(n)

k−1 − (δ, δ), ˜︁R−,(n)
l(k) , ˜︁C(n)

k−1 − V
(n)
k

)︂
1{︂˜︁Qb,G,(n)

k−1 =0
}︂1{︂˜︁Qb,F,(n)

k−1 =−V (n)
k

}︂.
(2.2.4)

If the k-th incoming order is of type (a,G), then

˜︁S(n)
k =

(︂ ˜︁S(n)
k−1 +

(︂
(0, 0), (0, 0, 0, V (n)

k ), 0
)︂)︂

1{︂˜︁Qa,G,(n)
k−1 ⩾−V (n)

k

}︂1{︂˜︁Qa,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁S(n)

k−1 +
(︂
(0, 0), (0, V (n)

k , 0, 0), V (n)
k

)︂)︂
1{︂˜︁Qa,G,(n)

k−1 <−V (n)
k

}︂1{︂˜︁Qa,(n)
k−1 >−V (n)

k

}︂
+
(︂ ˜︁B(n)

k−1 + (δ, δ), ˜︁R+,(n)
l(k) , ˜︁C(n)

k−1

)︂
1{︂˜︁Qa,G,(n)

k−1 =−V (n)
k

}︂1{︂˜︁Qa,F,(n)
k−1 =0

}︂
+
(︂ ˜︁B(n)

k−1 + (δ, δ), ˜︁R+,(n)
l(k) , ˜︁C(n)

k−1 + V
(n)
k

)︂
1{︂˜︁Qa,G,(n)

k−1 =0
}︂1{︂˜︁Qa,F,(n)

k−1 =−V (n)
k

}︂.
(2.2.5)

Remark 2.2.3. Let the k-th incoming order be of type (i, I) ∈ {b, a} × {F,G}. Let
J = {F,G} \ I be the index corresponding to the neighboring country of the k-th order.
As described in (2.2.2)-(2.2.5), the active dynamics change as follows:

i) Let the k-th incoming order be a limit order, i.e., V i,I,(n)
k = ∆v(n). Then, its size

is added to the national queue ˜︁Qi,I,(n)
k−1 , i.e., ˜︁Qi,I,(n)

k = ˜︁Qi,I,(n)
k−1 + V

i,I,(n)
k .
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ii) Let the k-th incoming order be a market order, i.e., V i,I,(n)
k = −∆v(n):

• If the incoming order can be matched against the national queue ˜︁Qi,I,(n)
k−1

while its cumulative queue ˜︁Qi,(n)
k−1 is not depleted by the size of the incoming

order, we reduce the national queue ˜︁Qi,I,(n)
k−1 by the size of the incoming

market order, i.e., ˜︁Qi,I,(n)
k = ˜︁Qi,I,(n)

k−1 + V
i,I,(n)
k . In particular, we allow that˜︁Qi,I,(n)

k−1 + V
i,I,(n)
k = 0 provided that the corresponding cumulative queue is

strictly greater than zero.

• If the national queue satisfies ˜︁Qi,I,(n)
k−1 = 0 while its cumulative queue ˜︁Qi,(n)

k−1
is not depleted by the size of the incoming order, we reduce the foreign
queue ˜︁Qi,J,(n)

k−1 by the size of the incoming market order, i.e., ˜︁Qi,J,(n)
k =˜︁Qi,J,(n)

k−1 + V
i,I,(n)
k . This yields a cross-border trade and changes the state of

the capacity process by ∆v(n).

• If its cumulative queue ˜︁Qi,(n)
k−1 is depleted by the size of the incoming order,

all order queues are reinitialized by either the random variable ˜︁R+,(n)
l(k) or˜︁R−,(n)

l(k) and both national bid price processes change by one tick in the same
direction. Depending on whether the national queue ˜︁Qi,I,(n)

k−1 = 0 or not, we
also change the state of the capacity process by ∆v(n).

The price processes in (2.2.2)–(2.2.5) have increments of maximum length δ > 0 and
hence describe the evolution of the prices of limit order books which contain no gaps
(empty levels). If there were gaps in the order books, this would result in jumps of
more than one tick in the price dynamics. For convenience, we ignore the feature of
price jumps larger than one tick. Note that the assumption that price changing events
increase respectively decrease the prices only by a single tick is not unrealistic. It has
been shown in an empirical study (cf. e.g. [29]), that around 85% of the sell market
orders which lead to price changes match exactly the size of the standing volumes at
the best ask price.

Moreover, as described in (2.2.2)-(2.2.5), the dynamics of the two-sided capacity
process over time equals

˜︁C(n)
k = ˜︁C(n)

0 +
{︂
M

b,G,(n)
k +M

a,F,(n)
k −M

b,F,(n)
k −M

a,G,(n)
k

}︂
, (2.2.6)

where for each (i, I) ∈ {b, a} × {F,G} and M
i,I,(n)
0 = 0 we define by

M
i,I,(n)
k := ∆v(n)

k∑︂
j=1

1{︂˜︁Qi,I,(n)
j−1 =0

}︂1{︂
V

i,I,(n)
j =−∆v(n)

}︂, k = 1, · · · , Tn (2.2.7)

the (scaled) number of cross-border trades triggered by events of type (i, I). In the
following, we set M (n)

k :=
(︂
M

b,F,(n)
k ,M

a,F,(n)
k ,M

b,G,(n)
k ,M

a,G,(n)
k

)︂
for k = 0, · · · , Tn.
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Remark 2.2.4. The definition of the capacity process corresponds to an efficient
cross-border trading assumption and therefore describes the net number of cross-border
trades. In more detail, we understand cross-border trading to be efficient if the following
is satisfied:

i) The goods are actual transmitted at the end of the trading session.

ii) Only the difference of imports and exports are transmitted cross-border while all
other goods are distributed through domestic trading.

The idea of efficient cross-border trading is presented in Figure 2.10.

x

y

x − yF1

F2

G1

G2

yy

Figure 2.10: Efficient cross-border trading between different traders F1, F2
from F and G1, G2 from G and order sizes x, y > 0 with x > y.
Only the difference x− y is actually transmitted cross-border.

2.2.4 Description of the inactive dynamics
In this subsection, we introduce for each n ∈ N the inactive dynamics given by the
piecewise constant interpolation

≈
S(n)(t) =

Tn∑︂
k=0

≈
S

(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(t), t ∈ [0, T ],

of the E-valued random variables
≈
S

(n)
k :=

(︂ ≈
B

(n)
k ,

≈
Q

(n)
k ,

≈
C

(n)
k

)︂
, k ∈ N0,

where
≈
B

(n)
k denotes the bid prices of F and G,

≈
Q

(n)
k denotes the sizes of the best bid

respectively ask queues in F and G, and
≈
C

(n)
k denotes the net number of cross-border

trades after k order events. Since the national order books are decoupled in the inactive
dynamics, we generally differentiate the best bid prices of F and G. Hence, we cannot
summarize the national LOBs in a shared order book and the depletion of a single
national order queue already causes a price change in the corresponding national LOB.
Finally, since no cross-border trades are possible due to the fact that the order books
are decoupled, the capacity process (

≈
C

(n)
k )k=0,··· ,Tn is constant for the whole trading

period, i.e.,
≈
C

(n)
k =

≈
C

(n)
0 for all k = 0, · · · , Tn and n ∈ N.
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Next, let us specify how incoming order events change the state of the inactive
dynamics. Therefore, let us denote by (≈

τ
(n)
l )l⩾1 the sequences of stopping times at

which we observe a price change at either the best bid price of F or G in (
≈
S

(n)
k )k=0,··· ,Tn .

Further, we introduce the sequences of random variables representing the order sizes
after a price change, for l ⩾ 1, by

≈
R

+,(n)
l := Φ(n)

(︃
≈
Q

(n)
⌊≈
τ

(n)
l

−/∆t(n)⌋
, ϵ

+,(n)
l

)︃
,

≈
R

−,(n)
l := Φ(n)

(︃
≈
Q

(n)
⌊≈
τ

(n)
l

−/∆t(n)⌋
, ϵ

−,(n)
l

)︃
.

Again, let l(k) denote the number of price changes after k order events in (
≈
S

(n)
k )k=0,··· ,Tn .

Then, (
≈
S

(n)
k )k=0,··· ,Tn evolves as follows: let

≈
S

(n)
0 ∈ (δZ)2 × (∆v(n)N)4 × ∆v(n)Z ⊂ E be

the deterministic initial state. If the k-th incoming order is of type (b, F ), then
≈
S

(n)
k =

(︂≈
S

(n)
k−1 +

(︂
(0, 0), (V (n)

k , 0, 0, 0), 0
)︂)︂

1{︂≈
Q

b,F,(n)
k−1 >−V (n)

k

}︂
+
(︂ ≈
B

(n)
k−1 − (δ, 0), πF

≈
R

−,(n)
l(k) , πG

≈
Q

(n)
k−1,

≈
C

(n)
k−1

)︂
1{︂≈

Q
b,F,(n)
k−1 ⩽−V (n)

k

}︂. (2.2.8)

If the k-th incoming order is of type (a, F ), then
≈
S

(n)
k =

(︂≈
S

(n)
k−1 +

(︂
(0, 0), (0, V (n)

k , 0, 0), 0
)︂)︂

1{︂≈
Q

a,F,(n)
k−1 >−V (n)

k

}︂
+
(︂ ≈
B

(n)
k−1 + (δ, 0), πF

≈
R

+,(n)
l(k) , πG

≈
Q

(n)
k−1,

≈
C

(n)
k−1

)︂
1{︂≈

Q
a,F,(n)
k−1 ⩽−V (n)

k

}︂. (2.2.9)

If the k-th incoming order is of type (b,G), then
≈
S

(n)
k =

(︂≈
S

(n)
k−1 +

(︂
(0, 0), (0, 0, V (n)

k , 0), 0
)︂)︂

1{︂≈
Q

b,G,(n)
k−1 >−V (n)

k

}︂
+
(︂ ≈
B

(n)
k−1 − (0, δ), πF

≈
Q

(n)
k−1, πG

≈
R

−,(n)
l(k) ,

≈
C

(n)
k−1

)︂
1{︂≈

Q
b,G,(n)
k−1 ⩽−V (n)

k

}︂. (2.2.10)

If the k-th incoming order is of type (a,G), then
≈
S

(n)
k =

(︂≈
S

(n)
k−1 +

(︂
(0, 0), (0, 0, 0, V (n)

k ), 0
)︂)︂

1{︂≈
Q

a,G,(n)
k−1 >−V (n)

k

}︂
+
(︂ ≈
B

(n)
k−1 + (0, δ), πF

≈
Q

(n)
k−1, πG

≈
R

+,(n)
l(k) ,

≈
C

(n)
k−1

)︂
1{︂≈

Q
a,G,(n)
k−1 ⩽−V (n)

k

}︂. (2.2.11)

Remark 2.2.5. The above description of inactive dynamics is a straight-forward
extension of the discrete-time dynamics in Cont and de Larrard [19] to two non-
interacting LOBs.

99



2.2. THE MICROSCOPIC MARKET DYNAMICS

2.2.5 The cross-border market dynamics as a regime switching process
In this subsection, we finally introduce the microscopic dynamics of our cross-border
market model S(n) which can be interpreted as a regime switching process switching
between the active and inactive regimes.

Remark 2.2.6 (Preliminary considerations).

i) While the capacity process ˜︁C(n) is unbounded and changes over time,
≈
C(n) stays

constant. The bounded capacity process C(n) will take its values in [−κ−, κ+] and
its dynamics will develop similarly to ˜︁C(n) during active regimes and will stay
constant and equals either κ− or κ+ during inactive regimes. Moreover, we will
use the unbounded capacity process ˜︁C(n) as an indicator to switch from an active
to an inactive regime.

ii) The bid price processes of the national LOBs of the active dynamics ˜︁S(n) coincide.
In contrast, the price processes of the inactive dynamics

≈
S(n) develop as non-

identical pure jump processes. In order to switch back to an active regime, the
price processes during inactive regimes have to coincide.

iii) It is not clear what happens if the capacity process C(n) is equal to one of its
boundary values {−κ−, κ+} while the best bid prices coincide as the limit order
books might be coupled or decoupled. This situation can be interpreted as a partially
active regime in which cross-border trades are possible but only in one direction.
Instead of modeling a third regime, we include the partially active regimes into the
active or inactive regimes. This is possible since the active respectively inactive
dynamics develop equally as long as no order queue has been depleted. In a
partially active regime, depending on the type of the incoming market order, we
might stay in the current regime or switch to the next regime. Note that before
switching from an inactive to an active regime, we always are in a partially active
regime (which will be included to the inactive regimes). In contrast, we might
directly switch from an active to an inactive regime without previously being in a
partially active regime (cf. Figure 2.11).

active regime inactive regime active regime inactive regime
0 time

Figure 2.11: Incorporation of the partially active regime. The market dy-
namics develop in the partially active regime as in the active
(patterned, turquoise) or inactive regime (patterned, orange).
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A short consideration of the definition of the active dynamics in (2.2.2)-(2.2.5) reveals,
that a single LOB is allowed to be “empty”, i.e., might have no standing volumes at
the best bid and ask queues, provided that the order queues of the foreign LOB are
both strictly larger than zero. Then, we may run into problems if we switch to the
next inactive regime as we cannot uniquely determine the direction of the next price
change for the empty LOB. In order to bypass this issue, we assume that the probability
space (Ω,F ,P) is rich enough to support a sequence of iid Bernoulli random variables
(U (n)

k )k,n⩾1, where U (n)
k ∈ {−1, 1}.

Next, let us introduce short-hand notations for the order type indicator random
variables at time t ∈ [0, T ] by

1
(n)
(i,I)(t) := 1(i,I)

(︂
ϕ

(n)
⌊t/∆t(n)⌋, ψ

(n)
⌊t/∆t(n)⌋

)︂
and 1(n)(t) :=

(︂
1

(n)
(b,F ),1

(n)
(a,F ),1

(n)
(b,G),1

(n)
(a,G)

)︂
(t).

In order to describe the state of the cross-border market model at the start of an
inactive regime, we introduce a sequence of processes ˜︁Z(n)

k := ( ˜︁ZF,(n)
k , ˜︁ZG,(n)

k ) taking
values in {−1, 0, 1}2 by

˜︁ZI,(n)
k (t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if πIQ(n)(t− ∆t(n)) + V
(n)

⌊t/∆t(n)⌋

(︂
1

(n)
(b,I)(t),1

(n)
(a,I)(t)

)︂
∈ (0,∞)2

−1, if πIQ(n)(t− ∆t(n)) + V
(n)

⌊t/∆t(n)⌋

(︂
1

(n)
(b,I)(t),1

(n)
(a,I)(t)

)︂
∈ R− × (0,∞)

1, if πIQ(n)(t− ∆t(n)) + V
(n)

⌊t/∆t(n)⌋

(︂
1

(n)
(b,I)(t),1

(n)
(a,I)(t)

)︂
∈ (0,∞) × R−

U
(n)
k , if πIQ(n)(t− ∆t(n)) + V

(n)
⌊t/∆t(n)⌋

(︂
1

(n)
(b,I)(t),1

(n)
(a,I)(t)

)︂
∈ R2

−

(2.2.12)

for all t ∈ [0, T ] and I = F,G. Moreover, we introduce the function

h : D([0, T ],R4) → D([0, T ],R2), h : ω ↦→ (π1ω + π3ω, π2ω + π4ω) .

Note that for all t ∈ [0, T ] and Q(n)(t) denoting the sizes of the best bid and ask queues
of F respectively G at time ⌊t/∆t(n)⌋, h(Q(n))(t) describes the sizes of the cumulative
best bid and ask queues at time ⌊t/∆t(n)⌋.

Recall that we denote by (R+,(n)
l )l⩾1, (R−,(n)

l )l⩾1 introduced in (2.2.1) the order sizes
after a price increase respectively decrease, by (τ (n)

l )l⩾1 the sequence of stopping times
at which we observe a price change in S(n), and by l(n)(t) the number of price changes
in S(n) in [0, t], for all t ∈ [0, T ]. Last, for all s ∈ [0, T ], let us introduce the short-hand
notations ˜︁S(n),s and

≈
S(n),s denoting the active respectively inactive dynamics starting

in the state S(n)(s) ∈ E.
With all this preparation done, we are finally able to introduce the cross-border

market dynamics as a regime switching process.
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Definition 2.2.7 (Cross-border market dynamics S(n)). Let n ∈ N, S(n)
0 ∈ (δZ)2 ×

(∆v(n)N)4 × {0} with B
F,(n)
0 = B

G,(n)
0 , κ+, κ− > 0, ρ(n)

0 := 0, and k ⩾ 1. The cross-
border market dynamics are given as follows:

• The active regime: for 0 ⩽ t < σ
(n)
k − ρ

(n)
k−1, we set

S(n)
(︂
t+ ρ

(n)
k−1

)︂
:= ˜︁S(n),ρ(n)

k−1(t),

where σ(n)
k := σ

Im,(n)
k ∧ σ

Ex,(n)
k determines the start of the next inactive regime and

σ
Im,(n)
k := inf

{︂
t ⩾ ρ

(n)
k−1 : C(n)(t) ⩾ κ+ and ∃ (i, I) ∈ IIm with h(Q(n))(t− ∆t(n))

+ V
(n)

⌊t/∆t(n)⌋h(1(n))(t) ∈ (0,∞)2 and Qi,I,(n)(t− ∆t(n)) + V
i,I,(n)

⌊t/∆t(n)⌋ ⩽ 0
}︂

∧ T,

σ
Ex,(n)
k := inf

{︂
t ⩾ ρ

(n)
k−1 : C(n)(t) ⩽ −κ− and ∃ (i, I) ∈ IEx with h(Q(n))(t− ∆t(n))

+ V
(n)

⌊t/∆t(n)⌋h(1(n))(t) ∈ (0,∞)2 and Qi,I,(n)(t− ∆t(n)) + V
i,I,(n)

⌊t/∆t(n)⌋ ⩽ 0
}︂

∧ T.

• Starting value of the next inactive regime: we set C(n)(σ(n)
k ) := ˜︁C(n),ρ(n)

k−1(σ(n)
k ).

Further, for I = F,G and ˜︁ZI,(n)
k (σ(n)

k ) ∈ {−1, 0, 1} being introduced in (2.2.12), we
set

πIQ
(n)(σ(n)

k ) := πI ˜︁Q(n),ρ(n)
k−1(σ(n)

k )1{︂˜︁ZI,(n)
k

(σ(n)
k

)=0
}︂ + πIR

+,(n)
l(n)(σ(n)

k
−)+1

1{︂˜︁ZI,(n)
k

(σ(n)
k

)=1
}︂

+ πIR
−,(n)
l(n)(σ(n)

k
−)+1

1{︂˜︁ZI,(n)
k

(σ(n)
k

)=−1
}︂

and

BI,(n)(σ(n)
k ) := BI,(n)(σ(n)

k −) + δ

⎛⎝1{︂˜︁ZI,(n)
k

(σ(n)
k

)=1
}︂ − 1{︂˜︁ZI,(n)

k
(σ(n)

k
)=−1

}︂⎞⎠ .
• The inactive regime: for 0 ⩽ t < ρ

(n)
k − σ

(n)
k , we set

S(n)
(︂
t+ σ

(n)
k

)︂
:=

≈
S(n),σ(n)

k (t),

where ρ
(n)
k := ρ

Im,(n)
k 1{︂

C(n)(σ(n)
k

)=−κ−

}︂ + ρ
Ex,(n)
k 1{︂

C(n)(σ(n)
k

)=κ+

}︂ determines the

start of the next active regime and

ρ
Im,(n)
k := inf

{︂
t ⩾ σ

(n)
k :

⃓⃓⃓
BF,(n)(t) −BG,(n)(t)

⃓⃓⃓
= 0 and

∃ (i, I) ∈ IIm with Qi,I,(n)(t− ∆t(n)) + V
i,I,(n)

⌊t/∆t(n)⌋ ⩽ 0
}︂

∧ T,
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ρ
Ex,(n)
k := inf

{︂
t ⩾ σ

(n)
k :

⃓⃓⃓
BF,(n)(t) −BG,(n)(t)

⃓⃓⃓
= 0 and

∃ (i, I) ∈ IEx with Qi,I,(n)(t− ∆t(n)) + V
i,I,(n)

⌊t/∆t(n)⌋ ⩽ 0
}︂

∧ T.

• Starting value of the next active regime: we set C(n)(ρ(n)
k ) := C(n)(ρ(n)

k −), B(n)(ρ(n)
k ) :=

B(n)(ρ(n)
k −), and for (i, I) ∈ {b, a} × {F,G},

Qi,I,(n)(ρ(n)
k ) := Qi,I,(n)(ρ(n)

k −) + V
i,I,(n)

⌊ρ(n)
k
/∆t(n)⌋

.

Remark 2.2.8.

i) The starting times of the inactive regimes being determined by the stopping times
(σ(n)
k )k⩾1 may look surprisingly complex. We wish to switch to an inactive regime

if the capacity process hits one of its boundary values. Since we also include
the partially active regime partly into the active regime (cf. Remark 2.2.6), the
stopping times have to be modified appropriately. Note, that these stopping times
simplify in the high-frequency limit (cf. Theorem 2.5.1 below) in which the partially
active regimes in the active regimes disappear.

ii) The start of next active regime depends on the direction in which the transmission
capacity has been occupied. After the national best bid prices coincide again and a
national order queue would be depleted by an incoming market order allowing for
cross-border trades in the non-occupied direction, we immediately switch back to
an active regime and couple the national LOBs. We note, that this indeed prevents
that the national bid prices diverge again (cf. the definition of the starting value
of the next active regime).

Remark 2.2.9 (Distribution of order sizes might depend on the type of the regime). In
our model, a regime switch only changes the order matching mechanism (cf. Definition
2.2.7). However, it might be of interest to also allow a change in the trading behavior.
This can be incorporated to our model by slight generalizations of Assumptions 2.2 and
2.4: one might assume that the distribution of the order sizes as well as of the queue
sizes after price changes depend on the type of the current regime. For sake of notation,
we will not include this to our model.

2.3 Analysis of the active dynamics
In this section, we analyze the active market dynamics ˜︁S(n) = ( ˜︁S(n)(t))t∈[0,T ] and derive
its heavy traffic approximation. Recall, that

˜︁S(n)(t) = ˜︁S(n)
k for t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
,

where the discrete-time dynamics are defined in equations (2.2.2)-(2.2.5) in Section
2.2.3. Let ˜︁S(n)

0 := ( ˜︁B(n)
0 , ˜︁Q(n)

0 , ˜︁C(n)
0 ) ∈ (δZ)2 × (∆v(n)N)4 × ∆v(n)Z be the initial value
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of ˜︁S(n) with ˜︁BF,(n)
0 = ˜︁BG,(n)

0 . In order to derive a limit theorem for the active dynamics,
we need to introduce the so-called net order flow process X(n) by

X(n) :=
(︂
Xb,F,(n), Xa,F,(n), Xb,G,(n), Xa,G,(n)

)︂
, (2.3.1)

where for (i, I) ∈ {b, a} × {F,G} and t ∈ [0, T ] we have

Xi,I,(n)(t) :=
Tn∑︂
k=1

X
i,I,(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(t) and X
i,I,(n)
k :=

k∑︂
j=1

V
i,I,(n)
j .

Proposition 2.3.1 (Functional central limit theorem for the net order flow process).
Let Assumptions 2.2 and 2.3 be satisfied. Then, the net order flow process X(n) converges
weakly in the Skorokhod topology on D([0, T ],R4) to a four-dimensional linear Brownian
motion, i.e.,

X(n) ⇒ X :=
(︂
Σ1/2B(t) + tµ

)︂
t⩾0

, (2.3.2)

where B is a standard four-dimensional Brownian motion and

µ :=

⎛⎜⎜⎜⎝
µb,F

µa,F

µb,G

µa,G

⎞⎟⎟⎟⎠ , Σ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(︂
σb,F

)︂2
σ(b,F ),(a,F ) σ(b,F ),(b,G) σ(b,F ),(a,G)

σ(b,F ),(a,F )
(︂
σa,F

)︂2
σ(a,F ),(b,G) σ(a,F ),(a,G)

σ(b,F ),(b,G) σ(a,F ),(b,G)
(︂
σb,G

)︂2
σ(b,G),(a,G)

σ(b,F ),(a,G) σ(a,F ),(a,G) σ(b,G),(a,G)
(︂
σa,G

)︂2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The proof is given in Section 2.7.1. Based on this limit theorem, we will derive
convergence results for the queue size process ˜︁Q(n), the capacity process ˜︁C(n), and the
price process ˜︁B(n).

2.3.1 The queue size process as a regulated process
In this subsection, we will rewrite the queue size process ˜︁Q(n) in terms of transformations
of the net order flow X(n) and the sequences of random variables ˜︁R+,(n) := ( ˜︁R+,(n)

k )k⩾1

and ˜︁R−,(n) := ( ˜︁R−,(n)
k )k⩾1 corresponding to the order sizes after price changes.

To ease notation, we introduce by t ↦→ ℓ
(2)
t (ω) the component-wise reflection at zero

of some ω ∈ D([0, T ],R2), i.e.,

ℓ
(2)
t (ω) :=

(︄
sup
s⩽t

(︂
−π(2)

1 ω(s)
)︂+

, sup
s⩽t

(︂
−π(2)

2 ω(s)
)︂+
)︄

for t ∈ [0, T ],

where x+ := max{x, 0}.
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Let us introduce a function g : D([0, T ],R2) → D([0, T ],R2
+) which describes the

evolution of the queue size process πi ˜︁Q, i = b, a, corresponding to one side of the shared
order book provided that the cumulative queue size process stays strictly larger than
zero (i.e. no price change has been observed).

Definition 2.3.2. Let ω ∈ D([0, T ],R2). We inductively define for k ∈ N functions˜︁gk(ω), gk(ω) ∈ D([0, T ],R2), and g(ω) ∈ D([0, T ],R2
+) as follows:

• Set g1(ω) = ˜︁g1(ω) = ω and τ̂1 := τ̂1(ω) := inf{t ⩾ 0 : ∃ i ∈ {1, 2} with π(2)
i ω(t) ⩽

0} ∧ T.

• For k ⩾ 2, set gk(ω)(t) = ˜︁gk(ω)(t) = gk−1(ω)(t) for t ∈ [0, τ̂k−1).
If ˜︁gk−1(ω)(τ̂k−1) ∈ R2

−, set gk(ω)(t) = ˜︁gk(ω)(t) = (0, 0) for all t ∈ [τ̂k−1, T ].
Otherwise, for t ⩾ τ̂k−1 first define

˜︁gk(ω)(t) := gk−1(ω)(t) + ℓ
(2)
t (gk−1(ω))R

with reflection matrix R :=
(︄

1 −1
−1 1

)︄
and

τ̂k := τ̂k(ω) := inf
{︂
t ⩾ τ̂k−1 :π(2)

1 ˜︁gk(ω)(t)1{︂
π

(2)
2 gk−1(ω)(τ̂k−1)⩽0

}︂
+ π

(2)
2 ˜︁gk(ω)(t)1{︂

π
(2)
1 gk−1(ω)(τ̂k−1)⩽0

}︂ ⩽ 0
}︂

∧ T.

Then set gk(ω)(t) = ˜︁gk(ω)(t ∧ τ̂k−) + ω(t) − ω(t ∧ τ̂k−) for all t ∈ [0, T ].

• Set τ̂0 := 0 and

g(ω)(t) :=
∞∑︂
k=1

gk(ω)(t)1[τ̂k−1,τ̂k)(t) =
∞∑︂
k=1

˜︁gk(ω)(t)1[τ̂k−1,τ̂k)(t) for t ∈ [0, T ).

Moreover, if there exists a finite κ ∈ N such that τ̂∞(ω) := limk→∞ τ̂k(ω) = τ̂κ(ω),
then set g(ω)(T ) = ˜︁gκ+1(ω)(T ). Otherwise, set g(ω)(T ) = (0, 0).

Remark 2.3.3 (Modifications for smaller time domains). We also want to apply the
function g to an element ω ∈ D([0, t],R2), where t < T. With a little abuse of notation,
we write g(ω) ∈ D([0, t],R2

+) without further comment. Here, g(ω) ∈ D([0, t],R2) is
defined as in Definition 2.3.2, where T is replaced by t. In the same way, we apply the
subsequently defined functions to elements of D([0, t],R2) and D([0, t],R4), respectively,
for t < T.

As desired, the function g describes the dynamics of the queue size process πi ˜︁Q(n),
i = b, a, corresponding to one side of the shared order book between consecutive price
changes if we plug in the corresponding components of the net order flow process
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πiX
(n), i.e., on the event that no price change appears during [0, t] for some t ∈ [0, T ],

we can write

πi ˜︁Q(n)(s) = g
(︂
πi ˜︁Q(n)

0 + πiX
(n)
)︂

(s) for all s ∈ [0, t].

Let us now introduce the function h1 : D([0, T ],R2) → D([0, T ],R) given by

h1(ω) = π
(2)
1 ω + π

(2)
2 ω. (2.3.3)

With a little abuse of notation, we will write h1(x) = x1 +x2 ∈ R for x = (x1, x2) ∈ R2.
The next lemma states that the sum of the components of g(ω) can be identified with
the sum of the components of ω as long as g(ω) does not hit the origin.

Lemma 2.3.4. Let ω ∈ D([0, T ],R2), τ(ω) := inf{t ⩾ 0 : g(ω)(t) = (0, 0)} ∧ T, and
assume that τ̂∞(ω) = τ(ω). Then,

(h1 ◦ g) (ω)(t) = h1(ω)(t) + sup
s⩽t

(−h1(ω)(s))+ for t ∈ [0, τ(ω)].

Moreover, we have τ(ω) = inf{t ⩾ 0 : h1(ω)(t) ⩽ 0} ∧ T.

The proof is postponed to Section 2.7.3. For some ω ∈ D([0, T ],R2), we will frequently
assume that the function g(ω) ∈ D([0, T ],R2

+) has only two behaviors to approach
τ̂∞(ω): if τ̂∞ < T, then g(ω) undergoes an infinitely number of successive reflections
from the two axes. Otherwise, g(ω) is only finitely often reflected and satisfies g(ω)(T ) ∈
(0,∞)2. This behavior is described in the next condition.

Condition (I). We say that ω ∈ D([0, T ],R2) satisfies condition (I) if one of the two
mutually exclusive conditions holds true:

(Ia) There exists a finite κ ∈ N such that τ̂∞(ω) = τ̂κ(ω) = T and g(ω)(T ) ∈ (0,∞)2.

(Ib) For all k ∈ N, it holds that τ̂k(ω) < τ̂∞(ω) < T.

In order to characterize the continuity set of the function g, we endow the space
D([0, T ],R2) with the Skorokhod topology (cf. e.g. Billingsley [8]). Moreover, let us
introduce the function space C ′

0([0, T ],R2 \ {(0, 0)}) containing all continuous functions
ω ∈ C([0, T ],R2) avoiding the origin and whose components cross the axes each
time they touch them (cf. equation (2.7.4) for details). Then, the following lemma
characterizes the continuity set of g.

Lemma 2.3.5 (Continuity of g). Let ω0 ∈ C ′
0([0, T ],R2 \ {(0, 0)}) satisfy condition

(I), h1(ω0) ∈ C ′
0([0, T ],R), and assume that τ̂∞(ω0) = τ(ω0). Then, the function

g : D([0, T ],R2) → D([0, T ],R2
+) is continuous at ω0.

The proof is stated in Section 2.7.2.2. Let us introduce a function that maps càdlàg,
R4-valued functions onto the space of càdlàg functions with values in R4

+. For ω ∈
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D([0, T ],R4), let

G : D([0, T ],R4) → D([0, T ],R4
+),

G(ω) =
(︂
π

(2)
1 g(πbω), π(2)

1 g(πaω), π(2)
2 g(πbω), π(2)

2 g(πaω)
)︂
.

(2.3.4)

We observe that the function G describes the dynamics of the queue size process ˜︁Q(n)

corresponding to the shared order book between consecutive price changes if we plug in
the net order flow process X(n), i.e., on the event that no price change appears during
[0, t] for some t ∈ [0, T ], we can write

˜︁Q(n)(s) = G
(︂ ˜︁Q(n)

0 +X(n)
)︂

(s) for all s ∈ [0, t].

We note that the continuity set of G can be directly deduced from Lemma 2.3.5.

Corollary 2.3.6 (Continuity of G). Let ω0 ∈ D([0, T ],R4) be such that its projec-
tions πbω0 and πaω0 satisfy the assumptions of Lemma 2.3.5. Then, the function
G : D([0, T ],R4) → D([0, T ],R4

+) is continuous at ω0.

We recall the definition of the function h : D([0, T ],R4) → D([0, T ],R2) given by

h(ω) = (h1(πbω), h1(πaω)) = (π1ω + π3ω, π2ω + π4ω) (2.3.5)

and note that the process h( ˜︁Q(n)) describes the evolution of the cumulative queue size
process over time. Next, observe that the first hitting time map ˜︁τ : D([0, T ],R4) → [0, T ]
defined by

˜︁τ(ω) := inf
{︂
t ⩾ 0 : ∃ i ∈ {1, 2} with (π(2)

i ◦ h)(ω)(t) ⩽ 0
}︂

∧ T (2.3.6)

equals ˜︁τ1(ω) := inf{t ⩾ 0 : ∃ i ∈ {1, 2} with (π(2)
i ◦ h ◦G)(ω)(t) = 0} ∧ T (cf. Lemma

2.3.4). Moreover, introducing the first hitting time maps ˜︁τb, ˜︁τa : D([0, T ],R4) → [0, T ]
by

˜︁τb(ω) := inf
{︂
t ⩾ 0 : (π(2)

1 ◦ h)(ω)(t) ⩽ 0
}︂

∧ T,

˜︁τa(ω) := inf
{︂
t ⩾ 0 : (π(2)

2 ◦ h)(ω)(t) ⩽ 0
}︂

∧ T,
(2.3.7)

we can rewrite ˜︁τ(ω) = ˜︁τb(ω) ∧ ˜︁τa(ω). In particular, ˜︁τ(ω) reveals the first hitting time
before T of h(ω) of the axes {(0, y) : y > 0} ∪ {(x, 0) : x ⩾ 0}.

Next, based on the definition of the functions G and ˜︁τ , we introduce another function
that can be used to construct the queue size process ˜︁Q(n) from the net order flow
process X(n) and the random sequences ˜︁R+,(n) and ˜︁R−,(n). In particular, this function
takes the possibility of price changes into account leading to reinitializations of the
queue size process ˜︁Q(n) at new positions inside R4

+.
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Definition 2.3.7. Let ω ∈ D([0, T ],R4) and let R = (Rn)n⩾1, ˜︁R = ( ˜︁Rn)n⩾1 ∈ (R4
+)N.

For k ∈ N0, we define ˜︁ΨQ
k (ω,R, ˜︁R), ˜︁ΨQ(ω,R, ˜︁R) ∈ D([0, T ],R4

+) as follows:

• Set ˜︁ΨQ
0 (ω,R, ˜︁R) := G(ω).

• Let k ⩾ 1 and ˜︁ΨQ
k−1 := ˜︁ΨQ

k−1(ω,R, ˜︁R). If ˜︁τ(˜︁ΨQ
k−1) = T , then ˜︁ΨQ

k (ω,R, ˜︁R) =˜︁ΨQ
k−1(ω,R, ˜︁R). Otherwise, we define

˜︁ΨQ
k (ω,R, ˜︁R) := ˜︁ΨQ

k−11
[︁
0,˜︁τ(˜︁ΨQ

k−1)
)︁

+ 1[︁˜︁τ(˜︁ΨQ
k−1),T

]︁{︄1{︁˜︁τ(˜︁ΨQ
k−1)=˜︁τa(˜︁ΨQ

k−1)
}︁G (︂Rk + ω − ω

(︂˜︁τ(˜︁ΨQ
k−1)

)︂)︂

+ 1{︁˜︁τ(˜︁ΨQ
k−1)=˜︁τb(˜︁ΨQ

k−1)
}︁G (︂ ˜︁Rk + ω − ω

(︂˜︁τ(˜︁ΨQ
k−1)

)︂)︂}︄
.

• Finally, we set ˜︁τ0 := 0, ˜︁τk := ˜︁τ(˜︁ΨQ
k−1(ω,R, ˜︁R)) for k ⩾ 1, and

˜︁ΨQ(ω,R, ˜︁R)(t) =
∞∑︂
k=1

˜︁ΨQ
k−1(ω,R, ˜︁R)(t)1[˜︁τk−1,˜︁τk)(t) for t ∈ [0, T ).

Moreover, if there exists a finite NT such that ˜︁τNT
< T and ˜︁τNT +1 = T, then set˜︁ΨQ(ω,R, ˜︁R)(T ) = ˜︁ΨQ

NT
(ω,R, ˜︁R)(T ). Otherwise, set ˜︁ΨQ(ω,R, ˜︁R)(T ) = (0, 0, 0, 0).

The above definition states, that the path of ˜︁ΨQ(ω,R, ˜︁R) is obtained by “regulating”
the path of ω ∈ D([0, T ],R4) according to the function G and the sequences (Rn)n⩾1
and ( ˜︁Rn)n⩾1: between two hitting times ˜︁τk and ˜︁τk+1, the function ˜︁ΨQ(ω,R, ˜︁R) behaves
as G(Rk + ω − ω(˜︁τk)) or G( ˜︁Rk + ω − ω(˜︁τk)) depending on whether (h ◦ ˜︁ΨQ

k−1)(ω,R, ˜︁R)
first hits the y- or x-axis. Moreover, at the times ˜︁τ1, ˜︁τ2, · · · , the process jumps to a new
position inside R4

+ taken from the sequence (Rn)n⩾1 or ( ˜︁Rn)n⩾1, respectively.

Remark 2.3.8. If there exists a finite NT such that ˜︁τNT
< T and ˜︁τNT +1 = T then by

construction of ˜︁ΨQ, we have

˜︁ΨQ(ω,R, ˜︁R)(t) = ˜︁ΨQ
NT

(ω,R, ˜︁R)(t) for all t ∈ [0, T ].

Let us now study the continuity set of the function ˜︁ΨQ. Therefore, we endow the
space D([0, T ],R4) also with the Skorokhod topology. Moreover, we endow the set
(R4

+)N with the topology induced by cylindrical semi-norms, defined as follows: for a
sequence (Rn)n⩾1 ⊂ (R4

+)N,

Rn → R ∈ (R4
+)N ⇔

(︂
∀k ⩾ 1, sup

{︁
∥Rn1 −R1∥, · · · , ∥Rnk −Rk∥

}︁
→ 0

)︂
.

The space D([0, T ],R4) × (R4
+)N × (R4

+)N is then endowed with the corresponding
product topology.
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Theorem 2.3.9 (Continuity of ˜︁ΨQ). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4
+)N × (R4

+)N
satisfy the following four conditions:

i) ω(0), Rk, and ˜︁Rk ∈ (0,∞)4 for all k ⩾ 1.

ii) There exists a finite, N-valued NT such that ˜︁ΨQ(ω,R, ˜︁R)(t) = ˜︁ΨQ
NT

(ω,R, ˜︁R)(t)
for t ∈ [0, T ] and (h ◦ ˜︁ΨQ

NT
)(ω,R, ˜︁R)(T ) ∈ (0,∞)2.

iii) Let ˜︁φk(ω,R, ˜︁R) := ˜︁ΨQ(ω,R, ˜︁R)(˜︁τk) + ω(· + ˜︁τk) − ω(˜︁τk). The functions ω and˜︁φk(ω,R, ˜︁R), 1 ⩽ k ⩽ NT , satisfy the conditions of Corollary 2.3.6.

iv) Finally, (0, 0) /∈ (h ◦ ˜︁ΨQ)(ω,R, ˜︁R)([0, T ]).

Then, the function ˜︁ΨQ : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],R4
+) introduced in

Definition 2.3.7 is continuous at (ω,R, ˜︁R).

The proof of Theorem 2.3.9 is postponed to Section 2.7.2.3. The conditions in the
above theorem are not very instructive at first glance. Note that condition i) ensures
that ˜︁ΨQ(ω,R, ˜︁R) starts and is reinitialized at points in the interior of R4

+. Moreover,
condition ii) ensures that the function ˜︁ΨQ(ω,R, ˜︁R) is reinitialized only NT < ∞ often
in [0, T ], but not at time T. Furthermore, conditions iii) ensures that G is continuous
at ω and at the random shift ˜︁φk(ω,R, ˜︁R) of ω for all 1 ⩽ k ⩽ NT . Finally, condition
iv) guarantees that the reinitialization of ˜︁ΨQ(ω,R, ˜︁R) at ˜︁τk by either Rk or ˜︁Rk is
continuous at (ω,R, ˜︁R). Later, we will apply the map ˜︁ΨQ to a four-dimensional linear
Brownian motion X starting in the interior of R4

+ and random sequences R+ and R−

with almost surely values in (0,∞)4. We show in the proof of Theorem 2.3.19 below,
that (X,R+, R−) fulfills conditions i)-iv) with probability one implying that it lies with
probability one in the continuity set of ˜︁ΨQ.

Now, the function ˜︁ΨQ may be applied to any càdlàg stochastic process: given a càdlàg
process X with values in R4 and random sequences R = (Rn)n⩾1 and ˜︁R = ( ˜︁Rn)n⩾1
with values in (0,∞)4, the process ˜︁ΨQ(X,R, ˜︁R) is a càdlàg process with values in
R4

+. Finally, we deduce that the queue size process ˜︁Q(n) may be constructed by this
procedure.

Theorem 2.3.10. For each n ∈ N, the queue size process ˜︁Q(n) is given by

˜︁Q(n) = ˜︁ΨQ
(︂ ˜︁Q(n)

0 +X(n), ˜︁R+,(n), ˜︁R−,(n)
)︂
, (2.3.8)

where

• ˜︁Q(n)
0 ∈ (0,∞)4 are the initial queue sizes of the bid/ask queues,

• X(n) is the piecewise constant interpolation of the net order flow process,
• ˜︁R+,(n) ∈ ((0,∞)4)N is the sequence of queue sizes after price increases in ˜︁S(n),
• ˜︁R−,(n) ∈ ((0,∞)4)N is the sequence of queue sizes after price decreases in ˜︁S(n).
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Proof. Each component of the net order flow process X(n) represents the sum of
incoming order sizes of a specific type (i, I) ∈ {b, a} × {F,G} over time. Then, a
comparison of the described dynamics of the individual queue size processes (see the
definition in (2.2.2)-(2.2.5)) with the construction procedure in Definitions 2.3.2 and
Definition 2.3.7 yields the stated equality (2.3.8).

2.3.2 The capacity process as a regulated process
Let us introduce the piecewise constant interpolation of the discrete-time processes
( ˜︁C(n)

k )k=0,··· ,Tn and (M (n)
k )k=0,··· ,Tn introduced in (2.2.6) and (2.2.7) by

˜︁C(n)(t) = ˜︁C(n)
k and M (n)(t) = M

(n)
k for t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
.

In this subsection, we want to derive a representation of the unrestricted capacity
process ˜︁C(n) as a regulated process of the net order flow process X(n) and the sequences
of random variables ˜︁R+,(n) and ˜︁R−,(n). To this end, let us introduce the function
g : D([0, T ],R2) → D([0, T ],R2

+) which describes the dynamics of the number of cross-
border trades triggered by events affecting one side of the shared order book provided
that the cumulative queue size process of the corresponding side stays strictly larger
than zero (i.e. no price change has been observed).

Definition 2.3.11. Let ω ∈ D([0, T ],R2). Moreover, for k ∈ N, let τ̂k := τ̂k(ω), ˜︁gk(ω),
and gk(ω) be as in Definition 2.3.2. We inductively define for k ∈ N the functions
gk(ω) and g(ω) ∈ D([0, T ],R2

+) as follows: set g1(ω) := (0, 0). For k ⩾ 2, we set
gk(ω)(t) = gk−1(ω)(t) for t ∈ [0, τ̂k−1).

• If ˜︁gk−1(ω)(τ̂k−1) /∈ R2
−, we set for t ⩾ τ̂k−1

gk(ω)(t) := gk−1(ω)(τ̂k−1−) + ℓ
(2)
t (gk−1(ω)).

• In contrast, if ˜︁gk−1(ω)(τ̂k−1) ∈ R2
−, we set for t ⩾ τ̂k−1

gk(ω)(t) := gk−1(ω)(τ̂k−1−) + ℓ
(2)
τ̂k−1

(˜︁gk−1(ω)).

• Finally, we set

g(ω)(t) :=
∞∑︂
k=1

gk(ω)(t)1[τ̂k−1,τ̂k)(t) for t ∈ [0, τ̂∞).

If there exists a finite κ ∈ N with τ̂∞ = τ̂κ then set g(ω)(t) = gκ+1(ω)(t) for all
t ⩾ τ̂κ. Otherwise, set g(ω)(τ̂∞) = limt→τ̂∞ g(ω)(t) and g(ω)(t) = g(ω)(τ̂∞) for
all t > τ̂∞.

As desired, the function g describes the dynamics of the number of cross-border
trades πiM (n) triggered by events of type i = b, a if we plug in the corresponding
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components of the net order flow process πiX(n), i.e., on the event that no price change
appears during [0, t] for some t ∈ [0, T ], it holds

πiM
(n)(s) = g

(︂
πi ˜︁Q(n)

0 + πiX
(n)
)︂

(s) for all s ∈ [0, t].

Moreover, if ˜︁gk−1(ω)(τ̂k−1) /∈ R2
− but ˜︁gk(ω)(τ̂k) ∈ R2

−, our definition of g(ω) on [τ̂k, T ]
ensures that the possibly last cross-border trade has been counted and extends g(ω)
from [0, τ̂k) to the whole time interval [0, T ]. Comparing the definition of g with that
of g, we obtain for ω ∈ D([0, T ],R2) the relation

g(ω) = ω + g(ω)R.

Hence, we can directly deduce the continuity of the function ĝ := π
(2)
2 g − π

(2)
1 g from

the characterization of the continuity set of g derived in Lemma 2.3.5.

Lemma 2.3.12. Let ω0 ∈ C ′
0([0, T ],R2 \ {(0, 0)}) satisfy condition (I), h1(ω0) ∈

C ′
0([0, T ],R), and assume that τ̂∞(ω0) = τ(ω0). Then, the function ĝ : D([0, T ],R2) →

D([0, T ],R) given by ĝ := π
(2)
2 g − π

(2)
1 g is continuous at ω0.

Proof. Thanks to Lemma 2.3.5, the function g : D([0, T ],R2) → D([0, T ],R2
+) is

continuous at ω0. Then, the continuity of ĝ : D([0, T ],R2) → D([0, T ],R) at ω0 directly
follows from the relation ĝ(ω) = π

(2)
1 ω − π

(2)
1 g(ω), for ω ∈ D([0, T ],R2).

Let us introduce another function Ĝ that maps càdlàg processes with values in R4

to the space of càdlàg processes with values in R. For ω ∈ D([0, T ],R4), let

Ĝ : D([0, T ],R4) → D([0, T ],R), Ĝ (ω) = ĝ(πbω) − ĝ(πaω). (2.3.9)

We observe that the function Ĝ describes the dynamics of the capacity process ˜︁C(n)

if we plug in the net order flow process X(n), i.e., on the event that no price change
appears during [0, t] for some t ∈ [0, T ], we have

˜︁C(n)(s) = ˜︁C(n)
0 + Ĝ

(︂ ˜︁Q(n)
0 +X(n)

)︂
(s) for all s ∈ [0, t].

Now, the continuity set of Ĝ can be directly deduced from Lemma 2.3.12.

Corollary 2.3.13. (Continuity of Ĝ) Let ω0 ∈ D([0, T ],R4) be such that its projections
πbω0 and πaω0 satisfy the assumptions of Lemma 2.3.12. Then, the function Ĝ :
D([0, T ],R4) → D([0, T ],R) is continuous at ω0.

Next, we introduce a function ˜︁ΨC that will be used to describe the evolution of the
unrestricted capacity process ˜︁C(n) over time. Note that also ˜︁C(n) is affected by the
reinitialization of the queue size process after each price change.
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Definition 2.3.14. Let ω ∈ D([0, T ],R4) and R = (Rn)n⩾1, ˜︁R = ( ˜︁Rn)n⩾1 ∈ ((0,∞)4)N.
For k ∈ N let the functions ˜︁τk := ˜︁τk(ω,R, ˜︁R) and ˜︁ΨQ(ω,R, ˜︁R) be as in Definition 2.3.7.
We define ˜︁ΨC(ω,R, ˜︁R) ∈ D([0, T ],R) as follows:

• For t ⩽ ˜︁τ1, let ˜︁ΨC(ω,R, ˜︁R)(t) = Ĝ(ω)(t).

• For k ⩾ 1 and ˜︁τk < t ⩽ ˜︁τk+1, we set

˜︁ΨC(ω,R, ˜︁R)(t) = ˜︁ΨC(ω,R, ˜︁R)(˜︁τk) + Ĝ
(︂˜︁ΨQ(ω,R, ˜︁R)(˜︁τk) + ω − ω(˜︁τk))︂(t).

• Moreover, for t > ˜︁τ∞ := limk→∞ ˜︁τk, we set ˜︁ΨC(ω,R, ˜︁R)(t) = 0.

Since R, ˜︁R ∈ ((0,∞)4)N, we have Ĝ(˜︁ΨQ(ω,R, ˜︁R)(˜︁τk) + ω − ω(˜︁τk))(˜︁τk) = 0 for all
k ∈ N and hence ˜︁ΨC(ω,R, ˜︁R)(˜︁τk) = ˜︁ΨC(ω,R, ˜︁R)(˜︁τk+). We conclude that ˜︁ΨC(ω,R, ˜︁R)
indeed takes values in the space D([0, T ],R). For k ⩾ 1, the function ˜︁ΨC(ω,R, ˜︁R) is not
reinitialized at ˜︁τk but still depends on the reinitialization of ΨQ(ω,R, ˜︁R) at ˜︁τk. Thanks
to the characterization of the continuity set of ˜︁ΨQ in Theorem 2.3.9, we immediately
obtain an understanding of the continuity points of ˜︁ΨC .

Theorem 2.3.15 (Continuity of ˜︁ΨC). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × ((0,∞)4)N ×
((0,∞)4)N satisfy the conditions i)-iv) in Theorem 2.3.9. Then the function ˜︁ΨC :
D([0, T ],R4) × ((0,∞)4)N × ((0,∞)4)N → D([0, T ],R) introduced in Definition 2.3.14
is continuous at (ω,R, ˜︁R).

Proof. Since (ω,R, ˜︁R) satisfies the conditions of Theorem 2.3.9, we know that ˜︁ΨQ is
continuous at (ω,R, ˜︁R). Since condition ii) holds, the map NT : D([0, T ],R4)× (R4

+)N ×
(R4

+)N → N0 ∪ {+∞} is continuous at (ω,R, ˜︁R) and NT (ω,R, ˜︁R) < ∞. Moreover,
condition iii) together with Corollary 2.3.13 implies that Ĝ is continuous at ω and at˜︁ΨQ(ω,R, ˜︁R)(˜︁τk) +ω(· + ˜︁τk) −ω(˜︁τk) for all 1 ⩽ k ⩽ NT . Hence, ˜︁ΨC is the sum of finitely
many functions that are continuous at (ω,R, ˜︁R) and hence must be itself continuous at
(ω,R, ˜︁R).

Finally, we can construct the dynamics of the unrestricted capacity process ˜︁C(n)

with the procedure introduced in Definition 2.3.14.

Theorem 2.3.16. For each n ∈ N, the process ˜︁C(n) is given by

˜︁C(n) = ˜︁C(n)
0 + ˜︁ΨC

(︂ ˜︁Q(n)
0 +X(n), ˜︁R+,(n), ˜︁R−,(n)

)︂
(2.3.10)

where

• ( ˜︁Q(n)
0 , ˜︁C(n)

0 ) ∈ (0,∞)4 × R are the initial bid/ask queues and capacity dynamics,
• X(n) is the piecewise constant interpolation of the net order flow process,
• ˜︁R+,(n) ∈ ((0,∞)4)N is the sequence of queue sizes after a price increase in ˜︁S(n),
• ˜︁R−,(n) ∈ ((0,∞)4)N is the sequence of queue sizes after a price decrease in ˜︁S(n).
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Proof. Each component of the net order flow process X(n) represents the sum of
incoming order sizes of a specific type (i, I) ∈ {b, a} × {F,G} over time. Then, a
comparison of the described dynamics of the number of cross-border trades and of
the capacity process (see the definition in (2.2.6) and (2.2.7)) with the construction
procedure in Definition 2.3.11 and Definition 2.3.14 yields the stated equality (2.3.10).

2.3.3 The price process as a regulated process
In this subsection, we introduce a new representation of the bid price process ˜︁B(n)

in terms of transformations of the net order flow process X(n) and the sequences of
random variables ˜︁R+,(n) and ˜︁R−,(n) corresponding to the order sizes after price changes.

Definition 2.3.17. Let ω ∈ D([0, T ],R4) and R = (Rn)n⩾1, ˜︁R = ( ˜︁Rn)n⩾1 ∈ (R4
+)N.

For k ∈ N, let ˜︁τk := ˜︁τk(ω,R, ˜︁R) and ˜︁ΨQ
k−1 := ˜︁ΨQ

k−1(ω,R, ˜︁R) be as in Definition 2.3.7.
Then, we define the functions Nb(ω,R, ˜︁R), Na(ω,R, ˜︁R) ∈ D([0, T ],N0 ∪ {+∞}), and˜︁ΨB(ω,R, ˜︁R) ∈ D([0, T ],R2) by

Na(ω,R, ˜︁R) :=
∑︂
˜︁τk⩽·

1{︂(︂
π

(2)
2 ◦h◦˜︁ΨQ

k−1

)︂
(˜︁τk)⩽0

}︂, Nb(ω,R, ˜︁R) :=
∑︂
˜︁τk⩽·

1{︂(︂
π

(2)
1 ◦h◦˜︁ΨQ

k−1

)︂
(˜︁τk)⩽0

}︂,
and ˜︁ΨB(ω,R, ˜︁R) := δ

(︂
Na(ω,R, ˜︁R) −Nb(ω,R, ˜︁R)

)︂
(1, 1).

It can be easily deduced from the described bid price dynamics in equations (2.2.2)-
(2.2.5) that ˜︁B(n) = ˜︁B(n)

0 + ˜︁ΨB
(︂ ˜︁Q(n)

0 +X(n), ˜︁R+,(n), ˜︁R−,(n)
)︂
, (2.3.11)

where ˜︁B(n)
0 = ( ˜︁BF,(n)

0 , ˜︁BF,(n)
0 ) ∈ (δZ)2 by the assumptions on the initial states. The

following theorem characterizes the continuity set of the function ˜︁ΨB.

Theorem 2.3.18 (Continuity of ˜︁ΨB). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4
+)N × (R4

+)N
satisfy the conditions i)-iv) in Theorem 2.3.9. Moreover, assume that

Disc
(︂
Na(ω,R, ˜︁R)

)︂
∩ Disc

(︂
Nb(ω,R, ˜︁R)

)︂
= Ø, (2.3.12)

where Disc(Ni(ω,R, ˜︁R)) := {t ∈ [0, T ] : Ni(ω,R, ˜︁R)(t−) ̸= Ni(ω,R, ˜︁R)(t)} for i = b, a.
Then, the map ˜︁ΨB : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R2) is continuous at

(ω,R, ˜︁R).

Proof. Since the conditions i)-iv) of Theorem 2.3.9 hold for (ω,R, ˜︁R), we know by
Corollary 2.7.13 that the maps Nb, Na : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],N0)

are continuous at (ω,R, ˜︁R). Since also the condition in (2.3.12) is satisfied, we can
apply Theorem 4.1 in Whitt [85] and conclude that also the map ˜︁ΨB : D([0, T ],R4) ×
(R4

+) × (R4
+)N → D([0, T ],R2) is continuous at (ω,R, ˜︁R). This finishes the proof.
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2.3.4 A limit theorem for the active dynamics
In this subsection, we derive a convergence theorem for the active market dynamics˜︁S(n) := ( ˜︁B(n), ˜︁Q(n), ˜︁C(n)). The proof is based on the functional central limit theorem
for X(n) (cf. Proposition 2.3.1) combined with the continuous mapping theorem. In the
following, let us introduce the sequence of stopping times corresponding to the prices
changes in ˜︁S(n) by ˜︁τ (n)

0 := 0 and

˜︁τ (n)
k := ˜︁τ (︂˜︁ΨQ

k−1

(︂ ˜︁Q(n)
0 +X(n), ˜︁R+,(n), ˜︁R−,(n)

)︂)︂
for k ⩾ 1, (2.3.13)

where the first hitting time map ˜︁τ : D([0, T ],R4) → [0, T ] is defined in (2.3.6). Next,
for (ω,R, ˜︁R) ∈ D([0, T ],R4) × ((0,∞)4)N × ((0,∞)4)N and s0 := (b0, q0, c0) ∈ R2 ×
(0,∞)4 × R let us introduce the function

˜︁Ψ(s0;ω,R, ˜︁R) :=
(︂
b0 + ˜︁ΨB(q0 + ω,R, ˜︁R), ˜︁ΨQ(q0 + ω,R, ˜︁R), c0 + ˜︁ΨC(q0 + ω,R, ˜︁R)

)︂
and observe that by Theorem 2.3.10, Theorem 2.3.16, and equation (2.3.11) the process˜︁S(n) := ( ˜︁B(n), ˜︁Q(n), ˜︁C(n)) = ˜︁Ψ( ˜︁S(n)

0 ;X(n), R+,(n), R−,(n)).

Theorem 2.3.19 (Limit theorem for the active dynamics ˜︁S(n)). Let Assumptions 2.2,
2.3, and 2.4 be satisfied and let ˜︁S(n)

0 ∈ (δZ)2 × (∆v(n)N)4 ×∆v(n)Z with ˜︁BF,(n)
0 = ˜︁BG,(n)

0
for all n ∈ N be such that ˜︁S(n)

0 → ˜︁S0 ∈ (δZ)2 × (0,∞)4 × R. Then,

˜︁S(n) = ˜︁Ψ (︂ ˜︁S(n)
0 ;X(n), ˜︁R+,(n), ˜︁R−,(n)

)︂
⇒ ˜︁Ψ (︂ ˜︁S0;X, ˜︁R+, ˜︁R−

)︂
=: ( ˜︁B, ˜︁Q, ˜︁C) =: ˜︁S

in the Skorokhod topology on the space D([0, T ], E), where the sequences ˜︁R+ := ( ˜︁R+
k )k⩾1

and ˜︁R− := ( ˜︁R−
k )k⩾1 are defined in equation (2.3.17) below.

Proof. Proposition 2.3.1 combined with the assumption on the initial state shows,
that the net order flow process Y (n) := ˜︁Q(n)

0 +X(n) satisfies a functional central limit
theorem, i.e.,

Y (n) ⇒ Y :=
(︂ ˜︁Q0 + Σ1/2B(t) + tµ

)︂
t⩾0

(2.3.14)

in the Skorokhod topology onD([0, T ],R4), whereB defines a standard, four-dimensional
Brownian motion and the drift µ and the covariance matrix Σ are defined in Proposition
2.3.1. With a slight abuse of notion, by the Skorokhod representation theorem and
Assumption 2.4 we may assume the existence of independent sequences of iid random
variables (ϵ+k )k⩾1, (ϵ−k )k⩾1 on (Ω,F ,P) where ϵ+1 ∼ f+, ϵ−1 ∼ f−, and

P
[︂
Y (n) → Y, and for all k ⩾ 1, ϵ+,(n)

k → ϵ+k , ϵ
−,(n)
k → ϵ−k

]︂
= 1.

Applying Theorem 2.3.10, Theorem 2.3.16, and equation (2.3.11), we have ˜︁S(n) :=
( ˜︁B(n), ˜︁Q(n), ˜︁C(n)) = ˜︁Ψ( ˜︁S(n)

0 ;X(n), ˜︁R+,(n), ˜︁R−,(n)). In the following, we will show that
( ˜︁R+,(n), ˜︁R−,(n)) → ( ˜︁R+, ˜︁R−) P-almost surely for appropriately constructed sequences

114



2.3. ANALYSIS OF THE ACTIVE DYNAMICS

˜︁R+ and ˜︁R−, and (Y, ˜︁R+, ˜︁R−) lies, with probability one, in the continuity set of ˜︁ΨI , I =
B,Q,C. Then, the assumption on the initial states, equation (2.3.14), and the continuous
mapping theorem yield the stated result. Let us first prove that ( ˜︁R+,(n), ˜︁R−,(n)) →
( ˜︁R+, ˜︁R−) P-almost surely.

For i = b, a, the process πiY defines a planar Brownian motion starting in πi ˜︁Q0 ∈
(0,∞)2. Applying Lemma 2.7.7 and Corollary 2.3.6, we conclude thatG : D([0, T ],R4) →
D([0, T ],R4

+) is P-almost surely continuous at Y. Now, Proposition 2.3.1 and the con-
tinuous mapping theorem (cf. Billingsley [8, Theorem 2.7]) imply

G(Y (n)) → G(Y ) P-a.s.

in the Skorokhod topology. Next, we construct the limit process ˜︁Q of ˜︁Q(n) by induction:
let ˜︁τ∗

1 = ˜︁τ(G(Y )) be the first hitting time of (h ◦ G)(Y ) of the axes {(0, y) : y >
0} ∪ {(x, 0) : x > 0} and let us set ˜︁Q(t) = G(Y )(t) for t < ˜︁τ∗

1 . Since (h ◦G)(Y ) = h(Y )
on [0, ˜︁τ∗

1 ) (cf. Lemma 2.3.4), ˜︁τ∗
1 equals the first hitting time of h(Y ) of the axes and

h(Y ) crosses the axes at ˜︁τ∗
1 with probability one. Since Y is a four-dimensional linear

Brownian motion, h(Y ) is again a planar Brownian motion and has therefore almost
surely sample paths in C ′

0([0, T ],R2 \ {(0, 0)}). Now, the continuity of the first hitting
time and last value map (cf. Lemma 2.7.2) and the continuous mapping theorem imply(︂˜︁τ (n)

1 , ˜︁Q(n)(˜︁τ (n)
1 −)

)︂
→
(︂˜︁τ∗

1 ,
˜︁Q(˜︁τ∗

1 −)
)︂

P-a.s.

Let us set

˜︁Q(˜︁τ∗
1 ) := Φ

(︁
G(Y )(˜︁τ∗

1 −), ϵ+1
)︁
1{˜︁τa,1=˜︁τ∗

1 } + Φ
(︁
G(Y )(˜︁τ∗

1 −), ϵ−1
)︁
1{˜︁τb,1=˜︁τ∗

1 },

where, for the first hitting time maps ˜︁τb, ˜︁τa introduced in equation (2.3.7), we set

˜︁τa,1 := ˜︁τa(G(Y )) and ˜︁τb,1 := ˜︁τb(G(Y )).

Again, since we can relate ˜︁τ∗
1 (and also ˜︁τb,1, ˜︁τa,1) to the first hitting time of h(Y ) of the

axes, and h(Y ) has, with probability one, sample paths in C ′
0([0, T ],R2\{(0, 0)}), we can

apply Lemma 2.7.3 to conclude that G(Y ) lies, with probability one, in the continuity
set of Hi : ω ↦→ 1{˜︁τ(ω)=˜︁τi(ω)}, i = b, a. So, using Assumption 2.4 (i.e. ∥Φ(n) − Φ∥∞ → 0
and the continuity of Φ(·, ·)), the continuity of the last value map, and the continuous
mapping theorem, we conclude

˜︁Q(n)(˜︁τ (n)
1 ) → ˜︁Q(˜︁τ∗

1 ) P-a.s.

Let us now show the induction step: assume that we have defined ˜︁Q on [0, ˜︁τ∗
k ] and have

shown that(︂˜︁τ (n)
1 , · · · , ˜︁τ (n)

k , ˜︁Q(n)(˜︁τ (n)
1 ), · · · , ˜︁Q(n)(˜︁τ (n)

k )
)︂

→
(︂˜︁τ∗

1 , · · · , ˜︁τ∗
k ,
˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k )
)︂

P-a.s.

Next, we define the stopping time ˜︁τ∗
k+1 := ˜︁τ(˜︁ΨQ

k (Y, ˜︁Q(˜︁τ∗
1 ), · · · , ˜︁Q(˜︁τ∗

k ))), i.e., ˜︁τ∗
k+1 denotes
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the first hitting time of (h ◦ ˜︁ΨQ
k )(Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k )) of the axes {(0, y) : y > 0} ∪

{(x, 0) : x > 0}. Now, we want to extend the definition of ˜︁Q to [0, ˜︁τ∗
k+1] by setting

˜︁Q(t) := ˜︁ΨQ
k (Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k ))(t), for t < ˜︁τ∗

k+1,˜︁Q(˜︁τ∗
k+1) := Φ

(︂ ˜︁Q(˜︁τ∗
k+1−), ϵ+k

)︂
1{˜︁τa,k+1=˜︁τ∗

k+1} + Φ
(︂ ˜︁Q(˜︁τ∗

k+1−), ϵ−k+1

)︂
1{˜︁τb,k+1=˜︁τ∗

k+1},

where

˜︁τa,k+1 := ˜︁τa (︂˜︁ΨQ
k (Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k ))
)︂
, ˜︁τb,k+1 := ˜︁τb (︂˜︁ΨQ

k (Y, ˜︁Q(˜︁τ∗
1 ), · · · , ˜︁Q(˜︁τ∗

k ))
)︂
.

Let us denote ˜︁Bk := ˜︁Q(˜︁τ∗
k ) + Y (· + ˜︁τ∗

k ) − Y (˜︁τ∗
k ) and observe that ˜︁Bk defines again a

four-dimensional linear Brownian motion. Applying again Lemma 2.7.7 and Corollary
2.3.6, we conclude that G is P-almost surely continuous at ˜︁Bk. Moreover, we observe
that (h ◦G)( ˜︁Bk) = h( ˜︁Bk) on [0, ˜︁τ∗

k+1 − ˜︁τ∗
k ). Therefore, ˜︁τ∗

k+1 − ˜︁τ∗
k equals the first hitting

time of h( ˜︁Bk) of the axes. Since Y is a four-dimensional linear Brownian motion, we
conclude that h( ˜︁Bk) is a planar Brownian motion and has therefore, almost surely,
sample paths in C ′

0([0, T − ˜︁τ∗
k ],R2 \{(0, 0)}). Further, applying Assumption 2.4, we have

that ˜︁Q(˜︁τ∗
1 ), . . . , ˜︁Q(˜︁τ∗

k ) ∈ (0,∞)4 with probability one. Now, by the definition of ˜︁ΨQ
k ,

we conclude that (0, 0) /∈ (h ◦ ˜︁ΨQ
k )(Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k ))([0, ˜︁τ∗

k+1]) almost surely. Hence,
by Lemma 2.7.9, (Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k )) lies with probability one in the continuity set

of ˜︁ΨQ
k . So, by the continuous mapping theorem, we have

˜︁ΨQ
k (Y (n), ˜︁Q(n)(˜︁τ (n)

1 ), · · · , ˜︁Q(n)(˜︁τ (n)
k )) → ˜︁ΨQ

k (Y, ˜︁Q(˜︁τ∗
1 ), · · · , ˜︁Q(˜︁τ∗

k )) P-a.s.

in the Skorokhod topology. Again, combining the continuity of the first hitting time and
last value map (cf. Lemma 2.7.2) and the continuous mapping theorem, we conclude
that

(˜︁τ (n)
k+1,

˜︁Q(n)(˜︁τ (n)
k+1−)) → (˜︁τ∗

k+1,
˜︁Q(˜︁τ∗

k+1−)) P-a.s.

Again, since we can relate ˜︁τ∗
k+1 (and also ˜︁τb,k+1, ˜︁τa,k+1) to the first hitting time of

h( ˜︁Bk) of the axes and h( ˜︁Bk) has, with probability one, sample paths in C ′
0([0, T −˜︁τ∗

k ],R2 \ {(0, 0)}), we can apply Lemma 2.7.3 to conclude that ˜︁ΨQ
k (Y, ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k ))

lies, with probability one, in the continuity set of Hi : ω ↦→ 1{˜︁τ(ω)=˜︁τi(ω)}, i = b, a. So,
using again Assumption 2.4, the continuity of the last value map, and the continuous
mapping theorem, we conclude that ˜︁Q(n)(˜︁τ (n)

k+1) → ˜︁Q(˜︁τ∗
k+1) P-almost surely. So finally,

we have shown for all k ⩾ 1, that(︂˜︁τ (n)
1 , · · · , ˜︁τ (n)

k , ˜︁Q(n)(˜︁τ (n)
1 ), · · · , ˜︁Q(n)(˜︁τ (n)

k )
)︂

→
(︂˜︁τ∗

1 , · · · , ˜︁τ∗
k ,
˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k )
)︂

P-a.s.

Now, we construct the sequences ˜︁R+, ˜︁R− by setting ˜︁R+
k := Φ( ˜︁Q(˜︁τ∗

k−), ϵ+k ) and ˜︁R−
k :=

Φ( ˜︁Q(˜︁τ∗
k−), ϵ−k ), for k ⩾ 1. Then, we have

˜︁Q(˜︁τ∗
k ) = ˜︁R+

k if ˜︁τa,k = ˜︁τ∗
k ,

˜︁Q(˜︁τ∗
k ) = ˜︁R−

k if ˜︁τb,k = ˜︁τ∗
k ,
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and ( ˜︁R+,(n), ˜︁R−,(n)) → ( ˜︁R+, ˜︁R−) P-almost surely.
By Assumption 2.4 we have ˜︁Q(˜︁τ∗

1 ), · · · , ˜︁Q(˜︁τ∗
k ) ∈ (0,∞)4 with probability one. Ap-

plying Lemma 2.3.4 and Theorem 2.3.1, we conclude that h( ˜︁Bk), k ⩾ 0, are planar
Brownian motions, whose increments are independent over k, each starting in the
interior of the positive orthant. Note that the distribution of the first hitting time of
a planar Brownian motion is well studied (cf. e.g. [19, 48, 64, 90] or the conditional
distribution in (2.6.1)). Hence, for any t > 0 and y ∈ (0,∞)4, k ⩾ 0, we conclude that

P
[︂˜︁τ( ˜︁Bk) ⩽ t | ˜︁Bk(0) = y

]︂
=: δ(t, y) ∈ (0, 1) (2.3.15)

and further note that this probability is decreasing in y (component-wise). Next, for
each ε > 0, let us denote by U(ε) := {x ∈ R4

+ : πjx ⩽ ε ∀ j = 1, 2, 3, 4} the ε-ball
with respect to the sup-norm and ϵk := ϵ+k 1{˜︁τa,k=˜︁τ∗

k
} + ϵ−k 1{˜︁τb,k=˜︁τ∗

k
}, k ∈ N. Now for

any ε > 0 and m ⩾ 0 we have thanks to Assumption 2.4 i),

P
[︂˜︁τ( ˜︁Bm) ⩽ t

⃓⃓⃓ ˜︁S(t), t ⩽ ˜︁τ∗
m

]︂
⩽ P

[︂˜︁τ( ˜︁Bm) ⩽ t
⃓⃓⃓ ˜︁Bm(0) /∈ U(ε)

]︂
1{˜︁Bm(0)/∈U(ε)} + 1{˜︁Bm(0)∈U(ε)}

⩽ δ(t, (ε, ε, ε, ε))1{˜︁Bm(0)/∈U(ε)} + 1{˜︁Bm(0)∈U(ε)}

⩽ (1 − δ(t, (ε, ε, ε, ε)))1{αϵm∈U(ε)} + δ(t, (ε, ε, ε, ε)) =: Um(t, ε),

where Um(t, ε) is independent of {˜︁τ( ˜︁Bk) ⩽ t ∀ k ⩽ m− 1}. As η(t, ε) := E[Um(t, ε)] is
independent of m and strictly smaller than 1 for ε small enough by Assumption 2.4 i),
we may conclude that

P
[︂˜︁τ( ˜︁Bk) ⩽ t ∀ k ⩽ m

]︂
= E

⎡⎣ ∏︂
k⩽m−1

1{︁˜︁τ(˜︁Bk)⩽t
}︁ · P

[︂˜︁τ( ˜︁Bm) ⩽ t
⃓⃓⃓ ˜︁S(t), t ⩽ ˜︁τ∗

m

]︂⎤⎦
⩽ P

[︂˜︁τ( ˜︁Bk) ⩽ t∀ k ⩽ m− 1
]︂

· η(t, ε) ⩽ (η(t, ε))m m→∞−→ 0.

Hence, with probability one, there exists a finite, N-valued random variable NT such
that ˜︁τ∗

NT
< T, ˜︁τ∗

NT +1 = T, and

˜︁Q := ˜︁ΨQ
NT

(Y, ˜︁R+, ˜︁R−) = ˜︁ΨQ(Y, ˜︁R+, ˜︁R−) P-a.s.

Let us now show that (Y, ˜︁R+, ˜︁R−) lies with probability one in the continuity set of˜︁ΨI , for I = B,Q,C. Therefore, we verify the conditions i)-iv) of Theorem 2.3.9. First,
Y (0) = ˜︁Q0 ∈ (0,∞)4 and by Assumption 2.4 the elements of ˜︁R+ and ˜︁R− have values
in (0,∞)4 with probability one. Hence, condition i) holds with probability one. As
argued above, we can relate the stopping times ˜︁τ∗

k , k ⩾ 1, to the first hitting times of
h( ˜︁Bk−1), k ⩾ 1, of the axes and as we already have shown, with probability one, there
exists a finite, N-valued random variable NT such that ˜︁τ∗

NT
< T, ˜︁τ∗

NT +1 = T, and either˜︁τ∗
k = ˜︁τa,k or ˜︁τ∗

k = ˜︁τb,k for all 1 ⩽ k ⩽ NT . Since h( ˜︁BNT
) is again a planar Brownian
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motion, (h ◦ ˜︁ΨQ
NT

)(Y, ˜︁R+, ˜︁R−)(T ) ∈ (0,∞)2 with probability one. Hence, also condition
ii) and iv) are satisfied. Moreover, the processes ˜︁Bk, k ⩾ 0, are four-dimensional linear
Brownian motions. Applying again Lemma 2.7.7 and Corollary 2.3.6, we conclude that
also condition iii) is satisfied with probability one for all 1 ⩽ k ⩽ NT . An application
of Theorem 2.3.9 and Theorem 2.3.15 yields that (Y, ˜︁R+, ˜︁R−) lies with probability one
in the continuity set of ˜︁ΨQ and ˜︁ΨC . Again since h( ˜︁Bk), k ⩾ 0, are planar Brownian
motions, we conclude that also condition (2.3.12) in Theorem 2.3.18 is satisfied implying
that (Y, ˜︁R+, ˜︁R−) lies with probability one in the continuity set of ˜︁ΨB. We can therefore
apply the continuous mapping theorem and the assumption on the initial state to
conclude that

˜︁Ψ( ˜︁S(n)
0 ;X(n), ˜︁R+,(n), ˜︁R−,(n)) → ˜︁Ψ( ˜︁S0;X, ˜︁R+, ˜︁R−) P-a.s.

in the Skorokhod topology as n → ∞. This finishes the proof.

In the following, we denote by (˜︁τ∗
k )k⩾1 the stopping times corresponding to the times

of price changes in the limit ˜︁S of ˜︁S(n), i.e., by Theorem 2.3.19 we have ˜︁τ∗
0 := 0 and

˜︁τ∗
k := ˜︁τ (︂˜︁ΨQ

k−1

(︂ ˜︁Q0 +X, ˜︁R+, ˜︁R−
)︂)︂

for k ⩾ 1, (2.3.16)

where the random sequences ˜︁R+, ˜︁R− describe the queue sizes after price changes in ˜︁S
with

˜︁R+
k := Φ

(︂ ˜︁Q(˜︁τ∗
k−), ϵ+k

)︂
, ˜︁R−

k := Φ
(︂ ˜︁Q(˜︁τ∗

k−), ϵ−k
)︂

(2.3.17)

for independent sequences of iid random variables (ϵ+k )k⩾1 and (ϵ−k )k⩾1 with ϵ+1 ∼ f+

and ϵ−1 ∼ f−, and the distributions f+, f− in Assumption 2.4. Analogously to the
proof of Theorem 2.3.19, we define the stopping times (˜︁τb,k, ˜︁τa,k)k⩾1.

2.3.5 Identification of the distribution of the limit dynamics
Before studying the distribution of the limit dynamics, for W being a planar Brownian
motion, we identify the process g(W ) with a special case of a two-dimensional semi-
martingale reflecting Brownian motion (SRBM) absorbed at the origin, which we will
call a sum-preserving SRBM absorbed at the origin.

Definition 2.3.20 (Sum-preserving SRBM absorbed at the origin.). A sum-preserving
SRBM associated with (x, µ,Σ) ∈ R2

+ ×R2 ×R2×2 that starts from x and is absorbed at
the origin, is a triple of continuous, adapted, two-dimensional processes (Z,W, l) on some
filtered probability space (Ω,F , (Ft)t⩾0,Px) such that for τ := inf{t ⩾ 0 : Z(t) = 0} ∧T,
under Px,

Z(t) =
{︄
W (t) + l(t)R for all t ⩽ τ

0 for all t ⩾ τ
(2.3.18)
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with reflection matrix

R :=
(︄

1 −1
−1 1

)︄
, (2.3.19)

where

i) W is an adapted, two-dimensional process such that B := {W (t ∧ τ) − µ(t ∧
τ),Ft, t ⩾ 0} is a martingale with variation process Σ(t ∧ τ) for all t ⩾ 0, and
W (0) = x Px-a.s.,

ii) l is an adapted, two-dimensional process such that Px-a.s. for each i ∈ {1, 2}, the
i-th component li of l satisfies

a) li(0) = 0,
b) li is non-decreasing,
c)
∫︁ t

0 Zi(t)dli(t) = 0 for all t ∈ [0, T ], and
d) li(t) = li(τ) for all t ⩾ τ.

Such a process has been extensively studied in the literature, cf. e.g. [27,31,77,84].
Note that a SRBM has also been introduced for other choices of reflection matrices,
often assuming that the matrix R is completely-S (cf. e.g. [24, 38, 77]). The matrix
R in the above definition, however, does not satisfy the completely-S property. For
this reason, it is indeed important to set Z(t) = (0, 0) for all t > τ as the process
Z cannot be described anymore by the SDE in (2.3.18) on (τ, T ] as it is trap at the
origin. The weak existence and uniqueness in law of this process has been derived in
e.g., [77, Section 4]. In particular, the process (Z,W, l) is a continuous semimartingale.

For a planar Brownian motion W starting in x ∈ R2
+ with mean µ ∈ R2 and

covariance matrix Σ ∈ R2×2, we deduce in the following proposition that g(W ) is the
unique strong solution of the SDE in (2.3.18).

Proposition 2.3.21. Let (Z,W, l) be a sum-preserving SRBM associated with (x, µ,Σ) ∈
R2

+ × R2 × R2×2 that is absorbed at the origin. Then, Z = g(W ) almost surely. In
particular, g(W ) is the unique strong solution of the SDE in (2.3.18).

Proof. Let W = (W1,W2) be a planar Brownian motion starting in x ∈ R2
+ with

mean µ ∈ R2 and covariance matrix Σ ∈ R2×2. Moreover, let (Z,W, l) be a SRBM
associated with (x, µ,Σ) as introduced in Definition 2.3.20 and let τ := inf{t ⩾ 0 :
Z(t) = 0} ∧ T = inf{t ⩾ 0 : h1(W )(t) ⩽ 0} ∧ T . If τ < T, by the definition of g(W ) we
have g(W )(t) = (0, 0) for all t ⩾ τ. This proves the stated result on [τ, T ]. For k ∈ N,
let τ̂k := τ̂k(W ) be as in Definition 2.3.2. To prove the stated result on [0, τ), we will
inductively show for each k ∈ N, that g(W ) is the unique strong solution of the SDE
in (2.3.18) on each sub-interval [τ̂k−1, τ̂k).

Induction start: Let us consider the sub-interval [0, τ̂1). By definition of τ̂1, we have
W1,W2 > 0 on [0, τ̂1). Hence, l1(t) = l2(t) = 0 for all t ∈ [0, τ̂1). We conclude that

g(W ) = W = Z on [0, τ̂1).
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This proves the induction start.
Induction hypothesis: For all j = 1, · · · , k − 1, let us assume that g(W ) = Z almost

surely on [0, τ̂j).
Induction step: Let us consider the sub-interval [τ̂k−1, τ̂k). Without loss of generality,

let consider the event {τ̂k−1 = τ̂k−1,1(W )}, i.e., g(W ) hits the x-axis at τ̂k−1. On this
event, we have sups⩽·(−π

(2)
2 gk−1(W )(s))+ = 0 on [τ̂k−1, τ̂k). Applying Definition 2.3.2,

we conclude on [τ̂k−1, τ̂k) that

π
(2)
1 g(W ) = π

(2)
1 gk−1(W ) + sup

s⩽·

(︂
−π(2)

1 gk−1(W )(s)
)︂+

π
(2)
2 g(W ) = π

(2)
2 gk−1(W ) − sup

s⩽·

(︂
−π(2)

1 gk−1(W )(s)
)︂+

.

Now, let us define for t ⩾ 0

Y
(1)
k−1(t) := π

(2)
1 gk−1(W )(t+τ̂k−1)+l(1)

k−1(t) and l
(1)
k−1(t) := sup

s⩽t

(︂
−π(2)

1 gk−1(s+ τ̂k−1)
)︂+

.

By construction, Y (1)
k−1 and l(1)

k−1 are continuous processes satisfying Y (1)
k−1 ⩾ 0, l(1)

k−1(0) =
0, l(1)

k−1 is monotonically non-decreasing, and l
(1)
k−1 increases only on the set {t ⩾

0 : Y (1)
k−1(t) = 0}. Hence, (Y (1)

k−1, l
(1)
k−1) solves the one-dimensional Skorokhod problem

starting in t = 0 (cf. e.g. [89, Lemma 2.1]). By construction, we further conclude that
(π(2)

1 g(W ), sups⩽·(−π
(2)
1 gk−1(W )(s))+) solves the one-dimensional Skorokhod problem

on [τ̂k−1, τ̂k). Next, since g(W ) = Z on [0, τ̂k−1) by the induction hypothesis and Z is
a continuous process, we have

Z1(t) = W1(t) + l1(t) − l2(τ̂k−1)
Z2(t) = W2(t) − l1(t) + l2(τ̂k−1)

for t ∈ [τ̂k−1, τ̂
∗
k ), where τ̂∗

k denotes the first time after τ̂k−1 at which Z2 equals
zero. By definition of (Z,W, l), we conclude that (Z1, l1 − l1(τ̂k−1)) solves the one-
dimensional Skorokhod problem on [τ̂k−1, τ̂

∗
k ). By the uniqueness of the solution of

the one-dimensional Skorokhod problem, we must have π(2)
1 g(W ) = Z1 almost surely

and sups⩽·(−π
(2)
1 gk−1(W )(s))+ = l1 − l1(τ̂k−1) almost surely on [τ̂k−1, τ̂k ∧ τ̂∗

k ). Now,
applying the definition of gk−1 and the induction hypothesis, we get for t ∈ [τ̂k−1, τ̂k∧ τ̂∗

k )

π
(2)
2 g(W )(t) = π

(2)
2 gk−1(W )(t) − sup

s⩽t

(︂
−π(2)

1 gk−1(W )(s)
)︂+

= π
(2)
2 gk−1(W )(τ̂k−1) +W2(t) −W2(τ̂k−1) − l1(t) + l1(τ̂k−1)

= W2(t) − l1(t) + l2(τ̂k−1) = Z2(t).

In particular, we must have τ̂k = τ̂∗
k . Hence, g(W ) = Z almost surely on [τ̂k−1, τ̂k).

Together with the induction hypothesis, we finally conclude that g(W ) = Z almost
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surely on [0, τ̂k). This finishes our induction and proves the stated result.

Next, we will slightly reformulate the SDE system in (2.3.18). Therefore, let us first
introduce the concept of a local time of a continuous semimartingale X.

Definition 2.3.22 (Local time of a continuous semimartingale). For an R-valued
continuous semimartingale (Xt)t⩾0 with quadratic variation process (⟨X⟩t)t⩾0, there
exits a measurable process (Lat (X))t⩾0,a∈R such that almost surely for all bounded
φ : R → R ∫︂ t

0
φ(Xs)d⟨X⟩s =

∫︂
R
φ(a)Lat (X)da, for t ⩾ 0.

The process (Lat (X))t⩾0,a∈R is called the local time of the process X and has a
modification such that almost surely (t, a) ↦→ Lat (X) is continuous in t and càdlàg in
a. Without loss of generality, we will always work with this continuous modification
without further comments. Moreover, for all a ∈ R the process (Lat (X))t⩾0 is monotone
non-decreasing, hence of finite variation. For more details, see e.g. [88, 89]. In the
following, we write (Lt(X))t⩾0 := (L0

t (X))t⩾0. Moreover, for any R2-valued continuous
semimartingale X, we introduce the component-wise local time of X at zero by

L
(2)
t (X) :=

(︂
Lt(π(2)

1 X), Lt(π(2)
2 X)

)︂
for t ⩾ 0. (2.3.20)

Proposition 2.3.23. Let (Z,W, l) be the unique strong solution of the coupled SDE in
(2.3.18) on [0, τ ]. Then, Z satisfies

Z(t) = W (t) + 1
2L

(2)
t (Z)R (2.3.21)

for t ⩽ τ almost surely.

Remark 2.3.24. Note that the scaling factor 1
2 in front of the component-wise local time

of Z comes from the almost sure identity between reflection and local time at zero given in,
e.g., Lemma 2.12 in [89]: let (ρ, ℓ) be the solution of the one-dimensional Skorokhod prob-
lem (with respect to a one-dimensional Brownian motion B) and (Lt)t⩾0 := (Lt(ρ))t⩾0
be its local time at zero. Then

ℓ(t) = 1
2Lt and ρ(t) = B(t) + 1

2Lt t ⩾ 0, a.s.

If, moreover µ = 0, it can be shown that Lt(|B|) = 2Lt(B), t ⩾ 0, and by an application
of Tanaka’s formula that |B(t)| = x+

∫︁ t
0 sign(B(s))dB(s) + Lt(B) which is equivalent

in law to ρ.

Proof of Proposition 2.3.23. Let τ̂k := τ̂k(W ), k ∈ N, where τ̂k is introduced in Defini-
tion 2.3.2. We argue analogously as in the proof of Proposition 2.3.21 and consider Z
on each sub-interval [τ̂k−1, τ̂k), k ∈ N. Therefore, we only present a proof sketch. On
the sub-interval [0, τ̂1), we have Z1, Z2 > 0 implying that Z satisfies (2.3.21) on [0, τ̂1).
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For each k ⩾ 2 we inductively argue as follows: note that either τ̂k−1 = τ̂k−1,1(W ) or
τ̂k−1 = τ̂k−1,2(W ) implying that either (Z1, l1 − l1(τ̂k−1)) or (Z2, l2 − l2(τ̂k−1)) solves
the one-dimensional Skorokhod problem on [τ̂k−1, τ̂k). Without loss of generality, let us
consider the event {τ̂k−1 = τ̂k−1,1(W )}. On this event, since (Z1, l1 − l1(τ̂k−1)) solves
the one-dimensional Skorokhod problem and applying Lemma 2.12 in [89], we conclude
that

l1(t) − l1(τ̂k−1) = 1
2
(︂
Lt(Z1) − Lτ̂k−1(Z1)

)︂
for t ∈ [τ̂k−1, τ̂k) almost surely. Moreover, since Z2 > 0 on [τ̂k−1, τ̂k) by construction,
both l2 and t ↦→ Lt(Z2) do not increase on [τ̂k−1, τ̂k) almost surely. Hence, for t ∈
[τ̂k−1, τ̂k), we have

l2(t) − l2(τ̂k−1) = 0 = 1
2
(︂
Lt(Z2) − Lτ̂k−1(Z2)

)︂
.

Now, combining the definition of Z with the induction hypothesis yields that Z satisfies
the SDE in (2.3.21) almost surely on [0, τ̂k). This finishes the proof.

Combining Proposition 2.3.21 and Proposition 2.3.23, we obtain that the process
g(W ) fulfills the SDE

g(W )(t) = W (t) + 1
2L

(2)
t (g(W ))R, (2.3.22)

for t ∈ [0, τ(W )], where R is the reflection matrix defined in (2.3.19) and L
(2)
t (g(W ))

denotes the component-wise local time of g(W ). For t > τ(W ), we have g(W )(t) =
(0, 0). With this new representation of the process g(W ), we can now characterize the
distribution of ˜︁Q.
Theorem 2.3.25 (Limit distribution of the queue size process in active regimes).
Let the assumptions of Theorem 2.3.19 be satisfied and let (˜︁τ∗

k )k⩾0 be the sequences
of stopping times introduced in (2.3.16). Let us introduce the sequence ( ˜︁Bk)k∈N0 of
four-dimensional linear Brownian motions, each with mean µ and covariance matrix Σ
(cf. Theorem 2.3.1), given by

˜︁Bk := ˜︁Q(˜︁τ∗
k ) +X(· + ˜︁τ∗

k ) −X(˜︁τ∗
k ). (2.3.23)

For the limit ˜︁Q = ( ˜︁Qb,F , ˜︁Qa,F , ˜︁Qb,G, ˜︁Qa,G) of the queue size process ˜︁Q(n), it holds:

i) On each interval [˜︁τ∗
k , ˜︁τ∗

k+1), k ⩾ 0, the process ˜︁Q is distributed as a continuous
semimartingale, i.e., for i = b, a, it holds

( ˜︁Qi,F , ˜︁Qi,G)(· + τ̂k) = πi ˜︁Bk + 1
2L

(2)
· (g(πi ˜︁Bk))R on [0, ˜︁τ∗

k+1 − ˜︁τ∗
k ),

where R is the reflection matrix introduced in (2.3.19), (L(2)
t (Y ))t⩾0 defines the

component-wise local time of a R2-valued process Y, and the function g is intro-
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duced in Definition 2.3.2. In particular, for i = b, a, the process ( ˜︁Qi,F , ˜︁Qi,G)(·+˜︁τ∗
k )

behaves as a sum-preserving SRBM driven by πi ˜︁Bk on [0, ˜︁τ∗
k+1 − ˜︁τ∗

k ).

ii) At each time t = ˜︁τ∗
k , k ⩾ 1, the process ˜︁Q is reinitialized by the random variable˜︁R+

k or ˜︁R−
k , i.e.,

˜︁Q(˜︁τ∗
k ) = ˜︁R+

k if ˜︁τa,k = ˜︁τ∗
k or ˜︁Q(˜︁τ∗

k ) = ˜︁R−
k if ˜︁τb,k = ˜︁τ∗

k .

iii) Finally, the process ˜︁Q has only finitely many discontinuities and is therefore a
semimartingale on the whole interval [0, T ].

Proof. The relation ˜︁Q = ˜︁ΨQ( ˜︁Q0 +X, ˜︁R+, ˜︁R−) gives us a construction of our process ˜︁Q,
where ˜︁Q0 ∈ (0,∞)4 is its initial state, X is introduced in Proposition 2.3.1 and defines
a four-dimensional linear Brownian motion with drift µ and covariance matrix Σ, and˜︁R+, ˜︁R− are the sequences of random variables introduced in (2.3.17) with values in
((0,∞)4)N P-almost surely. Now, for all k ⩾ 0, ˜︁Bk introduced in Theorem 2.3.25 is a
four-dimensional linear Brownian motions starting at ˜︁Q(˜︁τ∗

k ) with drift µ and covariance
matrix Σ. By the definition of ˜︁ΨQ, for k ⩾ 0, we have

˜︁Q (· + ˜︁τ∗
k ) = ˜︁ΨQ

(︂ ˜︁Q0 +X, ˜︁R+, ˜︁R−
)︂

(· + ˜︁τ∗
k ) = G( ˜︁Bk) on

[︁
0, ˜︁τ∗

k+1 − ˜︁τ∗
k

)︁
.

An application of the definition of G and the representation in (2.3.22) proves part i).
In order to prove part ii) and iii), we note that ii) and the fact that ˜︁ΨQ( ˜︁Q0+X, ˜︁R+, ˜︁R−)

has almost surely only finitely many discontinuities are already shown in the proof of
Theorem 2.3.19. Together with part i) we conclude that ˜︁Q = ˜︁ΨQ( ˜︁Q0 +X, ˜︁R+, ˜︁R−) is a
semimartingale on the whole interval [0, T ] which finally yields the statement iii).

Moreover, it turns out that the process ˜︁Q is a Markov process.

Theorem 2.3.26 (Identification of ˜︁Q as a Markov process). The process ˜︁Q is a Markov
process with values almost surely in R4

+ \ {(0, 0, 0, 0)}, initial value ˜︁Q0 ∈ (0,∞)4, and
infinitesimal generator A given on ˜︁R4

+ := R4
+ \ {x ∈ R4

+ : π1x = π3x = 0 or π2x =
π4x = 0} by

Ah = µb,F
∂h

∂x1
+ µa,F

∂h

∂x2
+ µb,G

∂h

∂x3
+ µa,G

∂h

∂x4

+ (σb,F )2

2
∂2h

∂x2
1

+ (σa,F )2

2
∂2h

∂x2
2

+ (σb,G)2

2
∂2h

∂x2
3

+ (σa,G)2

2
∂2h

∂x2
4

+ σ(b,F ),(a,F ) ∂2h

∂x1∂x2
+ σ(b,F ),(b,G) ∂2h

∂x1∂x3
+ σ(b,F ),(a,G) ∂2h

∂x1∂x4

+ σ(a,F ),(b,G) ∂2h

∂x2∂x3
+ σ(a,F ),(a,G) ∂2h

∂x2∂x4
+ σ(b,G),(a,G) ∂2h

∂x3∂x4

(2.3.24)

123



2.3. ANALYSIS OF THE ACTIVE DYNAMICS

and for y = (y1, y2, y3, y4) ∈ ˜︁R4
+

Ah(y1, 0, y3, 0) =
∫︂
R4

+

Ah(Φ((y1, 0, y3, 0), u))f+(du),

Ah(0, y2, 0, y4) =
∫︂
R4

+

Ah(Φ((0, y2, 0, y4), u))f−(du),
(2.3.25)

and whose domain is the set dom(A) of functions h ∈ C2(˜︁R4
+,R) ∩C0(R4

+,R) verifying,
for all x1, x2, x3, x4 > 0 and all y = (y1, y2, y3, y4) ∈ ˜︁R4

+, the boundary conditions:

1. Reflecting boundary condition in the sense that the function h satisfies(︃
∂h

∂x1
− ∂h

∂x3

)︃
(0, y2, x3, y4) = 0

(︃
∂h

∂x3
− ∂h

∂x1

)︃
(x1, y2, 0, y4) = 0(︃

∂h

∂x2
− ∂h

∂x4

)︃
(y1, 0, y3, x4) = 0

(︃
∂h

∂x4
− ∂h

∂x2

)︃
(y1, x2, y3, 0) = 0

2. Inward jump boundary condition in the sense that the function h satisfies

h(y1, 0, y3, 0) =
∫︂
R4

+

h(Φ((y1, 0, y3, 0), u))f+(du)

h(0, y2, 0, y4) =
∫︂
R4

+

h(Φ((0, y2, 0, y4), u))f−(du).

Remark 2.3.27 (The cumulative queue size dynamics). Studying the above result, we
conclude that the limit h( ˜︁Q) of the cumulative queue size dynamics is again a Markov
process with values almost surely in R2

+ \ {(0, 0)}. In the interior of R2
+, the process

h( ˜︁Q) behaves as planar Brownian motion starting in h( ˜︁Q0) ∈ (0,∞)2 with mean µ̂ and
covariance matrix Σ̂ (cf. Corollary 2.7.1). Moreover, it is instantaneously reinitialized
at a new value in the interior of R2

+ each time one of its components hits the axes
{(0, y) : y > 0} ∪ {(x, 0) : x > 0}. In particular, the cumulative queue size dynamics
behaves like the bid and ask queues in a single-country LOB-model, whose limit behavior
is described by Cont and de Larrard in [19, Theorem 2].

The proof of Theorem 2.3.26 is given in Section 2.7.3. LetW be again the planar Brow-
nian motion as defined above. Then, by definition of the function ĝ : D([0, T ],R2) →
D([0, T ],R) and studying the proof of Proposition 2.3.21, we deduce that

ĝ(W )(t) = 1
2
{︂
Lt
(︂
π

(2)
2 g(W )

)︂
− Lt

(︂
π

(2)
1 g(W )

)︂}︂
, for t ∈ [0, τ(W )], (2.3.26)

and for t > τ(W ), we have ĝ(W )(t) = ĝ(W )(τ(W )).
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Theorem 2.3.28 (Limit distribution of the capacity process in active regimes). Let the
assumptions of Theorem 2.3.19 be satisfied and let (˜︁τ∗

k )k⩾0 be the sequence of stopping
times introduced in (2.3.16). The limit ˜︁C of the capacity process ˜︁C(n) is a continuous
process of finite variation. On each interval [0, ˜︁τ∗

k+1 − ˜︁τ∗
k ], k ⩾ 0, we have

˜︁C(· + ˜︁τ∗
k ) − ˜︁C(˜︁τ∗

k )

= 1
2
{︂
L·(π(2)

2 g(πb ˜︁Bk)) − L·(π(2)
1 g(πb ˜︁Bk)) − L·(π(2)

2 g(πa ˜︁Bk)) + L·(π(2)
1 g(πa ˜︁Bk))}︂,

where the function g is introduced in Definition 2.3.2 and ˜︁Bk is the four-dimensional
linear Brownian motion defined in (2.3.23).
Proof. By the definition of ˜︁ΨC , for each k ⩾ 0, we have ˜︁C (· + ˜︁τ∗

k ) − ˜︁C (˜︁τ∗
k ) = Ĝ( ˜︁Bk)

on [0, ˜︁τ∗
k+1 − ˜︁τ∗

k ], where (˜︁τ∗
k )k⩾0 are the stopping times introduced in (2.3.16) and

Ĝ( ˜︁Bk)(0) ≡ 0. An application of the definition of Ĝ and the representation in (2.3.26)
identifies ˜︁C(· + ˜︁τ∗

k ) − ˜︁C(˜︁τ∗
k ) on each interval [0, ˜︁τ∗

k+1 − ˜︁τ∗
k ], k ⩾ 0, as a continuous

process of finite variation. Arguing again as in the proof of Theorem 2.3.19, there exists
a finite, N-valued NT such that ˜︁τ∗

NT
< T and ˜︁τ∗

NT +1 = T with probability one. Hence,˜︁C is almost surely the sum of NT + 1 continuous processes of finite variation and thus
itself a continuous process of finite variation.

Remark 2.3.29 (Queue size and capacity process live on different time scales). By
construction, both the queue size process ˜︁Q(n) and the capacity process ˜︁C(n) change by
incoming orders of size ±∆v(n). However, the above limit results yield under the chosen
scaling of (∆v(n))2 ≈ ∆t(n) that ˜︁Q(n) is approximated in the limit by a semimartingale
with a non-trivial martingale part whereas the capacity process is approximated by a
continuous process of finite variation. Hence, ˜︁Q(n) lives on a finer time scale than the
capacity process. This can already be deduced from the microscopic construction, as the
queue size process changes by each incoming market and limit order but the capacity
process only changes by market orders leading to cross-border trades.

With help of Theorem 2.3.26, we obtain a detailed description of the limit distribution
of the price dynamics in the active regimes. The limit approximation of the bid price
process is entirely characterized by hitting times of the axes of the two-dimensional
process h( ˜︁Q). The result follows directly from the definition of the function ˜︁ΨB.

Theorem 2.3.30 (Limit distribution of the prices process in active regimes). Let the
assumptions of Theorem 2.3.19 be satisfied. Then, the limit ˜︁B = ( ˜︁BF , ˜︁BF ) satisfies

˜︁BF (t) = ˜︁BF
0 + δ

∑︂
0⩽s⩽t

⎛⎝1{︂(︂
π

(2)
2 ◦h

)︂
(˜︁Q)(s−)=0

}︂ − 1{︂(︂
π

(2)
1 ◦h

)︂
(˜︁Q)(s−)=0

}︂⎞⎠
and is a piecewise constant càdlàg process which

• increases by one tick every time the process h( ˜︁Q) hits the horizontal axis {y = 0},

• decreases by one tick every time the process h( ˜︁Q) this the vertical axis {x = 0}.
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2.3.6 Probabilistic results of the active limit dynamics
We finish this section by presenting important properties of the process ˜︁S. They become
important when deriving a limit theorem for the cross-border market model S(n).

Lemma 2.3.31. Let us introduce σ := inf{t ⩾ 0 : ˜︁C(t) ⩽ −κ− or ˜︁C(t) ⩾ κ+} ∧ T, the
first time at which the process ˜︁C hits the boundary of [−κ−, κ+]. Then, with probability
one, the limit h( ˜︁Q) of the cumulative queue size process satisfies

P
[︂
h( ˜︁Q)(σ) ∈ (0,∞)2

]︂
= 1. (2.3.27)

In words, with probability one, the hitting time σ does not coincide with the random
time of a price change in ˜︁S.

Note that thanks to the above result, with probability one, a regime switch from an
active to an inactive regime in ˜︁S already occurs if ˜︁C hits the boundary of [−κ−, κ+]. Re-
call that ˜︁Q := ( ˜︁Qb,F , ˜︁Qa,F , ˜︁Qb,G, ˜︁Qa,G). The following result shows that, with probability
one, no combination of bid and ask queue is simultaneous zero.

Lemma 2.3.32. Let I, J ∈ {F,G}. With probability one, we have

P
[︂
∃ t ∈ [0, T ] :

(︂ ˜︁Qb,I , ˜︁Qa,J)︂ (t) = (0, 0)
]︂

= 0.

In particular, if I = J , we conclude, with probability one, that no national limit order
book in ˜︁S is empty.

The proofs are omitted at this point and are presented in Section 2.7.3.

2.4 The inactive dynamics
In this section, we introduce a heavy traffic approximation for the inactive dynamics.
Note that the subsequent analysis and approximation of the inactive dynamics is, with
one exception, a straight-forward extension of the reduced-form representation of a
LOB introduced in Cont and de Larrard [19] to two non-interacting LOBs. In the
following, we only present the ideas and results and refer to Section 2.3 and [19] for
the technical details of the proofs.

Remark 2.4.1. Note that in Cont and de Larrard [19] the weak convergence of prices
is established in the slightly weaker and not so standard Skorokhod M1-topology (cf. e.g.
Whitt [86] for an introduction to the Skorokhod M1-topology). However, by replicating
our strategy for the analysis of the active dynamics in Section 2.3, we are able to prove
weak convergence of the prices in the stronger Skorokhod J1-topology.

Let us recall that the inactive dynamics
≈
S(n) = (

≈
S(n)(t))t∈[0,T ] is given by

≈
S(n)(t) =

≈
S

(n)
k for t ∈

[︂
t
(n)
k , t

(n)
k+1

)︂
,
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where its discrete-time dynamics is defined in the equations (2.2.8)-(2.2.11) in Section
2.2.4. Let

≈
S

(n)
0 := (

≈
B

(n)
0 ,

≈
Q

(n)
0 ,

≈
C

(n)
0 ) ∈ (δZ)2 × (∆v(n)N)4 ×∆v(n)Z be the initial state of

≈
S(n). Again, the limit results for the queue size process

≈
Q(n) and the price process

≈
B(n)

are based on a limit result for the net order flow process X(n) (cf. Proposition 2.3.1)
and Assumption 2.4 guaranteeing the convergence of the sequences

≈
R+,(n),

≈
R−,(n). We

introduce for i = 1, 2, 3, 4 the first hitting time maps ≈
τi,

≈
τ : D([0, T ],R4) → [0, T ] by

≈
τi(ω) := inf{t ⩾ 0 : πiω(t) ⩽ 0} ∧ T

and ≈
τ(ω) := ≈

τ1(ω) ∧ ≈
τ2(ω) ∧ ≈

τ3(ω) ∧ ≈
τ4(ω). Next, let us introduce a function

≈
ΨQ that

can be used to describe the dynamics of the queue size process
≈
Q(n) over time.

Definition 2.4.2. Let ω ∈ D([0, T ],R4) and R = (Rn)n⩾1, ˜︁R = ( ˜︁Rn)n⩾1 ∈ (R4
+)N.

For k ∈ N0, we define functions
≈
ΨQ
k (ω,R, ˜︁R) ∈ D([0, T ],R4) and

≈
ΨQ(ω,R, ˜︁R) ∈

D([0, T ],R4
+) as follows:

• Set
≈
ΨQ

0 (ω,R, ˜︁R) := ω.

• Let k ⩾ 1 and
≈
ΨQ
k−1 :=

≈
ΨQ
k−1(ω,R, ˜︁R). If ≈

τ(
≈
ΨQ
k−1) = T, then

≈
ΨQ
k (ω,R, ˜︁R) =

≈
ΨQ
k−1.

Otherwise, we set
≈
ΨQ
k (ω,R, ˜︁R)(t) =

≈
ΨQ
k−1(t) for t < ≈

τ(
≈
ΨQ
k−1) and for t ⩾ ≈

τ(
≈
ΨQ
k−1),

we define

πF
≈
ΨQ
k (ω,R, ˜︁R)(t) := πF

≈
ΨQ
k−1(t) + 1{︂≈

τ(
≈
ΨQ

k−1)=≈
τ2(

≈
ΨQ

k−1)
}︂πF (︂Rk −

≈
ΨQ
k−1(≈

τ(
≈
ΨQ
k−1))

)︂
+ 1{︂≈

τ(
≈
ΨQ

k−1)=≈
τ1(

≈
ΨQ

k−1)
}︂πF (︂ ˜︁Rk −

≈
ΨQ
k−1(≈

τ(
≈
ΨQ
k−1))

)︂
,

πG
≈
ΨQ
k (ω,R, ˜︁R)(t) := πG

≈
ΨQ
k−1(t) + 1{︂≈

τ(
≈
ΨQ

k−1)=≈
τ4(

≈
ΨQ

k−1)
}︂πG (︂Rk −

≈
ΨQ
k−1(≈

τ(
≈
ΨQ
k−1))

)︂
+ 1{︂≈

τ(
≈
ΨQ

k−1)=≈
τ3(

≈
ΨQ

k−1)
}︂πG (︂ ˜︁Rk −

≈
ΨQ
k−1(≈

τ(
≈
ΨQ
k−1))

)︂
.

• Finally, we set ≈
τ0 := 0, ≈

τk := ≈
τ(

≈
ΨQ
k−1(ω,R, ˜︁R)) for k ⩾ 1, and

≈
ΨQ(ω,R, ˜︁R)(t) =

∞∑︂
k=1

≈
ΨQ
k−1(ω,R, ˜︁R)(t)1[≈τk−1,

≈
τk)(t) for t ∈ [0, T ).

Moreover, if there exists a finite NT such that ≈
τNT

< T and ≈
τNT +1 = T, then set

≈
ΨQ(ω,R, ˜︁R)(T ) =

≈
ΨQ
NT

(ω,R, ˜︁R)(T ). Otherwise, set
≈
ΨQ(ω,R, ˜︁R)(T ) = (0, 0, 0, 0).

The function
≈
ΨQ is obtained by regulating the path of ω with help of the sequences

R and ˜︁R : between two consecutive times ≈
τk and ≈

τk+1 the function
≈
ΨQ(ω,R, ˜︁R) equals

≈
ΨQ(ω,R, ˜︁R)(≈

τk) + ω − ω(≈
τk). The first time one of its components hits the axes, the

components corresponding to the origin of the incoming order are reinitialized according
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to Rk+1 or ˜︁Rk+1, whereas the components corresponding to the foreign order book
stay unchanged.

In the next theorem, we characterize the continuity set of
≈
ΨQ. Therefore, let us

introduce the functions space C ′
0([0, T ], (R2 \ {(0, 0)}) × (R2 \ {(0, 0)})) that contains

all continuous functions ω ∈ C([0, T ],R4) whose components cross the axes each time
they touch them and whose projections πFω, πGω avoid the origin (0, 0).

Theorem 2.4.3 (Continuity of
≈
ΨQ). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4

+)N × (R4
+)N

be such that

i) ω(0), Rk, and ˜︁Rk ∈ (0,∞)4 for all k ⩾ 1.

ii) There exists a finite, N-valued NT such that
≈
ΨQ(ω,R, ˜︁R)(t) =

≈
ΨQ
NT

(ω,R, ˜︁R)(t)
for t ∈ [0, T ] and

≈
ΨQ
NT

(ω,R, ˜︁R)(T ) ∈ (0,∞)4.

iii) Let ≈
φk(ω,R, ˜︁R) :=

≈
ΨQ(ω,R, ˜︁R)(≈

τk) + ω(· + ≈
τk) − ω(≈

τk). For 1 ⩽ k ⩽ NT we have
ω,

≈
φk(ω,R, ˜︁R) ∈ C ′

0([0, T ],R2 \ {(0, 0)} × R2 \ {(0, 0)}).

Then, the function
≈
ΨQ : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R4

+) introduced in
Definition 2.4.2 is continuous at (ω,R, ˜︁R).

Using the procedure introduced by the function
≈
ΨQ, we found a new represen-

tation of the queue size process
≈
Q(n), i.e., for all n ∈ N, we have

≈
Q(n) =

≈
ΨQ(

≈
Q

(n)
0 +

X(n),
≈
R+,(n),

≈
R−,(n)), where

≈
Q

(n)
0 are the initial queue sizes,X(n) is introduced in (2.3.1),

and
≈
R+,(n) and

≈
R−,(n) describe the queue sizes after price increases/decreases in

≈
S(n).

Next, let us introduce a function
≈
ΨB : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R2)

that can be used to describe the dynamics of the prices in the inactive regimes.

Definition 2.4.4. Let ω ∈ D([0, T ],R4) and R = (Rn)n⩾1, ˜︁R = ( ˜︁Rn)n⩾1 ∈ (R4
+)N.

For k ∈ N, let ≈
τk := ≈

τk(ω,R, ˜︁R) and
≈
ΨQ
k−1 :=

≈
ΨQ
k−1(ω,R, ˜︁R) be as in Definition

2.4.2. Then, we define the functions Ni(ω,R, ˜︁R) ∈ D([0, T ],N0), i = 1, 2, 3, 4, and
≈
ΨB(ω,R, ˜︁R) ∈ D([0, T ],R2) by

Ni(ω,R, ˜︁R) :=
∑︂
≈
τk⩽·

1{︂
πi

≈
ΨQ

k−1(≈
τk)⩽0

}︂ for i = 1, 2, 3, 4

and
≈
ΨB(ω,R, ˜︁R) := δ

(︂
N2(ω,R, ˜︁R) −N1(ω,R, ˜︁R), N4(ω,R, ˜︁R) −N3(ω,R, ˜︁R)

)︂
.
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Theorem 2.4.5 (Continuity of
≈
ΨB). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4

+)N × (R4
+)N

satisfy the conditions i)-iii) in Theorem 2.4.3. Moreover, for each 1 ⩽ i, j ⩽ 4 with
i ̸= j, assume that

Disc
(︂
Ni(ω,R, ˜︁R)

)︂
∩ Disc

(︂
Nj(ω,R, ˜︁R)

)︂
= Ø, (2.4.1)

where Disc(Ni(ω,R, ˜︁R)) := {t ∈ [0, T ] : Ni(ω,R, ˜︁R)(t−) ̸= Ni(ω,R, ˜︁R)(t)} for i =
1, 2, 3, 4. Then, the map

≈
ΨB : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R2) is contin-

uous at (ω,R, ˜︁R).

Again, with the procedure introduced by the function
≈
ΨB, we can rewrite the bid price

process
≈
B(n), i.e., for all n ∈ N, we have

≈
B(n) =

≈
B

(n)
0 +

≈
ΨB(

≈
Q

(n)
0 +X(n),

≈
R+,(n),

≈
R−,(n)).

Finally, we define for s0 := (b0, q0, c0) ∈ E the function
≈
Ψ : E ×D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ], E)

≈
Ψ(s0;ω,R, ˜︁R) :=

(︂
b0 +

≈
ΨB(q0 + ω,R, ˜︁R),

≈
ΨQ(q0 + ω,R, ˜︁R), c0

)︂
.

Replicating the arguments of Theorem 2.3.19, we are able to derive a joint limit theorem
for the inactive dynamics

≈
S(n) := (

≈
B(n),

≈
Q(n),

≈
C(n)).

Theorem 2.4.6 (Limit theorem for the inactive dynamics
≈
S(n)). Let Assumptions

2.2, 2.3, and 2.4 be satisfied. Assume that
≈
S

(n)
0 ∈ (δZ)2 × (∆v(n)N)4 × ∆v(n)Z with

≈
S

(n)
0 →

≈
S0 ∈ (δZ)2 × (0,∞)4 × R. Then,

≈
S(n) =

≈
Ψ
(︂
S

(n)
0 ;X(n),

≈
R+,(n),

≈
R−,(n)

)︂
⇒

≈
Ψ
(︂≈
S0;X,

≈
R+,

≈
R−
)︂

=: (
≈
B,

≈
Q,

≈
C) =:

≈
S

in the Skorokhod topology on the space D([0, T ], E).

Let us characterize the distribution of the processes
≈
B and

≈
Q : let ≈

τ∗
0 := 0 and

≈
τ∗
k := ≈

τ
(︂≈
ΨQ
k−1

(︂ ≈
Q0 +X,

≈
R+,

≈
R−
)︂)︂

for k ⩾ 1, (2.4.2)

where the random sequences
≈
R+,

≈
R− describe the queue sizes after price changes in

≈
S

with
≈
R+
k := Φ

(︂ ≈
Q(≈
τ∗
k−), ϵ+k

)︂
and

≈
R−
k := Φ

(︂ ≈
Q(≈
τ∗
k−), ϵ−k

)︂
for independent sequences of iid random variables (ϵ+k )k⩾1 and (ϵ−k )k⩾1 with ϵ+1 ∼ f+

and ϵ−1 ∼ f−, and the distributions f+, f− in Assumption 2.4. In the next proposition,
we identify the limit process

≈
Q as a Markov process similarly to Lemma 5 in [19].

129



2.4. THE INACTIVE DYNAMICS

Proposition 2.4.7 (Limit distribution of the queue size process in inactive regimes).
Let the assumptions of Theorem 2.4.6 be satisfied and let (≈

τ∗
k )k⩾0 be the sequence of

stopping times introduced in (2.4.2). The limit
≈
Q is a four-dimensional Markov process

with values almost surely in R4
+ \ {(x1, x2, x3, x4) : ∃ i, j, i ̸= j with xi = xj = 0}

satisfying the following:

i) Inbetween two consecutive stopping times ≈
τ∗
k and ≈

τ∗
k+1 the process

≈
Q follows a

four-dimensional linear Brownian motion starting at
≈
Q(≈
τ∗
k ) with drift µ and

covariance matrix Σ (see Proposition 2.3.1 for the definitions of µ and Σ).

ii) The infinitesimal generator A of
≈
Q is given on (0,∞)4 by

Ah =µb,F ∂h

∂x1
+ µa,F

∂h

∂x2
+ µb,G

∂h

∂x3
+ µa,G

∂h

∂x4

+ (σb,F )2

2
∂2h

∂x2
1

+ (σa,F )2

2
∂2h

∂x2
2

+ (σb,G)2

2
∂2h

∂x2
3

+ (σa,G)2

2
∂2h

∂x2
4

+ σ(b,F ),(a,F ) ∂2h

∂x1∂x2
+ σ(b,F ),(b,G) ∂2h

∂x1∂x3
+ σ(b,F ),(a,G) ∂2h

∂x1∂x4

+ σ(a,F ),(b,G) ∂2h

∂x2∂x3
+ σ(a,F ),(a,G) ∂2h

∂x2∂x4
+ σ(b,G),(a,G) ∂2h

∂x3∂x4

(2.4.3)

and for x1, x2, x3, x4 > 0

Ah(x1, 0, x3, x4) =
∫︂
R4

+

Ah(πFΦ((x1, 0, x3, x4), u), x3, x4)f+(du),

Ah(0, x2, x3, x4) =
∫︂
R4

+

Ah(πFΦ((0, x2, x3, x4), u), x3, x4)f−(du),

Ah(x1, x2, x3, 0) =
∫︂
R4

+

Ah(x1, x2, πGΦ((x1, x2, x3, 0), u))f+(du),

Ah(x1, x2, 0, x4) =
∫︂
R4

+

Ah(x1, x2, πGΦ((x1, x2, 0, x4), u))f−(du),

(2.4.4)

and whose domain is the set dom(A) of functions C2((0,∞)4,R) ∩ C0(R4
+,R)

verifying for all x1, x2, x3, x4 > 0 the inward jump boundary conditions

h(x1, 0, x3, x4) =
∫︂
R4

+

h(πFΦ((x1, 0, x3, x4), u), x3, x4)f+(du),

h(0, x2, x3, x4) =
∫︂
R4

+

h(πFΦ((0, x2, x3, x4), u), x3, x4)f−(du),

h(x1, x2, x3, 0) =
∫︂
R4

+

h(x1, x2, πGΦ((x1, x2, x3, 0), u))f+(du),

h(x1, x2, 0, x4) =
∫︂
R4

+

h(x1, x2, πGΦ((x1, x2, 0, x4), u))f−(du).
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The next result follows directly from the definition of the function
≈
ΨB introduced in

Definition 2.4.4 and identifies the distribution of the limit process
≈
B.

Theorem 2.4.8 (Limit distribution of the price process in inactive regimes). Let the
assumptions of Theorem 2.4.6 be satisfied. Then, the limit

≈
B = (

≈
BF ,

≈
BG) satisfies

≈
B(t) =

≈
B0 + δ

∑︂
0⩽s⩽t

(︄
1{︂

π2
≈
Q(s−)=0

}︂ − 1{︂
π1

≈
Q(s−)=0

}︂,1{︂
π4

≈
Q(s−)=0

}︂ − 1{︂
π3

≈
Q(s−)=0

}︂)︄

which is a piecewise constant càdlàg process whose components do almost surely not
jump simultaneously.

2.5 Analysis of the cross-border market dynamics
In this section, we finally derive the weak convergence of the sequence of the cross-
border market models S(n) being introduced in Definition 2.2.7. For that, we need the
convergence results corresponding to the active dynamics ˜︁S(n) and inactive dynamics
≈
S(n) derived in Theorem 2.3.19 and Theorem 2.4.6, respectively. Before stating our
main theorem, let us introduce the limits (ρk)k⩾0 and (σk)k⩾1 of the discrete-time
stopping times (ρ(n)

k )k⩾0 and (σ(n)
k )k⩾1. Therefore, let S := (B,Q,C) denote the limit

process of S(n) (defined below). Again, let ρ0 := 0, and for k ⩾ 1, we set

σk := σImk ∧ σExk ,

where

σImk := inf {t ⩾ ρk−1 : C(t) ⩾ κ+} ∧ T, σExk := inf {t ⩾ ρk−1 : C(t) ⩽ −κ−} ∧ T,

and
ρk := ρImk 1{C(σk)=−κ−} + ρExk 1{C(σk)=κ+},

where

ρImk := inf
{︂
t ⩾ σk :

⃓⃓⃓
BF (t) −BG(t)

⃓⃓⃓
= 0 and ∃ (i, I) ∈ IIm with Qi,I(t−) ⩽ 0

}︂
∧ T,

ρExk := inf
{︂
t ⩾ σk :

⃓⃓⃓
BF (t) −BG(t)

⃓⃓⃓
= 0 and ∃ (i, I) ∈ IEx with Qi,I(t−) ⩽ 0

}︂
∧ T.

We observe that the limits σk, k ⩾ 1, have a much easier representation as its discrete-
time versions σ(n)

k , k ⩾ 1, as we directly switch in the high-frequency limit from an
active to an inactive regime if all capacities in one direction are occupied (cf. Lemma
2.3.31). In contrast, ρk, k ⩾ 0, are the canonical high-frequency versions of ρ(n)

k , k ⩾ 0.
Similarly to the discrete-time setting, we denote (τk)k⩾1 the sequence of stopping

times at which we observe a price change in S, l(t) ∈ N0 the number of price changes
of S in [0, t], t ∈ [0, T ], and R+

k := Φ(Q(τk−), ϵ+k ), R−
k := Φ(Q(τk−), ϵ−k ), k ⩾ 1, the
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queue sizes after price changes. Finally, we denote for all s ∈ [0, T ]

˜︁Ss := ˜︁Ψ (︂S(s);X(· + s) −X(s), (R+
l(s)+j)j⩾1, (R−

l(s)+j)j⩾1
)︂
,

≈
Ss :=

≈
Ψ
(︂
S(s);X(· + s) −X(s), (R+

l(s)+j)j⩾1, (R−
l(s)+j)j⩾1

)︂
,

the active and inactive dynamics starting in S(s) ∈ E, respectively.

Theorem 2.5.1 (Main result). Let Assumptions 2.1–2.4 be satisfied. Then, the mi-
croscopic dynamics S(n) = (S(n)(t))t∈[0,T ] of the cross-border market model converges
weakly in the Skorokhod topology on D([0, T ], E) to a continuous-time regime switching
process S, whose dynamics is described as follows: for all k ⩾ 0, we have

• S ≃ ˜︁Sρk on [ρk, σk+1), i.e., on the interval [ρk, σk+1) the volume dynamics Q is
a four-dimensional linear Brownian motion in the positive orthant with oblique
reflection at the axes. Each time two queues simultaneously hit zero, the process
is reinitialized at a new value in the interior of R4

+. The bid price dynamics B
is a two-dimensional pure jump process with jump times equal to those of the
volume dynamics. In particular, we have that BF ≡ BG. The capacity dynamics
C is a continuous process of finite variation with values in [−κ−, κ+].

• S ≃
≈
Sσk+1 on [σk+1, ρk+1), i.e., on the interval [σk+1, ρk+1) the volume dynamics

Q is a four-dimensional linear Brownian motion in the interior of R4
+. Each time

it hits one of the axes, the two components corresponding to the origin of the
depleted component are reinitialized at a new value in (0,∞)2 while the others stay
unchanged. The price dynamics B is a two-dimensional pure jump process whose
components jump at hitting times of the corresponding components of the volume
process of the axes. In particular, BF and BG follow different one-dimensional
pure jump processes which do almost surely not jump simultaneously. The capacity
dynamics C stays constant and equal to either −κ− or κ+.

We inductively construct a candidate for the limit process S = (S(t))t∈[0,T ] and show
that S(n) ⇒ S in the Skorokhod topology by applying Theorem 2.3.19 and Theorem
2.4.6 together with the continuity of the first hitting time and last value map (see
Theorem 13.6.4 in [86] and Lemma 2.7.2).

Proof. We apply Skorokhod representation in order to be able to refer to arguments of
almost sure convergence instead of weak convergence. Hence, with a slight abuse of
notation, applying Proposition 2.3.1 and Assumption 2.4 we may assume

P
[︂
Y (n) → Y, ∀ k ⩾ 1, ϵ+,(n)

k → ϵ+k , ϵ
−,(n)
k → ϵ−k

]︂
= 1,

where Y (n) := Q
(n)
0 +X(n), Y := Q0 +X, ϵ+k ∼ f+, and ϵ−k ∼ f− for the distributions

f+, f− in Assumption 2.4. Recall, that (τ (n)
k )k⩾1 denotes the sequence of stopping times

at which we observe a price change in S(n), R
+,(n)
k := Φ(n)(Q(n)(τ (n)

k −), ϵ+,(n)
k ) and
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R
−,(n)
k := Φ(n)(Q(n)(τ (n)

k −), ϵ−,(n)
k ), k ⩾ 1, denote the queue sizes after a price increase

respectively decrease in S(n), and l(n)(t) ∈ N0 denotes the number of price changes in
S(n) in [0, t], t ∈ [0, T ]. Then, we define for s ∈ [0, T ]

˜︁S(n),s := ˜︁Ψ(︃S(n)(s);X(n)(· + s) −X(n)(s),
(︂
R

+,(n)
l(n)(s)+j

)︂
j⩾1

,
(︂
R

−,(n)
l(n)(s)+j

)︂
j⩾1

)︃
,

≈
S(n),s :=

≈
Ψ
(︃
S(n)(s);X(n)(· + s) −X(n)(s),

(︂
R

+,(n)
l(n)(s)+j

)︂
j⩾1

,
(︂
R

−,(n)
l(n)(s)+j

)︂
j⩾1

)︃
the microscopic active and inactive dynamics starting in S(n)(s) ∈ E. Similarly, we
introduce their components ˜︁B(n),s, ˜︁Q(n),s ˜︁C(n),s,

≈
B(n),s, and

≈
Q(n),s. In the following, we

will prove the stated convergence result by induction.

Induction start: Let us introduce the functions σIm, σEx, σ : D([0, T ],R) → [0, T ] by

σIm(ω) := inf {t ⩾ 0 : ω(t) ⩾ κ+} ∧ T, σEx(ω) := inf {t ⩾ 0 : ω(t) ⩽ −κ−} ∧ T,

and σ(ω) := σIm(ω) ∧ σEx(ω). Note that for the stopping time σ(n)
1 introduced in

Definition 2.2.7, there exists a function ˜︁σ : D([0, T ], E) → [0, T ] satisfying σ
(n)
1 =˜︁σ( ˜︁S(n),0) ⩾ σ( ˜︁C(n),0) =: σ(n)

1,1 . Then, we set S(t) = ˜︁S0(t) for 0 ⩽ t < σ1, where
σ1 := σ( ˜︁C0). By Assumption 2.1 and Theorem 2.3.19, we conclude that

˜︁S(n),0 → ˜︁S0 P-a.s. (2.5.1)

in the Skorokhod topology. In particular, we have that ˜︁C(n),0 → ˜︁C0 P-almost surely in
the Skorokhod topology. By Theorem 2.3.28, the paths of ˜︁C0 take with probability one
their values in C ′

κ+([0, T ],R) ∩ C ′
−κ−([0, T ],R). Hence, we can apply the continuity of

the first hitting time and last value map (cf. Lemma 2.7.2) to conclude that

(σ(n)
1,1 , S

(n)(σ(n)
1,1 −)) → (σ1, S(σ1−)) P-a.s.

Now, by Lemma 2.3.31, we have that

P
[︂
h( ˜︁Q0)(σ1) /∈ (0,∞)2

]︂
= 0,

i.e., with probability one, no price changing event occurs at σ1 in ˜︁S0. Hence, σ1 = ˜︁σ( ˜︁S0)
P-almost surely. Now, together with (2.5.1), we conclude that also (σ(n)

1 , S(n)(σ(n)
1 −)) →

(σ1, S(σ1−)) P-almost surely.
Next, let us introduce the function Z : R2 → {−1, 0, 1} by

Z(x) :=

⎧⎪⎪⎨⎪⎪⎩
0 : x ∈ (0,∞)2

−1 : x ∈ R− × (0,∞)
1 : x ∈ (0,∞) × R−

(2.5.2)
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and set ˜︁ZI1 := Z(πI ˜︁Q0(σ1)) for I = F,G. Then, we define S(σ1) = (B(σ1), Q(σ1), C(σ1))
as follows: let C(σ1) = C(σ1−),

πIQ(σ1) = πIQ(σ1−)1{˜︁ZI
1 =0} + πIR

+
l(σ1−)+11{˜︁ZI

1 =1} + πIR
−
l(σ1−)+11{˜︁ZI

1 =−1},

and
BI(σ1) = BI(σ1−) + δ

(︃
1{˜︁ZI

1 =1} − 1{˜︁ZI
1 =−1}

)︃
.

Let us show that ˜︁ZI,(n)
1 (σ(n)

1 ) → ˜︁ZI1 P-almost surely for I = F,G, where the ran-
dom process ˜︁ZI,(n)

1 , I = F,G, is introduced in (2.2.12). First, we define ˜︁ZI,(n),∗
1 :=

Z(πI ˜︁Q(n),0(σ(n)
1 )) for I = F,G. Since almost surely no price changing event occurs at

σ1 and no national limit order book is empty in ˜︁S0 (cf. Lemma 2.3.31 and Lemma
2.3.32), we conclude that⃓⃓⃓ ˜︁ZI,(n)

1 (σ(n)
1 ) − ˜︁ZI,(n),∗

1

⃓⃓⃓
→ 0 P-a.s. (2.5.3)

By Lemma 2.3.31, Lemma 2.3.32, and the construction of ˜︁C0, we conclude with
probability one, that exactly one component of ˜︁Q0(σ1) is in R− while the remaining
components are in (0,∞). Because of (2.5.1), we conclude for all n large enough,
that the same component of ˜︁Q(n),0(σ(n)

1 ) is in R− while the others are in (0,∞).
Hence, for I = F,G, πI ˜︁Q(n),0(σ(n)

1 ) and πI ˜︁Q0(σ1) are both either in (0,∞)2, R− ×
(0,∞), or (0,∞) × R− with probability one for all n large enough. We conclude
that Z(πI ˜︁Q(n),0(σ(n)

1 )) → Z(πI ˜︁Q0(σ1)) P-almost surely. Thus, together with (2.5.3),˜︁ZI,(n)
1 (σ(n)

1 ) → ˜︁ZI1 P-almost surely. Applying (2.5.1), Lemma 2.7.10, and the fact that
P-almost surely no price changing event occurs at σ1 in ˜︁S0 (cf. Lemma 2.3.31), we
further conclude that l(n)(σ(n)

1 −) → l(σ1−) P-almost surely. Hence, together with the
continuity of the last value map (cf. Lemma 2.7.2), Assumption 2.4, and equation
(2.5.1), we get

S(n)(σ(n)
1 ) → S(σ1) P-a.s. (2.5.4)

In order to extend the definition of S beyond [0, σ1], we introduce a function ρ :
D([0, T ],R2) → [0, T ] by

ρ(ω) := inf
{︃
t ⩾ 0 :

⃓⃓⃓
π

(2)
1 ω(t) − π

(2)
2 ω(t)

⃓⃓⃓
<
δ

2

}︃
∧ T.

Furthermore, we define the functions τ Im, τEx, τ : D([0, T ],R4) → [0, T ] by

τ Im(ω) := inf{t ⩾ 0 : ∃ i ∈ {2, 3} with πiω(t) ⩽ 0} ∧ T,

τEx(ω) := inf{t ⩾ 0 : ∃ i ∈ {1, 4} with πiω(t) ⩽ 0} ∧ T,
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and τ(ω) := τ Im(ω) ∧ τEx(ω). Then, for l, j ⩾ 1 and τ
(n)
l,0 := σ

(n)
l , we define

ρ
(n)
l,j := τ

(n)
l,j−1 + ρ

(︃
≈
B(n),τ (n)

l,j−1

)︃
, and

τ
(n)
l,j := ρ

(n)
l,j + τ

(︂
Q(n)(ρ(n)

l,j ) +X(n)(· + ρ
(n)
l,j ) −X(n)(ρ(n)

l,j )
)︂
.

(2.5.5)

Now, we define for t ∈ [0, τ1,1 − σ1),

S(t+ σ1) :=
≈
Sσ1(t),

where τ1,1 := ρ1,1 + τ
(︂ ≈
Qσ1(ρ1,1) +X(· + ρ1,1) −X(ρ1,1)

)︂
and ρ1,1 := σ1 + ρ(

≈
Bσ1). By

Theorem 2.4.6 together with (2.5.4), we conclude that
≈
S(n),σ1 →

≈
Sσ1 P-almost surely in

the Skorokhod topology. In particular,
≈
B(n),σ1 →

≈
Bσ1 P-almost surely in the Skorkhod

topology. Note, that ρ(n)
1,1 ⩽ ρ

(n)
1 and by Assumption 2.4, we have that ρ1,1 does not

indicate the start of the next inactive regime. Hence, together with the continuity of
the first exit time and last value map (cf. Theorem 13.6.4 in Whitt [86]), we conclude
that (︂

ρ
(n)
1,1 , S

(n)(ρ(n)
1,1 −), S(n)(ρ(n)

1,1 )
)︂

→
(︂
ρ1,1, S(ρ1,1−), S(ρ1,1)

)︂
P-a.s.

In particular, Q(ρ1,1) =
≈
Qσ1(ρ1,1). By Proposition 2.3.1, with probability one, the

paths of Q(ρ1,1) +X(· + ρ1,1) −X(ρ1,1) are in C ′
0([0, T − ρ1,1],R4). Hence, applying the

continuity of the first hitting time and last value map (cf. Lemma 2.7.2), we conclude
that (︂

τ
(n)
1,1 , S

(n)(τ (n)
1,1 −)

)︂
→ (τ1,1, S(τ1,1−)) P-a.s.

Now, depending on the first component of the queue size process being depleted, we
either switch to the next active regime or stay in the current inactive regime, i.e., we
set

S(τ1,1) := S(τ1,1−)
{︃
1{C(σ1)=−κ−}1{τ1,1=τIm

1,1 } + 1{C(σ1)=κ+}1{τ1,1=τEx
1,1}

}︃
+

≈
Sσ1(τ1,1 − σ1)

{︃
1{C(σ1)=−κ−}1{τ1,1=τEx

1,1} + 1{C(σ1)=κ+}1{τ1,1=τIm
1,1 }

}︃
.

The above assignment is well-defined, since the queue size process of
≈
Sσ1 follows between

two consecutive price changes the distribution of a four-dimensional linear Brownian
motion (cf. Theorem 2.4.6). Hence, there are almost surely no two queues hitting zero
at τ1,1 and therefore, the cumulative best bid and ask queues are almost surely strictly
greater than zero. Therefore, we do not observe a price change when transmitting
from the current inactive to the next active regime. By Lemma 2.7.3, we conclude the
continuity of the maps HIm : ω ↦→ 1{τIm(ω)=τ(ω)} and HEx : ω ↦→ 1{τEx(ω)=τ(ω)} and
therefore,

S(n)(τ (n)
1,1 ) → S(τ1,1) P-a.s.
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Now, let us assume that S(τ1,1) =
≈
Sσ1(τ1,1 − σ1), i.e., we stay in the current inactive

regime. Moreover, assume for j ⩾ 2 and 0 ⩽ t ⩽ τ1,j−1 − σ1, we have inductively
constructed S(t+σ1) =

≈
Sσ1(t) provided we did not switch the regime in [0, τ1,j−1 −σ1].

Then, we extend the definition of S to [τ1,j−1, τ1,j) by setting S(t + σ1) =
≈
Sσ1(t)

for 0 ⩽ t < τ1,j − σ1, where τ1,j := ρ1,j + τ(
≈
Qσ1(ρ1,j) + X(· + ρ1,j) − X(ρ1,j)) and

ρ1,j := τ1,j−1 + ρ(
≈
Bτ1,j−1). Then, we can first argue as for ρ1,1 and therefore conclude

that (︂
ρ

(n)
1,j , S

(n)(ρ(n)
1,j −), S(n)(ρ(n)

1,j )
)︂

→
(︂
ρ1,j , S(ρ1,j−), S(ρ1,j)

)︂
P-a.s.

In particular, Q(ρ1,j) =
≈
Qσ1(ρ1,j). Furthermore, by Proposition 2.3.1 with probability

one the path of Q(ρ1,j)+X(·+ρ1,j)−X(ρ1,j) is in C ′
0([0, T −ρ1,j ],R4). Hence, applying

the continuity of the first hitting time and last value map (cf. Lemma 2.7.2), we conclude
that (τ (n)

1,j , S
(n)(τ (n)

1,j −)) → (τ1,j , S(τ1,j−)) P-almost surely. Again, depending on which
component of the queue size process hits zero first, we either switch to the next active
regime or stay in the current inactive regime, i.e., we define

S(τ1,j) := S(τ1,j−)
{︃
1{C(σ1)=−κ−}1{τ1,j=τIm

1,j } + 1{C(σ1)=κ+}1{τ1,j=τEx
1,j }

}︃
+

≈
Sσ1(τ1,j − σ1)

{︃
1{C(σ1)=−κ−}1{τ1,j=τEx

1,j } + 1{C(σ1)=κ+}1{τ1,j=τIm
1,j }

}︃
.

Again, the above assignment is well-defined. By Lemma 2.7.3, we conclude the con-
tinuity of the map HIm : ω ↦→ 1{τIm(ω)=τ(ω)} and HEx : ω ↦→ 1{τEx(ω)=τ(ω)}. Hence,

S(n)(τ (n)
1,j ) → S(τ1,j) P-almost surely. In contrast, let us assume that there exists a j ⩾ 1

such that S(τ1,j) = S(τ1,j−). By construction, we have that ρ(n)
1 = τ

(n)
1,j → τ1,j = ρ1

P-almost surely. In particular, we start with the next active regime. Note that C(ρ1) =˜︁Cρ1(ρ1) and since the paths of ˜︁Cρ1 are elements in C([0, T −ρ1],R) and a single compo-
nent ofQ hits zero at ρ1, we almost surely do not switch back to the inactive regime at ρ1.

Induction hypothesis: Assume that for all k ⩾ 2, we have already shown that(︂
σ

(n)
1 , ρ

(n)
1 , · · · , σ(n)

k−1, ρ
(n)
k−1, S

(n)(σ(n)
1 ), S(n)(ρ(n)

1 ), · · · , S(n)(σ(n)
k−1), S(n)(ρ(n)

k−1)
)︂

→
(︂
σ1, ρ1, · · · , σk−1, ρk−1, S(σ1), S(ρ1), · · · , S(σk−1), S(ρk−1)

)︂ (2.5.6)

P-almost surely and that we have constructed our candidate S on the whole interval
[0, ρk−1].

Induction step: We aim to extend the definition of S to the interval [ρk−1, ρk]. Again,
we have σ(n)

k = ˜︁σ( ˜︁S(n),ρ(n)
k−1) ⩾ σ( ˜︁C(n),ρ(n)

k−1) =: σ(n)
k,1 . Then, for 0 ⩽ t < σk − ρk−1, we set

S(t+ ρk−1) = ˜︁Sρk−1(t),
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where σk := σ( ˜︁Cρk−1). Again, by Theorem 2.3.19 and since S(n)(ρ(n)
k−1) → S(ρk−1)

P-almost surely by (2.5.6), we have that

˜︁S(n),ρ(n)
k−1 → ˜︁Sρk−1 P-a.s.

in the Skorokhod topology on the space D([0, T ], E). Again, by Theorem 2.3.28, the path
of ˜︁Cρk−1 takes with probability one its values in C ′

κ+([0, T − ρk−1],R) ∩ C ′
−κ−([0, T −

ρk−1],R). Hence, we can apply the continuity of the first hitting time and last value map
(cf. Lemma 2.7.2), to conclude that (σ(n)

k,1 , S
(n)(σ(n)

k,1 −)) → (σk, S(σk−)) P-almost surely.
Now, again by Lemma 2.3.31 with probability one, we have that h( ˜︁Qρk−1)(σk) ∈ (0,∞)2.

Hence, σk = ˜︁σ( ˜︁Sρk−1) and therefore, (σ(n)
k , S(n)(σ(n)

k −)) → (σk, S(σk−)) P-almost surely.
Now, we define S(σk) = (B(σk), Q(σk), C(σk)) as follows: let ˜︁ZIk := Z(πI ˜︁Qρk−1(σk)),
where the function Z is introduced in (2.5.2). Moreover, we set C(σk) = C(σk−), for
I = F,G,

πIQ(σk) = πIQ(σk−)1{˜︁ZI
k

=0} + πIR
+
l(σk−)+11{˜︁ZI

k
=1} + πIR

−
l(σk−)+11{˜︁ZI

k
=−1},

and
BI(σk) = BI(σk−) + δ

(︃
1{˜︁ZI

k
=1} − 1{˜︁ZI

k
=−1}

)︃
.

Now, we can argue similarly as for S(σ1) and obtain that(︂
l(n)(σ(n)

k −), ˜︁ZFk (σ(n)
k ), ˜︁ZGk (σ(n)

k ), S(n)(σ(n)
k )

)︂
→
(︂
l(σk−), ˜︁ZFk , ˜︁ZGk , S(σk)

)︂
P-a.s.

(2.5.7)

Now, we extend the definition of S such that for all 0 ⩽ t < τk,1 − σk,

S(t+ σk) =
≈
Sσk(t),

where τk,1 := ρk,1 + τ(
≈
Qσk(ρk,1) +X(· + ρk,1) −X(ρk,1)) and ρk,1 := σk + ρ(

≈
Bσk). By

Theorem 2.4.6 and (2.5.7), we conclude that
≈
S(n),σ(n)

k →
≈
Sσk P-almost surely in the Sko-

rokhod topology. Together with the continuity of the first hitting time and last value map
(cf. Theorem 13.6.4 in Whitt [86]), we conclude that (ρ(n)

k,1 , S
(n)(ρ(n)

k,1−), S(n)(ρ(n)
k,1)) →

(ρk,1, S(ρk,1−), S(ρk,1)) P-almost surely. In particular,
≈
Qσk(ρk,1) = Q(ρk,1). By Propo-

sition 2.3.1, the process Q(ρk,1) +X(· + ρk,1) −X(ρk,1) takes almost surely its path in
C ′

0([0, T −ρk,1],R4). Hence, we can apply the continuity of the first hitting time and last
value map (cf. Lemma 2.7.2) to conclude that (τ (n)

k,1 , S
(n)(τ (n)

k,1−)) → (τk,1, S(τk,1−))
P-almost surely. Depending on which component of the queue size process has been
depleted first, we either switch to the next active regime or stay in the current inactive
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regime, i.e., we set

S(τk,1) := S(τk,1−)
{︃
1{C(σk)=−κ−}1{τk,1=τIm

k,1} + 1{C(σk)=κ+}1{τk,1=τEx
k,1}

}︃
+

≈
Sσk(τk,1 − σk)

{︃
1{C(σk)=−κ−}1{τk,1=τEx

k,1} + 1{C(σk)=κ+}1{τk,1=τIm
k,1}

}︃
.

Again, the above assignment is well-defined. By Lemma 2.7.3, we conclude the con-
tinuity of the map HIm : ω ↦→ 1{τIm(ω)=τ(ω)} and HEx : ω ↦→ 1{τEx(ω)=τ(ω)}. Hence,

S(n)(τ (n)
k,1) → S(τk,1) P-almost surely. Now, assume that S(τk,1) =

≈
Sσk(τk,1 − σk).

Further, assume for j ⩾ 2 and 0 ⩽ t ⩽ τk,j−1 − σk, that we have constructed
S(t+σk) =

≈
Sσk(t) provided we did not switch the regime in [0, τk,j−1−σk]. Again, we ex-

tend the definition of S to [τk,j−1, τk,j) by setting S(t+σk) =
≈
Sσk(t) for 0 ⩽ t < τk,j−σk,

where τk,j := ρk,j + τ(
≈
Qσk(ρk,j)+X(·+ρk,j)−X(ρk,j)) and ρk,j := τk,j−1 +ρ(

≈
Bτk,j−1).

Then, we can argue as for ρk,1 to conclude that (ρ(n)
k,j , S

(n)(ρ(n)
k,j−), S(n)(ρ(n)

k,j )) →
(ρk,j , S(ρk,j−), S(ρk,j)) P-almost surely. In particular

≈
Qσk(ρk,j) = Q(ρk,j). Moreover,

again by Proposition 2.3.1, the process Q(ρk,j)+X(·+ρk,j)−X(ρk,j) has almost surely
paths in C ′

0([0, T − ρk,j ],R4). Hence, we can apply the continuity of the first hitting
time and last value map (cf. Theorem 2.7.2) to conclude that (τ (n)

k,j , S
(n)(τ (n)

k,j−)) →
(τk,j , S(τk,j−)) P-almost surely. Again, depending on which component of the queue
size process has been depleted first, we either switch to the next active regime or stay
in the current inactive regime, i.e., we define

S(τk,j) := S(τk,j−)
{︃
1{C(σk)=−κ−}1{τk,j=τIm

k,j } + 1{C(σk)=κ+}1{τk,j=τEx
k,j}

}︃
+

≈
Sσk(τk,j − σk)

{︃
1{C(σk)=−κ−}1{τk,j=τEx

k,j} + 1{C(σk)=κ+}1{τk,j=τIm
k,j }

}︃
.

Arguing as above, we can conclude that S(n)(τ (n)
k,j ) → S(τk,j) P-almost surely. In

contrast, let us assume that there exists a j ⩾ 1 such that S(τk,j) = S(τk,j−). Then
τk,j = ρk and we conclude that

ρ
(n)
k = τ

(n)
k,j → ρk P-a.s.

i.e., we switch to the next active regime. Note again that C(ρk) = ˜︁Cρk(ρk) and since
almost surely the paths of ˜︁Cρk are elements of C([0, T −ρk],R) and a single component
of Q hits zero at ρk, we almost surely do not switch back to the inactive regime at ρk.
This finishes our induction.
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In summary, we conclude for our candidate S and all k ⩾ 1,(︂
σ

(n)
1 , ρ

(n)
1 , · · · , σ(n)

k , ρ
(n)
k , S(n)(σ(n)

1 ), S(n)(ρ(n)
1 ), · · · , S(n)(σ(n)

k ), S(n)(ρ(n)
k )

)︂
→ (σ1, ρ1, · · · , σk, ρk, S(σ1), S(ρ1), · · · , S(σk), S(ρk))

P-almost surely. It remains to show that P[ρk = T ] → 1 as k → ∞. For this note that
a switch from an active to an inactive regime causes the bid prices of both countries to
move apart from each other with probability one. Before the time of the next regime
switch to an active regime, we must therefore have at least one price change in one
of the countries and at least two queues belonging to that country get reinitialized.
Hence, at time ρ2k the queues of one of the countries have been reinitialized at least
k times at either πIR+

k or πIR−
k for some k ∈ N and either I = F or I = G. By

Assumption 2.4 we know that each R±
k is component-wise bounded from below by αϵ±k ,

where the (ϵ±k ) are iid. As the starting time ρk of an active regime can be bounded
from below by the hitting time at zero of one of the components of Q, we can thus
bound ρ2k from below by the sum of the first hitting times at the axes of k independent
planar Brownian motions, each started from min{πF ϵ+k , πF ϵ

−
k , πGϵ

+
k , πGϵ

−
k }. But on

each compact interval [0, T ] only finitely many independent planar Brownian motions
will hit the axes and hence we must have P[ρk = T ] → 1. Therefore, we obtain from
Theorem 2.3.19 and Theorem 2.4.6 that

S(n) → S P-a.s.

in the Skorokhod topology on the space D([0, T ], E). This proves the stated result.

2.6 Simulation study
We discuss the evolution of our market dynamics through simulation studies of different
model calibrations. Moreover, we investigate the impact of coupling two markets on
price evolution. Therefore, we perform a comparative statics of the active and inactive
market dynamics and discuss a theoretical result on the conditional distribution of the
duration between price changes.

2.6.1 Simulation of different market situations
Throughout this section, we choose ∆t(n) = n−1, ∆v(n) = n−1/2, and simulate n =
10, 000 time steps. For simplicity, we assume that the order sizes are independent and
simulate the queue sizes after price changes from independent uniform distributions on
{j∆v(n) : j = 10, · · · , 20}. Moreover, we choose κ+ = κ− = 0.5 and δ = 0.1.

In a first simulation, we consider a cross-border market which is balanced between
cross-border trades in direction F to G and vice versa. In addition, we assume that
the occurrence of different order types is equally likely and choose the frequency of
order cancellations higher than the frequency of order placements. The latter is not
unrealistic, since in liquid markets the frequency of market orders and cancellations at

139



2.6. SIMULATION STUDY

the best bid and ask prices is known to be much higher than the frequency of order
placements. In more detail, for all (i, I) ∈ {b, a} × {F,G}, we choose

P
[︂
(ϕ(n)

1 , ψ
(n)
1 ) = (i, I)

]︂
= 0.25 and P(i,I)

[︂
V
i,I,(n)

1 = −∆v(n)
]︂

= 1
2 + 5∆v(n),

where P(i,I)[V i,I,(n)
1 = −∆v(n)] := P[V i,I,(n)

1 = −∆v(n) | (ϕ(n)
1 , ψ

(n)
1 ) = (i, I)]. This choice

yields the model parameters µi,I,(n) = −2.5 and (σi,I,(n))2 = 0.25 − n−1(µi,I,(n))2 for
all (i, I) ∈ {b, a} × {F,G}. We present one realization of this balanced cross-border
market model in Figure 2.12.

Figure 2.12: Simulation of bid queues, ask queues, and bid prices of F (orange)
and G (turquoise) as well as the capacity process for n = 10, 000
(balanced setting). The white areas represent the active regimes
whereas the gray ones represent the inactive regimes.

We observe three regime switches in Figure 2.12: the first around 4,500, the second
around 7,000, and the last around 8,000 time steps. During the active regimes (white
areas) the capacity process moves up and down. This is because the frequency of market
orders that leads to an increase of the capacity process (i.e. imports to F ) and the
frequency of orders that leads to a decrease of the capacity process (i.e. exports from F )
are of comparable size. Moreover, by replicating the above simulation 1, 000 times, we
obtain an empirical probability of around 0.53 to observe at least one regime switch for
the chosen model parameters. Since we have chosen the frequency of order cancellations
higher than the frequency of order placements, we observe several price changes and
a comparable high fluctuation of the capacity process. If we change this relation in
favor of order placements, we would observe less price changes and fewer fluctuations
of the capacity process. This would also reduce the empirical probability to observe
a regime switch. The cross-border market model in this simulation might replicate a
market situation in which the actual national best bid prices are on a comparable level.
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In this setting, the main advantage of the market coupling is therefore the increase of
standing volumes which typically leads to fewer price changes.

In a second simulation, we analyze a so-called imbalanced cross-border market in
which we choose the frequency of cross-border trades in direction G to F (imports to F )
smaller than the frequency of cross-border trades in direction F to G (exports from F ).
In more detail, for all (i, I) ∈ {b, a} × {F,G}, we choose P[(ϕ(n)

1 , ψ
(n)
1 ) = (i, I)] = 0.25.

Moreover, let P(i,I)[V i,I,(n)
1 = −∆v(n)] = 0.5 + 5∆v(n) for (i, I) ∈ {(b, F ), (a,G)}

and P(i,I)[V i,I,(n)
1 = −∆v(n)] = 0.5 for (i, I) ∈ {(a, F ), (b,G)}. This yields the model

parameters µb,F,(n) = µa,G,(n) = −2.5, µa,F,(n) = µb,G,(n) = 0, and (σi,I,(n))2 = 0.25 −
n−1(µi,I,(n))2 for all (i, I) ∈ {b, a}×{F,G}.We present one realization of this imbalanced
cross-border market model in Figure 2.13.

We observe a single regime switch from the active to the inactive regime around
2, 500 time steps. Since we have chosen the frequency of market orders corresponding to
possible exports from F higher than the frequency of those corresponding to possible
imports to F , the dynamics of the capacity process has a higher probability to move
downward. Since this imbalance is maintained after the regime switch, the best bid
price of F decreases whereas the price of G increases. Note that the bid price of G
increases after the regime switch since market orders at the best ask price are more
likely than market orders at the best bid price. For a similar reason, the bid price of F
decreases after the regime switch. Our chosen model assumptions might replicate a
market in which the actual national price in G is much higher than in F . Therefore,
market participants in F are motivated to sell orders to G for better prices.

Figure 2.13: Simulation of bid and ask queues, bid prices of F (orange) and G
(turquoise), and the capacity process for n = 10,000 (imbalanced
setting). The white areas represent the active regimes whereas
the gray ones represent the inactive regimes.

Motivated by empirical observations in real-world markets, not only the market
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matching mechanism but also the model parameters might change because of the
occurrence of a regime switch. Therefore, let us choose in a third simulation the model
parameters during the active regimes similarly as before: µb,F,(n) = µa,G,(n) = −2.5,
µa,F,(n) = µb,G,(n) = 0, and (σi,I,(n))2 = 0.25 − n−1(µi,I,(n))2 for all (i, I) ∈ {b, a} ×
{F,G}. In contrast, during the inactive regimes, let us choose P[(ϕ(n)

1 , ψ
(n)
1 ) = (i, F )] =

0.1 for i = b, a, P[(ϕ(n)
1 , ψ

(n)
1 ) = (b,G)] = 0.3, and P[(ϕ(n)

1 , ψ
(n)
1 ) = (a,G)] = 0.5.

Moreover, we assume P(i,I)[V i,I,(n)
1 = −∆v(n)] = 0.5 for all (i, I) ∈ {(b, F ), (a, F ), (b,G)}

and P(a,G)[V a,G,(n)
1 = −∆v(n)] = 0.5 + 2.5∆v(n). This yields the following model

parameters during the inactive regimes: µb,F,(n) = µa,F,(n) = µb,G,(n) = 0, µa,G,(n) =
−2.5, and (σb,F,(n))2 = (σa,F,(n))2 = 0.1, (σb,G,(n))2 = 0.3, and (σa,G,(n))2 = 0.5 −
n−1(µa,G,(n))2. We present one realization of this imbalanced cross-border market
model with a change of the model parameters in Figure 2.14.

In this last simulation, we observe a single regime switch around 3,000 time steps.
While we have chosen the same parameters of the underlying order flow for the active
regime as in the second simulation, we changed them in the inactive regime. In particular,
the model parameters of the queue size process of F are changed in favor of less order
arrivals and price changes during the inactive regimes. For this reason, we observe only
a single price change of the best bid price of F during the inactive regime. Moreover,
the drift of the ask queue of G is still negative while the drift of the bid queue of G is
zero, so that the bid price of G moves upward during the inactive regime. These model
assumptions might replicate a market in which the actual national bid price in G is
higher than in F and the high number of trading volume in F during the active regime
is only caused due to the possibility to sell goods to G.

Figure 2.14: Simulation of the bid queues, the ask queue sizes, and the prices
of F (orange) and G (turquoise) as well as the capacity process
for n = 10,000 (imbalanced setting, change point in the model pa-
rameters). The white areas represent the active regimes whereas
the gray ones represent the inactive regimes.
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2.6.2 Impact of the market coupling on the evolution of bid prices
We study the impact of coupling two markets on the evolution of bid prices in our
cross-border market model. For this reason, we simulate the active and inactive dy-
namics from the same underlying order flow process and compare their empirical mean
number of price changes and bid price ranges. We simulate n = 10, 000 time steps
and replicate the simulations m = 1, 000 times. The order types are assumed to be
independent and have the same probabilities, i.e., P[(ϕ(n)

1 , ψ
(n)
1 ) = (i, I)] = 0.25 for all

(i, I) ∈ {b, a} × {F,G}.

We analyze four scenarios: in a) we study a completely balanced cross-border market
model in which the frequency of all market and limit orders is of comparable size, i.e.,
µi,I = 0 for all (i, I) ∈ {b, a} × {F,G}. Second, we analyze in b) a cross-border market
model in which the frequency of market orders leading to possible imports and those
leading to possible exports is balanced, but the frequency of market orders at the bid
side of the shared order book is higher than on the ask side, i.e., µb,F = µb,G = −2.5
and µa,F = µa,G = 0. In scenario c) we analyze a balanced cross-border market in
which the frequency of market orders with origin F is higher than the frequency of
market orders with origin G, i.e., µb,F = µa,F = −2.5 and µb,G = µa,G = 0. Finally,
we study in d) an imbalanced cross-border market in which the frequency of market
orders leading to possible exports from F is higher than the frequency of those orders
leading to possible imports to F , i.e., µb,F = µa,G = −2.5 and µa,F = µb,G = 0.

In the following, let us denote by N shared, NF , and NG the empirical mean number
of price changes and by Rshared, RF , and RG the empirical mean bid price ranges in
the shared limit order book obtained from simulating the dynamics of ˜︁S(n), and in the
national limit order book of F respectively G obtained from simulating the dynamics
of

≈
S(n).

scenario N shared NF NG

a) µb,F = µa,F = µb,G = µa,G = 0 6.88 11.91 11.86
b) µb,F = µb,G = −2.5, µa,F = µa,G = 0 27.91 34.99 35.36
c) µb,F = µa,F = −2.5, µb,G = µa,G = 0 23.39 50.34 11.72
d) µb,F = µa,G = −2.5, µa,F = µb,G = 0 23.6 35.19 35.31

Figure 2.15: The mean number of price changes in different simulations with
n = 10, 000 time steps and m = 1, 000 iterations.

We note that Rshared, RF , and RG are stated relative to the tick size, i.e., they
describe the mean number of ticks between the maximum and minimum bid prices.
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scenario Rshared RF RG

a) µb,F = µa,F = µb,G = µa,G = 0 3.10 4.48 4.44
b) µb,F = µb,G = −2.5, µa,F = µa,G = 0 18.36 15.03 15.13
c) µb,F = µa,F = −2.5, µb,G = µa,G = 0 6.85 10.25 4.43
d) µb,F = µa,G = −2.5, µa,F = µb,G = 0 6.71 14.93 15.48

Figure 2.16: The mean bid price ranges relative to the tick size in different
simulations with n = 10, 000 time steps and m = 1, 000 itera-
tions.

Recall that a price change in the shared order book always yields price changes in
both national limit order books. First, we observe that the coupling of the national
markets reduces the number of price changes in the shared limit order book (cf. Table
2.15). Except from scenario b) the coupling of the national markets also reduces the
mean price ranges (cf. Table 2.16). This can be explained as follows: on the one hand,
the coupling of two limit order books always leads to an increase of the order volume at
the best bid and ask queues. On the other hand, however, also the drift, the volatility,
and the correlation parameters of the cumulative order flow process differ from the
parameters of order flow processes corresponding to the national order books. The
difference of the model parameters could amplify or cancel out the effects caused due
to the increase in trading volume. For this reason, the bid price range in scenario b) is
higher in the shared order book than in the national ones. More precisely, even though
the order volume has increased due to the coupling, the drifts and volatilities of the
cumulative order flow process have doubled. In particular, the drift of the bid side of
the shared order book of size -5 compared to the drift of the bid side of the national
order books of size -2.5 leads to a more extreme price evolution in the shared order
book. In contrast, in the scenarios a) and d), the drifts of the cumulative order flow
process equals the drifts of the national order flow processes. Hence, the coupling of the
two limit order books leads to a decrease of the number of price changes and of the bid
price ranges since the standing volumes at the best bid and ask queues have increased.
Finally, in scenario c) in which we have a high imbalance of market and limit orders in
favor of market orders in only one of the two countries, we observe a kind of balancing
effect, i.e., the number of price changes as well as the bid price range in the shared
order book are smaller than in the national order book with the high imbalance but
higher than in the balanced one.

We finish this section by studying the effect of coupling two markets using a theoretical
result presented in Cont and de Larrard [19]. It describes the conditional distribution
of the duration between price changes in a single country limit order book model and is
based on the results in [90] on the first exit time of a planar Brownian motion with drift.
This theoretical result can also be used to formulate the conditional distribution of the
duration between price changes in the shared limit order book: let Qb and Qa be the
cumulative bid and ask components of the limit of the queue size process of the shared
order book. To analyze the market coupling effect on bid price evolution, we must
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relate the parameters of the cumulative queues to the model parameters introduced in
Assumption 2.2. To this end, we note (cf. Corollary 2.7.1) that

µb = µb,F + µb,G,

µa = µa,F + µa,G,

σ2
b = (σb,F )2 + 2σ(b,F ),(b,G) + (σb,G)2,

σ2
a = (σa,F )2 + 2σ(a,F ),(a,G) + (σa,G)2,

ρσaσb = σ(b,F ),(a,F ) + σ(b,F ),(a,G) + σ(b,G),(a,F ) + σ(b,G),(a,G).

Let the random time τ denote the duration until the next price change in Q =
(Qb,Qa). Then, the conditional distribution of the duration between price changes is
given by

P[τ > t|Q(0) = (x, y)]

= 2
αt

exp
(︃
a1x+ a2y + att− U

2t

)︃ ∞∑︂
j=1

sin
(︃
jπθ0
α

)︃∫︂ α

0
sin
(︃
jπθ

α

)︃
gj(θ)dθ,

(2.6.1)

where

U := (1 − ρ2)−1
(︄
x2

σ2
b

+ y2

σ2
a

− 2ρxy
σbσa

)︄
,

α :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π + arctan

(︃
−

√
1−ρ2

ρ

)︃
ρ > 0

π
2 ρ = 0

arctan
(︃

−
√

1−ρ2

ρ

)︃
ρ < 0

, θ0 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π + arctan

(︃
yσb

√
1−ρ2

xσa−ρyσb

)︃
xσa < ρyσb

π
2 xσa = ρyσb

arctan
(︃
yσb

√
1−ρ2

xσa−ρyσb

)︃
xσa > ρyσb

,

gj(θ) :=
∫︂ ∞

0
r exp

(︄
−r2

2t

)︄
exp (d1r sin(θ − α) − d2r cos(θ − α)) Ijπ/α

(︄
r
√
U

t

)︄
dr,

where Ij denotes the j-th modified Bessel function of first kind, and

a1 := ρµaσb − µbσa
(1 − ρ2)σ2

bσa
, a2 := ρµbσa − µaσb

(1 − ρ2)σ2
aσb

,

d1 := a1σb + ρa2σa, d2 := a2σa

√︂
1 − ρ2,

and
at = a2

1σ
2
b

2 + ρa1a2σbσa + a2
2σ

2
a

2 + a1µb + a2µa.

At first glance, the survival probability introduced in (2.6.1) gives only little insights
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into its dependence on the model parameters and on the market coupling effect.
Therefore, let us numerically study its behavior for different model parameters. In the
following, let t = 1 and x = y = 1.

To analyze the effect of the mean and variance, we assume for simplicity independence
between incoming order events. Then, thanks to Assumption 2.2, we have σ2

b = 1 − σ2
a.

We observe that the survival probability increases with the mean, while the choice
of different variances affects the skewness and kurtosis of the curve (cf. Figure 2.17
left). This behavior is not surprising as the bid mean describes the relation between
incoming market and limit orders affecting the bid side. A high value indicates that
limit orders are more likely than market orders yielding an increase of the bid queue
and hence stabilizes the bid price. For fixed mean µb = µa = 0, the variance has only
little influence on the size of the survival probability and the symmetry of the curve
follows from the relation σ2

b = 1 − σ2
a (cf. Figure 2.17 right). In contrast, for a negative

bid mean µb (negative ask mean µa) the probability decreases (increases) with the bid
variance σ2

b , since an increasing bid variance increases activity on the bid side while
simultaneously decreasing activity on the ask side.

Figure 2.17: Influence of model parameters on the survival probability. Left:
Influence of the mean µb for different values of σ2

b . Right: Influence
of the variance σ2

b for different values of µb and µa.

Next, we study the influence of the correlations between incoming order sizes with
origin F and G on the survival probability. If we have a non-zero correlation parameter
ρ(b,F ),(b,G) or ρ(a,F ),(a,G), note that the relation σ2

b = 1−σ2
a is violated as the correlation

directly effects the size of the bid/ask variance σ2
b or σ2

a. In Figure 2.18 (left), we study
the case in which ρ(b,F ),(b,G) is not necessarily zero, while all other correlation parameters
equal zero. Then, a negative (positive) correlation decreases (increases) the bid variance
and hence decreases (increases) the activity on the bid side while the activity on the ask
side stays unchanged. For this reason, the survival probability decreases with ρ(b,F ),(b,G).
In Figure 2.18 (right), we study the influence of the correlation parameter ρ(b,F ),(a,G)

while the other correlation parameters are set to zero. Since the size of ρ(b,F ),(a,G) only
effects the size of the correlation parameter ρ in the equation for the survival probability,
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the relation σ2
b = 1 − σ2

a is again satisfied. Moreover, we observe for different choices
of means and variances that the survival probability increases with ρ(b,F ),(a,G). Hence,
a positive correlation between bid orders with origin F and ask orders with origin G
stabilizes the bid price.

Figure 2.18: Influence of model parameters on the survival probability. Left:
Influence of ρ(b,F ),(b,G) for different values of µb and µa, where
(σi,I)2 = 0.25 for all (i, I) ∈ {b, a} × {F,G}. Right: Influence of
ρ(b,F ),(a,G) for different values of µb, µa, and σ2

b .

2.7 Technical details
In the following, we denote by ΛT the class of strictly increasing, continuous mappings
from [0, T ] onto itself. Moreover, let dJ1 be the distance that induces the Skorokhod
(J1-)topology on the space D([0, T ],Rk), for k ⩾ 1 (cf. e.g. Billingsley [8] for a detailed
definition).

2.7.1 A functional central limit theorem for the net order flow process
In this subsection, we state the proof of the functional central limit theorem for the
net order flow process X(n), cf. Proposition 2.3.1.

Proof of Proposition 2.3.1. In order to ease notation, we assume that for (i, I), (j, J) ∈
{b, a} × {F,G} we have σ(i,I),(j,J),(n) = 0 whenever I ≠ J , i.e., we assume independence
of the order sizes between different countries. However, our strategy (based on the
Cramer-Wold device) can be easily extended to the more general case, where we allow
dependencies between all order sizes.

Let X(n) = (Xb,F,(n), Xa,F,(n), Xb,G,(n), Xa,G,(n)) denote the piecewise constant inter-
polation of the net order flow process (cf. its detailed definition in (2.3.1)). Using the
Cramer-Wold device, it is sufficient to prove that for (α, β, γ, δ) ∈ R4 and a standard
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Brownian motion B,(︂
αXb,F,(n)(t) + βXa,F,(n)(t) + γXb,G,(n)(t) + δXa,G,(n)(t)

)︂
t⩾0

⇒ (µ∗t+ σ∗B(t))t⩾0

(2.7.1)

in the Skorokhod topology on the space D([0, T ],R), where the drift and diffusion
components of the limit process are given by

µ∗ := αµb,F + βµa,F + γµb,G + δµa,G,

σ2
∗ := α2(σb,F )2 + β2(σa,F )2 + γ2(σb,G)2 + δ2(σa,G)2 + 2αβσ(b,F ),(a,F ) + 2γδσ(b,G),(a,G).

For all n ∈ N, we define

W
(n)
k :=

(︂
αV

b,F,(n)
k + βV

a,F,(n)
k + γV

b,G,(n)
k + δV

a,G,(n)
k

)︂
and

W(n)
k :=

k∑︂
j=1

W
(n)
j , W(n)(t) :=

Tn∑︂
k=1

W(n)
k 1[︂

t
(n)
k
,t

(n)
k+1

)︂(t).

Then, for all t ∈ [0, T ], the left hand side of (2.7.1) equals

αXb,F,(n)(t) + βXa,F,(n)(t) + γXb,G,(n)(t) + δXa,G,(n)(t) = W(n)(t).

For all n ∈ N,
(︂
W

(n)
k , k ⩾ 1

)︂
forms a sequence of stationary random variables thanks

to Assumption 2.2. Next, by Assumption 2.2 and Assumption 2.3, observe that

⌊t/∆t(n)⌋∑︂
k=1

E
[︂
W

(n)
k

]︂
= ⌊t/∆t(n)⌋

(︂
∆v(n)

)︂2 (︂
αµb,F,(n) + βµa,F,(n) + γµb,G,(n) + δµa,G,(n)

)︂
→ t

(︂
αµb,F + βµa,F + γµb,G + δµa,G

)︂
= tµ∗.

Now, we want to apply Theorem 19.1 in Billingsley [8, Section 19, p.197] and therefore,
we need to show that

1(︁
∆v(n))︁2

(︄
Var

[︂
W

(n)
1

]︂
+ 2

Tn∑︂
k=2

Cov
[︂
W

(n)
1 ,W

(n)
k

]︂)︄
→ σ2

∗. (2.7.2)

148



2.7. TECHNICAL DETAILS

Applying the definition of the W (n)
k ’s, for k ⩾ 1, we have

Cov
[︂
W

(n)
1 ,W

(n)
k

]︂
= α2Cov

[︂
V
b,F,(n)

1 , V
b,F,(n)
k

]︂
+ β2Cov

[︂
V
a,F,(n)

1 , V
a,F,(n)
k

]︂
+ γ2Cov

[︂
V
b,G,(n)

1 , V
b,G,(n)
k

]︂
+ δ2Cov

[︂
V
a,G,(n)

1 , V
a,G,(n)
k

]︂
+ αβCov

[︂
V
b,F,(n)

1 , V
a,F,(n)
k

]︂
+ αβCov

[︂
V
a,F,(n)

1 , V
b,F,(n)
k

]︂
+ γδCov

[︂
V
b,G,(n)

1 , V
a,G,(n)
k

]︂
+ γδCov

[︂
V
a,G,(n)

1 , V
b,G,(n)
k

]︂
,

where we used the independence of the order sizes between different countries. Applying
Assumption 2.2 i), we conclude

Var
[︂
W

(n)
1

]︂
+ 2

Tn∑︂
k=2

Cov
[︂
W

(n)
1 ,W

(n)
k

]︂
= (∆v(n))2

(︂
α2(σb,F,(n))2 + β2(σa,F,(n))2 + γ2(σb,G,(n))2 + δ2(σa,G,(n))2

)︂
+ (∆v(n))2

(︂
αβσ(b,F ),(a,F ),(n) + γδσ(b,G),(a,G),(n)

)︂
.

An application of Assumption 2.2 ii) finally yields

1(︁
∆v(n))︁2

(︄
Var

[︂
W

(n)
1

]︂
+ 2

Tn∑︂
k=2

Cov
[︂
W

(n)
1 ,W

(n)
k

]︂)︄
→ σ2

∗.

Now, by Assumption 2.3 we have limn→∞ ∆t(n)/(∆v(n))2 = 1 and therefore, applying
Theorem 19.1 in Billingsley [8], the sequence of processes (W(n))n⩾1 converges weakly
in the Skorokhod topology to a Brownian motion with drift µ∗ and volatility σ∗. In
particular, we conclude (2.7.1) finishing the proof.

As a direct consequence, we obtain a functional limit theorem for the cumulative net
order flow process h(X(n)).

Corollary 2.7.1. Under the assumptions of Proposition 2.3.1, the cumulative net order
flow process h(X(n)) converges weakly in the Skorokhod topology to a planar Brownian
motion, i.e.,

h(X(n)) ⇒ h(X) := (tµ̂+ Σ̂1/2B̂(t))t⩾0,

where B̂ is a standard planar Brownian motion and

µ̂ :=
(︄
µ̂b

µ̂a

)︄
:=
(︄
µ(b,F ) + µ(b,G)

µ(a,F ) + µ(a,G)

)︄
, Σ̂ :=

(︄
σ̂2

1,1 σ̂1,2
σ̂1,2 σ̂2

2,2

)︄
,
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and

σ̂2
1,1 := (σ(b,F ))2 + 2σ(b,F ),(b,G) + (σ(b,G))2,

σ̂2
2,2 := (σ(a,F ))2 + 2σ(a,F ),(a,G) + (σ(a,G))2,

σ̂1,2 := σ(b,F ),(a,F ) + σ(b,F ),(a,G) + σ(b,G),(a,F ) + σ(b,G),(a,G).

Proof. Note that the function h : D([0, T ],R4) → D([0, T ],R2) is continuous at ω ∈
C([0, T ],R4) with respect to the Skorokhod topology. Since X is a four-dimensional
linear Brownian motion (thanks to Proposition 2.3.1), we conclude that X lies, with
probability one, in the continuity set of h. Hence, a combination of Proposition 2.3.1
and the continuous mapping theorem yields

h(X(n)) ⇒ h(X)

in Skorokhod the topology on D([0, T ],R2). Again, by Proposition 2.3.1, we conclude
that h(X) is a planar Brownian motion with the stated drift µ̂ and covariance matrix
Σ̂. The positive-definiteness of Σ̂ can be directly deduced from that of Σ.

2.7.2 Continuity properties of important functions
In this subsection, we describe the continuity sets of the first hitting time map, the
function g : D([0, T ],R2) → D([0, T ],R2

+), the function ˜︁ΨQ : D([0, T ],R4) × (R4
+)N ×

(R4
+)N → D([0, T ],R4

+), and some other related functions.

2.7.2.1 Continuity of the first hitting time map

In order to prove our convergence results, we frequently apply the continuity of the first
hitting time and last value map. Therefore, let us introduce for any z ∈ R, the maps

τz :D([0, T ],R) → [0, T ], τz(ω) := inf{t ⩾ 0 : ω(t) ⩽ z} ∧ T,

lz :D([0, T ],R) → R, lz(ω) := ω(τz(ω)−).
(2.7.3)

In contrast to the definition of the first hitting time and last value map in Whitt
[86], we allow equality in the definition of the first hitting time map. For this reason,
we cannot directly apply the corresponding continuity result in Whitt [86, Theorem
13.6.4] for the first hitting time map with respect to the Skorokhod topology. Let us
introduce for some z ∈ R the function space C ′

z([0, T ],R) in which the continuity of
these maps can still be established. We define

C ′
z([0, T ],R)

:= {ω ∈ C([0, T ],R) : z /∈ ω((τ ′
z(ω) − ε, τ ′

z(ω))) for all ε > 0},
(2.7.4)

where
τ ′
z : D([0, T ],R) → [0, T ], τ ′

z(ω) := inf{t ⩾ 0 : ω(t) < z} ∧ T.
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In words, the functions space C ′
z([0, T ],R) contains all continuous functions ω that

are not equal to z throughout the interval (τ ′
z(ω) − ε, τ ′

z(ω)) for any ε > 0. Later, we
work with functions in its k-dimensional version C ′

z([0, T ],Rk) := {ω ∈ C([0, T ],Rk) :
π

(k)
j ω ∈ C ′

z([0, T ],R), j = 1, · · · , k}, for k ⩾ 1. Moreover, we denote by C ′
z([0, T ],Rk \

{(0, · · · , 0)}) the space containing functions ω ∈ C ′
z([0, T ],Rk) avoiding the origin, i.e.,

(0, · · · , 0) /∈ ω([0, T ]).

Lemma 2.7.2 (Continuity of the first hitting time and last value map). Let z ∈
R, ω ∈ C ′

z([0, T ],R), and (ωn)n⩾1 be a sequence taking values in D([0, T ],R) with
dJ1(ω, ωn) → 0 as n → ∞. Then, for the maps τz and lz in (2.7.3), we have

(τz(ωn), lz(ωn)) → (τz(ω), lz(ω)) as n → ∞.

Proof. For each x ∈ D([0, T ],R), let τ ′
z(x) := inf{t ⩾ 0 : x(t) < z} ∧ T and l′z(x) :=

x(τ ′
z(x)−). Since ω ∈ C ′

z([0, T ],R) and convergence in the Skorokhod J1-topology
implies convergence in the Skorokhod M2-topology, we can apply Theorem 13.6.4 in
Whitt [86] and conclude that

τ ′
z(ωn) → τ ′

z(ω), l′z(ωn) → l′z(ω)

as n → ∞. Moreover, since ω ∈ C ′
z([0, T ],R), we have τ ′

z(ω) = τz(ω) and l′z(ω) = lz(ω)
for τz and lz defined in (2.7.3). Hence, (τz(ωn), lz(ωn)) → (τz(ω), lz(ω)) as n → ∞.

Next, let us introduce maps τ1, τ2, τ : D([0, T ],R2) → [0, T ] by setting

τ1(ω) := inf
{︂
t ⩾ 0 : π(2)

1 ω(t) ⩽ 0
}︂

∧ T, τ2(ω) := inf
{︂
t ⩾ 0 : π(2)

2 ω(t) ⩽ 0
}︂

∧ T,

and τ(ω) := τ1(ω) ∧ τ2(ω). The function τ defines the first hitting time of ω ∈
D([0, T ],R2) of the axes {(0, y) : y > 0} ∪ {(x, 0) : x ⩾ 0}.

Lemma 2.7.3. For i = 1, 2, the map

Hi : (D([0, T ],R2), dJ1) → R,
ω ↦→ 1{τ(ω)=τi(ω)}

is continuous on the set {ω ∈ C ′
0([0, T ],R2 \ {(0, 0)}), τ(ω) < T}.

Proof. We prove the stated result for the function H1. When τ(ω) < T , the fact that
H1(ω) = 1 indicates that ω first hits the x-axis. Let ω0 ∈ C ′

0([0, T ],R2 \ {(0, 0)}). Then,
there exists N ∈ N such that for all n ⩾ N, we have ω0 /∈ B2(0, 1/n) := {x ∈ R2 : ∥x∥ <
1/n}. Let ε > 0. Moreover, let ω′ ∈ D([0, T ],R2) with dJ1(ω0, ω

′) < ε. In particular,
there exists λ ∈ ΛT such that ∥ω0 ◦ λ − ω′∥∞ < ε and ∥λ − id∥∞ < ε. Furthermore,
assume that ε+ ηω0(ε) + ηω0◦λ(ε) < 1/n, where ηω defines the modulus of continuity
of ω, cf. equation (7.1) in Billingsley [8]. Now, we want to show that for all such ε,
ω′ ∈ D([0, T ],R2), and λ ∈ ΛT , we have

1{τ(ω0)=τ1(ω0)} = 1{τ(ω′)=τ1(ω′)}.

151



2.7. TECHNICAL DETAILS

Without loss of generality, by the continuity of the first hitting time map τ with
respect to the Skorokhod topology (cf. Lemma 2.7.2), we might assume that also
|τ(ω0) − τ(ω′)| < ε. Next, we have that⃦⃦
ω0(τ(ω0)) − ω′(τ(ω′))

⃦⃦
⩽
⃦⃦
ω0 ◦ λ− ω′⃦⃦

∞ + ∥ω0 ◦ λ(τ(ω0)) − ω0(τ(ω0))∥ +
⃦⃦
ω0 ◦ λ(τ(ω′)) − ω0 ◦ λ(τ(ω0))

⃦⃦
⩽ ε+ ηω0(ε) + ηω0◦λ(ε).

Since ε+ ηω0(ε) + ηω0◦λ(ε) < 1/n and ω0 ∈ C ′([0, T ],R2 \ {0, 0}), we finally conclude
for all n ⩾ N that 1{τ(ω0)=τ1(ω0)} = 1{τ(ω′)=τ1(ω′)}.

2.7.2.2 Continuity of the function g

Let us first analyze for k ∈ N the functions τ̂k : D([0, T ],R2) → [0, T ] given in Definition
2.3.2: for ω ∈ D([0, T ],R2), we can write τ̂1(ω) = τ̂1,1(ω) ∧ τ̂1,2(ω), where

τ̂1,i(ω) := inf{t ⩾ 0 : π(2)
i ω(t) ⩽ 0} ∧ T for i = 1, 2. (2.7.5)

For k ⩾ 2 with ˜︁gk−1(ω)(τ̂k−1(ω)) /∈ R2
−, we have τ̂k(ω) := τ̂k,1(ω)1(τ̂k−1(ω) =

τ̂k−1,2(ω)) + τ̂k,2(ω)1(τ̂k−1(ω) = τ̂k−1,1(ω)) and

τ̂k,i(ω) := inf{t ⩾ τ̂k−1(ω) : π(2)
i ˜︁gk(ω)(t) ⩽ 0} ∧ T for i = 1, 2. (2.7.6)

We recall the definition of τ : D([0, T ],R2) → [0, T ] introduced in Lemma 2.3.4, i.e.,

τ(ω) := inf{t ⩾ 0 : g(ω)(t) = (0, 0)} ∧ T = inf{t ⩾ 0 : h1(ω)(t) ⩽ 0} ∧ T,

and denote ∥ω∥[a,b] := ∥ω |[a,b] ∥∞ for any [a, b] ⊂ [0, T ] and ω ∈ D([0, T ],Rk), k ⩾ 1.

Lemma 2.7.4 (Continuity of the ˜︁gk’s, gk’s and τ̂k’s). Let ω0 ∈ C ′
0([0, T ],R2 \ {(0, 0)})

satisfy condition (I) with h1(ω0) ∈ C ′
0([0, T ],R). Then, for k ∈ N the functions ˜︁gk, gk :

D([0, T ],R2) → D([0, T ],R2) and τ̂k : D([0, T ],R2) → [0, T ] are continuous at ω0.

Proof. Let ω0 ∈ C ′
0([0, T ],R2 \ {(0, 0)}) and h1(ω0) ∈ C ′

0([0, T ],R). Denote K :=
K1∨K2, where K1 := ∥h1(ω0)∥∞ < ∞ and K2 := ∥ω0∥∞ < ∞. Let ε > 0. Moreover, let
ω′ ∈ D([0, T ],R2) and λ ∈ ΛT be such that ∥ω0−ω′◦λ∥∞ < δ and ∥λ−id∥∞ < δ for some
δ > 0. Since ω0 ∈ C ′

0([0, T ],R2 \ {(0, 0)}), the function h1 : D([0, T ],R2) → D([0, T ],R)
is continuous at ω0 with respect to the Skorokhod topology. Hence, there exists δ1 > 0
such that for all δ ⩽ δ1, we have

∥h1(ω′ ◦ λ)∥∞ ⩽ 2K and ∥ω′ ◦ λ∥∞ ⩽ 2K.

Studying Definition 2.3.2, we conclude for ω ∈ D([0, T ],R2) and all k ∈ N that
∥gk(ω)∥[0,τ̂k(ω)) = ∥˜︁gk(ω)∥[0,τ̂k(ω)) ⩽ ∥h1(ω)∥∞. Let us perform an induction over k ⩾ 1.

Induction start: Let k = 1. By Definition 2.3.2, we have g1(ω) = ˜︁g1(ω) = ω for
ω ∈ D([0, T ],R2). Hence, for all δ ⩽ ε, we conclude that ∥g1(ω0) − g1(ω′ ◦ λ)∥∞ =
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∥˜︁g1(ω0) − ˜︁g1(ω′ ◦ λ)∥∞ = ∥ω0 − ω′ ◦ λ∥∞ < ε. By construction, τ̂1(ω) defines the first
hitting time map of ω ∈ D([0, T ],R2) of the axes. Since ω0 ∈ C ′

0([0, T ],R2 \ {(0, 0)}),
we conclude that τ̂1 is continuous at ω0 (cf. Lemma 2.7.2) and for δ small enough,
applying Lemma 2.7.3, we further have

1{τ̂1(ω0)=τ̂1,i(ω0)} = 1{τ̂1(ω′◦λ)=τ̂1,i(ω′◦λ)} for i = 1, 2,

where the functions (τ̂k,1)k⩾1 and (τ̂k,2)k⩾1 are introduced in (2.7.5) and (2.7.6).
Induction hypothesis: For k = 2, · · · , j − 1 with τ̂k(ω0) < T the functions ˜︁gk, gk :

D([0, T ],R2) → D([0, T ],R2) and τ̂k : D([0, T ],R2) → [0, T ] are continuous at ω0, and
there exists a δ′ > 0 such that for all δ ⩽ δ′, we have

1{τ̂k(ω0)=τ̂k,i(ω0)} = 1{τ̂k(ω′◦λ)=τ̂k,i(ω′◦λ)} for i = 1, 2.

Induction step: Let k = j. By the induction hypothesis, the functions gj−1 and τ̂j−1
are continuous at ω0. Hence, there exists a δ2 > 0 such that for all δ ⩽ δ2, we have
∥gj−1(ω0) − gj−1(ω′ ◦ λ)∥∞ ⩽ ε

6 . By the definition of ˜︁gj and the Lipschitz property of
the reflection map at zero t ↦→ ℓt(x) := sups⩽t(−x(s))+ for x ∈ D([0, T ],R) (cf. e.g.
Lemma 13.5.1 in Whitt [86]), we conclude

∥π(2)
1 ˜︁gj(ω0) − π

(2)
1 ˜︁gj(ω′ ◦ λ)∥∞

⩽ ∥π(2)
1 gj−1(ω0) − π

(2)
1 gj−1(ω′ ◦ λ)∥∞ + ∥ℓ·(π(2)

1 gj−1(ω0)) − ℓ·(π(2)
1 gj−1(ω′ ◦ λ))∥∞

+ ∥ℓ·(π(2)
2 gj−1(ω0)) − ℓ·(π(2)

2 gj−1(ω′ ◦ λ))∥∞

⩽ 2∥π(2)
1 gj−1(ω0) − π

(2)
1 gj−1(ω′ ◦ λ)∥∞ + ∥π(2)

2 gj−1(ω0) − π
(2)
2 gj−1(ω′ ◦ λ)∥∞.

Deriving a similar bound for ∥π(2)
2 ˜︁gj(ω0) − π

(2)
2 ˜︁gj(ω′ ◦ λ)∥∞, we conclude that

∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)∥∞

⩽ ∥π(2)
1 ˜︁gj(ω0) − π

(2)
1 ˜︁gj(ω′ ◦ λ)∥∞ + ∥π(2)

2 ˜︁gj(ω0) − π
(2)
2 ˜︁gj(ω′ ◦ λ)∥∞

⩽ 3
(︂
∥π(2)

1 gj−1(ω0) − π
(2)
1 gj−1(ω′ ◦ λ)∥∞ + ∥π(2)

2 gj−1(ω0) − π
(2)
2 gj−1(ω′ ◦ λ)∥∞

)︂
⩽ 6∥gj−1(ω0) − gj−1(ω′ ◦ λ)∥∞ ⩽ ε.

This proves the continuity of ˜︁gj at ω0. In the following, let δ3 > 0 be such that for all
δ ⩽ δ3, we have ∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)∥∞ ⩽ ε

8 . Next, without loss of generality, assume
that τ̂j−1(ω0) = τ̂j−1,1(ω0). Now, by the induction hypothesis, for all δ ⩽ δ′, we also
have τ̂j−1(ω′ ◦ λ) = τ̂j−1,1(ω′ ◦ λ). By Definition 2.3.2, we conclude for ω ∈ {ω0, ω

′ ◦ λ}
that

gj(ω)(t) = ˜︁gj(ω)(t ∧ τ̂j(ω)−) + ω(t) − ω(t ∧ τ̂j(ω)−) for t ∈ [0, T ],

where ˜︁gj(ω)(t) = gj−1(ω)(t) + ℓ
(2)
t (gj−1(ω))R for t ∈ [0, T ],
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and τ̂j(ω) = τ̂j,2(ω). Hence, for all δ ⩽ δ′, we have

1{τ̂j(ω0)=τ̂j,i(ω0)} = 1{τ̂j(ω′◦λ)=τ̂j,i(ω′◦λ)} for i = 1, 2.

If τ̂j(ω0) < T, then π
(2)
2 ˜︁gj(ω0) ∈ C ′

0([τ̂j−1(ω0), τ̂j(ω0)],R) and π
(2)
2 ˜︁gj(ω0) > 0 on

[τ̂j−1(ω0), τ̂j(ω0)). Since τ̂j(ω0) = τ̂j,2(ω0) and applying Lemma 2.7.2, we conclude
that τ̂j is continuous at ω0. In contrast, if τ̂j(ω0) = τ(ω0) = T and since h1(ω0) ∈
C ′

0([0, T ],R), we also conclude the continuity of τ̂j at ω0 by the continuity of the first
hitting time map τ at ω0 (cf. Lemma 2.7.2). Hence, there exists a δ4 > 0 such that for all
δ ⩽ δ4∧δ′, we also have |τ̂j(ω0)−τ̂j(ω′◦λ)| ⩽ ε

30K . Analyzing the cases τ̂j(ω0) ⩽ τ̂j(ω′◦λ)
and τ̂j(ω0) > τ̂j(ω′ ◦ λ) separately and applying that ∥˜︁gj(ω)∥[0,τ̂j(ω)) ⩽ ∥h1(ω)∥∞ for
ω ∈ D([0, T ],R), we get

∥˜︁gj(ω0)(τ̂j(ω0)−) − ˜︁gj(ω′ ◦ λ)(τ̂j(ω′ ◦ λ)−)∥
⩽ ∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)∥∞ + 2K|τ̂j(ω0) − τ̂j(ω′ ◦ λ)|.

Finally, for all δ ⩽ δ1 ∧ δ3 ∧ δ4 ∧ δ′, we observe that

∥gj(ω0) − gj(ω′ ◦ λ)∥∞

⩽ ∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)∥[0,τ̂j(ω0)∧τ̂j(ω′◦λ))

+ ∥˜︁gj(ω0)(τ̂j(ω0)−) + ω0 − ω0(τ̂j(ω0)−) − ˜︁gj(ω′ ◦ λ)∥[τ̂j(ω0)∧τ̂j(ω′◦λ),τ̂j(ω′◦λ))

+ ∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)(τ̂j(ω′ ◦ λ)−) − ω′ ◦ λ+ ω′ ◦ λ(τ̂j(ω′ ◦ λ)−)∥[τ̂j(ω0)∧τ̂j(ω′◦λ),τ̂j(ω0))

+ ∥˜︁gj(ω0)(τ̂j(ω0)−) + ω0 − ω0(τ̂j(ω0)−)
− ˜︁gj(ω′ ◦ λ)(τ̂j(ω′ ◦ λ)−) − ω′ ◦ λ+ ω′ ◦ λ(τ̂j(ω′ ◦ λ)−)∥[τ̂j(ω0)∨τ̂j(ω′◦λ),T ]

⩽ 2∥ω0 − ω′ ◦ λ∥∞ + 2∥˜︁gj(ω0) − ˜︁gj(ω′ ◦ λ)∥∞ + 15K|τ̂j(ω0) − τ̂j(ω′ ◦ λ)|

⩽ 2δ + 3ε
4 .

Now, if δ ⩽ δ1 ∧ δ3 ∧ δ4 ∧ δ′ ∧ ε/8, we conclude that ∥gj(ω0) − gj(ω′ ◦ λ)∥∞ ⩽ ε. This
proves the induction and finishes the proof.

Proof of Lemma 2.3.5. Let ω0 ∈ C ′
0([0, T ],R2 \{(0, 0)}) and h1(ω0) ∈ C ′

0([0, T ],R). Let
us first assume, that there exists a finite κ := κ(ω0) ∈ N such that τ̂∞(ω0) = τ̂κ(ω0) = T
and g(ω0)(T ) ∈ (0,∞)2. By Definition 2.3.2, we have that g(ω0)(t) = ˜︁gκ(ω0)(t) for
all t ∈ [0, T ] and κ is continuous at ω0. Then, the continuity of g at ω0 follows from
Lemma 2.7.4.

In contrast, assume that τ̂k(ω0) < τ̂∞(ω0) < T for all k ∈ N and that τ̂∞(ω0) =
τ(ω0). Moreover, let ε > 0 and K := K1 ∨ K2, where K1 := ∥h1(ω0)∥∞ < ∞ and
K2 := ∥ω0∥∞ < ∞. Now, we can choose κ := κ(ω0) such that |τ̂κ(ω0) − τ̂∞(ω0)| < ε

12K .
Moreover, let ω′ ∈ D([0, T ],R2) and λ ∈ ΛT be such that

∥ω0 − ω′ ◦ λ∥∞ < δ and ∥λ− id∥∞ < δ,

154



2.7. TECHNICAL DETAILS

for δ > 0 small enough. Since ω0 ∈ C ′
0([0, T ],R2 \{(0, 0)}), the map h1 : D([0, T ],R2) →

D([0, T ],R) is continuous at ω0. Hence, there exists a δ1 > 0 such that for all δ ⩽ δ1,
we have

∥h1(ω′ ◦ λ)∥∞ ⩽ 2K and ∥ω′ ◦ λ∥∞ ⩽ 2K.

Moreover, by Definition 2.3.2, observe that for all ω ∈ D([0, T ],R2) and k ∈ N, we
have ∥g(ω)∥∞ ⩽ ∥h1(ω)∥∞ and ∥gk(ω)∥[0,τ̂k(ω)) ⩽ ∥h1(ω)∥∞. Next, since h1(ω0) ∈
C ′

0([0, T ],R), τ̂∞ ≡ τ is continuous at ω0 (cf. Lemma 2.7.2). Hence, there exists a δ2 > 0
such that for all δ ⩽ δ2, we have |τ̂∞(ω0) − τ̂∞(ω′ ◦ λ)| < ε

12K . Then, for all δ ⩽ δ1 ∧ δ2,
we conclude

∥g(ω0) − g(ω′ ◦ λ)∥[τ̂κ(ω0),T ]

⩽ ∥g(ω0) − g(ω′ ◦ λ)∥[τ̂κ(ω0),τ̂∞(ω0)) + ∥g(ω0) − g(ω′ ◦ λ)∥[τ̂∞(ω0),τ̂∞(ω0)∨τ̂∞(ω′◦λ)]

⩽
(︁
∥h1(ω0)∥∞ + ∥h1(ω′ ◦ λ)∥∞

)︁ (︁
|τ̂κ(ω0) − τ̂∞(ω0)| + |τ̂∞(ω0) − τ̂∞(ω′ ◦ λ)|

)︁
⩽ 3K

(︃
ε

12K + ε

12K

)︃
= ε

2 .

Next, applying Lemma 2.7.4, there exists a δ3 > 0 such that for all δ ⩽ δ3, we have
∥gκ(ω0) − gκ(ω′ ◦ λ)∥∞ ⩽ ε

4 and |τ̂κ(ω0) − τ̂κ(ω′ ◦ λ)| ⩽ ε
32K . Then, for all δ ⩽ δ1 ∧ δ3,

we conclude

∥g(ω0) − g(ω′ ◦ λ)∥[0,τ̂κ(ω0))

⩽ ∥gκ(ω0) − gκ(ω′ ◦ λ)∥∞ + ∥gκ(ω′ ◦ λ) − g(ω′ ◦ λ)∥[τ̂κ(ω0)∧τ̂κ(ω′◦λ),τ̂κ(ω0))

⩽
ε

4 + 2(∥h1(ω′ ◦ λ)∥∞ + ∥ω′ ◦ λ∥∞)|τ̂κ(ω0) − τ̂κ(ω′ ◦ λ)|

⩽
ε

4 + ε

4 = ε

2 .

Finally, choosing δ ⩽ δ1 ∧ δ2 ∧ δ3, we conclude that ∥g(ω0) − g(ω′ ◦ λ)∥∞ ⩽ ε.

We finish this section by showing that a planar Brownian motion P-almost surely
satisfy the conditions of Lemma 2.3.5. In the following, let W = (W1,W2) be a planar
Brownian motion starting in x ∈ R2

+ \{(0, 0)} with mean µ ∈ R2 and covariance matrix
Σ ∈ R2×2, whose inverse Σ−1 ∈ R2×2 exists. In particular, its components W1 and W2
are not degenerate and not perfectly correlated.

Lemma 2.7.5. Let W be a planar Brownian motion as defined above. Then, the paths
of W satisfy condition (I) P-almost surely.

Proof. Let W = (W1,W2) be a planar Brownian motion starting in x = (x1, x2) ∈
R2

+ \ {(0, 0)} with drift µ ∈ R2 and covariance matrix

Σ :=
(︄

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)︄
,

where |ρ| < 1 and σ1, σ2 > 0. Let us denote τ̂k := τ̂k(W ), τ̂∞ := τ̂∞(W ), and
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τ := τ(W ) := inf{t ⩾ 0 : h1(W )(t) ⩽ 0} ∧ T. Thanks to Lemma 2.7.6, we have τ̂∞ = τ.
First, we will show on the event {τ̂∞ < T} that P-almost surely τ̂k < τ̂∞ for all

k ∈ N. Since W has, with probability one, sample paths in C ′
0([0, T ],R2 \ {(0, 0)}), we

conclude that τ̂1 < τ P-almost surely. Thanks to Theorem 2.3.26, the process g(W ) is a
Markov process. Hence, we can restrict our analysis to the interval [τ̂1, τ̂2] and show that
P-almost surely τ̂2 < τ. Let us concentrate on the event {τ̂1 = τ̂1,1}, i.e., W first hits the
x-axis and note that on the event {τ̂1 = τ̂1,2} we can argue completely analogously. On
this event, observe that (π(2)

1 g(W ),W1,
1
2L·(π(2)

1 g(W ))) solves the Skorokhod problem
on [0, τ̂2].

Now, let (Y1, B1) be a weak solution, unique in law, of the Tanaka SDE (with volatility
σ1 not necessarily equal to one) given by

dY1(t) = sign(Y1(s))dB1(s), Y1(0) = B1(0) = x1.

We have Y1 ≃ B1 and by Tanaka’s formula (cf. e.g. [89, Proposition 2.11]), we obtain

|Y1(t)| = x1 +
∫︂ t

0
sign(Y1(s))dY1(s) + Lt(Y1)

= x1 +
∫︂ t

0
(sign(Y1(s)))2 dB1(s) + Lt(Y1)

= B1(t) + Lt(Y1).

In particular, (|Y1|, B1, L·(Y1)) solves the one-dimensional Skorokhod problem. Next,
let us consider another Brownian motion B⊥

1 , possibly on a larger probability space,
such that B⊥

1 is independent of (Y1, B1), starts in σ1
σ2

√
1−ρ2

x2 − ρ√
1−ρ2

x1, and has

volatility σ1. Let us introduce B2 := σ2
σ1

(ρB1 +
√︁

1 − ρ2B⊥
1 ). By construction, we have

B := (B1, B2) ≃ (W (t) − µt)t⩾0. Next, define Y2 := B2 − L·(Y1). Then,

P[∃ t ∈ [0, T ] : (|Y1|, Y2)(t) = (0, 0)] = P[∃ t ∈ [0, T ] : (Y1, B1 +B2)(t) = (0, 0)].
(2.7.7)

Next observe that, even though (Y1, B1 + B2) is not a planar Brownian motion, it
obeys the scaling and Markov property. Moreover, its marginal law at any time t has a
Lebesgue density in R2, which is strictly positive almost everywhere. Therefore, the proof
of Lévy’s theorem on the area of a planar Brownian motion (cf. Theorem 2.24 in [67])
can be adapted to the process (Y1, B1 +B2) and one obtains L((Y1, B1 +B2)[0, T ]) = 0.
Fubini’s theorem then gives P[z ∈ (Y1, B1 + B2)[0, T ]] = 0 for any z ̸= (x1, x1 + x2).
Especially, the probability in (2.7.7) must be zero. Now, applying the Cameron-Martin-
Girsanov theorem, there exists an equivalent measure Q of P such that B behaves like
a planar Brownian motion starting in x ∈ R2

+ \ {(0, 0)} with covariance Σ and drift µ
under the measure Q. Since P and Q are equivalent measures, (|Y1|, Y2) does not hit
the origin Q-almost surely. By the uniqueness of the solution of the Skorokhod problem,
we conclude that g(W ) on [0, τ̂2] has the same distribution as (|Y1|, Y2), under Q, until
Y2 hits zero the first time. Hence, g(W )(τ̂2) ̸= (0, 0) with probability one implying that
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τ̂2 < τ P-almost surely. Applying the Markov property of g(W ), we further conclude
that τ̂k < τ P-almost surely for all k ∈ N.

In contrast, let us consider the event {τ̂∞ = T}. Since τ̂∞ = τ is the first time that
h1(W ) hits zero, h1(W ) is a one-dimensional Brownian motion, and P[h1(W )(T ) =
0] = 0, we conclude that h1(W ) > 0 and g(W ) ∈ R2

+ \{(0, 0)} on [0, T ] with probability
one. By the path property of a planar Brownian motion, there exists a finite κ ∈ N
such that τ̂κ = T and g(W ) = ˜︁gκ+1(W ). Finally, studying the components of g(W )
on [τ̂κ−1, T ], we conclude that g(W )(T ) ∈ (0,∞)2 with probability one implying that
g(W ) = ˜︁gκ+1(W ) = gκ(W ) on [0, T ].

Lemma 2.7.6. Let W be a planar Brownian motion as defined above. On the event
{τ̂∞(W ) < T}, we have limt→τ̂∞(W ) g(W )(t) = (0, 0) P-almost surely.

Proof. Let us denote τ̂k := τ̂k(W ) and τ̂∞ := τ̂∞(W ). Now, we can rewrite τ̂1 =
τ̂1,1(W )∧ τ̂1,2(W ) and τ̂k = τ̂k,1(W )1(τ̂k−1 = τ̂k−1,2(W ))+ τ̂k,2(W )1(τ̂k−1 = τ̂k−1,1(W ))
for k ⩾ 2, where (τ̂k,1)k⩾1 and (τ̂k,2)k⩾2 are introduced in (2.7.5) and (2.7.6). In the
following, let us concentrate on the event {τ̂1 = τ̂1,1} and note that on the event {τ̂1 =
τ̂1,2}, we can argue completely analogously. First, for k ∈ N, we have τ̂2k−1 = τ̂2k−1,1(W )
and τ̂2k = τ̂2k,2(W ) implying that π(2)

1 g(W )(τ̂2k−1(W )) = 0 and π(2)
2 g(W )(τ̂2k(W )) = 0

P-almost surely. Next, for k ∈ N, observe that

sup
t⩾τ̂k

π
(2)
1 g(W )(t) ⩽ sup

j⩾⌊k/2⌋
sup

t∈[τ̂2j ,τ̂2j+2)
π

(2)
1 g(W )(t)

⩽ sup
j⩾⌊k/2⌋

sup
t∈[τ̂2j ,τ̂2j+2)

{︂
π

(2)
1 g(W )(τ̂2j+1) +

⃓⃓⃓
π

(2)
1 g(W )(τ̂2j+1) − π

(2)
1 g(W )(t)

⃓⃓⃓}︂
= sup

j⩾⌊k/2⌋
sup

t∈[τ̂2j ,τ̂2j+2)

⃓⃓⃓
π

(2)
1 g(W )(τ̂2j+1) − π

(2)
1 g(W )(t)

⃓⃓⃓
.

Using the representation of g(W ) as a semimartingale reflecting Brownian motion
(g(W ),W, l) (cf. Proposition 2.3.21) and the Hölder continuity of the Brownian motion,
we have on [τ̂2j , τ̂2j+1)

sup
t∈[τ̂2j ,τ̂2j+1)

⃓⃓⃓
π

(2)
1 g(W )(τ̂2j+1) − π

(2)
1 g(W )(t)

⃓⃓⃓
= sup

t∈[τ̂2j ,τ̂2j+1)
|W1(τ̂2j+1) −W1(t) − l2(τ̂2j+1) + l2(t)|

⩽ sup
t∈[τ̂2j ,τ̂2j+1)

|W1(τ̂2j+1) −W1(t)| + sup
t∈[τ̂2j ,τ̂2j+1)

(︂
−π(2)

2 g(W )(τ̂2j) −W2(t) +W2(τ̂2j)
)︂+

⩽ sup
t∈[τ̂2j ,τ̂2j+1)

|W1(τ̂2j+1) −W1(t)| + sup
t∈[τ̂2j ,τ̂2j+1)

|W2(t) −W2(τ̂2j)|

⩽ (C1,α + C2,α)|τ̂2j+1 − τ̂2j |α → 0

P-almost surely as j → ∞, for 0 < α < 1
2 and positive, integrable random variables
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C1,α and C2,α. Similarly, we get on [τ̂2j+1, τ̂2j+2)

sup
t∈[τ̂2j+1,τ̂2j+2)

⃓⃓⃓
π

(2)
1 g(W )(τ̂2j+1) − π

(2)
1 g(W )(t)

⃓⃓⃓
⩽ sup

t∈[τ̂2j+1,τ̂2j+2)
|W1(τ̂2j+1) −W1(t)| + |l1(τ̂2j+2) − l1(τ̂2j+1)|

⩽ sup
t∈[τ̂2j+1,τ̂2j+2)

|W1(τ̂2j+1) −W1(t)| + sup
t∈[τ̂2j+1,τ̂2j+2)

|W1(τ̂2j+1) −W1(t)|

⩽ 2C1,α|τ̂2j+2 − τ̂2j+1|α → 0

P-almost surely as j → ∞. Together, we conclude P-almost surely that

sup
t⩾τ̂k

π
(2)
1 g(W )(t) ⩽ sup

j⩾⌊k/2⌋
sup

t∈[τ̂2j ,τ̂2j+2)

⃓⃓⃓
π

(2)
1 g(W )(τ̂2j+1) − π

(2)
1 g(W )(t)

⃓⃓⃓
→ 0

as k → ∞. Similarly, we can show that

sup
t⩾τ̂k

π
(2)
2 g(W )(t) ⩽ sup

j⩾⌊k/2⌋
sup

t∈[τ̂2j−1,τ̂2j+1)

⃓⃓⃓
π

(2)
2 g(W )(τ̂2j) − π

(2)
2 g(W )(t)

⃓⃓⃓
→ 0

P-almost surely as k → ∞. Hence, it holds that limt→τ̂∞ g(W )(t) = (0, 0).

Corollary 2.7.7. Let W be a planar Brownian motion as defined above. Then, the
function g : D([0, T ],R2) → D([0, T ],R2

+) is P-almost surely continuous at W .

Proof. Let us verify the conditions of Lemma 2.3.5: since the components of W are not
degenerate and not perfectly correlated, the paths of W are almost surely contained in
C ′

0([0, T ],R2 \ {(0, 0)}). Moreover, h1(W ) defines a one-dimensional Brownian motion.
Hence, its paths are almost surely contained in C ′

0([0, T ],R). Now, applying Lemma
2.7.5 and Lemma 2.7.6, W satisfies condition (I) with probability one and τ̂∞(W ) =
τ(W ) with probability one. Hence, the assumptions in Lemma 2.3.5 are satisfied with
probability one, yielding that the function g : D([0, T ],R2) → D([0, T ],R2

+) is P-almost
surely continuous at W.

2.7.2.3 Continuity of the function ˜︁ΨQ

The goal of this subsection is to characterize the continuity set of the map

˜︁ΨQ : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],R4
+)

introduced in Definition 2.3.7. To study the continuity of the map ˜︁ΨQ, we endow
D([0, T ],R4) with the Skorokhod topology. The set (R4

+)N is endowed with the topology
induced by cylindrical semi-norms defined as follows: for R := (Rk)k⩾1, R

′ := (R′
k)k⩾1 ∈

(R4
+)N and ε > 0, we define

d(R4
+)N(R,R′) < ε :⇔ ∀ j ⩾ 1, sup{∥R1 −R′

1∥, · · · , ∥Rj −R′
j∥} < ε.
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The space D([0,∞),R4) × (R4
+)N × (R4

+)N is then endowed with the corresponding
product topology, i.e.,

d((ω,R, ˜︁R), (ω′, R′, ˜︁R′)) := dJ1(ω, ω′) + d(R4
+)N(R,R′) + d(R4

+)N( ˜︁R, ˜︁R′).

In the following, we inductively analyze the continuity sets of the functions ˜︁ΨQ
k :

D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],R4
+), k ⩾ 1, introduced in Definition 2.3.7.

Lemma 2.7.8 (Continuity of ˜︁ΨQ
1 ). Let ˜︁τ : D([0, T ],R4) → [0, T ] be the first hitting

time map introduced in (2.3.6). Let (ω,R1, ˜︁R1) ∈ C([0, T ],R4) × R4
+ × R4

+ satisfy the
following three conditions:

i) G is continuous at ω, R1 +ω(·+ ˜︁τ(ω))−ω(˜︁τ(ω)), and ˜︁R1 +ω(·+ ˜︁τ(ω))−ω(˜︁τ(ω)),

ii) h(ω) ∈ C ′
0([0, T ],R2 \ {(0, 0)}), and

iii) ˜︁τ(ω) ∈ (0, T ).

Then, the map ˜︁ΨQ
1 : D([0, T ],R4)×R4

+×R4
+ → D([0, T ],R4

+) is continuous at (ω,R1, ˜︁R1)
with respect to the following distance on D([0, T ],R4) × R4

+ × R4
+:

d((ω,R1, ˜︁R1), (ω′, R′
1,
˜︁R′

1)) := dJ1(ω, ω′) + ∥R1 −R′
1∥ + ∥ ˜︁R1 − ˜︁R′

1∥.

Proof. Let (ω0, R1, ˜︁R1) satisfy the conditions stated in Lemma 2.7.8. Since ˜︁τ(ω0) ∈
(0, T ) and h(ω0) ∈ C ′

0([0, T ],R2 \ {(0, 0)}), there exists an N ∈ N such that for all
n ⩾ N, 1/n < ˜︁τ(ω0) < T − 1/n and h(ω0) /∈ B2(0, 1/n) on [0, T ]. Moreover, let
0 < ε ⩽ 1

2n and (ω′, R′
1,
˜︁R′

1) ∈ D([0, T ],R4) × R4
+ × R4

+ be such that

d((ω0, R1, ˜︁R1), (ω′, R′
1,
˜︁R′

1)) < ε.

Since dJ1(ω0, ω
′) < ε, there exists λ ∈ ΛT such that ∥ω0◦λ−ω′∥∞ < ε and ∥λ−id∥∞ < ε.

By condition i), without loss of generality, we can assume for the same λ ∈ ΛT that
∥G(ω0◦λ)−G(ω′)∥∞ < ε. Now, the function ω ↦→ ˜︁τ(G(ω)) can be identified with the first
hitting time map of h(ω) ∈ D([0, T ],R2) of the axes {(0, y) : y > 0} ∪ {(x, 0) : x ⩾ 0},
i.e., we have ˜︁τ(G(ω)) = ˜︁τ(ω). By assumption, h(ω0) ∈ C ′

0([0, T ],R2 \ {(0, 0)}). Hence,
by the continuity of the first hitting time map (cf. Lemma 2.7.2), one can also assume,
without loss of generality, that |˜︁τ(ω0 ◦ λ) − ˜︁τ(ω′)| < ε. Moreover, since h(ω0) does not
intersect with B2(0, 1/n) and 0 < ε ⩽ 1

2n , we can argue as in the proof of Lemma 2.7.3
and conclude

1{˜︁τ(ω0◦λ)=˜︁τi(ω0◦λ)} = 1{˜︁τ(ω′)=˜︁τi(ω′)}, for i = b, a.

Now, we define

λε(t) := λ(t) + ˜︁τ(ω′) − ˜︁τ(ω0 ◦ λ) (2.7.8)
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on [1/n, T − 1/n] and extend its definition to [0, T ] by linear interpolation in the gaps
with λε(0) = 0 and λε(T ) = T . Since ∥λ − id∥∞ < ε, |˜︁τ(ω0 ◦ λ) − ˜︁τ(ω′)| < ε, and
0 < ε ⩽ 1

2n , the map t ↦→ λε(t) is well-defined and an element of ΛT . Then,

∥λε − id∥∞ = ∥λε − id∥[0,1/n) + ∥λε − id∥[1/n,T−1/n] + ∥λε − id∥(T−1/n,T ]

⩽ 3∥λ− id∥∞ + 3|˜︁τ(ω′) − ˜︁τ(ω0 ◦ λ)| < 6ε,

since ∥λε − id∥[1/n,T−1/n] ⩽ ∥λ− id∥∞ + |˜︁τ(ω′) − ˜︁τ(ω0 ◦ λ)|,

∥λε − id∥[0,1/n) ⩽ |λε(n−1) − n−1|, ∥λε − id∥(T−1/n,T ] ⩽ |λε(T − n−1) − (T − n−1)|.

On the other hand,

∥ω0 ◦ λε − ω′∥∞ = ∥ω0 ◦ λε − ω0 ◦ λ+ ω0 ◦ λ− ω′∥∞

⩽ ∥ω0 ◦ λε − ω0∥∞ + ∥ω0 − ω0 ◦ λ∥∞ + ∥ω0 ◦ λ− ω′∥∞

< ηω0(6ε) + ηω0(ε) + ε.

Again, by Lemma 2.3.5, we assume without loss of generality for the same λ ∈ ΛT that

∥G(ω0 ◦ λε) −G(ω′)∥∞ < ηω0(6ε) + ηω0(ε) + ε. (2.7.9)

Next, observe that

∥R′
1 + ω′(· + ˜︁τ(ω′)) − ω′(˜︁τ(ω′)) −R1 − ω0 ◦ λε(· + ˜︁τ(ω′)) + ω0 ◦ λε(˜︁τ(ω′))∥∞

< ηω0(6ε) + ηω0(ε) + ε+ ∥ω0 ◦ λε(˜︁τ(ω′)) − ω′(˜︁τ(ω′))∥ < 2 (ηω0(6ε) + ηω0(ε) + ε) .

By the continuity of G at R1 + ω0(· + ˜︁τ(ω0)) − ω0(˜︁τ(ω0)) and the continuity of t ↦→
G(ω0)(t) since ω0 ∈ C([0, T ],R4), without loss of generality, we might assume that⃦⃦⃦
G
(︂
R′

1 + ω′(· + ˜︁τ(ω′)) − ω′(˜︁τ(ω′))
)︂

−G
(︂
R1 + ω0 ◦ λε(· + ˜︁τ(ω′)) − ω0 ◦ λε(˜︁τ(ω′))

)︂⃦⃦⃦
∞

< 2 (ηω0(6ε) + ηω0(ε) + ε) .
(2.7.10)

By definition of λε we have ˜︁τ(ω0 ◦ λε) = ˜︁τ(ω′) and hence also 1[0,˜︁τ(ω0◦λε)) = 1[0,˜︁τ(ω′))
and 1[˜︁τ(ω0◦λε),T ] = 1[˜︁τ(ω′),T ]. Therefore,

˜︁ΨQ
1 (ω0, R1, ˜︁R1) ◦ λε − ˜︁ΨQ

1 (ω′, R′
1, ˜︁R′

1)

= (G(ω0 ◦ λε) −G(ω′))1[0,˜︁τ(ω′)) + 1[˜︁τ(ω′),T ]

{︄
+ 1{˜︁τ(ω′)=˜︁τa(ω′)}

(︂
G
(︂
R′

1 + ω′ − ω′(˜︁τ(ω′))
)︂

−G
(︂
R1 + ω0 ◦ λε − ω0 ◦ λε(˜︁τ(ω′))

)︂)︂
+ 1{˜︁τ(ω′)=˜︁τb(ω′)}

(︂
G
(︂ ˜︁R′

1 + ω′ − ω′(˜︁τ(ω′))
)︂

−G
(︂ ˜︁R1 + ω0 ◦ λε − ω0 ◦ λε(˜︁τ(ω′))

)︂)︂}︄
.
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Finally, a combination of (2.7.9) and (2.7.10) yields⃦⃦⃦ ˜︁ΨQ
1 (ω0, R1, ˜︁R1) ◦ λε − ˜︁ΨQ

1 (ω′, R′
1,
˜︁R′

1)
⃦⃦⃦

∞
< 3 (ηω0(6ε) + ηω0(ε) + ε) ,

which proves that (ω0, R1, ˜︁R1) is indeed a continuity point of ˜︁ΨQ
1 .

To ease notation, let us introduce the shift operators ˜︁φ(1)
k , ˜︁φ(2)

k , k ⩾ 1, given by

˜︁φ(1)
k (ω,R, ˜︁R) := Rk + ω(· + ˜︁τ(˜︁ΨQ

k−1)) − ω(˜︁τ(˜︁ΨQ
k−1)),

˜︁φ(2)
k (ω,R, ˜︁R) := ˜︁Rk + ω(· + ˜︁τ(˜︁ΨQ

k−1)) − ω(˜︁τ(˜︁ΨQ
k−1)),

(2.7.11)

where ˜︁ΨQ
k−1 := ˜︁ΨQ

k−1(ω,R, ˜︁R) for k ⩾ 1. The next lemma characterizes the continuity
sets of the functions ˜︁ΨQ

k : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],R4
+), k ⩾ 2, being

introduced in Definition 2.3.7.

Lemma 2.7.9 (Continuity of ˜︁ΨQ
k ). Let k ⩾ 1 and assume that (ω,R, ˜︁R) ∈ C([0, T ],R4)×

(R4
+)N × (R4

+)N satisfies the following:

i) The function G is continuous at ω, ˜︁φ(1)
j (ω,R, ˜︁R), and ˜︁φ(2)

j (ω,R, ˜︁R) for all j ⩽ k,

ii) h(ω) ∈ C ′
0([0, T ],R2 \ {(0, 0)}),

iii) ˜︁τ(˜︁ΨQ
j−1(ω,R, ˜︁R)) ∈ (0, T ) for all j ⩽ k, and

iv) (0, 0) /∈
(︂
h ◦ ˜︁ΨQ

j−1

)︂
(ω,R, ˜︁R)

(︂[︂
0, ˜︁τ(˜︁ΨQ

j−1(ω,R, ˜︁R))
]︂)︂

for all j ⩽ k.

Then, the function ˜︁ΨQ
k : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R4

+) is continuous
at (ω,R, ˜︁R).

Proof. Let (ω0, R, ˜︁R) ∈ D([0, T ],R4)×(R4
+)N×(R4

+)N fulfill the assumptions in Lemma
2.7.9. We will show the stated result by induction: Let k = 1. Applying Lemma 2.7.8, we
conclude that ˜︁ΨQ

1 is continuous at (ω0, R, ˜︁R). Next, let us assume for all k = 1, · · · , l−1
that ˜︁ΨQ

k is continuous at (ω0, R, ˜︁R). Now, let us consider k = l. Then, the assumptions
of Lemma 2.7.9 are also satisfied for k = l − 1 and hence, by the induction hypothesis,
we conclude that ˜︁ΨQ

l−1 is continuous at (ω0, R, ˜︁R). Next, let ε > 0 be small and let
(ω′, R′, ˜︁R′) ∈ D([0, T ],R4) × (R4

+)N × (R4
+)N be such that

dJ1(ω0, ω
′) + sup

i=1,··· ,l
∥Ri −R′

i∥ + sup
i=1,··· ,l

∥ ˜︁Ri − ˜︁R′
i∥ < ε.

Now, replicating the proof of Lemma 2.7.8, since ˜︁ΨQ
l−1 is continuous at (ω0, R, ˜︁R), we

can construct λε ∈ ΛT appropriately such that

∥ω0 ◦ λε − ω′∥∞ < δ(ε), ∥λε − id∥∞ < δ(ε),
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and ˜︁τ(˜︁ΨQ
l−1(ω0, R, ˜︁R) ◦λε) = ˜︁τ(˜︁ΨQ

l−1(ω′, R′, ˜︁R′)), where δ(ε) > 0 and δ(ε) → 0 if ε → 0.
In particular, for such λε, we can show that⃦⃦⃦ ˜︁ΨQ

l (ω0, R, ˜︁R) ◦ λε − ˜︁ΨQ
l (ω′, R, ˜︁R′)

⃦⃦⃦
∞
< δ(ε)

implying that ˜︁ΨQ
l is also continuous at (ω0, R, ˜︁R).

Now, for all (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4
+)N × (R4

+)N such that there exists a finite
number NT := inf{k ⩾ 0 : ˜︁τ(˜︁ΨQ

k (ω,R, ˜︁R)) = T}, the function ˜︁ΨQ in Definition 2.3.7 is
given by ˜︁ΨQ(ω,R, ˜︁R) = ˜︁ΨQ

NT
(ω,R, ˜︁R). To describe the continuity set of ˜︁ΨQ, we further

need to analyze the continuity set of the map NT : D([0, T ],R4) × (R4
+)N × (R4

+)N →
N0 ∪ {+∞}, where NT (ω,R, ˜︁R) = +∞ if the above infimum does not exist.

Obviously, the function NT depends on the upper boundary T of the domain of the
function ω ∈ D([0, T ],R4). When proving our main result (cf. Theorem 2.5.1), we will
also need some flexibility in this upper boundary. Setting ˜︁τσ(ω) := ˜︁τ(ω) ∧ σ for some
σ ∈ (0, T ], we introduce the function N : D([0, T ],R4) × (R4

+)N × (R4
+)N × (0, T ] →

N0 ∪ {+∞} by

N(ω,R, ˜︁R, σ) := inf{k ⩾ 0 : ˜︁τσ(˜︁ΨQ
k (ω,R, ˜︁R)) = σ} (2.7.12)

and N(ω,R, ˜︁R, σ) = +∞ if infimum does not exist. Note that N(ω,R, ˜︁R, T ) =
NT (ω,R, ˜︁R). In the following lemma, we characterize the continuity set of the function
N : D([0, T ],R4) × (R4

+)N × (R4
+)N × (0, T ] → N0 ∪ {+∞}.

Lemma 2.7.10 (Continuity of N). Let (ω0, R, ˜︁R, σ) ∈ D([0, T ],R4)×(R4
+)N×(R4

+)N×
(0, T ]. Moreover, assume that the following three conditions hold true:

i) N0 := N(ω0, R, ˜︁R, σ) < ∞.

ii) If N0 = 0 then the assumptions of Lemma 2.3.6 hold, otherwise the assumptions
of Lemma 2.7.9 hold for k = N0.

iii) (h ◦ ˜︁ΨQ
N0

)(ω0, R, ˜︁R)(σ) ∈ (0,∞)2.

Then, the function N : D([0, T ],R4)×(R4
+)N×(R4

+)N×(0, T ] → N0∪{+∞} is continuous
at (ω0, R, ˜︁R, σ) with respect to the distance

d′((ω,R, ˜︁R, σ), (ω′, R′, ˜︁R′, σ′)) := d((ω,R, ˜︁R), (ω′, R′, ˜︁R′)) + |σ − σ′|.

Proof. Let (ω0, R, ˜︁R, σ) satisfy the assumptions of Lemma 2.7.10 and denote N0 :=
N(ω0, R, ˜︁R, σ). In the following, let ˜︁τ0

0 := 0 and ˜︁τ0
k := ˜︁τσ(˜︁ΨQ

k−1(ω0, R, ˜︁R)) for k ⩾ 1.
Thanks to condition i), we conclude that N0 < ∞. Next, for some δ > 0, let

(ω′, R′, ˜︁R′, σ′) ∈ D([0, T ],R4) × (R4
+)N × (R4

+)N × (0, T ] and λ ∈ ΛT be such that
d′((ω0, R, ˜︁R, σ), (ω′, R′, ˜︁R′, σ′)) < δ, ∥ω0 − ω′ ◦ λ∥∞ < δ, and ∥λ − id∥∞ < δ. In the
following, denote N ′ := N(ω′ ◦ λ,R′, ˜︁R′), ˜︁τ ′

0 := 0, and ˜︁τ ′
k := ˜︁τσ′(˜︁ΨQ

k−1(ω′ ◦ λ,R′, ˜︁R′))
for k ⩾ 1.
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By condition ii), we conclude that t ↦→ ˜︁ΨQ
N0

(ω0, R, ˜︁R)(t) is continuous on [˜︁τ0
N0
, T ].

Together with condition iii), the definition of N0, and since |σ − σ′| < δ, there exists
an ε > 0 and a δ1 > 0 such that for all δ ⩽ δ1,

a) σ − ˜︁τ0
N0

> 3ε,

b) (h ◦ ˜︁ΨQ
N0

)(ω0, R, ˜︁R) ∈ (ε,∞)2 on [˜︁τ0
N0
, σ ∨ σ′].

By condition ii), we conclude that ˜︁ΨQ
N0

is continuous at (ω0, R, ˜︁R). Moreover, since
also h is continuous at ˜︁ΨQ

N0
(ω0, R, ˜︁R) restricted on [˜︁τ0

N0
, T ], there exists a δ2 > 0 such

that for all δ ⩽ δ2, we have⃦⃦⃦
(h ◦ ˜︁ΨQ

N0
)(ω0, R, ˜︁R) − (h ◦ ˜︁ΨQ

N0
)(ω′ ◦ λ,R′, ˜︁R′)

⃦⃦⃦[︂˜︁τ0
N0
,T

]︂ < ε. (2.7.13)

By the continuity of the first hitting time map, there exists a δ3 > 0 such that for
all δ ⩽ δ3, we have |˜︁τ0

N0
− ˜︁τ ′

N0
| < ε. Together with condition a) and |σ − σ′| < δ, we

conclude that σ′ − ˜︁τ ′
N0

> ε for all δ ⩽ δ1 ∧ δ2 ∧ δ3 ∧ ε. Hence, we must have N ′ ⩾ N0
for all such δ.

Assume that N ′ > N0. Then, ˜︁τ ′
N0+1 < σ′. Again, by the continuity of the first hitting

time map, there exists a δ4 > 0 such that for all δ ⩽ δ4, we have |˜︁τ(˜︁ΨQ
N0

(ω0, R, ˜︁R)) −˜︁τ(˜︁ΨQ
N0

(ω′ ◦ λ,R′, ˜︁R′))| < ε. Applying condition b), we obtain

|σ − ˜︁τ ′
N0+1|

⩽ |σ − ˜︁τ(˜︁ΨQ
N0

(ω0, R, ˜︁R)) ∧ σ′| + |˜︁τ(˜︁ΨQ
N0

(ω0, R, ˜︁R)) ∧ σ′ − ˜︁τ(˜︁ΨQ
N0

(ω′ ◦ λ,R′, ˜︁R′)) ∧ σ′|

⩽ |σ − σ′| + |˜︁τ(˜︁ΨQ
N0

(ω0, R, ˜︁R)) − ˜︁τ(˜︁ΨQ
N0

(ω′ ◦ λ,R′, ˜︁R′))|
⩽ δ + ε ⩽ 2ε.

Applying condition a), we conclude that ˜︁τ ′
N0+1 ∈ [˜︁τ0

N0
, σ′) for all δ ⩽ δ1∧δ2∧δ3∧δ4∧ε. By

construction, there exists an i ∈ {1, 2} such that (πi ◦h◦ ˜︁ΨQ
N0

)(ω′ ◦λ,R, ˜︁R)(˜︁τ ′
N0+1) ⩽ 0.

Hence, for this i ∈ {1, 2}, we finally conclude by applying equation (2.7.13) and
condition b)

ε >
⃦⃦⃦
(h ◦ ˜︁ΨQ

N0
)(ω0, R, ˜︁R) − (h ◦ ˜︁ΨQ

N0
)(ω′ ◦ λ,R, ˜︁R)

⃦⃦⃦[︂˜︁τ0
N0
,T

]︂
⩾
⃓⃓⃓
(πi ◦ h ◦ ˜︁ΨQ

N0
)(ω0, R, ˜︁R)(˜︁τ ′

N0+1) − (πi ◦ h ◦ ˜︁ΨQ
N0

)(ω′ ◦ λ,R′, ˜︁R′)(˜︁τ ′
N0+1)

⃓⃓⃓
⩾
⃓⃓⃓
(πi ◦ h ◦ ˜︁ΨQ

N0
)(ω0, R, ˜︁R)(˜︁τ ′

N0+1)
⃓⃓⃓
> ε.

Hence, we end up in a contradiction yielding that N ′ = N0 for all δ ⩽ δ1 ∧ δ2 ∧ δ3 ∧
δ4 ∧ ε.

With all these preparations done, we are finally ready to give the proof of Theorem
2.3.9, i.e., we are able to characterize the continuity set of ˜︁ΨQ.
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Proof of Theorem 2.3.9. Let (ω0, R, ˜︁R) satisfy conditions i)-iv) in Theorem 2.3.9. Let
us denote by ˜︁τk = ˜︁τ(˜︁ΨQ

k−1(ω0, R, ˜︁R)), k ⩾ 1, and ˜︁τ0 := 0. Then, for all k ⩾ 0, observe
that (︂

h ◦ ˜︁ΨQ
k

)︂
(ω0, R, ˜︁R)(· + ˜︁τk) = h

(︂˜︁ΨQ
k (ω,R, ˜︁R)(˜︁τk) + ω0(· + ˜︁τk) − ω0(˜︁τk))︂ .

In the following, we write ˜︁Yk(ω0, R, ˜︁R) := (h◦˜︁ΨQ
k )(ω0, R, ˜︁R)(·+˜︁τk). Then, we can identify

the jumps times of ˜︁ΨQ(ω0, R, ˜︁R) with the first hitting times of ˜︁Yk(ω0, R, ˜︁R), k ⩾ 0, of the
axes {(0, y) : y > 0}∪{(x, 0) : x ⩾ 0} (cf. Lemma 2.3.4). Observe that (ω0, R, ˜︁R) satisfies
the conditions of Lemma 2.7.9 for any k ⩾ 0 such that ˜︁τk < T. Moreover, condition ii)
yields that ˜︁ΨQ(ω0, R, ˜︁R) has onlyNT reinitializations in [0, T ], is not reinitialized at time
T and hence, implies that the function NT : D([0, T ],R4)×(R4

+)N×(R4
+)N → N0∪{+∞}

is continuous at (ω0, R, ˜︁R). Hence, ˜︁ΨQ(ω0, R, ˜︁R) = ˜︁ΨQ
NT

(ω0, R, ˜︁R). Finally, Lemma 2.7.9
and Lemma 2.7.10 yields that (ω0, R, ˜︁R) lies in the continuity set of ˜︁ΨQ.

2.7.2.4 Continuity of Nb and Na

The goal of this subsection is to characterize the continuity sets of the maps

Nb, Na : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],N0 ∪ {+∞})

introduced in Definition 2.3.17. First, let us introduce the functions Nb,1, Na,1 :
D([0, T ],R4) × (R4

+)N × (R4
+)N → {0, 1} by

Nb,1(ω,R, ˜︁R) = Nb,1(ω) := 1[˜︁τ(ω),T ]1{˜︁τb(ω)=˜︁τ(ω)},

Na,1(ω,R, ˜︁R) = Na,1(ω) := 1[˜︁τ(ω),T ]1{˜︁τa(ω)=˜︁τ(ω)},
(2.7.14)

where the first hitting time maps ˜︁τb, ˜︁τa, and ˜︁τ are introduced in (2.3.6) and (2.3.7).

Corollary 2.7.11 (Continuity of Nb,1 and Na,1). Let (ω,R1, ˜︁R1) ∈ D([0, T ],R4) ×
(R4

+) × (R4
+) satisfy the conditions of Lemma 2.7.8. Then, the maps Nb,1, Na,1 are

continuous at (ω,R1, ˜︁R1).

Proof. The result can be shown by replicating the proof of Lemma 2.7.8.

Now, for k ⩾ 1 and the short-hand notation ˜︁ΨQ
k := ˜︁ΨQ

k (ω,R, ˜︁R), let us introduce

Nb,k+1(ω,R, ˜︁R) := Nb,k + 1[︁˜︁τ(˜︁ΨQ
k

),T
]︁1{︁˜︁τb(˜︁ΨQ

k
)=˜︁τ(˜︁ΨQ

k
)
}︁,

Na,k+1(ω,R, ˜︁R) := Na,k + 1[︁˜︁τ(˜︁ΨQ
k

),T
]︁1{︁˜︁τa(˜︁ΨQ

k
)=˜︁τ(˜︁ΨQ

k
)
}︁. (2.7.15)

Corollary 2.7.12 (Continuity ofNb,k andNa,k). For k ⩾ 1, let (ω,R, ˜︁R) ∈ D([0, T ],R4)
×(R4

+)N × (R4
+)N satisfy the conditions of Lemma 2.7.9. Then, the maps Nb,k and Na,k

are continuous at (ω,R, ˜︁R).

Proof. Again, the result can be shown by replicating the proof of Lemma 2.7.9.
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A combination of the above corollaries with Lemma 2.7.10 yields a characterization
of the continuity sets of the maps Nb and Na introduced in Definition 2.3.17.

Corollary 2.7.13 (Continuity of Nb and Na). Let (ω,R, ˜︁R) ∈ D([0, T ],R4) × (R4
+)N ×

(R4
+)N satisfy the conditions in Theorem 2.3.9. Then, the maps Nb and Na introduced

in Definition 2.3.17 are continuous at (ω,R, ˜︁R).

Proof. Again, the result can be shown by replicating the proof of Theorem 2.3.9 but
applying Corollary 2.7.12 instead of Lemma 2.7.9.

2.7.3 Proofs of the auxiliary results
Proof of Lemma 2.3.4. For k ∈ N, let τ̂k := τ̂k(ω), τ̂∞ := τ̂∞(ω), and τ := τ(ω). Note
that the function g is inductively defined through the sequences of functions (gk)k⩾1
and (˜︁gk)k⩾1 (cf. Definition 2.3.2). First, we assume that τ̂k < τ̂∞ for all k ∈ N. Then,
we perform an induction over the sequence (gk)k⩾1 and show that for all gk, k ∈ N, we
have

(h1 ◦ gk) (ω)(t) = h1(ω)(t) for t ∈ [0, T ].

For k = 1 we have g1(ω) = ω and hence (h1 ◦ g1)(ω)(t) = h1(ω)(t) for t ∈ [0, T ]. Now,
for k = 1, · · · , l − 1, we assume that (h1 ◦ gk) (ω)(t) = h1(ω)(t) for t ∈ [0, T ]. Next, let
k = l. Then, by definition of gl, we have

gl(ω)(t) = ˜︁gl(ω)(t ∧ τ̂l−) + ω(t) − ω(t ∧ τ̂l−)
= gl−1(ω)(t ∧ τ̂l−) + ω(t) − ω(t ∧ τ̂l−)

+ sup
s⩽t∧τ̂l−

(︂
−π(2)

1 gl−1(ω)(s)
)︂+

(1,−1) + sup
s⩽t∧τ̂l−

(︂
−π(2)

2 gl−1(ω)(s)
)︂+

(−1, 1).

We note, that h1(−x, x) ≡ h1(x,−x) ≡ 0 for all x ∈ R. Hence, using the induction
hypothesis, we conclude for all t ∈ [0, T ]

(h1 ◦ gl)(ω)(t) = (h1 ◦ gl−1)(ω)(t ∧ τ̂l−) + h1(ω)(t) − h1(ω)(t ∧ τ̂l−)
= h1(ω)(t ∧ τ̂l−) + h1(ω)(t) − h1(ω)(t ∧ τ̂l−)
= h1(ω)(t).

This finishes our induction. By definition of g we conclude

(h1 ◦ g) (ω)(t) = h1(ω)(t) for t ∈ [0, τ̂∞).

By assumption, we have that τ̂∞ = τ. It is left to consider the case, when t = τ . Then,
we have g(ω)(τ) = (0, 0). By construction, we must further have h1(ω)(τ) ⩽ 0. Hence,
h1(ω)(τ)+sups⩽τ (−h1(ω)(s))+ = 0 = (h1 ◦g)(ω)(τ) and since sups⩽t(−h1(ω)(s))+ = 0
for all t ∈ [0, τ), we finally conclude that

(h1 ◦ g) (ω)(t) = h1(ω)(t) + sup
s⩽t

(−h1(ω)(s))+ for t ∈ [0, τ ].
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In contrast, let us assume that there exists a finite κ ∈ N such that τ̂κ = τ̂∞ = τ. If
τ < T, we have g(ω) = gκ(ω)1[0,τ) on [0, T ] and we can argue as above to conclude that
also (h1 ◦ g)(ω)(t) = h1(ω)(t) + sups⩽t(−h1(ω)(s))+ for t ∈ [0, τ ]. If τ = T, then g(ω) =˜︁gκ+1(ω) which equals either ˜︁gκ+1(ω) = gκ(ω)1[0,T ) or ˜︁gκ+1(ω) = gκ(ω) + ℓ

(2)
· (gκ(ω))R

depending on whether ˜︁gκ(ω)(T ) ∈ R2
− or not. Thus, we can again argue as above to

conclude the stated result.

Proof of Lemma 2.3.31. Let (˜︁τ∗
k )k⩾0 be the sequence of stopping times introduced in

(2.3.16) at which we observe a price change in ˜︁S (except from ˜︁τ∗
0 := 0). Moreover, recall

from the proof of Theorem 2.3.19 that for each k ∈ N0,

˜︁Bk := ˜︁Q(˜︁τ∗
k ) +X(· + ˜︁τ∗

k ) −X(˜︁τ∗
k )

defines a four-dimensional linear Brownian motion starting in ˜︁Q(˜︁τ∗
k ) with drift µ and

covariance matrix Σ. Note that by construction the increments of ˜︁Bk are independent
of σ( ˜︁S(t ∧ ˜︁τ∗

k ) : t ∈ [0, T ]), the sigma algebra generated by { ˜︁S(t ∧ ˜︁τ∗
k ) : t ∈ [0, T ]}.

According to the proof of Theorem 2.3.19, we have ˜︁τ∗
k+1 = ˜︁τ∗

k+1,b ∧ ˜︁τ∗
k+1,a, where for

i = b, a, ˜︁τ∗
k+1,i := inf

{︂
t > ˜︁τ∗

k : ˜︁Bi,F
k + ˜︁Bi,G

k = 0
}︂

∧ T, k ∈ N0.

Now let us introduce on [0, ˜︁τ∗
k+1 − ˜︁τ∗

k ] the processes

C+
k := 1

2L·(π(2)
1 g(πa ˜︁Bk)) + 1

2L·(π(2)
2 g(πb ˜︁Bk)),

C−
k := 1

2L·(π(2)
1 g(πb ˜︁Bk)) + 1

2L·(π(2)
2 g(πa ˜︁Bk)),

where g(πb ˜︁Bk) and g(πa ˜︁Bk) behave as two non-identical, non-trivial semimartingale
reflecting Brownian motions on [0, ˜︁τ∗

k+1 − ˜︁τ∗
k ] (cf. equation (2.3.22)). Thanks to As-

sumption 2.2 the components of ˜︁Bk are not perfectly correlated. Therefore, for i = b, a,
all x ∈ R \ {0}, and all πi ˜︁Bk-measurable times η, we have

P
[︂
(C+

k − C−
k )(η) = x |σ( ˜︁S(t ∧ ˜︁τ∗

k ), πi ˜︁Bk(t) : t ∈ [0, T ])
]︂

= 0.

By Theorem 2.3.28, we have ˜︁C(· + ˜︁τ∗
k ) − ˜︁C(˜︁τ∗

k ) = C+
k − C−

k on [0, ˜︁τ∗
k+1 − ˜︁τ∗

k ]. Hence,
for i = b, a,

P
[︂{︂
σ = ˜︁τ∗

k+1,i

}︂
∩
{︂˜︁τ∗

k+1 = ˜︁τ∗
k+1,i

}︂ ⃓⃓⃓
σ(πi ˜︁Bk, ˜︁C(˜︁τ∗

k ))
]︂

= P
[︂{︂ ˜︁C(˜︁τ∗

k+1,i) ∈ {−κ−, κ+}
}︂

∩
{︂˜︁τ∗

k+1 = ˜︁τ∗
k+1,i

}︂ ⃓⃓⃓
σ(πi ˜︁Bk, ˜︁C(˜︁τ∗

k ))
]︂

= 0,

since ˜︁τ∗
k+1,i is πi ˜︁Bk-measurable and κ−, κ+ are fixed. In particular, for i = b, a, we also
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have P[{σ = ˜︁τ∗
k+1,i} ∩ {˜︁τ∗

k+1 = ˜︁τ∗
k+1,i}] = 0 and hence for any k ∈ N0,

P[σ = ˜︁τ∗
k+1]

= P
[︂{︂
σ = ˜︁τ∗

k+1,b

}︂
∩
{︂˜︁τ∗

k+1 = ˜︁τ∗
k+1,b

}︂]︂
+ P

[︂{︂
σ = ˜︁τ∗

k+1,a

}︂
∩
{︂˜︁τ∗

k+1 = ˜︁τ∗
k+1,a

}︂]︂
= 0.

Proof of Lemma 2.3.32. We will show the result for I = J = F. Let ˜︁Bk, k ⩾ 0, be
the sequence of four-dimensional linear Brownian motions introduced in Theorem
2.3.25, whose increments are independent over k, and denote ˜︁B := ˜︁B0. Note that ˜︁B
starts in ˜︁Q0 = x = (x1, x2, x3, x4) ∈ (0,∞)4, has mean µ ∈ R4 and covariance matrix
Σ ∈ R4×4 (cf. Proposition 2.3.1). Since ˜︁Q is a Markov process and ( ˜︁Qb,F , ˜︁Qa,F ) =
(π(2)

1 g(πb ˜︁B), π(2)
1 g(πa ˜︁B)) on [0, ˜︁τ∗

1 ), it is enough to prove that (π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B))
does not hit the origin on [0, ˜︁τ∗

1 ] with probability one, where ˜︁τ∗
1 denotes the time

of the first price change. Moreover, we introduce τ̂∗
1 := τ̂∗(πb ˜︁B) ∧ τ̂∗(πa ˜︁B), τ̂∗

2 :=
τ̂∗(πb ˜︁B)1(τ̂∗

1 = τ̂∗(πa ˜︁B)) + τ̂∗(πa ˜︁B)1(τ̂∗
1 = τ̂∗(πb ˜︁B)), and τ̂∗(ω) := inf{t ⩾ 0 :

π
(2)
1 g(ω)(t) = 0} ∧ T.

Step 1: Show that (π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B)) does not hit the origin on [0, τ̂∗
1 ] P-almost

surely. On [0, τ̂∗
1 ] we have

˜︁Q =

⎛⎜⎜⎜⎜⎝
˜︁Bb,F − 1

2L·(π(2)
2 g(πb ˜︁B))˜︁Bb,G + 1

2L·(π(2)
2 g(πb ˜︁B))˜︁Ba,F − 1

2L·(π(2)
2 g(πa ˜︁B))˜︁Ba,G + 1

2L·(π(2)
2 g(πa ˜︁B))

⎞⎟⎟⎟⎟⎠
and observe that(︃(︂
π

(2)
2 g(πb ˜︁B), π(2)

2 g(πa ˜︁B)
)︂
,
(︂ ˜︁Bb,G, ˜︁Ba,G

)︂
,

(︃1
2L·

(︂
π

(2)
2 g(πb ˜︁B)

)︂
,

1
2L·

(︂
π

(2)
2 g(πa ˜︁B)

)︂)︃)︃
solves the two-dimensional Skorokhod problem with reflection matrix being the identity
on [0, τ̂∗

1 ]. Let Ŷ1 := (Y b,G
1 , Y a,G

1 ) be a planar Brownian motion starting in (x2, x4) with
zero mean and covariance matrix

Σ̂1 :=
(︄

(σb,G)2 σ(b,G),(a,G)

σ(b,G),(a,G) (σa,G)2

)︄

and define Ŵ1 := (W b,G
1 ,W a,G

1 ) by Ŵ1(t) = (x2, x4) +
∫︁ t

0 sign2(Ŷ1(s))dŶ1(s), where

sign2(Ŷ1(t)) :=
(︄

sign(Y b,G
1 (t)) 0
0 sign(Y a,G

1 (t))

)︄
.

In particular, dŴ1(t) = sign2(Ŷ1(t))dŶ1(t). Hence, (Ŷ1, Ŵ1) is a weak solution of the
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SDE
dŶ1(t) = sign2(Ŷ1(t))dŴ1(t).

With Levy’s characterization of a Brownian motion, we conclude that (Ŷ1, Ŵ1) is
unique in law. Note that this SDE is a two-dimensional version of the Tanaka SDE with
covariance Σ̂1 being not necessarily the identity matrix. Next, let us apply Tanaka’s
formula (cf. e.g. [89, Proposition 2.11]) and observe that

|Y b,G
1 (t)| = x2 +

∫︂ t

0
sign(Y b,G

1 (s))dY b,G
1 (s) + Lt(Y b,G

1 )

= x2 +
∫︂ t

0

(︂
sign(Y b,G

1 (s))
)︂2
dW b,G

1 (s) + Lt(Y b,G
1 )

= W b,G
1 (t) + Lt(Y b,G

1 ).

Moreover, we can show that |Y a,G
1 (t)| = W a,G(t) + Lt(Y a,G

1 ). Then,(︂(︂
|Y b,G

1 |, |Y a,G
1 |

)︂
,
(︂
W b,G

1 ,W a,G
1

)︂
,
(︂
L·(Y b,G

1 ), L·(Y a,G
1 )

)︂)︂
solves the two-dimensional Skorokhod problem with reflection matrix being the identity.
Similarly as in the proof of Lemma 2.7.5, let us take another planar Brownian motion˜︂W1 := (W b,F

1 ,W a,F
1 ), possibly on a larger probability space, starting in (x1, x3) and

being correlated with Ŵ1 such that W1 := (W b,F
1 ,W b,G

1 ,W a,F
1 ,W a,G

1 ) ≃ ( ˜︁B(t) −µt)t⩾0.

Let Y i,F
1 := W i,F

1 − L·(Y i,G
1 ) = W i,F

1 +W i,G
1 − |Y i,G

1 | for i = b, a. Then,

P[∃ t ∈ [0, T ] : (Y b,F
1 (t), Y a,F

1 (t)) = (0, 0)]
= P[∃ t ∈ [0, T ] : (W b,F

1 +W b,G
1 − |Y b,G

1 |,W a,F
1 +W a,G

1 − |Y a,G
1 |)(t) = (0, 0)]

⩽ P[∃ t : (W b,F
1 +W b,G

1 − Y b,G
1 ,W a,F

1 +W a,G
1 − Y a,G

1 )(t) = (0, 0)]
+ P[∃ t : (W b,F

1 +W b,G
1 + Y b,G

1 ,W a,F
1 +W a,G − Y a,G

1 )(t) = (0, 0)]
+ P[∃ t : (W b,F

1 +W b,G − Y b,G
1 ,W a,F

1 +W a,G
1 + Y a,G

1 )(t) = (0, 0)]
+ P[∃ t : (W b,F +W b,G + Y b,G

1 ,W a,F
1 +W a,G

1 + Y a,G
1 )(t) = (0, 0)].

As in the proof of Lemma 2.7.5 one can argue that each probability on the RHS equals
zero. Now, applying the Cameron-Martin-Girsanov theorem, there exists an equivalent
measure Q of P such that W1 behaves like a four-dimensional linear Brownian motion
starting in x ∈ (0,∞)4 with covariance Σ and drift µ under Q. Since P and Q are equiv-
alent measures, (Y b,F

1 , Y a,F
1 ) does not hit the origin Q-almost surely. By the uniqueness

of the solution of the Skorokhod problem, we conclude that (π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B)) on
[0, τ̂∗

1 ] has the same distribution as (Y b,F
1 , Y a,F

1 ), under Q, until one of its components
hits zero the first time. Hence, (π(2)

1 g(πb ˜︁B), π(2)
1 g(πa ˜︁B)) does not hit the origin on

[0, τ̂∗
1 ] with probability one.

Step 2: On the event {τ̂∗
1 = τ̂∗(πb ˜︁B)}, prove that (π(2)

1 g(πb ˜︁B), π(2)
1 g(πa ˜︁B)) does not

hit the origin on [τ̂∗
1 , τ̂

∗
2 ∧ τ̂∞(πb ˜︁B)] P-almost surely. Let us concentrate on the event
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{τ̂∗
1 = τ̂∗(πb ˜︁B)} and introduce τ := inf{t ⩾ τ̂∗

1 : π(2)
2 g(πb ˜︁B)(t) = 0} ∧ T the first time

after τ̂∗
1 that π(2)

2 g(πb ˜︁B) hits zero. On [τ̂∗
1 , τ̂

∗
2 ∧ τ2], we have

˜︁Q = G( ˜︁B)(τ̂∗
1 ) +

⎛⎜⎜⎜⎜⎜⎝
˜︁Bb,F − ˜︁Bb,F (τ̂∗

1 ) + 1
2L·(π(2)

1 g(πb ˜︁B))˜︁Bb,G − ˜︁Bb,G(τ̂∗
1 ) − 1

2L·(π(2)
1 g(πb ˜︁B))˜︁Ba,F − ˜︁Ba,F (τ̂∗

1 ) − 1
2

(︂
L·(π(2)

2 g(πa ˜︁B)) − Lτ̂∗
1
(π(2)

2 g(πa ˜︁B))
)︂

˜︁Ba,G − ˜︁Ba,G(τ̂∗
1 ) + 1

2

(︂
L·(π(2)

2 g(πa ˜︁B)) − Lτ̂∗
1
(π(2)

2 g(πa ˜︁B))
)︂

⎞⎟⎟⎟⎟⎟⎠
and observe that(︄(︂

π
(2)
1 g(πb ˜︁B), π(2)

2 g(πa ˜︁B)
)︂
,
(︂ ˜︁Bb,F − ˜︁Bb,F (τ̂∗

1 ), π(2)
2 g(πa ˜︁B)(τ̂∗

1 ) + ˜︁Ba,G − ˜︁Ba,G(τ̂∗
1 )
)︂
,

(︃1
2L·(π(2)

1 g(πb ˜︁B)), 1
2
{︂
L·(π(2)

2 g(πa ˜︁B)) − Lτ̂∗
1
(π(2)

2 g(πa ˜︁B))
}︂)︃)︄

solves the two-dimensional Skorokhod problem with reflection matrix being the identity
on [τ̂∗

1 , τ̂
∗
2 ∧ τ2]. In the following, let G( ˜︁B)(τ̂∗

1 ) = y := (0, y2, y3, y4). Then analogously
as above, for a planar Brownian motion Ŷ2 := (Y b,F

2 , Y a,G
2 ) starting in (0, y4) with mean

zero and covariance matrix

Σ̂2 :=
(︄

(σb,F )2 σ(b,F ),(a,G)

σ(b,F ),(a,G) (σa,G)2

)︄
,

we define Ŵ2 := (W b,F
2 ,W a,G

2 ) by Ŵ2 = (0, y4)+
∫︁ t

0 sign2(Ŷ2(s))dŶ2(s). Then, (Ŷ2, Ŵ2) is
again a weak solution, unique in law, of the two-dimensional Tanaka SDE with covariance
matrix Σ̂2. Applying Tanaka’s formula, it follows that |Y b,F

2 (t)| = W b,F
2 (t) + Lt(Y b,F

2 )
and |Y a,G

2 (t)| = W a,G
2 (t) + Lt(Y a,G

2 ), and(︂(︂
|Y b,F

2 |, |Y a,G
2 |

)︂
,
(︂
W b,F

2 , W a,G
2

)︂
,
(︂
L·(Y b,F

2 ), L·(Y a,G
2 )

)︂)︂
solves the two-dimensional Skorokhod problem with reflection matrix being the identity.
Next, let us take another planar Brownian motion ˜︂W2 := (W b,G

2 ,W a,F
2 ), possibly on a

larger probability space, starting in (y2, y3) and being correlated with Ŵ2 such that
W2 := (W b,F

2 ,W b,G
2 ,W a,F

2 ,W a,G
2 ) ≃ ((y − x) + ˜︁B(t) − µt)t⩾0. Moreover, let Y b,G

2 :=
W b,G

2 − L·(Y b,F
2 ) = W b,F

2 + W b,G
2 − |Y b,F

2 | and Y a,F
2 := W a,F

2 − L·(Y a,G
2 ) = W a,F

2 +
W a,G

2 − |Y a,F
2 |. Then, similarly as above, we conclude that

P[∃ t ∈ [0, T ] : (|Y b,F
2 (t)|, Y a,F

2 (t)) = (0, 0)] = 0.

Again, applying the Cameron-Martin-Girsanov theorem, we can change to the equivalent
probability measure Q of P, under which W2 behaves like a four-dimensional linear
Brownian motion with drift µ and (|Y b,F

2 |, Y a,F
2 ) does not hit the origin Q-almost

surely. By the uniqueness of the solution of the Skorokhod problem, we conclude that
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(π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B)) on [τ̂∗
1 , τ̂

∗
2 ∧ τ2] has the same distribution as (|Y b,F

2 |, Y a,F
2 ),

under Q, until Y b,G
2 or Y a,F

2 hits zero the first time. Hence, (π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B))
does not hit the origin on [τ̂∗

1 , τ̂
∗
2 ∧ τ2].

Applying the Markov property of G( ˜︁B), we conclude from the above together with
step 1 that (π(2)

1 g(πb ˜︁B), π(2)
1 g(πa ˜︁B)) does not hit the origin on [τ̂∗

1 , τ̂
∗
2 ∧ τ̂k(πb ˜︁B)] with

probability one for all k ∈ N. Since τ̂∞(πb ˜︁B) equals the first hitting time of h1(πb ˜︁B) at
zero (cf. Lemma 2.7.6), we can study the process (h1(πb ˜︁B), ˜︁Ba,F − 1

2L·(π(2)
2 g(πa ˜︁B)))

in a similar manner to conclude that also (π(2)
1 g(πb ˜︁B), π(2)

1 g(πa ˜︁B)) does not hit the
origin on [τ̂∗

1 , τ̂
∗
2 ∧ τ̂∞(πb ˜︁B)] with probability one.

Step 3: Show that τ̂∞(πb ˜︁B) ̸= τ̂∞(πa ˜︁B) with probability one. Applying Lemma 2.7.6,
we conclude that τ̂∞(πb ˜︁B) and τ̂∞(πa ˜︁B) agree with the first hitting times of the one-
dimensional Brownian motions h1(πb ˜︁B) and h1(πa ˜︁B) at zero. Since (h1(πb ˜︁B), h1(πa ˜︁B))
is again a planar Brownian motion whose components are not perfectly correlated, we
conclude that (h1(πb ˜︁B), h1(πa ˜︁B)) does not hit the origin with probability one. Hence,
τ̂∞(πb ˜︁B) ̸= τ̂∞(πa ˜︁B) P-almost surely.

Step 4: End of the proof. Combining the results of step 2 and step 3 together with
the Markov property of ˜︁Q, we conclude that (π(2)

1 g(πb ˜︁B), π(2)
1 g(πa ˜︁B)) does not hit the

origin on [0, ˜︁τ∗
1 ] P-almost surely. Since the process ˜︁Q is reinitialized at times of price

changes at a new value in (0,∞)4 and by applying again the Markov property of ˜︁Q, we
conclude that ( ˜︁Qb,F , ˜︁Qa,F ) does not hit the origin with probability one on the whole
interval [0, T ]. This finishes the proof.

Proof of Theorem 2.3.26. To identify the infinitesimal generator of the process ˜︁Q, we
note that h ∈ C0(R4

+,R) is in the domain of the infinitesimal generator if for all x ∈ R4
+,

lim
t→0

Ex[h( ˜︁Q(t))] − h(x)
t

< ∞,

where Ex[h( ˜︁Q(t))] := E[h( ˜︁Q(t))| ˜︁Q(0) = x]. For x ∈ ˜︁R4
+ and h ∈ C2(˜︁R4

+,R), we can
apply the Itô-Tanaka formula and obtain

Ex[h( ˜︁Q(t))] − h(x) − Ex
[︃∫︂ t

0
Ah( ˜︁Q(s))ds

]︃
= 1

2

4∑︂
j=1

Ex
[︃∫︂ t

0
˜︃∂xjh( ˜︁Q(s))dLs(πj ˜︁Q)

]︃
,

(2.7.16)

where Ah is given in (2.3.24) and

˜︃∂x1h := ∂h

∂x1
− ∂h

∂x3
, ˜︃∂x3h := − ∂h

∂x1
+ ∂h

∂x3
,

˜︃∂x2h := ∂h

∂x2
− ∂h

∂x4
, ˜︃∂x4h := − ∂h

∂x2
+ ∂h

∂x4
.

Note, that t ↦→ Lt(πj ˜︁Q), j = 1, 2, 3, 4, increases only on the set {t ⩾ 0 : πj ˜︁Q(t) = 0}.
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Hence, if h satisfies, for all x1, x2, x3, x4 > 0 and all y = (y1, y2, y3, y4) ∈ ˜︁R4
+,

˜︃∂x1h(0, y2, x3, y4) = 0, ˜︃∂x2h(y1, 0, y3, x4) = 0,˜︃∂x3h(x1, y2, 0, y4) = 0, ˜︃∂x4h(y1, x2, y3, 0) = 0,
(2.7.17)

then the right hand side in (2.7.16) equals zero and therefore, Ah is indeed the infinites-
imal generator of ˜︁Q on ˜︁R4

+ since h( ˜︁Q(t)) − h( ˜︁Q(0)) −
∫︁ t

0 Ah( ˜︁Q(s))ds is a martingale.
This yields equation (2.3.24) and the first boundary condition. Let f+, f− be the
distributions introduced in Assumption 2.4. Then, for all x = (x1, x2, x3, x4) ∈ ˜︁R4

+, we
have

E
[︂
h( ˜︁Q(t)) | ˜︁Q(0) = (x1, 0, x3, 0)

]︂
=
∫︂
R4

+

E
[︂
h( ˜︁Q(t)) | ˜︁Q(0+) = Φ((x1, 0, x3, 0), u)

]︂
f+(du)

=
∫︂
R4

+

(tAh(Φ((x1, 0, x3, 0), u)) + h(Φ((x1, 0, x3, 0), u))) f+(du) + o(t).

As t → 0, this leads to

E
[︂
h( ˜︁Q(t)) | ˜︁Q(0) = (x1, 0, x3, 0)

]︂
− h(x1, 0, x3, 0)

t

=
∫︂
R4

+

Ah(Φ((x1, 0, x3, 0), u))f+(du)

+ 1
t

∫︂
R4

+

[h(Φ((x1, 0, x3, 0), u)) − h(x1, 0, x3, 0)] f+(du) + o(1).

Similarly, we obtain as t → ∞ that

E
[︂
h( ˜︁Q(t)) | ˜︁Q(0) = (0, x2, 0, x4)

]︂
− h(0, x2, 0, x4)

t

=
∫︂
R4

+

Ah(Φ((0, x2, 0, x4), u))f−(du)

+ 1
t

∫︂
R4

+

[h(Φ((0, x2, 0, x4), (u))) − h(0, x2, 0, x4)] f−(du) + o(1).

Thus the limit t → 0 is only well defined if h further verifies for all x = (x1, x2, x3, x4) ∈˜︁R4
+,

h(x1, 0, x3, 0) =
∫︂
R4

+

h(Φ((x1, 0, x3, 0), u))f+(du),

h(0, x2, 0, x4) =
∫︂
R4

+

h(Φ((0, x2, 0, x4), u))f−(du).
(2.7.18)
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This yields equations (2.3.25) and the second boundary condition. Note that the
boundary conditions in (2.7.17) and (2.7.18) are together a Wentzell boundary condition
(cf. Taira [76]) which corresponds to a reflection and a jump to the interior, respectively,
whenever the process reaches the boundary. Hence, the domain dom(A) of A is given
by the set

dom(A) := {h ∈ C2(˜︁R4
+,R) ∩ C0(R4

+,R) : h verifies (2.7.17) and (2.7.18)}.

It follows that A is an elliptic operator defined by the Laplacian on (0,∞)4 with
Wentzell boundary condition. Thanks to Assumption 2.4, our boundary condition is
transversal. Hence, Theorem 1 in [76] implies the existence of an R4

+-valued Feller
process, unique in law, whose infinitesimal generator is (A, dom(A)). Therefore, the
limit process ˜︁Q is an R4

+-valued Markov process associated with this semigroup.
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3 Parametric change point detection with
random occurrence of the change point

We are concerned with the problem of detecting a single change point in
the model parameters of time series data generated from an exponential
family. In contrast to the existing literature, we allow that the true
location of the change point is itself random, possibly depending on
the data. Under the alternative, we study the case when the size of
the change ∆2 in the parameter converges to zero while the sample
size goes to infinity. Moreover, we concentrate on change points in the
“middle of the data”, i.e., we assume that the change point fraction λ∗

n

(the location of the change point relative to the sample size) satisfies
|λ∗
n − λ∗| = oP((n∆2)−1) and λ∗ is a random variable which takes its

values almost surely in a closed subset of (0, 1). We show that the known
statistical results from the literature also transfer to this setting. We
substantiate our theoretical results with a simulation study.

3.1 Introduction
Detecting structural changes in the parameters of time series data is of great interest
from both econometric and statistical perspectives. Traditionally, one is faced with
the question of whether the underlying time series data contain one or more change
points. While some literature (cf. e.g. [3, 7, 23]) has also investigated the detection of
multiple change points, in this chapter we focus only on so-called “at most one change
point” (AMOC) models. Assuming the location of the change point is known, one
can interpret the question of deciding whether or not the data contain a change point
as a two-sample test problem. However, the location of a change point is typically
unknown. Many works on change point models already provide statistical tests to
answer this question for unknown change points. While many authors build their tests
assuming that the change point occurs only in a single model parameter (typically in its
mean, cf. e.g. [51] or in its variance, cf. e.g. [3,74]), Horváth [44], Gombay and Horváth
[34–36], and Csörgő and Horváth [23] provide likelihood ratio-based tests that check
for a simultaneous change in the parameter of quite general parametric distributions
including exponential families, see Csörgő and Horváth [23] for an overview. Under a
long-span asymptotic scheme, in which the time span of data is assumed to go to infinity,
the existing literature provides theory for the estimation of a fractional change point
(the location of the change point relative to the sample size), including the consistency,
the rate of convergence, and the limiting distribution (cf. e.g. [3, 23, 51]). Although in

173



3.1. INTRODUCTION

most of the literature, time series data are considered, some authors study the detection
of a change in the drift and/or the volatility process of continuous-time diffusions or
more general Itô-semimartingales assuming that a continuous record or a discrete-time
record with mesh size converging to zero over a finite time span is available (cf. e.g.
[7, 47,51]). If the size of the model parameters relates appropriately with the samples
size, one might approximate the time series data by a continuous-time model and hence
might be able to connect the findings for time series data with the theory developed for
continuous-time processes. For example, if the time series data are normally distributed
and the mean is of order n−1/2 while the volatility is of order 1 (n denotes the sample
size), for large n, the n−1/2-scaled partial sum can be approximated by a diffusion
process. Because of the different scaling in n in the mean and volatility, a change in
the mean is typically much harder to detect than in the volatility. Even more, when
studying the detection of changes in the mean, the existing literature reveals that the
consistency of an estimator for the location of the change point can only be obtained if
the size of the change is of larger order than n−1/2. But then, the approximation of the
time series data by a continuous-time model fails since the size of the change in the
mean explodes as n → ∞. For this reason, [51] studied the asymptotic properties of
the change point estimator in the crucial case when the shift in the mean is of order
n−1/2. While in this work, we mainly focus on parametric models, the recent literature
also provides tools for the detection of structural changes in non-parametric models
such as in the volatility process of an Itô-semimartingale (cf. e.g. [7]), or the mean or
location parameter of time series data (cf. e.g. [23]).

Calibration of mathematical models is one of the main concerns from a practitioner’s
point of view. It is well known that change points are present in high-frequency
financial data. In the referenced literature the location of the change point is unknown
but deterministic. However, if the change point is caused by endogenous effects, the
dependence on the underlying data must be considered. The integrated European
intraday electricity market “Single Intraday Coupling” (SIDC) is a real-world example
in which change points might be endogenously caused. In this market, multiple national
limit order books are coupled, i.e., summarized in a single shared order book such that
market orders are allowed to be matched with standing volumes of the domestic and
foreign limit order books. However, the coupling of multiple markets is only maintained
as long as transmission capacities are available. In contrast, if the transmission capacities
are fully occupied, market orders can only be matched with standing volumes of the
same origin. The switch between these two regimes typically leads to structural changes
in the trading behavior. In Chapter 2, we construct cross-border market dynamics
including prices, standing volumes at the best bid and ask prices, and capacities from
the underlying net order flow process and the total available transmission capacities.
The time of a regime switch is then modeled by a stopping time depending on the
net order flow and on the total available capacities. While the order flow is publicly
available, the transmission capacities are harder to obtain and therefore often unknown.
Hence, in order to calibrate the model to high-frequency data, the time of a regime
switch, that depends on the observed data, must be estimated.

Models that have been studied in the literature, in which the location of a change
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point is itself random are, for example, so-called Markov switching models. In these
models, the type of the regime depends on an unobserved Markov process which is
independent of the data (cf. e.g. [17,26]). Despite this, to the best of our knowledge, the
existing literature on randomly occurring change points is rather limited. In our work,
we extend the statistical results in Csörgő and Horváth [23] to randomly occurring
change points, possibly depending on the data. Throughout, we assume that the data
points are independent and only study the case when the size of the change ∆2 in the
parameter converges to zero while the sample size n goes to infinity. From a statistical
point of view, this case describes the crucial setting as it answers the question which
minimum size of a change in the parameter is detectable. If the null hypothesis H0 is
“no change point” and the alternative H1 is “there is one change point”, then we discuss
the problem of distinguishing between H0 and H1. Moreover, under the alternative
H1, if k∗

n ∈ {1, · · · , n− 1} denotes the true but random location of the change point,
we concentrate on change points in the “middle of the data”, i.e., we assume that
the change point fraction λ∗

n := k∗
n/n satisfies |λ∗

n − λ∗| = oP((n∆2)−1), where λ∗ is a
random variable taking values in a closed subset of (0, 1) with probability one.

Our model should be understood as a first step toward the extension of the very
general change point theory in [23] to randomly occurring change points. We show
that the statistical properties of the test statistic as well as of the estimator for the
location of the change point transfer from the deterministic setting considered in [23] to
randomly occurring change points. While this might be clear under the null hypothesis
H0, this is not obvious under the alternative. In particular, our work shows that the
theory in [23] can also be applied in the model framework introduced in Chapter 2 in
which the location of a regime switch depends on the underlying net order flow process.

To extend the results in [23], the main difficulty is to show that the limit result for
the test statistic under the alternative holds true uniformly for all possible values of
the location of the change point. Therefore, we introduce an alternative test statistic
depending on two time parameters (i.e. on the true and estimated location of the change
point) and show that if this test statistic is scaled appropriately, it converges weakly in
the Skorokhod topology to a Gaussian process with two time parameters. The hard
part of the proof is to correctly identify the finite-dimensional distributions of the limit
process. This can be nicely simplified by an application of the fourth moment theorem
(cf. Theorem 1 in [68]) since we concentrate on normally distributed data when studying
the asymptotics under the alternative. After establishing the limit theorem of the test
statistic under the alternative, it is indeed straight-forward to prove the known results
in [23] also for randomly occurring change points. We provide empirical support for our
theoretical results through a detailed simulation study. Moreover, in this simulation
study we also discuss two important generalizations of our model: weakly dependent
observations and non-parametric change point detection in the volatility process of
an Itô-semimartingale. It turns out, at least empirically, that change point detection
works for these cases as well, even if the location of the change point depends on the data.

Structure of the chapter: In Section 2, we introduce the model framework and the
test statistic based on the so-called maximally selected log-likelihood ratio. Since under
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the null hypothesis, no change point occurs, in Section 3, we repeat the results for the
asymptotics of the considered test statistic under the null hypothesis in [23]. Under the
alternative, our more general setting of a change point with random location becomes
important. Therefore, in Section 4, we present a new test statistic depending on the
location of a change point and derive its limit distribution relative to the location of a
change point (cf. Theorem 3.4.4). To simplify the proof, we assume in Section 4 that
the observations are normally distributed. Moreover, we introduce an estimator for
the fractional change point and establish its consistency, the convergence rate, and the
limit distribution. The latter is also stated in a distribution-free version, which allows
to build confidence intervals for the true location of the change point based on the
data. We finish this chapter by a detailed simulation study in Section 5.

Notation: In the following, for each x ∈ Rd, d ⩾ 1, let us denote by ∥x∥ := (xTx)1/2

the euclidean norm in Rd. For a family of random variables (Xn)n∈N and a positive
deterministic sequence (an)n∈N, we write Xn = oP(an) if Xn/an converges to zero in
probability as n → ∞. Moreover, we denote Xn = OP(an) if for any ε > 0, there exist
η > 0 and N ∈ N such that such that P[|Xn/an| > η] < ε for all n > N. Similarly, for
another deterministic sequence (bn)n∈N, we write bn = o(an) if bn/an converges to zero
as n → ∞ and bn = O(an) if there exist η > 0 and N ∈ N such that bn/an ⩽ η for
all n > N. Furthermore, we write P[A,B] := P[A ∩B] for A,B ∈ F and a probability
space (Ω,F ,P).

3.2 Setup
Throughout, we assume that all random variables are defined on some common proba-
bility space (Ω,F ,P). Let X1, · · · , Xn be independent observations in Rm which have
densities fXj , j = 1, · · · , n, with respect to some σ-finite measure ν being element of
the exponential family, i.e.,

fXj (x) = f(x; θj) = exp
(︂
θTj T (x) + S(x) −A(θj)

)︂
1{x∈C}, (3.2.1)

where x = (x1, · · · , xm)T , θj = (θj,1, · · · , θj,d)T ∈ Θ ⊂ Rd, S, T1, · · · , Td : (Ω,F) →
(R,B(R)) are measurable functions with T = (T1, · · · , Td)T , A : Rd → R, and C ⊂ Rm.
Note that the representation of the density in (3.2.1) is often referred to as the natural
parametrization of an exponential family.

In our work, we want to test the null hypothesis “no change point”

H0 : θ1 = · · · = θn

against the alternative “there exists one change point”

H1 : There exists an k∗
n ∈ {1, · · · , n− 1} such that

θ1 = · · · = θk∗
n

̸= θk∗
n+1 = · · · = θn.
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This is a so-called “at most one change point” (AMOC) model. Such a model is
frequently studied in the literature (cf. e.g. [3, 23, 34–36, 44]) provided that the true
location of a change point k∗

n is unknown but deterministic. Following Csörgő and
Horváth [23], a natural approach to build an appropriate test statistic is based on the
likelihood ratio, i.e., if the change point occurs at k = k∗

n known, then we should reject
H0 for small values of Λk, where

Λk :=
supθ0∈Θ

∏︁
1⩽i⩽n f(Xi; θ0)

sup
θ

(1)
0 ,θ

(2)
0 ∈Θ

∏︁
1⩽i⩽k f(Xi; θ(1)

0 )∏︁k<i⩽n f(Xi; θ(2)
0 )

∈ (0, 1]. (3.2.2)

Remark 3.2.1. In the definition of the likelihood ratio in (3.2.2), we follow the notation
in [23]. Note however, that in several other literature, the likelihood ratio has been
introduced by Λ−1

k . Then, of course, Λ−1
k ∈ [1,∞) and the null hypothesis H0 should be

rejected for large values of Λ−1
k .

In order to guarantee the existence of the maximum likelihood estimators and later
to study their asymptotics, we need some additional regularity assumptions.
Assumption 3.1. There exists an open set Θ0 ⊂ Θ ⊂ Rd such that for all θ =
(θ1, · · · , θd)T ∈ Θ0, we have

i) A(θ) has continuous derivatives up to the third order and A′′(θ) :=
{︂

∂2

∂θi∂θj
A(θ),

1 ⩽ i, j ⩽ d
}︂

is a positive definite matrix.

ii) invA′(θ), the unique inverse of ϑ ↦→ A′(ϑ) :=
(︂

∂
∂ϑ1

A(ϑ), · · · , ∂
∂ϑd

A(ϑ)
)︂T

at θ,
exists.

Under Assumption 3.1 ii) we can find unique maximum likelihood estimators (MLEs)
for the parameters before and after the change provided that their true values are
contained in Θ0. Elementary calculations reveal that for each k = 1, · · · , n − 1, the
MLEs for the parameters before and after a change point k are given by invA′(Bn(k))
and invA′(B∗

n(k)), respectively, where

Bn(k) := 1
k

∑︂
1⩽i⩽k

T (Xi), and B∗
n(k) := 1

n− k

∑︂
k<i⩽n

T (Xi).

Plugging these estimators into (3.2.2), we can rewrite the log-likelihood ratio as

Sn(k) := − log Λk = kH(Bn(k)) + (n− k)H(B∗
n(k)) − nH(Bn(n)), (3.2.3)

where
H(x) := (invA′(x))Tx−A(invA′(x)). (3.2.4)

Remark 3.2.2. Note that under Assumption 3.1 for all x ∈ Θ0, the derivatives of H
up to the third order exist, are continuous in x, and

H ′(x) = invA′(x), H ′′(x) =
(︁
A′′(H ′(x))

)︁−1
.
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Since the true location of a change point k∗
n is unknown, it is natural to use the

maximally selected log-likelihood ratio and reject H0, if

Sn := max
1⩽k⩽n

{2Sn(k)}

is large.
In our work, under H1 “there exists one change point”, we will assume that the true

location of the change point k∗
n : Ω → {1, · · · , n− 1} is a random variable. This new

framework is of particular interest if the location of the change point equals a stopping
time, often depending on the data X1, · · · , Xn itself as we already discussed in Section
3.1. In the following, we will study the convergence rate and asymptotic distribution of
the test statistic Sn under the null and under the alternative hypothesis. Moreover,
under the alternative, we introduce an estimator k̂n of k∗

n based on an estimator of
the fractional change point λ̂n := k̂n/n of λ∗

n := k∗
n/n, for which we establish the

consistency, the rate of convergence, and the limit distribution.

3.3 Asymptotics under the null
Under the null hypothesis H0, since there is no change point in the data, we may
consult the result in [35, Theorem 1.1] which gives a limit theorem for the distribution
of Sn := max1⩽k⩽n{2Sn(k)} under H0. Note that this result is a corollary of the more
general result in [34] as we restrict our considerations to densities of exponential form
(cf. the assumption in (3.2.1)). Let a(x) := (2 log(x))1/2,

bd(x) := 2 log(x) + d

2 log log(x) − log(Γ(d/2)),

and Γ(t) :=
∫︁∞

0 yt−1e−ydy be the Gamma function.

Theorem 3.3.1 (Asymptotics under the null hypothesis). Let H0 and Assumption 3.1
be satisfied. Moreover, let θ0 ∈ Θ be the true value of the parameter in (3.2.1) which is
contained in Θ0. Then, for all t ∈ R,

lim
n→∞

P
[︂
a(logn)S1/2

n ⩽ t+ bd(logn)
]︂

= exp(−2e−t).

We omit the proof. The statement can be found in [35, Theorem 1.1], whereas the
proof in a more general setting is stated in [34].

The above theorem states that under the null hypothesis H0 when no change point
occurs the test statistic S1/2

n follows a Gumbel distribution asymptotically. This is
not surprising since (S1/2

n (k), 1 ⩽ k ⩽ n) converges weakly to a sequence of normally
distributed random variables under the null hypothesis and a Gumbel distribution
describes the maximum (or minimum) of normally distributed data.

With the help of Theorem 3.3.1, we are able to derive rejection regions of the test
statistic Sn := max1⩽k⩽n{2Sn(k)} under the null hypothesis. For example, let m = 1,
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d = 2, n = 10, 000, and consider different significance levels α = 0.1, 0.05, 0.01, where
1 − α = exp(−2e−t) for appropriate t ∈ R. Then, we should reject the null hypothesis
if S1/2

n is larger than the corresponding critical value κα satisfying P[S1/2
n > κα] =

1 − exp(−2e−t) = α and Theorem 3.3.1. In the table below, we have presented the
critical values κα for different values of α.

α κα
0.1 3.8827
0.05 4.2242
0.01 4.9977

Figure 3.1: Depiction of the critical values κα for different values of α ∈
{0.1, 0.05, 0.01}

The rate of convergence to the Gumbel distribution in Theorem 3.3.1 is usually
believed to be very slow. Consequently, a very large sample is necessary to test H0
versus H1 with the help of Theorem 3.3.1. In a simulation study, the authors in [23]
showed that for a moderate sample size the critical values derived from Theorem 3.3.1
tend to be much larger than the true ones and therefore, the distribution in Theorem
3.3.1 yields conservative rejection regions. For this reason, the authors in [23] state
a second limit theorem for the distribution of the test statistic Sn under the null
hypothesis. In this second limit result, it is shown that the distribution of the test
statistic can be approximated by that of the supremum of the continuous-time process
(B(d)(t)/(t(1 − t)))t∈(0,1) taken over a slightly shorter time interval, where B(d)(t) :=∑︁

1⩽i⩽dB
2
i (t) and B1, · · · , Bd are independent Brownian bridges (c.f. Theorem 1.3.2 in

[23]). Moreover, they showed that the critical values obtained from the distribution in
Theorem 1.3.2 in [23] are often preferable to the ones obtained from the distribution in
Theorem 3.3.1.

3.4 Asymptotics under the alternative
Assume that H1 “there exists one change point” holds true and let us denote by
θ

(1)
0 , θ

(2)
0 ∈ Θ ⊂ Rd the true values of the parameters before and after the change point

of X1, · · · , Xn. Let (X1,i, i ⩾ 1) and (X2,i, i ⩾ 1) be two independent sequences of iid
random variables, where X1,1 ∼ f(x; θ(1)

0 ) and X2,1 ∼ f(x; θ(2)
0 ) satisfy

Xi =
{︄
X1,i for i = 1, · · · , k∗

n

X2,i for i = k∗
n + 1, · · · , n

.
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Since the densities of the Xi’s are elements of an exponential family, we have

∂A(θ(1)
0 )

∂θj
= E[Tj(X1,1)], ∂2A(θ(1)

0 )
∂θi∂θj

= Cov[Ti(X1,1), Tj(X1,1)],

∂A(θ(2)
0 )

∂θj
= E[Tj(X2,1)], ∂2A(θ(2)

0 )
∂θi∂θj

= Cov[Ti(X2,1), Tj(X2,1)],
(3.4.1)

where θ = (θ1, · · · , θd)T ∈ Θ ⊂ Rd. In the following, we introduce

τ1 := A′(θ(1)
0 ), τ2 := A′(θ(2)

0 ), Σ1 := A′′(θ(1)
0 ), and Σ2 := A′′(θ(2)

0 ). (3.4.2)

In order to study the asymptotics of the statistic Sn for a possibly random occurrence
of the change point k∗

n, we will study its asymptotics for all possible true values of k∗
n.

Therefore, under H1, we can rewrite the test statistic Sn in (3.2.3) as a discrete-time
process of two time parameters k, k∗ ∈ {1, · · · , n− 1}, i.e.,

Sn(k, k∗) = kH(Bn(k, k∗)) + (n− k)H(B∗
n(k, k∗)) − nH(Bn(n, k∗)), (3.4.3)

where H is given as in (3.2.4),

Bn(k, k∗) =

⎧⎨⎩
1
k

∑︁k
i=1 T (X1,i) if k ⩽ k∗

1
k

(︂∑︁k∗
1=1 T (X1,i) +∑︁k

i=k∗+1 T (X2,i)
)︂

if k > k∗ ,

and

B∗
n(k, k∗) =

⎧⎨⎩
1

n−k

(︂∑︁k∗
i=k+1 T (X1,i) +∑︁n

i=k∗+1 T (X2,i)
)︂

if k ⩽ k∗

1
n−k

∑︁n
i=k+1 T (X2,i) if k > k∗

.

In the following, we will study the limit distribution of Sn. It turns out that its
distribution depends on the limit distribution of k∗

n/n and on the size of the change in
the parameter

∆2 := ∥θ(1)
0 − θ

(2)
0 ∥2. (3.4.4)

Assumption 3.2. Let the true location of the change point k∗
n be a random variable

taking values in {1, · · · , n − 1}. Let γ ∈ (0, 1/2) be a constant and λ∗ be a random
variable taking values in [γ, 1 − γ] with probability one such that λ∗

n := k∗
n/n satisfies

|λ∗
n − λ∗| = oP((n∆2)−1). Moreover, we assume that θ(1)

0 := θ
(1)
0 (n) → θA and θ(2)

0 :=
θ

(2)
0 (n) → θA as n → ∞ for some θA in the interior of Θ ⊂ Rd with

lim
n→∞

n∆2

log log(n) = ∞, (3.4.5)

where the size of the change ∆2 is given in (3.4.4).
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Assuming that k∗
n/n → λ∗ in probability as n → ∞ for some random variable λ∗

taking values almost surely in [γ, 1 − γ] and γ ∈ (0, 1/2) ensures that the change point
occurs in “the middle of the data”. Moreover, we concentrate on the critical case in
which the size of the change ∆2 converges to zero as n → ∞. We will show that as long
as ∆2 satisfies the condition in (3.4.5), we are still able to detect the change point in
the data.

Remark 3.4.1. Csörgő and Horváth [23] studied this problem provided that k∗
n is deter-

ministic and k∗
n/n → λ ∈ (0, 1) as n → ∞. Moreover, they studied slight modifications

of Assumption 3.2, e.g.,

i) the occurrence of an early change point, i.e., k∗
n/n → 0 as n → ∞, and

ii) the size of the change is large compared to the sample size in the sense that ∆2 is
independent of n.

Combining our subsequent analysis with the arguments in [23], we expect to be able to
derive similar results in these settings.

Remark 3.4.2. If Assumption 3.2 is satisfied, the true values of the parameters θ(1)
0

and θ
(2)
0 , and hence also the true values of the transformed parameters τ1, τ2, Σ1,

Σ2, and ∆2 introduced in (3.4.2) and (3.4.4), respectively, depend on n. However, for
reasons of notation, this dependence will often be omitted.

Since (X1,i, i ⩾ 1) and (X2,i, i ⩾ 1) are independent sequences containing independent
and identically distributed random variables, we can state our first limit theorem. It is
a direct consequence of Donsker’s theorem in higher dimensions.

Lemma 3.4.3. Let Assumptions 3.1 and 3.2 be satisfied and θA ∈ Θ0. Moreover,
we define W (n)

l := (W (n)
l (t))t∈[0,1], where W (n)

l (t) := ∑︁n
k=1W

(n)
l,k 1{nt∈[k,k+1)}, W

(n)
l,k :=

n−1/2∑︁k
i=1(T (Xl,i) − τl), and l = 1, 2. Then,

(W (n)
1 ,W

(n)
2 ) ⇒ Σ1/2

A (W1,W2)

in the Skorokhod topology on D([0, 1],R2d), where ΣA := A′′(θA) and W1,W2 are two
independent d-dimensional standard Brownian motions.

Proof. This is a direct application of Donsker’s theorem in higher dimensions to the
iid sequences (T (X1,i) − τ1, i ⩾ 1) and (T (X2,i) − τ2, i ⩾ 1).

Next, for all k, k∗ ∈ {1, · · · , n− 1}, let us introduce

µn(k, k∗) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kH(τ1) + (n− k)H
(︂
k∗−k
n−k τ1 + n−k∗

n−k τ2
)︂

−nH
(︂
k∗

n τ1 + n−k∗

n τ2
)︂

if k ⩽ k∗

kH
(︂
k∗

k τ1 + k−k∗

k τ2
)︂

+ (n− k)H(τ2)
−nH

(︂
k∗

n τ1 + n−k∗

n τ2
)︂

if k > k∗

. (3.4.6)
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Note that µn(k, k∗) is asymptotically the expected value of the statistic Sn(k, k∗). Then,
for all k, k∗ ∈ {1, · · · , n− 1}, applying Taylor’s formula of the first order, we can write

Sn(k, k∗) − µn(k, k∗) = Zn(k, k∗) +Rn(k, k∗), (3.4.7)

where for hn(x) := H ′(xτ1(n) + (1 − x)τ2(n))T , k ⩽ k∗,

Zn(k, k∗) := hn(1)
k∑︂
i=1

(T (X1,i) − τ1)

+ hn

(︃
k∗ − k

n− k

)︃⎛⎝ k∗∑︂
i=k+1

(T (X1,i) − τ1) +
n∑︂

i=k∗+1
(T (X2,i) − τ2)

⎞⎠
− hn

(︃
k∗

n

)︃⎛⎝ k∗∑︂
i=1

(T (X1,i) − τ1) +
n∑︂

i=k∗+1
(T (X2,i) − τ2)

⎞⎠ ,
(3.4.8)

for k > k∗,

Zn(k, k∗) := hn

(︃
k∗

k

)︃⎛⎝ k∗∑︂
i=1

(T (X1,i) − τ1) +
k∑︂

i=k∗+1
(T (X2,i) − τ2)

⎞⎠
+ hn(0)

n∑︂
i=k+1

(T (X2,i) − τ2)

− hn

(︃
k∗

n

)︃⎛⎝ k∗∑︂
i=1

(T (X1,i) − τ1) +
n∑︂

i=k∗+1
(T (X2,i) − τ2)

⎞⎠ ,
(3.4.9)

and Rn(k, k∗) is the corresponding remainder of Lagrange form such that the equation in
(3.4.7) holds true. With a little abuse of notation, we define by Zn := (Zn(t, λ))t,λ∈[0,1]
the piecewise constant interpolation of (Zn(k, k∗); k, k∗ ∈ {1, · · · , n− 1}), where

Zn(t, λ) :=
n−1∑︂
k=1

n−1∑︂
k∗=1

Zn(k, k∗)1{nt∈[k,k+1)}1{nλ∈[k∗,k∗+1)}.

Similarly, we define µn := (µn(t, λ))t,λ∈[0,1] and Rn := (Rn(t, λ))t,λ∈[0,1].
In the following, we assume for simplicity that f(x; θ) is the density of an m-

dimensional normal distribution in its natural parametrization. Note, moreover, that
under this assumption, also Assumption 3.1 holds true.
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Assumption 3.3. Let f(x; θ) be the density of an m-dimensional normal distribution
with parameter θ ∈ Θ ⊂ Rd given in its natural parametrization. In more detail, for
mean µ ∈ Rm and covariance matrix Σ ∈ Rm×m symmetric and positive definite, let
θ := θ(µ,Σ) = (Σ−1µ,−1

2Σ−1) =: (θ1, θ2) ∈ Rm × Rm×m. Then, the density in (3.2.1)
is given by

f(x; θ) = exp
(︃
θT1 x+ xT θ2x+ 1

4θ
T
1 θ

−1
2 θ1 − 1

2 log(det(−πθ−1
2 ))

)︃
,

and T (x) = (x, xxT ), A(θ) = −1
4θ
T
1 θ

−1
2 θ1 + 1

2 log(det(−πθ−1
2 )) for x ∈ Rm, θ =

(θ1, θ2) ∈ Rd = Rm+m2
, and H(y) = −1

2 det(2π(y2 − y1y
T
1 )), for y = (y1, y2) ∈ Rm ×

Rm×m.

Assuming that f(x, θ) is the density of an m-dimensional normal distribution will
remarkably simplify the proof of the following limit theorem as the identification of
the finite-dimensional distributions can be derived by the fourth moment theorem (cf.
Nualart and Peccati [68, Theorem 1]).

Theorem 3.4.4 (A limit theorem for Zn under the alternative). Let Assumptions 3.2
and 3.3 be satisfied. Moreover, let us denote δ2 := δ2(n) := ∥τ1(n) − τ2(n)∥2 → 0 as
n → ∞ and τA := limn→∞ τ1(n). Then,

(nδ2)−1/2Zn ⇒ Z∗ (3.4.10)

in the Skorokhod topology on D([0, 1]2,R), where Z∗ is a Gaussian process with mean
zero and covariance function

c((t, λ), (t′, λ′)) = σ2
A

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − λ)(1 − λ′) min
{︂

t
1−t ,

t′

1−t′
}︂
, if t ⩽ λ, t′ ⩽ λ′

(1 − λ)λ′ min
{︂
t(1−t′)
(1−t)t′ , 1

}︂
, if t ⩽ λ, t′ > λ′

λ(1 − λ′) min
{︂

(1−t)t′
t(1−t′) , 1

}︂
, if t > λ, t′ ⩽ λ′

λλ′ min
{︂

1−t
t ,

1−t′
t′

}︂
, if t > λ, t′ > λ′

,

for ((t, λ), (t′, λ′)) ∈ [0, 1]2 × [0, 1]2 \ {((1, 1), (1, 1))} and c((1, 1), (1, 1)) = 0, and σ2
A

given by

σ2
A := lim

n→∞
σ2
A(n) := lim

n→∞
(τ1(n) − τ2(n))TH ′′(τA)(τ1(n) − τ2(n))

∥τ1(n) − τ2(n)∥2

provided that the limit on the right hand side exists. Otherwise, we multiply the left
hand side of (3.4.10) with (σ2

A(n))−1/2.

In the following, without loss of generality and without further comment, we will
assume that the limit σ2

A introduced in the above theorem exists.
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Corollary 3.4.5. Let the assumptions of Theorem 3.4.4 be satisfied. Then,(︃
Zn(t, t)√
nδ2

)︃
t∈[0,1]

⇒ σAB

in the Skorokhod topology on the space D([0, 1],R), where B is a one-dimensional
Brownian bridge, i.e., B is a Gaussian process with mean zero and covariance function
c(t, t′) = min{t, t′} − tt′.

Figure 3.2: Depiction of the variance structure of the limit process Z∗.

Proof of Theorem 3.4.4. For l = 1, 2, recall that W (n)
l (t) := ∑︁n

k=1W
(n)
l,k 1{nt∈[k,k+1)},

where W
(n)
l,k := n−1/2∑︁k

i=1(T (Xl,i) − τl) and let ˜︁Zn(t, λ) := (nδ2)−1/2Zn(t, λ) for
t, λ ∈ [0, 1]. In the following, we assume the existence of the limit σ2

A given in Theorem
3.4.4. Otherwise, we simply study the process Zn(t, λ) = (σ2

A(n))−1/2 ˜︁Zn.
We will first establish tightness of the sequence ( ˜︁Zn)n∈N and then prove that its

finite-dimensional distributions converge to those of Z∗.

Tightness: For t, λ ∈ [0, 1], let us introduce the short-hand notations

αn(t, λ) := ⌊nλ⌋ − ⌊nt⌋
n− ⌊nt⌋

1{t<λ}, βn(λ) := ⌊nλ⌋
n

, and γn(t, λ) := ⌊nλ⌋
⌊nt⌋

1{t>λ}.

As n → ∞, we have for each t, λ ∈ [0, 1], that αn(t, λ) → (λ − t)/(1 − t)1{t<λ},
βn(λ) → λ, and γn(t, λ) → λ/t1{t>λ}. Now, for t ⩽ λ and αn := αn(t, λ), βn := βn(λ),
we can write

Zn(t, λ) = (hn(1) − hn(βn))n1/2W
(n)
1 (λ) + (hn(αn) − hn(1))n1/2

(︂
W

(n)
1 (λ) −W

(n)
1 (t)

)︂
+ (hn(αn) − hn(βn))n1/2

(︂
W

(n)
2 (1) −W

(n)
2 (λ)

)︂

184



3.4. ASYMPTOTICS UNDER THE ALTERNATIVE

and for t > λ and γn := γn(t, λ),

Zn(t, λ) = (hn(γn) − hn(βn))n1/2W
(n)
1 (λ) + (hn(0) − hn(βn))n1/2

(︂
W

(n)
2 (1) −W

(n)
2 (λ)

)︂
+ (hn(γn) − hn(0))n1/2

(︂
W

(n)
2 (t) −W

(n)
2 (λ)

)︂
.

Since f(x, θ) is the density of an m-dimensional normal distribution, we conclude that
H has continuous derivatives up to the second order and by Assumption 3.2, (τ1, τ2) →
(τA, τA) as n → ∞, where τA := A′(θA). Hence, for all sequences (xn)n∈N, (yn)n∈N ⊂
[0, 1] with xn → x ∈ [0, 1], yn → y ∈ [0, 1] as n → ∞, and xn ⩽ yn for all n ∈ N, we
conclude by an application of the definition of the derivative in higher dimensions and
Remark 3.2.2 that

hn(yn) − hn(xn)
δ

= (H ′(ynτ1 + (1 − yn)τ2) −H ′(xnτ1 + (1 − xn)τ2))T

∥τ1 − τ2∥

= (yn − xn)(τ1 − τ2)T
∥τ1 − τ2∥

H ′′(τ2) + o(1)

→ (y − x)˜︁Σ1/2

(3.4.11)

as n → ∞, where ˜︁Σ1/2 := limn→∞(τ1 − τ2)TH ′′(τA)/δ. In the following, we denote
Gn(x, y) := (hn(x) − hn(y))/δ. Then, the process ˜︁Zn can be written as follows: for
t ⩽ λ,

˜︁Zn(t, λ) = Gn(1, βn)W (n)
1 (λ) −Gn(1, αn)W (n)

1 (λ) +Gn(1, αn)W (n)
1 (t)

−Gn(βn, αn)W (n)
2 (1) +Gn(βn, αn)W (n)

2 (λ),

and for t > λ,

˜︁Zn(t, λ) = Gn(γn, βn)W (n)
1 (λ) −Gn(βn, 0)W (n)

2 (1) +Gn(βn, 0)W (n)
2 (λ)

+Gn(γn, 0)W (n)
2 (t) −Gn(γn, 0)W (n)

2 (λ).

Hence, the process ˜︁Zn can be represented as a sum of five scalar products, multiplying the
d-dimensional partial sums W (n)

l (t), W (n)
l (λ), or W (n)

l (1), l = 1, 2, with the non-random
d-dimensional vector (Gn ◦ (xn, yn))(t, λ), where xn(t, λ), yn(t, λ) ∈ {0, αn(t, λ), βn(λ),
γn(t, λ), 1}. Thus, we can identify each summand of ˜︁Zn as a discrete-time process in
two time parameters which converges weakly in the Skorokhod topology to a one-
dimensional Gaussian process thanks to Lemma 3.4.3 and (3.4.11). In particular, the
limit process of each summand of ˜︁Zn is a continuous process in both time parameters.
By Theorem 12.6.1 in Whitt [86], we conclude their joint convergence implying that
the sequence ( ˜︁Zn)n∈N is tight.
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Convergence of the finite-dimensional distributions: It is left prove to the convergence
of the finite-dimensional distributions of ˜︁Zn, i.e., for all k ⩾ 1 and (t1, λ1), · · · , (tk, λk) ∈
[0, 1]2, we want to show that

( ˜︁Zn(t1, λ1), · · · , ˜︁Zn(tk, λk)) ⇒ (Z∗(t1, λ1), · · · , Z∗(tk, λk))

as n → ∞, where Z∗ is a Gaussian process with mean zero and covariance function
c : [0, 1]2 × [0, 1]2 → R defined in Theorem 3.4.4. For sake of notation, we only analyze
the case k = 2, i.e., for (t, λ), (t′, λ′) ∈ [0, 1]2, we will prove the joint convergence

( ˜︁Zn(t, λ), ˜︁Zn(t′, λ′)) ⇒ (Z∗(t, λ), Z∗(t′, λ′)) (3.4.12)

as n → ∞ and note that for k > 2, we can argue completely analogously. Applying the
Cramér-Wold device, (3.4.12) is equivalent to

Ẑn((t, λ), (t′, λ′)) := x ˜︁Zn(t, λ) + y ˜︁Zn(t′, λ′) ⇒ xZ∗(t, λ) + yZ∗(t′, λ′), (3.4.13)

where x, y ∈ R are arbitrary. Since the Xi’s are assumed to be normally distributed,
the first m components of W (n)

l belong to the Wiener chaos of order one and the last
m2 components of W (n)

l belong to the Wiener chaos of order two, for l = 1, 2 and all
n ∈ N. Hence, Ẑn belongs to the Wiener chaos of order two for all n ∈ N. In order to
prove (3.4.13), we will apply the fourth moment theorem by Nualart and Peccati [68].
According to the fourth moment theorem, for all (t, λ), (t′, λ′) ∈ [0, 1]2, the convergence
in (3.4.13) is satisfied if the following two conditions hold true: as n → ∞, we have

i) Var[Ẑn((t, λ), (t′, λ′))] → ĉ((t, λ), (t′, λ′)) and

ii) E[Ẑ4
n((t, λ), (t′, λ′))] → 3 (ĉ((t, λ), (t′, λ′)))2 ,

where

ĉ((t, λ), (t′, λ′)) = x2c((t, λ), (t, λ)) + 2xy c((t, λ), (t′, λ′)) + y2c((t′, λ′), (t′, λ′))

and the covariance function c : [0, 1]2 × [0, 1]2 → R is defined in Theorem 3.4.4. Since
E[T (Xl,1)] = τl for l = 1, 2, we conclude that E[Ẑn((t, λ), (t′, λ′))] = 0. In order to
analyze the second and fourth moment of Ẑn((t, λ), (t′, λ′)), we need to differentiate
between the following four cases:

1) t ⩽ λ, t′ ⩽ λ′, 2) t ⩽ λ, t′ > λ′, 3) t > λ, t′ ⩽ λ′, and 4) t > λ, t′ > λ′.

First, let us consider case 1), let ((t, λ), (t′, λ′)) ∈ [0, 1]2 × [0, 1]2 \ {((1, 1), (1, 1))}
with t ⩽ λ, t′ ⩽ λ′, and denote αn := αn(t, λ), α′

n := αn(t′, λ′), βn := βn(λ), and
β′
n := βn(λ′). Then, for σ2

A defined in Theorem 3.4.4, applying Lemma 3.4.3 and
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(3.4.11), we conclude

E[ ˜︁Zn(t, λ) ˜︁Zn(t′, λ′)] = Gn(1, βn)E
[︃
W

(n)
1 (λ)

(︂
W

(n)
1 (λ′)

)︂T ]︃
(Gn(1, β′

n))T

−Gn(1, βn)E
[︃
W

(n)
1 (λ)

(︂
W

(n)
1 (λ′) −W

(n)
1 (t′)

)︂T ]︃
(Gn(1, α′

n))T

−Gn(1, βn)E
[︃
W

(n)
1 (λ)

(︂
W

(n)
2 (1) −W

(n)
2 (λ′)

)︂T ]︃
(Gn(β′

n, α
′
n))T

−Gn(1, αn)E
[︃(︂
W

(n)
1 (λ) −W

(n)
1 (t)

)︂ (︂
W

(n)
1 (λ′)

)︂T ]︃
(Gn(1, β′

n))T

+Gn(1, αn)E
[︃(︂
W

(n)
1 (λ) −W

(n)
1 (t)

)︂ (︂
W

(n)
1 (λ′) −W

(n)
1 (t′)

)︂T ]︃
(Gn(1, α′

n))T

+Gn(1, αn)E
[︃(︂
W

(n)
1 (λ) −W

(n)
1 (t)

)︂ (︂
W

(n)
2 (1) −W

(n)
2 (λ′)

)︂T ]︃
(Gn(β′

n, α
′
n))T

−Gn(βn, αn)E
[︃(︂
W

(n)
2 (1) −W

(n)
2 (λ)

)︂ (︂
W

(n)
1 (λ′)

)︂T ]︃
(G(1, β′

n))T

+Gn(βn, αn)E
[︃(︂
W

(n)
2 (1) −W

(n)
2 (λ)

)︂ (︂
W

(n)
1 (λ′) −W

(n)
1 (t′)

)︂T ]︃
(G(1, α′

n))T

+Gn(βn, αn)E
[︃(︂
W

(n)
2 (1) −W

(n)
2 (λ)

)︂ (︂
W

(n)
2 (1) −W

(n)
2 (λ′)

)︂T ]︃
(G(β′

n, α
′
n))T

→ σ2
A(1 − λ)(1 − λ′)

(︄
min{λ, λ′} − 1

1 − t′
max{min{λ, λ′} − t′, 0} − t′

1 − t′
max{λ− λ′, 0}

− 1
1 − t

max{min{λ, λ′} − t, 0} + 1
(1 − t)(1 − t′) max{min{λ, λ′} − max{t, t′}, 0}

+ t′

(1 − t)(1 − t′) max{λ− max{t, λ′}, 0} − t

1 − t
max{λ′ − λ, 0}

+ t

(1 − t)(1 − t′) max{λ′ − max{λ, t′}, 0} + tt′

(1 − t)(1 − t′)(1 − max{λ, λ′})
)︄

= σ2
A(1 − λ)(1 − λ′) min

{︃
t

1 − t
,

t′

1 − t′

}︃
.

Moreover, by definition of c : [0, 1]2×[0, 1]2 → R at ((1, 1), (1, 1)), we have E[ ˜︁Z2
n(1, 1)] →

0 = c((1, 1), (1, 1)) as n → ∞. Analogously, applying Donsker’s theorem in higher
dimensions for the partial sums W (n)

l , l = 1, 2, (cf. Lemma 3.4.3) and (3.4.11), we can
derive the limit of the covariance of ˜︁Zn in the remaining three cases, where cases 2)
and 3) are symmetric. Finally, we conclude that for ((t, λ), (t′, λ′)) ∈ [0, 1]2 × [0, 1]2 \
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{((1, 1), (1, 1))},

E
[︂ ˜︁Zn(t, λ) ˜︁Zn(t′, λ′)

]︂
→ σ2

A

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − λ)(1 − λ′) min
{︂

t
1−t ,

t′

1−t′
}︂
, if t ⩽ λ, t′ ⩽ λ′

(1 − λ)λ′ min
{︂
t(1−t′)
(1−t)t′ , 1

}︂
, if t ⩽ λ, t′ > λ′

λ(1 − λ′) min
{︂

(1−t)t′
t(1−t′) , 1

}︂
, if t > λ, t′ ⩽ λ′

λλ′ min
{︂

1−t
t ,

1−t′
t′

}︂
, if t > λ, t′ > λ′

.

In particular, by definition of Ẑn, we conclude for all (t, λ), (t′, λ′) ∈ [0, 1]2 that
Var[Ẑn((t, λ), (t′, λ′))] → ĉ((t, λ), (t′, λ′)) as desired.

Next, we analyze E[Ẑ4
n((t, λ), (t′, λ′))]. For this reason, we will calculate the mixed

fourth moments E[ ˜︁Z3
n(t, λ) ˜︁Zn(t′, λ′)] and E[ ˜︁Z2

n(t, λ) ˜︁Z2
n(t′, λ′)]. Recall that ˜︁Zn can be

represented by finitely many scalar products of the partial sums W (n)
l , l = 1, 2, and

the non-random function Gn evaluated at (xn(t, λ), yn(t, λ)), where xn(t, λ), yn(t, λ) ∈
{0, αn(t, λ), βn(λ), γn(t, λ), 1}. Because of Lemma 3.4.3, (W (n)

l )n∈N, l = 1, 2, converges
weakly in the Skorokhod topology to a d-dimensional Brownian motion. Thus, we can
apply the same arguments as for the computation of the mixed fourth moments of
partial sums of iid standard normal distributed random variables.

Lemma 3.4.6. Let (ξi, i ⩾ 1) be a sequence of iid one-dimensional standard normal
random variables and W (n)(t) := ∑︁n

k=1W
(n)
k 1{nt∈[k,k+1)}, where W (n)

k := n−1/2∑︁k
i=1 ξi.

Moreover, let {αi}i=1,2,3,4, {βi}i=1,2,3,4 ⊂ [0, 1] with αi ⩽ βi for all i = 1, 2, 3, 4, and
denote by α̌ := max{αi : i = 1, 2, 3, 4}, α̌ij := max{αi, αj}, β̂ := min{βi : i = 1, 2, 3, 4},
and β̂ij := min{βi, βj}. Then, as n → ∞, we have

E
[︄ 4∏︂
i=1

(︂
W (n)(βi) −W (n)(αi)

)︂]︄
= max{β̂12 − α̌12, 0} max{β̂34 − α̌34, 0}

+ max{β̂13 − α̌13, 0} max{β̂24 − α̌24, 0} + max{β̂14 − α̌14, 0} max{β̂23 − α̌23, 0}.

Proof. Since (ξi, i ⩾ 1) is a sequence of iid standard normal random variables and by
the definition of W (n), we have as n → ∞,

E
[︄ 4∏︂
i=1

(︂
W (n)(βi) −W (n)(αi)

)︂]︄
= 1
n2

⌊nβ̂⌋∑︂
i=⌊nα̌⌋+1

E
[︂
ξ4
i

]︂
+ 1
n2

⌊nβ̂12⌋∑︂
i=⌊nα̌12⌋+1

⌊nβ̂34⌋∑︂
j=⌊nα̌34⌋+1

j ̸=i

E
[︂
ξ2
i ξ

2
j

]︂

+ 1
n2

⌊nβ̂13⌋∑︂
i=⌊nα̌13⌋+1

⌊nβ̂24⌋∑︂
j=⌊nα̌24⌋+1

j ̸=i

E
[︂
ξ2
i ξ

2
j

]︂
+ 1
n2

⌊nβ̂14⌋∑︂
i=⌊nα̌14⌋+1

⌊nβ̂23⌋∑︂
j=⌊nα̌23⌋+1

j ̸=i

E
[︂
ξ2
i ξ

2
j

]︂

→ max{β̂12 − α̌12, 0} max{β̂34 − α̌34, 0} + max{β̂13 − α̌13, 0} max{β̂24 − α̌24, 0}
+ max{β̂14 − α̌14, 0} max{β̂23 − α̌23, 0}.
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Now, applying Lemma 3.4.6 and the convergence of Gn in (3.4.11), elementary
calculations yield for ((t, λ), (t′, λ′)) ∈ [0, 1]2 × [0, 1]2 \ {((t, λ), (t′, λ′)) : t = λ =
1 or t′ = λ′ = 1},

E
[︂ ˜︁Z3

n(t, λ) ˜︁Zn(t′, λ′)
]︂

→ 3σ4
A

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − λ)3(1 − λ′) t
1−t min

{︂
t

1−t ,
t′

1−t′
}︂
, if t ⩽ λ, t′ ⩽ λ′

(1 − λ)3λ′
(︂

t
1−t

)︂2
min

{︂
1−t
t ,

1−t′
t′

}︂
, if t ⩽ λ, t′ > λ′

λ3(1 − λ′)1−t
t

t′

1−t′ min
{︂

1−t
t ,

1−t′
t′

}︂
, if t > λ, t′ ⩽ λ′

λ3λ′ 1−t
t min

{︂
1−t
t ,

1−t′
t′

}︂
, if t > λ, t′ > λ′

and

E
[︂ ˜︁Z2

n(t, λ) ˜︁Z2
n(t′, λ′)

]︂

→ σ4
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − λ)2(1 − λ′)2
{︃

tt′

(1−t)(1−t′) + 2
(︂
min

{︂
t

1−t ,
t′

1−t′
}︂)︂2

}︃
, if t ⩽ λ, t′ ⩽ λ′

(1 − λ)2(λ′)2
{︃
t(1−t′)
(1−t)t′ + 2

(︂
t

1−t

)︂2 (︂
min

{︂
1−t
t ,

1−t′
t′

}︂)︂2
}︃
, if t ⩽ λ, t′ > λ′

λ2(1 − λ′)2
{︃

(1−t)t′
t(1−t′) + 2

(︂
t′

1−t′
)︂2 (︂

min
{︂

1−t
t ,

1−t′
t′

}︂)︂2
}︃
, if t > λ, t′ ⩽ λ′

λ2(λ′)2
{︃

(1−t)(1−t′)
tt′ + 2

(︂
min

{︂
1−t
t ,

1−t′
t′

}︂)︂2
}︃
, if t > λ, t′ > λ′

.

Note that for all ((t, λ), (t′, λ′)) ∈ {((t, λ), (t′, λ′)) : t = λ = 1 or t′ = λ′ = 1} and n ∈ N,
we have

E[ ˜︁Z3
n(t, λ) ˜︁Zn(t′, λ′)] = E[ ˜︁Z2

n(t, λ) ˜︁Z2
n(t′, λ′)] = 0.

Hence, the fourth moment of Ẑn((t, λ), (t′, λ′)) satisfies for all (t, λ), (t′, λ′) ∈ [0, 1]2,

E
[︂
Ẑ4
n((t, λ), (t′, λ′))

]︂
= x4E

[︂ ˜︁Z4
n(t, λ)

]︂
+ 4x3yE

[︂ ˜︁Z3
n(t, λ) ˜︁Zn(t′, λ′)

]︂
+ 6x2y2E

[︂ ˜︁Z2
n(t, λ) ˜︁Z2

n(t′, λ′)
]︂

+ 4xy3E
[︂ ˜︁Zn(t, λ) ˜︁Z3

n(t′, λ′)
]︂

+ y4E
[︂ ˜︁Z4

n(t′, λ′)
]︂

→ 3
(︁
ĉ((t, λ), (t′, λ′))

)︁2
as desired. An application of the fourth moment theorem [68, Theorem 1] yields that

Ẑn((t, λ), (t′, λ′)) ⇒ xZ∗(t, λ) + yZ∗(t′, λ′) =: Ẑ∗((t, λ), (t′, λ′)),

where Ẑ∗((t, λ), (t′, λ′)) is a normally distributed random variable with mean zero and
variance ĉ((t, λ), (t′, λ′)). Together with the tightness of the sequence ( ˜︁Zn)n∈N, the
statement of Theorem 3.4.4 follows.
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Example 3.1 (Change in the mean with known covariance). We have d = m and the
density function in (3.2.1) equals

f(x; θ) = exp
(︃
θTΣ−1x− 1

2θ
TΣ−1θ − 1

2x
TΣ−1x− log((2π)m/2det(Σ))

)︃
,

where Σ ∈ Rm×m is symmetric, positive definite. Hence, T (x) = Σ−1x, H(x) = 1
2x

TΣx,
and A(θ) = 1

2θ
TΣ−1θ. Elementary calculations yield that H ′′(x) = Σ, A′′(θ) = Σ−1.

Example 3.2 (Simultaneous change in the mean and covariance). We have d = m+m2

and for µ ∈ Rm and Σ ∈ Rm×m being symmetric and positive definite, the density
function equals

f(x;µ,Σ) = exp
(︃
µTΣ−1x− 1

2µ
TΣ−1µ− 1

2x
TΣ−1x− log((2π)m/2 det(Σ))

)︃
.

With a little abuse of notation, we identify Rm×m ≡ Rm2 and Σ ≡ vec(Σ) ∈ Rm2
. Then,

setting θ(µ,Σ) = (θ1, θ2)T = (Σ−1µ,−1
2Σ−1) ∈ Rm+m2 the density can be rewritten in

form of its natural parametrization, i.e.,

f(x; θ) = exp
(︃
θT1 x+ xT θ2x+ 1

4θ
T
1 θ

−1
2 θ1 − 1

2 log(det(−πθ−1
2 ))

)︃
,

and therefore T (x) = (x, xxT ) ∈ Rm+m2
, H(x) = −1

2 log(det(2π(x2 − x1x
T
1 ))), for

(x1, x2) ∈ Rm × Rm2
, and A(θ) = −1

4θ
T
1 θ

−1
2 θ1 + 1

2 log(det(−πθ−1
2 )). Elementary calcu-

lations yield that

A′(θ) := (Aθ1 , Aθ2)T :=
(︃

−1
2θ

T
1 θ

−1
2 ,

1
4(θT1 θ−1

2 ⊗ θT1 θ
−1
2 ) − 1

2vec(θ
−1
2 )T

)︃T
,

and

A′′(θ) :=

⎛⎝∂Aθ1
∂θ1

∂Aθ1
∂θ2

∂Aθ2
∂θ1

∂Aθ2
∂θ2

,

⎞⎠
where ∂Aθ1

∂θ1
= −1

2θ
−1
2 ∈ Rm×m,

∂Aθ1
∂θ2

= (∂Aθ2
∂θ1

)T = (θT1 θ−1
2 )T ⊗ vec(θ−1

2 )T ∈ Rm×m2
,

and ∂Aθ2
∂θ2

= 1
2(θT1 θ−1

2 ) ⊗ (θT1 θ−1
2 ) ⊗ vec(θ−1

2 ) ∈ Rm2×m2
.

Once the null hypothesis H0 “no change point” is rejected, one is interested in
locating the change point k∗

n or the change point fraction λ∗
n := k∗

n/n. For this, we
suggest the estimator

λ̂n := 1
n

arg max
1⩽k⩽n−1

{2Sn(k)}. (3.4.14)

In the following, we denote by k̂n := nλ̂n the estimator of the location of the change
point k∗

n. Note that, as always, the estimator in (3.4.14) is random, as it depends on
the data X1, · · · , Xn and therefore, also on the true location of the change point k∗

n.
In the following, we will study the properties of this estimator.
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Theorem 3.4.7 (Consistency of λ̂n). Let the assumptions of Theorem 3.4.4 hold.
Then,

δ2|k̂n − k∗
n| = OP(1).

In particular, λ̂n is a consistent estimator of λ∗
n with |λ̂n − λ∗

n| = OP((δ2n)−1).

Remark 3.4.8 (Convergence rates and minimum detectable size in slightly different
models). Csörgő and Horváth [23] also studied the consistency of the estimator in
(3.4.14) provided that the true location of the change point k∗

n is deterministic under
slightly different assumptions:

i) If the size of the change is independent of n, they still obtain a convergence rate
for the estimator λ̂n of order n−1.

ii) If the change point fraction satisfies k∗
n/n → 0 as n → ∞, i.e., the data contain

an early change point, they obtain the same convergence rate as in Theorem 3.4.7,
but the detectable size of the change has to be generally of larger order satisfying

k∗
n∆2

log log(n) → ∞.

Although, we do not study these cases in our work, we expect to obtain similar results
assuming that k∗

n is random itself.

Proof of Theorem 3.4.7. First, we consider the case 1 ⩽ k ⩽ k∗ where k∗ ∈ [nγ, n(1−γ)]
for some γ ∈ (0, 1/2). Then, observe that

µn(k, k∗) − µn(k∗, k∗)

= (k − k∗)H(τ1) + (n− k)H
(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃
− (n− k∗)H(τ2)

= (k∗ − k)
(︃
H

(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃
−H(τ1)

)︃
+ (n− k∗)

(︃
H

(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃
−H(τ2)

)︃
.

Now, two applications of Taylor’s formula of the second order yield that

µn(k, k∗) − µn(k∗, k∗) = 1
2

(k∗ − k)(n− k∗)
n− k

(︄
2(τ2 − τ1)T

(︁
H ′(τ1) −H ′(τ2)

)︁
+ n− k∗

n− k
(τ1 − τ2)TH ′′(τ1)(τ1 − τ2) + k∗ − k

n− k
(τ1 − τ2)TH ′′(τ2)(τ1 − τ2)

)︄

+ o

(︄
(k∗ − k)(n− k∗)δ2

n− k

)︄
,

where we obtain the last summand by bounding the Lagrange remainder term. By the
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mean value theorem, there exists ξ in the interval connecting τ1 and τ2 such that

µn(k, k∗) − µn(k∗, k∗) = 1
2

(k∗ − k)(n− k∗)
n− k

(︄
− 2(τ1 − τ2)TH ′′(ξ)(τ1 − τ2)

+ n− k∗

n− k
(τ1 − τ2)TH ′′(τ1)(τ1 − τ2) + k∗ − k

n− k
(τ1 − τ2)TH ′′(τ2)(τ1 − τ2)

)︄

+ o

(︄
(k∗ − k)(n− k∗)δ2

n− k

)︄
.

(3.4.15)

Now, since (τ1, τ2) → (τA, τA) as n → ∞ thanks to Assumption 3.2, we conclude for n
large enough, that the above difference is negative, increasing in k for fixed k∗, and we
can find a constant C > 0 such that

µn(k, k∗) − µn(k∗, k∗) ⩽ −C (k∗ − k)(n− k∗)δ2

n− k
. (3.4.16)

In the following, we denote µ̂n(k, k∗) := µn(k, k∗) −µn(k∗, k∗). Next, we apply Taylor’s
formula of the second order to obtain

Sn(k, k∗) − Sn(k∗, k∗) − µ̂n(k, k∗)

= Zn(k, k∗) − Zn(k∗, k∗) + k

2 (Bn(k, k∗) − τ1)TH ′′(τ1)(Bn(k, k∗) − τ1)

− k∗

2 (Bn(k∗, k∗) − τ1)TH ′′(τ1)(Bn(k∗, k∗) − τ1)

− n− k∗

2 (B∗
n(k∗, k∗) − τ2)TH ′′(τ2)(B∗

n(k∗, k∗) − τ2)

+ n− k

2

(︃
B∗
n(k, k∗) − k∗ − k

n− k
τ1 − n− k∗

n− k
τ2

)︃T
H ′′

(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃
×
(︃
B∗
n(k, k∗) − k∗ − k

n− k
τ1 − n− k∗

n− k
τ2

)︃
+R1,n(k, k∗),

where R1,n(k, k∗) is the remainder of Lagrange form satisfying

|R1,n(k, k∗)| ⩽ C

(︄
k ∥Bn(k, k∗) − τ1∥3 + k∗ ∥Bn(k∗, k∗) − τ1∥3

+ (n− k∗) ∥B∗
n(k∗, k∗) − τ2∥3 + (n− k)

⃦⃦⃦⃦
B∗
n(k, k∗) − k∗ − k

n− k
τ1 − n− k∗

n− k
τ2

⃦⃦⃦⃦3)︄

for some C > 0. Applying the law of the iterated logarithm, we conclude

max
1⩽k⩽k∗

k3/2 ∥Bn(k, k∗) − τ1∥3 = OP
(︂
(log log(k∗))3/2

)︂
,

uniformly over k∗ ∈ [nγ, n(1 − γ)] and applying Donsker’s theorem (cf. Lemma 3.4.3),

192



3.4. ASYMPTOTICS UNDER THE ALTERNATIVE

we get
max

nγ⩽k∗⩽n(1−γ)
(k∗)3/2 ∥Bn(k∗, k∗) − τ1∥3 = OP(1).

Bounding the remaining terms in a similar way and applying the upper bound for the
difference µ̂n(k, k∗) in (3.4.16), we conclude for every ε > 0 and η > 0, that there exist
κ > 0 and N ∈ N such that for all n ⩾ N,

P
[︄

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

|R1,n(k, k∗)|
|µ̂n(k, k∗)| > η

]︄
< ε. (3.4.17)

Next, let us analyze the difference Zn(k, k∗)−Zn(k∗, k∗) which equals for all 1 ⩽ k ⩽ k∗

and k∗ ∈ {1, · · · , n− 1}

Zn(k, k∗) − Zn(k∗, k∗) =
(︃
hn

(︃
k∗ − k

n− k

)︃
− hn(1)

)︃ k∗∑︂
i=k+1

(T (X1,i) − τ1)

+
(︃
hn

(︃
k∗ − k

n− k

)︃
− hn(0)

)︃ n∑︂
i=k∗+1

(T (X2,i) − τ2)

=: Z(1)
n (k, k∗) + Z(2)

n (k, k∗).

For the first summand Z
(1)
n (k, k∗), studying the calculations in (3.4.11) and applying

the law of the iterated logarithm, we obtain uniformly over k∗ ∈ [nγ, n(1 − γ)],

max
1⩽k⩽k∗−κ/δ2

n− k

(n− k∗)δ
1√︁

(k∗ − k) log log(k∗ − k)
|Z(1)
n (k, k∗)|

= max
1⩽k⩽k∗−κ/δ2

1√︁
(k∗ − k) log log(k∗ − k)

⃓⃓⃓⃓
⃓⃓ ˜︁Σ1/2

k∗∑︂
i=k+1

(T (X1,i) − τ1)

⃓⃓⃓⃓
⃓⃓+ o(1)

= OP(1).

For the second summand Z
(2)
n (k, k∗), applying Donsker’s theorem, we obtain

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

n− k

(k∗ − k)δ
1√

n− k∗ |Z(2)
n (k, k∗)|

= max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

√︃
n

n− k∗
1√
n

⃓⃓⃓⃓
⃓⃓ ˜︁Σ1/2

n∑︂
i=k∗+1

(T (X2,i) − τ2)

⃓⃓⃓⃓
⃓⃓+ o(1)

= OP(1).

Applying (3.4.5) and (3.4.16), we conclude for every ε > 0 and η > 0, that there exist
κ > 0 and N ∈ N such that for all n ⩾ N ,

P
[︄

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

|Z(1)
n (k, k∗) + Z

(2)
n (k, k∗)|

|µ̂n(k, k∗)| > η

]︄
< ε. (3.4.18)
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Next, applying again the law of the iterated logarithm, we have

max
1⩽k⩽k∗

k

2
⃓⃓⃓
(Bn(k, k∗) − τ1)T H ′′(τ1) (Bn(k, k∗) − τ1)

⃓⃓⃓
= OP(log log(k∗))

uniformly over k∗ ∈ [nγ, n(1 − γ)]. Then, our assumption in (3.4.5) implies

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽αn

(n− k) log log(n)
(k∗ − k)(n− k∗)δ2 → 0 as n → ∞,

for all 0 < α < γ. Hence, applying (3.4.16), we conclude

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽αn

k
⃓⃓⃓
(Bn(k, k∗) − τ1)T H ′′(τ1) (Bn(k, k∗) − τ1)

⃓⃓⃓
|µ̂n(k, k∗)| = OP(1).

In contrast, applying Donsker’s theorem, the assumption in (3.4.5), and equation
(3.4.16), it follows that

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽αn

k∗
⃓⃓⃓
(Bn(k∗, k∗) − τ1)T H ′′(τ1) (Bn(k∗, k∗) − τ1)

⃓⃓⃓
|µ̂n(k, k∗)| = OP(1).

Next, we can rewrite

k

2 (Bn(k, k∗) − τ1)T H ′′(τ1) (Bn(k, k∗) − τ1)

− k∗

2 (Bn(k∗, k∗) − τ1)T H ′′(τ1) (Bn(k∗, k∗) − τ1)

= 1
2
{︂√

k(Bn(k, k∗) − τ1)T −
√
k∗(Bn(k∗, k∗) − τ1)T

}︂
H ′′(τ1)

√
k(Bn(k, k∗) − τ1)

+ 1
2

√
k∗(Bn(k∗, k∗) − τ1)TH ′′(τ1)

{︂√
k(Bn(k, k∗) − τ1) −

√
k∗(Bn(k∗, k∗) − τ1)

}︂
.

Then, for all 0 < α < γ, applying (3.4.16), the law of the iterated logarithm, and
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Donsker’s theorem, we obtain

max
αn⩽k⩽k∗−κ/δ2

⃓⃓⃓(︂√
k(Bn(k, k∗) − τ1)T −

√
k∗(Bn(k∗, k∗) − τ1)T

)︂
H ′′(τ1)

√
k(Bn(k, k∗) − τ1)

⃓⃓⃓
|µ̂n(k, k∗)|

= OP(1) max
αn⩽k⩽k∗−κ/δ2

(n− k)
√︁

log log(k)
(k∗ − k)(n− k∗)δ2

(︄
1√
k

⃦⃦⃦⃦
⃦⃦ k∗∑︂
i=k+1

(T (X1,i) − τ1)

⃦⃦⃦⃦
⃦⃦

+ k∗ − k√︁
k(k∗ + k)

1√
k

⃦⃦⃦⃦
⃦
k∗∑︂
i=1

(T (X1,i) − τ1)
⃦⃦⃦⃦
⃦
)︄

= OP(1) max
αn⩽k⩽k∗−κ/δ2

(n− k)
√︁

log log(k)
(k∗ − k)(n− k∗)δ2

⎛⎝√︄(k∗ − k) log log(k∗ − k)
k

+ k∗ − k√
kk∗

⎞⎠
= OP(1)

√︄
log log(κ)

κ

uniformly over k∗ ∈ [nγ, n(1 − γ)] and note that the OP(1)-term is independent of κ.
Combining the above probability bounds, we conclude for every ε > 0 and η > 0, that
there exist κ > 0 and N ∈ N such that for all n ⩾ N , we have

P
[︄

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

|k(Bn(k, k∗) − τ1)TH ′′(τ1)(Bn(k, k∗) − τ1)

− k∗(Bn(k∗, k∗) − τ1)TH ′′(τ1)(Bn(k∗, k∗) − τ1)|/|µ̂n(k, k∗)| > η

]︄
< ε.

(3.4.19)

With similar arguments, we can also show for every ε > 0 and η > 0, that there exist
κ > 0 and N ∈ N such that for all n ⩾ N,

P
[︄

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

⃓⃓⃓⃓
⃓(n− k)

(︃
B∗
n(k, k∗) − k∗ − k

n− k
τ1 − n− k∗

n− k
τ2

)︃T
×H ′′

(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃(︃
B∗
n(k, k∗) − k∗ − k

n− k
τ1 − n− k∗

n− k
τ2

)︃

− (n− k∗)(B∗
n(k∗, k∗) − τ2)TH ′′(τ2)(B∗

n(k∗, k∗) − τ2)
⃓⃓⃓⃓
⃓/|µ̂n(k, k∗)| > η

]︄
< ε.

(3.4.20)

Finally, combining the results in (3.4.17), (3.4.18), (3.4.19), and (3.4.20), we conclude
for every ε > 0 and η > 0, that there exist κ > 0 and N ∈ N such that for all n ⩾ N,

P
[︄

max
nγ⩽k∗⩽n(1−γ)

max
1⩽k⩽k∗−κ/δ2

|Sn(k, k∗) − Sn(k∗, k∗) − µ̂n(k, k∗)|
|µ̂n(k, k∗)| > η

]︄
< ε. (3.4.21)
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Now, by Assumption 3.2, λ∗ ∈ [γ, 1 − γ] for some γ ∈ (0, 1/2) with probability one.
Hence, for each ε > 0, there exists an N ∈ N such that for all n ⩾ N , we have

P [λ∗
n /∈ [γ/2, 1 − γ/2]] < ε.

Next, let us define the set An := {k̂n ⩽ k∗
n} ∩ {λ∗

n ∈ [γ/2, 1 − γ/2]}. Then, the result
in (3.4.21) implies for every ε > 0, that there exist κ > 0 and N ∈ N such that for all
n ⩾ N ,

P
[︃
k∗
n − k̂n >

κ

δ2 , An

]︃
⩽ P

[︄
max

1⩽k⩽k∗
n−κ/δ2

Sn(k, k∗
n) ⩾ Sn(k∗

n, k
∗
n) , An

]︄

⩽ P
[︄

max
nγ/2⩽k∗⩽n(1−γ/2)

max
1⩽k⩽k∗−κ/δ2

|Sn(k, k∗) − Sn(k∗, k∗) − µ̂n(k, k∗)|
|µ̂n(k, k∗)| ⩾ η , An

]︄
< ε,

where η > 0. Hence, for every ε > 0, there exist κ > 0 and N ∈ N such that for all
n ⩾ N , we have

P
[︃{︃
k∗
n − k̂n >

κ

δ2

}︃
, {k̂n ⩽ k∗

n}
]︃
⩽ P

[︃{︃
k∗
n − k̂n >

κ

δ2

}︃
, An

]︃
+ P [λ∗

n /∈ [γ/2, 1 − γ/2]]

< 2ε.

With similar arguments, we are able to show for every ε > 0, that there exist κ > 0
and N ∈ N such that for all n ⩾ N ,

P
[︃{︃
k̂n − k∗

n >
κ

δ2

}︃
, {k̂n > k∗

n}
]︃
< 2ε.

Hence, δ2|k∗
n − k̂n| = OP(1). Finally, since

δ2|k∗
n − k̂n| = nδ2|λ∗

n − λ̂n|,

we conclude that λ̂n is a consistent estimator of λ∗
n and |λ∗

n − λ̂n| = OP((nδ2)−1).

In order to construct confidence intervals for k∗
n, we need to establish the limit

distribution of the deviation δ2(k̂n−k∗
n) provided that H1 holds true. The next theorem

gives us a first limit result for this deviation. However, it is only of theoretical interest,
since (τ1 − τ2)TH ′′(τA)(τ1 − τ2), the size of a change, is unknown.
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Theorem 3.4.9 (Limit distribution of k̂n under the alternative). Let the assumptions
of Theorem 3.4.4 be satisfied. Moreover, let us introduce the process

W ∗(t) :=

⎧⎪⎪⎨⎪⎪⎩
σAW1(−t) − 1

2σ
2
A|t|, t < 0,

0, t = 0,
σAW2(t) − 1

2σ
2
A|t|, t > 0,

where W1 and W2 are two independent Brownian motions. Then,

δ2(k̂n − k∗
n) ⇒ arg max

u∈(−∞,∞)
W ∗(u).

Note that arg maxu∈(−∞,∞)W
∗(u) is the canonical limit distribution from the litera-

ture (cf. e.g. [23,51]) for the deviation δ2(k̂n − k∗
n) provided that the size of the change

vanishes as n → ∞. Moreover, the law of the iterated logarithm for the Brownian
motion implies the almost sure finiteness of arg maxu∈(−∞,∞)W

∗(u).
We state the proof of this theorem at the end of this section. With a slight rescaling

of the left hand side in Theorem 3.4.9, we can establish a distribution-free limit process.

Corollary 3.4.10. Let the assumptions of Theorem 3.4.4 be satisfied. Then,

(τ1 − τ2)TH ′′(τA)(τ1 − τ2)(k̂n − k∗
n) ⇒ arg max

u∈(−∞,∞)
Ŵ (u),

where the limit process Ŵ is defined by

Ŵ (t) :=

⎧⎪⎪⎨⎪⎪⎩
W1(−t) − 1

2 |t|, t < 0,
0, t = 0,
W2(t) − 1

2 |t|, t > 0,

for two independent Brownian motions W1 and W2.

Proof. By the scaling property of the Brownian motion, we conclude that

arg max
u∈(−∞,∞)

W ∗(u) and 1
σ2
A

arg max
u∈(−∞,∞)

Ŵ (s)

have the same distribution, where

σ2
A := lim

n→∞
(τ1 − τ2)TH ′′(τA)(τ1 − τ2)

δ2 .

This finishes the proof.

Even if the right hand side in Corollary 3.4.10 is distribution-free, (τ1−τ2)TH ′′(τA)(τ1−
τ2), the size of a change, occurring on the left hand side, is still unknown. Hence,
in order to be able to construct confidence intervals for k∗

n, we need to estimate
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(τ1 − τ2)TH ′′(τA)(τ1 − τ2), the size of a change. For that, we use the estimator

(Bn(k̂n) −B∗
n(k̂n))TH ′′(Bn(n))(Bn(k̂n) −B∗

n(k̂n)) (3.4.22)

For this reason, we will show in the next lemma that this is indeed a consistent
estimator for the size of a change.

Lemma 3.4.11. Under the assumptions of Theorem 3.4.4, we have

(Bn(k̂n) −B∗
n(k̂n))TH ′′(Bn(n))(Bn(k̂n) −B∗

n(k̂n))
(τ1 − τ2)TH ′′(τA)(τ1 − τ2) → 1 in probability.

Proof. Since E[T (X1,1)] = A′(θ(1)
0 ) = τ1 and E[T (X2,1)] = A′(θ(2)

0 ) = τ2, we conclude
by Assumptions 3.2 and 3.3, and an application of the law of large numbers that

Bn(n) = 1
n

n∑︂
i=1

T (Xi) → A′(θA) =: τA in probability.

Since H has continuous derivatives up to the third order, we also have

H ′′(Bn(n)) → H ′′(τA) in probability. (3.4.23)

In the following, let us concentrate on the event An := {λ∗
n ∈ [γ/2, 1 − γ/2]}. First,

note that

⃦⃦⃦
Bn(k̂n) − τ1

⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦ 1
k̂n

⎛⎝ k̂n∑︂
i=1

(T (X1,i) − τ1)

⎞⎠⃦⃦⃦⃦⃦⃦1{k̂n⩽k∗
n}

+

⃦⃦⃦⃦
⃦⃦ 1
k̂n

⎛⎝ k∗
n∑︂

i=1
(T (X1,i) − τ1) +

k̂n∑︂
i=k∗

n+1
(T (X2,i) − τ2) − (k̂n − k∗

n)(τ1 − τ2)

⎞⎠⃦⃦⃦⃦⃦⃦1{k̂n>k∗
n}.

On the event An, we obtain by an application of the law of the iterated logarithm that⃦⃦⃦⃦
⃦⃦ 1
k∗
n

k∗
n∑︂

i=1
(T (X1,i) − τ1)

⃦⃦⃦⃦
⃦⃦ ⩽ max

nγ/2⩽k∗⩽n(1−γ/2)

⃦⃦⃦⃦
⃦ 1
k∗

k∗∑︂
i=1

(T (X1,i) − τ1)
⃦⃦⃦⃦
⃦

= OP

⎛⎝√︄ log log(n)
n

⎞⎠ .
(3.4.24)

Since λ̂n is a consistent estimator of λ∗
n, we further conclude⃦⃦⃦⃦

⃦⃦ 1
k̂n

k̂n∑︂
i=1

(T (X1,i) − τ1)

⃦⃦⃦⃦
⃦⃦ = OP

⎛⎝√︄ log log(n)
n

⎞⎠
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and ⃦⃦⃦⃦
⃦⃦ 1
k̂n

⎛⎝ k∗
n∑︂

i=1
(T (X1,i) − τ1) +

k̂n∑︂
i=k∗

n+1
(T (X2,i) − τ2) − (k̂n − k∗

n)(τ1 − τ2)

⎞⎠⃦⃦⃦⃦⃦⃦
= OP

⎛⎝√︄ log log(n)
n

⎞⎠ .
Hence, on the event An, we obtain that

⃦⃦⃦
Bn(k̂n) − τ1

⃦⃦⃦
= OP

⎛⎝√︄ log log(n)
n

⎞⎠ . (3.4.25)

Similarly, another application of the law of the iterated logarithm shows that, restricted
on the event An, ⃓⃓⃓

B∗
n(k̂n) − τ2

⃓⃓⃓
= OP

⎛⎝√︄ log log(n)
n

⎞⎠ . (3.4.26)

Moreover, applying our assumption in (3.4.5), we conclude that

lim
n→∞

log log(n)
n(τ1 − τ2)TH ′′(τA)(τ1 − τ2) = 0. (3.4.27)

Hence, on the event An, combining the results in (3.4.23), (3.4.25), (3.4.26), and (3.4.27),
it follows that

(Bn(k̂n) −B∗
n(k̂n))TH ′′(Bn(n))(Bn(k̂n) −B∗

n(k̂n))
(τ1 − τ2)TH ′′(τA)(τ1 − τ2) → 1 in probability.

Finally, by Assumption 3.2, it holds that λ∗ ∈ [γ, 1 − γ] for some γ ∈ (0, 1/2) with
probability one. Hence, for every ε > 0, there exists an N1 ∈ N such that for all n ⩾ N1,

P[λ∗
n /∈ [γ/2, 1 − γ/2]] < ε.

Then, for every ε > 0 and η > 0 there exists an N2 > 0 such that for all n ⩾ N1 ∨N2,
we have

P
[︄⃓⃓⃓⃓
⃓(Bn(k̂n) −B∗

n(k̂n))TH ′′(Bn(n))(Bn(k̂n) −B∗
n(k̂n))

(τ1 − τ2)TH ′′(τA)(τ1 − τ2) − 1
⃓⃓⃓⃓
⃓ > η

]︄

⩽ P
[︄⃓⃓⃓⃓
⃓(Bn(k̂n) −B∗

n(k̂n))TH ′′(Bn(n))(Bn(k̂n) −B∗
n(k̂n))

(τ1 − τ2)TH ′′(τA)(τ1 − τ2) − 1
⃓⃓⃓⃓
⃓ > η , An

]︄
+ P [λ∗

n /∈ [γ/2, 1 − γ/2]] < 2ε.

This finishes the proof.
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Remark 3.4.12. The probability bound of order
√︁

log log(n)/n in (3.4.24) can be
improved to the order 1/

√
n: since (T (X1,i) − τ1)i⩾1 is a sequence of iid, centered

random variables, the discrete-time process Sk := ∑︁k
i=1(T (X1,i) − τ1), k = 1, · · · , n, is

a martingale and by Jensen’s inequality, (∥Sk∥)k⩾1 is a submartingale. Applying Doob’s
martingale inequality for p = 2, we get the following probability bound:

P
[︄

max
1⩽k⩽n

⃦⃦⃦⃦
⃦ 1√

n

k∑︂
i=1

(T (X1,i) − τ1)
⃦⃦⃦⃦
⃦ ⩾ λ

]︄
⩽
C

λ2 ,

for each λ > 0, a constant C depending on ΣA, and n large enough. In particular, this
implies that the term on the left hand side in (3.4.24) is indeed of order OP(n−1/2).
Arguing in this way, the assumption in (3.4.5) on the convergence speed of the size of
the change in the parameters can be relaxed to n∆2 → ∞ as n → ∞.

With all these preparations done, we are finally ready to state a distribution-free
limit theorem for the deviation (k̂n − k∗

n) under the alternative. This result can be used
to build confidence intervals for k∗

n.

Corollary 3.4.13. Let the assumptions of Theorem 3.4.4 be satisfied. Then,(︂
Bn(k̂n) −B∗

n(k̂n)
)︂T

H ′′(Bn(n))
(︂
Bn(k̂n) −B∗

n(k̂n)
)︂ (︂
k̂n − k∗

n

)︂
⇒ arg max

u∈(−∞,∞)
Ŵ (u).

Proof. This follows directly from Corollary 3.4.10, Lemma 3.4.11, and an application
of Slutzky’s Lemma.

Finally, we finish this section by stating the proof of Theorem 3.4.9.

Proof of Theorem 3.4.9. We show that for some arbitrary κ > 0, it holds

Sn(λ+ ·/(nδ2), λ) − Sn(λ, λ) ⇒ W ∗

in the Skorokhod topology on the space D([−κ, κ],R) uniformly over λ ∈ [γ, 1 − γ].
First, let us consider k ∈ [k∗ − κ/δ2, k∗], where k∗/n ∈ [γ, 1 − γ]. A Taylor expansion
of the second order yields for all 1 ⩽ k ⩽ k∗,

Sn(k, k∗) − Sn(k∗, k∗) − (µn(k, k∗) − µn(k∗, k∗))
= V1,n(k, k∗) + V2,n(k, k∗) + V3,n(k, k∗) + V4,n(k, k∗) +R1,n(k, k∗),

where
V1,n(k, k∗) := H ′(τ1)Tn1/2

(︂
W

(n)
1,k −W

(n)
1,k∗

)︂
,

V2,n(k, k∗) := n

2k
(︂
W

(n)
1,k

)︂T
H ′′(τ1)W (n)

1,k − n

2k∗

(︂
W

(n)
1,k∗

)︂T
H ′′(τ1)W (n)

1,k∗ ,
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V3,n(k, k∗) := H ′
(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃T
n1/2

(︂
W

(n)
1,k∗ −W

(n)
1,k +W

(n)
2,n −W

(n)
2,k∗

)︂
−H ′(τ2)Tn1/2

(︂
W

(n)
2,n −W

(n)
2,k∗

)︂
,

and

V4,n(k, k∗) := n

2(n− k)
(︂
W

(n)
1,k∗ −W

(n)
1,k +W

(n)
2,n −W

(n)
2,k∗

)︂T
×H ′′

(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃(︂
W

(n)
1,k∗ −W

(n)
1,k +W

(n)
2,n −W

(n)
2,k∗

)︂
− n

2(n− k∗)
(︂
W

(n)
2,n −W

(n)
2,k∗

)︂T
H ′′(τ2)

(︂
W

(n)
2,n −W

(n)
2,k∗

)︂
.

Moreover, studying the treatment of the Lagrange remainder term in the proof of
Theorem 3.4.7, we conclude that R1,n(k, k∗) is of order oP(1) uniformly over k∗ −κ/δ2 ⩽
k ⩽ k∗ and nγ ⩽ k∗ ⩽ n(1 − γ) and hence vanishes in probability as n → ∞. Applying
Donsker’s theorem, we obtain for all κ > 0,

max
k∗−κ/δ2⩽k⩽k∗

⃦⃦⃦
n1/2δ

(︂
W

(n)
1,k∗ −W

(n)
1,k

)︂⃦⃦⃦
= max

u∈[−κ,0]

⃦⃦⃦⃦
⃦⃦δ ⌊−u/δ2⌋∑︂

j=0
(T (X1,k∗−j) − τ1)

⃦⃦⃦⃦
⃦⃦ = OP(1),

(3.4.28)

uniformly over k∗ ∈ [nγ, n(1 − γ)]. Moreover, for k ∈ [k∗ − κ/δ2, k∗], we have

n(k∗ − k)
kk∗ = O

(︂
(nδ2)−1

)︂
. (3.4.29)

Hence, applying the Assumptions 3.1 and 3.2, the equations (3.4.28) and (3.4.29), and
Donsker’s theorem (cf. Lemma 3.4.3), we obtain

max
k∗−κ/δ2⩽k⩽k∗

|V2,n(k, k∗)| ⩽ max
k∗−κ/δ2⩽k⩽k∗

1
2
n(k∗ − k)
kk∗

⃓⃓⃓
(W (n)

1,k )TH ′′(τ1)W (n)
1,k

⃓⃓⃓
+ max
k∗−κ/δ2⩽k⩽k∗

1
2
n

k∗

⃓⃓⃓⃓{︂
W

(n)
1,k −W

(n)
1,k∗

}︂T
H ′′(τ1)W (n)

1,k

⃓⃓⃓⃓
+ max
k∗−κ/δ2⩽k⩽k∗

1
2
n

k∗

⃓⃓⃓
(W (n)

1,k∗)TH ′′(τ1)
{︂
W

(n)
1,k −W

(n)
1,k∗

}︂⃓⃓⃓
= oP(1)

uniformly over k∗ ∈ [nγ, n(1 − γ)]. Bounding V4,n in a similar way, we obtain for
arbitrary κ > 0 and n large enough

max
nγ⩽k∗⩽n(1−γ)

max
k∗−κ/δ2⩽k⩽k∗

|V2,n(k, k∗) + V4,n(k, k∗)| = oP(1). (3.4.30)

Next, applying Donsker’s theorem (cf. Lemma 3.4.3), we obtain again for κ > 0 and n
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large enough

max
k∗−κ/δ2⩽k⩽k∗

⃓⃓⃓
V1,n(k, k∗) + V3,n(k, k∗) − (H ′(τ2) −H ′(τ1))Tn1/2(W (n)

1,k∗ −W
(n)
1,k )

⃓⃓⃓
= max

k∗−κ/δ2⩽k⩽k∗

⃓⃓⃓⃓
⃓n1/2

(︃
H ′
(︃
k∗ − k

n− k
τ1 + n− k∗

n− k
τ2

)︃
−H ′(τ2)

)︃T

×
(︂
W

(n)
1,k∗ −W

(n)
1,k +W

(n)
2,n −W

(n)
2,k∗

)︂ ⃓⃓⃓⃓⃓
= max

k∗−κ/δ2⩽k⩽k∗
n1/2δ

k∗ − k

n− k

⃓⃓⃓⃓
⃓ ˜︁Σ1/2

(︂
W

(n)
1,k∗ −W

(n)
1,k +W

(n)
2,n −W

(n)
2,k∗

)︂ ⃓⃓⃓⃓⃓+ o(1)

= oP(1)

uniformly over k∗ ∈ [nγ, n(1 − γ)]. Combining the above bounds, we conclude that

max
k∗−κ/δ2⩽k⩽k∗

⃓⃓⃓
Sn(k, k∗) − Sn(k∗, k∗) − (µn(k, k∗) − µn(k∗, k∗))

− n1/2(H ′(τ2) −H ′(τ1))T (W (n)
1,k∗ −W

(n)
1,k )

⃓⃓⃓
= oP(1)

(3.4.31)

uniformly over k∗ ∈ [nγ, n(1 − γ)]. Similarly, we can show that

max
k∗⩽k⩽k∗+κ/δ2

⃓⃓⃓
Sn(k, k∗) − Sn(k∗, k∗) − (µn(k, k∗) − µn(k∗, k∗))

− n1/2(H ′(τ1) −H ′(τ2))T (W (n)
2,k −W

(n)
2,k∗)

⃓⃓⃓
= oP(1)

(3.4.32)

uniformly over k∗ ∈ [nγ, n(1−γ)]. Furthermore, studying equation (3.4.15), for arbitrary
κ > 0, we have

max
−κ⩽u⩽κ

⃓⃓⃓⃓
⃓µn(k∗ + u/δ2, k∗) − µn(k∗, k∗)

− 1
2 |u|(τ1 − τ2)TH ′′(τA)(τ1 − τ2)/δ2

⃓⃓⃓⃓
⃓ = o(1)

(3.4.33)

uniformly over k∗ ∈ [nγ, n(1−γ)]. Combining equations (3.4.30), (3.4.31), (3.4.32), and
(3.4.33) with equation (3.4.28) and Donsker’s theorem (cf. Lemma 3.4.3), we finally
obtain for arbitrary κ > 0 that

Sn(λ+ ·/(δ2n), λ) − Sn(λ, λ) ⇒ W ∗

in the Skorokhod topology on the space D([−κ, κ],R) uniformly over λ ∈ [γ, 1 − γ].
Since the random variable λ∗ ∈ [γ, 1 − γ] with probability one (cf. Assumption 3.2), we
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then conclude that

Sn(λ∗ + ·/(δ2n), λ∗) − Sn(λ∗, λ∗) ⇒ W ∗ (3.4.34)

in the Skorokhod topology on the space D([−κ, κ],R) and all κ > 0. In the following,
we denote ˜︁Sn(·, λ) := Sn(λ+ ·/(δ2n), λ) − Sn(λ, λ) and ˜︁µn(·, λ) := µn(λ+ ·/(δ2n), λ) −
µn(λ, λ) for λ ∈ [0, 1]. Next, we want to show that ˜︁Sn(·, λ∗

n) ⇒ W ∗ in the Skorokhod
topology on the space D([−κ, κ],R) for arbitrary κ > 0. Without loss of generality, for
all n large enough, let λ∗

n ∈ [γ, 1 − γ] with probability one. Otherwise, we can argue
analogously as in the proof of Theorem 3.4.7. Moreover, let us concentrate on the event
{k∗

n ⩽ k∗} and note that on the event {k∗
n > k∗}, we can argue completely analogously.

Then, studying equations (3.4.30), (3.4.31), (3.4.32), (3.4.33), and the calculations in
(3.4.11), for arbitrary κ > 0, we conclude that

max
u∈[−κ,0]

| ˜︁Sn(u, λ∗
n) − ˜︁Sn(u, λ∗)|

⩽ oP(1) + max
u∈[−κ,0]

|˜︁µn(u, λ∗
n) − ˜︁µn(u, λ∗)|

+ max
u∈[−κ,0]

⃓⃓⃓⃓
⃓(H ′(τ2) −H ′(τ1))T

{︄ ⌊−u/δ2⌋∑︂
j=0

(T (X1,k∗
n−j) − τ1) −

⌊−u/δ2⌋∑︂
j=0

(T (X1,k∗−j) − τ1)
}︄⃓⃓⃓⃓
⃓

⩽ max
λ∈[γ,1−γ]

max
u∈[−κ,0]

2
⃓⃓⃓⃓
µn(λ+ u/(δ2n), λ) − µn(λ, λ) − 1

2 |u|(τ1 − τ2)TH ′′(τA)(τ1 − τ2)/δ2
⃓⃓⃓⃓

+ max
u∈[−κ,0]

2
⃓⃓⃓⃓
⃓ ˜︁Σ1/2δ

k∗−⌊u/δ2⌋∑︂
j=k∗

n−⌊u/δ2⌋
(T (X1,j) − τ1)

⃓⃓⃓⃓
⃓+ oP(1).

We observe, that the first summand is of order o(1) thanks to equation (3.4.33). Moreover,
since |k∗

n − k∗| = oP(δ−2) (cf. Assumption 3.2), the second summand is of order oP(1)
yielding that maxu∈[−κ,0] | ˜︁Sn(u, λ∗

n) − ˜︁Sn(u, λ∗)| = oP(1) for arbitrary κ > 0. Similarly,
we can show that maxu∈[0,κ] | ˜︁Sn(u, λ∗

n)− ˜︁Sn(u, λ∗)| = oP(1). An application of Slutzky’s
lemma together with (3.4.34) implies

˜︁Sn(·, λ∗
n) = ˜︁Sn(·, λ∗) + { ˜︁Sn(·, λ∗

n) − ˜︁Sn(·, λ∗)} ⇒ W ∗

in the Skorokhod topology on the space D([−κ, κ],R) for arbitrary κ > 0. Finally,
since δ2|k̂n − k∗

n| = OP(1) (cf. Theorem 3.4.7), we conclude by an application of the
continuous mapping theorem together with the continuity of the arg max function (cf.
e.g. [56]) that

δ2(k̂n − k∗
n) ⇒ arg max

u∈(−∞,∞)
W ∗(u).
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3.5 Simulation study
In this section, we discuss the derived asymptotic properties for the test statistic
Sn := max1⩽k⩽n{2Sn(k)} and the estimator k̂n of k∗

n through several simulation studies.
In the following, we simulate time series data as follows: first, let us consider data

sets Y i,(n) := {Y i,(n)
k : k = 1, · · · , n}, i = 1, 2, that are simulated from two independent

normal distributions. For µ1, µ2 ∈ R and σ1, σ2 > 0, let N1 and N2 be two independent
normal distributions such that Ni ∼ N (n−1/2µi, σ

2
i ) and Y i,(n)

k ∼ Ni for all k = 1, · · · , n
and i = 1, 2. Moreover, we simulate the location of the change point by a stopping time
that depends on the data Y1,(n). Therefore, let us introduce the discrete-time process
X1,(n)(t) := ∑︁n

k=1X
1,(n)
k 1{nt∈[k,k+1)} with X

1,(n)
k := n−1/2∑︁k

j=1 Y
1,(n)
j .

Then, the change point fraction λ∗
n := k∗

n/n is generated, for κ ∈ R fixed, by

λ∗
n = inf

{︂
t ⩾ γ : X1,(n)(t) < κ

}︂
∧ (1 − γ), (3.5.1)

Remark 3.5.1. We present the empirical results where the location of a change point
is generated from the stopping time above. Moreover, we have also run simulations
when λ∗

n is sampled from a uniform distribution on [γ, 1 − γ] or a truncated normal
distribution with mean 1

2 and volatility 1
6 − γ

3 . In both cases, the empirical observations
are not significantly different from those we discuss below.

Next, we analyze the data set Y(n) := {Y (n)
k : k = 1, · · · , n} which may contain a

change point and which is given by

Y
(n)
k = Y

1,(n)
k 1{k⩽k∗

n} + Y
2,(n)
k 1{k>k∗

n}

for k = 1, · · · , n. Then, for n large enough, the discrete-time process X(n)(t) =∑︁n
k=1X

(n)
k 1{nt∈[k,k+1)} with X

(n)
k := n−1/2∑︁k

j=1 Y
(n)
j can be approximated by the

continuous-time diffusion process

X(t) =
∫︂ t

0

(︂
µ11{t⩽λ∗} + µ21{t>λ∗}

)︂
dt+

∫︂ t

0

(︂
σ11{t⩽λ∗} + σ21{t>λ∗}

)︂
dW (t), (3.5.2)

where W is a standard Brownian motion and λ∗ ∈ [γ, 1 − γ] is the limit of the true
change point fraction λ∗

n (cf. Assumption 3.2). In this setting, the data points Y(n)

might be interpreted as the scaled increments of X recorded at discrete, equidistant
time steps t(n)

k := k/n, k = 1, · · · , n.
In the following, we choose γ = 0.1, κ = −1 and simulate n = 10, 000 time steps. All

depicted empirical distributions are generated from m = 10, 000 Monte Carlo runs.

Parametric change point detection in the mean and volatility: Let us choose
µ1 = µ2 = −2, σ1 = 1, and σ2 = 1.1, i.e., we consider a jump in the volatility of N1
versus N2 of size 0.1. Then we have n∆2 = n(σ1 − σ2)2 = 100. So, we might be in
the studied setting of Theorem 3.4.7 and hope to detect the quite small jump in the
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volatility. In Figure 3.3, we depict one realization of X(n) under the alternative and
the empirical values of the test statistic S1/2

n under the null and under the alternative
hypothesis. While the jump in volatility is not visible to the naked eye, the empirical
values of the test statistic show that our test can very well separate the null hypothesis
“no change point” from the alternative hypothesis “there exists one change point”.

Change point model with parameters σ1 = 1 and σ2 = 1.1

Figure 3.3: Left: One path of X(n) under the alternative with a change point
after n = 2620 time steps. Right: Empirical values of S1/2

n under
the null (orange) and the alternative (turquoise).

In a second simulation, we choose µ1 = −2, µ2 = −12, σ1 = 1, and σ2 = 1, i.e., we
consider a jump in the mean of N1 versus N2 of size n−1/2 · (−10) = −0.1. Again, we
have n∆2 = 100, so that we might hope to detect the jump in the mean. In Figure 3.4,
we depict one realization of X(n) under the alternative and the empirical values of the
test statistic S1/2

n under the null and under the alternative hypothesis. Even though
we can see the jump in the expected value after n ≈ 3000 time steps in the realization
of X(n) very clearly, the empirical distributions of the test statistic S1/2

n suggest that
the null hypothesis “no change point” is harder to distinguish from the alternative
hypothesis “there exists one change point” compared to our first simulation in Figure
3.3. Moreover, if we interpret the observations Y(n) as the discretely observed scaled
increments of a diffusion process X, we see from a comparison of these two simulation
studies that the detection of a jump in its drift component of X is harder than in
its volatility component. In more detail, in order to guarantee that the condition in
(3.4.5) holds true and hence we are able to distinguish between the null and alternative,
a change in the drift component has to converge to infinity, while the change in the
volatility component might even go to zero as n → ∞. Note that these observations
are also consistent with the theoretical results in [3, 51].

For both simulations, we also calculate the empirical distribution of δ2(k̂n − k∗
n).

In both cases, we obtain that the empirical distribution replicates the theoretical
result from Theorem 3.4.9. In Figure 3.5 we depict the empirical distribution of
arg maxu∈(−∞,∞) Ŵ (u) versus the empirical distribution of σ2

Aδ
2(k̂n − k∗

n) for a change
in the mean.
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Change point model with parameters µ1 = −2 and µ2 = −12

Figure 3.4: Left: One path of X(n) under the alternative with a change point
at n = 3024 time steps. Right: Empirical values of S1/2

n under the
null (orange) and under the alternative (turquoise).

Figure 3.5: Left: Empirical distributions of arg maxu∈(−∞,∞) Ŵ (u). Right:
Empirical distribution of the deviation σ2

Aδ
2(k̂n − k∗

n).

Parametric change point detection for weakly dependent observations:
Although we developed our theory for independent observations, weak dependencies
between subsequent observations do not ruin our empirical results. To see that, for
a ∈ (−1, 1), let

˜︁Y (n)
1 := Y

(n)
1 , ˜︁Y (n)

k := a Y
(n)
k−1 +

√︁
1 − a2 Y

(n)
k for k ⩾ 2,

and ˜︁X(n)(t) := ∑︁n
k=1

˜︁X(n)
k 1{nt∈[k,k+1)} with ˜︁X(n)

k := n−1/2∑︁k
j=1

˜︁Y (n)
j . In the following

simulation, we choose again µ1 = µ2 = −2, σ1 = 1, and σ2 = 1.1. Moreover, we choose
a = 1/2. In Figure 3.6, we depict one realization of ˜︁X(n) and the empirical values of
the test statistic S1/2

n under the null and alternative hypothesis. We observe that even
for weakly dependent observations, the test statistic S1/2

n is still able to distinguish
between the null and alternative hypothesis. Moreover, also the empirical distribution
of δ2(k̂n − k∗

n) replicates the theoretical result from Theorem 3.4.9 (cf. Figure 3.7).
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Change point model for weakly dependent observations

Figure 3.6: Left: One path of ˜︁X(n) under the alternative with a change point
at n = 2522 time steps. Right: Empirical values of S1/2

n under the
null (orange) and under the alternative (turquoise).

Figure 3.7: Left: Empirical distribution of arg maxu∈(−∞,∞) Ŵ (u). Right: Em-
pirical distribution of the deviation σ2

Aδ
2(k̂n − k∗

n).

Our empirical results therefore suggest that at least for weakly dependent observa-
tions, we are probably able to establish the stated asymptotic properties for the test
statistic Sn and the estimators k̂n and λ̂n.

Non-parametric change point detection in the volatility process: For many
practical applications, an approximation as in (3.5.2) does not describe the underlying
structure of the observations well. In contrast, one might be interested in whether or not
there is a jump in the volatility process σ : Ω × [0, T ] → R+ of an Itô-semimartingale.
The authors in [7] developed a statistical change point theory to detect, among others,
a “local jump” in the volatility process such that |σ2(λ) − lims↑λ σ

2(s)| > 0 for some
λ ∈ (0, 1). Let us consider a volatility process of the form

σ(t) =
(︃∫︂ t

0
c · ρ dW (s) +

∫︂ t

0

√︂
1 − ρ2 · c dW⊥(s) + 1

)︃
· v(t)

207



3.5. SIMULATION STUDY

which fluctuates around a deterministic seasonality function

v(t) = 1 − 0.2 sin
(︃3

4πt
)︃
, t ∈ [0, 1],

with c = 0.1 and ρ = 0.5, where W⊥ is a standard Brownian motion independent of W.
Note that the authors of [7] studied the same volatility process but for a deterministic
location of the change point. Again, we simulate λ∗

n by (3.5.1) and add one jump of size
0.3 at time λ∗

n to σ. Since the volatility process is time-dependent, we apply the test
statistic V ∗

n,un
introduced in [7] instead of Sn. Let ∆X(n)

k := X
(n)
k −X

(n)
k−1, k ⩾ 1, be the

increments of an Itô-semimartingale X with the volatility process above and constant
drift equal to −2, recorded at discrete time steps t(n)

k , k ⩾ 1. Then, a reasonable test
statistic is

V ∗
n,un

:= max
i=kn,··· ,n−kn

⃓⃓⃓⃓
⃓⃓⃓ nkn

∑︁i
j=i−kn+1(∆X(n)

j )21{|∆X(n)
j |⩽un}

n
kn

∑︁i+kn
j=i+1(∆X(n)

j )21{|∆X(n)
j |⩽un}

− 1

⃓⃓⃓⃓
⃓⃓⃓

where kn → ∞. The core idea of the test statistic is to utilize a local two-sample t-test
over kn asymptotically small blocks and take all overlapping blocks of kn increments
into account. Moreover, we truncate the increments of X by un to exclude large
squared increments which are ascribed to jumps. In [7], the authors suggest to take
un =

√︁
2 log(n)n−1/2 and kn = C(log(n))1/2n1/2, for some C > 1.

In Figure 3.8, we depict one realization of σ under the null and under the alternative
hypothesis. Moreover, in Figure 3.9, we depict one realization of X under the alternative
and the empirical values of the test statistic

Vn :=

√︄
log(mn)kn

2 V ∗
n,un

− 2 log(mn) − 1
2 log log(mn) − log(3)

under the null and under the alternative hypothesis. Here, mn := ⌊n/kn⌋. Accoring
to Proposition 3.5 in [7], the test statistic Vn converges in distribution under the null
hypothesis to a Gumbel distribution. We observe that the test statistic in [7] can fairly
good distinguish between the null and alternative even if the location of the change
point has been sampled according to (3.5.1).
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Figure 3.8: One realization of the volatility process σ under the null (left)
and under the alternative (right).

Non-parametric change point model with a jump in the volatility process of size 0.3

Figure 3.9: Left: One path of X under the alternative with a change point at
n = 1830 time steps. Right: Empirical values of Vn under the null
(orange) and under the alternative (turquoise).

Conclusion: The starting point of our work was to generalize the theory in Csörgő
and Horváth [23] to randomly occurring changes in the model parameters, where, in
particular, the location of the change point is allowed to depend on the data itself. In
our simulation study, we generated the location of the change point from the stopping
time in (3.5.1). This stopping time is a rather simple way to choose the location of
the change point depending on the data. From a financial point of view it is still quite
interesting: the process X in (3.5.2) might be an approximation for log prices of a
financial asset containing a change point. Then, the stopping time in (3.5.1) causes the
change in the model parameters of the log price if the price drops below some critical
value κ ∈ R. It also shows that our theory is flexible enough to be applied to even more
complex dependence relationships between the location of the change point and the
observed data.

Finally, our simulations for the case of weakly dependent observations as well as the
non-parametric case suggest that change point theory in these settings still works even
if the location of the change point depends on the data.
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Notation

General

∥ · ∥, | · | euclidean norm in Rd / absolute value
∥ · ∥∞, ∥ · ∥[a,b] sup norm / sup norm on interval [a, b] for some a < b

∥ · ∥L2 L2(R) norm
∨, ∧ x ∨ y := max{x, y} and x ∧ y := min{x, y} for x, y ∈ R
P[A,B] := P[A ∩B] for A,B ∈ F and a probability space (Ω,F ,P)
R+, R− positive/negative real half-line
C([0, T ],Rk) function space of continuous functions f : [0, T ] → Rk
D([0, T ],Rk) function space of càdlàg functions f : [0, T ] → Rk

Chapter 1

General
λ Lebesgue measure
εx Dirac measure at x ∈ R
δXk := Xk −Xk−1, k ∈ N, is the k-th increment of X := {Xk : k ∈ N0}
∆X(t) := X(t) −X(t−) is the jump of X := (X(t))t∈[0,T ] at t > 0
f+ positive part of a real-valued function f : f+(x) := max{f(x), 0}
f− negative part of a real-valued function f : f−(x) := − min{f(x), 0}
I index denoting the bid/ask side of the LOB if I = b (resp. I = a)

State space
(E, ∥ · ∥E) Hilbert space and state space of LOB-sequence, where E := R ×

L2(R) × R × L2(R) × [0, T ] and ∥(b, v, a, w, t)∥2
E := |b|2 + ∥v∥2

L2 +
|a|2 + ∥w∥2

L2 + |t|2
Scaling parameters

∆x(n) tick size
∆v(n) average size of a passive limit order placement
∆t(n) time scaling parameter
δn null sequence separating small/large price changes (cf. Ass. 1.4)
ηn null sequence guaranteeing that the diffusion coefficients do not

vanish in the n-th model (cf. Ass 1.4)
Microscopic model dynamics

S(n) LOB-dynamics with values in E, where S(n) = (B(n), v
(n)
b , A(n),

v
(n)
a , τ (n)) (cf. Eq. (1.2.8))
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B(n), A(n) bid/ask price dynamics with values in R (cf. Eq. (1.2.5))
v

(n)
b , v

(n)
a dynamics of the buy/sell side volume density function relative to

the best bid/ask price with values in L2(R) (cf. Eq. (1.2.7))
τ (n) dynamics of order arrival times with values in [0, T ] (cf. Eq. (1.2.4))
η(n) LOB-dynamics with respect to the ∆t(n)-time grid, where η(n) =

(Bη,(n), v
η,(n)
b , Aη,(n), v

η,(n)
a , τη,(n)) (cf. step 1 in Section 1.5)

ζ(n) time process satisfying ζ(n)(t) := inf{u > 0 : τη,(n)(u) > t} ∧
(⌊T/∆t(n)⌋ + 1)∆t(n), for t ∈ [0, T ] (cf. step 1 in Section 1.5)

Bη,s,(n) price dynamics of the small bid price changes with respect to the
∆t(n)-grid, similarly we define Aη,s,(n) (cf. step 2 in Section 1.5)

Bη,ℓ,(n) price dynamics of the large bid price changes with respect to the
∆t(n)-grid, similarly we define Aη,ℓ,(n) (cf. step 2 in Section 1.5)˜︁η(n) approximated LOB-dynamics where the random innovations at the
volume and time dynamics are replaced by their limit approxima-
tions (cf. step 3 in Section 1.5)˜︁η(n),abs approximated LOB-dynamics with respect to absolute volumes˜︁u(n)
b and ˜︁u(n)

a (cf. step 4 in Section 1.5)
Continuous-time limit approximations

S limit dynamics of S(n), similarly B, A, vb, va, and τ denote the limit
dynamics of B(n), A(n), v

(n)
b , v(n)

a , and τ (n) (cf. Theorem 1.2.6)
η limit dynamics of η(n), the LOB-dynamics with respect to the ∆t(n)-

grid, where η = (Bη, vηb , A
η, vηa , τ

η) and S = η ◦ ζ (cf. Theorem
1.2.6)

ζ random time change, where ζ(t) := inf{s ⩾ 0 : τη(s) > t} and
S = η ◦ ζ (cf. Theorem 1.2.6)

Sequences of random variables (introduced in Section 1.2)
(φ(n)

k )k⩾1 durations between two consecutive order events
(ξ(n)
k )k⩾1 numbers of ticks the price process changes

(ω(n)
k )k⩾1 sizes of passive order placements

(π(n)
k )k⩾1 locations of passive order placements

(ϕ(n)
k )k⩾1 order event types

(M (n)
I,k )k⩾1 placement/cancellation operators for I = b, a

Order book functions (introduced in Section 1.2)
φ(n), φ φ(n) : E → (0,∞) and φ : E → (0, 1] are the coefficient functions

corresponding to the dynamics of the order arrival times τ (n), τ
p

(n)
I , pI p

(n)
I , pI : E → R are the drift coefficient functions corresponding

to the small price dynamics for I = b, a

r
(n)
I , rI r

(n)
I , rI : E → R+ are the volatility coefficient functions correspond-

ing to the small price dynamics for I = b, a
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θ
(n)
I , θI θ

(n)
I , θI : E × [−M,M ] → R are the coefficient functions corre-

sponding to the large price dynamics for I = b, a

f
(n)
I , fI f

(n)
I , fI : E → L2(R) are the coefficient functions corresponding to

the volume dynamics for I = b, a

Integrands
K

(n)
I , KI K

(n)
I ,KI : E× B(R) → R+ are kernels representing the conditional

distributions of the large price changes for I = b, a (cf. Eq. (1.2.9)
and Ass. 1.6)

QI finite measure on B(R) with compact support in [−M,M ] and
QI({0}) = 0 for I = b, a (cf. Ass. 1.6)

Zb, Za independent standard Brownian motions
µQb , µ

Q
a independent homogeneous Poisson random measures with intensi-

ties λ×Qb and λ×Qa, independent of Zb, Za
δZ

(n)
I,k (nearly) normalized small price increments for I = b, a (cf. step 2

in Section 1.5)
Z

(n)
I piecewise constant interpolation of (Z(n)

I,k )k⩾1, where Z
(n)
I,k :=∑︁k

j=1 δZ
(n)
I,j for I = b, a (cf. step 2 in Section 1.5)

µη,(n) joint jump measure of the large price dynamics Bη,ℓ,(n) and Aη,ℓ,(n)

with compensator νη,(n) (cf. step 2 in Section 1.5)
µ
η,(n)
I individual jump measure of the large price dynamics with compen-

sator νη,(n)
I for I = b, a (cf. step 2 in Section 1.5)

µJ
(n) joint jump measure with respect to some transformation of the

large price jumps with compensator νJ(n) (cf. step 2 in Section 1.5)
µJ

(n)
I individual jump measure with respect to some transformation of

the large price jumps with compensator νJ(n)
I for I = b, a (cf. step

2 in Section 1.5)
Technicalities

I(n)(x) I(n)(x) := [j∆x(n), (j + 1)∆x(n)) for j∆x(n) ⩽ x < (j + 1)∆x(n)

Z
(n)
M Z

(n)
M := {j ∈ Z : −M ⩽ j∆x(n) ⩽M}

ψ ψ : E → E is a random shift operator shifting the volume density
functions by their corresponding current best bid/ask prices (cf.
step 4 in Section 1.5)

Chapter 2

General
dJ1 distance inducing the Skorokhod topology on D([0, T ],Rk), k ⩾ 1
X ≃ Y the finite dimensional distribution of processes X, Y coincide
F,G two countries
(i, I) indices denoting the order types, where i = b, a and I = F,G
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IIm, IEx IIm := {(a, F ), (b,G)} and IEx := {(b, F ), (a,G)}
ℓt(x) := sups⩽t(−x(s))+, reflection at zero of x ∈ D([0, T ],R)
(Lt(X))t⩾0 local time of a continuous semimartingale X at zero
C ′

0([0, T ],Rk) function space containing all continuous function ω avoiding the
origin and whose components cross the axes each time they touch
them (cf. Eq. (2.7.4))

Projection maps
π

(k)
j , πj π

(k)
j ω := ωj ∈ D([0, T ],R) denotes the j-th projection map of
ω = (ω1, · · · , ωk) ∈ D([0, T ],Rk), 1 ⩽ j ⩽ k, k ⩾ 1, and πj := π

(4)
j

π
(k)
i,j , πi,j π

(k)
i,j ω := (ωi, ωj) ∈ D([0, T ],R2) denotes the (i, j)-th projection of
ω = (ω1, · · · , ωk) ∈ D([0, T ],Rk) 1 ⩽ i, j ⩽ k, and πi,j := π

(4)
i,j

πF , πG πF := π1,2 and πG := π3,4
πb, πa πb := π1,3 and πa := π2,4
h h : D([0, T ],R4) → D([0, T ],R2), h : ω ↦→ (π1ω + π3ω, π2ω + π4ω)
h1 h1 : D([0, T ],R2) → D([0, T ],R), h1 : ω ↦→ π

(2)
1 ω + π

(2)
2 ω

State space
E state space of the LOB-dynamics E := R2 × R4

+ × R
Model parameters

δ tick size
∆t(n) time between two consecutive order arrivals
∆v(n) average size of a limit order placement
κ+, κ− total transmission capacities in direction G to F and vice versa
µi,I,(n) scaled mean of order sizes with limit µi,I (cf. Ass. 2.2)
σi,I,(n) scaled variance of order sizes with limit σi,I (cf. Ass. 2.2)
σ(i,I),(j,J),(n) scaled covariance of the order sizes with limit σ(i,I),(j,J), where

(i, I) ̸= (j, J) (cf. Ass. 2.2)
f+
n , f

−
n distributions to determine the size of order queues after price

increases/decreases with limits f+ and f− (cf. Ass. 2.4)
Microscopic model dynamics

X(n) net order flow process (cf. Eq. (2.3.1))
S(n) market dynamics with values in E, where S(n) = (B(n), Q(n), C(n))

(cf. Section 2.2 and Def. 2.2.7)
B(n) bid price dynamics of countries F and G

Q(n) dynamics of limit orders at the best bid/ask queues of F and G

C(n) dynamics of the net number of cross-border trades between F , G
M (n) dynamics of the number of cross-border trades (cf. Eq. (2.2.7))˜︁S(n) active market dynamics with ˜︁S(n) = ( ˜︁B(n), ˜︁Q(n), ˜︁C(n))
≈
S(n) inactive market dynamics with

≈
S(n) = (

≈
B(n),

≈
Q(n),

≈
C(n))˜︁ZI,(n)

k dynamics to determine the starting values of S(n) of an inactive
regime (cf. Eq. (2.2.12))
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l(n) number of price changes in S(n)

Continuous-time limit approximations
X limit of X(n) being a four-dimensional linear Brownian motion
S limit dynamics of S, similarly ˜︁S, ≈

S, B, Q, C, ˜︁B, ˜︁Q, M, ˜︁C, ≈
B, and

≈
Q are the limit dynamics of their corr. microscopic dynamics

l number of price changes in S

Sequences of random variables
(ϕ(n)
k )k⩾1 ϕ

(n)
k = b (resp. ϕ(n)

k = a) if the k-th incoming order event affects
the bid side (resp. the ask side)

(ψ(n)
k )k⩾1 ψ

(n)
k = F (resp. ψ(n)

k = G) if the k-th incoming order has origin F
(resp. origin G)

(V (n)
k )k⩾1 sizes of incoming order events

(V i,I,(n)
k )k⩾1 sizes of incoming order events of type (i, I) ∈ {b, a} × {F,G}

(ϵ+/−,(n)
k )k⩾1 iid random variables with ϵ

+/−,(n)
1 ∼ f

+/−
n (cf. Ass. 2.4)

(R+/−,(n)
k )k⩾1 order sizes after price increases/decreases in S(n) (cf. Ass. 2.4)

( ˜︁R+/−,(n)
k )k⩾1 order sizes after price increases/decreases in ˜︁S(n)

(
≈
R

+/−,(n)
k )k⩾1 order sizes after price increases/decreases in

≈
S(n)

(U (n)
k )k⩾1 iid Bernoulli random variables with U

(n)
k ∈ {−1, 1}

Stopping times
(τ (n)
k , τk)k⩾1 random times of price changes in S(n) and S

(˜︁τ (n)
k , ˜︁τ∗

k )k⩾1 random times of price changes in ˜︁S(n) and ˜︁S
(≈
τ

(n)
k ,

≈
τ∗
k )k⩾1 random times of price changes in

≈
S(n) and

≈
S

(ρ(n)
k , ρk)k⩾0 starts of active regimes in S(n) and S (cf. Def. 2.2.7, Section 2.5)

(σ(n)
k , σk)k⩾1 starts of inactive regimes in S(n) and S (cf. Def. 2.2.7, Section 2.5)

First hitting time maps
(τ̂k)k⩾1 first hitting time maps (cf. Def. 2.3.2)
(˜︁τk)k⩾1 first hitting time maps (cf. Def. 2.3.7)˜︁τ , ˜︁τb/a first hitting time maps (cf. Eq. (2.3.7) and (2.3.6))

Important order book functions
Φ(n), Φ Φ(n) : R4

+ × R4
+ → (∆v(n)N)4 and Φ ∈ C2(R4

+ × R4
+, (0,∞)4) are

used to describe the sequences of queue sizes after price changes in
the n-th model and the scaling limit (cf. Ass. 2.4)

g g : D([0, T ],R2) → D([0, T ],R2
+) is used to describe the evolution

of the one-sided queue size dynamics in the active regimes between
price changes (cf. Def. 2.3.2)

g g : D([0, T ],R2) → D([0, T ],R2
+) is used to describe the evolution

of the one-sided number of cross-border trades in the active regimes
between price changes (cf. Def. 2.3.11)
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G G : D([0, T ],R4) → D([0, T ],R4
+) is used to describe the evolution

of the queue size dynamics in the active regimes between price
changes (cf. Eq. (2.3.4))

G G : D([0, T ],R4) → D([0, T ],R4
+) is used to describe the evolution

of the number of cross-border trades in the active regimes between
price changes (cf. Eq. (2.3.9))˜︁ΨQ, (˜︁ΨQ

k )k⩾0 ˜︁ΨQ, ˜︁ΨQ
k : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R4

+), k ⩾ 0, is
used to describe the evolution of the queue size dynamics in the
active regimes over time (cf. Def. 2.3.7)

( ˜︁φk)k⩾1 ˜︁φk : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],R4), k ⩾ 1, are
random shifts defined by ˜︁φk(ω,R, ˜︁R) := ˜︁ΨQ(ω,R, ˜︁R)(˜︁τk) + ω(· +˜︁τk) − ω(˜︁τk) (cf. Def. 2.3.7)˜︁ΨM ˜︁ΨM : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R4

+) is used to
describe the evolution of the number of cross-border trades in the
active regimes over time (cf. Def. 2.3.14)

Na/b Na/b : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],N0) is used to
describe the number of price increases/decreases in the active
regimes over time (cf. Def. 2.3.17)

NT NT : D([0, T ],R4) × (R4
+)N × (R4

+)N → D([0, T ],N0) is used to
describe the number of price changes in the active regimes over
time (cf. Def. 2.7.12)˜︁ΨB ˜︁ΨB : D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ],R2) is used to

describe the evolution of the bid price dynamics in the active
regimes over time (cf. Def. 2.3.17)˜︁Ψ ˜︁Ψ : E × D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ], E) is used to

describe the evolution of the active dynamics ˜︁S(n) over time
≈
Ψ

≈
Ψ : E × D([0, T ],R4) × (R4

+)N × (R4
+)N → D([0, T ], E) is used to

describe the evolution of the inactive dynamics
≈
S(n) over time

Chapter 3

Landau symbols
oP(an),OP(an) for a family of random variables (Xn)n∈N and a positive deter-

ministic sequence (an)n∈N, Xn = oP(an) if Xn/an converges in
probability to zero as n → ∞. We write Xn = OP(an) if the set
(Xn/an)n∈N is stochastically bounded.

o(an),O(an) for two deterministic sequences (an)n∈N, (bn)n∈N, (an)n∈N positive,
we write bn = o(an) if bn/an converges to zero as n → ∞ and
bn = O(an) if there exist M > 0 and N ∈ N such that bn/an ⩽M
for all n > N.
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The model
(Xi)i=1,··· ,n independent observations in Rm
f(x, θ) := exp(θTT (x) + S(x) −A(θ))1{x∈C} being the distribution of the

data belonging to an exponential family, where x ∈ Rm and θ ∈ Rd
invA′(θ) unique inverse of ϑ ↦→ A′(ϑ) at θ (cf. Ass. 3.1 ii))
H := (invA′(x))Tx−A(invA′(x))
k∗
n true location of the change point under the alternative H1 “there

exists one change point”
λ∗
n := k∗

n/n, true location of a change point relative to the sample size
λ∗ limit of λ∗

n with almost surely values in [γ, 1 − γ] ⊂ (0, 1)
θ

(1)
0 , θ

(2)
0 true parameters before and after the change (under H1)

θA limit of θ(1)
0 and θ

(2)
0 (cf. Ass. 3.2)

∆2 := ∥θ(1)
0 − θ

(2)
0 ∥2, the (squared) size of the change

(Xi,j)j⩾1 sequences of iid random variables with Xi,1 ∼ f(·; θ(i)
0 ) for i = 1, 2

and (X1,j)j⩾1 and (X2,j)j⩾1 are independent
τ1, τ2 τ1 := A′(θ(1)

0 ) and τ2 := A′(θ(2)
0 )

Σ1,Σ2 Σ1 := A′′(θ(1)
0 ) and Σ2 := A′′(θ(2)

0 )
τA := A′(θA), limit of τ1, τ2
δ2 := ∥τ1 − τ2∥2

σ2
A limit of (τ1 − τ2)TH ′′(τA)(τ1 − τ2)/δ2 (cf. Theorem 3.4.4), some

transformation of the (squared) size of the change
Test statistics

Sn(k) =: − log Λk for the likelihood ratio Λk (cf. Eq. (3.2.2), (3.2.3))
Sn =: max1⩽k⩽n{2Sn(k)}; maximally selected log-likelihood ratio
Bn(k) =: k−1∑︁

1⩽i⩽k T (Xi)
B∗
n(k) =: (n− k)−1∑︁

k<i⩽n T (Xi)
Sn(k, k∗) similar as Sn(k) but also tracking the dependence on the true

location k∗ of the change point (cf. Eq. (3.4.3))
Bn(k, k∗) similar as Bn(k)
B∗
n(k, k∗) similar as B∗

n(k)
µn(k, k∗) mean of Sn(k, k∗) (cf. Eq. (3.4.6))
Zn(k, k∗) transformed test statistic (cf. Eq. (3.4.8), (3.4.8))

Estimators
λ̂n := n−1 arg max1⩽k⩽n−1{2Sn(k)}, estimator of λ∗

n

k̂n := nλ̂n, estimator of k∗
n
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