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Abstract
We provide statistical analysis methods for samples of curves in two or more
dimensions, where the image, but not the parameterization of the curves, is
of interest and suitable alignment/registration is thus necessary. Examples are
handwritten letters, movement paths, or object outlines. We focus in particu-
lar on the computation of (smooth) means and distances, allowing, for example,
classification or clustering. Existing parameterization invariant analysismethods
based on the elastic distance of the curves modulo parameterization, using the
square-root-velocity framework, have limitations in common realistic settings
where curves are irregularly and potentially sparsely observed.We propose using
spline curves to model smooth or polygonal (Fréchet) means of open or closed
curves with respect to the elastic distance and show identifiability of the spline
model modulo parameterization. We further provide methods and algorithms to
approximate the elastic distance for irregularly or sparsely observed curves, via
interpreting them as polygons. We illustrate the usefulness of our methods on
two datasets. The first application classifies irregularly sampled spirals drawn
by Parkinson’s patients and healthy controls, based on the elastic distance to a
mean spiral curve computed using our approach. The second application clusters
sparsely sampled GPS tracks based on the elastic distance and computes smooth
cluster means to find new paths on the Tempelhof field in Berlin. All methods
are implemented in the R-package “elasdics” and evaluated in simulations.

KEYWORDS
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functional data, registration, square-root-velocity transformation, warping

1 INTRODUCTION

In the biomedical sciences, data are increasingly collected
that take the formof open or closed curves 𝜷 ∶ [0, 1] → ℝ𝑑,
𝑑 ∈ ℕ. Examples for such curves in two or three dimen-
sions are (human) movement patterns (e.g., Backenroth
et al., 2018), handwritten letters or symbols (e.g., Dryden
and Mardia, 2016; Isenkul et al., 2014), protein structures
(Srivastava et al., 2010), or the outline of an (e.g., anatomic)
object, such as the corpus callosum (Joshi et al., 2013). The
two applications we consider in this paper concern a spiral
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drawing test for the detection of Parkinson’s disease, and
GPS-recorded movement tracks. In most of the named
cases, only the image of the curve represents the object of
interest. An “elastic” analysis is then required, that is, a
statistical analysis of the curves’ image inℝ𝑑 that does not
take their parameterization over [0, 1] into account and
is invariant under different parameterizations. Ideally, it
should also yield an optimal alignment of different curves
to allow point-to-point comparison, as illustrated in the
example in Figure 1. As in this example, curves are often
observed at a differing number of discrete points. The aim
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F IGURE 1 Two toy examples of sparsely and irregularly observed curves in ℝ2 with observed points indicated as black dots and linear
interpolation (first three columns). Ideally, the analysis should yield an optimal alignment of different curves to allow comparison of
corresponding points such as bumps and other features (the mouth of the fish/the branches of the trees). Smooth or polygonal spline means
(last column in dark gray) are computed using our methods, with black dots indicating values at the model-based spline knots

of this paper is to extend elastic statistical methodology
to such realistic cases where curves are irregularly and
sparsely sampled. In particular, we develop suitable elastic
spline models for (Fréchet) mean curves of samples of
such curves, and show that certain first- and second-order
splines meet the identifiability properties required in a
modulo parameterization context. These means can be
smooth curves, such as shown for the fish in Figure 1, or
polygonal curves, better suited for curves with sharp cor-
ners like the trees in Figure 1. To this end, we also propose
suitable algorithms for alignment and distance computa-
tion of irregularly or sparsely sampled curves—necessary
for mean computation, but also useful for distance-based
analyses such as clustering or classification. In partic-
ular, we derive a useful simplification of the warping
(reparameterization, alignment) problem when
interpreting the observed curves as polygons.
The alignment problem for curves in ℝ𝑑 is closely

related to the registration problem in functional data anal-
ysis (Ramsay and Silverman, 2005), which corresponds
to the case 𝑑 = 1. For two functions 𝑓1 and 𝑓2, warping
has commonly been treated as an optimization prob-
lem inf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 on a suitable function space
Γ of warping functions 𝛾. This choice is problematic as
inf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 does not define a proper distance on
the space of curves modulo parameterization. The map-
ping is not symmetric and can be zero even if 𝑓2 is not
a warped version of 𝑓1, which is related to the so-called

“pinching” problem (Marron et al., 2015). Intuitively, this
“pushes” the integrationmass to parts of the domainwhere
𝑓1 and 𝑓2 are close. To avoid this “pinching” effect, a regu-
larization term can be added to the loss function (Ramsay
and Silverman, 2005). This is done in various dynamic
time warping algorithms, where usually large values of the
derivative of the warping function are penalized (Sakoe
and Chiba, 1978). Alternatively, one can choose a small
number of basis functions for the warping or combine
both approaches to use penalized basis functions (Ramsay
and Li, 1998). Moreover, Bayesian approaches to model-
ing warping functions have been suggested (e.g., Lu et al.,
2017, or Matuk et al., 2021 for sparse one-dimensional
functions).
All of these approaches restrict the amount of warp-

ing; thus, the analysis is not completely independent of
the observed parameterization. This seems more suitable
for one-dimensional functions (𝑑 = 1) where one seeks to
separate phase (parameterization) and amplitude (image)
but considers both as informative. If we analyze curves
in ℝ𝑑, 𝑑 > 1, however, we are usually only interested in
the image representing the curve, that is, the equivalence
class of the curve with respect to (w.r.t.) parameterization,
whichmakes penalized, restricted, or Bayesian approaches
for the warping less suitable.
Srivastava et al. (2010) propose a proper metric on

the resulting quotient space via minimizing the dis-
tance between the square-root-velocity (SRV) transformed

 15410420, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13706 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STEYER et al. 2105

curves. For more details on this framework, see Srivastava
and Klassen (2016) and Subsection 2.1. Their perspective
is focused on the curves as functions (rather than dis-
crete observations) that, in practice, requires interpolating
the curves on a regular grid for the mean computation.
This works well in the case of densely observed curves.
Often, however, for example, in our applications, curves
are only observed at a relatively small number of discrete
points, where the number differs between curves (sparse
and irregular setting). We show in examples that (elastic)
methods designed for densely observed curves have limita-
tions for such sparse settings. This problem is well known
in functional data analysis (𝑑 = 1), where spline represen-
tations or other smoothing methods are frequently used
to model sparsely and/or irregularly observed functions
(e.g., Greven and Scheipl, 2017; Yao et al., 2005).
The main contributions of this paper thus are to care-

fully introduce spline functions to model elastic (Fréchet)
mean curves in ℝ𝑑 on SRV or curve level, to show that
the proposedmodel is identifiable via its spline coefficients
modulo parameterization, and to discuss limitations of this
identifiability. This extends approaches for functional data
to curves in ℝ𝑑, 𝑑 ≥ 2 and to the elastic setting.
As part of the mean estimation, but also of interest in its

own right, we also develop algorithms to align open and
closed curves if at least one of them is piecewise linear, for
instance, a sparsely observed curve treated as a polygon,
and show local maximization properties of our algorithm
for open curves. We show the usefulness of our methods
for statistical analysis of irregularly or sparsely observed
curves in two applications to a Parkinson spiral drawing
test and to GPS movement tracks, involving mean compu-
tation, clustering, and classification of curves. Proofs of all
formal statements are provided in Web Appendix B.

2 ELASTIC ANALYSIS OF OBSERVED
CURVES

In Section 2.1, we briefly review the SRV framework for
analyzing curves modulo parameterization. Then, in Sec-
tions 2.2 and 2.3, we introduce our methods for elastic
distance computation for irregularly or sparsely sampled
curves, a building block for the spline-based Fréchet mean
that we propose, and additionally of interest for distance-
based analysismethods such as clustering or classification.
In Sections 2.4 and 2.5, we introduce spline functions to
model smooth or polygonal elastic mean curves and dis-
cuss identifiability of these modulo parameterization in
Section 2.6. For all proposed methods, we focus on open
curves for better readability and present adapted versions
for closed curves in Web Appendix A.

2.1 Square-root-velocity framework

Srivastava et al. (2010) show that for two absolutely con-
tinuous curves 𝜷1 and 𝜷2, the Fisher–Rao metric can be
simplified to the 𝐿2-distance between the corresponding
SRV-curves, which can be minimized over the warping to
obtain an elastic distance between the two curves.

Definition 1 Elastic distance; Srivastava et al., 2010. Let
𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 be absolutely continuous and [𝜷1] and
[𝜷2] their respective equivalence classes modulo param-
eterization and translation. Then the elastic distance
between [𝜷1] and [𝜷2] is

𝑑([𝜷1], [𝜷2]) = inf
𝛾1,𝛾2∈Γ

‖(𝐪1◦𝛾1) ⋅√𝛾1 − (𝐪2◦𝛾2) ⋅
√
𝛾2‖𝐿2 , (1)

with Γ being the set of boundary-preserving diffeomor-
phisms 𝛾 ∶ [0, 1] → [0, 1], ‖𝐪‖2𝐿2 = ∫ 1

0
‖𝐪(𝑡)‖2𝑑𝑡 and SRV

transformations 𝐪1 and 𝐪2 of 𝜷1 and 𝜷2 defined via

𝐪𝑖(𝑡) =

⎧⎪⎨⎪⎩
𝜷̇𝑖 (𝑡)√‖𝜷̇𝑖 (𝑡)‖ if 𝜷̇𝑖(𝑡) ≠ 0

0 if 𝜷̇𝑖(𝑡) = 0

for 𝑖 = 1, 2.

Here, (𝐪𝑖◦𝛾𝑖) ⋅
√
𝛾̇𝑖 is the SRV transformation of the repa-

rameterized curve 𝜷𝒊◦𝛾𝑖 , 𝑖 = 1, 2.

Srivastava and Klassen (2016) showed that it is sufficient
to align one of the curves in (1),

𝑑([𝜷1], [𝜷2]) = inf
𝛾∈Γ

‖𝐪1 − (𝐪2◦𝛾) ⋅
√
𝛾̇‖𝐿2 . (2)

Moreover, they pointed out that to obtain a proper quo-
tient space structure on the space of absolutely continuous
curves, we need to consider the closure of SRV-curves
w.r.t. parameterization as equivalence classes. That is, for
a curve 𝜷 with SRV transformation 𝐪, [𝜷] consists of all
curves whose SRV transformation is in the closure of
{(𝐪𝑖◦𝛾) ⋅

√
𝛾̇|𝛾 ∈ Γ}.

Note that any analysis based on this elastic distance will
be modulo translation as a result of taking derivatives. If
the position of the curve in space is of interest, it has to
be analyzed separately. On the other hand, if curves are
used to model shape objects, translation invariance is a
desired property. In classic shape data analysis (Dryden
and Mardia, 2016), the analysis should additionally be
invariant under rotation and scaling, and parameteriza-
tion invariance presents a further key aspect in functional
shape analysis (Srivastava and Klassen, 2016). In this
paper, we solely discuss parameterization invariance and
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2106 STEYER et al.

give examples of handwritten spirals and GPS tracks
where this elastic analysis is suitable.
A solution to the variational problem in the distance

(2) is usually approximated using a dynamic program-
ming algorithm or gradient-based optimization (e.g., in
Srivastava et al., 2010). Both approaches discretize the
warping space Γ. The dynamic programming algorithm,
for instance, assumes a discrete grid for the domain of
the warping function. An extension by Bernal et al. (2016)
allows for an unequal number of points on both curves and
improves computation time. Lahiri et al. (2015) provide an
algorithm to align two piecewise linear curves and show
that an optimal warping exists if at least one curve is piece-
wise linear. Such an optimal warping also exists if both
curves are continuously differentiable (Bruveris, 2016).

2.2 Elastic distance for discretely
observed curves

In practice, we observe curves in ℝ𝑑, 𝑑 ∈ ℕ, not continu-
ously but only discretely via evaluations of these curves on
discrete (and potentially sparse and curve-specific) grids.
An elastic analysis needs to explicitly address this point.
We propose to treat a discretely observed curve 𝜷 as a
polygon parameterized with constant speed between the
observed corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). This is illustrated in the
toy examples (Figure 1) with observed points marked as
black dots and the polygon connecting the observations
indicated by gray lines. If, as in this example, no param-
eterization over [0,1] is given for the observed points, we
will parameterize the polygon by arc length. Note that we
address the case of sparsely observed curves here, whereas
the problem of fragmented curves (i.e., curves with unob-
served start or end points) generally cannot be handled by
the proper distance defined in (1).
If 𝜷 is such a polygon, the problem of finding an optimal

reparameterized curve 𝜷◦𝛾 to another arbitrary curve can
be simplified (similarly as in Lahiri et al., 2015). We show
that instead of solving the minimization problem (2) over
the space Γ of warping functions, we only need to solve
a maximization problem over a subset of ℝ𝑚−1 w.r.t. the
new parameterizations 𝑡1 = 𝛾−1(𝑠1), … , 𝑡𝑚−1 = 𝛾−1(𝑠𝑚−1)

at the observed corners.

Lemma 1. Let 𝜷 be a polygon in ℝ𝑑 with constant speed
parameterization between its corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). For its
piecewise constant SRV transformation 𝒒, denote 𝒒|[𝑠𝑗 ,𝑠𝑗+1]
= 𝒒𝑗 ∈ ℝ𝑑 for all 𝑗 = 0,… ,𝑚 − 1. Let 𝜷 be an absolutely
continuous curve with SRV transformation 𝒑, ‖𝒑‖∞ < ∞.
Then calculating the optimal 𝛾 in (2) to obtain the elastic
distance 𝑑([𝜷], [𝜷]) is equivalent to the following problem:

Maximize Φ(𝒕) =

𝑚−1∑
𝑗=0

√√√√(𝑠𝑗+1 − 𝑠𝑗)∫
𝑡𝑗+1

𝑡𝑗

⟨𝒑(𝑡), 𝒒𝑗⟩2+ 𝑑𝑡

(3)

w.r.t. 𝒕 = (𝑡1, … , 𝑡𝑚−1), 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 = 1,

where ⟨⋅, ⋅⟩+ denotes the positive part of the scalar product
in ℝ𝑑. For a maximizer 𝒕 of (3), there is a 𝛾 ∶ [0, 1] → [0, 1]

with 𝛾(𝑡𝑗) = 𝑠𝑗 for all 𝑗 = 1,… ,𝑚 − 1 that minimizes (2).

The proof includes an explicit construction of the mini-
mizing warping function 𝛾 ∈ Γ̄ (or a minimizing sequence
of warping functions), where Γ̄ is the set of absolutely
continuous curves 𝛾 ∶ [0, 1] → [0, 1], onto and with 𝛾̇ ≥ 0

almost everywhere. The statement for Γ follows as Γ is
dense in Γ̄ and the warping action of Γ̄ continuous (Bru-
veris, 2016). Thus, the warping problem can be simplified
if one of the SRV-curves is piecewise constant, indepen-
dent of the form of the second SRV-curve 𝒑. If 𝒑 is at least
continuous, for example, the SRV-curve of a model-based
smooth mean curve like the fish mean in Figure 1 on
the top right, the loss function in (3) is differentiable. We
propose to tackle the remaining maximization problem
with a gradient descent algorithm that can handle linear
constrains (for instance, method BFGS in constrOptim
from R-package “stats;” R Core Team, 2020) and provide a
derivation of the gradient in Web Appendix B.

2.3 Elastic distance for two piecewise
linear curves

We present an algorithm that can be used to find an opti-
mal warping function, and therefore, compute the elastic
distance, when both curves are piecewise linear. This is rel-
evant either because wemodel one of the curves as a linear
spline (mean) (see Subsection 2.4), as we do for the tree
shapes in Figure 1, or becausewewant to compute the elas-
tic distance between two observed curves, for example, two
different discretely observed fish or trees. The latter allows
any distance-based analysis of the data such as clustering
or classification.
To obtain an optimal warping for a curve with piecewise

constant SRV transformation 𝒒 to a curve with SRV trans-
formation 𝒑, we first note that the maximization in one
𝑡𝑗 direction of the objective function in (3) only depends
on the current values of 𝑡𝑗−1 and 𝑡𝑗+1 for any 𝒑. If 𝒑 is
also a piecewise constant SRV-curve, we can even derive
a closed-form solution of the maximization problem in (3)
w.r.t. each 𝑡𝑗 ∈ [𝑡𝑗−1, 𝑡𝑗+1] (cf. Web Appendix B). Hence,
we propose a coordinate wise maximization procedure in
Algorithm 1, iterating updates of odd and even indices.
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STEYER et al. 2107

The warping problem for two (open) piecewise linear
curves has been previously discussed by Lahiri et al. (2015).
They propose a precise matching algorithm, which pro-
duces a globally optimal reparameterization of 𝒒, but is
arguably demanding to implement. Our algorithm can be
seen as an alternative,which ismuchmore straightforward
to understand and to extend to the closed case (cf. Web
Appendix A) not explicitly addressed by Lahiri et al. (2015).
We provide an implementation in the R-package “elas-
dics.”Although our algorithmdoes not guarantee finding a
globally optimal solution, we observe convincing results in
simulations (Section 3) and can prove local maximization
in the following sense:

Theorem 1. Every accumulation point of the sequence
(𝒕(𝑘))𝑘∈ℕ = (𝑡

(𝑘)
1 , … , 𝑡

(𝑘)
𝑚−1)𝑘∈ℕ resulting from Algorithm 1 is

a local maximizer of Φ in (3).

To prove this theorem, we first establish that the direc-
tional derivatives exist and are nonpositive for all coor-
dinate directions. Then we show that this carries over
to all directional derivatives using local concavity of the
objective function.
If the sequence (𝒕(𝑘))𝑘∈ℕ has more than one accumula-

tion point, they all give the same value Φ(𝒕). They then
correspond to different reparameterizations of the sec-
ond curve, but give the same distance between the two
curves. This can happen as the warping problem does
not guarantee unique solutions (see Web Appendix C for
an example). In practice, one can pick any maximizing
𝒕 to obtain a locally optimal warping function. As we
cannot guarantee this 𝒕 to also be a global maximizer,
we propose using varying starting points to find a global
maximum.

Our algorithm computes the elastic distance between
two piecewise linear and continuous curves. These curves
form a subspace in the space of absolutely continuous
curves and are called splines of degree 1. For modeling
smooth (differentiable) curves, for example, for a mean
function, a spline space of a higher degree may be more
suitable.

2.4 Modeling spline curves or spline
SRV-curves

As common in functional data analysis (Ramsay and Sil-
verman, 2005), we like to model curves or means for
samples of curves as splines. This is in particular beneficial
for sparsely observed curves, which cannot be evaluated
at arbitrary points. Moreover, splines impose parsimo-
nious models for smooth curves, which can help to avoid
overfitting the observed curves given limited information.

Definition 2 (Spline curves). We call 𝝃 = (𝜉1, … , 𝜉𝑑)
𝑇 ∶

[0, 1] → ℝ𝑑 with 𝑑 ∈ ℕ a 𝑑-dimensional spline curve of
degree 𝑙 ∈ ℕ0 if all its components 𝜉1, … , 𝜉𝑑 ∶ [0, 1] → ℝ

are spline curves of degree 𝑙 with a common knot set
0 = 𝜅0 < 𝜅1 < ⋯ < 𝜅𝐾−1 < 𝜅𝐾 = 1 for some 𝐾 ≥ 2. That
means that 𝜉1, … , 𝜉𝑑 are piecewise polynomial of degree
𝑙 between the knots 𝜅0, … , 𝜅𝐾 , as well as continuous and
(𝑙 − 1)-times continuously differentiable on the whole
domain [0,1] for 𝑙 ≥ 1. Denote by  𝑙

𝐾;𝜅0,…,𝜅𝐾
the set of all

such spline curves.

We can either model the curve 𝜷 as a 𝑑-dimensional
spline curve, or its SRV transformation𝒑 (see Figure 2). If 𝜷
is a spline of degree 𝑙 ≥ 2, the corresponding SRV-curve 𝒑
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2108 STEYER et al.

F IGURE 2 Left: Two-dimensional curves and corresponding SRV transformations. Spline curves are plotted as red curves with their
values at knots marked as black dots; other curves are gray. Note that the SRV-curve in the sixth panel is piecewise constant in 𝑡 and 𝑡 is not
visible in the image. Right: Smooth means (with 11 knots each) for four spiral curves based on linear splines on SRV level. The dashed mean
curve is based on assuming piecewise linear observations for the integral approximations and the solid mean curve is based on the integral
approximation using the mean value theorem

will not be a spline curve. The same holds true for curve
𝜷 if 𝒑 is a spline of degree 𝑙 ≥ 1. Only if 𝜷 is piecewise
linear (𝑙 = 1), then both 𝜷 and its piecewise constant SRV
transformation are splines.However, if we use linear spline
curves, we need a large number of knots to obtain simi-
larly smooth curves as using linear splines on SRV level,
and thus, expect less parsimonious models.
To use these spline curves or spline SRV-curves asmodel

spaces modulo warping, we need to ensure model iden-
tifiability, that is, that each equivalence class contains at
most one spline curve. The unique spline representative
then allows to identify and interpret the equivalence class
of a curve modulo warping via its spline basis coefficients.
We will see in Subsection 2.6 that this is true for quadratic
or cubic splines on curve level and for linear spline SRV-
curves (under mild conditions). Linear spline curves are
identifiable under additional assumptions.
Therefore, we can use the space of cubic, quadratic, or

linear spline curves as a model space for smooth curves.
However, using quadratic or cubic splines on the curve
level would not imply a vector space structure on the
SRV level, where the distance is computed. We therefore
propose to consider linear spline (and thus continuous)
SRV-curves to model smooth curves. If 𝒑 is a continuous
SRV transformation of 𝜷, the backtransform 𝜷(𝑡) = 𝜷(0)

+ ∫ 𝑡

0
𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠 is differentiable, as the norm ‖ ⋅ ‖ is also

continuous. Alternatively, constant spline SRV-curves can
be used to model less regular, polygonal mean curves. We
thus work with a linear or constant spline model on SRV
level in the following.

2.5 Elastic means for samples of curves

As the space of curvesmodulo parameterization and trans-
lation does not form a Euclidean space, standard statistical
techniques for describing probability distributions cannot
be applied directly. In particular, we cannot define the
expected value as an integral or the mean as a weighted
average, which would require a linear structure of the
space. To generalize the mean as a notion of location to
arbitrary metric spaces, Fréchet (1948) proposed to use its
property of being the minimizer of the expected squared
distances.

Definition 3 Fréchet mean; Fréchet, 1948. Let (Ω, , 𝑃)
be a probability space and  a metric space with dis-
tance function 𝑑, equipped with the Borel-𝜎-Algebra. For
a random variable 𝑋 ∶ Ω →  , we call every element in
arginf𝐴∈ 𝑬𝑃(𝑑(𝑋,𝐴)

2) an expected element of𝑋. For a set
of observations 𝑥1, … , 𝑥𝑛 ∈  , we define the Fréchet mean
as an element in arginf𝐴∈

∑𝑛

𝑖=1 𝑑(𝑥𝑖, 𝐴)
2.

Thus, Fréchet means are empirical versions of expected
elements and neither of them need to exist or be unique.
For a uniform distribution on the sphere, for example,
every point on the sphere is a valid Fréchet mean. This
nonuniqueness can occur for the elastic distance as well,
see the example given in Web Appendix C. Nevertheless,
Ziezold (1977) showed a set version of the law of large
numbers for the Fréchet mean, whichmeans that for inde-
pendently and identically distributed random variables
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STEYER et al. 2109

𝑋1,… , 𝑋𝑛 ∶ Ω →  , the set of Fréchet means converges to
the set of the expected elements.
As discussed in the previous subsection, we propose to

use linear or constant splines on SRV level as model spaces
for the Fréchet mean. For a set of curves with SRV trans-
formations 𝒒1, … , 𝒒𝑛 and for a given degree 𝑙 ∈ {0, 1} and a
given set of knots 𝜅0, … , 𝜅𝐾 , we thus define

𝒑̄ ∈ arginf
𝒑∈ 𝑙

𝐾;𝜅0,…,𝜅𝐾

𝑛∑
𝑖=1

inf
𝛾𝑖

‖‖‖𝒑 − (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖
‖‖‖
2

𝐿2
(4)

as the SRV transformation of the spline Fréchet mean
(i.e., SRV transformation of the Fréchet mean restricted
to the spline SRV space) w.r.t. the elastic distance (2). The
corresponding restricted Fréchet mean 𝜷 is thus either
a polygon or a smooth curve. Similarly to the proposal
of Srivastava and Klassen (2016) for densely observed
curves, we tackle the minimization problem (4) with an
iterative approach in Algorithm 2, alternating between

fitting the mean and optimizing the warping for each of
the observations, but now using our warping approach
for sparse curves and modeling the mean with a constant
or linear spline. If we were to model the Fréchet mean
in a spline space on curve level instead of SRV level, the
mean fitting step would be a minimization problem in
a nonlinear space, hence more challenging. That is why
we refrain from using splines on curve level, although we
show that quadratic and cubic splines are identifiable via
their coefficients as well (Theorem 2).
For the warping step, we update the optimal warpings

𝛾𝑖 of the observed curves 𝜷𝑖 , 𝑖 = 1, …𝑛 via interpreting
them as observed polygons with piecewise constant
SRV transformations 𝒒𝑖 , 𝑖 = 1, …𝑛, as in Lemma 1. We
tackle the remaining maximization problem (3) using
a gradient descent algorithm as discussed before if 𝒑̄

is piecewise linear and Algorithm 1 if 𝒑̄ is piecewise
constant. In the 𝐿2 spline fitting step, the integrals

‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖‖2𝐿2 in the sum need to be approximated,

because the curves 𝜷𝑖 are only observed on a finite
grid 0 = 𝑠𝑖,0 ≤ 𝑠𝑖,1 ≤ ⋯ ≤ 𝑠𝑖,𝑚𝑖

= 1, and the SRV-curves
𝒒1, … , 𝒒𝑛 are thus unobserved. One option is to assume
that the SRVs 𝒒𝑖 of the observed curves are piecewise
constant as in the warping step. As 𝒑̄ is piecewise lin-
ear, (𝒒𝑖◦𝛾𝑖)

√
𝛾̇𝑖 also is (see proof of Lemma 1 in Online

Appendix B), which leads to a closed-form solution of the
integral. Alternatively, we derive an approximation of the
integrals in the 𝐿2 fitting step of Algorithm 2 using the
mean value theorem and the monotonicity of the warping
inWebAppendix B.5. Both approaches lead to a (weighted)
least-squares problem for the spline coefficients of 𝒑̄. (An
adapted algorithm for closed curves in Web Appendix A
uses an additional penalty for openness with increasing
weight.) We compare them using an example in Figure 2
on the right, where the second approach here leads to a
better fit of the estimated spiral shape (and is used in the
following).

2.6 Identifiability of spline curves

We model curves or means for samples of curves using
basis representations. If we study equivalence classes of
curves modulo reparameterization, we have to ensure
unique spline representatives in each class, meaning that
elements of the quotient space are identifiable via their
basis coefficients. To see why this is not self-evident,
consider as a simple counterexample in ℝ1 the space
of quadratic polynomials 𝑃 ∶ [0, 1] → ℝ, a subspace of
the quadratic spline space. Note that 𝛾𝑎(𝑥) = 𝑎𝑥2 + (1 −

𝑎)𝑥 defines a feasible warping function for all 𝑎 ∈]0, 1[,
because 𝛾𝑎 is differentiable with 𝛾′𝑎(𝑥) ≥ 0 and 𝛾𝑎(0) = 0,
𝛾𝑎(1) = 1. Hence, all quadratic polynomials of the form
𝑃(𝑥) = 𝑝1𝛾𝑎(𝑥) + 𝑝0 with 𝑝0, 𝑝1 ∈ ℝ are elements of the
same equivalence class, although they have varying basis
coefficients 𝑎𝑝1, (1 − 𝑎)𝑝1 and 𝑝0 for 𝑎 ∈]0, 1[ w.r.t. the
monomial basis expansion. This counterexample shows in
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2110 STEYER et al.

particular that one-dimensional spline functions do not
have unique representatives in the space of functionsmod-
ulo reparameterization. Moreover, every 1d function is in
the orbit of a linear spline with at least as many knots
as the function has local extrema. As identifiability is
essential in any modeling approach, it is fortunate that
in contrast to 𝑑 = 1, we can show that in ℝ𝑑 with 𝑑 ≥ 2,
nearly all quadratic or cubic spline curves have unique
basis representations.

Theorem 2. Let 𝑑 ≥ 2 and𝑸,𝑷 ∶ [0, 1] → ℝ𝑑 be quadratic
or cubic spline curves, where 𝑸 has a nonlinear image
between each of its knots. Moreover, let 𝛾 ∶ [0, 1] → [0, 1] be
monotonically increasing and onto. Then 𝑷 = 𝑸◦𝛾 ⇒ 𝛾 =

𝑖𝑑.

Thus, nearly all equivalence classes modulo reparam-
eterization contains at most one spline curve. Hence we
can identify these curves modulo warping via their spline
basis coefficients. The only exception are splines with lin-
ear image, which occur if and only if the splines in each
coordinate direction are multiples of each other modulo
translation. Note that we do not make any assumptions on
the knots here, in particular the knots could be different
for 𝑸 and 𝑷. That means there is almost always a unique
representative modulo warping in

⋃
𝐾,𝜅0,…,𝜅𝐾

 𝑙
𝐾;𝜅0,…,𝜅𝐾

for
given 𝑙 = 2, 3, that is, in the union of all spline spaces with
varying (also varying number of) knots. Considering only
quadratic or cubic splines is crucial, as this statement is not
true for nonprime spline degrees.We show a counterexam-
ple for splines of degree four inWebAppendixC. The result
for cubic spline curves also implies uniqueness of represen-
tatives for linear spline SRV-curves, another useful result
for identifiable modeling of elastic curves.

Corollary 1. Let 𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 with SRV functions 𝒒1
and 𝒒2, respectively. If 𝒒1 and 𝒒2 are nowhere constant linear
splines and 𝒒2(𝑡) = 𝒒1(𝛾(𝑡))

√
𝛾̇(𝑡), then 𝒒1 = 𝒒2.

In summary, the space of linear SRV spline curves seems
particularly suitable tomodel smooth elastic curves as they
are identifiable, that is, there is a unique representation in
this space, and the corresponding curves are differentiable,
which leads to visually smooth curves. In our toy example,
we used linear spline SRV-curves to model the smooth fish
mean (Figure 1, top right).

Remark 1 (Linear spline curves). Linear spline curves or
equivalently piecewise constant SRV-curves are identifi-
able via their spline basis coefficients modulo warping, if
we consider one spline space 1

𝐾;𝜅0,…,𝜅𝐾
but not the union

of several such spaces, and assume that the curve is not dif-
ferentiable at all of its knots (i.e., no knot is superfluous).
For an illustration, see Web Appendix C.

Hence, with this weaker identifiability result, piecewise
constant SRV-curves are a suitable model space as well,
with curvesmodeled as polygons. This is more appropriate
for mean curves that are assumed to have sharp corners,
like the trees in Figure 1.
As we use these spline spaces for estimation of smooth

or polygonal curves, we need the following result on conti-
nuity of the embedding. It allows us to interpret estimated
coefficients—for instance, compare the coefficients of two
estimated group means to investigate local differences—
as it ensures convergence of the spline coefficients if we
construct a converging sequence of curves. For instance,
we aim to construct such a sequence for the elastic mean
in Algorithm 2. We show that this continuity property
holds whenever the model space Ξ is a (subset of a) finite-
dimensional spline space of the following form. Note that,
for simplicity, we do not consider unions of spline spaces
here.

Definition 4. Let Ξ be one of the following for given fixed
𝐾 ≥ 2, 0 = 𝜅0 < ⋯ < 𝜅𝐾 = 1: (i) a subset of  𝑙

𝐾;𝜅0,…,𝜅𝐾
, 𝑙 =

2, 3, which consists of identifiable splines as described in
Theorem 2, additionally centered (i.e., with integral zero)
to account for translation; (ii) a set of identifiable curves
with linear spline SRV-curves in 1

𝐾;𝜅0,…,𝜅𝐾
from Corol-

lary 1; or (iii) the set of curves with piecewise constant
SRV-curves in 0

𝐾;𝜅0,…,𝜅𝐾
from Remark 1.

Lemma 2 (Topological embedding). Let 𝑓 ∶ (Ξ, ‖ ⋅ ‖) →
(, 𝑑) be the embedding of the spline coefficients defining the
functions in Ξ, equipped with the usual Euclidean distance‖ ⋅ ‖, into the space  of absolutely continuous curves w.r.t.
the elastic distance 𝑑. Then 𝑓 is a topological embedding,
that is, 𝑓 is a homeomorphism on its image.

Thus, the distance of spline coefficients and the elas-
tic distance of curves modulo translation are topologically
equivalent on suitable spline spaces. Consequently, a
sequence of curves converges w.r.t. the spline coefficients
if, and only if, it converges w.r.t. the elastic distance. Over-
all, we see that any spline model Ξ in Definition 4 yields
an identifiable model for the Fréchet mean of observed
curves, with the possibility to interpret spline coefficients.
This also holds for converging series of estimators which
we aim to construct in our algorithms.

3 SIMULATION

We test our methods, which we made available for pub-
lic use in the R-package “elasdics,” on simulated data.
A first simulation focuses on the special case of equal
numbers of observed points on the curves, where we can
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STEYER et al. 2111

compare our methods to an existing implementation of
the SRV framework in the R package “fdasrvf” (Tucker,
2020) based on Srivastava et al. (2010). Results presented
in Web Appendix D show that Algorithm 1 (and its vari-
ant for closed curves) produce clearly better alignment for
sparsely and irregularly sampled curves. The correspond-
ing average elastic distance is smaller for our method in
all cases, for example, a reduction of 25% and 26% on aver-
age for 30 observed points per curve in the open and closed
setting, respectively. As expected, this difference decreases
if 90 points of the closed butterfly shapes are selected (1%
reduction on average), as in this case, the points are nearly
observed on a regular, fairly dense grid, which is the set-
ting “fdasrvf” is designed for. This simulation also shows
that a highly unbalanced distribution of observed points on
the curves causes difficulties for the mean computation in
“fdasrvf” as well, which is not the case for our methods.
Here wemainly discuss the second simulation, focusing

on the convergence and the identifiability of the newly pro-
posed splinemeans and their associated coefficients. Aswe
vary the number of points per curve, there is no competitor
to compare our methods with. For a given template curve
𝜷 with known B-spline coefficients 𝜗1, … , 𝜗𝐵, we gener-
ate a sample of observed curves 𝜷1, … , 𝜷𝑛 by indepen-
dently sampling the coefficients 𝜗𝑖,𝑏 ∼  (𝜗𝑏, 𝜎

2) for all
𝑖 = 1, … , 𝑛, 𝑏 = 1,… , 𝐵. If the template curve is closed,
we additionally close the sampled curves via minimiz-
ing a penalty function penalizing openness in gradient
direction. The penalty is given inWeb Appendix A for esti-
mating a closed mean. The points 𝑡𝑖,1, … , 𝑡𝑖,𝑚𝑖−1 on which
𝜷𝑖 is observed are sampled uniformly on [0, 1], where
the number of observed points 𝑚𝑖 is sampled uniformly
either from {10, … , 15} (very sparse and unbalanced) or
{30, … , 50} (less sparse but unbalanced).
Examples for curves sampled with standard deviation

𝜎 = 4 from a heart-shaped template curve, modeled as
linear spline on SRV level with 10 equally spaced inner
knots, are displayed in Figure 3. Two further examples
for open curves are given in Web Appendix C. The sam-
ples in the very sparse setting are hardly recognizable as
heart shapes (Figure 3, right). However, the elastic mean
curve over 𝑛 = 5 observations, estimated using the true
knot set and linear SRV splines to allow a comparison
of estimated and true coefficients, represents the original
heart surprisingly well even in this challenging setting. We
repeated this simulation 100 times each for varying num-
bers of observations 𝑛 ∈ {5, 20} and observed points per
curve𝑚𝑖 (Figure 3, left). For𝑚𝑖 ∈ {10, … , 15} observations
per curve, we generally obtain a heart-shapedmean,which
seems smaller and shows less pronounced features than

the template. Increasing the number of observed curves
from 𝑛 = 5 to 𝑛 = 20 decreases the variance of the mean
curve, but a certain bias due to undersampling the curves
remains. Likewise, the variance of the spline mean coef-
ficients is smaller for 𝑛 = 20 than for 𝑛 = 5, but their
distribution is still not centered at the coefficients of the
template (indicated as black dots in Figure 3).
If we increase the number of points on each curve to

𝑚𝑖 ∈ {30, … , 50}, the estimated means w.r.t. the elastic dis-
tance adapt closer to the template. Moreover, the variance
of the estimated spline coefficients decreases as well as
their distance to the template. The reduction of variance
indicates convergence of the spline coefficients for 𝑛 → ∞,
although we do not expect them to precisely converge to
the coefficients of the template in this simulation setup,
not even if 𝑚𝑖 → ∞ for all 𝑖 = 1, … , 𝑛. This is because
we draw the sample curves 𝜷1, … , 𝜷𝑛 such that 𝜷 is the
mean w.r.t. the 𝐿2 distance on SRV level, but this does in
general not imply that 𝜷 is the mean w.r.t. the elastic dis-
tance. Nevertheless, we expect this difference to be small,
as the coefficients in the rightmost boxplot are close to the
black dots that indicate the template’s coefficients. In addi-
tion, their low variance for 𝑛 = 20 confirms our theoretical
results on identifiability of spline coefficients in our model
(Corollary 1) and continuity of the embedding (Lemma 2).
As expected, the run time of our elastic mean algorithm

grows with the number of observed curves as well as with
the number of observed points per curve. On a standard
Windows PC, we report run times of 19 s (𝑛 = 5) and 30 s
(𝑛 = 20) on average for onemean in the very sparse setting.
In the less sparse setting, 𝑚𝑖 ∈ {30, … , 50}, the run times
increase to 22 and 88 s for 𝑛 = 5 and 𝑛 = 20, respectively.
So far, we have discussed the convergence of correctly

specified spline means, as in this case, convergence of
elastic means corresponds to convergence of the corre-
sponding spline coefficients (Lemma 2). As correct spec-
ification is questionable in practice, we demonstrate the
behavior of our methods in the case of model misspecifi-
cation (varying spline degree and number of knots) in a
further simulation given in Web Appendix D. We observe
that both smooth and polygonalmeans reproduce the orig-
inal template well and that results are not very sensitive
to the number of knots, given that it is sufficiently large.
Generally, the elastic distance to the template decreases
for an increasing number of knots. Distances to the tem-
plate are smaller for the smooth than for the polygonal
modelmeans for a fixed number of knots, and decrease to a
lower level, indicatingmore parsimoniousmodels and less
undersampling bias for truly smooth means when using
linear SRV-curve models.
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2112 STEYER et al.

F IGURE 3 Top left: Smooth means (in gray) computed for a set of 𝑛 simulated curves drawn from the heart-shaped template curve
(in black) via sampling its B-spline coefficients from a normal distribution with standard deviation 𝜎 = 4 and𝑚𝑖, 𝑖 = 1, … , 𝑛 points observed
per curve. The means are computed using linear SRV splines and the same knot set as the template (10 equally spaced inner knots). Bottom
left: Corresponding distribution of spline mean coefficients (in gray) and template coefficients (in black). Right: Simulated data 𝑖 = 1, … 5with
observed values marked as black dots and corresponding smooth elastic means over 𝑛 = 5 observations in gray

4 APPLICATIONS ON REAL DATA

As our main goal is to develop statistical (elastic) anal-
ysis methods for discretely observed data curves, we
demonstrate their practicality on two datasets.

4.1 Classifying spiral curve drawings for
detecting Parkinson’s disease

(Isenkul et al., 2014) provide a dataset of spiral curve
drawings by Parkinson patients and healthy controls in
a so-called Archimedes spiral-drawing test, which is a
common, noninvasive tool for diagnosing patients with
Parkinson’s disease. The data have been obtained in two
different settings: In the “static spiral test,” the partici-
pants had to follow a template on a digital tablet; in the
“dynamic test,” the template curve appeared and disap-
peared in certain time intervals. We propose an intuitive
classifier mimicking a doctor’s decision of the form: Clas-
sify as “Parkinson” if the distance of the drawn curve to the
template curve exceeds a threshold for one or for both of
the settings. As the template curve has not been recorded,
we use the elastic mean (see Subsection 2.5) of all curves

from the static spiral test with piecewise constant splines
and 201 knots on SRV level, instead. Then we compute the
elastic distance of each observed spiral curve to the tem-
plate using Algorithm 1. We report a leave-one-curve-out
cross-validated accuracy of 72.5% for the static, 90.0% for
the dynamic setting, and 92.5% for the classifier based on
both, which indicates good separation in particular for the
dynamic spiral test.
A detailed description of our analysis and a comparison

to the methods implemented in the “fdasrvf” package can
be found in Web Appendix E. Our methods lead to bet-
ter classification accuracy in this application and themean
calculation proves to be faster.

4.2 Clustering and modeling smooth
means of GPS-tracks

The second dataset is an example of increasingly common
human movement data and comprises GPS waypoints
tracked on Tempelhof Field, a former airfield (up to 2008)
in Berlin, which is now used as a recreation area. The
dataset consists of 55 paths with 15–45 waypoints each,
recorded by members of our working group using their
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STEYER et al. 2113

F IGURE 4 Top left: The observed trajectories with elements of the four largest clusters indicated by color. Bottom left: Longitude and
latitude for the trajectories (with the four largest clusters indicated by the same colors) over relative time. Top right: Smooth means modeled as
linear SRV-curves with 10 inner knots for the four largest clusters and centered at the mean center of the observed paths per cluster to account
for translation. Bottom right: Cluster means plotted on Microsoft Bing Map accessed via the R package “OpenStreetMap” (Fellows, 2019)

mobile phones for tracking. Due to the variety of mobile
devices used, the number of points per curve differs consid-
erably, resulting in irregularly and quite sparsely observed
data. We are solely interested in analyzing the paths
(Figure 4, bottom right) the participants walked on, not the
trajectories over time. Separately looking at longitude and
latitude over time suggests that the individuals had quite
different walking patterns and did not move with constant
speed. This implies that standard (nonelastic) functional
data analysis is not suitable here.
Clustering and smooth mean estimation allow us to

recover the paths that the individuals walked on. In a fur-
ther step, these could be used to identify new paths on
Tempelhof field not yet included in existingmaps. In a first
step, the tracks are clustered using average linkage based
on the elastic distance and the elbow criterion for stopping.
Here we apply Algorithm 1 to approximate the pairwise
distance between the sparsely observed open tracks. In a
second step,we compute a smooth elastic Fréchetmean for
each of the four largest clusters using Algorithm 2 and lin-
ear splines on SRV level with 10 inner knots. The clustering
result displayed in Figure 4, top row, is visually satisfying.
Looking at longitude and latitude separately clearly indi-
cates that clustering based on the 𝐿2 distance would not
work well.
The smooth mean curves for each of the four largest

clusters (Figure 4, top right) seem to describe the observed
tracks well, despite the dimension reduction (24 spline

coefficients compared to 30–90 observations per curve)
and also match the actual paths visible in the satellite
image (Figure 4, bottom right) provide by Microsoft Bing
and made available for R in the package “OpenStreetMap”
(Fellows, 2019).

5 DISCUSSION

Although our approach addresses the discrete and often
sparse nature of observed curves explicitly, the interpreta-
tion as polygonswith observed values at the corners under-
estimates the curvature of the real unobserved curves.
This leads to a kind of shrinkage bias for the estimated
elastic mean for sparsely observed curves. Although this
bias toward curves with smaller curvature decreases with
increasing observations per curve, it would be of interest
to develop correction methods for (very) sparse settings in
future work.
We have shown that the SRV splines modulo parame-

terization used for modeling the elastic mean is in general
identifiable via their coefficients and we have confirmed
this result in simulations. Although we did not explic-
itly address the choice of the optimal number of knots
for such splines, a further simulation has shown that the
estimation of the mean curve is not sensitive to the spe-
cific spline degree and choice of knots, given the number
of knots is sufficiently large. As the union of any spline
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2114 STEYER et al.

space with fixed degree but varying knots is dense in
the space of absolutely continuous curves w.r.t. the elas-
tic distance, using an increasing number of knots would
ensure that the mean curve can be arbitrarily well approx-
imated. For a finite dataset, this would lead to overfitting
the curves though, which may be addressed via penal-
ized estimation, although the interpretation of coefficients
and convergence properties would need to be studied in
this setting.
Another appealing direction for further research is to

include our methods for sparsely and irregularly sampled
curves in existing approaches for functional shape analy-
sis. Here the curves have to be aligned w.r.t. scaling and/or
rotation in addition to the alignment w.r.t. parameteriza-
tion and translation. As this is usually done iteratively, it
seems promising to combine this with the iterative warp-
ing and mean fitting steps in our methods. Furthermore,
elastic mean estimation for irregularly and/or sparsely
sampled curves can be seen as a first step toward elastic
regression models for such data. That means our meth-
ods might be useful building blocks for modeling curves
or shapes depending on covariates using splines.
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SUPPORT ING INFORMATION
Web Appendices A, B and C referenced in Section 2 and
Web Appendix D referenced in Sections 3 and 4 are avail-
able with this paper at the Biometrics website on Wiley
Online Library. All developed methods are implemented
in the R-package elasdics (Steyer, 2021) available on CRAN
and the code to reproduce the findings of this paper is
available in the Supporting Information of this article.
Figure 1: First three iterations of the algorithm for

closed mean curves on a toy dataset
Figure 2: Left: Two piecewise linear curves in gray with

Frechet mean curves in red and blue
Figure 3: Three constant SRV splines (right) with

corresponding linear spline curves (middle)
Figure 4: Comparison of the optimal alignment pro-

duced by ourmethod CWOand the one computedwithDP
Figure 5: Elastic means for irregularly sampled curves
Figure 6:Example simulated data in gray with observed

values marked as black dots and corresponding smooth
elastic means over n = 5 observations in blue
Figure 7: Top: Smooth means (in blue) computed for a

set of n curves drawn from the open template curve (in red)
via sampling its B-spline coefficients from a normal distri-
bution with standard deviation 𝜎 = 0.3 and𝑚𝑖, i=1, . . . , n
points observed per curve
Figure 8: Top: Smooth means (in blue) computed for

a set of n curves drawn from the open template curve (in
red) via sampling its B-spline coefficients from a normal
distribution with standard deviation 𝜎=0.4 and𝑚𝑖, i=1,...,
n points observed per curve

Figure 9: Left: Smooth mean based on linear splines on
SRV level with varying number of knots and therefore coef-
ficients computed on a sample of 20 curves with mi 𝜖30, 50
points per curve
Figure 10: Left: Spiral curves drawn by either a healthy

control group or by patients with Parkinson’s disease in
two different settings
Figure 11: Left: Distance of the curves drawn by the

participants to the mean spiral curve for both settings
Figure 12: Optimal warping in both settings separated

by the actual status and the predicted status using the clas-
sifiers based on only the corresponding distance each and
leave-one-out cross-validation
Table 1: Classification accuracy in the dynamic setting

with a varying fraction of points per curve
Table 2:Comparison of the classification accuracy in the

dynamic setting with a varying number of points per curve
Table 3: Run-times for the mean computation of the

spiral data in seconds
Figure 13: Left: Comparison of means for the spirals in

the static setting with 100 observations per curve

Data S1

How to cite this article: Steyer, L., Stöcker, A.,
and Greven, S. (2023). Elastic analysis of irregularly
or sparsely sampled curves. Biometrics, 79,
2103–2115. https://doi.org/10.1111/biom.13706
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