
Combinatorics, Probability and Computing (2006) 15, 731–751. c© 2006 Cambridge University Press

doi:10.1017/S0963548306007553 Printed in the United Kingdom

Finding Large Independent Sets in Polynomial

Expected Time

A M I N C O J A - O G H L A N†

Humboldt-Universität zu Berlin, Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany

(e-mail: coja@informatik.hu-berlin.de)

Received 11 February 2004; revised 28 September 2004

We consider instances of the maximum independent set problem that are constructed

according to the following semirandom model. Let Gn,p be a random graph, and let S

be a set of k vertices, chosen uniformly at random. Then, let G0 be the graph obtained

by deleting all edges connecting two vertices in S . Finally, an adversary may add edges

to G0 that do not connect two vertices in S , thereby producing the instance G = G∗
n,p,k .

We present an algorithm that on input G = G∗
n,p,k finds an independent set of size � k

within polynomial expected time, provided that k � C(n/p)1/2 for a certain constant C > 0.

Moreover, we prove that in the case k � (1 − ε) ln(n)/p this problem is hard.

1. Introduction and results

1.1. The maximum independent set problem and random graphs

An independent set in a graph G = (V , E) is a set S of vertices of G such that no two

vertices in S are adjacent. The independence number α(G) is the size of a largest independent

set. The maximum independent set problem – given a graph G, find an independent set of

maximum cardinality – is well known to be NP-hard. Indeed, H̊astad [17] has shown that

unless NP = ZPP, no polynomial time algorithm approximates α(G) within a factor of

n1−ε (ε > 0 arbitrarily small but constant). Consequently, since we do not hope for efficient

algorithms that compute good approximate solutions in the worst case, it is natural to

ask for efficient algorithms that perform well on average instances, as proposed by Karp

in 1976 [21].

The common way to describe ‘average’ instances is to consider a probability distribution

on the instances, i.e., on graphs. Since the seminal work of Erdős and Rényi, the binomial

model Gn,p has been the standard model of a random graph. Both the combinatorial

structure and the algorithmic theory of Gn,p have been studied intensively [5, 14, 18].

Given a parameter 0 < p = p(n) < 1, the random graph Gn,p is obtained by including each

† Research supported by the Deutsche Forschungsgemeinschaft (grant DFG FOR 413/1-1).

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

732 A. Coja-Oghlan

of the
(
n
2

)
possible edges with probability p independently of all others. We say that Gn,p

enjoys some property P with high probability (w.h.p.) if the probability that Gn,p satisfies

P converges to 1 as n → ∞.

The probable value of the independence number of Gn,p has been determined by

Bollobás and Erdős, Frieze and Matula [6, 13, 25] (see [18] for a unified treatment), who

have proved that

α(G) ∼
{

2 log1/(1−p)(n) for constant 0 < p < 1,
2 ln(np)

p
for 1/n � p = o(1),

w.h.p. (1.1)

With respect to algorithms, it is known that, e.g., in the case p = 1/2, a simple greedy

heuristic (that just computes a maximal independent set w.r.t. inclusion) w.h.p. finds an

independent set of size ∼ log2(n) and hence is (2 + o(1))-approximative w.h.p. The reason

is that w.h.p. all maximal independent sets of G = Gn,1/2 are of size � (1
2

+ o(1))α(G) (see [5,

p. 288]). Remarkably, no polynomial time algorithm is known to find an independent set

of size � (1 + Ω(1)) log2(n) w.h.p.

Although on input Gn,1/2 the greedy heuristic w.h.p. achieves a (2 + o(1))-approximation,

there is a serious drawback. Namely, the greedy heuristic does not compute an upper

bound on the independence number, and hence cannot distinguish between such input

graphs G = Gn,p with a ‘low’ α(G) as in (1.1), and ‘exceptional’ inputs with much larger

α(G). In fact, it is easy to figure out graphs G for which the ratio between α(G) and the

size of the independent set computed by the greedy heuristic is Ω(n).

To cope with the NP-hardness of approximating the independence number, Krivelevich

and Vu [23] have proposed an approximation algorithm that runs in polynomial expected

time applied to Gn,p, rather than in worst-case polynomial time. Let RA(G) denote the

running time of an algorithm A on input G. We say that A has a polynomial expected

running time applied to Gn,p, if there is a constant l > 0 such that
∑

G RA(G)P(G = Gn,p) =

O(nl), where the sum ranges over all graphs on n vertices. The algorithm of Krivelevich

and Vu achieves an approximation guarantee of O((np)1/2(ln np)−1) on all input graphs,

and runs in polynomial expected time applied to Gn,p, provided that n−1/2 � p � 0.99.

Coja-Oghlan and Taraz [8, 10] have given a similar algorithm that works for the entire

range of edge probabilities 1/n � p � 0.99.

The algorithms suggested in [8, 10, 23] essentially combine the greedy heuristic with a

technique for computing an upper bound on the independence number. For instance, the

algorithm of Krivelevich and Vu [23] uses the greedy heuristic to find an independent set

S of size Ω(ln(np)/p). Then, the algorithm computes the largest eigenvalue λ of a certain

auxiliary matrix, which is an upper bound on the independence number. If λ � 4(n/p)1/2,

then the output is just S , the cardinality of S being within the desired approximation

ratio. However, if λ > 4(n/p)1/2, the algorithm has a super-polynomial running time. Still,

the expected running time remains polynomial, because on input Gn,p, the probability that

λ > 4(n/p)1/2 is extremely small.

1.2. Semirandom models

However, there are several reasons why Gn,p may fail to provide an appropriate model

of the ‘average’ instances we are confronted with. First, since all inclusion-maximal

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 733

independent sets of Gn,p are of size (1.1) up to a constant factor w.h.p., Gn,p cannot model

instances that actually contain one very large independent set that we are to find. Indeed,

in the case α(G) > 4(n/p)1/2, the approximation algorithms for Gn,p [8, 10, 23] have an

exponential running time. Moreover, Gn,p enjoys several well-studied structural properties

(see [5, 18]) that the ‘average’ instances we have in mind may not have. For example, if

0 < p < 1 is constant, then w.h.p. all vertex degrees of Gn,p are roughly np, and the largest

eigenvalue of the adjacency matrix is separated from the second eigenvalue (see [15]).

Hence, it would be desirable to study a model that:

• covers the case of ‘average’ instances containing some large independent set, and

• describes instances that lack some typical properties of Gn,p.

In this paper, we study a semirandom model for the maximum independent set problem

that meets the above requirements. The first semirandom models (for the k-colouring

problem) have been studied by Blum and Spencer [4]. As instances of semirandom graph

problems consist of a random share and a worst-case part constructed by an adversary,

such models intermediate between the worst-case paradigm and random graphs.

The following semirandom model has been proposed by Feige and Krauthgamer [12].

Let V = {1, . . . , n}. First, a set S ⊂ V of cardinality Ω(n1/2) is chosen uniformly at random.

Then, every edge {v, w}, v ∈ V , w ∈ V \ S , is included in the graph G0 with probability

p = 1/2, independently of all other edges. Thus, G0 is a random graph Gn,1/2 with a planted

independent set of size Ω(n1/2). Finally, the adversary may add to G0 further edges {v, w},

v ∈ V , w ∈ V \ S , thereby completing the instance G. Since S is an independent set of G,

we have α(G) � Ω(n1/2). Observe that the adversary can change the vertex degrees, the

eigenvalues of the adjacency matrix, and other parameters of G0. The algorithm studied

by Feige and Krauthgamer always has a polynomial running time and finds the hidden

independent set S with high probability over the choice of G0.

In this paper, we study the following two semirandom models. Given an edge probability

0 < p = p(n) < 1 and a number k = k(n), the random share Gn,p,k of the first semirandom

model G∗
n,p,k is constructed as follows.

M1. A set S ⊂ V consisting of k vertices is chosen uniformly at random.

M2. The random graph G0 = Gn,p,k is obtained by including every edge {v, w}, v ∈ V ,

w ∈ V \ S , with probability p independently of all other edges.

Given G0, the adversary completes the instance.

M3. The adversary may add to G0 edges {v, w} where v ∈ V and w ∈ V \ S , thereby

obtaining G = G∗
n,p,k .

Clearly, S remains an independent set in G, whence α(G) � k. Thus, G∗
n,p,k models instances

of the maximum independent set problem that do contain a very large independent set.

Note that G∗
n, 1

2 ,Ω(
√
n)

coincides with the model treated in [12].

Instances of our second semirandom model G∗
n,p are constructed as follows.

M1′. Choose a random graph G0 = Gn,p.

M2′. The adversary may add to G0 arbitrary edges, thereby completing the instance

G = G∗
n,p.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

734 A. Coja-Oghlan

Thus, G∗
n,p describes instances of the maximum independent set problem that do not

contain a very large independent set. (To be precise, for values of k � n larger than (1.1),

the probability that α(G∗
n,p) � k is nonzero but o(1).)

Let G0 = Gn,p,k . Let I(G0) signify the set of all graphs that can be obtained from G0

according to M3. We say that the expected running time of an algorithm A applied to G∗
n,p,k

is polynomial if there is a constant l > 0 such that
∑

G0
P(G0 = Gn,p,k) · maxG∈I(G0) RA(G) =

O(nl). Moreover, we say that the semirandom graph G∗
n,p,k enjoys a certain property P

with high probability if

lim
n→∞

P
(
G0 = Gn,p,k is such that P holds for all G ∈ I(G0)

)
= 1.

We have similar definitions for the model G∗
n,p. The main result of this paper is the

following theorem.

Theorem 1.1. Suppose that ln(n)2/n � p � 0.99 and that k � C(n/p)1/2 for a sufficiently

large constant C . There is an algorithm Find that satisfies the following conditions.

(1) For any input graph G, Find(G, k) outputs an independent set of size � k if α(G) � k.

If α(G) < k, then Find(G, k) outputs ∅.

(2) Find(G, k) runs in polynomial expected time, when applied to G = G∗
n,p,k and to G = G∗

n,p

Thus, Theorem 1.1 extends the result of Feige and Krauthgamer [12] in the two

following respects.

• The algorithm in [12] always runs in polynomial time and succeeds in finding the

planted independent set with high probability on input G∗
n,p,k . In contrast, Find satisfies a

stronger requirement: applied to G∗
n,p,k , Find always succeeds in finding an independent

set of size � k, and has a polynomial expected running time. Whereas, e.g., for p = Θ(1)

and k = Ω(n1/2) it is easy to modify the approach of Feige and Krauthgamer to satisfy

the stronger requirement as well, for smaller values of p the stronger requirement is

significant (see Section 1.3 for more details).

• The running time of Find is also polynomial when applied to G∗
n,p. Hence, Find can

distinguish between G∗
n,p and G∗

n,p,k efficiently.

However, in contrast to the algorithm of Feige and Krauthgamer, Find(G∗
n,p,k, k) does not

provide a guarantee that its output is a largest independent set (see Section 5 for more

details).

Furthermore, Find complements the work of Krivelevich and Vu [23] and Coja-Oghlan

and Taraz [8, 10] on the independent set problem on Gn,p, as follows.

• Find can exhibit a large independent set efficiently (i.e., in expected polynomial time),

if there is any. In contrast, the running time of the algorithms studied in [8, 10, 23] is

exponential if the input instance contains a large independent set.

• Find can handle semirandom instances, and is thus applicable to a wider class of input

distributions than just Gn,p.

Why are algorithms with a polynomial expected running time interesting? Imagine the

quest of the algorithm for either a large independent set or a proof that there is no such

set as a search tree. Since the algorithm is supposed to work on all instances properly,

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 735

this search tree can be of polynomial or exponential size, or anything in between. While

a heuristic that just works well with high probability may either fail or produce an

enormous search tree if the input instance lacks some ‘typical’ properties, an algorithm

with polynomial expected running time must be such that minor ‘atypical’ defects in the

input instance increase the running time only a little. Thus, on the one hand the interest

lies in algorithmic techniques that lead to a search tree whose size is distributed ‘smoothly’

in such a way that it is small on average. On the other hand, we need to invent methods

to analyse the size of the search tree. In general, such an analysis requires a more careful

investigation than a proof that the algorithm works with high probability.

The following hardness result complements Theorem 1.1.

Theorem 1.2. Let 0 < ε < 1/100 be a constant. Suppose that ln(n)2 � np � n1/2, and let

k = (1 − ε) ln(n)/p. There is no polynomial time algorithm that, applied to G∗
n,p,k , finds an

independent set of size � k w.h.p., unless NP ⊂ RP.

Theorem 1.2 shows that for p = ln(n)2/n the positive result (Theorem 1.1) is essentially

best possible (up to the precise value of the constant C). Nevertheless, as p increases,

the gap grows between the upper bound on the size of independent sets that can be

found efficiently (see Theorem 1.2), and the size of the hidden independent set required

by Theorem 1.1. Finally, observe that for edge probabilities p > n−1/2 the statement of

Theorem 1.2 is void, as in this range (1 − ε) ln(n)/p is smaller than the independence

number (1.1) of Gn,p. The proof of Theorem 1.2 follows [11, proof of Theorem 2]

(see Section 1.3 for more detailed comments).

We present the algorithm Find and its analysis in Section 2. In Section 3 we prove

Theorem 1.2. Section 4 contains the proof of a technical lemma that is part of the analysis

of Find. Finally, our conclusion is in Section 5.

1.3. Techniques and further related work

The first to study the planted independent set model Gn,1/2,k was Kučera [24], who observed

that in the case k = Ω(n ln n)1/2 one can recover the planted independent set simply by

picking the k vertices of least degree. However, this approach fails if k = o(n ln(n))1/2.

Furthermore, Jerrum [19] has shown that on Gn,p,k , where p = 1/2 and k = nβ for a

constant β < 1/2, (a restricted variant of) simulated annealing with high probability fails

to find an independent set of size > (1 + ε) log2 n in polynomial time. Alon, Krivelevich

and Sudakov [2] have presented an algorithm based on spectral techniques that on

input Gn,1/2,k finds the hidden independent set w.h.p., if k = Ω(n)1/2. No polynomial time

algorithm is known to cope with the case k = o(n1/2). However, it is easy to recover

a planted independent set S of size k = o(n1/2) in time nO(ln n) (see [2]): enumerate all

subsets T of size 10 ln(n) and consider the set of all non-neighbours of T ; if T ⊂ S ,

then with high probability the non-neighbourhood of T is precisely S . Using spectral

techniques, McSherry [26] has studied a general partitioning problem on random graphs.

In particular, on input Gn,p,k McSherry’s heuristic recovers the planted independent set

w.h.p., provided that k = Ω(n1/2).

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

736 A. Coja-Oghlan

The semirandom model G∗
n,p,k with p = 1/2 and k = Ω(n1/2) was first considered by Feige

and Krauthgamer [12]. Their algorithm relies on the fact that in the case k � Ω(n1/2) with

high probability ϑ(G∗
n,p,k) = k, where ϑ denotes the Lovász number (see [16, 22]). As the

Lovász number can be seen as a semidefinite programming (‘SDP’) relaxation of the

independence number, the inequality ϑ(G∗
n,p,k) � k holds trivially. Since it is not hard to

extend the result of Feige and Krauthgamer [12] to smaller values of p (say, p � nε−1) and

k � Ω(n/p)1/2, one obtains an algorithm that recovers the hidden independent set with high

probability. Moreover, in the case p = 1/2 and k = Ω(n1/2), the method immediately yields

an algorithm with polynomial expected running time, because the hidden independent set

can most probably be recovered in time nO(ln(n)) as indicated above. However, at least in

the case p � n−1/2, the approach of Feige and Krauthgamer (even in combination with

the concentration result [3] on the eigenvalues of random symmetric matrices) does not

seem to lead to an algorithm with polynomial expected running time.

In the semirandom model G∗
n,p,k , the adversary can cause the spectral heuristic from [2]

to fail to recover an independent set of size � k (say, p = 1/2 and k = Ω(n1/2)). Further,

even in the case p = 1/2, k = Ω(n ln n)1/2, the degree trick from [24] does not work on

G∗
n,p,k . Thus, in a sense G∗

n,p,k requires more robust algorithmic techniques than Gn,p,k .

Feige and Kilian [11] have presented an algorithm for finding an independent set of

size Ω(n) hidden in a semirandom graph with high probability. Their model is even more

adversarial than G∗
n,p,k , as random edges are only included between the hidden independent

set S and V \ S (but not between vertices inside V \ S). Complementing the result of Feige

and Kilian, the author has given an algorithm for recovering an independent set of size

Ω(n) in polynomial expected time [9]. The algorithms in [9, 11] are based on semidefinite

programming techniques developed in [1, 20] (e.g., computing the Lovász number ϑ and

rounding fractional solutions via random hyperplanes). However, these SDP rounding

techniques do not seem to apply if the planted independent set has size o(n).

Although the algorithm Find for Theorem 1.1 is also based on computing Lovász’s

SDP relaxation ϑ of the independence number, we suggest a somewhat different approach

from those of the previous papers [2, 9, 11, 12]. Indeed, we do not need to derive the

probable value of ϑ(G∗
n,p,k) explicitly, which has been the main technical difficulty in [12].

Instead, we just rely on results on the Lovász number of random graphs Gn,p, in particular

on a concentration result on ϑ(Gn,p) from [8]. Applying to an optimal fractional solution

a more direct (deterministic) rounding technique than rounding via random hyperplanes

as in [9, 11], the initial step of Find(G∗
n,p,k, k) computes an independent set I . Using the

concentration result on ϑ(Gn,p), we prove that with probability � 1 − exp(−20k) this set

I already contains 99% of the vertices in the hidden independent set S and only a few

vertices in V \ S . This fact is crucial in order to obtain a polynomial expected running

time. To remove the vertices that do not belong to S from I and to recover the remaining

part S \ I , Find employs a procedure Purify, which relies on flow techniques. The flow

techniques follow ideas from [11] and extend the approach used in [9] (see the remark at

the end of Section 2.3 for more specific comments).

The proof of Theorem 1.2 is very similar to the proof of a hardness result of Feige and

Kilian [11, Theorem 2] on finding an independent set of size Ω(n) in a semirandom graph.

The main difference is that the semirandom graph G∗
n,p,k treated in the present paper is

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 737

a bit less adversarial than the model studied in [11], as in G∗
n,p,k there are random edges

present inside V \ S (see Step M2 of the definition of G∗
n,p,k).

An extended abstract version of this paper, from which most of the proofs are omitted,

has appeared in the proceedings of STACS 2003.

1.4. Notation

Throughout, we let V = {1, . . . , n}. If X is a set, then #X signifies the cardinality of X.

We omit floor and ceiling signs when these do not affect the arguments. Moreover, we

frequently assume implicitly that n is sufficiently large.

Let G be a graph. We let V (G) (resp. E(G)) denote the vertex (resp. edge) set of

G. For X ⊂ V (G), we let N(X) = NG(X) denote the neighbourhood {y ∈ V (G)| {x, y} ∈
E(G) for some x ∈ X} of X. Furthermore, G[X] signifies the subgraph of G induced on X.

By 〈ξ, η〉 we denote the scalar product of two vectors ξ, η. Furthermore, �1 denotes the

vector with all components equal to 1 (in any dimension).

If G = G∗
n,p,k , then G0 = Gn,p,k denotes the random share contained in G, and S signifies

the hidden independent set (see the definition M1–M3 of G∗
n,p,k). Similarly, if G = G∗

n,p,

then we let G0 denote the random graph Gn,p contained in G (see the definition M1′–M2′

of G∗
n,p).

2. The algorithm Find

2.1. Outline

Throughout Section 2, we assume that ln(n)2 � np � 0.99n. Suppose that the input graph

is G = G∗
n,p,k , where k � C(n/p)1/2 for a sufficiently large constant C . As a first step,

Find(G, k) runs a subroutine Filter, which uses semidefinite programming in order to

determine a set I of vertices of G that contains a large share of the hidden independent

set S but only a few vertices of V \ S . If Filter succeeds in finding such a set I , then

Find applies a further subroutine Purify to I in order to recover the entire set S (or

another independent set of size � k). The subroutine Purify relies on a certain expansion

property enjoyed with high probability by the random share G0 contained in the input

instance G.

However, since Find is supposed to find an independent set of size k on any input

graph G with α(G) � k, Find must take into account that the expansion property may be

violated to a certain degree. To this end, Find uses the variable η. In the beginning, Find

assumes that the expansion property is perfectly satisfied (η = 0). If the input graph resists

the attempts of Find to exhibit an independent set of size � k, then Find increases η

slowly. As the parameter η grows, the running time of the subroutine Purify increases, as

does the probability that Purify succeeds. Finally, if Purify does not manage to exhibit

an independent set of size � k for any value of η � k/2, then Find calls the subroutine

Exact that will always find an independent set of size � k (if there is any).

The procedure Filter and its analysis will be given in Section 2.2. Showing that

the output I of Filter with extremely high probability contains most vertices of S is

the crucial point in the analysis of Find. Then, in Sections 2.3 and 2.4 we present the

procedures Purify and Exact. Finally, we prove Theorem 1.1 in Section 2.5.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

738 A. Coja-Oghlan

Algorithm 1. Find(G, k)

Input: A graph G = (V , E) and an integer 1 � k � n. Output: A subset of V .

1. Let I = Filter(G, k). If I = ∅, then terminate with output ∅.

2. For η = 0, . . . , k/2 do:

3. If S = Purify(G, I, η, k) �= ∅, then output an arbitrary element of S.

4. Output S̃ = Exact(G, k).

Figure 1. The algorithm Find.

Algorithm 2. Filter(G, k)

Input: A graph G = (V , E) and an integer 1 � k � n. Output: A subset I of V .

1. Compute a vector x = (xv)v∈V ∈ TH(G) such that 〈�1, x〉 � ϑ(G) − 1. If 〈�1, x〉 < k − 1, then

return ∅.

2. Return I = {v ∈ V | xv � 2/3}.

Figure 2. The algorithm Filter.

2.2. The subroutine Filter

The procedure Filter is based on computing the Lovász number ϑ(G), which can be

considered as an SDP relaxation of the independence number. Let us briefly recall the

definition of ϑ (see [16, 22] for thorough treatments). Let G = (V , E) be a graph, and let

d be a positive integer. An orthogonal labelling of G is a tuple (av)v∈V of vectors in R
d

such that, for any two vertices v, w ∈ V , v �= w, with {v, w} �∈ E we have 〈av, aw〉 = 0 (this

definition follows [22]). The cost of a d-dimensional vector a = (a1, . . . , ad)
T is

c(a) =

{
a2

1‖a‖−2 if a �= 0,

0 otherwise.

Let TH(G) be the set of all vectors (xv)v∈V ∈ R
n with nonnegative coordinates such that

for all orthogonal labellings (av)v∈V of G we have
∑

v∈V xvc(av) � 1. Then TH(G) ⊂ [0, 1]n

is a compact convex set, which can be seen as a relaxation of the stable set polytope

(see [16]). The Lovász number of G is ϑ(G) = max{〈�1, x〉| x ∈ TH(G)}. It is well known

that α(G) � ϑ(G) � χ(Ḡ), i.e., ϑ(G) is ‘sandwiched’ between the independence number of G

and the chromatic number of the complement of G. Moreover, an immediate consequence

of the definition is that ϑ is monotone:

If H1 = (V , E1) is a subgraph of H2 = (V , E2), then ϑ(H2) � ϑ(H1). (2.1)

Using the ellipsoid method, one can compute a vector x′ ∈ TH(G) such that ϑ(G) −
〈�1, x′〉 � 1 in polynomial time [16, p. 294].

The following proposition summarizes the analysis of Filter.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 739

Proposition 2.1. Suppose that k � C(n/p)1/2 for a sufficiently large constant C > 0. Let I

be the output of Filter(G, k).

(1) For all input graphs G, I is an independent set. Moreover, if I = ∅, then α(G) < k.

(2) If G = G∗
n,p,k , then with probability � 1 − exp(−20k) we have

#I ∩ S � 99k

100
. (2.2)

(3) If G = G∗
n,p, then with probability � 1 − exp(−20k) we have I = ∅.

Thus, Proposition 2.1 claims that Filter(G∗
n,p,k) w.h.p. finds an independent set I that

contains most vertices of the hidden independent set S . In addition, we shall see in

Section 2.3 that such a set (most probably) contains only a few vertices of V \ S .

Lemma 2.2. For any graph G the set I computed in Step 2 of Filter(G, k) is independent.

Proof. Let G = (V , E). Assume that there are two vertices v1, v2 ∈ I such that {v1, v2} ∈ E.

Then we obtain a (one-dimensional) orthogonal labelling (av)v∈V of G by letting av1
=

av2
= 1, and av = 0 for v ∈ V \ {v1, v2}. Let x ∈ TH(G) be the vector computed in Step 1

of Filter. As v1, v2 ∈ I , we obtain 1 �
∑

v∈V xvc(av) = xv1
+ xv2

� 4
3
, a contradiction.

Lemma 2.3. Suppose that k � C(n/p)1/2 for some sufficiently large constant C > 0.

Let G = G∗
n,p,k . Then, with probability � 1 − exp(−20k) the set I computed in Step 2 of

Filter(G, k) satisfies #I ∩ S > 99k/100.

To prove Lemma 2.3, we need the following fact concerning the Lovász number of Gn,p.

Lemma 2.4. Assume that t > c1(n/p)1/2 for a certain constant c1 > 0. Then

P
(
ϑ(Gn,p) > t

)
� exp(−20t).

Proof. This is an immediate consequence of [8, Theorems 1 and 4].

Lemma 2.4 shows that w.h.p. ϑ(Gn,p) is much smaller than ϑ(G∗
n,p,k) � k � C(n/p)1/2

(provided that C is large enough).

Proof of Lemma 2.3. As a first step, we shall prove that in the case #I ∩ S � 99k/100

we have ϑ(G0 − S) � k
300

− 1. Indeed, let x = (xv)v∈V ∈ TH(G) be the vector computed in

Step 1. If #I ∩ S � 99k/100, then∑
s∈S

xs =
∑
s∈I∩S

xs +
∑
s∈S\I

xs � #I ∩ S +
2#S \ I

3
� 299k

300
. (2.3)

Since (xv)v∈V\S ∈ TH(G − S), we have∑
v∈V\S

xv � ϑ(G − S). (2.4)

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

740 A. Coja-Oghlan

Combining (2.3) and (2.4), we obtain

k � α(G) � ϑ(G) � 1 +
∑
v∈V

xv � 1 + ϑ(G − S) +
299k

300
� 1 + ϑ(G0 − S) +

299k

300
,

where the last inequality follows from the monotonicity (2.1) of ϑ. Thus, ϑ(G0 − S) �
k

300
− 1.

To conclude the proof of Lemma 2.3, observe that G0 − S is just a random graph Gn−k,p.

Therefore, if C � 400c1, then Lemma 2.4 yields our assertion.

Proof of Proposition 2.1. The first two assertions in Proposition 2.1 follow from Lem-

mas 2.2 and 2.3 immediately. Now assume that the input graph is G = G∗
n,p. Then, by

Lemma 2.4 and by the monotonicity of the Lovász number (2.1), P
(
ϑ(G) � k − 1

)
�

exp(−20k). Hence, with probability � 1 − exp(−20k) Filter(G∗
n,p, k) outputs ∅.

2.3. The subroutine Purify

Let G = G∗
n,p,k be the input of Find. Suppose that Filter(G, k) has found an independent

set I that contains 99% of the vertices in S (see Proposition 2.1). To recover the entire

set S , Purify makes use of network flow techniques and the fact that the random bipartite

graph consisting of the V \ S–S-edges of G0 is a good expanding graph w.h.p.; that is,

w.h.p. every set T ⊂ V \ S of cardinality � k
2d

has at least d#T neighbours in S , for all d

in a certain range.

Since Purify only relies on the aforementioned expansion property, we analyse the

procedure in a slightly more general setting. Let G = (V , E) be a graph, and let R ⊂ V be

a set of cardinality k � 1. To measure how far from being a good expanding graph G is

(w.r.t. the sets R and V \ R), we define the defect defG(R):

D1. If there is some U ⊂ R such that #U � k
2

and #V \ (R ∪ N(U)) > k2

200n
, then we let

defG(R) = k
2
.

D2. Otherwise, we let defG(R) be the least number 0 � η � k
2

such that for all 6 � d �
�50n/k� the following holds: every set T ⊂ V \ R of size #T � k

2d
has a d-fold

matching to R with defect � η.

Here for T ⊂ V and 6 � d � � 50n
k

� a d-fold matching from T to R with defect � η is a

set M of T–R-edges that satisfies the following conditions.

• At least #T − η vertices in T are incident with precisely d edges in M. The � η

remaining vertices in T , which are called defect vertices , are not incident with an edge

in M.

• No vertex in R is incident with more than one edge in M.

Thus, a d-fold matching consists of disjoint stars on d + 1 vertices with centres in T . The

following lemma is an easy consequence of Hall’s theorem.

Lemma 2.5. Let 6 � d � � 50n
k

�. If all sets X ⊂ V \ R,#X � k
2d

satisfy #N(X) ∩ R �
d#X − η, then every set T ⊂ V \ R of cardinality � k

2d
admits a d-fold matching to R with

defect � η.

The following proposition summarizes the analysis of Purify.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 741

Proposition 2.6. Let G = (V , E) be a graph, and let R ⊂ V be an independent set of cardin-

ality k. Suppose that defR(G) < k
2
. Let I ⊂ V be an independent set such that #I ∩ R � 99k

100
.

Let 0 � η � k/2. Then the following holds.

(a) If η � defR(G), then the output S of Purify(G, I, η, k) contains R as an element.

(b) The running time of Purify(G, I, η, k) is � nO(1)
(
k
η

)14
.

To state the procedure Purify, we need some notation. A network N consists of a vertex

set V (N), an arc set A = A(N) ⊂ V (N) × V (N), a source s ∈ V (N), a sink t ∈ V (N) \ {s},

and a capacity c : A → Z�0. A flow in N is a map f : A → Z�0 such that f(a) � c(a) for

all a ∈ A, satisfying Kirchhoff’s law

∀v ∈ V (N) \ {s, t} :
∑

(v,w)∈A
f(v, w) =

∑
(w,v)∈A

f(w, v). (2.5)

Moreover, the value of f in N is w(f) =
∑

(s,v)∈A f(s, v) −
∑

(v,s)∈A f(s, v). A maximum flow is

a flow of maximum value, and can be computed in polynomial time [27, pp. 154–155]. If f1,

f2 are flows in N, then we can define a flow f1 + f2 by letting (f1 + f2)(a) = f1(a) + f2(a),

provided that f1(a) + f2(a) � c(a) for all a ∈ A.

Purify(G, I, η, k) proceeds in two phases. In the first phase (Steps 1–2), Purify attempts

to identify and remove the vertices in I \ R, thereby obtaining a set I ′. We analyse the first

phase in Lemma 2.7 below. In the second phase (Steps 3–8), the aim is to enlarge I ′ ⊂ R

several times, each time adding to the current set I ′′ ⊂ R at least half of the remaining

vertices in R \ I ′′. Thus, after at most log2(n) steps, we have I ′′ = R, i.e., R is recovered.

Lemma 2.8 is devoted to the analysis of the second phase. Observe that the output S of

Purify either consists of independent sets of size k or is empty.

Lemma 2.7. Under the assumptions of Proposition 2.6 (a) there exists a set D ⊂ I , #D � η,

such that the set I ′ computed in Step 2 of Purify(G, I, η, k) satisfies I ′ ⊂ R and #I ′ � 97k
100

.

Consider the network N constructed in Step 2 of Purify. Given a flow g in N and a set

U ⊂ I \ D, we define the restricted flow gU as follows. For every edge {v, w} ∈ E, where

v ∈ I \ D and w ∈ V , we let

gU(sv, tw) =

{
0 if v ∈ I \ (D ∪ U),

g(sv, tw) if v ∈ U.

Furthermore,

gU(s, sv) =
∑

u∈V :{u,v}∈E

gU(sv, tu) (v ∈ I \ D),

gU(tw, t) =
∑

u∈I\D:{u,w}∈E

gU(su, tw) (w ∈ V).

Thus, gU transports the same amount of flow from s through (sv)v∈U via (tw)w∈V to t as

g does, but it does not carry any flow through (sv)v∈I\(D∪U). Note that the flow that gU
sends through the arcs (s, sv) and (tw, t) is simply determined by Kirchhoff’s law (2.5). For

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

742 A. Coja-Oghlan

Algorithm 3. Purify(G, I, η, k)

Input: A graph G = (V , E), integers η, k, I ⊂ V . Output: A set S of subsets of V .

1. Let S = ∅. If #I > 2k, then return ∅.

Otherwise, for all D ⊂ I , #D � η do

2. Construct the following network N:

• The vertices of N are s, t, sv for v ∈ I \ D, and tw for w ∈ V .

• The arcs of N are (s, sv) for v ∈ I \ D, (tw, t) for w ∈ V , and (sv, tw) if {v, w} ∈ E.

• The capacities are c(s, sv) = � 50n
k

�, c(tw, t) = 1, c(sv, tw) = 1 if {v, w} ∈ E.

Compute a maximum flow f in N, let L = {v ∈ I \ D| f(s, sv) = c(s, sv)}, and set

I ′ = I \ (L ∪ D).

3. If Ṽ = V \ N(I ′) satisfies #Ṽ � 2k then

4. For each set Y ⊂ Ṽ , #Y � 6η, such that I ′ ∪ Y is an independent set of

cardinality k add I ′ ∪ Y to S.

5. For all D′ ⊂ Ṽ , #D′ � η, do

Let I ′′ = I ′. For τ = 0, 1, . . . , �log2(n)� do

Let V ′ = V \ (N(I ′′) ∪ D′). Construct the following network N ′.

• The vertices of N ′ are s′, t′, s′
v for v ∈ V ′ \ I ′′, and t′w for w ∈ V ′.

• The arcs of N ′ are (s′, s′
v) for v ∈ V ′ \ I ′′, (t′w, t

′) for w ∈ V ′, and

(s′
v , t

′
w) if {v, w} ∈ E.

• The capacities are c(s′, s′
v) = 6, c(t′w, t

′) = 1, c(s′
v , t

′
w) = 1 if {v, w} ∈

E.

Compute a maximum flow f′ in N ′. Let

L′ = {v ∈ V ′ \ I ′′| f′(s′, s′
v) = c(s′, s′

v)}

and I ′′ = V ′ \ L′. If I ′′ is an independent set of cardinality k then add

I ′′ to S.

6. Return S.

Figure 3. The algorithm Purify.

a flow g′ in the network N ′ constructed in Step 5 and U ′ ⊂ V ′ \ I ′′ we define the restricted

flow g′
U ′ analogously.

Proof of Lemma 2.7. Let d = � 50n
k

�. Since defR(G) < k
2

and because I is an independent

set, we have #I \ R � k
2d

(by D1). Hence, by Lemma 2.5 the set I \ R admits a d-fold

matching M∗ to R with defect � η. Let D be the set of defect vertices.

The matching M∗ induces a flow h in the network N as follows. For each e = {v, w} ∈
M∗, where v ∈ I \ (R ∪ D), w ∈ R, we define a flow he in N by letting

he(sv, v) = he(v, w) = he(w, tw) = 1,

he(a) = 0 for all arcs a �∈ {(sv, v), (v, w), (w, tw)}.

Then, h =
∑

e∈M∗ he is a flow of value w(h) = d#I \ (R ∪ D).

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 743

Let f be the maximum flow computed in Step 2 of Purify(G, I, η, k). Then the restricted

flow fI\(R∪D) satisfies

w(fI\(R∪D)) = d#I \ (R ∪ D). (2.6)

For fI∩R + h is a flow in N of value w(fI∩R + h) = w(fI∩R) + w(h), because R is an

independent set. Hence, (2.6) follows from the maximality of f. As a consequence, L ⊃
I \ (R ∪ D), so that I ′ ⊂ R. Since n � d#L � 50n#L

k
, we conclude that #L � k

50
. Therefore,

#I ′ � 97k
100

.

Lemma 2.8. Suppose that the assumptions of Proposition 2.6 (a) hold, and that the set I ′

for which Step 3 is encountered satisfies #I ′ � 97k
100

and I ′ ⊂ R. Then the output S of Purify

contains R as an element.

Proof. Since defR(G) < k
2
, we have #V \ (R ∪ N(I ′)) � k2

200n
by D1, whence #Ṽ �

k + k2

200n
� 3k

2
. We claim that either #R \ I ′ � 6η or #Ṽ \ R � #R\I ′

3
. For assume #Ṽ \ R >

#R\I ′

3
. Since #R \ I ′ < 3k

100
, there exists T ⊂ Ṽ \ R such that #R\I ′

3
� #T � k

100
. Con-

sequently, there is a 6-fold matching M from T to R with defect � η. Since there is no

T–I ′-edge, we have

#R \ I ′ � 6(#T − η) � 6

(
#R \ I ′

3
− η

)
= 2#R \ I ′ − 6η.

Hence, 6η � #R \ I ′.

If 6η � #R \ I ′, Step 4 will add R to S. Thus, let us assume that #Ṽ \ R � #R\I ′

3
� k

100
.

Then, there is a 6-fold matching from Ṽ \ R to R \ I ′ with defect � η. Letting D′ be the

set of defect vertices, I ′′ = I ′, and V ′ = V \ (D′ ∪ N(I ′′)), we have a 6-fold matching M∗

from V ′ \ R to R \ I ′′ with defect 0.

Let f′ be the maximum flow computed in Step 5 of Purify, and let L′ = {v ∈ V ′ \
I ′′| f′(s′, s′

v) = 6}. We claim that

#L′ ∩ (R \ I ′′) � #R \ I ′′

36
. (2.7)

For if v ∈ L′ ∩ (R \ I ′′), then there are at least 6 vertices w ∈ V ′ \ R such that f′(s′
v, t

′
w) = 1.

As c(t′w, t
′) = 1 for all w, we get #L′ ∩ (R \ I ′′) � #V ′\R

6
. Further, we have #V ′ \ R �

1
6
#R \ I ′′, because M∗ induces a 6-fold matching with defect 0 from V ′ \ R to R \ I ′′.

Finally, we claim L′ ⊃ V ′ \ R. For consider the flow h in N ′ induced by the matching M∗

as in the proof of Lemma 2.7. Let f′
R be the restriction of f′ to R. Since R is an independent

set, f′
R + h is a flow in N ′. Moreover, w(f′

R + h) = w(f′
R) + w(h) � w(f′). Hence, letting

f′
V ′\R signify the restriction of f′ to V ′ \ R, we obtain w(f′

V ′\R) � w(h) = 6#V ′ \ R. As a

consequence, L′ ⊃ V ′ \ R. Thus, (2.7) shows that after at most �log2 n� iterations the set

R will be added to S.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

744 A. Coja-Oghlan

Algorithm 4. Exact(G, k)

Input: A graph G = (V , E) and an integer 1 � k � n. Output: A subset of V .

1. If k � n/10 then

For all S̃ ⊂ V , #S̃ = k
ln(n/k)

, do

For all Y ⊂ V , #Y � k
ln(n/k)

, do

If V \ (N(S̃) ∪ Y) is an independent set of cardinality � k, then return with

output V \ (N(S̃) ∪ Y).

If #V \ N(S̃) < k for all S̃ ⊂ V , #S̃ = k
ln(n/k)

, then return with output ∅.

2. For all S̃ ⊂ V of cardinality k do

If S̃ is an independent set, return with output S̃ .

3. Return ∅.

Figure 4. The algorithm Exact.

Proof of Proposition 2.6. The first assertion in Proposition 2.6 follows from Lemmas 2.7

and 2.8. Furthermore, the running time of Purify is at most

nO(1)

(
2k

η

)((
2k

η

)
+

∑
l�6η

(
2k

l

))
� nO(1)

(
2k

η

)7

� nO(1)

(
k

η

)14

,

because η � k/2.

Finally, we investigate the distribution of defG(S) for G = G∗
n,p,k . The proof of the

following lemma will be given in Section 4.

Lemma 2.9. Suppose that k � C(n/p)1/2 for a sufficiently large constant C > 0. Let η � 0.

Then P
(
defG∗

n,p,k
(S) � η

)
�

(
k
η

)−20
.

Remark. The network flow techniques used in the procedure Purify extend the matching

techniques of Feige and Kilian [11]. Such an extension is necessary in order to obtain a

polynomial expected running time, as we need to ‘correct’ a small defect with only a little

effort (this is precisely what the parameter η is intended for). Furthermore, Purify refines

the flow techniques used by the author in [9]; as given in [9], the flow techniques do not

apply to the case when the independent set has size o(n). The procedure Purify developed

in this paper has also been useful in the context of colouring semirandom graphs [7].

2.4. The subroutine Exact

If Filter and Purify were not able to either exhibit an independent set of size � k

or prove the absence of such a set, Find executes the subroutine Exact. Throughout, we

assume that k � C(n/p)1/2 for a sufficiently large constant C > 0.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 745

Proposition 2.10. Let G = (V , E) be a graph. If α(G) � k, then Exact(G, k) outputs an

independent set of cardinality � k. On the other hand, if α(G) < k, then Exact(G, k) outputs

∅. If k < n/10 and either G = G∗
n,p,k or G = G∗

n,p, then the probability that Exact(G, k) runs

Step 2 is �
(
n
k

)−1
.

The next two lemmas bound the probability that Exact(G∗
n,p,k, k) or Exact(G∗

n,p, k)

executes Step 2.

Lemma 2.11. Suppose that G = G∗
n,p,k and k � n/10. Then, with probability � 1 −

(
n
k

)−1

Step 1 of Exact(G) finds an independent set of cardinality � k.

Proof. Since V = {1, . . . , n} is an ordered set, we can consider the set S0 consisting of the

k/ ln(n/k) smallest vertices in S . Let Y0 = {v ∈ V \ S | N(v) ∩ S0 = ∅}. If #Y0 � k/ ln(n/k),

Step 1 of Exact will eventually try S̃ = S0 and Y = Y0, thereby recovering S . Moreover,

P

(
#Y0 � k

ln(n/k)

)
�

(
n
k

ln(n/k)

)
(1 − p)

k2

ln2(n/k) �
(

e ln(n/k)n

k

) k
ln(n/k)

exp

(
− k2p

ln2(n/k)

)

� exp

(
3k − k2p

ln2(n/k)

)
� exp

(
−5k ln(n/k)

)
�

(
n

k

)−1

,

because kp � (np)1/2 � 10 ln(np)3 � 10 ln(n/k)3.

Lemma 2.12. Let k < n/10. The probability that in G = G∗
n,p there is a set S̃ ⊂ V of

cardinality � k/ ln(n/k) such that #V \ N(S̃) � k is at most
(
n
k

)−1
.

Proof. If S̃ ⊂ V has cardinality k
ln(n/k)

and #V \ N(S̃) � k, then #V \ (S̃ ∪ N(S̃)) � k
2
,

because ln(n/k) > 2. Hence, the probability that Gn,p admits a set S̃ as in the lemma is at

most (
n

k/ ln(n/k)

)(
n

k/2

)
(1 − p)

k2

2 ln(n/k) � exp

(
6k ln(n/k) − k2p

2 ln(n/k)

)

� exp
(
−5k ln(n/k)

)
�

(
n

k

)−1

,

because kp � 100 ln(n/k)3.

Proof of Proposition 2.10. Suppose that k � n/10 and α(G) � k, and let S be an

independent set of cardinality k. Let S̃ ⊂ S be a subset of cardinality k
ln(n/k)

. Then

V \ N(S̃) ⊃ S , whence either Step 1 or Step 2 of Exact finds an independent set of

cardinality � k. On the other hand, if α(G) < k, then Exact(G, k) obviously outputs ∅. The

assertion concerning the probability that Step 2 gets executed follows from Lemmas 2.11

and 2.12.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

746 A. Coja-Oghlan

2.5. Proof of Theorem 1.1

Let G = (V , E) be a graph. It is an easy consequence of Proposition 2.10 and the fact that

ϑ(G) � α(G) that Find(G, k) outputs an independent set of cardinality � k if α(G) � k,

and outputs ∅ otherwise. Therefore, the remaining task is to bound the expected running

time of Find(G∗
n,p,k, k) and of Find(G∗

n,p, k).

Let us first deal with G = G∗
n,p,k . Set

η∗ =

{
k/2 if the output I of Filter does not satisfy (2.2),

defG(S) otherwise.

By Proposition 2.1 and Lemma 2.9,

P(η∗ � η) �
(
k

η

)−16

. (2.8)

For η̃ = 0, 1, . . . , k/2, let Eη̃ be the expected running time of Find conditioned on η∗ = η̃.

If η∗ < k/2, then the output I of Filter(G, k) satisfies the assumptions of Proposition 2.6.

Therefore, by Proposition 2.6 Purify(G, I, η∗, k) outputs an independent set of cardinality

� k. Hence, Find(G, k) finds an independent set of cardinality � k before the variable η

exceeds η∗. Again by Proposition 2.6 the total running time of Find(G, k) is � nO(1)
(
k
η∗

)14
.

Thus, for η̃ < k/2 we have

Eη̃ � nO(1)

(
k

η̃

)14

. (2.9)

If η∗ = k/2, then either Steps 1–3 of Find(G, k) succeed in finding an independent set of

cardinality � k, or Find calls Exact. By Proposition 2.6, the total running time before

Find calls Exact is � nO(1)214k . Furthermore, the running time of Step 1 of Exact is

� nO(1)
(

n
k/ ln(n/k)

)2 � nO(1) exp(6k). If k < n/10, then by Proposition 2.10 the expected time

spent on executing Step 2 of Exact is polynomial. On the other hand, if k � n/10, then

the running time of Step 2 of Exact is nO(1)
(
n
k

)
� nO(1) exp(4k). Hence,

Ek/2 � nO(1)
(
214k + exp(6k) + exp(4k)

)
� nO(1)214k. (2.10)

Thus, (2.8), (2.9) and (2.10) entail that the expected running time of Find(G∗
n,p,k, k) is at

most

k/2∑
η̃=0

Eη̃P
(
η∗ = η̃

)
� nO(1)

(
1 +

∑
0<η̃<k/2

(
k

η̃

)−1

+ 2−k

)
= nO(1).

As for G = G∗
n,p, note that the running time of Find(G, k) is polynomial if Filter(G, k)

outputs ∅. By Proposition 2.1,

P
(
Filter(G, k) outputs ∅

)
� 1 − exp(−20k). (2.11)

Furthermore, if Filter(G, k) does not output ∅, then by Proposition 2.6 Find spends

time � nO(1) exp(14k) on executing Steps 2–3. Hence, (2.11) shows that the expected time

consumed by Steps 2–3 of Find is polynomial. Finally, Find calls Exact(G, k) (provided

that no independent set of cardinality � k has been found before). Step 1 of Exact

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 747

consumes time � exp(6k). Furthermore, if k < n/10, then by Proposition 2.10 the expected

running time of Step 2 of Exact is nO(1), and if k � n/10, then the running time of Step 2

of Exact is � nO(1)
(
n
k

)
� exp(4k). Thus, invoking (2.11), we conclude that the expected

running time of Find(G∗
n,p, k) is

� nO(1)
(
1 + exp(−16k)

(
1 + exp(4k) + exp(6k) + exp(14k)

))
= nO(1),

thereby proving Theorem 1.1.

3. Proof of Theorem 1.2

Remember that deciding whether a given graph G′ = (V ′, E ′) satisfies α(G′) � #V ′/2 is NP-

hard, and consider an instance G′ = (V ′, E ′) of this problem. Let N = nε/2, and suppose

that V ′ = {1, . . . , 2N}. Let V2 = {2N + 1, . . . , k + N} and V1 = {k + N + 1, . . . , n}. Then

V ′, V1, V2 ⊂ V are disjoint, and #V1 = n − k − N, #V2 = k − N. We obtain a graph G′′

with vertex set V by including all edges E ′ into G′′ and connecting every vertex in v ∈ V1

with all vertices in V \ {v}. Let σ be a permutation of V chosen uniformly at random,

and let H = (V , E(H)) be the graph with edge set E(H) = {{σ(v), σ(w)}| {v, w} ∈ E(G′′)};

that is, H is a randomly permuted copy of G′′. Then α(H) � k if and only if α(G′) � N,

so that deciding whether α(G) � k is NP-hard.

We claim that in the case α(G′) � N the adversary can convert the random graph Gn,p,k

into the graph H w.h.p. Thus, let G0 = Gn,p,k , and let S be the independent set planted in

G0. Let X be the set of all of vertices v ∈ V \ S that have no neighbour in S in the graph

G0. Then #X is binomially distributed with mean n(1 − p)k ∼ nε. By Chernoff bounds [18,

p. 26], nε/2 � #X � 2nε w.h.p. Moreover, the expected number of edges spanned by the

vertices in X is E(#E(G0[X])) �
(

2nε

2

)
p � 2n2εp = o(1), whence X is an independent set

w.h.p. Since the adversary does not need to work in polynomial time, it can look for an

independent set S ′ of cardinality N in G′. The adversary identifies the vertices in S ′ with

N distinct randomly chosen vertices in S and the remaining vertices of G′ with N distinct

randomly chosen vertices Y ⊂ X; let τ : V ′ → V be the resulting injective map. Then,

in order to embed a copy of G′ into G0, for each edge {v, w} ∈ E ′ the adversary inserts

the edge {τ(v), τ(w)}. Finally, the adversary connects every vertex in V \ (S ∪ Y) with all

other vertices. Let G be the resulting graph. Then, the distribution of G coincides with

the distribution of H .

Consequently, if we had an algorithm A that w.h.p. finds an independent set of

cardinality k in G∗
n,p,k , we would obtain the following randomized algorithm with one-

sided error for deciding whether α(G′) � N. Construct the graph H . If A(H) finds an

independent set of cardinality � k, then answer ‘α(G′) � N’. Otherwise, answer ‘probably

α(G′) < N’.

4. Proof of Lemma 2.9

In order to prove Lemma 2.9, we need some technical lemmas. Throughout, we assume

that np � ln(n)2 and that k � C(n/p)1/2 for some large constant C > 0.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

748 A. Coja-Oghlan

Lemma 4.1. Let G = G∗
n,p,k . With probability � 1 − exp(−21k) the graph G0 enjoys the

following property. If T ⊂ V \ S , #T � 100/p, and U ⊂ S , #U � k/2, then in G0 there is

a T–U-edge.

Proof. We may assume that #U = k/2 and #T = 100/p. The probability that in G0

there are sets T and U as above with no edge joining T and U is at most(
n

100/p

)(
k

k/2

)
(1 − p)

50k
p � exp

(
100 ln(np)

p
− 49k

)
� exp

(
−21k

)
,

because kp � (np)1/2 � 100 ln(np).

Lemma 4.2. The probability that in G0 = Gn,p,k there are η � 1 vertices in V \ S that have

< kp/2 neighbours in S is � n−25η .

Proof. Let v ∈ V \ S . Since #N(v) ∩ S is binomially distributed with mean kp, Chernoff

bounds (see [18, p. 26]) yield P(#N(v) ∩ S � kp/2) � exp(−kp/8). As np � ln(n)2, the

estimate (
n

η

)
exp

(
−kpη

8

)
� nη exp

(
−kpη

8

)
� exp

(
−C(np)1/2η

16

)
� n−25η

proves our assertion.

Lemma 4.3. Let V1 ⊂ V be a subset of cardinality n1, and let V2 = V \ V1, #V2 = n2.

Let γ > 0 be an arbitrary constant, and let 2 � d � n2/10. Then there exists a number

ω0 = ω0(γ) such that the following holds. Let ω = ω0 max{d, ln n}, and let H be a random

bipartite graph obtained as follows. Every vertex in V1 chooses a set of at least ω neighbours

in V2 uniformly at random; these choices occur independently for all vertices in V1. Then,

for all η ∈ {0, 1, . . . , n2/2} we have

P

(
∃T ⊂ V1 : #T � n2

2d
∧ #NH (T) < d#T − η

)
�

(
n2

η

)−γ

.

Proof. We are to bound the probability that there is a set T ⊂ V1, 1 � #T = t � n2

2d

that admits a set U ⊂ V2, #U = dt − η, such that N(T) ⊂ U. There are at most
(
n1

t

)(
n2

dt

)
possible choices of T and U. Given T and U, the probability that for v ∈ T we have

N(v) ⊂ U is at most (
#U

ω

)(
n2

ω

)−1

�
ω−1∏
j=0

dt − j

n2 − j
�

(
dt

n2

)ω

.

Consequently, P(N(T) ⊂ U) �
(
dt
n2

)tω
. Thus, we are to show that

n2
2d∑

t=max{1,� η
d

�}

(
n2

η

)γ(
n1

t

)(
n2

dt

)(
dt

n2

)tω

� 1.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 749

Since η � dt � n2

2
, we have

(
n2

η

)γ �
(
n2

dt

)γ
. Therefore,

(
n2

η

)γ(
n1

t

)(
n2

dt

)(
dt

n2

)tω

�
((

en2

dt

)γd
en1

t

(
en2

dt

)d(
dt

n2

)ω)t

�
(
dt

n2

)ω0dt/4(
exp((γ + 1)d + 1)

n1

t
2−ω/4

)t

�
(
dt

n2

)ω0dt/4

,

where the last inequality follows from the fact that ω � ω0 ln(n). Hence,

�(n2/d)1/2�∑
t=max{1,�η/d�}

(
n2

η

)γ(
n1

t

)(
n2

dt

)(
dt

n2

)tω

�
�(n2/d)1/2�∑

t=max{1,�η/d�}

(
dt

n2

)ω0dt/4

�
(
n2

d

)1/2(
d

n2

)ω0d/8

� 1

2
.

Moreover, we have

� n2
2d �∑

t=�(
n2
d

)1/2�

(
n2

η

)γ(
n1

t

)(
n2

dt

)(
dt

n2

)tω

�
� n2

2d �∑
t=�(

n2
d

)1/2�

2−ω0dt/4 � 2−(n2d)1/2 � 1

2
,

thereby proving the lemma.

Proof of Lemma 2.9. Given G = G∗
n,p,k , let W = {v ∈ V \ S | #N(v) ∩ S < kp/2}, G′ =

G0 − W , and ω = kp/2. Let 6 � d � � 50n
k

�. Then in G′ every vertex in V \ (S ∪ W) has

chosen � ω neighbours in S uniformly at random and independently of all others.

Choosing C sufficiently large, we can ensure that ω � ω0(25)d, where ω0(25) is as in

Lemma 4.3. Let η > 0, η1 ∈ {0, 1, . . . , η}, and η2 = η − η1. By Lemma 4.2,

P(#W = η1) � n−25η1 . (4.1)

Let us call a set T ⊂ V \ (S ∪ W) η2-bad if #T � k
2d

and #N(T) ∩ S < d#T − η2. If we

condition on #W = η1, then Lemma 4.3 yields that the probability that there is an η2-bad

T is �
(
k
η2

)−25
. Therefore, (4.1) entails that

P

(
∃T ⊂ V \ S, #T � k

2d
: T has no d-fold matching with defect � η

)

�
η∑

η1=0

P(there is an η2-bad T |#W = η1)P(#W = η1)

�
η∑

η1=0

n−25η1

(
k

η2

)−25

� (2np)−1

(
k

η

)−20

.

Thus, the probability that condition D2 is violated for a certain value of η is � 1
2

(
k
η

)−20
.

To bound the probability that D1 is violated, we invoke Lemma 4.1.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

750 A. Coja-Oghlan

5. Conclusion

In contrast to the algorithm of Feige and Krauthgamer [12], Find(G∗
n,p,k, k) does not

certify the optimality of its output. However, one could modify the algorithm easily

in order to guarantee that the size of the independent set found by the algorithm

is within a factor of 1 + ε from the independence number, for an arbitrarily small

constant ε > 0. Indeed, a similar argument as in the proof of Lemma 2.3 shows that

P(ϑ(G∗
n,p,k) > (1 + ε)k) � exp(−20k), provided that k � C(n/p)1/2 for a sufficiently large

constant C = C(ε). Hence, with probability � 1 − exp(−20k) we obtain a guarantee that

α(G∗
n,p,k) � (1 + ε)k.

Although Theorem 1.2 gives a lower bound on the size of independent sets that can

be recovered within polynomial expected time, there remains a gap between this lower

bound and the upper bound provided by Find. Therefore, it is an open problem to either

construct an algorithm that beats the upper bound provided by Find, or to prove a better

lower bound. An algorithm that can distinguish efficiently between graphs Gn,p,k , with

planted independent sets of size k = o(n/p)1/2, and random graphs Gn,p might also lead

to a better performance guarantee for colouring Gn,p than provided by [8, 10, 23].

References

[1] Alon, N. and Kahale, N. (1998) Approximating the independence number via the ϑ-function.

Math. Programming 80 253–264.

[2] Alon, N., Krivelevich, M. and Sudakov, B. (1998) Finding a large hidden clique in a random

graph. Random Struct. Alg. 13 457–466.

[3] Alon, N., Krivelevich, M. and Vu, V. H. (2002) On the concentration of the eigenvalues of

random symmetric matrices. Israel J. Math. 131 259–267.

[4] Blum, A. and Spencer, J. (1995) Coloring random and semirandom k-colorable graphs.

J. Algorithms 19 203–234.

[5] Bollobás, B. (2001) Random Graphs, 2nd edn, Cambridge University Press.

[6] Bollobás, B. and Erdős, P. (1976) Cliques in random graphs. Math. Proc. Camb. Phil. Soc. 80

419–427.

[7] Coja-Oghlan, A. (2004) Coloring semirandom graphs optimally. In Proc. 31st ICALP, pp. 383–

395.

[8] Coja-Oghlan, A. (2005) The Lovász number of random graphs. Combin. Probab. Comput. 14

439–465.

[9] Coja-Oghlan, A. Solving NP-hard semirandom graph problems in polynomial expected time.

To appear in J. Algorithms. A preliminary version has appeared in Proc. 6th RANDOM,

pp. 139–148.

[10] Coja-Oghlan, A. and Taraz, A. (2004) Exact and approximative algorithms for coloring G(n, p).

Random Struct. Alg. 24 259–278.

[11] Feige, U. and Kilian, J. (2001) Heuristics for semirandom graph problems. J. Comput. System

Sci. 63 639–671.

[12] Feige, U. and Krauthgamer, J. (2000) Finding and certifying a large hidden clique in a

semirandom graph. Random Struct. Alg. 16 195–208.

[13] Frieze, A. (1990) On the independence number of random graphs. Discrete Math. 81 171–175.

[14] Frieze, A. and McDiarmid, C. (1997) Algorithmic theory of random graphs. Random Struct.

Alg. 10 5–42.

[15] Füredi, Z. and Komloś, J. (1981) The eigenvalues of random symmetric matrices. Combinatorica

1 233–241.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

Finding Large Independent Sets in Polynomial Expected Time 751

[16] Grötschel, M., Lovász, L. and Schrijver, A. (1988) Geometric Algorithms and Combinatorial

Optimization, Springer.

[17] H̊astad, J. (1999) Clique is hard to approximate within n1−ε. Acta Mathematica 182 105–142.

[18] Janson, S., �Luczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[19] Jerrum, M. (1992) Large cliques elude the metropolis process. Random Struct. Alg. 3 347–359.

[20] Karger, D., Motwani, R. and Sudan, M. (1998) Approximate graph coloring by semidefinite

programming. J. Assoc. Comput. Mach. 45 246–265.

[21] Karp, R. (1976) Probabilistic analysis of some combinatorial search problems. In Algorithms

and Complexity: New Directions and Recent Results (J. F. Traub, ed.), Academic Press, pp. 1–19.

[22] Knuth, D. (1994) The sandwich theorem. Electron. J. Combin. 1.

[23] Krivelevich, M. and Vu, V. H. (2002) Approximating the independence number and the

chromatic number in expected polynomial time. J. Combin. Optimization 6 143–155.

[24] Kučera, L. (1995) Expected complexity of graph partitioning problems. Discrete Appl. Math. 57

193–212.

[25] Matula, D. (1976) The largest clique size in a random graph. Technical report, Southern

Methodist University, Dallas, Texas.

[26] McSherry, F. (2001) Spectral partitioning of random graphs. In Proc. 42nd FOCS , pp. 529–537.

[27] Schrijver, A. (2003) Combinatorial Optimization, Vol. A, Springer.

https://doi.org/10.1017/S0963548306007553 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007553

