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We study semirandom k-colourable graphs made up as follows. Partition the vertex set V =
{1, . . . , n} randomly into k classes V1, . . . , Vk of equal size and include each Vi –Vj -edge with
probability p independently (1 � i < j � k) to obtain a graph G0. Then, an adversary may add
further Vi –Vj -edges (i �= j) to G0, thereby completing the semirandom graph G = G∗

n,p,k . We

show that if np � max{(1 + ε)k ln n, C0k2} for a certain constant C0 > 0 and an arbitrarily small
but constant ε > 0, an optimal colouring of G∗

n,p,k can be found in polynomial time with high

probability. Furthermore, if np � C0 max{k ln n, k2}, a k-colouring of G∗
n,p,k can be computed in

polynomial expected time. Moreover, an optimal colouring of G∗
n,p,k can be computed in expected

polynomial time if k � ln1/3 n and np � C0k ln n. By contrast, it is NP-hard to k-colour G∗
n,p,k

w.h.p. if np � ( 1
2 − ε)k ln(n/k).

1. Introduction

1.1. Graph colouring heuristics
In the Graph Colouring Problem we are given a graph G = (V, E), and the goal is to colour the
vertices V with as few colours as possible such that adjacent vertices receive distinct colours.
The least number of colours so that there exists such a colouring is the chromatic number χ(G).

While the Graph Colouring Problem is of fundamental interest in theoretical computer science
as well as in discrete mathematics, the problem is notoriously hard. Indeed, Feige and Kilian [15]
proved that no polynomial time algorithm approximates χ(G) within a factor of n1−ε for all
input graphs G, unless ZPP = NP; here n = #V , and ε > 0 is an arbitrarily small constant.
Furthermore, Khanna, Linial and Safra [27] showed that it is NP-hard to colour 3-colourable
graphs with 4 colours.

Nevertheless, these hardness results merely provide evidence that for every polynomial time
algorithm there are some ‘hard’ problem instances. Hence, the hardness results do not rule out
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the existence of good graph colouring heuristics that perform well on ‘almost all instances’ in
some meaningful sense. Therefore, the goal of this paper is to analyse graph colouring heuristics
rigorously within the framework of the algorithmic theory of random graphs (see [20] for some
background).

Of course, in order to obtain rigorous results, we need to specify precisely what ‘almost all
instances’ is supposed to mean. One possible answer is to consider the well-known Erdős–
Rényi model Gn,p of random graphs. The random graph Gn,p has n vertices V = {1, . . . , n},
and each of the

(n
2

)
possible edges is present with probability p independently. Bollobás [5] and

Łuczak [32] determined the probable value of χ(Gn,p): we have

χ(Gn,p) ∼ −n ln(1 − p)

2 ln(np)
w.h.p. if n−1 � p � 0.99. (1.1)

(For small edge probabilities p = O(1/n), Achlioptas and Naor [1] obtained more precise res-
ults.) We emphasize that (1.1) shows that the chromatic number χ(Gn,p) is fairly ‘high’. For
if np = �(ln n), then with probability 1 − o(1) as n → ∞ the maximum degree of Gn,p is
O(np) (see [6, Chapter 3]). Therefore, the chromatic number is O(np), and (1.1) is just by an
O(ln(np))-factor smaller than this trivial upper bound.

In order to investigate graphs with a smaller chromatic number than (1.1), Kučera [30] sugges-
ted a random model Gn,p,k that has an additional parameter k to control the chromatic number.
The random graph Gn,p,k is obtained as follows.

M1. Partition the vertex set V = {1, . . . , n} randomly into k classes V1, . . . , Vk of equal cardin-
ality (we assume that k divides n).

M2. Include every Vi –Vj -edge (i �= j) with probability p independently of all others to obtain
G0 = Gn,p,k .

Thus, V1, . . . , Vk is a k-colouring ‘planted’ in Gn,p,k , so that χ(Gn,p,k) � k. We say that Gn,p,k

has some property E with high probability (‘w.h.p.’) if the probability that E holds tends to 1 as
n → ∞.

However, the Gn,p and the Gn,p,k model share a serious drawback: in both models the in-
stances are purely random. As the theory of random graphs shows (see [25]), such instances
have a very particular combinatorial structure. Therefore, designing heuristics for Gn,p or Gn,p,k

yields heuristics for a very special class of graphs. Consequently, heuristics for purely random in-
stances may lack ‘robustness’, as even minor changes in the structure of the input may deteriorate
the algorithm’s performance.

Therefore, Blum and Spencer [4] suggested a semirandom model G∗
n,p,k that is closer to the

worst case than Gn,p,k . The semirandom graph G∗
n,p,k is obtained as follows. First, a random

graph G0 = Gn,p,k is chosen via M1–M2; let V1, . . . , Vk signify its planted k-colouring. Then,
an adversary completes the problem instance as follows.

M3. The adversary may add to G0 further Vi –Vj -edges (i �= j) to obtain G = G∗
n,p,k .

Note that V1, . . . , Vk remains a ‘planted’ k-colouring of G∗
n,p,k . Hence, χ(G∗

n,p,k) � k.
Let I(G0) signify the set of all graphs that can be obtained from G0 = Gn,p,k via M3. We

say that G∗
n,p,k has some property E with high probability (‘w.h.p.’) if E holds with probability

1 − o(1) as n → ∞ regardless of the adversary’s decisions. That is,

lim
n→∞ P[G0 = Gn,p,k is such that E holds for all G ∈ I(G0)] = 1.
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In contrast to Gn,p,k , the semirandom graph G∗
n,p,k does not consist of random edges, but

contains some random edges. Therefore, G∗
n,p,k models a somewhat more general type of in-

stances. On the one hand, the adversary can alter certain ‘statistical’ properties of G0 = Gn,p,k .
For example, the adversary can change the distribution of the vertex degrees or add ‘dense spots’
to the graph, thereby changing also spectral properties. On the other hand, the adversary is just
allowed to add edges that ‘point towards’ the hidden colouring V1, . . . , Vk . Thus, intuitively the
adversary just seems to make the problem ‘easier’. Therefore, it appears natural to require that a
‘robust’ heuristic should not get confused by the adversary’s actions. In other words, the G∗

n,p,k
model discriminates between heuristics that are robust enough to withstand such an adversarial
‘help’, and heuristics that are not.

Let us discuss the difference between Gn,p,k and G∗
n,p,k with a concrete example. Alon and

Kahale [2] suggested a spectral heuristic that k-colours Gn,p,k w.h.p. if k is fixed and p > Ck/n
for a certain constant Ck > 0. Given an input instance G0 = Gn,p,k , the heuristic first removes all
vertices of degree greater than 5np, thereby obtaining a graph G ′

0. Then, the heuristic computes
the k − 1 eigenvectors of the adjacency A(G ′

0) of G ′
0 with the smallest eigenvalues. These

eigenvectors yield a partition of G ′
0 that is ‘close’ to the planted colouring of G0 w.h.p. Finally,

in order to obtain an actual k-colouring of G0, the heuristic improves this partition via various
combinatorial techniques.

However, this spectral approach breaks down on the G∗
n,p,k model. Let us assume for con-

creteness that k = 3, and that C3 � np = O(1). Then w.h.p. each of the planted colour classes
V1, V2, V3 of G0 contains �(n) isolated vertices. Hence, w.h.p. the adversary can pick disjoint
sets A1, A2 ⊂ V1, B1, B2 ⊂ V2 of isolated vertices such that #Ai = #Bi = 2np/3. Then, the
adversary adds all Ai –Bi -edges to G0 to obtain a graph G. Thus, in G both (A1, B1) and (A2, B2)

are bipartite cliques. Let G ′ be the graph obtained by removing all vertices of degree > 5np
from G, and let A be the adjacency matrix of G ′. Then similar spectral arguments as in [2]
show that the two eigenvectors of A with the smallest eigenvalues just represent the bipartite
cliques (A1, B1), (A2, B2), but do not encode any useful information to 3-colour G. Thus, the
adversary can jumble up the spectrum of G0 to render the spectral approach useless. (A similar
construction shows that on G∗

n,p,k the spectral approach breaks down also for larger values of

p – say, np = no(1).)

1.2. Results
The goal of this paper is to investigate heuristics for colouring G∗

n,p,k . First, we present a simple
heuristic that computes an optimal colouring of G∗

n,p,k in polynomial time w.h.p. In addition,
we suggest heuristics for colouring G∗

n,p,k in polynomial expected time. We will compare these
results with previous work in Section 1.3.

1.2.1. Colouring G∗
n,p,k optimally. While G∗

n,p,k is always k-colourable, it might happen that
the chromatic number is actually smaller than k. Therefore, we say that a heuristic A colours
G∗

n,p,k optimally w.h.p. if the following two conditions are satisfied.

Correctness. For all input graphs G the algorithm A either outputs an optimal colouring or ‘fail’.
Completeness. On input G∗

n,p,k , the output is an optimal colouring w.h.p.
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Thus, we require A not only to find a colouring of the input graph, but also to compute a matching
lower bound on the chromatic number. In other words, A is supposed to certify that its output is
an optimal colouring.

Theorem 1.1. There is a polynomial time algorithm Colour such that the following holds.
Let ε > 0 be arbitrarily small but constant. Moreover, suppose that k = k(n) and p = p(n) are
such that

np � max{(1 + ε)k ln n, C0k2} for a certain constant C0 > 0. (1.2)

Then Colour colours G∗
n,p,k optimally w.h.p.

Note that for k = o(ln n) – hence in particular for constant k – the assumption in Theorem 1.1
just reads np � (1 + ε)k ln(n). Colour employs a semidefinite programming (‘SDP’) relaxa-
tion ϑ̄2 of the chromatic number (we will recall the definition in Section 2). The basic observation
is that on G = G∗

n,p,k w.h.p. all optimal fractional solutions to ϑ̄2 are integral, i.e., encode actual
colourings of G.

The algorithm Colour can be considered as a ‘more robust’ version of the spectral heuristic
of Alon and Kahale [2]. More precisely, Colour can cope with the semirandom model G∗

n,p,k ,
because we replace the spectral techniques by SDP techniques. Nevertheless, the proof that
all optimal fractional solutions to the SDP ϑ̄2 are integral w.h.p. relies on SDP duality and
extends the spectral considerations of Alon and Kahale. Extending the spectral techniques to
the semirandom model was posed as an open problem by Frieze and McDiarmid [20, Research
Problem 19].

The following hardness result complements Theorem 1.1.

Theorem 1.2. Let 3 � k � n1/2. There is no polynomial time algorithm that in the case

np � (1 − ε)
k

2
ln(n/k) (1.3)

k-colours G∗
n,p,k w.h.p., unless NP ⊂ RP.

If k = o(ln n), then conditions (1.2) and (1.3) differ just by a factor of 2.

1.2.2. Colouring G∗
n,p,k in expected polynomial time. Despite Theorem 1.2, can we push the

positive result Theorem 1.1 any further? The algorithm Colour for Theorem 1.1 runs always
in polynomial time and k-colours G∗

n,p,k with high probability. One way to strengthen this
result is to devise an algorithm that even k-colours any k-colourable input graph such that the
expected running time over G∗

n,p,k is polynomial. Here we define the expected running time of
an algorithm A on input G∗

n,p,k as∑
G0

P(G0 = Gn,p,k) · max
G∈I(G0)

RA(G),

where RA(G) denotes the running time of A on input G, and the sum ranges over all possible
outcomes G0 of Gn,p,k . The following theorem shows that there is a colouring algorithm with
polynomial expected running time for almost the same range of the parameters as in Theorem 1.1.
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Theorem 1.3. Suppose that k = k(n) and p = p(n) are such that

np � C0 max{k · ln n, k2} for a certain constant C0 > 0. (1.4)

There is an algorithm ExpColour that k-colours any k-colourable input graph and that applied
to G∗

n,p,k has polynomial expected running time.

To achieve the algorithm ExpColour with polynomial expected running time, we need to
refine the heuristic Colour significantly. Indeed, while Colour may just ‘give up’ if the input
lacks certain ‘typical’ properties of G∗

n,p,k , ExpColour must be able to handle all k-colourable
input graphs. Hence, if we imagine ExpColour’s quest for a k-colouring as a search tree, then
this search tree can be of polynomial or of exponential size, or anything in between. Therefore,
in order to guarantee a polynomial expected running time, we need to extend Colour and its
analysis in two respects.

• We need to improve the algorithm so that the size of the search tree is distributed ‘smoothly’
such that it is small on average. Loosely speaking, this means that ExpColour needs to cope
with minor ‘atypical defects’ in the input instance in such a way that the running time scales
‘reasonably’ as a function of the size of the ‘defect’.

• We need to invent methods to analyse the average size of the search tree. In particular, we need
to quantify how ‘typical’ or ‘atypical’ a certain input graph is, in terms of the G∗

n,p,k model.

For k = o(ln n) Theorem 1.2 shows that the bound (1.4) on p is best possible up to the precise
value of C0. However, in contrast to Colour, ExpColour does not certify the optimality of the
obtained colouring. Nevertheless, at least for k � ln1/3 n (and hence in particular for constant k),
it is easy to modify ExpColour to obtain an algorithm that certifies the optimality of its output.

Theorem 1.4. Suppose that k = k(n) and p = p(n) are such that

np � C0k · ln n for a certain constant C0 > 0, and k � ln1/3 n. (1.5)

There is an algorithm OptColour that colours any input graph optimally and that applied to
G∗

n,p,k has polynomial expected running time.

1.3. Related work
Blum and Spencer [4] were the first to study the G∗

n,p,k model. They showed that a k-colouring
of G∗

n,p,k can be found in polynomial time w.h.p. if k is constant and

np � nαk+ε, where αk = k2 − k − 2

k2 + k − 2
(1.6)

and ε > 0 is an arbitrarily small constant. This colouring heuristic is purely combinatorial.
Feige and Kilian [16] suggested the strongest previous heuristic for colouring G∗

n,p,k . The
heuristic finds a k-colouring in polynomial time w.h.p. if k is constant and np � (1 + ε)k ln n.
Note that for constant k this assumption is identical to (1.2). In order to k-colour G∗

n,p,k , the
heuristic tries to recover the classes of the planted k-colouring one by one. To recover a col-
our class, the heuristic combines SDP techniques for approximating the independence number
from Alon and Kahale [3] with the random hyperplane rounding technique from Goemans and
Williamson [22]. These SDP techniques are needed to obtain an initial partition of the input graph
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that consists of relatively ‘sparse’ sets. Then, the heuristic makes use of matching techniques and
expansion properties of G∗

n,p,k to extract the colour class from the initial partition.
Theorem 1.1 improves on the result of Feige and Kilian in the following respects.

• It is not clear whether the heuristic in [16] is applicable when k grows as a function of n
(say, k � ln n), because the analysis of the SDP rounding techniques in [16] requires that the
initial partition consists of exp(�(k)) classes to guarantee that the classes of the partition are
sparse enough. On the other hand, choosing p = 1/2 we can make k as large as �(

√
n) in

Theorem 1.1.
• The algorithm Colour is much simpler. For instance, it needs to solve an SDP only once,

whereas the heuristic of Feige and Kilian requires several SDP computations. (Nonetheless,
the techniques in [16] apply to further problems that we do not address in this paper.)

• Instead of just producing a k-colouring of G = G∗
n,p,k w.h.p., Colour also provides a certi-

ficate that its output is indeed optimal.

In addition, Feige and Kilian [16] proved that no polynomial time algorithm k-colours G∗
n,p,k

w.h.p. if np � (1 − ε) ln n, unless NP ⊂ RP. Theorem 1.2 improves this result by a factor of
k/2, although the proof uses a similar idea.

Theorems 1.3 and 1.4 also improve on a colouring algorithm in [11], which is based on similar
techniques as the algorithm of Feige and Kilian [16]. The algorithm k-colours any k-colourable
input graph, and the expected running time on G∗

n,p,k is n�(k), provided that np � k ln n. Hence,
the running time becomes superpolynomial if k = k(n) grows as a function of n. By contrast,
the expected running time of ExpColour is polynomial in both n and k (see Theorem 1.3).
Furthermore, in contrast to the algorithm OptColour (see Theorem 1.4), even for constant k
the colouring algorithm in [11] does not certify the optimality of its output.

Building on [35], Subramanian [34] gave a heuristic for colouring G∗
n,p,k optimally in poly-

nomial expected time for constant values of k under the assumption (1.6). The heuristic is purely
combinatorial, and the certificate of optimality is just a clique of size k w.h.p. Theorem 1.4
extends this result to significantly smaller values of p. In fact, for small edge probabilities
p = C0k ln n as in Theorem 1.4, the clique number of Gn,p,k is 3 w.h.p. Hence, G∗

n,p,k has
no clique of size k (unless the adversary includes one) that yields a certificate of optimality.

With respect to colouring Gn,p,k , Kučera [30] presented a simple heuristic that for k =
O(

√
n/ ln n) and p = 1/2 recovers the planted k-colouring of Gn,p,k w.h.p. Note that The-

orem 1.1 provides a slightly stronger result: Colour colours Gn,p,k optimally if p = 1/2 and
k � c

√
n for a certain constant c > 0.

Dyer and Frieze [14] showed that an optimal colouring of Gn,p,k can be found in polynomial
expected time if p = �(1) remains bounded away from 0 as n → ∞. Moreover, the best pre-
vious heuristic for colouring Gn,p,k in polynomial expected time is due to Subramanian [34].
The heuristic is combinatorial and colours Gn,p,k optimally in polynomial expected time if k is
constant and

np � nγ (k)+ε, where γ (k) = k2 − 3k + 2

k2 − k + 2
.

Theorem 1.4 provides a colouring heuristic that also applies to significantly smaller values of p.
Extending Subramanian’s result to smaller values of p was also mentioned as an open problem
in the survey of Krivelevich [28, Section 7].
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Some heuristics for random instances of more general partitioning problems also entail results
on colouring Gn,p,k . For instance, the heuristic of Subramanian and Veni Madhavan [36], which
is based on breadth first search, k-colours Gn,p,k in polynomial time w.h.p. if k is constant and
np � exp(C

√
ln n) for a certain constant C > 0. Moreover, McSherry’s spectral heuristic [33]

finds a k-colouring in polynomial time w.h.p. if k is constant and np � ln3 n. Finally, a random-
ized linear time partitioning heuristic of Bollobás and Scott [7] recovers the hidden colouring
w.h.p. if np � Ck2 ln n for a certain constant C > 0. Indeed, Bollobás and Scott conjecture
that their heuristic can also handle the semirandom graph G∗

n,p,k . Some further references on
colouring random and semirandom graphs can be found in the survey [28].

There are two recent papers that build upon the techniques developed in the present work.
Complementing the work of Alon and Kahale [2], Böttcher [9] presented an algorithm that k-
colours the random graph Gn,p,k in polynomial expected time if np � Ck2 for a certain constant
C > 0. The algorithm makes use of the SDP techniques presented in Section 4 and an appropriate
extension of the combinatorial methods from [2].

Furthermore, building on the present work and [9], Krivelevich and Vilenchik [29] suggested
an algorithm that can cope with sparse semirandom instances G∗

n,p,k , np < (1 − ε)k ln n. Note
that this range of the parameters is not covered by Theorems 1.1, 1.3 and 1.4; in fact, The-
orem 1.2 shows that actually k-colouring G∗

n,p,k is hard if np < (1 − ε) k
2 ln n. Nonetheless, the

algorithm in [29] k-colours G∗
n,p,k in time (1 + exp(−�(np/k)))n · nO(1) w.h.p. even if np <

(1 − ε)k ln n. While this may be superpolynomial, the point is that this bound on the running time
is in general considerably better than the running time of worst-case exponential time algorithms
for k-colouring. In addition, Krivelevich and Vilenchik considered a modification of the G∗

n,p,k
model where the adversary may only add edges between vertices in some canonically defined set
S ⊂ V , and showed that in this case a k-colouring can be found in polynomial time w.h.p.

1.4. Techniques and outline
The algorithms Colour, ExpColour and OptColour for Theorems 1.1, 1.3, and 1.4 make
use of different techniques than the previous algorithms for colouring Gn,p,k and G∗

n,p,k . For

instance, Colour relies on a direct analysis of the optimal solutions to the SDP relaxation ϑ̄2

on G∗
n,p,k (see Section 2 for the definition of ϑ̄2). More precisely, we show that all optimal

fractional solutions are in fact integral w.h.p., i.e., correspond to k-colourings of G∗
n,p,k . While

the algorithm for colouring semirandom graphs in [16] is also based on SDP techniques (see Sec-
tion 1.3), Colour is rather different: the analysis of Colour shows that there is a single SDP
that captures the problem completely.

The techniques in the analysis of Colour extend previous work of Boppana [8] and Feige
and Kilian [16] on the MIN BISECTION problem. More precisely, in [8] it was shown that
all optimal fraction solutions to an SDP relaxation of MIN BISECTION correspond to actual
bisections w.h.p. on certain random instances; this analysis was extended in [16] to semirandom
models. Nevertheless, the analysis of ϑ̄2 on the G∗

n,p,k model turns out to be significantly more
involved than the analyses for MIN BISECTION in [8, 16]. One reason is that while in the MIN

BISECTION problem the goal is to recover two classes, the number k = k(n) of colour classes in
the G∗

n,p,k model may actually grow as a function of n. A further reference is the work of Feige
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and Krauthgamer [17] on semirandom instances of the MAX CLIQUE problem; the heuristic is
based on the integrality of optimal fractional solutions to an SDP relaxation of the clique number.

In order to obtain the heuristic ExpColour with polynomial expected running time, we
need to refine the investigation of ϑ̄2 on G∗

n,p,k . While Colour relies on the fact that all
fractional solutions are perfectly integral w.h.p., ExpColour is based on the observation that
with probability extremely close to 1 all fractional solutions are at least ‘not too far’ from being
integral. To prove this statement, we invoke results from Coja-Oghlan, Moore and Sanwalani [13]
on semidefinite relaxations of MAX k-CUT on the Erdős–Rényi model Gn,p. In addition, to
extract the colouring from the fractional solution, ExpColour employs network flow tech-
niques from [12], which extend matching techniques from [16]. Finally, OptColour combines
ExpColour with a technique for computing a lower bound on χ(G∗

n,p,k).
The heuristic Colour and its analysis are the content of Section 3. Moreover, we present

ExpColour in Section 4. Then, in Section 5 we modify ExpColour to obtain the algorithm
OptColour for Theorem 1.4. Section 6 is devoted to the proof of Theorem 1.2. Finally, Sec-
tion 7 contains the proofs of some technical lemmas.

There are various constants involved in the analyses of the algorithms. Most of the constants
are somewhat arbitrary and are only made explicit for concreteness; no attempt has been made
to optimize these constants.

2. Preliminaries

2.1. Notation
Throughout, we let V = {1, . . . , n}. Moreover, if X is a set, then we let δx,X = 1 if x ∈ X and
δx,X = 0 otherwise.

If G is a graph, then we let V (G) denote the vertex set and E(G) the edge set of G. For
a set A ⊂ V (G), N (A) = NG(A) = {w ∈ V (G) : ∃v ∈ A : {v,w} ∈ E(G)} signifies the neigh-
bourhood of A. Moreover, N̄ (A) = N̄G(A) = V (G) \ NG(A) denotes the non-neighbourhood.
Furthermore, by G[A] we denote the subgraph of G induced on A. If B ⊂ V (G) is a further set,
then we let e(A, B) = eG(A, B) be the number of A–B-edges, i.e.,

e(A, B) = eG(A, B) = #{{v,w} ∈ E(G) : v ∈ A, w ∈ B}.
In addition, we let e(A) = eG(A) = eG(A, A).

If G = G∗
n,p,k , then we let G0 = Gn,p,k denote the random graph from which G has been

obtained via M3. Moreover, we let V1, . . . , Vk denote the planted colour classes of G and G0. If
U ⊂ {1, . . . , k}, then we let VU = ⋃

u∈U Vu .
The scalar product of two vectors ξ, η ∈ R

n is denoted by 〈ξ, η〉. Moreover, ‖ξ‖ = 〈ξ, ξ 〉1/2

signifies the L2-norm. We let 1 = 1n ∈ R
n denote the vector with all entries equal to 1. In

addition, if X a set and A ⊂ X , then 1A = (ex )x∈X denotes the vector with entries ex = 1 if
x ∈ A and ex = 0 if x ∈ X \ A. If ξ ∈ R

n is a vector, then diag(ξ) signifies the n × n matrix
with diagonal ξ whose off-diagonal entries are 0.

The eigenvalues of a real symmetric n × n matrix A are denoted by λ1(A) � · · · � λn(A).
If A, B are symmetric n × n matrices, then we write A � B if λn(A − B) � 0. Recall that A
is positive semidefinite if λn(A) � 0, i.e., A � 0. Furthermore, for an n × n matrix M we let
‖M‖ = maxξ∈Rn , ‖ξ‖=1 ‖Mξ‖. In addition, diag(M) ∈ R

n is the vector consisting of the diagonal
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entries of M . By J we denote a matrix with all entries equal to 1 (of any size). Moreover, E =
diag(1) signifies the matrix with ones on the diagonal and off-diagonal entries equal to 0.

We shall mainly be interested in matrices associated with graphs. The adjacency matrix of a
graph G is denoted by A(G). In addition, L(G) = diag(A(G)1) − A(G) signifies the Laplacian.

2.2. An SDP relaxation of the chromatic number
The colouring heuristics rely on a semidefinite programming (‘SDP’) relaxation ϑ̄2 of the chro-
matic number. The semidefinite program was first defined by Goemans and Kleinberg [21] and
was further studied by Charikar [10] and Szegedy [37]. Following Charikar, we define ϑ̄2 in terms
of vector colourings; this approach is related to the work of Karger, Motwani and Sudan [26].

Let G = (V, E) be a graph with vertex set V = {1, . . . , n}. Let (v1, . . . , vn) be an n-tuple of
unit vectors in R

n , and let k > 1. We call (v1, . . . , vn) a rigid vector k-colouring if

〈vi , v j 〉 = (1 − k)−1 for all {i, j} ∈ E, and 〈vi , v j 〉 � (1 − k)−1 for all {i, j} �∈ E .

Now, we define ϑ̄2(G) = inf{k > 1 : G admits a rigid vector k-colouring}. Since ϑ̄2(G) can be
stated as a semidefinite program, the number ϑ̄2(G) and a rigid vector ϑ̄2(G)-colouring can
be computed in polynomial time within a tiny numerical error, e.g., via the ellipsoid method
(see [23, 37]).

Furthermore, we have ϑ̄2(G) � χ(G). For assume that G is k-colourable, and let V1, . . . , Vk

be a partition of V into k independent sets. Moreover, let (ξ1, . . . , ξk) be a family of unit vectors
in R

k−1 such that 〈ξi , ξ j 〉 = −(k − 1)−1 if i �= j ; such a family can be constructed inductively
and it is unique up to an orthogonal transformation. Let vi = ξ j for all i ∈ Vj . Then (vi )i∈V is
a rigid vector k-colouring of G, whence ϑ̄2(G) � k. Indeed, ϑ̄2 is a tighter relaxation of χ than
both the vector chromatic number from [26] and the Lovász number ϑ(Ḡ) (see [23, 37]).

Let A = A(G) = (ai j )i, j∈V be the adjacency matrix of G. Moreover, let L = L(G) signify
the Laplacian. Let k � 2. In addition to ϑ̄2(G), we also need the following SDP from Frieze and
Jerrum [19]:

SDPk(G) = max
∑

1�i< j�n

ai j · k − 1

k
(1 − 〈vi , v j 〉) (2.1)

s.t. ‖vi‖ = 1 for i = 1, . . . , n,

〈vi , v j 〉 � (1 − k)−1 for all 1 � i < j � n,

v1, . . . , vn ∈ R
n .

If k is an integer, then SDPk(G) is an upper bound on the weight of a MAX k-CUT of G. In
particular, SDP2(G) equals the MAX CUT relaxation of Goemans and Williamson [22].

An important property of SDPk is that the semidefinite program is monotone:

if G ′ contains G as a subgraph, then SDPk(G ′) � SDPk(G). (2.2)

Furthermore, ϑ̄2(G) and SDPk(G) are related as follows: if G has a rigid vector k-colouring
(vi )i∈V , then (vi )i∈V is a feasible solution to SDPk with objective function value∑

1�i< j�n

ai j · k − 1

k
(1 − 〈vi , v j 〉) = #E . (2.3)
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As trivially SDPk(G) � #E , we conclude that SDPk(G) = #E . Conversely, if (v′
i )i∈V is a feas-

ible solution to SDPk(G) with objective function value #E , then (v′
i )i∈V is a rigid vector k-

colouring.
To prove Theorem 1.3, we need the following result, which is an immediate consequence

of [13, Theorems 3 and 4].

Lemma 2.1. There exist constants ζ0, ζ1 > 0 such that the following holds. Suppose that np �
ζ0. Then for all k � 2 we have P

[
SDPk(Gn,p) � (1 − k−1)

(n
2

)
p + ζ1n3/2 p1/2

]
� 1 −

exp(−300n).

2.3. Eigenvalues of random matrices
The proof of Theorem 1.1 relies on estimates of the eigenvalues of A(Gn,p,k). In order to estimate
these eigenvalues, we employ the following two results.

Lemma 2.2. Suppose that np � c1 ln n for a constant c1 > 0. Then there exists a number c2 >

0 that depends only on c1 such that, with probability � 1 − O(n−2 p−1), the random symmetric
matrix A = A(Gn,p) enjoys the following property: ∀1 ⊥ η ∈ R

n : ‖Aη‖ � c2
√

np · ‖η‖.

Lemma 2.3. Suppose that np � c1 ln n for a constant c1 > 0. Then there exists a number c2 >

0 that depends only on c1 such that, with probability � 1 − O(n−2 p−1), the following holds. Let
A = (ai j )i, j=1,... ,n be a matrix whose entries are mutually independent random variables such
that aii = 0 for all i and

p = P(ai j = 1) = 1 − P(ai j = 0) (i �= j).

Then ∀1 ⊥ η ∈ R
n : ‖Aη‖ � c2

√
np · ‖η‖.

Lemma 2.2 is implicit in Feige and Ofek [18], and Lemma 2.3 in Alon and Kahale [2].

2.4. Chernoff bounds
Assume that X is binomially distributed with parameters (n, p). Let µ = E(X) = np. We fre-
quently need the following Chernoff bounds on the tails of X (see [25, Chapter 2] for proofs):

P(X � µ + t) � exp

(
− t2

2(µ + t/3)

)
, P(X � µ − t) � exp

(
− t2

2µ

)
(0 < t). (2.4)

Moreover, letting φ(x) = (1 + x) ln(1 − x) − x for x > −1, we have

P(X � µ − t) � exp

(
−µφ

(−t

µ

))
(0 < t < µ). (2.5)

3. A simple heuristic for finding an optimal colouring

3.1. Outline
We assume that (1.2) is satisfied with a sufficiently large constant C0 > 0, which will be specified
implicitly in the analysis. The algorithm Colour for Theorem 1.1 is shown in Figure 1.
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Algorithm 1. Colour(G)

Input: A graph G = (V, E). Output: Either a χ(G)-colouring of G or ‘fail’.

1. Compute ϑ̄2(G) along with a rigid vector ϑ̄2(G)-colouring (xv)v∈V of G.

2. Let H = (V, F) be the graph with edge set F = {{v,w} : 〈xv, xw〉 � 0.995}. Apply
the greedy colouring algorithm to H , and let C be the resulting colouring.

3. If C uses at most �ϑ̄2(G)� colours, then output C as a colouring of G. Otherwise,
output ‘fail’.

Figure 1. The algorithm Colour.

In summary, Colour(G) computes the rigid vector colouring (xv)v∈V . This can be done in
polynomial time via semidefinite programming (see Section 2). Then, Colour constructs an
auxiliary graph H in which two vertices v,w are adjacent if and only if their distance ‖xv − xw‖
is at least 0.1, i.e., if xv and xw are ‘far apart’. To this graph H , Colour applies the simple
greedy colouring algorithm. (Recall that the greedy algorithm just goes through the vertices
v = 1, . . . , n and colours each v with the least colour in {1, . . . , n} not yet used by the neighbours
of v.)

To show that Colour either finds an optimal colouring of the input graph G or outputs ‘fail’,
note that the graph H constructed in step 2 contains G as a subgraph. For if {v,w} ∈ E , then
〈xv, xw〉 � 0. Since χ(G) � ϑ̄2(G), C is an optimal colouring of G if C uses at most �ϑ̄2(G)�
colours.

Hence, to prove Theorem 1.1, it remains to show that Colour(G = G∗
n,p,k) outputs an op-

timal colouring w.h.p. Let V1, . . . , Vk be the k-colouring planted in G. Directed by the proof that
ϑ̄2(G) � χ(G) (see Section 2), we call a rigid vector k-colouring (xv)v∈V integral if there are
vectors (x∗

i )i=1,... ,k such that xv = x∗
i for all v ∈ Vi , and 〈x∗

i , x∗
j 〉 = (1 − k)−1 for i �= j . In other

words, (xv)v∈V is integral if and only if the rigid vector colouring maps each colour class onto a
single point, and the angle between the points corresponding to Vi and Vj is cos−1

[
(1 − k)−1

]
if

i �= j .
If the rigid vector colouring (xv)v∈V computed in step 1 is integral, then the graph H con-

structed in step 2 is a complete k-partite graph with colour classes V1, . . . , Vk . That is, in H
the sets V1, . . . , Vk are independent, but each v ∈ Vi is connected with all vertices in V \ Vi .
Consequently, the greedy algorithm finds a k-colouring of H . Hence, if also ϑ̄2(G) = k, then
Colour finds and outputs an optimal colouring of G. Thus, the remaining task is to establish
the following lemma.

Lemma 3.1. Let G = G∗
n,p,k . With high probability we have ϑ̄2(G) = k, and every rigid vector

k-colouring of G is integral.

To prove Lemma 3.1, we make use of the relationship between SDPh and ϑ̄2 (see Section 2).
With respect to SDPh , we prove the following in Section 3.2.
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Lemma 3.2. There is a constant ζ > 0 such that G = G∗
n,p,k enjoys the following property

w.h.p.:

Let G ′ be a graph obtained by adding an edge {v∗, w∗} to G, where v∗, w∗ ∈ Vi for

some i. Let 2 < h � k. Then SDPh(G ′) � #E(G) − ζ · n2 p
hk · (k − h).

(3.1)

Proof of Lemma 3.1. To prove that ϑ̄2(G∗
n,p,k) = k w.h.p., let G = G∗

n,p,k , and assume that

ϑ̄2(G) = h < k. Let (xv)v∈V be a rigid vector h-colouring of G. Then (xv)v∈V is a feasible
solution to SDPh , whence SDPh(G) = #E(G) due to (2.3). However, by Lemma 3.2 and the
monotonicity property (2.2) we have SDPh(G) < #E(G) w.h.p. Thus, ϑ̄2(G) = k w.h.p.

Finally, to show that any rigid vector k-colouring (xv)v∈V of G = G∗
n,p,k is integral w.h.p.,

suppose that G has the property stated in Lemma 3.2. Let s, t ∈ V ∗
i , and let G ′ be the graph

obtained from G by adding the edge {s, t}. Then we have

#E(G) = k − 1

k

[ ∑
{v,w}∈E(G)

1 − 〈xv, xw〉
]

� k − 1

k

[
1 − 〈xs, xt 〉 +

∑
{v,w}∈E(G)

1 − 〈xv, xw〉
]

� SDPk(G
′)

Lemma 3.2
� #E(G).

Therefore, 〈xs, xt 〉 = 1, whence xs = xt , because xs , xt are unit vectors. Consequently, there are
unit vectors x∗

i such that xv = x∗
i for all v ∈ Vi , i = 1, . . . , k.

Furthermore, if i �= j , then eG(Vi , Vj ) is binomially distributed with mean n2k−2 p. Hence,
our assumption (1.2) and the Chernoff bound (2.4) entail that eG(Vi , Vj ) > 0 for all i �= j w.h.p.
Thus, let v ∈ Vi , w ∈ Vj be vertices such that {v,w} ∈ E(G). Then 〈x∗

i , x∗
j 〉 = 〈xv, xw〉 = (1 −

k)−1. Hence, the rigid vector colouring (xv)v∈V is in fact integral.

3.2. Proof of Lemma 3.2
SDP duality provides a powerful tool for proving an upper bound on the optimal solution to a
maximization problem such as SDPh . Let G = (V, E) be a graph. Then the dual semidefinite
program of SDPh(G) reads

DSDPh(G) = min
h − 1

2h

n∑
i=1

yii − 1

2h

∑
i �= j

yi j

s.t. L(G) � Y,

yi j � 0 for i �= j,

Y = (yi j )i, j=1,... ,n is a real symmetric n × n matrix

(see Helmberg [24, Chapter 2] for a thorough treatment of SDP duality theory). By weak SDP
duality (see [24, pp. 17–18]), we have SDPh(G) � DSDPh(G). Observe that the set of feasible
solutions Y to DSDPh(G) is the same for all values of h.

To prove Lemma 3.2, we exhibit a feasible solution to DSDPh(G) for which the desired
objective function value claimed in (3.1) is attained. The construction makes use of Lemmas 2.2
and 2.3. Let us first consider a random k-colourable graph G = Gn,p,k with planted k-colouring
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V1, . . . , Vk . As permuting the vertices does not affect the semidefinite program, we may assume
that

Vi =
{

(i − 1)n

k
+ 1, . . . ,

in

k

}
(i = 1, . . . , k). (3.2)

Let G ′ be the graph obtained from G by adding an edge {v∗, w∗}, where v∗, w∗ ∈ Vi0 for some i0.
Let A = A(G), L ′ = L(G ′), B = L ′ − L(G). For v ∈ V , let dv be the degree of v in G, and let

d(i)
v = eG(v, Vi ), d̄ = 1

(k − 1)n

∑
v∈V

dv.

Let i(Va) = (a − 1) n
k + i denote the i th vertex in Va . Moreover, set

dmin = min
i, j,a �=b

n · d(b)
i(Va) · d(a)

j (Vb)

k · eG(Va, Vb)
. (3.3)

Further, we define a family of n
k × n

k -matrices Y ′
ab as follows: we let Y ′

aa = 0 for a = 1, . . . , k,
and for 1 � a, b � k, a �= b, we let

Y ′
ab =

[
k

n
dmin − d(b)

i(Va) · d(a)
j (Vb)

eG(Va, Vb)

]
i, j=1,... ,n/k

.

In addition, we let Y ′ = (Y ′
ab)a,b=1,... ,k be the n × n matrix comprising the blocks Y ′

ab. Further,
we let y′ = (dv + dmin)v∈V ∈ R

n , and finally Y = Y ′ + diag(y′). Then Y is a real symmetric
n × n matrix, and the definition (3.3) of dmin ensures that all off-diagonal entries of Y are � 0.

We claim that Y is a feasible solution to DSDPh w.h.p. Thus, we need to show that L ′ �
Y w.h.p. Since L ′ − Y = −(A − B + Y ′) − dminE, it suffices to prove that λn(A − B + Y ′) �
−dmin w.h.p. As a first step, we shall exhibit a subspace K ⊂ R

n generated by eigenvectors of
A − B + Y ′ that correspond to the planted colouring V1, . . . , Vk . To this end, we note that

Yab1 = Y ′
ab1 =

[
dmin −

n/k∑
j=1

d(b)
i(Va)d

(a)
j (Vb)

eG(Va, Vb)

]
1�i�n/k

= [
dmin − d(b)

i(Va)

]
1�i�n/k (a �= b),

because
∑n/k

j=1 d(a)
j (Vb) = eG(Va, Vb). Therefore, for c = 1, . . . , k we have

Y ′1Vc = [
(1 − δv,Vc)(dmin − eG(v, Vc))

]
v∈V . (3.4)

Further,

A1Vc = (eG(v, Vc))v∈V , and B1Vc = 0. (3.5)

Combining (3.4) and (3.5), we get

(A − B + Y ′)1Vc = [
(1 − δv,Vc )dmin

]
v∈V . (3.6)

Finally, we let ξ (a,b) = 1Va − 1Vb ∈ R
n (a, b = 1, . . . , k). Then (3.6) yields

(A − B + Y ′)ξ (a,b) = −dminξ
(a,b) (a �= b), (A − B + Y ′)1 = (k − 1)dmin1. (3.7)

Let K ⊂ R
n be the vector space spanned by 1 and the vectors ξ (a,b) (a �= b). Then 1V1 , . . . , 1Vk ∈

K , and therefore 1V1 , . . . , 1Vk generate K . Since by (3.7) K is generated by eigenvectors of
A − B + Y ′, any eigenvector η of A − B + Y ′ with eigenvalue < −dmin is perpendicular to K .
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Thus, the following lemma shows that no eigenvector with eigenvalue < −dmin exists w.h.p., and
hence concludes the proof that L ′ � Y w.h.p.

Lemma 3.3. Let G = Gn,p,k . Then w.h.p. we have dmin = �(np/k) and

|〈(A − B + Y ′)η, η〉| < dmin

for all unit vectors η ⊥ K and all possible choices of v∗, w∗.

We prove Lemma 3.3 in Section 3.3. Now, suppose that indeed L ′ � Y . Since Y = Y ′ +
diag(y′) and diag(Y ′) = 0, we have

n∑
i=1

yii = 〈y′, 1〉 = 2#E(G) + ndmin, (3.8)

∑
i �= j

yi j =
∑
a �=b

〈Y ′
ab1, 1〉 (3.4)=

∑
a �=b

n

k
dmin − eG(Va, Vb)

= (k − 1)ndmin − 2#E(G). (3.9)

Combining (3.8) and (3.9), we obtain

SDPh(G ′) � DSDPh(G ′) � h − 1

2h

n∑
i=1

yii − 1

2h

∑
i �= j

yi j

= h − 1

2k
(2#E(G) + ndmin) − 1

2h
((k − 1)ndmin − 2#E(G))

= #E(G) − ndmin

2h
(k − h). (3.10)

As dmin = �(np/k) w.h.p. by Lemma 3.3, we conclude that Lemma 3.2 holds for G = Gn,p,k .
Finally, let G = G∗

n,p,k , and let G0 be the random k-colourable graph contained in G (i.e., G ∈
I(G0)). Let G ′

0 (resp. G ′) be obtained from G0 (resp. from G) by adding an edge {v∗, w∗},
v∗, w∗ ∈ Vi . Since adding a single edge can increase the value of SDPh by at most 1, w.h.p. we
have

SDPh(G ′) � SDPh(G ′
0) + #E(G) − #E(G0)

(3.10)
� #E(G) − �

(
np

2hk

)
(k − h),

as desired.

3.3. Proof of Lemma 3.3
To prove the lemma, we decompose the adjacency matrix A of G = Gn,p,k into blocks A =
(Aab)a,b=1,... k of size n

k × n
k . Then due to our assumption (3.2) for any two vertices v ∈ Va

and w ∈ Vb, the (v − (a − 1) n
k ), (w − (b − 1) n

k )-entry of Aab is 1 if {v,w} ∈ E(G) and 0 if
{v,w} �∈ E(G). In particular, AT

ab = Aba and Aaa = 0. Moreover, the entries of each block Aab

with a �= b are mutually independent random variables that attain the value 1 with probability p
and the value 0 with probability 1 − p.

Lemma 3.4. If G = Gn,p,k , then w.h.p. the following statements hold.

(1) d̄ = �(np/k).
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(2) For all unit vectors η ⊥ K we have |〈Aη, η〉| � O(
√

d̄k).
(3) For all a, b ∈ {1, . . . , k} and all unit vectors 1 ⊥ ξ ∈ R

n/k we have∣∣‖1‖−1 · 〈Aabξ, 1〉∣∣ � O(
√

d̄).

Proof. The first statement is an immediate consequence of the definition of d̄ and the Chernoff
bound (2.4). Moreover, the third statement is an immediate consequence of Lemma 2.3, because
np/k = �(ln n) by (1.2).

To prove the second statement, let Ga = Gn/k,p for a = 1, . . . , k be a family of k mutually in-
dependent random graphs. Let A∗

a = A(Ga) be the adjacency matrices (a = 1, . . . , k). Moreover,
let

A∗ =
⎛
⎜⎝

A∗
1 0

. . .

0 A∗
k

⎞
⎟⎠

be the n × n matrix with the n
k × n

k -blocks A∗
1, . . . , A∗

k on the diagonal and zeros elsewhere.
In addition, set A∗ = A + A∗. Then A∗ is distributed as the adjacency matrix A(Gn,p) of a
random graph Gn,p. Observe that η ⊥ K implies that η ⊥ 1. Thus, since np = �(ln n) by (1.2),
Lemma 2.2 entails that there is a constant ζ1 > 0 such that w.h.p.

∀η ⊥ K , ‖η‖ = 1 : |〈A∗η, η〉| � ζ1

√
d̄k. (3.11)

Furthermore, decomposing η ⊥ K into k subsequent pieces η1, . . . , ηk ∈ R
n/k , we obtain

|〈A∗η, η〉| =
∣∣∣∣

k∑
a=1

〈A∗
aηa, ηa〉

∣∣∣∣ �
∑

a:ηa �=0

‖ηa‖2 ·
∣∣∣∣
〈

A∗
a

ηa

‖ηa‖ ,
ηa

‖ηa‖
〉∣∣∣∣

� ‖η‖2 · max
a:ηa �=0

∣∣∣∣
〈

A∗
a

ηa

‖ηa‖ ,
ηa

‖ηa‖
〉∣∣∣∣. (3.12)

If η ⊥ K , then ηa ⊥ 1 for a = 1, . . . , k. Therefore, as A∗
a = A(Gn/k,p) and np/k = �(ln n), by

Lemma 2.2 there is a constant ζ2 > 0 such that w.h.p.

∀η ⊥ K , ‖η‖ = 1 : |〈A∗η, η〉| � max
a:ηa �=0

∣∣∣∣
〈

A∗
a

ηa

‖ηa‖ ,
ηa

‖ηa‖
〉∣∣∣∣ � ζ2

√
d̄. (3.13)

Finally, we claim that w.h.p.

∀η ⊥ K , ‖η‖ = 1 : |〈Aη, η〉| � (ζ1 + ζ2)
√

d̄k. (3.14)

Indeed, suppose that A violates (3.14). Then there is a unit vector η ⊥ K such that |〈Aη, η〉| >

(ζ1 + ζ2)
√

d̄k. Hence, for all A∗ that satisfy (3.13) we have |〈A∗η, η〉| � |〈Aη, η〉| − |〈A∗η, η〉| >
ζ1

√
d̄k, so that A∗ violates (3.11). Since (3.11) and (3.13) hold with probability 1 − o(1), we

conclude that the probability that (3.14) is violated is o(1), as desired.

Proof of Lemma 3.3. Since np � (1 + ε)k ln(n), the fact that dmin = �(d̄) w.h.p. follows
from the Chernoff bound (2.5). Furthermore, we claim that

|〈Y ′η, η〉| � O(
√

d̄k) w.h.p. (3.15)
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Indeed, consider the following n
k × n

k matrices Zab (a, b = 1, . . . , k): we let Zaa = 0 for all
a, and Zab = k

n dminJ − Y ′
ab (a �= b). Moreover, let Z = (Zab)a,b=1,... ,k be the n × n matrix

consisting of the blocks Zab. Then for all η ⊥ K we have

〈Zη, η〉 = −〈Y ′η, η〉, (3.16)

because η ⊥ 1Va for all a ∈ {1, . . . , k}. Thus, it suffices to estimate |〈Zη, η〉|. Let ξ =
(ξi )1�i�n/k, η = (ηi )1�i�n/k ∈ R

n/k be unit vectors perpendicular to 1. Then

eG(Va, Vb)〈η, Zabξ 〉 =
〈
η,

[ n/k∑
j=1

d(b)
i(Va)d

(a)
j (Vb)ξ j

]
1�i�n/k

〉

=
〈
η,

[
d(b)

i(Va)〈Aba1, ξ 〉]1�i�n/k

〉

= 〈Aba1, ξ 〉
n/k∑
i=1

d(b)
i(Va)ηi = 〈Aba1, ξ 〉〈Aab1, η〉

= 〈Aabξ, 1〉〈Abaη, 1〉. (3.17)

By the third part of Lemma 3.4, w.h.p. we have

|〈Aabξ, 1〉|, |〈Abaη, 1〉| � O
(√

d̄n/k
)

(3.18)

for all unit vectors ξ, η ⊥ 1 and all a, b. Moreover, since eG(Va, Vb) is binomially distributed
with mean n2k−2 p, the Chernoff bound (2.4) and the first part of Lemma 3.4 entail that w.h.p.

eG(Va, Vb) = �(d̄n/k) (1 � a < b � k). (3.19)

Combining (3.17)–(3.19), we get

|〈Zabξ, η〉| � O(d̄n/k)

eG(Va, Vb)
= O(1) w.h.p. (1 � a < b � k). (3.20)

Thus, let η ⊥ K be a unit vector. Decomposing η into k pieces η1, . . . , ηk ∈ R
n/k , we get

|〈Zη, η〉| =
∣∣∣∣

k∑
a,b=1

〈Zabηb, ηa〉
∣∣∣∣ �

∑
a,b:ηa �=0 �=ηb

‖ηa‖ · ‖ηb‖ ·
∣∣∣∣
〈

Zab
ηb

‖ηb‖ ,
ηa

‖ηa‖
〉∣∣∣∣

(3.20)
� O

[
k∑

a,b=1

‖ηa‖ · ‖ηb‖
]

� O(1)

[
k∑

a=1

‖ηa‖
]2

= O(k)

(1.2)
� O

(√
d̄k

)
. (3.21)

Combining (3.16) and (3.21), we obtain (3.15).
As ‖B‖ � 2, the second part of Lemma 3.4 yields in combination with (3.15) that w.h.p.

∀η ⊥ K , ‖η‖ = 1 : |〈(A − B + Y ′)η, η〉| � O
(√

d̄k
)
. (3.22)

As dmin = �(d̄) and d̄ = �(np/k), (1.2) and (3.22) give

∀η ⊥ K , ‖η‖ = 1 : |〈(A − B + Y ′)η, η〉| < dmin,

provided that the constant C0 is sufficiently large.
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4. Colouring G∗
n,p,k in polynomial expected time

In this section we present the algorithm ExpColour for Theorem 1.3. After exhibiting a few
properties of G∗

n,p,k in Section 4.1, we outline the algorithm ExpColour and its subroutines in
Section 4.2. Sections 4.3–4.5 contain the technical details of the analysis of ExpColour.

Throughout, we write G = G∗
n,p,k . We assume that (1.4) is satisfied with a sufficiently large

constant C0.

4.1. Basic properties of G∗
n,p,k

Let U ⊂ {1, . . . , k}, and consider the graph G[VU ] induced on the colour classes Vi with i ∈ U .
Let u = #U . Then G[VU ] is u-colourable, so that SDPu(G[VU ]) = #E(G[VU ]) (see (2.3)). Now
let G ′ be a graph obtained from G by adding random edges inside the colour classes Vi , i ∈ U .
The following lemma, which we prove in Section 7.1, shows that these additional random edges
do not increase the value of SDPu ‘too much’. More precisely, we have SDPu(G ′) − SDPu(G) =
O( nu

k
√

np); note that by (1.4) #E(G[VU ]) is binomially distributed with mean
(u

2

)
n2k−2 p �

nu
k

√
np.

Lemma 4.1. Let U ⊂ {1, . . . , k} be a set of cardinality u = #U. With probability � 1 −
exp(−100nu/k) the graph G = G∗

n,p,k enjoys the following property.

Let G ′ be a graph obtained from G by adding each edge inside the colour classes Vi

with probability p independently. Then for a certain constant C1 > 0 we have

P

[
SDPu(G ′[VU ]) � #E(G[VU ]) + C1

nu

k

√
np

]
� 2/3,

where probability is taken over the choice of the random edges inside the colour
classes.

(4.1)

We will use Lemma 4.1 in Section 4.2 in order to investigate the geometric structure of rigid
vector colourings of G.

Now consider a single colour class Vi . The subgraph of G = G∗
n,p,k consisting only of the

Vi –V \ Vi -edges contains a random bipartite graph. Hence, we expect that this bipartite graph is
a good ‘expanding graph’. To quantify the expansion property of this graph precisely, we need
the following concept. Let T ⊂ V \ Vi , and let η � 0. A set M of T –Vi -edges of G is a d-fold
matching with defect � η from T to Vi if there exists a set D ⊂ T , #D � η, such that:

• every vertex in T \ D is incident with precisely d edges in M , and
• every vertex in Vi is incident with at most one edge in M .

Now, we define the defect defG(Vi ) as follows (see [12, Section 2.3]).

D1. If there is a subset U ⊂ Vi of cardinality #U � n
2k such that #V \ (Vi ∪ NG(U )) > n

200k2 ,
then we let defG(Vi ) = n

2k .
D2. Otherwise, we let defG(Vi ) be the least number 0 � η � n

2k such that for all 6 � d � �50k�
the following holds: every set T ⊂ V \ Vi of size #T � n

2dk admits a d-fold matching to Vi

with defect � η.

The interpretation of D1 is the following. Let U ⊂ Vi be a fixed set of cardinality #U �
n
2k . Then, for each v ∈ Vj , j �= i , the probability that v has no neighbour in U is (1 − p)#U �
exp(−np/(2k)) � exp(−�(k)). Hence, we expect that U is connected to all but at most
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n exp(−�(k)) vertices outside of Vi . Thus, D1 just says that we consider G a rather ‘bad’
expander (i.e., the defect is large) if there is some U such that the non-neighbourhood of U
in V \ Vi is � n

200k2 , i.e., much bigger than the expected n exp(−�(k)). Moreover, D2 basically
says that if the defect is small, then every (reasonably small) set T ⊂ V \ Vi is connected to Vi

by a lot of edges. Thus, defG(Vi ) quantifies the expansion of the bipartite graph consisting of the
Vi –V \ Vi -edges: the smaller the defect is, the better is the expansion.

The following lemma bounds the probability that the defect gets large.

Lemma 4.2. Let ηi � 0 for i = 1, . . . , k. Then

P(defG(Vi ) � ηi for i = 1, . . . , k) �
k∏

i=1

(
n/k

ηi

)−100

.

We prove Lemma 4.2 in Section 7.2. Furthermore, in Section 7.3 we prove the following
lemma, which shows that every sufficiently large independent set of G∗

n,p,k consists mainly of
vertices from one colour class w.h.p.

Lemma 4.3. With probability � 1 − exp(−100n) the semirandom graph G = G∗
n,p,k enjoys

the following property.

If U is an independent set in G of size #U � n
100k ,

then #U ∩ Vi > 199
200 #U for some 1 � i � k.

(4.2)

Moreover, with probability � 1 − exp(−100n/ ln k) the graph G = G∗
n,p,k satisfies the following

condition for all i ∈ {1, . . . , k}.
If U ⊂ Vi , #U � n

2k ln(k)
, then #N̄G(U ) � 2n

k . (4.3)

4.2. Outline
In order to k-colour G, ExpColour(G, k) (see Figure 2) runs the procedure Classes, which
proceeds recursively in k stages. In each stage, Classes tries to recover one of the colour
classes V1, . . . , Vk , and then hands the graph without the recovered colour class to the next
stage. More precisely, if Wl is the set of vertices that have not yet been coloured in the previous
stages, then the lth stage tries to exhibit a set Sl of large independent sets of G[Wl ]. Then for
each Sl ∈ Sl , Classes passes the graph G[Wl \ Sl ] to stage l + 1, which tries to find a (k − l)-
colouring of this graph. If G is ‘typical’, which happens with high probability, then each Sl will
consist precisely of one colour class, so that a k-colouring will be found immediately.

However, since our goal is an algorithm that k-colours all k-colourable graphs, we also have
to deal with ‘atypical’ input instances G. To this end, ExpColour uses the variable T , which
controls the size of the ‘search tree’ that ExpColour is building, i.e., what amount of running
time ExpColour spends in order to k-colour G. This amount of time is distributed among
the k stages of Classes via the variables η1, . . . , ηk . The variable ηk−l+1 determines for how
‘typical’ the lth stage takes its input graph: the larger ηk−l+1, the less ‘typical’ the graph is
assumed to be. In order to (try to) produce a set Sl that contains one of the hidden colour classes,
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Algorithm 2. ExpColour(G, k)

Input: A graph G = (V, E), an integer k � χ(G). Output: A k-colouring of G.

1. For T = 1, . . . , �exp(n/ ln k)� do

2. Let η = max{ξ ∈ Z : exp(ξ),
(n/k

ξ

)
� T }.

For each decomposition η = η1 + · · · + ηk where 0 � ηi � n
2k are integers

such that
∏k

i=1
(n/k

ηi

)
� T do

3. If Classes(G, V, k, η1, . . . , ηk) k-colours G, then output the colouring
and halt.

4. For T = �exp(n/ ln k)�, . . . , �exp(n)� do
If Exact(G, k, T ) k-colours G, then output the resulting colouring and halt.

5. Colour G optimally via Lawler’s algorithm [31] in time O(2.443n).

Figure 2. The algorithm ExpColour.

stage l of ExpColour may spend time
(
n
( n/k
ηk−l+1

))O(1). Thus, as the variable T grows from 1 to
exp(n), the running time increases ‘smoothly’ from polynomial to exponential.

In addition to Classes, ExpColour has a further subroutine Exact. This procedure is
used as a fallback if Classes does not k-colour G before T exceeds exp(n/ ln k).

In order to analyse ExpColour, we shall assign to each graph G = G∗
n,p,k a value T ∗ such

that ExpColour k-colours G before T exceeds T ∗. Then, on the one hand we can bound the
running time of ExpColour(G, k) in terms of T ∗. On the other hand, we shall investigate the
distribution of T ∗ to prove that the expected running time is polynomial.

4.2.1. The procedure Classes. The input of Classes (see Figure 3) consists of the graph
G, a set W ⊂ V (G), the number k, and integers η1, . . . , ηl . Classes is to find an l-colouring
of G[W ]. In steps 1–3, Classes computes a set Sl of independent sets of Gl = G[W ], each of
cardinality n/k. Then, in steps 4–5, Classes tentatively colours each of the sets Sl ∈ Sl with
the lth colour, and calls itself recursively on input (G, W \ Sl , k, η1, . . . , ηl−1) in an attempt to
(l − 1)-colour G[W \ Sl ].

Suppose the input graph G is a semirandom graph G∗
n,p,k with hidden colouring V1, . . . , Vk .

Like the heuristic Colour in Section 3, Classes employs the relaxation ϑ̄2 of the chromatic
number (see Section 2 for the definition), but in a more sophisticated way. If ηl < n

2k , then step 2
of Classes tries to use the rigid vector colouring (xv)v∈W to recover a large independent set Sv

(see Lemma 4.5 below). By Lemma 4.3, with extremely high probability Sv consists mainly of
vertices of one colour class Vi . Then, to recover Vi from Sv , Classes uses a further procedure
Purify (see Corollary 4.6 below).

However, if ηl � n
2k , then step 3 of Classes assumes that ϑ̄2 behaves ‘badly’, so that

the aforementioned approach is hopeless. Instead, step 3 enumerates all subsets U of W of
cardinality n

k ln k and considers their non-neighbourhoods. Eventually, step 3 will encounter a
set U that lies entirely inside a colour class Vi . By the second part of Lemma 4.3, we expect that
#N̄Gl (U ) � 2n

k . If so, step 3 adds all independent subsets of N̄Gl (U ) of cardinality n
k to Sl . Thus,
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Algorithm 3. Classes(G, W, k, η1, . . . , ηl )

Input: A graph G = (V, E), a set W ⊂ V , integers k, η1, . . . , ηl .
Output: Either an l-colouring of G[W ] or ‘fail’.

1. Let Gl = G[W ].
If l = 1 and Gl is an independent set, then return a 1-colouring of Gl .
If ϑ̄2(Gl ) > l, then return ‘fail’.
Otherwise, compute a rigid vector l-colouring (xv)v∈W of Gl .

2. If ηl < n
2k

If for all w ∈ W the set Sw = {u ∈ W : 〈xu , xw〉 � 0.99} has cardinality < 199n
200k ,

return ‘fail’.
Otherwise, let v = min

{
w ∈ W : #Sw � 199n

200k

}
.

Let Sl = Purify(G, Sv, ηl , n/k).

3. else
Let Sl = ∅. For each U ⊂ W , #U = n

2k ln(k)
, do

Let T = N̄Gl (U ).
If #T � 2n/k, then for all I ⊂ T , #I = n/k, do

If I is an independent set, then add I to Sl .

4. For each Sl ∈ Sl do

5. If Classes(G, W \ Sl , k, η1, . . . , ηl−1) (l − 1)-colours G[W \ Sl ], return the l-
colouring of Gl obtained by colouring Sl with an lth colour.

6. Return ‘fail’.

Figure 3. The procedure Classes.

as U is contained in the independent set Vi , we have Vi ⊂ N̄Gl (U ), so that the colour class Vi

will be added to Sl . The following proposition summarizes the analysis of Classes.

Proposition 4.4. To each semirandom graph G = G∗
n,p,k that satisfies properties (4.2)

and (4.3) we can associate a sequence (η∗
1, . . . , η∗

k ) ∈ {
0, 1, . . . , n

2k

}k
such that the following

two conditions hold.

(1) Classes(G, V, k, η∗
1, . . . , η∗

k ) outputs a k-colouring of G.

(2) Let η1, . . . , ηk � 0. Then P(η∗
i � ηi for all i) �

∏k
i=1

(n/k
ηi

)−90
.

The running time of Classes(G, V, k, η1, . . . , ηk) is at most nO(1)
∏k

i=1

(n/k
ηi

)14
.

The crucial insight behind Classes is that w.h.p. we can use the rigid vector colouring to
recover a ‘large’ independent set of size 199n

200k (see step 2). By Lemma 4.3, such an independent set
will consist mainly of vertices from one of the planted colour classes, i.e., in the case of success
we have recovered a huge fraction of one colour class. In order to extract a large independent
set from the vector colouring, the basic idea is as follows. Imagine throwing random edges
into the colour classes of G = G∗

n,p,k by including the edges inside the colour classes Vi with
probability p independently. (Of course, the algorithm cannot do this, because it does not know

https://doi.org/10.1017/S0963548306007917 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007917


Colouring Semirandom Graphs 535

the colour classes yet.) Let G ′ be the resulting graph. How do SDPk(G) and SDPk(G ′) compare?
By Lemma 4.1, with probability � 2

3 over the choice of the random edges inserted into the colour
classes, SDPk(G ′) exceeds SDPk(G) = #E(G) by at most O(n3/2 p1/2). Hence, if (xv)v∈V is a
rigid vector k-colouring of G, then there are only O(n3/2 p1/2) random edges {v,w} inside the
colour classes Vi whose contribution 1 − 〈xv, xw〉 to the sum (see (2.3))

SDPk(G) �
(

1 − 1

k

) ∑
{s,t}∈E(G ′)

1 − 〈xs, xt 〉 � SDPk(G
′)

is ‘large’, say, 1 − 〈xv, xw〉 � 1/200. But then we can derive from our assumption (1.4) that
there is at least one colour class such that for almost all vertices v, w in this class the vectors xv ,
xw are ‘close to each other’, say, 〈xv, xw〉 � 0.99. In fact, these vertices can be found easily by
‘guessing’ one of them, say w, and considering all the vertices that are close to it, i.e., the set Sw.
The following lemma makes this idea rigorous.

Lemma 4.5. Let G = G∗
n,p,k . Assume that property (4.1) holds for the set U ⊂ {1, . . . , k},

#U = u > 1. Let (xv)v∈VU be a rigid vector u-colouring of G[VU ]. Then there is a vertex v ∈ VU

such that Sv = {w ∈ VU : 〈xv, xw〉 � 0.99} is an independent set of cardinality � 199n
200k in G.

Proof. Consider the graph H = (VU , F), where F = {{v,w} : 〈xv, xw〉 < 0.99}. Then G[VU ]
is a subgraph of H , because 〈xv, xw〉 < 0 for all edges {v,w} ∈ E(G). Let B = ⋃

i∈U E(H [Vi ])
be the set of all edges of H that join two vertices that belong to the same colour class of G. Let
b = #B.

Furthermore, let G ′ be the random graph obtained from G by including each Vi –Vi -edge with
probability p independently for all i ∈ {1, . . . , k}. Note that (xv)v∈V is a feasible solution to
SDPu . Hence, by property (4.1), with probability � 2/3 over the choice of the random edges
inside the colour classes, we have

∑
{v,w}∈E(G ′[VU ])

u − 1

u
(1 − 〈xv, xw〉) � SDPu(G ′[VU ]) � #E(G[VU ]) + C1

nu

k

√
np. (4.4)

Observe that an edge e = {v,w} of G ′[VU ] contributes 1 to the sum on the left-hand side if
e ∈ E(G), and that e contributes � 1

200 if e ∈ B. Therefore, (4.4) entails that

P

(
#B ∩ E(G ′[VU ]) � 200C1

nu

k

√
np

)
� 2

3
. (4.5)

We claim that b � u
401 n2k−2. Indeed, assume for contradiction that b > u

401 n2k−2. Then (1.4)
yields that bp > 2000C1nuk−1√np, provided that the constant C0 is large enough. Since #B ∩
E(G ′[VU ]) is binomially distributed with mean bp, by the Chernoff bound (2.4) we obtain

P

(
#B ∩ E(G ′[VU ]) > 200C1

nu

k

√
np

)
� P

(
#B ∩ E(G ′[VU ]) � bp

10

)
� 1

2
,

contradicting (4.5).
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Algorithm 4. Exact(G, k, T )

Input: A graph G = (V, E), an integer k � χ(G), an integer T � 0.
Output: Either a k-colouring of G or ‘fail’.

1. Let 0 � x � n be the largest integer such that
(n

x
)
kx k! � T .

For each triple (X, ϕ, σ ), where

• X ⊂ V , #X = x ,
• ϕ is a k-colouring of G[X ],
• σ is a permutation of {1, . . . , k}
do the following.

2. For l = 1, . . . , k do
If V \ (S1 ∪ · · · ∪ Sl−1) has no independent subset of size n/k, then abort
the ‘for’ loop and try the next triple (X, ϕ, σ ).
Otherwise, let S′

l be the lexicographically first subset of V \ (S1 ∪ · · · ∪
Sl−1) of size n/k that is independent in G. Then, let

Sl = (S′
l ∪ ϕ−1(σl )) \ ϕ−1({1, . . . , k} \ {σl }).

3. If (S1, . . . , Sk) is a k-colouring of G, then output this colouring and halt.

4. Answer ‘fail’.

Figure 4. The procedure Exact.

Thus, b � u
401 n2k−2. Consequently, there is some i ∈ U and a vertex v ∈ Vi such that v has de-

gree < n
200k in H [Vi ]. Hence, Sv = N̄H (v) has size #Sv � 199n

200k . Furthermore, as for all w,w′ ∈
Sv we have 〈xv, xw〉, 〈xv, xw′ 〉 � 0.99, we obtain that 〈xw, xw′ 〉 � 0. Therefore, {w,w′} �∈ E(G),
so that Sv is an independent set in G.

In addition to the relaxation ϑ̄2, step 2 of Classes employs a procedure Purify from [12].
The following corollary is a reformulation of [12, Proposition 2.6] for the present setting.

Corollary 4.6. Let G = G∗
n,p,k . Let i ∈ {1, . . . , k}. Suppose that I is an independent set that

satisfies #I ∩ Vi � 99n
100k . Further, assume that defG(Vi ) � η < n

2k . Then the output S of

Purify(G, I, η, n/k) contains Vi as an element, and its running time is � nO(1)
(n/k

η

)14
.

Thus, suppose that step 2 of Classes recovers a large independent set Sv from the rigid
vector colouring such that #Sv already contains 99% of the vertices of some colour class Vi .
Then Corollary 4.6 entails that Purify will in fact recover the actual class Vi , provided that the
parameter η exceeds the defect defG(Vi ). Combining Lemma 4.5 and Corollary 4.6, we prove
Proposition 4.4 in Section 4.3.

4.2.2. The procedure Exact. If Classes fails to k-colour the input graph G = G∗
n,p,k , then

ExpColour calls the procedure Exact (see Figure 4). The goal of Exact is to exhibit a k-
colouring of G in expected time nO(1) exp(n/ ln k). Thus, the expected running time of Exact
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is somewhat smaller than the worst case running time exp(�(n)) of known exact colouring
algorithms. In Section 4.4 we prove the following proposition.

Proposition 4.7. Let G = (V, E) be a k-colourable graph, and let exp(n/ ln k) � T � exp(n).

(1) Exact(G, k, T ) either outputs a k-colouring of G or ‘fail’.
(2) The running time of Exact(G, k, T ) is � nO(1)T 4.
(3) If G = G∗

n,p,k , then the probability that Exact(G = G∗
n,p,k, k, T ) answers ‘fail’ is � T −90.

The idea behind Exact is to ‘guess’ a certain part of the hidden colouring of G = G∗
n,p,k .

More precisely, Exact enumerates all sets X of a suitably chosen size x , and all k-colourings ϕ

of X ; the k-colouring ϕ : X → {1, . . . , k} that Exact is really interested in is the one induced
by the planted colouring of G. Then, in step 2, Exact tries to find large independent sets S′

l of
G. By property (4.2), we expect that each of these sets consists mainly of vertices in one colour
class Vσl . Using the ‘guess’ (X, ϕ, σ ), Exact tries to correct the set S′

l so that Sl = Vσl : step 2
removes all vertices in ϕ−1({1, . . . , k} \ {σl}), i.e., all vertices from the other classes that have
erroneously ended up in S′

l , and adds all vertices in ϕ−1(σl), i.e., all missing vertices from Vσl .
The size of the ‘guess’ of Exact is ruled by the parameter T . Note that the choice of x ensures
that the number of possible triples (X, ϕ, σ ) is � T .

4.3. Proof of Proposition 4.4
Given G = G∗

n,p,k , we define the sequence η∗ = (η∗
1, . . . , η∗

k ) of numbers η∗
i ∈ {0, . . . , n

2k } along
with a permutation σ of {1, . . . , k} inductively as follows. Having defined η∗

i and σi for
i = 1, . . . , l − 1, we let

Ul = {1, . . . , k} \ {σ1, . . . , σl−1}. (4.6)

If the graph G[VUl ] does not satisfy property (4.1), then we let η∗
l = n/(2k), and let σl = min Ul .

Otherwise, let (xv)v∈VUl
be the rigid vector (k − l + 1)-colouring of G[VUl ] computed by step 1

of Classes on input G and W = VUl . By Lemma 4.5, there is a vertex w such that #Sw � 199n
200k .

Let

vl = min

{
w ∈ VUl : #Sw � 199n

200k

}
(4.7)

be the smallest such vertex (recall that VUl ⊂ V = {1, . . . , n}). As we assume that G has prop-
erty (4.2), there is a unique σl ∈ {1, . . . , k} such that #Vσl ∩ Svl > 99n

100k . Now, we let

η∗
l = defG(Vσl ), (4.8)

and proceed inductively.
The following lemma establishes the first part of Proposition 4.4. Throughout, we assume that

G has properties (4.2) and (4.3).

Lemma 4.8. Classes(G, V, k, η∗
k , η∗

k−1, . . . , η
∗
1) finds a k-colouring of G.
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Proof. We show by induction that eventually Vσl ∈ Sl for l = 1, . . . , k. Assume that the
algorithm sets S j = Vσ j for j = 1, . . . , l − 1. We show that then the set Sl computed by

Classes

[
G, W = V \

l−1⋃
j=1

Vσ j , k, η∗
k , . . . , η∗

l

]

contains Vσl as an element. There are two cases to consider.

Case 1: η∗
l < n/(2k). Classes executes step 2. Thus, by (4.7), step 2 picks v = vl . Moreover,

due to (4.8) we have η∗
l = defG(Vσl ) < n/(2k). Therefore, Corollary 4.6 entails that the output

Sl of Purify contains Vσl as an element.

Case 2: η∗
l � n/(2k). Eventually, step 3 will encounter some U ⊂ Vσl , #U = n

2k ln k . By prop-
erty (4.3), we have #N̄Gl (U ) � 2n/k. As Vσl ⊂ N̄Gl (U ), step 3 adds Vσl to Sl .

Thus, in both cases we have Vσl ∈ Sl , so that eventually step 4 will try Sl = Vσl . Then step 5
calls

Classes

[
G, V \

l⋃
j=1

Vσ j , k, η∗
k , . . . , η∗

l+1

]
.

Hence, proceeding inductively, we conclude that the colouring (Vσ1 , . . . , Vσk ) will be
recovered.

Moreover, the second assertion in Proposition 4.4 follows from the next lemma.

Lemma 4.9. Let η1, . . . , ηk � 0 be integers. Let η∗
1, . . . , η∗

k be as defined above, with input

graph G = G∗
n,p,k . Then P[η∗

i � ηi for i = 1, . . . , k] �
∏k

i=1

(n/k
ηi

)−90
.

Thus, Lemma 4.9 estimates the probability that the random variables η∗
1, . . . , η∗

k exceed certain
values η1, . . . , ηk .

Proof of Lemma 4.9. Fix a sequence η1, . . . , ηk � 0 of integers. Let G = G∗
n,p,k be a semir-

andom graph with planted colouring V1, . . . , Vk . Given integers 0 � l, λ � k, we define an event
E(l, λ) as follows: G ∈ E(l, λ) if and only if there exist two disjoint sets J1, J2 ⊂ {1, . . . , k} and
an injective map τ : J1 ∪ J2 → {1, . . . , k} such that the following conditions are satisfied.

E1. #J1 = l and #J2 = λ.
E2. For U = Vτ(J1) property (4.1) is violated.
E3. defG(Vτi ) � ηi � 1 for all i ∈ J2.
E4. ηi = 0 for all i ∈ {1, . . . , k} \ (J1 ∪ J2).

We shall prove below that

P[E(l, λ)] �
k∏

i=1

(
n/k

ηi

)−98

for all l, λ. (4.9)

Furthermore, we claim that if G = G∗
n,p,k is such that η∗

i � ηi for i = 1, . . . , k, then there
exist l∗, λ∗ so that G ∈ E(l∗, λ∗). For if property (4.1) does not hold in G with U = {1, . . . , k},
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then G ∈ E(k, 0). Otherwise, we can define

l∗ = k − max
{
1 � l � k : property (4.1) holds in G[VU j ] for all j � l

}
, (4.10)

where Ul is defined in (4.6). In addition, we set

J1 = {k − l∗ + 1, . . . , k} = σ−1(Uk−l∗+1), J2 = {1 � i � k − l∗ : ηi > 0},
and we define τ : J1 ∪ J2 → {1, . . . , k}, j �→ σ j . Then by (4.8) and (4.10), J1, J2, and τ satisfy
E1–E4 with respect to E(l∗, λ∗ = #J2). Hence, G ∈ E(l∗, λ∗). As a consequence, if
maxi=1,...,k ηi > 0, then we obtain

P[η∗
i � ηi for i = 1, . . . , k] �

k∑
l,λ=1

P[E(l, λ)]
(4.9)
� k2 ·

k∏
i=1

(
n/k

ηi

)−98

(1.4)
�

k∏
i=1

(
n/k

ηi

)−90

,

as desired.
Thus, the remaining task is to prove (4.9). If we fix sets J1, J2, and an injection τ : J1 ∪ J2 →

{1, . . . , k} such that E1 and E4 hold, then by Lemma 4.1 and Lemma 4.2 we have

P[E2, E3 occur] � exp

(
−100ln

k

) ∏
i∈J2

(
n/k

ηi

)−100

� exp

(
− ln

k

) k∏
i=1

(
n/k

ηi

)−99

. (4.11)

Further, there are

�
(

k

l

)(
k

λ

)
klλ! � k2l+λ (4.12)

ways to choose J1, J2, and τ subject to E1 and E4. (For there are �
(k

l

)
ways to choose J1 and

�
(k
λ

)
ways to choose J2. Given J1 and J2, there are � kl ways to choose the restriction of τ

to J1, and finally � λ! choices of the restriction of τ to J2 subject to E4.) Combining (4.11)
and (4.12), we obtain

P[E(l, λ)] � k2l+λ · exp

(
− ln

k

) k∏
i=1

(
n/k

ηi

)−99

� kλ ·
(

k

n

)λ

·
k∏

i=1

(
n/k

ηi

)−98

�
(

k2

n

)λ

·
k∏

i=1

(
n/k

ηi

)−98 (1.4)
�

k∏
i=1

(
n/k

ηi

)−98

,

thereby establishing (4.9).

Proof of Proposition 4.4. Since the first two assertions follow from Lemmas 4.8 and 4.9, we
just need to bound the running time of Classes(G, V, k, η1, . . . , ηk). Clearly, step 1 runs in
polynomial time. Moreover, by Corollary 4.6, the total time spent on executing step 2 (for all k
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stages) is

� nO(1)
k∏

i=1

(
n/k

ηi

)14

. (4.13)

Further, step 3 consumes time

nO(1)

(
n

n/(2k ln k)

)(
2n/k

n/k

)
� nO(1)

(
n/k

n/(2k)

)7

; (4.14)

for there are �
( n

n/(2k ln k)

)
ways to choose the set U , and if #T � 2n/k, then there are �

(2n/k
n/k

)
ways to choose the set I . Since step 3 gets executed only if ηl = n

2k , (4.13) and (4.14) entail that
the total running time is

� nO(1)

[
k∏

i=1

(
n/k

ηi

)14

+
k∏

i=1

(
n/k

ηi

)7
]

� nO(1)
k∏

i=1

(
n/k

ηi

)14

,

so that the proposition follows.

4.4. Proof of Proposition 4.7
Due to steps 3–4, Exact(G, k, T ) either outputs a k-colouring of its input graph G or ‘fail’.
Thus, the remaining task is to bound the running time of Exact on input G∗

n,p,k .
Thus, let G = G∗

n,p,k , and let V1, . . . , Vk be the planted k-colouring of G. Assuming prop-
erty (4.2), we construct

• sets X∗
l ⊂ V of cardinality 2x∗

l for l = 1, . . . , k,
• a permutation σ ∗ of {1, . . . , k},
• independent sets S′

1
∗
, . . . , S′

k
∗

inductively as follows. Starting with l = 1, let S′
l
∗ ⊂ V \ ⋃l−1

j=1 Vσ ∗
l

be the lexicographically first
independent set of cardinality n/k. Then by property (4.2), there is a 1 � i � k such that #Vi ∩
S′

l
∗

> n/(2k). Set σ ∗
l = i , let

X∗
l = (Vi \ S′

l
∗
) ∪ (S′

l
∗ \ Vi ), (4.15)

x∗
l = #S′

l
∗ \ Vi , (4.16)

and proceed inductively. Finally, set X∗ = ⋃k
l=1 X∗

l and x∗ = #X∗. Then

x∗ � 2
k∑

i=1

x∗
i . (4.17)

Further, let ϕ∗ be the colouring induced on X∗ by the k-colouring (V1, . . . , Vk) of G, and set

T ∗ =
(

n

x∗

)
kx∗

k!.

If property (4.2) is violated in G, then we let T ∗ = �exp(n)�.

Lemma 4.10. If T ∗ < �exp(n)�, then Exact(G, k, T ) outputs a k-colouring for all T � T ∗.
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Proof. We claim that at the latest when T = T ∗, (X, ϕ, σ ) = (X∗, ϕ∗, σ ∗), steps 2–3 of
Exact will k-colour G. The proof is by induction on l = 1, . . . , k. Suppose that Exact has
set S j = Vσ j for all 1 � j < l. To show that then Sl = Vσl , we let S′

l ⊂ V \ ⋃l−1
j=1 S j = V \⋃l−1

j=1 Vσ j be the independent set of size n/k computed in step 2. As S′
l is the lexicographically

first independent set of size n/k, by construction we have S′
l = S′

l
∗. Hence, (4.15) entails that

(Vσl \ S′
l ) ∪ (S′

l \ Vσl ) = X∗
l ⊂ X∗ = X. (4.18)

As σ = σ ∗ and ϕ = ϕ∗ is the k-colouring induced by (V1, . . . , Vk) on X∗, we get

Sl = (S′
l ∪ ϕ−1(σl)) \ ϕ−1({1, . . . , k} \ {σl})

= (S′
l ∪ (X∗ ∩ Vσl )) \ (X∗ \ Vσl )

(4.18)= Vσl ,

as desired. Thus, steps 2–3 find a k-colouring.

Lemma 4.11. Let exp(n/ ln k) � T � �exp(n)�. Then P[T ∗ > T ] � T −90.

Proof. If G violates property (4.2), then T ∗ = �exp(n)�, and the assertion follows from
Lemma 4.3. Thus, we may assume that property (4.2) holds. Set

x (T ) = max

{
x � 0 : ∀ 0 � y � x : T �

(
n

y

)
kyk!

}
,

X (T ) =
{
(x1, . . . , xk) ∈ {0, . . . , x (T )}k :

k∑
i=1

xi =
⌈

x (T )

2

⌉}
.

Since (1.4) entails(
n

100k/p

)
k100k/pk! �

(
n

100k/p

)2

k200k/p �
(

enp

100

)200k/p

� exp

(
n

ln k

)
� T,

we conclude that

x (T ) � 100k

p
. (4.19)

Given a sequence x1, . . . , xk of integers � 0, we consider the following event E(x1, . . . , xk):

There is a permutation σ of {1, . . . , k} and a collection of sets S′′
1 , . . . , S′′

k

such that S′′
l ⊂ Vσl , #S′′

l � n
2k , and #N̄G(S′′

l ) \ Vσl � xi for l = 1, . . . , k.

We shall prove below that for all (x1, . . . , xk) ∈ X (T )

P[E(x1, . . . , xk)] � exp

(
2n −

[
np

4k
− ln n

]
x (T )

2

)
. (4.20)

Now, let G = G∗
n,p,k be such that T ∗ > T . Let S′′

l = S′
l
∗ ∩ Vσ ∗

l
. Because the sets S′

l
∗ are

independent, we have S′
l
∗ \ Vσ ∗

l
⊂ N̄G(S′′

l ) (l = 1, . . . , k). Moreover, by construction we have
#S′′

l � n
2k , so that E(x∗

1 , . . . , x∗
k ) occurs (see (4.16)). Further, as T ∗ > T and x∗ � n/2, we have

x (T ) < x∗ (4.17)
� 2

k∑
i=1

x∗
i .
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Reducing some of the x∗
i s if necessary, we obtain a sequence (x1, . . . , xk) ∈ X (T ) such that

E(x1, . . . , xk) occurs. Thus,

P[T ∗ > T ] �
∑

(x1,... ,xk )∈X (T )

P[E(x1, . . . , xk)]

(4.20)
� #X (T ) · exp

(
2n −

[
np

4k
− ln n

]
x (T )

2

)
. (4.21)

Observe that

#X (T ) �
(

x (T ) + k − 1

k − 1

)
� 2x (T )+k−1, (4.22)

T �
(

n

x (T ) + 1

)
kx (T )+1k!

(4.19)
� exp(4x (T ) ln n). (4.23)

Therefore, continuing (4.21), we get

P[T ∗ > T ]
(4.22)
� 2x (T )+k−1 exp

(
2n −

[
np

4k
− ln n

]
x (T )

2

)
(4.19)
� exp

(
2x (T ) ln(n) + 2n − np

8k
x (T )

)
(1.4), (4.19)

� exp

(
− np

16k
x (T )

)
(1.4), (4.23)

� T −90,

as desired.
Finally, let us prove (4.20). Let (x1, . . . , xk) ∈ X (T ). Let us fix sets S′

l ⊂ Vσl of cardinality �
n
2k for a moment. In addition, consider sets X1, . . . , Xk such that Xl ⊂ V \ Vσl and #Xl = xl for

l = 1, . . . , k. If eG(Xl , S′
l ) = 0 for l = 1, . . . , k, then we know of � 1

2

∑k
l=1 #Xl · #S′

l � nx (T )

4k
edges that are not present in G = G∗

n,p,k , although each of these edges occurs with probability p
independently in Gn,p,k . Hence,

P[eG(Xl , S′
l ) = 0 for l = 1, . . . , k] � (1 − p)nx (T )/(4k) � exp

(
− x (T )np

4k

)
. (4.24)

Furthermore, given the permutation σ , there are at most 2n/k ways to choose the set S′
l . Moreover,

there are at most
(n

xl

)
ways to choose the set Xl . Therefore, the union bound and (4.24) yield

P[E(x1, . . . , xk)] � exp

(
− x (T )np

4k

)
· k!

k∏
l=1

(
n

xl

)
2n/k

� k! exp

(
n +

[
ln(n) − np

4k

]
x (T )

)
(1.4)
� exp

(
2n +

[
ln(n) − np

4k

]
x (T )

)
,

so that (4.20) follows.
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Proof of Proposition 4.7. The first assertion is immediate. For exp(n/ ln k) � T � �exp(n)�,
steps 1–3 of Exact(G, k, T ) consume time

� nO(1)

[(
n

x

)
kx k!

]
·
(

n

n/k

)
� nO(1)T · exp

(
2n

ln k

)
� nO(1)T 3;

for there are �
(n

x

)
kx k! ways to choose the triple (X, ϕ, σ ), and step 2 needs to check �

( n
n/k

)
subsets of V . Hence, the proposition follows from Lemma 4.10 and Lemma 4.11.

4.5. Proof of Theorem 1.3
By Proposition 4.7, ExpColour computes a k-colouring of every k-colourable input graph.
Thus, the remaining task is to show that ExpColour(G∗

n,p,k, k) runs in polynomial expected
time.

Given 1 � T � exp(n/ ln k), we can bound the running time of steps 2–3 of ExpColour as
follows. There are at most zη = (

η+k−1
k−1

)
ways to choose the numbers η1, . . . , ηk . If η � k − 1,

then

zη � 2η+k−1 � exp(2η) � T 2, (4.25)

by the definition of η. Moreover, if η < k − 1, then due to (1.4) we have

zη =
(

η + k − 1

η

)
�

(
2ek

η

)η

�
(

n

kη

)2η

�
(

n/k

η

)2

� T 2. (4.26)

Further, having fixed (η1, . . . , ηk), by Proposition 4.4 step 3 consumes time

� nO(1)
k∏

i=1

(
n/k

ηi

)14

� nO(1)T 14.

Thus, the total running time of steps 2–3 for a given T is

RT � zη · nO(1)T 14
(4.25), (4.26)

� nO(1)T 16. (4.27)

Now let G = G∗
n,p,k . Then we define a number T ∗ = T ∗(G∗

n,p,k) as follows. If G violates
property (4.2), then we set T ∗

1 = exp(n). Otherwise, if G violates property (4.3), then we let
T ∗

1 = exp(n/ ln k). Moreover, if G satisfies both property (4.2) and (4.3), then let (η∗
1, . . . , η∗

k )

be as in Proposition 4.4 and set T ∗
1 = ∏k

i=1

(n/k
η∗

i

)
. In addition, let

T ∗
2 = min

{
exp(n/ ln k) � T � �exp(n)� : Exact(G, k, T ) finds a k-colouring of G

}
.

Set T ∗ = T ∗
1 , if T ∗

1 � exp(n/ ln k), and T ∗ = max{T ∗
1 , T ∗

2 } otherwise. Then by Proposition 4.4
and Proposition 4.7, ExpColour finds a k-colouring of G before the variable T exceeds T ∗.

Combining Propositions 4.4 and 4.7 and Lemmas 4.1 and 4.3, we conclude that

P[T ∗ > T ] � T −80 (4.28)

for all 1 � T � �exp(n)�. Consequently, by (4.27) and (4.28) we get

�exp(n/ ln k)�∑
T =1

RT P[T ∗ > T ] � nO(1)
∞∑

T =1

T 16−80 = nO(1),
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so that the expected time spent on executing steps 1–3 of ExpColour is polynomial. Finally,
if T ∗ � exp(n/ ln k), then by Proposition 4.7 the expected time spent on executing steps 4–
5 of ExpColour is polynomial as well. Thus, ExpColour(G∗

n,p,k, k) runs in polynomial
expected time.

5. Colouring G∗
n,p,k optimally in polynomial expected time

The goal of this section is to prove Theorem 1.4. Throughout, we assume that (1.5) holds. The
algorithm OptColour is based on the following observation.

Lemma 5.1. We have P
[
ϑ̄2(G∗

n,p,k) � k − 1
2

]
� exp(−100n).

Proof. Let G0 = Gn,p,k , and let G = G∗
n,p,k ∈ I(G0) be a semirandom graph obtained from

G0. Let h = k − 1
2 . If ϑ̄2(G0) � ϑ̄2(G) � h, then G0 has a rigid vector h-colouring (xv)v∈V .

Plugging the feasible solution (xv)v∈V into the semidefinite program SDPh , we conclude that

if ϑ̄2(G0) � h, then SDPh(G0) � #E(G0) (see (2.3)). (5.1)

Furthermore, as #E(G0) is binomially distributed with mean (1 − k−1)n2 p/2, (2.4) entails that

P

[
#E(G0) � (1 − k−1)

n2 p

2
− Cn3/2 p1/2

]
� exp(−101n), (5.2)

where C > 0 denotes a suitable constant. Combining (5.1) and (5.2), we conclude that

P[ϑ̄2(G
∗
n,p,k) � h] � exp(−101n) + P

[
SDPh(Gn,p,k) � (1 − k−1)

n2 p

2
− Cn3/2 p1/2

]

� exp(−101n) + P

[
SDPh(Gn,p,k) � (1 − h−1)

n2 p

2
+ n2 p

4k2
− Cn3/2 p1/2

]
(1.5)
� exp(−101n) + P

[
SDPh(Gn,p,k) � (1 − h−1)

n2 p

2
+

(√
C0

4
− C

)
n3/2 p1/2

]
. (5.3)

Choosing the constant C0 large enough, we can ensure that
√

C0/4 − C �
√

C0/8. Furthermore,
as the random graph Gn,p can be obtained from Gn,p,k by adding random edges inside the
planted colour classes V1, . . . , Vk , the monotonicity property (2.2) entails that SDPh(Gn,p,k) is
stochastically dominated by SDPh(Gn,p). Hence, (5.3) yields

P
[
ϑ̄2(G

∗
n,p,k)� h

]
� exp(−101n)+ P

[
SDPh(Gn,p)� (1 − h−1)

n2 p

2
+

√
C0

8
n3/2 p1/2

]
.

(5.4)

Finally, Lemma 2.1 entails that

P

[
SDPh(Gn,p) � (1 − h−1)

n2 p

2
+

√
C0

4
n3/2 p1/2

]
� exp(−101n), (5.5)

provided that the constant C0 is sufficiently large. Thus, the assertion follows from (5.4)
and (5.5).
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Algorithm 5. OptColour(G)

Input: A graph G = (V, E). Output: An optimal colouring of G.

1. Let κ = �ϑ̄2(G)�.

2. Call ExpColour(G, κ) and output the resulting colouring.

Figure 5. The algorithm OptColour.

Given an input graph G = (V, E), the algorithm OptColour just computes the lower bound
κ = �ϑ̄(G)� on χ(G) and calls ExpColour(G, κ) (see Figure 5).

Proof of Theorem 1.4. If κ = k, then Theorem 1.3 shows that ExpColour(G, κ) finds a κ-
colouring of G = G∗

n,p,k . Furthermore, if κ < k, then either steps 1–4 of ExpColour(G, κ)

will colour G with κ colours, or step 5 of ExpColour computes an optimal colouring of G.
Hence, as κ � χ(G), in any case OptColour outputs an optimal colouring. Finally, the fact
that the expected running time of OptColour is polynomial follows from Theorem 1.3 and
Lemma 5.1.

6. Proof of Theorem 1.2

Consider a random graph G0 = Gn,p,k , and let V1, . . . , Vk be its colour classes, where #Vi =
n/k. Let p = dk/n, d = ( 1

2 − ε) ln(n/k). Let i, j1, j2 ∈ {1, . . . , k} be distinct. Then for each

v ∈ Vi , the number d( j1)
v of neighbours of v in Vj1 has binomial distribution with parameters n/k

and p. Therefore,

P(d( j1)
v = 0) = P(d( j2)

v = 0) = (1 − p)n/k ∼ exp(−d) =
(

n

k

)ε−1/2

.

Thus, P(d( j1)
v = d( j2)

v = 0) ∼ (n/k)2ε−1. Hence, the expected number of vertices v ∈ Vi satis-
fying d( j1)

v = d( j2)
v = 0 is ∼ (n/k)2ε. Since edges are chosen independently, by the Chernoff

bound (2.4) the number of such vertices is in fact � ( n
k )ε w.h.p. Consequently, w.h.p. there are

sets Si ⊂ Vi , #Si = ( n
k

)ε, i = 1, 2, 3, such that NG0(Si ) ∩ (V1 ∪ V2 ∪ V3) = ∅.
Now assume that we had an algorithm A that can k-colour G∗

n,p,k w.h.p. Let H be an arbitrary

graph that admits a 3-colouring with colour classes of cardinality
( n

k

)ε each. We show how to
convert A into a randomized algorithm that 3-colours H , which is NP-hard. First, randomly
partition V = {1, . . . , n} into k sets V1, . . . , Vk of cardinality n/k. Then choose

( n
k

)ε vertices
Si from Vi at random for i = 1, 2, 3. Further, form a complete k-partite graph on the vertices
V1 \ S1, V2 \ S2, V3 \ S3, V4, . . . , Vk , and connect S1 ∪ S2 ∪ S3 completely with V4 ∪ · · · ∪ Vk .
Finally, embed a randomly permuted copy of H into the set S1 ∪ S2 ∪ S3 (without taking care of
the colouring of H , of course). Let G be the resulting graph. We claim that running A(G) yields
a k-colouring of G w.h.p.
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To prove the claim, we volunteer as an adversary that given G0 = Gn,p,k produces the in-
stance G described above. (To this end, we may use unlimited computational power.) Given a
random graph G0 = Gn,p,k with colour classes V1, . . . , Vk , we first look for sets Si ⊂ Vi such
that #Si = ( n

k

)ε and N (Si ) ∩ (V1 ∪ V2 ∪ V3) = ∅, i = 1, 2, 3. As pointed out above, such sets
S1, S2, S3 exist w.h.p.; if not, we give up. Then, we turn G0 − (S1 ∪ S2 ∪ S3) into a complete
k-partite graph, and connect S1 ∪ S2 ∪ S3 completely with V4 ∪ · · · ∪ Vk . Further, we compute a
3-colouring of the worst-case instance H with colour classes of equal size, permute the vertices
in each of the three colour classes of H randomly, and map the three colour classes onto S1, S2,
S3 (thus, this time we respect the colouring). The distribution of the resulting graph G ′ coincides
with the distribution of the graph G constructed in the previous paragraph, so that A k-colours G
w.h.p. As any k-colouring of G induces a 3-colouring on G[S1 ∪ S2 ∪ S3] = H , we have shown
that a polynomial time algorithm for k-colouring G∗

n,p,k w.h.p. yields a randomized algorithm
for 3-colouring the worst-case instance H .

Remark. The only difference between the above construction and the ones given in [16] is
that instead of reducing the problem of k-colouring a k-colourable graph to k-colouring G∗

n,p,k ,
we reduced the problem of 3-colouring a 3-colourable graph to k-colouring G∗

n,p,k . The idea of
working a worst-case instance into the semirandom instance occurs already in [4].

7. Proofs of auxiliary lemmas

Throughout, we assume that (1.4) holds for some large enough constant C0 > 0.

7.1. Proof of Lemma 4.1
By Lemma 2.1 there exists a constant C1 > 0 such that

P

[
SDPu(Gun/k,p) �

(
1 − 1

u

)(
un/k

2

)
p + C1

2

un

k

√
np

]
� 1 − exp

[
−201un

k

]
. (7.1)

Now consider G0 = Gn,p,k , and let G ′
0 be a graph obtained from G0 by adding each edge

inside the planted colour classes Vi , i = 1, . . . , k, with probability p independently. Then G ′
0

is distributed as a random graph Gn,p. Thus, in particular,

G ′
0[VU ] = Gun/k,p. (7.2)

Let B be the event that #E(G0[VU ]) �
(
1 − 1

u

)(un/k
2

)
p − C1nu

2k
√

np. Furthermore, let A be the
event that (4.1) is violated for VU in G0. Then invoking (7.1) and (7.2), we obtain

1

3
P(A ∩ B) � P

[
SDPu(Gun/k,p) >

(
1 − 1

u

)(
un/k

2

)
p + C1

2

un

k

√
np

]

� exp

(
−201un

k

)
. (7.3)

Moreover, #E(G0[VU ]) is binomially distributed with mean

E[#E(G0[VU ])] =
(

u

2

)(
n

k

)2

p ∼
(

1 − 1

u

)
·
(

un/k

2

)
p.
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Hence, choosing the constant C1 > 0 sufficiently large and applying (2.4), we get

P(B) � 1 − exp

(
−201nu

k

)
. (7.4)

Now, (7.4) implies that P(A \ B) � P(¬B) � exp(−201nu/k), which in combination with (7.3)
entails

P(A) = P(A ∩ B) + P(A \ B) � 4 exp

(
−201nu

k

)
� exp

(
−200nu

k

)
. (7.5)

Finally, let G = G∗
n,p,k . Let G0 = Gn,p,k be the random k-colourable graph contained in G.

Let M = #E(G[VU ]) − #E(G0[VU ]) be the number of edges added by the adversary. Then
SDPu(G ′) � SDPu(G ′

0) + M, because adding one edge can increase the value of SDPu by at
most 1. Therefore, if SDPu(G ′

0) � #E(G ′
0[VU ]) + C1

nu
k

√
np, then

SDPu(G ′) � M + #E(G ′
0[VU ]) + C1

nu

k

√
np = #E(G ′[VU ]) + C1

nu

k

√
np.

Hence, the assertion follows from (7.5).

7.2. Proof of Lemma 4.2
Throughout, we fix a partition (V1, . . . , Vk) of V = {1, . . . , n} into k disjoint sets of cardinality
n/k. Let G0 = Gn,p,k be a random k-colourable graph with planted colouring V1, . . . , Vk , and
let G = G∗

n,p,k be the semirandom graph obtained from G0 by the adversary. Then defG(Vi ) �
defG0(Vi ) for i = 1, . . . , k. Hence, it suffices to show that Lemma 4.2 holds for G = G0 =
Gn,p,k .

Since on G = Gn,p,k the random variables (defG(Vi ))i=1,... ,k are not mutually independ-
ent, we decompose G into k mutually independent subgraphs G(i) and investigate the defects
defG(i) (Vi ) (i = 1, . . . , k). Letting

p′ = 1 − √
1 − p � p/2, (7.6)

we obtain the graph G(i) by including each of the (1 − k−1)k−1n2 possible (V \ Vi )–Vi -edges
with probability p′ independently. Thus, G(i) is a random bipartite graph. Furthermore, in the
union

H =
k⋃

i=1

G(i) =
(

V,

k⋃
i=1

E(G(i))

)

every Vi –Vj -edge is present with probability 2p′ − p′2 = p independently of all other edges
(i �= j). Therefore, H has the same distribution as G = Gn,p,k . As a consequence, given
η1, . . . , ηk � 0, we have

P[defG(Vi ) � ηi for i = 1, . . . , k] = P[defH (Vi ) � ηi for i = 1, . . . , k]

� P[defG(i) (Vi ) � ηi for i = 1, . . . , k]

=
k∏

i=1

P[defG(i) (Vi ) � ηi ],
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because the graphs G(i) are mutually independent. Hence, our aim is to prove that

P[defG(i) (Vi ) � ηi ] �
(

n/k

ηi

)−100

for i = 1, . . . , k. (7.7)

To prove (7.7), we first bound the probability that condition D1 in the definition of the defect
occurs.

Lemma 7.1. With probability � 1 − exp(−100n/k) the random graph G(i) has the following
property.

If U ⊂ Vi has cardinality � n
2k , then #V \ (Vi ∪ NG(i) (U )) � n

200k2 . (7.8)

Proof. Assuming that np � C0k2 for a sufficiently large constant C0 (see (1.4)), we have
s = 1000/p � n/(200k2). Fix a set U ⊂ Vi of cardinality � n

2k for a moment. Then

P[V \ (Vi ∪ NG(i) (U )) � s] �
(

n

s

)
(1 − p′)ns/(2k)

(7.6)
�

(
en

s

)s

exp

(
−nps

4k

)
(1.4)
� exp

(
−199n

k

)
. (7.9)

As there are � 2n/k sets U ⊂ Vi of cardinality � n
2k , due to the union bound (7.9) entails that

P[(7.8) is violated] � 2n/k exp

(
−199n

k

)
� exp

(
−198n

k

)
,

and thus the assertion follows.

Furthermore, the next lemma regards condition D2 in the definition of the defect.

Lemma 7.2. Let 1 � η � n
2k . Then with probability � 1 − (n/k

η

)−101
the graph G(i) has the

following property.

Let 6 � d � �50k�. Then every subset T ⊂ V \ Vi

of size #T � n
2kd has a d-fold matching to Vi with defect � η.

To prove Lemma 7.2, we need the following observation.

Lemma 7.3. The probability that in G(i) there are η � 1 vertices in V \ Vi that have < np′/(2k)

neighbours in Vi is � n−200η.

Proof. Let v ∈ V \ Vi . As eG(i) (v, Vi ) is binomially distributed with mean np/k, the Chernoff
bound (2.4) yields

P

[
eG(i) (v, Vi ) � np′

2k

]
� exp

(
−np′

8k

)
.
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Therefore, the probability that there are � η � 1 such vertices is

�
(

n

η

)
exp

(
−np′η

8k

)
(7.6)
� exp

[(
ln(n) − np

16k

)
η

]
(1.4)
� n−200η,

as claimed.

In addition, we need the following lemma from [12, Lemma 4.3].

Lemma 7.4. Let V ′ ⊂ V be a subset of cardinality n1, and let V ′′ = V \ V ′, #V ′′ = n2. Let
γ > 0 be an arbitrary constant, and let 2 � d � n2/10. Then there exists a number ω0 = ω0(γ )

such that the following holds. Let ω = ω0 max{d, ln n}, and let H be a random bipartite graph
obtained as follows: every vertex in V ′ chooses a set of at least ω = ω0 max{d, ln n} neighbours
in V ′′ uniformly at random; these choices occur independently for all vertices in V ′. Then, for
all η ∈ {0, 1, . . . , n2/2}, we have

P

[
∃T ⊂ V ′ : #T � n2

2d
∧ #NH (T ) < d#T − η

]
�

(
n2

η

)−γ

.

Proof of Lemma 7.2. Fix 6 � d � �50k�. We say that G(i) is (d, η)-good if every set S ⊂
V \ Vi admits a d-fold matching to Vi with defect � η. Let ω = np′/(2k), W = {v ∈ V \ Vi :
eG(i) (v, Vi )� ω}, and G ′ = G(i)[V \ W ]. Let ω0 = ω0(110) be the number from Lemma 7.4. If
we choose the constant C0 large enough, then (1.4) and (7.6) yield that ω � ω0 · max{d, ln n}.

Letting 0 � η1 � η, we have

P(#W = η1) � n−200η1 (7.10)

by Lemma 7.3. In addition, set η2 = η − η1. Let us call a set T ⊂ V \ (Vi ∪ W ) (d, η2)-bad if
#T � n

2kd and eG(i) (T, Vi ) < d#T − η2. Then Lemma 7.4 entails that

P(G(i) has a (d, η2)-bad set|#W = η1) �
(

n/k

η2

)−110

. (7.11)

If G(i) has no (d, η2)-bad set, then G(i) is (d, η)-good. For if S ⊂ V \ Vi has size #S � n
2dk ,

then Hall’s theorem entails that T = S \ W has a d-fold matching to T with defect � η2. As a
consequence, (7.10) and (7.11) yield

P[G(i) is not (d, η)-good] �
η∑

η1=0

P[#W = η1]

× P[G(i) has a (d, η2)-bad set|#W = η1]

�
η∑

η1=0

n−200η1

(
n/k

η2

)−110

�
(

n/k

η

)−109

. (7.12)
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Summing (7.12) over 6 � d � �50k�, we obtain

P[G(i) is (d, η)-good for all 6 � d � �50k�] � 1 − 50k

(
n/k

η

)−109

(1.4)
� 1 −

(
n/k

η

)−108

,

thereby proving the lemma.

Combining Lemma 7.1 and Lemma 7.2, we conclude that (7.7) holds, thereby completing the
proof of Lemma 4.2.

7.3. Proof of Lemma 4.3
To establish the first part of Lemma 4.3, it suffices to consider random k-colourable graphs G =
Gn,p,k . Let V1, . . . , Vk be the planted k-colouring. Let U ⊂ V be any set of cardinality u =
#U � n

100k such that

ui = #U ∩ Vi � 199

200
u for i = 1, . . . , k. (7.13)

Our goal is to bound the probability that U is independent in G. Clearly, u = ∑k
i=1 ui , and the

number of possible edges among the vertices of U is λ = ∑
1�i< j�k ui u j = 1

2

[
u2 − ∑k

i=1 u2
i

]
.

Note that λ is minimized subject to (7.13) when
∑

i u2
i is maximized. Thus, λ attains its minimal

value for u1 = 199u/200, u2 = u/200, and ui = 0 for i > 2. Consequently, there is a constant
C1 > 0 such that

λ � 199

40000
u2 � C1

(
n

k

)2

. (7.14)

Hence,

P[U is independent] � (1 − p)λ
(7.14)
� exp

(
−C1

n2 p

k2

)
(1.4)
� exp(−101n), (7.15)

provided that the constant C0 is large enough. As there are � 2n ways to choose U , the assertion
follows from the union bound and (7.15).

As for the second assertion, let G = Gn,p,k be a random k-colourable graph with planted
colouring V1, . . . , Vk . Consider a set U ⊂ Vi , #U � n

2k ln k . Then

P

[
#N̄G(U ) \ Vi >

n

k

]
�

∑
T ⊂V \Vi , #T =n/k

P[eG(U, T ) = 0] �
(

n

n/k

)
(1 − p)n2/(2k2 ln k)

� exp

(
2n

k
ln(k) + n

k
− n2 p

2k2 ln k

)
(1.4)
� exp

(
−100n

ln k

)
,

provided that the constant C0 is sufficiently large.
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[35] Subramanian, C. R., Fürer, M. and Veni Madhavan, C. E (1998) Algorithms for coloring semi-random

graphs. Random Struct. Alg. 13 125–158.
[36] Subramanian, C. R. and Veni Madhavan, C. E. (2002) General partitioning on random graphs.

J. Algorithms 42 153–172.
[37] Szegedy, M. (1994) A note on the θ number of Lovász and the generalized Delsarte bound. In Proc.

35th FOCS, pp. 36–39.

https://doi.org/10.1017/S0963548306007917 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007917

