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Zusammenfassung

In dieser Arbeit werden die Grundlagen von zwei häufig auftretenden Merk-
malen unserer Naturgesetze untersucht: Eichsymmetrien und Quantisierung.
Durch die Betrachtung dieser Merkmale im mathematischen Rahmen von
Homotopie-Algebren wollen wir neue Methoden zur Berechnung physikalischer
Observablen beschreiben, insbesondere in der Kosmologie und der Quanten-
mechanik.

Zunächst befassen wir uns mit dem Problem der Eichredundanzen, die
es schwer machen zu erkennen, welche Größen eine physikalische Bedeu-
tung haben. Im Jahr 1980 erreichte Bardeen dieses Ziel in der kosmologis-
chen Störungstheorie zu erster Ordnung. Die Frage, ob dieses Verfahren auf
die perturbative Expansion von Eichtheorien aller Ordnungen ausgedehnt wer-
den kann, ist seitdem jedoch offen geblieben. Wir zeigen, dass die Um-
formulierung von Eichtheorien in eichinvariante Felder als ein Transfer von
homotopie-algebraischer Strukturen verstanden werden kann. Unter Verwen-
dung dieses mathematischen Rahmens erweitern wir dann die Gültigkeit der
Bardeen-Variablen auf perturbative Eichtheorien zu allen Ordnungen.

Nach der Einführung eines systematisches Verfahrens für die eichinvariante
Störungstheorie betrachten wir die Berechnung von Observablen in der Dop-
pelfeldtheorie um zeitabhängige Hintergründe. Indem wir die Doppelfeldtheorie
um zeitabhängige Hintergründe quadratischer und kubischer Ordnung erweit-
ern und die quadratische Wirkung in den eichinvarianten Variablen ausdrücken,
schaffen wir eine Grundlage für zukünftige Berechnungen, insbesondere zur Un-
tersuchung des Einflusses massiver Stringmoden in kosmologischen Hintergrün-
den.

Zum Schluss betrachten wir einen anderen Ansatz zur Berechnung von
Erwartungswerten in der Quantenmechanik. Obwohl die Pfadintegralfor-
mulierung der Quantenmechanik für den Fortschritt der Quantentheorie von
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entscheidender Bedeutung war, fehlt ihr immer noch eine strenge mathematis-
che Definition. Die Reduktion eines unendlich-dimensionalen Raums von klas-
sisch erlaubten Trajektorien auf einen Erwartungswert, der lediglich eine Funk-
tion der Anfangs- und Endrandbedingungen ist, hat jedoch eine homotopiealge-
braische Interpretation. Mit Hilfe des Batalin-Vilkovisky-Formalismus, der eng
mit Homotopie-Lie-Algebren verwandt ist, entwickeln wir einen homologischen
Ansatz zur Berechnung von Quantenerwartungswerten. Als Beispiel betrachten
wir den harmonischen Oszillator und zeigen, dass unsere Methode auch im Kon-
text der Quantenfeldtheorie in gekrümmter Raumzeit verwendet werden kann,
indem wir den Unruh-Effekt berechnen.
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Abstract

This thesis examines the underpinnings of two frequently manifest features of
our laws of nature: gauge symmetries and quantization. By studying these fea-
tures through the mathematical framework of homotopy algebras, we aim to de-
scribe new methods towards the computation of physical observables, in partic-
ular for cosmology and quantum mechanics.

First, we deal with the problem of gauge redundancies, which make it difficult
to discern which quantities have physical meaning. In 1980, Bardeen introduced
a procedure to achieve this goal in first order cosmological perturbation theory.
However, the question whether this procedure can be extended to the pertur-
bative expansion of gauge theories to all orders has remained open since then.
We show that, in general, the reformulation of gauge theories in gauge invariant
fields has the interpretation of transferring homotopy algebraic structure. Util-
ising this mathematical framework, we then generalize Bardeen’s procedure to
perturbative expansions of gauge theories to all orders in perturbations.

After establishing a systematic procedure for gauge invariant perturbation
theory, we set up the stage for computing observables in double field theory
around time-dependent backgrounds. Double field theory not only has T-duality
as a manifest symmetry, which is expected to be important in string cosmology
proposals, but is also (in its weakly constrained form) a description of massive
string modes, and hence is a suitable arena to investigate the imprint of massive
string modes in cosmological backgrounds. By expanding double field theory
around time-dependent backgrounds to quadratic and cubic order and express-
ing the quadratic action in terms of gauge invariant variables, we provide a basis
for future computations.

Finally, we describe a different approach for computing expectation values in
quantum mechanics. Though having been essential for the progress of quantum
theory, the path integral formulation of quantum mechanics still lacks a rigorous
mathematical definition. However, the act of reducing an infinite-dimensional
space of classically allowed trajectories into an expectation value which is merely
a function of the initial and final boundary conditions does have a homotopy



vi

algebraic interpretation. Through the Batalin-Vilkovisky formalism, which is
closely related to homotopy Lie algebras, we build a homological approach for
computing quantum expectation values. We demonstrate our method for the
harmonic oscillator and we show that our method can also be used in the context
of quantum field theory in curved spacetime by rederiving the Unruh effect.
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Chapter 1

Introduction

1.1 Motivation and Overview

In the development of modern physics, symmetries have become guiding prin-
ciples in the way we characterize the laws of nature. A key discovery in the late
1800s, the speed of light was found to be the same regardless of the reference
frame. Shortly after, physicists realized that Maxwell’s equations of electromag-
netism are invariant under what came to be known as Lorentz transformations.
Between 1905 and 1907, special relativity was born with two postulates: the speed
of light is the same in all inertial reference frames, which are frames that move at
constant velocity relative to each other, and the laws of physics must be the same
in all inertial reference frames.

In 1918, Noether paved the way for physicists to look at symmetries as not
physical consequences but rather as features from which physics can be derived.
Noether’s first theorem states that for every continuous global symmetry of an
action of a theory there is a conserved current. She gave us the intuition that
symmetries give rise to physical laws. Since then, many symmetries and conser-
vation laws were uncovered.

Moreover, it was realized that a kind of symmetry, called gauge symmetry, can
simplify the formulations of our fundamental theories, such as general relativity
and electromagnetism. Gauge symmetries are symmetries of the way we char-
acterize theories: observables are measured relative to a reference value called
a gauge, and our laws of physics must stay the same regardless of the choice
of gauge. Unlike global symmetries, which imply conserved quantities, gauge
symmetries are local symmetries that are redundancies of our formulations. De-
spite their redundancies, they have helped us attain the most concise descrip-
tions of the four fundamental forces: general relativity, whose gauge group is the
group of spacetime diffeomorphisms, and the Standard Model, which contains
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U(1) × SU(2) for the electroweak interaction and SU(3) for the strong interac-
tion. With gauge symmetries, new particles were predicted and experimentally
measured. Most recently, the Higgs boson, hypothesized through symmetry ar-
guments, was verified almost 50 years after its prediction. In addition, the ob-
servation of gravitational waves and their two polarizations predicted through
gauge symmetry have attested to the applicability to general relativity. In our
quest as theoretical physicists to find a unified description of nature and an-
swer unsolved problems, we have constructed theories with more complicated
symmetries, such as supersymmetry, supergravity theories and string theories.
Though we have yet to experimentally verify our new theories beyond the Stan-
dard Model plus general relativity, it is likely that symmetries will continue to
play an important role along the way.

Although gauge symmetries have been helpful for finding new physics, the
redundancies that accompany them have been obstacles in computing observ-
ables necessary to test our theoretical models of the universe. Symmetries and
redundancies are two sides of the same coin. On one side, a system has a symme-
try when it remains unchanged after the application of a particular set of trans-
formations. On the other side, this is a redundancy in the formulation; there are
different ways of describing the same physical system. Different solutions to an
equation of motion are equivalent and related through a symmetry transforma-
tion. In electrodynamics for instance, the magnetic field is unchanged with the
addition of a curl-free vector field to the electromagnetic potential. Such redun-
dancies have caused problems, especially in the quantum realm where many of
our research questions in theoretical physics lie.

Redundancies make it difficult to quantize a theory. It is easy to see the prob-
lem via the path integral formulation of quantum mechanics, from which quan-
tum field theory and hence the Standard Model are built upon. In the path inte-
gral formulation of quantum mechanics, a particle can take any path on its way
from point A to point B, as long as its trajectory preserves the endpoints. Each
path is not equally likely– the contribution of a path depends on the action eval-
uated on that path– but there is an infinite sea of classically allowed trajectories.
In order to find the probability amplitude of a particle travelling from point A to
point B, one must take the weighted average of its possible paths. Although the
path integral lacks a mathematically rigorous definition, it has the power to suc-
cessfully compute observables. Quantum field theory uses the same technique,
with the integral taken over all possible field configurations that preserve the
boundary conditions. For a theory with gauge redundancy, one must sum over
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all gauge-inequivalent field configurations. For this reason, theoretical physicists
must often face the challenge of wandering through the forest of gauge redun-
dancies and follow only the invariant paths. The primary objective of this thesis
is to shed light inside this beautifully symmetric but mysteriously redundant for-
est and unearth its reliable routes.

Taking a bird’s eye perspective, the problem of untangling redundant formu-
lations can be seen as classifying redundant objects into equivalence classes. Once
one determines the appropriate equivalence classes– the ones which are physi-
cally relevant – one only needs to find a representative of the class. By choosing a
representative, one fixes a gauge. Ideally, this choice leads to a convenient com-
putation of observables, but it may not be obvious how to make this choice.

No matter what method may be used to overcome redundancies and solve
for observables, one must be able to produce the physically relevant data of the
theory. This can be described in a rather general way. Considering a free theory
(without interactions), an observable belongs to the kernel of the linear map,

∂0 : f → E (1.1)

where f is the space of fields and E is the space of equations of motion. For
instance, in electromagnetism, ∂0 acts on the gauge field Aµ

∂0(A)µ = �Aµ − ∂µ(∂
ν Aν) . (1.2)

For on-shell fields, the RHS of (1.2) must be zero. The off-shell fields which do
not satisfy the equation of motion play a role in the quantum theory. The gauge
redundancy of fields is encoded by the linear map,

∂1 : g→ f (1.3)

where g is the space of gauge parameters. This means that given a gauge param-
eter, one can map to a field by its gauge transformation in terms of the gauge pa-
rameter. Taking electromagnetism again as an example, ∂1 would act on a gauge
parameter Λ as

∂1(Λ)µ = ∂µΛ . (1.4)
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Because of gauge invariance of the equation of motion, ∂0 acting on a field which
comes from a gauge transformation must be zero:

∂0 ◦ ∂1 = 0 . (1.5)

Consequently, given an on-shell field A which satisfies the equation of motion
∂0A = 0, when shifted by a gauge transformation, e.g. A + ∂1Λ, it still satisfies
the equation of motion. Thus, by taking out the field configurations that are pure
gauge transformations, one obtains the physically relevant observables which be-
long to the quotient space,

H := Ker∂0/Im∂1 . (1.6)

One approach to deal with redundancies besides fixing a gauge is to reformu-
late the theory in terms of gauge invariant variables. This method was developed
by Bardeen in the 1980s in the context of cosmological perturbation theory [1]. In
this method, one examines the gauge transformations of the fields in the theory,
and builds gauge invariant combinations. We can view this as some sort of pro-
jection from the space of fields φ to a space of gauge invariant fields φ̄:

p : φ→ φ̄ . (1.7)

Once the theory is rewritten in terms of the gauge invariant variables, the gauge
redundancy is eliminated. One can then proceed to compute observables with-
out worrying about any redundancies. At the level of the free theory, without
interactions, expressing the theory in terms of gauge invariant variables sounds
promising. However, Bardeen’s procedure does not have a prescription for tak-
ing into account higher order interactions in perturbation theory.

Since perturbation theory is ubiquitous in theoretical physics, one cannot help
but wonder if there is any way to improve Bardeen’s procedure to be able to ap-
ply it at all orders in perturbations. The complexity arises because one needs to be
able to take products of fields, or products of fields and gauge parameters– for in-
stance, the gauge transformations of the fields would take on a non-linear piece.
This requires the definition of an algebraic structure on the free theory. Conse-
quently, the reformulation of the interacting theory in terms of gauge invariant
variables should also have an algebraic structure. We know that any reformula-
tion should reproduce the physically relevant data of the theory. If we can find
a modification of p : φ → φ̄, such that the gauge invariant perturbation theory
gives rise to the same physical observables, then we will have a successful gauge
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invariant reformulation of an interacting theory. To study algebraic structures of
perturbation theories which are equivalent in a way that maintains the physical
data belongs to the realm of homotopy algebras.

Roughly speaking, a homotopy algebra is a more generalized notion of an
algebra, in that its multiplication rules only hold up to some error terms. It is
easier to see this with an example. For instance, an associative algebra (A, ·) is an
algebra whose multiplication is associative in that

a · (b · c) = (a · b) · c , a, b, c ∈ A . (1.8)

A homotopy associative algebra is an algebra whose associativity does not hold
in general, but rather up to an error term:

a · (b · c)− (a · b) · c = A(a, b, c) , (1.9)

where A (called the associator) can be thought of as a total derivative. Because
of this failure to uphold the usual multiplication rules, one does not define iso-
morphisms of homotopy algebras, but rather quasi-isomorphisms (which we will
define later in section 1.3). As Vallette put it neatly: ”Algebra is the study of algebraic
structures with respect to isomorphisms....Homotopical algebra is the study of algebraic
structures with respect to quasi-isomorphisms...”[2]. The homotopy algebras that we
will be considering in this thesis are homotopy Lie algebras called L∞ algebras.
In contrast to a Lie algebra, whose product obeys the Jacobi identity, for an L∞

algebra the Jacobi identity is only satisfied "up to homotopy". 1

The study of homotopy algebraic structures of open and closed string field
theory began in the 90s. It was shown that open string field theory has a homo-
topy associative (A∞) algebra, while closed string field theory has a homotopy Lie
(L∞) algebra [3–5]. In 2016, Sen found a prescription for a consistent truncation
of closed string field theory for massless modes [6]. It turned out that the alge-
braic structure of this effective field theory is an L∞ algebra. For further reviews
see [7–9]. L∞ algebras have since made their presence known in more conven-
tional gauge theories such as Yang-Mills theory and Einstein gravity [10, 11]. In
addition, it is closely related to the Batalin-Vilkovisky (BV) algebra, the structure

1The term homotopy comes from topology. Two functions are homotopic if they can be con-
nected by a continuous path of continuous maps. Topological structures are homotopy equivalent
when there exists a continuous map f which has an inverse g up to homotopy, i.e. f ◦ g and g ◦ f
are homotopic to the identity map. Our usage of the term relates to the structures these notions
induce on certain algebraic invariants associated to topological spaces, namely homology.
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behind the BV formalism which deals with the gauge redundancies of quantum
field theories [12, 13].

By considering the homotopy algebraic structures of our gauge theories, we
can view their reformulations in terms of gauge invariant variables as a so-called
homotopy transfer, the transfer of homotopy algebraic structure from the original
gauge redundant theory to the gauge invariant theory. Through this interpreta-
tion, we gain a systematic understanding of how theories can be expressed in
terms of gauge invariant variables. As we will illustrate in this thesis, homotopy
transfer is at the core of reducing extraneous information in a theory to a smaller
space of physically meaningful data.

After reformulating a theory in terms of gauge invariant variables, one can
wonder whether homotopy algebras can also be applied to the computation of
observables, especially at the quantum level. Indeed, one can think of computing
quantum expectation values as a problem which also involves the reduction of
superfluous data– like the infinitely many allowed trajectories of a particle to
travel from one point to another – to observables. Using homotopy algebras as
our guide, we introduce a new partial reformulation of quantum mechanics.

Outline of the Thesis

In this thesis, we will explore the application of homotopy algebras in two major
areas of theoretical physics: cosmology and quantum mechanics. In section 1.2
we will dive deeper into how homotopy algebras can encode gauge theories. In
section 1.3 we will review mathematical concepts needed to understand the ho-
motopy algebraic machinery that will be applied to physics later. In chapter 2 we
will extend Bardeen’s procedure to higher orders in perturbation theory by ap-
plying what is called the homological perturbation lemma. We will demonstrate
how the new procedure works for Yang-Mills theory and gravity on flat and cos-
mological backgrounds. We reproduce an important result in cosmological per-
turbation theory which is the Mukhanov-Sasaki action for the gauge invariant
scalar perturbation known as the Mukhanov variable.

In chapter 3, our procedure will be applied in the direction of new physics,
namely for double field theory on cosmological backgrounds. Double field the-
ory is a string-inspired theory which is manifestly invariant under T-duality, a
duality of closed string theory [14–17]. It is a point-particle theory, not a theory of
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a strings, formulated on a doubled spacetime. Upon eliminating half of the space-
time coordinates it coincides with the low-energy sector of closed string theory:
the graviton, antisymmetric B-field, and the dilaton. The expansion of double
field theory on cosmological backgrounds to quadratic and cubic order and the
identification of gauge invariant variables are the first steps towards the goal of
learning whether strings could have an imprint in cosmological observations.

In chapter 4, we will advance to the quantum arena. Although there has been
a lot of progress made for addressing the quantization of gauge quantum field
theories through the Batalin-Vilkovisky (BV) formalism, we will have a close look
at the intermediate step: quantum mechanics. In particular we will study the
quantization of a theory with no gauge symmetries at all, namely the harmonic
oscillator in one dimension. It turns out that the same mechanism that takes a
gauge redundant theory and reformulates it in terms of gauge invariant variables
can be used to sum over all the paths that a particle can take between an initial
and a final position and compute a physical observable which is the expectation
value. This leads to a new reformulation of quantum mechanics based on the BV
formalism.

Chapters 2 to 4 are heavily based on the content of the author’s publications.
The results presented in this thesis have been published in the following papers:

[18] Christoph Chiaffrino, Olaf Hohm, and Allison F. Pinto. Gauge Invari-
ant Perturbation Theory via Homotopy Transfer. JHEP, 05:236, 2021. doi:
10.1007/JHEP05(2021)236.

[19] Christoph Chiaffrino, Olaf Hohm, and Allison F. Pinto. Homological
Quantum Mechanics. 12 2021. arXiv: 2112.11495.

[20] Olaf Hohm and Allison F. Pinto. Cosmological Perturbations in Double
Field Theory. 7 2022. arXiv: 2207.14788.

It is important to acknowledge that the novel mathematical approaches in [18]
and [19] were mostly developed by the coauthor, Christoph Chiaffrino. The au-
thor has contributed to the more applied aspects of these works, most notably,
the applications to cosmological perturbation theory and the computation of the
Unruh effect using the new methods. The results from [20] that are described in
chapter 3 of this thesis were predominantly obtained by the author.
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1.2 Physics in Terms of Homotopy Algebras

The main ingredients of a gauge theory are its gauge fields, equations of motion,
and its gauge symmetries. For linear theories, these objects are typically elements
of vector spaces. For example, a scalar field is an element of C∞(M), the vector
space of all smooth functions on a manifold M, and the electromagnetic vector
potential is an element of the vector space of differential one-forms. Given a
gauge theory, one often separates its free part, whose equations of motion are
linear differential equations, from its interacting part, whose equations of motion
are non-linear. In the L∞ algebra formulation of a field theory, one organizes the
free theory into a sequence of vector spaces related via linear maps,

gauge parameters −→ fields −→ field equations −→ Noether identities
(1.10)

and the interactions of the full theory are given by multi-linear maps on these
spaces. Let us elaborate on how these structures encode field theories. For sup-
plementary material, see the reviews [21–23].

The sequence in (1.10) is an example of a chain complex. A chain complex
(V•, ∂) is a sequence of vector spaces Vi,

· · · ∂−→ V2
∂−→ V1

∂−→ V0
∂−→ V−1

∂−→ · · · (1.11)

where the differential ∂i is a map which takes an element in Vi and maps it to an
element in Vi−1 and squares to zero:

∂i−1∂i = 0 . (1.12)

The subscript i is a label called the degree. The chain complex is an example of a
graded vector space, which we will define in the next section.

How does this chain complex actually encode a free theory? Let us first assign
the convention that the vector space V1 is the space of gauge parameters, V0 is
the space of fields, V−1 is the space of field equations, and V−2 is the space of
Noether identities. The differential acting on a gauge parameter is defined to be
the infinitesimal gauge transformation of a field with respect to that parameter to
lowest order in perturbations. Given a gauge parameter λ ∈ V1, the differential
∂1 acts as

∂1λ = δλφ (1.13)
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where the gauge transformation δλφ is a linear function of λ. The differential
acting on a field is defined to be its equation of motion:

∂0φ = E(φ) . (1.14)

The condition for the differential squaring to zero requires:

∂0∂1λ = E(δλφ)
!
= 0 . (1.15)

This makes sense because it means that the equations of motion are gauge invari-
ant. For a free theory, the Noether identity is a linear function of the equations of
motion and is identically zero when the equation of motion is written explicitly
in terms of the fields, as it should be:

∂−1∂0φ = ∂−1E(φ) = f (E(φ)) = 0 . (1.16)

One can obtain the action by defining a non-degenerate pairing 〈· , ·〉. The action
for the free theory is given by

S =
1
2
〈φ , ∂φ〉 . (1.17)

Varying the action with respect to the fields,

δS = 〈δφ , E〉 . (1.18)

δS = 0 gives us the field equations E = 0. In this way, the chain complex de-
scribes the free theory, and with a suitable inner product, one can construct the
free action.

To see how this works with an explicit example, let us check these relations
for a simple free theory with gauge symmetry– Maxwell’s theory. Let us use the
same convention for labelling the vector spaces as we did previously, and define
the chain complex starting with V1 as the space of gauge parameters:

V1
∂1−→ V0

∂0−→ V−1
∂−1−→ V−2

{λ} {Aµ} {Eµ} { f }
(1.19)
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The differentials act as

(∂1λ)µ = ∂µλ , (1.20)

(∂0A)µ = �Aµ − ∂µ(∂
ν Aν) , (1.21)

∂−1(E) = ∂µEµ . (1.22)

We can check that the differential squares to zero:

∂0(∂1λ)µ = ∂0(∂µλ) = �∂µλ− ∂µ(∂
ν∂νλ) = 0 , (1.23)

∂−1(∂0A) = ∂−1
(
�Aµ − ∂µ(∂ν Aν)

)
= ∂µ�Aµ − ∂µ∂µ∂ν Aν = 0 . (1.24)

We define the inner product 〈 f , g〉 to be

〈 f , g〉 =
∫

f · g d4x . (1.25)

The action is then
S =

1
2

∫
Aµ

(
�Aµ − ∂µ(∂ν Aν)

)
d4x , (1.26)

which, by integrating by parts, yields the familiar form of Maxwell’s action

S = −1
4

∫
d4x FµνFµν (1.27)

where Fµν = ∂µ Aν − ∂ν Aµ is the field strength.
We have now organized a free theory into a chain complex. To define the

full theory with interactions, one incorporates multi-linear maps. For example,
if we equip Maxwell’s theory with the appropriate products, we obtain Yang-
Mills theory which has 3-gluon and 4-gluon vertices. For instance, the gauge
transformation for the field gains a non-linear term:

δλ Aµ = ∂µλ + [Aµ, λ] , (1.28)

where [·, ·] is the Lie bracket. So the 2-bracket acting on one field and one gauge
parameter is

bµ
2 (A, λ) = [Aµ, λ] . (1.29)

By inspecting the equations of motion, one can read off the 2-bracket acting on
fields

bµ
2 (A, B) = ∂ν[Aν, Bµ] + [∂µ Aν − ∂ν Aµ, Bν] + (A↔ B) (1.30)



11

and the 3-bracket

bµ
3 (A, B, C) = [Aν, [Bν, Cµ]] + permutations . (1.31)

One can show that the algebra of Yang-Mills theory is a so-called L∞ algebra.
An L∞ algebra is a generalization of a Lie algebra, where the Jacobi identity is
satisfied up to an error term. The error term involves a higher product:

b2(b2(v, w), z) + (−1)|z|b2(b2(z, v), w) + (−1)|w|+|z|b2(b2(w, z), v)

= − b1(b3(v, w, z))− b3(b1(v), w, z)− (−1)|v|b3(v, b1(w), z) (1.32)

− (−1)|v|+|w|b3(v, w, b1(z)) ,

where |v| is the degree of v. The factors of −1 are present because of the grading
of the algebra, which will be clarified in the next section. These definitions are
in the b-picture of the L∞ algebra, meaning that the products bi have degree −1
[11]. Since the terms on the RHS of (1.32) look like a total derivative, one says
that the Jacobi identity is satisfied ”up to homotopy”. For an L∞ algebra, this re-
lation extends to higher products, meaning there is a Jacobi identity for b3 which
is satisfied up to terms involving a higher map b4, which satisfies another identity
involving a b5, and so on. An L∞ algebra is a chain complex equipped with mul-
tilinear maps which satisfy a generalized Jacobi identity. Since there are infinitely
many products with infinitely many entries, one may wonder whether one can
define an L∞ algebra in closed form. In fact, this can be done and the cleanest
way to define an L∞ algebra is through its coalgebra. For this reason we start the
next section by reviewing coalgebras, whose defining operations are coproducts,
which take in one input and yield two or more outputs, and are thus in a sense
dual to algebras. Although the coalgebra picture may be structurally simpler to
work with, the algebra picture is still important and perhaps more intuitive.

An interacting theory is encoded through equipping an L∞ algebra on the
chain complex which describes the free theory. The action for fields φ ∈ X0 in the
full interacting theory is given by

S =
1
2
〈φ, ∂φ〉+ 1

3!
〈φ, b2(φ, φ)〉+ 1

4!
〈φ, b3(φ, φ, φ)〉+ · · · 1

(n + 1)!
〈φ, bn(φ, · · · , φ)〉

(1.33)
and the equations of motion are given by

E = ∂φ +
1
2

b2(φ, φ) +
1
3!

b3(φ, φ, φ) + · · · = 0 . (1.34)
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Using this L∞ algebra framework, let us now sketch how reformulations are
described. Given a reformulation of a physical theory, the physically relevant
data must be preserved. Just as we described the physical observables as the
quotient space (1.6) of the kernel of the equations of motion modulo gauge trans-
formations, it is easy to see that the physical observables of the chain complex
(V•, ∂) are in its homology

H0(V•) = Ker∂0/Im∂1 , (1.35)

where ∂0 maps fields in V0 to equations of motion in V−1 and ∂1 maps gauge pa-
rameters in V1 to fields. As hinted earlier, the reformulation of a theory in terms
of its gauge invariant variables has a mathematical meaning, and in the language
of L∞ algebras, it constitutes an operation called homotopy transfer. One starts
with a chain complex with an L∞ algebraic structure, and we ask whether this
algebraic structure can be transferred such that the homologies are equivalent.
The conditions that are needed for the transfer are given by the homotopy trans-
fer theorem, which will be explained in the next section. Once we verify that the
algebraic structure can be transferred, we can determine the non-linear correc-
tions to the gauge invariant variables through a recipe given by the homological
perturbation lemma. This will be discussed in more detail in section 1.3.2.

In order to build a quantum formulation, one can make use of the Batalin-
Vilkovisky (BV) formalism, whose underlying structure is the BV algebra which
is closely related to L∞ algebras. In fact, the BV algebra is often used to derive a
quantum L∞ algebra [24]. In our work, we apply the BV formalism to compute
quantum expectation values. The BV formalism was originally invented to make
sense of path integrals over gauge redundant field configurations. It is a gener-
alization of BRST quantization and allows for the quantization of theories that
could not otherwise be quantized via BRST, such as theories with open gauge al-
gebras where the algebra of the gauge transformations is closed only when the
equations of motion are satisfied. Unlike with BRST quantization, the BV for-
malism has an underlying algebraic structure on which one can apply homotopy
algebraic techniques. In section 1.3.3 we will define BV algebras and briefly dis-
cuss how they are related to L∞ algebras.
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1.3 Mathematical Preliminaries

1.3.1 Coalgebras

Coalgebras are dual to algebras in the sense that its defining operation is a co-
product, which takes in one input and gives out two or more outputs. Although
this operation being the opposite of a product might seem unusual, the notion of
a coalgebra comes naturally from an algebra. An algebra (V, b) over a field K is
a vector space V with a bilinear product b : V ⊗ V → V. Consider the dual vec-
tor space V∗. One can ask, what structure does the product induce on the dual
space? The product induces the map:

∆ : V∗ → V∗ ⊗V∗ , (1.36)

where ∆ is defined by

∆(λ)(v, w) = λ(b(v, w)) , for all v, w ∈ V and λ ∈ V∗ . (1.37)

We consider associative algebras with a unit. From these properties, one can
induce conditions on the coproduct. From associativity one can verify that

(∆⊗ id) ◦ ∆ = (id⊗ ∆) ◦ ∆ . (1.38)

Since the algebra has a unit, one can show

(id⊗ ε) ◦ ∆ = id = (ε⊗ id) ◦ ∆ , (1.39)

given the map ε : V∗ → K, which is also called a counit. We now give the formal
definition of a coalgebra. A coalgebra (W, ∆) over a field K is a vector space W
with a coproduct ∆ which satisfies (1.38) and (1.39).

As an aside, a notable appearance of the coproduct in physics is in quantum
mechanics, namely in the addition of angular momenta. Consider two particles,
each one being an irreducible representation of the algebra su(2). The total sys-
tem of these two particles is a tensor product representation. The tensor product
representation decomposes into a sum of irreducible representations and the total
angular momentum operator acts as a coproduct.

Just as we can have homomorphisms of algebras, we can have cohomomor-
phisms of coalgebras. Given two coalgebras, S1 = (W1, ∆1) and S2 = (W2, ∆2), a
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coalgebra morphism f : S1 → S2 preserves the above properties of the coproduct
if:

( f ⊗ f ) ◦ ∆1 = ∆2 ◦ f (1.40)

and
ε2 ◦ f = ε1 , (1.41)

where ε1 and ε2 are the counits of coalgebras S1 and S2, respectively. Analogous
to a derivation on algebras satisfying the Leibniz rule, a coderivation D is a linear
map D : W →W which satisfies the co-Leibniz rule,

∆ ◦ D = (D⊗ id + id⊗ D) ◦ ∆ . (1.42)

If a coalgebra is equipped with a coderivation which squares to zero, it is called
a differential coalgebra.

Let us now consider coalgebras on a graded vector space. A graded vector
space V is a vector space that can be decomposed into a sum of vector subspaces
Vn,

V =
⊕

n
Vn , (1.43)

and n is called the degree. The notion of a graded vector space is rather general.
One can take any vector space and assign labels to its subspaces. For example, R2

can be a graded vector space– one could label the elements on the x-axis by degree
“blue” and the elements on the y-axis by degree “orange”. Another example of a
graded vector space is the tensor algebra T(V), which is the sum of all nth tensor
powers of V

T(V) =
⊕
n∈N

V⊗n . (1.44)

This has a natural grading, where the degree-n subspace is the nth tensor power
of V,

T(V) =
⊕
n∈N

TnV , where TnV = V⊗n . (1.45)

The product is the map b : TnV ⊗ TmV → Tn+mV. Hence the tensor algebra is a
graded algebra.

Given a tensor algebra, one can define two distinct coalgebra structures. The
first one is the cofree coalgebra which is dual to the algebra T(V∗) in the sense
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that was described at the beginning of this section. It is defined by the coproduct

∆(v1 · · · vn) =
n

∑
i=0

(v1 · · · vi)⊗ (vi+1 · · · vn) , (1.46)

where vi ∈ V and the tensor product in T(V) has been omitted. The brackets
(v1 · · · v0) and (vn+1 · · · vn) are set to the 1. For example,

∆(v) = 1⊗ v + v⊗ 1 ,

∆(vw) = 1⊗ (vw) + v⊗ w + (vw)⊗ 1
(1.47)

where v, w ∈ V. This coproduct gives all the possible splittings of the object
v1 · · · vn into two parts and preserves the order of the elements. It also preserves
the grading, meaning that the sum of the degrees of the objects on the LHS is the
sum of the degrees of the objects on the RHS.

The second coalgebra is defined by the coproduct

∆(v1 · · · vn) =
n−1

∑
i=1

∑
σ∈S(i,n−i)

(vσ(1) · · · vσ(i))⊗ (vσ(i+1) · · · vσ(n)) , (1.48)

where S(p, q) is a permutation of p + q elements called an unshuffle. A (p, q)
unshuffle is a permutation that preserves the order of the first p elements and the
order of the second q elements. An example of an unshuffle is the bridge shuffle
or a riffle of cards, where one takes a deck of cards, splits it into two decks, and
shuffles the two decks together but maintains the relative order in each deck. The
above coproduct (1.48) is defined in two steps. The first is its definition acting on
a degree 1 object,

∆(v) = v⊗ 1 + 1⊗ v , where v ∈ V ⊂ T(V) . (1.49)

The second step is to demand that the coproduct is a homomorphism of algebras
∆ : T(V) → T(V)⊗ T(V) (the tensor product of two algebras over fields is also
an algebra),

∆(v1v2) = ∆(v1)⊗ ∆(v2) , v1, v2 ∈ T(V) . (1.50)

With these two definitions, one can extend (1.50) on elements of degree n. The
property of the coproduct being an algebra homomorphism defines what is called
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a bialgebra.2

In the above examples, we have seen that from a vector space, one can build
a tensor algebra. When the vector space itself has no explicit grading, one can
make the tensor algebra a symmetric algebra, by imposing invariance under per-
mutations. However one could also consider the vector space with a grading,
from which a graded symmetric algebra can be defined.

A graded symmetric algebra Sc(V•) is defined as

Sc(V•) =
⊕
n≥1

V∧n
• (1.51)

where ∧ is the graded symmetric product and V• is a graded vector space. The
graded symmetric product respects the grading by following the Koszul sign
rule,

v ∧ w = (−1)|v||w|w ∧ v , (1.52)

where v and w are homogeneous elements in V•, and |v| and |w| are their respec-
tive degrees. For the graded symmetric product of inhomogeneous elements, one
extends this rule linearly.

One can obtain a graded symmetric coalgebra defined by the coproduct,

∆ : Sc(V•)→ Sc(V•)⊗ Sc(V•) , (1.53)

∆(v1 ∧ · · · ∧ vn) =
n−1

∑
i=1

∑
σ∈S(i,n−i)

e(σ)(vσ(1) ∧ · · · ∧ vσ(i))⊗ (vσ(i+1) ∧ · · · ∧ vσ(n)) ,

(1.54)
where e(σ) is the appropriate sign following the rule in (1.52), i.e.

v1 · · · vn = e(σ)vσ(1) · · · vσ(n) , (1.55)

and S(i, n − i) are (i, n − i)-unshuffles. The i = 0 term corresponds to 1. In
particular, on a degree 1 element v ∈ V•, the coproduct acts as

∆(v) = v⊗ 1 + (−1)|v|1⊗ v = v− v = 0 . (1.56)

2In fact, bialgebras appear elsewhere in physics, e.g. Hopf algebras which can be applied in
renormalization techniques in quantum field theory[25, 26].
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For our purposes, let Sc(V•) be equipped with a coderivation of degree −1
which squares to zero,

D : Sc(V•)→ Sc(V•) , D2 = 0 . (1.57)

If one restricts the coderivation to degree n and projects to V•, one obtains the
products

bn : V∧n
• → V• , (1.58)

of degree−1. These products can be extended to the graded symmetric coalgebra
by defining

Dk(v1 ∧ · · · ∧ vn) := ∑
σ∈S(k,n−k)

e(σ)bk(vσ(1), . . . , vσ(k)) ∧ · · · ∧ vσ(n) , for n < k .

(1.59)
One can show that Dk is a coderivation on Sc(V•). Now we are ready to define an
L∞ algebra.

An L∞ algebra is a graded vector space V• with the products bn taken from
the coderivation acting on the differential graded symmetric coalgebra given by(
Sc(V•), ∆, D

)
. By the nilpotency of the coderivation D, we can derive relations

among the products bn. The first three are:

0 = b2
1 , (1.60)

0 = b1(b2(vw)) + b2(b1(v)w) + (−1)|v|b2(vb1(w)) , (1.61)

0 = b2(b2(v, w), z) + (−1)|z|b2(b2(z, v), w) + (−1)|w|+|z|b2(b2(w, z), v)

+ b1(b3(v, w, z)) + b3(b1(v), w, z) + (−1)|v|b3(v, b1(w), z)

+ (−1)|v|+|w|b3(v, w, b1(z)) , (1.62)
...

These relations continue to infinity and they are known as the L∞ relations.3 The
first relation (1.60) states that b1 is nilpotent; this is the differential on V•. Thus,
we see that V• together with b1 : V• → V• defines a chain complex. This was
our starting point for defining an L∞ algebra in the previous section. The sec-
ond relation (1.61) states that b1 acts as a derivation of b2, and the third relation
(1.62) is the generalized Jacobi identity of b2, as already introduced in (1.32). The
condition that the coderivation on the differential graded symmetric coalgebra

3In the literature one often finds these relations with different sign conventions in what is
called the l-picture, where the products ln have degree n− 2, see for instance [22].
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is nilpotent implies the generalized Jacobi identities satisfied by the multi-linear
maps of the L∞ algebra.

We began this subsection with an algebra on a vector space and finding a
coalgebra structure on the dual space. Then we discussed what would happen if
we had an algebraic structure on a graded vector space. Finally, we considered
the graded symmetric algebra and constructed a differential graded symmetric
coalgebra. Given a differential graded symmetric coalgebra

(
Sc(V•), ∆, D

)
, we

found an L∞ algebraic structure on the graded vector space V•.

1.3.2 Homotopy Transfer

Given an algebra (V, b) and a vector space W, can one transfer the algebraic struc-
ture from V to W such that the two algebraic structures are equivalent, i.e. iso-
morphic? The answer is yes, when there exists an isomorphism between V and
W. Let p : V → W be an isomorphism and i : W → V its inverse, then the
transferred product c on W is

c(w1, w2) = p
(
b(i(w1), i(w2))

)
. (1.63)

For algebras on chain complexes, the story is not so simple. A morphism
f : (V•, ∂) → (W•, ∂̄) between two chain complexes, also known as a chain map,
is a family of homomorphisms fi : Vi →Wi that satisfy

fn−1∂n = ∂̄n fn . (1.64)

This means that the following diagram must commute:

· · · V0 V−1 · · ·

· · · W0 W−1 · · ·

∂0

f0 f−1

∂̄0
(1.65)

In general one does not have an isomorphism between chain complexes. How-
ever, it is sufficient to consider isomorphisms between the homologies of the
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chain complexes, because this is where the physical data live. Given a chain com-
plex (V•, ∂) the nth homology group is

Hn(V•) =
Ker ∂n

Im ∂n+1
. (1.66)

One can show that a chain map induces a homomorphism on homology groups:
Hn( f ) : Hn(V•) → Hn(W•). If Hn( f ) is an isomorphism for all n, then the chain
map f is called a quasi-isomorphism. Quasi-isomorphisms of chain complexes
induce isomorphisms on homologies.

If there exist quasi-isomorphisms between the chain complexes, the algebraic
structure can always be transferred. The homotopy transfer theorem states that if
chain maps p : V• →W• and i : W• → V• satisfy the relation:

i ◦ p = idV − ∂ ◦ h− h ◦ ∂ , (1.67)

where h is a degree +1 map hi : Vi → Vi+1, then p and i are quasi-isomorphisms
and therefore the algebraic structure on V• can be transferred to W•. W• is called
a homotopy retract of V•. The new algebraic structure on W• is equivalent to that
on V• up to homotopy, meaning that if V• is equipped with a Lie algebra, then the
transferred structure on W• is an L∞ algebra. This is exactly what we need since
the L∞ structure is what we want to start with and what we want to transfer.

The chain complexes together with the quasi-isomorphisms and homotopy
map h,

(V•, ∂), h
p
�

i
(W•, ∂̄) , (1.68)

make up what is called a homotopy equivalence data. If in addition p ◦ i = idW ,
W• is called a deformation retract of V•. This condition is important when we
want to invoke the homological perturbation lemma, which will help us find how
these new transferred products act on W•.

Let us now figure out the expressions for the transferred products. For a 2-
product, it is easy to see that we obtain the same expression in (1.63). To find
the transferred 3-product, we have to consider all the possible ways of taking a
product in V•,

c3(w1, w2, w3) = p
(

b3(i(w1) , i(w2) , i(w3))
)

+ b2
(
h(b2(i(w1) , i(w2))) , i(w3)

)
+ · · · .

(1.69)
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In order to find general expressions for transferring multi-linear products, there
is an efficient recipe that comes from the homological perturbation lemma. If
the multi linear products are small perturbations of the differential on a chain
complex, the homological perturbation lemma gives the necessary conditions for
transferring the algebraic structure of a perturbed chain complex.

Let us first state the homological perturbation lemma. Consider the perturbed
data with perturbation δ,

(V•, ∂ + δ), h′
p′

�
i′
(W•, ∂̄) , (1.70)

where the perturbed differential squares to zero

(∂ + δ)2 = 0 . (1.71)

The homological perturbation lemma states that the perturbed data is a homo-
topy equivalence data, if i′, p′, and h′ are written as [27]:

i′ = i− h(id + δh)−1δi , p′ = p− p(id + δh)−1δh ,

h′ = −h(id + δh)−1h , ∂̄ = p∂i + p(id + δh)−1δi .
(1.72)

By using the identities (id + δh)−1 = id− (id + δh)−1δh and (id + hδ)−1 = id−
h(id + δh)−1δ4, the expressions for i′ and p′ can be brought to simpler forms:

i′ = (id + hδ)−1i , p′ = p(id + δh)−1 . (1.73)

Because we are interested in the homotopy transfer of L∞ algebras, we want
δ to consist of the products bn : V∧n

• → V• except for the linear piece. However,
in order to define the perturbation as δ = ∑n≥2 bn, the homological perturbation
lemma needs to be applied to coalgebras and coalgebra morphisms. In other

4To prove the identity, (id + hδ)−1 = id− h(id + δh)−1δ, let a = (id + δh)−1. Applying the
identity (id + δh)a = id on the left of δ yields

(id + δh)aδ = aδ + δhaδ = δ .

Using this relation, it follows that

(id + hδ)(id− haδ) = id + hδ− haδ− hδhaδ = id + h(δ− aδ− δhaδ) = id .
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words, we need to consider the situation

(Sc(V•), ∂ + δ), h′
p′

�
i′
(Sc(W•), ∂̄) (1.74)

where ∂ and δ are extended to act on Sc(V•) as in (1.59). Then since ∂ + δ make
up a coderivation (1.57) which is nilpotent, the square-zero condition (1.71) is sat-
isfied. For ensuring the homotopy equivalence of coalgebra structures equipped
with coderivations, one cannot use the homological perturbation lemma alone,
since it only maintains that there exist quasi-isomorphisms between chain com-
plexes. However if one imposes extra conditions given by

h ◦ i = 0 , p ◦ h = 0 , h2 = 0 , (1.75)

then W• is called a strong deformation retract of V• and the transferred structure
has the desired coalgebra structure [28]. Then the modified projection and inclu-
sion maps p′ and i′ in (1.73) are cohomomorphisms. By lifting the maps (1.73) to
the graded symmetric coalgebras, one can derive the transferred products on W•.
This concludes our review of L∞ algebras.

1.3.3 BV Algebra

A BV algebra is a type of Poisson algebra, the algebraic structure that appears in
classical mechanics. In Hamiltonian mechanics, the possible configurations of a
system can be modelled as a (symplectic) manifold, and the space of real smooth
functions over this manifold is a Poisson algebra. In the BV formalism, in addi-
tion to the classical field content, one introduces opposite parity variables. Hence
the Poisson algebra acquires a grading and is promoted to a graded Poisson alge-
bra. Furthermore, the BV formalism gives rise to quantization by equipping the
graded Poisson algebra with an operator called the BV Laplacian. The resulting
algebraic structure is a BV algebra.

Let us first define a Poisson algebra. A Poisson algebra is an associative com-
mutative algebra (A, ·) with a Lie bracket {−,−} that satisfies the Leibniz rule,
meaning that it acts as a derivation on the product ·,

{a, b · c} = {a, b} · c + b · {a, c} , for any a, b, c ∈ A . (1.76)

The product {−,−} is called a Poisson bracket. This is the product that appears
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in Hamiltonian mechanics– the familiar Poisson bracket which acts on two func-
tions F(qi, pi, t) and G(qi, pi, t) on the phase space given by canonical coordinates
(qi, pi):

{F, G} =
N

∑
i=1

(
∂F
∂qi

∂G
∂pi
− ∂F

∂pi

∂G
∂qi

)
. (1.77)

Following our previously discussed logic, let us add a grading to the Poisson
algebra (A, ·, {−,−}). Now the product · is graded commutative which means:

a · b = (−1)|a||b|b · a , for a, b ∈ A , (1.78)

where |a| denotes the degree of the element a. The Poisson bracket is assigned a
degree n meaning that

|{a, b}| = |a|+ |b|+ n . (1.79)

The grading changes the properties of the Poisson bracket, for example its anti-
symmetry,

{a, b} = −(−1)(|a|+n)(|b|+n){b, a} , (1.80)

and the Leibniz rule in (1.76) modified as

{a, b · c} = {a, b} · c + (−1)(|a|+n)|b|b · {a, c} . (1.81)

The bracket also obeys a graded Jacobi identity

{{a, b}, c}+ (−1)(|a|+n)(|b|+|c|){{b, c}, a}+ (−1)(|c|+n)(|a|+|b|){{c, a}, b} = 0 .
(1.82)

There are various choices for the degree of the Poisson bracket. To define a BV
algebra, we will set n = 1.

A BV algebra is a graded Poisson algebra with Poisson bracket of degree +1
equipped with a nilpotent operator ∆ of degree +1 which acts as a derivation for
{−,−},

∆{a, b} = {∆a, b}+ (−1)a+1{a, ∆b} , (1.83)

and satisfies

∆(a · b) = ∆a · b + (−1)|a|a · ∆b + (−1)|a|{a, b} . (1.84)

Another way of stating the second condition (1.84) is that the Poisson bracket is
the failure of ∆ being a derivation for the product ·. In the context of BV algebras,
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the bracket {− ,−} is often referred to as the anti-bracket, and the operator ∆ is
called the BV Laplacian.

In the BV formalism, the graded vector space on which we define a BV algebra
is also a chain complex. The differential on the chain complex is given by

δ = {S,−}− ih̄∆ , (1.85)

where S is the action of the theory and has degree 0. The nilpotency of δ gives a
condition on S, which is the so-called Maurer-Cartan equation:

1
2
{S, S} − ih̄∆S = 0 . (1.86)

This is how the structure of a gauge theory is described: a BV algebra and an
action S which satisfies the Maurer-Cartan equation.

In the previous section, we mentioned that the BV algebra is used to derive
a quantum L∞ algebra. Let us now briefly shed some light on this. An L∞ al-
gebra (V•, bn) is defined on a chain complex made up of fields, their equations
of motion, gauge parameters, etc.. The BV complex is actually the dual space: it
contains the functionals of fields and degree−1 objects (belonging to the space of
equations of motion) which are called anti-fields in the BV formalism. The classi-
cal part of the BV differential, Q ≡ {S,−}, is the dual operator to the coderivation
D on the coalgebra from which one can define an L∞ algebra. One can see this
by expanding Q in a basis (xi, zi) where x are commuting variables and z are
anti-commuting variables:

Q = ∑ Qi ∂

∂zi = ∑ f i
j1...jn zj1 · · · zjn ∂

∂zi , (1.87)

where f i
j1...jn are coefficients. These coefficients are related to the L∞ brackets in

the basis ei of V•,
bn(ei1 , . . . , ein) = f j

i1...in ej . (1.88)

By adding a quantum part to Q and defining the full BV differential δ = Q −
ih̄∆ and applying homotopy algebraic techniques, the BV formalism allows for a
procedure to find a quantum version of an L∞ algebra [3, 29].
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Chapter 2

Gauge Invariant Perturbation Theory
via Homotopy Transfer

In [1] Bardeen introduced a procedure to construct gauge invariant variables in
linear cosmological perturbation theory, which considers linear perturbations to
Einstein gravity around an expanding background spacetime. It is especially use-
ful to construct gauge invariant variables in this context, due to the complication
that both the perturbed spacetime and the time-dependent background space-
time are affected by coordinate transformations. Non-linear cosmological pertur-
bation theory remains a challenge, see for instance [30, 31], and even second-order
computations have been quite involved [32–40].

In this chapter, we will extend Bardeen’s procedure in order to express pertur-
bation theory in terms of gauge invariant variables to all orders in perturbations.
To this end we will interpret this construction through the L∞ algebraic frame-
work and we will see that this constitutes building a homotopy equivalence data.
By applying the perturbation lemma, we will show how to derive gauge invari-
ant variables to all orders in perturbations. Yang-Mills theory and gravity on flat
and cosmological backgrounds will be worked out as examples. The results in
this chapter are published in [18].

Before going into detail, let us summarize our general approach. Starting with
a free theory with a gauge field A, one can find the gauge invariant variables Ā,
for instance with Bardeen’s procedure to be reviewed shortly in section 2.1. Let
this be encoded by a map p0 : φ → φ̄ between the space of gauge fields φ and
the space of gauge invariant fields φ̄. The crucial (yet perhaps unspectacular)
point to note is that any configuration of the gauge field will differ from its gauge
invariant configuration by a gauge transformation:

A = p0(A) + δA , (2.1)
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where p0(A) = Ā. Then once we insert the expression for A into the action, the
pure gauge terms with δA will drop out, because the free action is invariant under
these (linearized) gauge transformations. The resulting action will be in terms of
the gauge invariant Ā.

In the homotopy algebraic framework, linear gauge transformations are en-
coded by the map ∂ : X−1 → X0, where X−1 is the space of gauge transformations
and X0 is the space of gauge fields. The gauge transformation on the RHS of (2.1)
can be interpreted as the map ∂ acting on some function of A:

A = p0(A) + ∂ · s(A) . (2.2)

For degree reasons, one can infer that s(A) belongs to the space of gauge param-
eters X−1. We will see that s(A) is given by the homotopy map s : X0 → X−1

(called h in section 1.3 but in this chapter, h will denote metric perturbations)
and the equation (2.2) is the condition necessary for the homotopy equivalence
between the chain complex of the free theory to the gauge invariant complex. To
extend this to all orders in perturbations, we use the same logic to write the gauge
field in terms of its gauge invariant part plus a gauge transformation, but instead
of considering only infinitesimal linearized gauge transformations, we take finite
gauge transformations,

A = e∆ p(A) , (2.3)

where ∆ is the operation that encodes the infinitesimal non-linear gauge trans-
formations and p(A) is the gauge invariant variable to all orders. We will show
how p is determined by perturbing the free part p0 by the interactions of the the-
ory using the homological perturbation lemma and why (2.3) is the correct object
that we can insert into the action to obtain the action in terms of gauge invariant
variables to all orders.

2.1 Gauge Invariant Variables

Let us review Bardeen’s procedure for constructing gauge invariant variables,
based on the original article [1] and the reviews [41, 42]. The first step to build-
ing gauge invariant variables is by splitting the perturbations into various scalar,
vector, and tensor modes, i.e. performing what is known as a scalar-vector-tensor
(SVT) decomposition. Then one inspects the gauge transformations for these
modes and combines them to obtain gauge invariant variables.
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We demonstrate this procedure with a simple example in Maxwell’s theory of
electromagnetism. Consider the action,

S[A] = −1
4

∫
d4x FµνFµν , (2.4)

where the field strength of the electromagnetic field Aµ is Fµν = ∂µ Aν − ∂ν Aµ.
The action is invariant under the gauge transformations

δAµ = ∂µΛ . (2.5)

The gauge field can be split into its temporal and spatial components: Aµ =

(A0 , Ai). Then the 3-vector Ai can be split even further into a divergenceless
vector and a gradient of a scalar

Ai = Âi + ∂iΦ . (2.6)

where ∂i Âi = 0. This decomposition in (2.6) is the familiar Helmholtz decompo-
sition of smooth bounded vectors in 3 dimensions. For this decomposition to be
well-defined, one needs to be able to express the components Φ and Âi in terms
of the original field Ai. By taking the divergence of (2.6), we obtain

∂i Ai = ∆Φ , (2.7)

where ∆ ≡ ∂i∂i. Assuming the Laplacian ∆ is invertible, we find that

Φ = ∆−1(∂i Ai) (2.8)

which with (2.6) implies

Âi = Ai − ∂i∆−1(∂j Aj) . (2.9)

The assumption of the invertibility of the Laplacian follows from the assumption
that all components decay rapidly at infinity. Concretely, to check that one can
invert the Laplacian, we need all harmonic functions to be zero, i.e.

∆ f = 0 , → f = 0 . (2.10)

Since the harmonic functions are bounded, one can show that they must be con-
stant, and therefore we can set their values to zero. Thus by this assumption, the
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Laplacian is invertible.
Let us check that this decomposition preserves the number of degrees of free-

dom, i.e. independent components. Since the divergenceless vector Âi satisfies
one constraint, it has 2 degrees of freedom. The scalar modes A0 and Φ each
have one degree of freedom. Together, A0, Φ, and Âi encode in total 4 degrees of
freedom, which is exactly what we started with in Aµ.

Let us now take a look at the gauge transformations of these components un-
der (2.5). For A0 we simply take the zeroth component of (2.5), δA0 = Λ̇ (where
now the dot represents the time derivative). For the vector component,

δAi = δÂi + ∂i(δΦ) = ∂iΛ . (2.11)

By taking the divergence of both sides and inverting the Laplacian, we find
δΦ = Λ. It follows that the divergenceless components Âi are gauge invariant.
Collecting all the gauge transformations:

δA0 = Λ̇ , δÂi = 0 , δΦ = Λ . (2.12)

It is easy to see that one can build an additional gauge invariant combination:

Φ̂ = A0 − Φ̇ . (2.13)

Finally, we are ready to rewrite the action in terms of gauge invariant variables.
After expanding the action in terms of the components, (A0, Φ, Âi), reorganizing
the action, and integrating by parts, we obtain the manifestly gauge invariant
action,

S =
1
2

∫
d4x

(
Âi�Âi − Φ̂∆Φ̂

)
. (2.14)

By varying with respect to the new fields, the equations of motion are

�Âi = 0 , ∆Φ̂ = 0 . (2.15)

Here we see one of the advantages of this decomposition: it is easy to see which
modes of the gauge field are propagating degrees of freedom. We realize that Âi

encodes the 2 propagating degrees of freedom of the photon. With the invertibil-
ity of the Laplacian, the equation of motion for Φ̂ is Φ̂ = 0, signifying that the
scalar mode Φ̂ does not propagate.

Another advantage is that the gauge invariant scalar and vector modes do not
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couple and thus their equations of motion are simpler to solve. Since a scalar can
only couple to a vector through its divergence, and in this procedure the diver-
gence of the vector mode is absorbed into the gauge invariant scalar perturbation,
the scalar-vector coupling does not appear in the manifestly gauge invariant ac-
tion. Ensuring the absence of these couplings can also be seen as a guiding prin-
ciple for performing the decomposition of the gauge field.

2.1.1 Linearized Gravity on Flat Space

We now perform the same procedure for linearized gravity on flat space. The
Einstein-Hilbert action is

S =
∫

d4x
√
−g R (2.16)

where the g is the determinant of the metric gµν and R is the Ricci curvature scalar.
The metric is expanded around the Minkowski metric ηµν as:

gµν = ηµν + hµν . (2.17)

The action is invariant under the gauge transformations

δgµν = Lξ gµν ≡ ξρ∂ρgµν + ∂µξρgρν + ∂νξρgµρ . (2.18)

From this we can find the gauge transformation of the fluctuation hµν. Let ξµ be
a first-order gauge parameter so the transformation generated by ξµ does not act
on the background. Hence the fluctuation of the metric transforms as:

δgµν = δ(ηµν + hµν) = δhµν = ∂µξν + ∂νξµ . (2.19)

We first split the metric fluctuation into the following independent components
hµν = (h00 , h0i , hij). With the foresight that we want scalar, vector, and tensor
modes to eventually decouple in the action, we perform the decomposition:

h00 = −2φ ,

h0i = Bi + ∂iB ,

hij = ĥij + 2Cδij + ∂iEj + ∂jEi + 2
(

∂i∂jE−
1
3

δij∆E
)

,

(2.20)
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where Bi and Ei are divergenceless,

∂iBi = ∂iEi = 0 , (2.21)

and ĥij is transverse and traceless,

∂iĥij = 0 , δijĥij = 0 . (2.22)

To find the gauge transformations of the components, we also need to decompose
the gauge parameters into scalar and divergenceless vector parts:

ξµ = (ξ0, ξi) , ξi = ζi + ∂iχ , (2.23)

where ∂iζi = 0. With the decomposition of the gauge parameters, the gauge
transformations in (2.19) can be written as:

δh00 = 2ξ̇0 , δh0i = ζ̇i + ∂iχ̇ , δhij = ∂iζ j + ∂jζi + 2∂i∂jχ . (2.24)

One can then deduce the gauge transformations of the components (2.20):

δφ = −ξ̇0 , δBi = ζ̇i , δB = χ̇ + ξ0 ,

δĥij = 0 , δC =
1
3

∆χ , δEi = ζi , δE = χ .
(2.25)

In addition to the tensor modes ĥij, there are three more gauge invariant combi-
nations:

Σi ≡ Ėi − Bi , Ψ ≡ −C +
1
3

∆E , Φ ≡ φ + Ḃ− Ë . (2.26)

We count in total 6 gauge invariant degrees of freedom: 2 tensor modes, 2 vec-
tor modes, and 2 scalar modes. ĥij is symmetric so it starts with 6 independent
components, but it is subject to 3 transverse plus 1 traceless constraints in (2.22),
ending up with 2 independent components. Σi starts with 3 components and is
subject to 1 constraint, thus having 2 independent components. However, from
general relativity we expect only the 2 tensor modes to be physical– these are the
two polarizations of the gravitational wave.

Let us now check this and write the action to quadratic order in terms of
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these gauge invariant variables. To quadratic order in fluctuations on a flat back-
ground, the action can be written as

SFP = −1
2

∫
d4x hµνGµν (2.27)

where Gµν is the Einstein tensor:

Gµν = Rµν −
1
2

Rηµν , (2.28)

where Rµν is the Ricci tensor to linear order,

Rµν = −1
2
(�hµν − ∂ρ∂µhνρ − ∂ρ∂µhµρ + ∂µ∂νh) , (2.29)

where h = ηµνhµν, and R is the Ricci scalar to linear order

R = ηµνRµν = ∂µ∂νhµν −�h . (2.30)

Replacing the metric fluctuation in (2.27) with its components (2.20) and reorga-
nizing the action into the gauge invariant variables (ĥij, Σi, Ψ, Φ), we obtain

SFP =
∫

d4x
(

1
4

ĥij�ĥij −
1
2

Σi∆Σi + (4Φ− 2Ψ)∆Ψ + 6ΨΨ̈
)

. (2.31)

Varying the action with respect to the scalars Φ and Ψ, we obtain the equations

∆Ψ = 0 , 4∆(Φ−Ψ) + 12Ψ̈ = 0 . (2.32)

By the invertibility of the Laplacian, we infer that Ψ = 0. It follows that the sec-
ond equation of (2.32) becomes ∆Φ = 0, which then leads us to Φ = 0. Similarly,
Σi can also be integrated out. We are left with one equation of motion:

�ĥij = 0 . (2.33)

This indeed describes the dynamics of the two propagating degrees of freedom
of the transverse-traceless gravitational wave.

It turns out that we can write the quadratic action in terms of the gauge in-
variant variables (2.31) in an even simpler fashion, by implementing the field
redefinition

Φ → Φ = Φ′ +
1
2

Ψ− 3
2

∆−1Ψ̈ . (2.34)
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With this redefinition, one easily arrives at

SFP =
∫

d4x
(

1
4

ĥij�ĥij −
1
2

Σi∆Σi + 4Φ′∆Ψ
)

. (2.35)

The last term can be made diagonal by using a second redefinition:

Φ± = 2Ψ±Φ′ . (2.36)

Finally we obtain the diagonal form of the gauge invariant action:

SFP =
∫

d4x
(

1
4

ĥij�ĥij −
1
2

Σi∆Σi +
1
2

Φ+∆Φ+ −
1
2

Φ−∆Φ−

)
. (2.37)

In this form, one can immediately see that Φ+ and Φ− (and hence Φ and Ψ) do
not propagate and that they can be integrated out.

This procedure can also be applied in the presence of matter perturbations.
For linearized gravity on flat space, the matter couplings are introduced via the
energy-momentum tensor Tµν:

Smatter =
∫

d4x
(

hµνGµν +
1
2

hµνTµν

)
. (2.38)

If we perform an SVT decomposition of the energy-momentum tensor, we can ex-
pect to separate the matter couplings into purely scalar, vector, and tensor parts.
Let us decompose Tµν as:

T00 = ρ ,

T0i = qi + ∂iq ,

Tij = Πij + ∂iΠj + ∂jΠi + ∂i∂jΠ− 1
3

δij∆Π + pδij ,

(2.39)

where ∂iqi = 0 and ∂iΠi = δijΠij = ∂iΠij = 0. In addition, the energy-momentum
tensor must satisfy the conservation equation ∂µTµν = 0, which expressed in
terms of the above components is:

ρ̇ + ∆q = 0 ,

q̇i + ∆Πi = 0 ,

p + q̇ +
2
3

∆Π = 0 .

(2.40)
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By inserting (2.39) into the full action with matter couplings, together with the
result in (2.31) we obtain

Smatter =
∫

d4x
(

1
4

ĥij�ĥij −
1
2

Σi∆Σi + (4Φ− 2Ψ)∆Ψ + 6ΨΨ̈

+
1
2

ĥijΠij − Σiqi −Φρ− 3Ψp
)

.
(2.41)

After performing the field redefinitions (2.34) and (2.36), integrating by parts, and
applying the conservation equations (2.40), the full action becomes

Smatter =
∫

d4x
(

1
4

ĥij�ĥij −
1
2

Σi∆Σi +
1
2

Φ+∆Φ+ −
1
2

Φ−∆Φ−

+
1
2

ĥijΠij − Σiqi − 1
2
(Φ+ −Φ−)ρ−

1
8
(Φ+ + Φ−)(ρ + 3p− 2∆Π)

)
.

(2.42)

Since Φ+, Φ−, and Σi can be integrated out, what we are left with is the equation
of motion for ĥij:

�ĥij = −Πij . (2.43)

2.1.2 Gravity on FLRW Backgrounds

Let us continue to determine the gauge invariant variables for gravity on
Friedmann-Lemâitre-Robertson-Walker (FLRW) backgrounds. The FLRW metric
is

ds2 = dt2 − a(t)2γijdxidxj (2.44)

where a(t) is the scale factor and γij is the spatial metric with constant curvature.
It is often convenient to define the conformal time η by

dη =
dt

a(t)
. (2.45)

Then the FLRW metric (2.44) can be rewritten as

ds2 = a(t)2(dη2 − γijdxidxj) (2.46)
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We consider quadratic perturbations in an FLRW universe with minimally-
coupled scalar matter. The theory is described by the action,

S =
∫

d4x
√
−g
{

R− 1
2

gµν∂µX ∂νX −V(X )

}
(2.47)

where X denotes the scalar matter field and V(X ) is its potential. The expansion
of the fields around the purely time-dependent background is as follows:

gµν(η, x) = a2(η)(ηµν + hµν(η, x)) ,

X (η, x) = X (0)(η) + ϕ(η, x) ,
(2.48)

where η is conformal time, a(η) is the scale factor, X (0) describes the background
matter, and ϕ is the matter fluctuation. The background dynamics are governed
by the Friedmann equations and the equation of motion of X (0):

H2 =
1
6

a2ρ , (2.49)

Ḣ + H2 =
1

12
a2(ρ− 3p) , (2.50)

Ẍ (0) + 2HẊ (0) + a2V′
(
X (0)) = 0 , (2.51)

where the dot now denotes the derivative with respect to conformal time, H ≡ ȧ
a

is the Hubble parameter, and the prime indicates a derivative with respect to
X (0). ρ and p are the background density and pressure, respectively:

ρ =
1
2

a−2Ẋ (0)2 + V
(
X (0)) , (2.52)

p =
1
2

a−2Ẋ (0)2 −V
(
X (0)) , (2.53)

which satisfy the conservation equation

ρ̇ + 3H(ρ + p) = 0 . (2.54)

The gauge transformations (2.18) to linear order around the FLRW background
read:

δhµν = a−2ξρ∂ρ(a2ηµν) + ∂µξν + ∂νξµ , δϕ = ξρ∂ρX (0) . (2.55)

We now begin the SVT decomposition of the metric and the gauge parameters
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as done in the previous subsection. First, we make the split of the fluctuations
(hµν, ϕ) = (h00, h0i, hij, ϕ) whose components transform under (2.55) as:

δh00 = 2Hξ0 + 2ξ̇0 ,

δh0i = ξ̇i + ∂iξ0 ,

δhij = −2Hξ0δij + 2∂(iξ j) ,

δϕ = −Ẋ (0)ξ0 .

(2.56)

Using the same decomposition of the gauge parameter in (2.23), it follows that
the gauge transformations of the components in (2.56) can be re-expressed as:

δh00 = 2Hξ0 + 2ξ̇0 ,

δh0i = ζ̇i + ∂i(χ̇ + ξ0) ,

δhij = −2Hξ0δij + 2∂(iζ j) + 2∂i∂jχ ,

δϕ = −Ẋ (0)ξ0 .

(2.57)

The metric fluctuation is decomposed as done previously in the flat space case
in (2.20). With (2.20) and (2.57), the gauge transformations of each irreducible
component of the metric fluctuation read:

δφ = −Hξ0 − ξ̇0 , δBi = ζ̇i , δB = χ̇ + ξ0 ,

δĥij = 0 , δC = Hξ0 +
1
3

∆χ , δEi = ζi , δE = χ .
(2.58)

By looking at which transformations cancel each other out, we can find invariant
combinations:

(ĥij , Σi , Ψ , Φ , Θ) (2.59)

where

Σi = Ėi − Bi ,

Ψ = −C +
1
3

∆E− H(B− Ė) , Φ = φ + H(B− Ė) + Ḃ− Ë ,

Θ = ϕ + Ẋ (0)(B− Ė) .

(2.60)

Since the fluctuations are on an FLRW background instead of a flat one, note that
there are additional terms with the Hubble parameter entering in Ψ and Φ, as
well as an additional invariant scalar from the scalar matter fluctuation.

Following the procedure, the next step is to rewrite the action in terms of the
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gauge invariant variables. Unfortunately, expanding the Einstein-Hilbert action
to quadratic order around a time-dependent background is already computation-
ally cumbersome, and to reorganize the terms into the gauge invariant terms is
quite tedious. For now, we proceed with these computations. However, in the
next section, we describe a new method which will drastically simplify the reor-
ganization of the action in terms of the gauge invariant variables.

In order to compute the quadratic action around FLRW we make use of the
vielbein formalism. The vielbein satisfies

eµ
aeν

bηab = gµν , (2.61)

and its inverse ea
µ is defined by ea

µeµ
b = δa

b and eµ
aea

ν = δµ
ν. The Einstein-

Hilbert action can be expressed in terms of the vielbein as:

∫
d4x

√
−g R =

∫
d4x e

(
− 1

4
ΩabcΩabc +

1
2

ΩabcΩbca + ΩaΩa
)

, (2.62)

where e is the determinant of the vielbein and

Ωabc ≡ ea
µeb

ν(∂µeνc − ∂νeµc) , Ωa ≡ Ωab
b (2.63)

are the anholonomy coefficients. The vielbein is expanded as

eµ
a(η, x) = ēµ

a(η) + a(η)hµ
a(η, x) , (2.64)

where

ēµ
a(η) = a(η)

(
1 0
0 δi

α

)
(2.65)

is the background FLRW frame which satisfies ēµ
a ēν

bηab = ḡµν, and

hµ
a =

(
h0

0̄ h0
α

hi
0̄ hi

α

)
=

(
φ Bα

0 hi
α

)
(2.66)

is the (rescaled) fluctuation. Here we performed a 3 + 1 split of indices:

µ = (0, i) , a = (0̄, α) , (2.67)

and picked a gauge for the local Lorentz transformations with hi
0̄ = 0. The com-

putation of the quadratic action requires up to second order in fluctuations of the
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inverse vielbein:

ea
µ = ēa

µ − a(η)ēa
νhν

b ēb
µ + a2(η)ēa

νhν
b ēb

ρhρ
c ēc

µ . (2.68)

Writing this in components we can summarize the vielbein and its inverse as

eµ
a =

(
e0

0̄ e0
α

ei
0̄ ei

α

)
= a(η)

(
1 + φ Bα

0 δi
α + hi

α

)
,

ea
µ =

(
e0̄

0 e0̄
i

eα
0 eα

i

)
= a−1(η)

(
1− φ + φ2 −Bi + φBi + B jhj

αδα
i

0 δα
i − hα

i + hα
jhj

βδβ
i

)
.

(2.69)

This vielbein leads to the same parameterizations of the first order fluctuations
of the metric that is standard in cosmology, namely in (2.20), with h0i identified
with Bα = −h0iδi

α via the background vielbein, and with

hij = 2 h(i
αδj)α . (2.70)

To second order, we collect the fluctuations of the metric and its inverse:

g00 = a2(−1− 2φ− φ2 + BαBα) ,

g0i = a2(Bi + Bαhi
α) ,

gij = a2(δij + hij + hi
αhjα) ,

g00 = a−2(−1 + 2φ− 3φ2) ,

g0i = a−2(Bi − 2φBi −B jhj
αδα

i) ,

gij = a−2(δij − 2hα
(iδ|α|j) + 2hα

khk
γδγ

(iδ|α|j)) .

(2.71)

The SVT decomposition in (2.20) translates to that of hi
α as

hi
α = ĥi

α + ∂iEα + ∂i∂
αE + δi

α
(

C− 1
3

∆E
)

, (2.72)

with ĥi
α satisfying the constraints:

δα
iĥi

α = 0 , ∂iĥi
α = 0 . (2.73)

Similarly, the vector Bα is decomposed as:

Bα = Bα + ∂αB , ∂αBα = 0 . (2.74)
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Inserting the decompositions into (2.62), we compute the full action with mat-
ter coupling (2.47) to quadratic order. The linear terms of the action drop out,
assuming the background field equations are satisfied. The quadratic action is:

S =
∫

d4x a2
{

1
4

ḣijḣij +
1
4

hij∆hij +
1
2

∂jhij∂khik +
1
2
(hi

i − h00)∂
j∂khjk

+
1
2

h0i∆h0i − 1
2
(∂ih0i)2 + ∂ih0jḣij + ∂ih0iḣj

j

− 1
4
(ḣi

i)2 − 1
4

hi
i∆hj

j +
1
2

hi
i∆h00

− 1
2
(Ḣ + 2H2)h2

00 − Hh00ḣi
i + 2Hh00∂ih0i

+
1
2

ϕ̇2 +
1
2

ϕ∆ϕ− 1
2

a2V′′(X (0))ϕ2

− 1
2
Ẋ (0)ϕ

(
ḣ00 + ḣi

i + 2∂ih0i)+ a2V′(X (0))ϕh00

}
.

(2.75)

By inserting the Bardeen variables in (2.60), after a tedious computation the
quadratic action can be organized into its gauge invariant form:

S =
∫

d4x a2
{

1
4

˙̂h
ij ˙̂hij +

1
4

ĥij∆ĥij −
1
2

Σi∆Σi + 4Ψ∆Φ− 2Ψ∆Ψ +
1
2
Ẋ (0)2Φ2

− 6(Ψ̇ + HΦ)2 +
1
2

Θ̇2 +
1
2

Θ∆Θ− 1
2

a2V′′(X (0))Θ2

+ Ẋ (0)Θ(Φ̇ + 3Ψ̇)− 2a2V′(X (0))ΘΦ
}

.

(2.76)

In section 2.5 we will return to cosmological perturbation theory and show how
our method systematizes this computation.

2.2 Homotopy Transfer to Gauge Invariant Variables

As explained in section 1.2, the data of a free theory can be encoded in a chain
complex, i.e.

X1 X0 X−1 X−2 ,∂ ∂ ∂ (2.77)

where X1 is the space of gauge parameters, X0 is the space of fields, X−1 is the
space of field equations, and X−2 is the space of Noether identities. Once the free
theory is in terms of the gauge invariant fields, it has no gauge symmetry, and
this property should be reflected in the chain complex. The chain complex of the
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gauge invariant free theory would take the form:

0 X̄0 X̄−1 0∂̄ (2.78)

where X0 is the space of gauge invariant fields and X−1 is the space of their cor-
responding equations of motion. If no gauge symmetries are present, then there
are no Noether identities either, leaving zeroes at the ends of the complex.

Let us now relate the chain complexes of the free theory data X• and its gauge
invariant data X̄•. We define a projection p0 : X• → X̄• from the chain complex of
gauge fields to the chain complex of gauge invariant variables. Here the subscript
0 is assigned because we are dealing with objects of the free theory instead of
the full interacting theory. For example, in Maxwell’s theory, in degree 0 the
projection acts as

Āµ = p0(Aµ) = (Ā0, Āi) = (Φ̂, Âi) , (2.79)

where Φ̂ and Âi are defined in (2.13) and (2.9) respectively. In degree −1, the
projector is defined by

Ēµ = p0(Eµ) = Eµ − (0, ∂i∆−1(∂µEµ)) (2.80)

so that the space X̄−1 consists of 4-vectors with zero divergence, i.e. ∂µĒµ ≡ 0,
which ensures that the projection to the space of Noether identities in degree −2
is trivial. The inclusion map i0 : X̄• → X• takes a gauge invariant object and treats
it as an element of the original space (as X̄• is a subspace of X•). For example,
i0(Āµ) = Āµ and i0(Ēµ) = Ēµ. By definition, the projection and inclusion maps
satisfy p0i0 = idX̄ and are chain maps, meaning they satisfy (1.64). The chain
complexes and the morphisms can be represented by the following diagram.

X1 X0 X−1 X−2

0 X̄0 X̄−1 0

∂

p0

∂

p0

∂

p0 p0i0

∂̄

i0 i0 i0 (2.81)

It is easy to derive the new differential ∂̄ on the gauge invariant chain complex,
by using the chain map property (1.64) and that p0i0 = idX̄:

∂̄ = ∂̄p0i0 = p0∂i0 . (2.82)

We proceed to determine the interacting theory in terms of gauge invariant
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variables. We recall the homotopy transfer theorem which states that if we have
quasi-isomorphisms between X• and X̄•, then the algebraic structure on X• can
be transferred to X̄•. For i0, p0 to be quasi-isomorphisms, there needs to exist a
homotopy map s0 of degree +1 such that

i0 ◦ p0 = idX − ∂ ◦ s0 − s0 ◦ ∂ . (2.83)

Let us consider this relation for the Maxwell example:

i0p0(Aµ) = Āµ = Aµ − ∂µ(s0(A)) (2.84)

where we have assumed that s0 acting on objects of degree −1 yields zero. By
using (2.79), (2.6) and (2.13) to rewrite Āµ as

Āµ = (Φ̂, Âi) = (A0 − Φ̇, Ai − ∂iΦ) = Aµ − ∂µΦ (2.85)

and by recalling the definition for Φ in (2.8), we can deduce s0(A):

s0(A) = Φ = ∆−1(∂i Ai) . (2.86)

2.3 Applying the Homological Perturbation Lemma

Now that we have established a homotopy equivalence data of the free theory
(X•, ∂) and the gauge invariant complex (X̄•, ∂̄), we can utilize the homologi-
cal perturbation lemma to determine the gauge invariant variables to higher or-
ders in perturbations. We recall the discussion around (1.74). Let the products
bk : X∧n

• → X• which encode the non-linear interactions be the small pertur-
bation δ = ∑k≥2 bk to the differential in the chain complex (X•, ∂). In order to
apply the homological perturbation lemma, we lift the maps bk and ∂ to act on
the graded symmetric coalgebra Sc(X•). Assuming that we have a strong de-
formation retract given by the conditions (1.75) (in addition to p0i0 = id), the
perturbed projection and inclusion maps are given by

i = (1 + s0δ)−1i0 , p = p0(1 + δs0)
−1 , (2.87)
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where i and p are coalgebra morphisms. To realize the expressions for i and p,
we first lift the chain maps p0 and i0 to coalgebra morphisms, which is straight-
forward since they are linear.

p0(x1 ∧ · · · ∧ xn) = p0(x1) ∧ · · · ∧ p0(xn) (2.88)

where p0 on the LHS is a cohomomorphism Sc(X•)→ Sc(X̄•) and p0 on the RHS
is the chain map X• → X̄•. Similarly, the inclusion map is lifted to a cohomomor-
phism Sc(X̄•)→ Sc(X•):

i0(x1 ∧ · · · ∧ xn) = i0(x1) ∧ · · · ∧ i0(xn) (2.89)

The lift of the homotopy map s0 requires a few steps. First we define its action on
tensor powers hn : X⊗n

• → X∧n
•

hn(x1 ⊗ · · · ⊗ xn) =s0(x1) ∧ x2 ∧ · · · ∧ xn + (−)x1 i0 ◦ p0(x1) ∧ s0(x2) ∧ x3 ∧ · · · ∧ xn

+ ... + (−)x1+...+xn−1 i0 ◦ p0(x1) ∧ · · · ∧ i0 ◦ p0(xn−1) ∧ s0(xn) .

(2.90)

Then we define a map qn : X∧n
• → X⊗n

• which accounts for the graded sym-
metrization:

qn(x1 ∧ · · · ∧ xn) =
1
n! ∑

σ∈Sn

±xσ(1) ⊗ · · · ⊗ xσ(n) (2.91)

By defining the composition,

hn ◦ qn : X∧n
• → X∧n

• (2.92)

we have a well-defined homotopy map s0 : Sc(X•)→ Sc(X•):

s0 := ∑
n≥1

hn ◦ qn . (2.93)

The expressions for the perturbed maps p and i are expanded order by order in
k. The inverses in (2.87) are defined as a geometric series, (1+ x)−1 = ∑n≥0(−x)n.
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Let us work out what p would be for Yang-Mills to second-order in fields, mean-
ing that we would have to implement the b2 map in (1.30).

− p0b2s0(A ∧ B)

= −p0b2
1
2
(s0(A) ∧ B + A ∧ s0(B) + s0(A) ∧ i0p0(B) + i0p0(A) ∧ s0(B))

= −1
2

p0([(1 + i0p0)(Aµ), s0(B)]− [s0(A), (1 + i0p0)(B)]) ,

(2.94)

where [·, ·] is the Lie bracket of the Yang-Mills gauge algebra. We know that the
gauge invariant part is the projection of the gauge field:

Â = p(A) . (2.95)

For the above example, to quadratic order in fields,

Â = p(A) = p0(Aµ)−
1
4

p0([(1 + i0p0)(Aµ), s0(B)]− [s0(A), (1 + i0p0)(B)])

= p0(Aµ) +
1
2

p0[s0(A), (1 + i0p0)(Aµ)] .

(2.96)

Let us check that this is indeed gauge invariant. By taking the linear variation of
the quadratic term,

1
2

p0[s0(∂µλ), (1 + i0p0)(Aµ)] +
1
2

p0[s0(A), (1 + i0p0)(∂µλ)]

=
1
2

p0([λ, (1 + i0p0)(Aµ)] + [s0(A), ∂µλ])

=
1
2

p0([λ, (1 + i0p0)(Aµ)]− [(1− i0p0)(Aµ), λ])

= −p0([Aµ, λ])

(2.97)

The variation of the linear term gives:

p0(∂µλ + [Aµ, λ]) = p0([Aµ, λ]) , (2.98)

which cancels with the variation of the quadratic term.
Now that we have obtained the gauge invariant variable Â = p(A) to all or-

ders in perturbations, we want to find a suitable replacement of the gauge field
in terms of the gauge invariant variable, A(Â), to obtain a manifestly gauge in-
variant action S[Â]. Even though our end result would only depend on the gauge



42

invariant fields, the inclusion map i : X̄0 → X0, which views the gauge invariant
field as a member of the larger gauge variant space, does not provide enough
information. This is because the action is originally defined on gauge redundant
fields and these have more degrees of freedom than their gauge invariant projec-
tions. For example, the gauge invariant variable in Maxwell theory Âi has only 2
degrees of freedom and the other 2 degrees of freedom in Aµ turn out to be pure
gauge (see the discussion at the beginning of section 2.1). In other words, the
space of gauge fields X0 is of the same size as the space of gauge invariant fields
X̄0 plus the space of pure gauge fields, which we now denote as Y0. By finding a
sort of extension to the inclusion map which accounts for the pure gauge fields

F : X̄0 ⊕Y0 → X0, (2.99)

one can reinsert the forgotten gauge degrees of freedom together with the invari-
ant ones into the action.

We expect the map to be given by the finite gauge transformation

Aµ = e∆φ Âµ , (2.100)

where ∆φ is the operator defining the infinitesimal (non-linear) gauge transfor-
mations. Upon inserting this expression into the action, by gauge invariance, the
pure gauge terms will drop out and we will be left with the action in terms of the
gauge invariant variable. We will now illustrate how the above is the appropriate
map and how this fits into our L∞ framework.

Let us first consider what properties this map F should satisfy in general. Part
of it is given by the inclusion i : X̄0 → X0 and the other part should produce a
pure gauge piece:

F : X̄0 ⊕Y0 → X0,

(Â, φ) 7→ i(Â) + j(Â, φ) .
(2.101)

For Maxwell theory as an example, the gauge field can be written (as in (2.85))

Aµ = Āµ + ∂µφ , (2.102)



43

so the map F is specified by i(Āµ) = Āµ and j(Āµ, φ) = ∂µφ. The inverse of F is

F−1 : X0 → X̄0 ⊕Y0 ,

A 7→ (p(A), q(A)) ,
(2.103)

where p is the projection and q encodes the rest of the gauge degrees of freedom.
In the Maxwell example, this just represents the rewriting

Aµ = p0(Aµ) + ∂µq0(A) . (2.104)

and since according to (2.85) and (2.86) the projection acts as

p0(Aµ) = Āµ = Aµ − ∂µ(∆−1(∂i Ai)) , (2.105)

by inserting this into (2.104) we can deduce q0(A):

q0(A) = ∆−1(∂i Ai) . (2.106)

q0(A) coincides with the homotopy s0(A) but is a degree zero map. What we
want to find is a map F = i + j whose inverse is given by F−1 = (p, q) where i
and p are the full inclusion and projection maps given by the perturbation lemma
(2.87). At the linear level, we see that it is relatively straightforward to find the
maps j and q. To account for the full non-linear theory, our ansatz is F : X̄0 ⊕
Y0 → X0

F (Âµ, φ) = e∆φ Âµ . (2.107)

We will show that this is the correct expression by using the example of Yang-
Mills theory.

Before we proceed, let us comment about the invertibility of these maps. At
the linear level, we know that F is invertible because the spaces X̄0 ⊕ Y0 and X0

are isomorphic. At the non-linear level, we are dealing with morphisms of L∞

algebras, so the proof of invertibility is more involved, however it can be shown
that an L∞ algebra morphism is invertible if its linear piece is [43].

For Yang-Mills, the infinitesimal gauge transformation is given by

∆φ(Aµ) = ∂µφ + [Aµ, φ] , (2.108)
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which upon inserting into (2.107) to quadratic order yields

Aµ = F (Âµ, φ) = Âµ + ∂µφ +
[
Âµ, φ

]
+

1
2
[
∂µφ, φ

]
+ · · · . (2.109)

The inverse map is
F−1(A) = (p(A), q(A)) , (2.110)

where p(Aµ) = Âµ and q(A) can be computed order by order (as is typically done
for inverting L∞ morphisms). For instance, by applying q0 in (2.106) to both sides
of (2.109), the first term on the RHS vanishes because of the divergenceless vector
constraint ∂µ Âµ = 0, and the second term is q0(∂µφ) = φ. Then by bringing Aµ

to the right and φ to the left hand side, (2.109) becomes

φ = q0(Aµ)− q0
[
Âµ, φ

]
− 1

2
q0
[
∂µφ, φ

]
. (2.111)

We now view φ as a function of A, and identify φ(A) as q(A). Then by writing
Âµ and φ to linear order in Aµ, by recalling homotopy relation in (2.84) and that
to leading order q0(A) = s0(A),

q(A) = q0(Aµ)− q0
[
i0p0(Aµ), s0(A)

]
− 1

2
q0
[
(1− i0p0)(Aµ), s0(A)

]
= q0(Aµ)−

1
2

q0
[
(1 + i0p0)(Aµ), s0(A)

]
. (2.112)

Thus we have computed our ansatz for q to first non-trivial order.
Let us check whether the maps that we have defined are indeed inverses of

each other, with i and p given by the perturbation lemma (2.87), namely that

F−1(F (Âµ, φ)
)
=
(

p(F (Âµ, φ)), q(F (Âµ, φ))
)
= (Âµ, φ) . (2.113)

Since we have already computed q such that q(F (Âµ, φ)) = φ, we must only
check the identity with p. To lowest order, we apply p0 to F (Âµ, φ) in (2.109) and
rearrange to have Âµ on the LHS:

Âµ = p0(Aµ)− p0
[
Âµ, φ

]
− 1

2
p0
[
∂µφ, φ

]
. (2.114)
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Expressing Âµ and φ in terms of Aµ to linear order gives

Âµ = p0(Aµ)− p0
[
i0p0(Aµ), s0(A)

]
− 1

2
p0
[
(1− i0p0)(Aµ), s0(A)

]
= p0(Aµ)−

1
2

p0
[
(1 + i0p0)(Aµ), s0(A)

]
, (2.115)

which is exactly the correct expression of Âµ to quadratic order in (2.96). Thus our
ansatz in (2.107) is compatible with the definition of the perturbed projections and
inclusion maps. We have shown that this works for quadratic order in Yang-Mills,
but one can in principle repeat these steps for higher orders.

In addition to being able to express the action in terms of gauge invariant
variables to all orders, one can also ask what the effective equations of motion
are. Recall the general formula for the perturbed coderivation given by (1.72).

∂̄ = p0∂i0 + p0(id + δs0)
−1δi0. (2.116)

In order to simplify this expression, we make use of the geometric series

(id + δs0)
−1 =

∞

∑
n=0

(−δs0)
n . (2.117)

In the case of Yang-Mills, the gauge invariant complex only consists of elements
in degree 0 and−1 since there are no gauge symmetries left, and this implies that
∂̄ can only be nonzero when acting on degree zero elements. Since δ is a degree
−1 map and s0 acting on degree−1 elements is zero, the second term on the RHS
of (2.116) reduces to

p0(id + δs0)
−1δi0 = p0

∞

∑
n=0

(−δs0)
nδi0 = p0δi0 . (2.118)

Finally, the perturbed coderivation is obtained:

∂̄ = p0∂i0 + p0δi0 = p0(∂ + δ)i0 . (2.119)

This states that the equation of motion of the gauge invariant variable Â is com-
puted by inserting Â into the equation of motion of the gauge field A. The result-
ing equation of motion is simplified compared to the original one, since the gauge
invariant variable has fewer degrees of freedom and obeys some constraints, e.g.
the divergenceless constraint ∂i Âi = 0 in Yang-Mills.



46

This concludes the description of our procedure for finding the action in terms
of gauge invariant variables. Although we have developed the procedure for
gauge invariant perturbation theory to all orders, it can also be applied at the level
of the free theory. In the next sections, we will demonstrate this for linearized
gravity and cosmological perturbation theory.

2.4 Linearized Gravity

We now take linearized gravity and its gauge invariant variables which we de-
scribed in section 2.1.1 and provide its homotopy algebraic interpretation. First,
we organize the theory in the chain complex

X1
∂−→ X0

∂−→ X−1
∂−→ X−2

{ξµ} {hµν} {Eµν} {Fµ}
(2.120)

where the differentials act as

∂(ξ)µν = ∂µξν + ∂νξµ ,

∂(h)µν = Gµν(h) ,

∂(E)µ = ∂νEνµ .

(2.121)

In (2.26) we have identified the gauge invariant variables, Σi, Ψ, Φ, along with
ĥij.

We would like to define the gauge invariant chain complex X̄•. Let us define
the projection p : X0 → X̄0 as

p(hµν) = h̄µν , (2.122)

where
h̄ij = ĥij − 2Ψδij , h̄0i = −Σi , h̄00 = −2Φ . (2.123)

Although it might not be obvious that this is a good projection, we can check
that it is, by seeing whether we can write the original metric field as the gauge
invariant field plus a pure gauge term:

hµν = h̄µν + ∂µψν + ∂νψµ . (2.124)
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We find that with (2.122) and (2.26), the pure gauge field is given by

ψµ = (ψ0, ψi) = (B− Ė, Ei + ∂iE) . (2.125)

The inclusion i : X̄0 → X0 is defined in the usual way:

i(h̄µν) = h̄µν . (2.126)

Let us proceed to find the homotopy retract from X• to X̄•. We will find the
homotopy map s can be found by evaluating the homotopy retract condition in
(2.83) on elements of each degree. On degree zero elements which are the fields:

(id− ip)(hµν) = hµν − h̄µν = ∂µψν + ∂νψµ = ∂(ψ)µν , (2.127)

where we have treated ψµ as an element of X1. By comparing this with (2.83) and
assuming that s acting on elements in X−1 is zero, we find that the homotopy
map acts as

s(h) = ψ . (2.128)

For elements of degree 1, namely the gauge parameters, we compute

(id− ip)ξµ = ξµ = s(∂ξ)µ (2.129)

where p(ξ) = 0 because we project down to gauge invariant variables, and s(ξ) =
0 since there are no elements of degree 2. Therefore we have

s(∂ξ)µ = ξµ (2.130)

For the homotopy map on degree −2 elements, we must first find the pro-
jection from X−1 to X̄−1. The elements of X̄−1 must be divergence-free Lorentz
tensors

∂µĒµν = 0 , (2.131)

since the space of Noether identities X−2 must project to zero. The projection
which satisfies this condition is

Ēµν ≡ p(E)µν =

(
E00 E0j − ∂j∆−1(∂νEν0)

Ei0 − ∂i∆−1(∂νEν0) Eij − 2∂(i∆−1∂νEj)ν + ∂i∂j∆−2(∂µ∂νEµν)

)
.

(2.132)
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With this we can compute the homotopy relation on E ∈ X−1,

(id− ip)(E)µν =

(
0 −∂i∆−1(∂νEν0)

∂i∆−1(∂νEν0) 2∂(i∆−1(∂νEj)ν)− ∂i∂j∆−2(∂µ∂νEµν)

)
= s(∂E)µν ,

(2.133)

where we have assumed s(E) = 0. Since ∂(E)µ = ∂νEνµ, we can define the
homotopy map on degree −2 objects as

s(F)µν =

(
s(F)00 s(F)0j

s(F)i0 s(F)ij

)
=

(
0 ∂j∆−1F0

∂i∆−1F0 2∂(i∆−1Fj) − ∂i∂j∆−2(∂µFµ)

)
. (2.134)

We check that this is the correct expression by evaluating the homotopy relation
on F ∈ X−2

(id− ip)(F)µ = ∂(s(F))µ + s(∂F)µ = Fµ . (2.135)

Since s(∂F) = 0 and by using (2.134),

∂(s(F))µ = ∂νs(F)νµ =

(
∂0s(F)00 + ∂is(F)i0

∂0s(F)0i + ∂js(F)ji

)

=

(
F0

∂i∆−1(∂0F0) + ∂i∆−1(∂jFj) + Fi − ∂i∆−1(∂µFµ)

)

=

(
F0

Fi

)
,

(2.136)

as it should be. We have now finished specifying all the homotopy maps which
satisfy the homotopy relations and have defined the homotopy retract from the
free theory to the theory in terms of gauge invariant variables. In order to com-
pute gauge invariant variables to higher orders, one would require the higher
products δ = ∑k≥2 bk from the higher order perturbation theory and apply the
homological perturbation lemma to these maps.

2.5 Cosmological Perturbation Theory

In this section we give the homotopy retract of cosmological perturbation theory
to quadratic order around an FLRW background and extend the discussion in
section 2.4. Recalling the initial description of the theory in section 2.1.2, our
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space of fields X0 must now include the matter field ϕ in addition to the metric
field hµν. The differential acts on the gauge parameters as

∂(ξ)µν = ∂µξν + ∂νξµ − 2Hξ0ηµν ,

∂(ξ)• = −Ẋ (0)ξ0 ,
(2.137)

where the • indicates the component in the direction of the scalar field ϕ. We
define the projection from X0 to X̄0 as:

p(h)µν = h̄µν , pϕ = Θ , (2.138)

where
h̄ij = ĥij − 2Ψδij , h̄0i = −Σi , h̄00 = −2Φ . (2.139)

and (Σi, Ψ, Φ, Θ) are defined in (2.60). We check that the original fields can be
written in terms of the projected fields plus pure gauge terms:

hµν = h̄µν + ∂µψν + ∂νψµ − 2Hψ0ηµν , (2.140)

ϕ = ϕ̄− Ẋ (0)ψ0 , (2.141)

where
ψµ = (ψ0, ψi) = (B− Ė, Ei + ∂iE) . (2.142)

In order to find the homotopy map s : X0 → X1, we compute

(ip− id)(hµν) = h̄µν − hµν = −∂µψν − ∂νψµ + 2Hψ0ηµν = −∂(ψ)µν , (2.143)

(ip− id)(ϕ) = ϕ̄− ϕ = Ẋ (0)ψ0 = −∂(ψ)• , (2.144)

from which we can infer:

s(h)µ = ψµ ∈ X1 ,

s(ϕ) = ψ• ∈ X1 ,
(2.145)

and s on degree −1 elements is zero.
One can repeat the computation for the projection and homotopy maps for

the spaces just like for the flat space case. However, let us turn to discussing
the computation of organizing the action (2.75) into gauge invariant form. The
computation is dramatically shortened by substituting the fields with their pro-
jections plus pure gauge terms, (2.140) and (2.141), into the action. All the pure
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gauge terms drop out by gauge invariance. The remaining terms containing the
gauge invariant variables are also simplified due to the constraints on the pro-
jected fields, given by

∂ih̄ij − 1
3 ∂j(h̄i

i) = 0 , ∂ih̄i0 = 0 , (2.146)

which can be deduced from the constraints on the SVT components of hµν in
(2.21) and (2.22). We recover the manifestly gauge invariant action in (2.76).

To provide a consistency check with the literature, in order to compare with
the results of [41], we set to zero all modes except the scalar modes and decon-
struct the scalar Bardeen variables in (2.76), i.e. by expressing them in terms of
the scalars (C, E, B, φ, and ϕ) as in (2.60). We indeed reproduce the quadratic
action (10.68) obtained in [41].

As a final check we use our action (2.76) to re-derive the Mukhanov-Sasaki
action for the scalar modes. It turns out that the dynamics of the three scalar
modes Ψ, Φ, Θ can be reduced to the dynamics of only one mode known as the
Mukhanov variable. To start our derivation, we again set all the modes in (2.76)
to zero except for the scalar modes, and introduce the following combination of
gauge invariant variables,

W ≡ Θ + f Ψ , where f ≡ Ẋ
(0)

H
. (2.147)

Substituting Θ in terms of W and Ψ, the action (2.76) takes the form:

S =
∫

d4x a2
{

1
2

Ẇ2 +
1
2

W∆W − 1
2

a2V′′W2

+ 4Ψ∆Φ− 2Ψ∆Ψ− f Ψ∆W +
1
2

f 2Ψ∆Ψ

+
1
2

f 2
(
− Ḣ + 2H2 +

2Ḧ
H
− 2Ḣ2

H2 +
6Ẍ

f

)
Ψ2

− Ẇ( ḟ Ψ + f Ψ̇) + a2V′′ f ΨW + 3ẊWΨ̇ +

(
1
2

f 2 − 6
)
(Ψ̇ + HΦ)2

− f 2(Ḣ + 2H2)ΨΦ + ẊWΦ̇− 2a2V′WΦ
}

,

(2.148)

where the superscript on the background quantity X (0) has been omitted for
readability. We first absorb the dependence of Φ̇ and Ψ̇ by performing the field
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redefinition,

Φ→ Φ = Υ− 1
H

Ψ̇ +
f
4

W − f 2

4
Ψ . (2.149)

The action then reduces to a function of Ψ, Υ, and W:

S =
∫

d4x a2
{

1
2

Ẇ2 +
1
2

W∆W +
1
2

(
− a2V′′ − 2Ḣ + 4H2 +

2Ḣ2

H2 −
2Ḧ
H

)
W2

+ 4Ψ∆Υ +

(
1
2

f 2 − 6
)

H2Υ2 +

(
Ẍ − Ḣ

H
Ẋ
)

ΥW − ẊΥẆ
}

.

(2.150)

With the invertibility of the Laplacian, we make use of another field redefinition

Ψ→ Ψ = Γ− 1
4

∆−1
[(

1
2

f 2 − 6
)

H2Υ +

(
Ẍ − Ḣ

H
Ẋ
)

W − Ẋ Ẇ
]

, (2.151)

which simplifies the second line of (2.150) into a form in which Γ and Υ are clearly
auxiliary:

S =
∫

d4x a2
{

1
2

Ẇ2 +
1
2

W∆W +
1
2

(
− a2V′′ − 2Ḣ + 4H2 +

2Ḣ2

H2 −
2Ḧ
H

)
W2

+ 4Γ∆Υ
}

.

(2.152)

Let us now introduce the Mukhanov variable v ≡ aW and diagonalize the last
term in (2.152) by defining

Φ± ≡ a(Γ± Υ) , (2.153)

to obtain

S =
∫

d4x
{

1
2

v∆v +
1
2

v̇2 +
1
2

z̈
z

v2 + Φ+∆Φ+ −Φ−∆Φ−

}
, where z ≡ a f .

(2.154)

Finally, we can eliminate the auxiliary fields Φ+ and Φ− with their equations
of motion and the invertibility of the Laplacian to obtain the Mukhanov-Sasaki
action,

S =
∫

d4x
{

1
2

v∆v +
1
2

v̇2 +
1
2

z̈
z

v2
}

. (2.155)
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This concludes the re-derivation of the Mukhanov-Sasaki action for the gauge
invariant scalar mode.
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Chapter 3

Cosmological Perturbations in
Double Field Theory

In this chapter, we apply our homotopy algebra methods to cosmological pertur-
bations in double field theory. Before going into detail, let us introduce double
field theory and our motivations for studying it especially for cosmological ap-
plications. The defining symmetry of double field theory is T-duality, which is
a duality exhibited by closed string theory. Let us briefly address the difference
between dualities and symmetries. Both share the notion of equivalence under
transformations. However, a symmetry transformation leaves a physical system
invariant, whereas a duality transformation relates two different descriptions of
a system or two different theories.

T-duality relates the mass spectra of the closed string on toroidal backgrounds
of radius R and 1/R. We recall that a closed string on a toroidal background is
not only described by its momentum but also its winding number, the number of
times it can wind around periodic dimensions. Upon quantization, momentum
takes discrete integer values, which can be easily seen by applying the translation
operator in the periodic directions. Let us consider the simple case of a closed
string in a spacetime with one compactified dimension. Its mass spectrum is

M2 = p2 + w2 +
2
α′
(NL + NR − 2)

=
n2

R2 +
m2R2

α′2
+

2
α′
(NL + NR − 2) , n, m, NL, NR ∈ Z ,

(3.1)

where α′ is the inverse string tension, n/R is the momentum quantum num-
ber, mR/α′ is the winding quantum number, NL and NR are the number of left-
and right-moving oscillatory modes which obey the so-called level-matching con-
straint

NR − NL = nm . (3.2)
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The mass spectrum (3.1) is invariant under the exchange:

n↔ m , R↔ α′

R
. (3.3)

This implies that closed string theory on large tori shares the same physics as that
on small tori as long as the momentum and winding modes are switched. This
equivalence is called T-duality. The above transformations belong to the group
Z2. One can extend this example to compactification on a d-torus, where the
corresponding T-duality transformations belong to the group O(d, d; Z). Because
this invariance appears only upon compactification and is not manifest as a sym-
metry in the action, one often refers to T-duality as a hidden symmetry of string
theory.

The way T-duality relates physics on large (compact) spaces of radius R and
small spaces of radius α′/R is partly what makes string theory an attractive per-
spective to answer questions in cosmology [44–48]. For example, string gas cos-
mology, a model based on a gas of strings, offers an alternative scenario to infla-
tion and proposes a resolution to the Big Bang singularity [44, 46, 47, 49, 50] (see
[51–56] for more recent material). Making measurable predictions of cosmolog-
ical observables by applying string theory alone has not yet been successful, in
particular, string theory does not provide an equivalent of the Friedmann equa-
tions. However, it may be advantageous to use a field theoretical description
of the background spacetime (instead of the worldsheet). Double field theory is
the corresponding field theory which is manifestly invariant under T-duality and
thus it is desirable to study its cosmological perturbations.

In the next section we give a short introduction of the general formulation of
double field theory. More extensive reviews of double field theory can be found
in [57–59]. After this introduction, we will expand the theory to quadratic and
cubic order around time-dependent backgrounds, and reformulate the quadratic
theory in terms of gauge invariant variables. This will provide a basis for the fu-
ture computation of observables in cosmological double field theory. The results
in section 3.2 have been published in [18] and the results in sections 3.3 and 3.4
have been published in [20]. Many passages have been adapted from [18] and
[20].
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3.1 Overview of DFT

Double field theory is defined on a doubled spacetime1, given by coordinates
XM ≡ (x̃i, xi), where i = 1, ..., d. xi are coordinates which are conjugate to
momentum, and x̃i are conjugate to winding. The derivatives are denoted as
∂M = (∂̃i, ∂i). Indices are raised and lowered by the O(d, d) metric,

ηMN =

(
0 δi

j

δi
j 0

)
. (3.4)

The O(d, d) metric is invariant under O(d, d) transformations

htηh = η , h ∈ O(d, d) . (3.5)

The fields in double field theory are the generalized metric HMN and the dilaton
ϕ, where the index M = 0, 1, ..., 2d. These are O(d, d) covariant objects, in the
sense that under an O(d, d) transformation h,

f ′(X′) = f (X) , X′ = hX , (3.6)

enabling double field theory to have a manifest global O(d, d) symmetry. The
generalized metric satisfies the constraint

HMNHNQ = δM
Q , (3.7)

whereHMN is obtained by raising indices with η. Solving its constraint, the gen-
eralized metric can be parameterized in the following way,

HMN =

(
gij −gikbkj

bikgkj gij − bikgklbl j

)
. (3.8)

where gij is the metric field and bij is the antisymmetric B-field.
The diffeomorphisms on the doubled spacetime are called generalized diffeo-

morphisms. These are the gauge transformations of double field theory. Under
generalized coordinate transformations, XM → X′M = XM − ξM, where ξM is an

1For a more precise definition of doubled geometry, see [60, 61].
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infinitesimal parameter, fields transform according to the generalized Lie deriva-
tives Lξ . On scalars these act as

Lξ f ≡ ξM∂M f . (3.9)

On O(d, d) vectors,

LξVM ≡ ξN∂NVM + KM
N(ξ)VN , (3.10)

where
KM

N(ξ) = ∂MξN − ∂NξM . (3.11)

For a general O(d, d) tensor TM
N,

Lξ TM
N ≡ ξL∂LTM

N + KM
L(ξ)TL

N + KN
L(ξ)TM

L . (3.12)

It is worth noting that, upon the strong constraint which will be introduced next,
the generalized Lie derivatives form an algebra

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]c , (3.13)

where [·, ·]c is the C-bracket,

[ξ1, ξ2]
M
c = ξN

1 ∂NξM
2 −

1
2

ξ1N∂MξN
2 − (1↔ 2) . (3.14)

This does not satisfy the Jacobi identity [62]. In fact, the gauge algebra of double
field theory is an L∞ algebra [11].

Consistency of double field theory, including the gauge invariance of the ac-
tion, requires the constraint,

ηMN∂M∂N f = ∂M∂M f = 2∂i∂̃
i f = 0 , (3.15)

for all objects in the theory. It is motivated by the level-matching constraint in
string theory (3.2). An immediate solution to the constraint is to demand that
all functions only depend on half of the coordinates, i.e. either xi or x̃i. This
version of the constraint is called the strong constraint, and hence (3.15) by it-
self is referred to as the weak constraint. Since the constraint (3.15) is O(d, d)
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invariant, all solutions can be related to this choice via an O(d, d) transforma-
tion. Upon eliminating half of the coordinates, one recovers the low-energy ef-
fective target space action of closed string theory; in this case, double field theory
can be thought of as a manifestly T-duality-invariant reformulation of the the-
ory of massless string modes. When one considers a weakly-constrained double
field theory, the functions can depend on more than half of the coordinates, and
thus one is not restricted to the massless string modes and instead can also de-
scribe massive modes. However, this becomes an obstacle when constructing a
full weakly-constrained double field theory beyond quadratic order. For instance
the cubic theory requires a modification of the point-wise product such that prod-
ucts of functions also obey the weak constraint. This is addressed in our work in
[20], but will not be discussed in this thesis.

The action of double field theory reads

SDFT =
∫

d2dX e−2ϕ

(
1
8
HMN∂MHKL∂NHKL −

1
2
HMN∂NHKL∂LHMK

+ 4HMN∂M ϕ∂N ϕ− 2∂MHMN∂N ϕ

)
.

(3.16)

It is invariant under the gauge transformations,

δξHMN = LξHMN = ξL∂LHMN + KM
L(ξ)HLN + KN

L(ξ)HML ,

δξ ϕ = Lξ ϕ ≡ ξM∂M ϕ− 1
2

∂MξM .
(3.17)

The gauge transformation of the dilaton is defined such that the quantity e−2ϕ

transforms as a scalar density. For the full double field theory, gauge invariance
of the action requires the strong constraint. However, for the quadratic and cubic
theories, as will be discussed later on in the chapter, only the weak version of the
constraint is needed for consistency.

The canonical formulation of the double field theory action was derived in
[63], via splitting the doubled coordinates into temporal and spatial components.
The dependence on the resulting "dual time" coordinates is eliminated so that all
fields depend on (t, XM) and the action is formulated on a (1 + 2d)-dimensional
space. This results in a theory with fields:

HMN , Φ , n , NM , (3.18)

whereHMN is the spatial generalized metric, Φ is the duality invariant dilaton, n
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denotes the lapse function ensuring time reparametrization invariance, and NM

denotes the doubled shift vector. The action reads

S =
∫

dt
∫

d2dX n e−2Φ
(
− 4(DtΦ)2 − 1

8
DtHMNDtHMN +R(Φ,HMN)

)
.

(3.19)
The covariant derivatives are defined as

Dt ≡
1
n
(∂t −LN ) , (3.20)

where LN is the generalized Lie derivative with respect to the generalized shift
vector NM:

LNΦ = NM∂MΦ− 1
2

∂MNM ,

LNHMN = N K∂KHMN + KM
K(N )HKN + KN

K(N )HKN .
(3.21)

The last term in the action (3.19) uses the generalized curvature scalar

R(Φ,HMN) ≡ 4HMN∂M∂NΦ− ∂M∂NHMN − 4HMN∂MΦ∂NΦ + 4∂MHMN∂NΦ

+
1
8
HMN∂MHKL∂NHKL −

1
2
HMN∂MHKL∂KHNL .

(3.22)

For now we assume all fields to be subject to the strong version of the constraint
meaning that also terms of the form ∂M f ∂Mg are set to zero.

In the following we will use a frame formalism for the spatial generalized
metric. We introduce a generalized frame or vielbein EA

M, with inverse EM
A,

satisfying EA
MEM

B = δA
B, from which the generalized metric can be constructed

via
HMN = EM

AEN
BSAB , (3.23)

where SAB denotes a positive-definite (tangent space) metric to be given momen-
tarily. The flat indices split as A = (a, ā). The frame field is subject to the con-
straint that the "flattened" version of the O(d, d) metric (3.4) is block-diagonal:

GAB ≡ EA
MEB

NηMN =

(
Gab 0
0 Gāb̄

)
, (3.24)

with no further constraints on the (generally spacetime dependent) metrics Gab

and Gāb̄. Thus, the local frame transformations comprise the group GL(d, R) ×
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GL(d, R). The metric GAB, which is used to raise and lower flat indices, has signa-
ture (d, d), and so we can assume without loss of generality that Gab is negative-
definite and that Gāb̄ is positive-definite. Then, the metric SAB is defined as

SAB =

(
−Gab 0

0 Gāb̄

)
. (3.25)

Finally, we give the symmetries of the action, which is invariant under O(d, d)
transformations and generalized diffeomorphisms. The transformation rules can
be inferred from [64]. The gauge parameters are ξ0, ξ0, ξM, and ΛA

B, all depend-
ing on coordinates (t, XM), and act infinitesimally via

δEA
M = Lξ EA

M + nξ0DtEA
M + ΛA

BEB
M ,

δn = nξ0Dtn + n2Dtξ
0 + ξM∂Mn ,

δNM = ∂Mξ0 + ∂tξ
M − n2HMN∂Nξ0 + LξNM ,

δΦ = nξ0DtΦ + LξΦ .

(3.26)

We are now ready to expand the theory around flat backgrounds as well as time-
dependent ones.

3.2 DFT on Flat Space

3.2.1 SVT Decomposition

Let us start with the expansion of double field theory around flat space. The fields
can be split into their constant background and fluctuation parts:

EA
M(t, X) = ĒA

M − hA
B(t, X)ĒB

M(t) , (3.27)

Φ(t, X) = Φ̄ + ϕ(t, X) , (3.28)

n(t, X) = n̄(1 + φ(t, X)) , (3.29)

NM(t, X) = AM(t, X) . (3.30)

Here we have taken the background value of the shift vector to be zero. The
background tangent space metric ḠAB constructed as in (3.24) will be used to
raise and lower flat indices, while the background ĒA

M and its inverse will be
used to flatten and unflatten indices. In the following we will often omit the bar
on the background quantities. A gauge (using Λ from the frame transformations)
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has been chosen such that hab = hāb̄ = 0 and hA
B is solely described by the

components
hab̄ = −hb̄a . (3.31)

This equality follows from the fact that (3.24) is block-diagonal. Let us define the
derivatives,

DA ≡ EA
M∂M ≡ (Da, Dā) . (3.32)

The weak constraint (3.15) is re-expressed as

∆ f ≡ −2DaDa f = 2DāDā f . (3.33)

This shows that despite the doubling of spatial coordinates, there is a unique
Laplacian ∆.

The double field theory action (3.19) expanded to quadratic order around flat
space yields

S0 =
∫

dt
∫

d2dX ne−2Φ
(
− 4(Dt ϕ)2 − Dthab̄Dthab̄

+ 8DaφDa ϕ− 8Da ϕDa ϕ− 8Da ϕDb̄hab̄ + 4DaφDb̄hab̄

− 2Dahbc̄Dahbc̄ + 2Dchab̄Dahcb̄ − 2Dc̄hab̄Db̄hac̄

)
,

(3.34)

where the covariant time derivatives (3.20) act as

Dt ϕ = ∂t ϕ +
1
2

DaAa +
1
2

DāAā ,

Dthab̄ = ∂thab̄ − DaAb̄ + Db̄Aa .
(3.35)

As unbarred and barred indices are consistently contracted the above action has
a manifest SO(d)L × SO(d)R invariance in addition to the O(d, d) duality. The
action is invariant under the gauge symmetries with parameters (ξa, ξ ā, ξ0, ξ0),
given by

δhab̄ = Daξ b̄ − Db̄ξa ,

δφ = ξ̇0 ,

δϕ = −1
2

Daξa − 1
2

Dāξ ā ,

δAa = ξ̇a + Da(ξ0 + ξ0) ,

δAā = ξ̇ ā + Dā(ξ0 − ξ0) .

(3.36)
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There is a gauge symmetry for gauge symmetries since gauge parameters of the
form

ξa = Daχ , ξ ā = Dāχ , ξ̃0 = −χ̇ , (3.37)

where χ is an arbitrary scalar, do not generate a transformation of fields.
Note that the derivatives (3.35) are invariant under gauge transformations
w.r.t. (ξa, ξ ā). They are also invariant under ξ0 transformations thanks to the weak
constraint (3.33). This leaves ξ0 transformations as the only symmetry linking the
terms in the first line of (3.34) to the rest of the action. The total invariance, sub-
ject to the weak constraint (3.33), is easy to verify. It should be emphasized that
at the level of the free theory one does not have to worry about how to imple-
ment the weak constraint (3.33) on products of fields, since under an integral, e.g.∫

Da f Dag = −
∫

f DaDag through partial integration, and thus it is sufficient that
all fields and gauge parameters satisfy the constraint [15].

In the following we will follow our procedure for rewriting a theory in terms
of gauge invariant variables for linearized double field theory. We start with a
scalar-vector-tensor (SVT) decomposition:

hab̄ = ĥab̄ + DaBb̄ − Db̄Ba + DaDb̄E ,

Aa = Aa + Da A ,

Aā = Aā + Dā Ā ,

(3.38)

where

Da ĥab̄ = Db̄ ĥab̄ = 0 , DaBa = DāBā = 0 , Da Aa = Dā Aā = 0 . (3.39)

Since there is no SO(d)L × SO(d)R invariant way to take a trace of hab̄, we do not
have an additional scalar component as we do in (2.20) in standard gravity. The
gauge parameters are decomposed as:

ξa = ζa + Daλ , ξ ā = ζ ā + Dāλ̄ , (3.40)

where
Daζa = Dāζ ā = 0 . (3.41)
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We can now collect the gauge transformations of the various components:

δĥab̄ = 0 , δBa = ζa , δBā = ζ ā , δE = λ̄− λ ,

δAa = ζ̇a , δAā = ζ̇ ā , δA = λ̇ + ξ0 + ξ0 , δĀ = ˙̄λ + ξ0 − ξ0 ,

δϕ =
1
4

∆(λ− λ̄) , δφ = ξ̇0 .

(3.42)

In addition to the gauge invariant tensor mode ĥab̄, we can find two vector modes
and two scalar modes which are gauge invariant:

Âa = Aa − Ḃa ,

Âā = Aā − Ḃā ,

Ψ = φ− 1
2
(Ȧ− ˙̄A + Ë) ,

Φ = ϕ +
1
4

∆E .

(3.43)

We notice that compared to standard gravity on flat space, there is one more
gauge invariant vector mode, coming from the vector component of the B-field.
However, we do not obtain an additional scalar mode corresponding to the dila-
ton. Let us check that the number of gauge invariant variables agrees with what
we expect given the number of gauge redundancies. Choosing d = 3 for definite-
ness, there are 17 off-shell field components in total:

hab̄ : 9 Aa : 3 Aā : 3 φ : 1 ϕ : 1 . (3.44)

The gauge parameters ξa, ξ ā, ξ0, ξ0 generate a total of 3 + 3 + 1 + 1 = 8 gauge
redundancies, and subtracting the redundancy in the gauge symmetries (3.37),
we have seven gauge redundancies. Therefore we must have ten gauge invariant
components, which matches with the above gauge invariant variables:

10 = 4(ĥab̄) + 2(Âa) + 2(Âā) + 1(Ψ) + 1(Φ) . (3.45)
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3.2.2 Chain Complex of Double Field Theory

Let us define the chain complex of the free theory to set up the homotopy retract
to gauge invariant variables. The chain complex reads:

X2
∂−−→ X1

∂−−→ X0
∂−−→ X−1

∂−−→ X−2
∂−−→ X−3

{χ} {ξ} {Ψ} {E} {G} {ρ}
(3.46)

where X2 is the space of trivial gauge parameters, which here are scalars χ, X1

is the space of gauge parameters ξ, and X0 is the space of fields Ψ. The gauge
parameters and fields are organized in terms of components:

ξ =


ξa

ξ ā

ξ0

ξ0

 ∈ X1 , Ψ =


hab̄

φ

ϕ

Aa

Aā

 ∈ X0 . (3.47)

Next, X−1 is the space of field equations E , which have the same index structure
as fields, and X−2 is the space of Noether identities, which have the same index
structure as the gauge parameters. Finally, X−3 is the space of Noether identities
for Noether identities, which have the same index structure as the trivial gauge
parameters and are thus scalars.

We now list the differential maps ∂. First, looking at the trivial gauge trans-
formations (3.37), we define ∂2 : X2 → X1,

∂(χ) =


Daχ

Dāχ

−χ̇

0

 ∈ X1 . (3.48)

Second, from the gauge transformations (3.36) we define ∂1 : X1 → X0:

∂(ξ) =


Daξ b̄ − Db̄ξa

ξ̇0

− 1
2 Daξa − 1

2 Dāξ ā

ξ̇a + Da(ξ0 + ξ0)

ξ̇ ā + Dā(ξ0 − ξ0)

 ∈ X0 . (3.49)
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Next, we obtain the differential ∂0 : X0 → X−1 which encode the field equations
Eab̄

Eφ

Eϕ

Ea

Eā

 = ∂


hab̄

φ

ϕ

Aa

Aā

 ∈ X−1 , (3.50)

which we have derived by varying the quadratic action (3.34),

Eab̄ = ∂t(Dthab̄)− 2DaDb̄φ +Rab̄ ,

Eφ = R ,

Eϕ = ∂t(Dt ϕ) +
1
2

∆φ +R ,

Ea = Da(Dt ϕ) +
1
2

Db̄(Dthab̄) ,

Eā = Dā(Dt ϕ)− 1
2

Db(Dthbā) ,

(3.51)

with the spatial curvatures,

R = −∆ϕ + DaDb̄hab̄ ,

Rab̄ = 2
(
−1

2
∆hab̄ − DaDchcb̄ + Db̄Dc̄hac̄ + 2DaDb̄ ϕ

)
.

(3.52)

It is easy to check the gauge invariance of the equations of motion (3.51), i.e.
∂0 ◦ ∂1 = 0, with the gauge variations

δ(Dthab̄) = 2DaDb̄ξ0 , δ(Dt ϕ) = −1
2

∆ξ0 . (3.53)

We next observe that the curvatures (3.52) obey the identities

DaRab̄ − 2Db̄R = 0 ,

Db̄Rab̄ + 2DaR = 0 ,
(3.54)
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which can be used to derive the Noehter identities for E , defining the differential
∂−1 : X−1 → X−2:

∂E ≡


(∂E)a

(∂E)ā

(∂E)0

(∂E)0

 ≡ ∂


Eab̄

Eφ

Eϕ

Ea

Eā

 =


Db̄E ab̄ + 2DaEϕ − 2∂tE a

DbE bā − 2DāEϕ + 2∂tE ā

DaE a + DāE ā

DaE a − DāE ā − ∂tEφ

 . (3.55)

The combinations in (3.55) yield zero upon inserting E given by (3.51), verifying
∂−1 ◦ ∂0 = 0. The last differential ∂−2 : X−1 → X−3 is defined by

∂


Ga

G ā

G0

G0

 ≡ Ġ0 +
1
2

DaGa − 1
2

DāG ā . (3.56)

The expression on the RHS vanishes identically upon rewriting G as the expres-
sion on the RHS of (3.55), i.e. ∂−2 ◦ ∂−1 = 0. This completes the construction of
the chain complex and verification that the differential is indeed nilpotent.

3.2.3 Homotopy Interpretation

We are ready to construct a homotopy retract from the chain complex to the
chain complex of gauge invariant variables. In contrast to conventional grav-
ity, we have gauge symmetries for gauge symmetries, and although in principle
one might think that these extra spaces are projected to something non-zero but
trivial, in the following we will show that the homotopy relations pan out with

p2 = p1 = 0 , X̄2 = {0} = X̄1 . (3.57)

First we treat the homotopy relation on degree 2. The gauge transformations
of the gauge parameters (3.48) decompose with (3.40) as

δχζa = 0 , δχζ ā = 0 ,

δχλ = χ , δχλ̄ = χ ,

δχξ0 = −χ̇ , δχξ0 = 0 .

(3.58)
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We can combine the components into the gauge invariant gauge parameters,

ξ̄a ≡ ζa +
1
2

Da(λ− λ̄) ,

ξ̄ ā ≡ ζ ā − 1
2

Dā(λ− λ̄) ,

ξ̄0 ≡ ξ0 +
1
2
(λ̇ + ˙̄λ) ,

ξ̄0 ≡ ξ0 .

(3.59)

With this combination, we can express the gauge parameters into an invariant
piece plus pure gauge piece,

ξ =


ξa

ξ ā

ξ0

ξ0

 =


ξ̄a + Da f
ξ̄ ā + Dā f

ξ̄0 − ḟ
ξ̄0

 , (3.60)

where
f ≡ 1

2
(λ + λ̄) . (3.61)

Written more concisely using the differential,

ξ = ξ̄ + ∂( f ) . (3.62)

If we define the homotopy map s acting on gauge parameters as

s(ξ) = f , (3.63)

and by defining s(χ) = 0, the homotopy relation on X2 is satisfied:

(id− ip)(χ) = χ = s(∂χ) . (3.64)

Before defining the homotopy map s0 : X0 → X1 from fields to gauge parame-
ters, for consistency of notation let us denote the gauge invariant quantities with
a bar and rename (3.43),

h̄ab̄ = ĥab̄ , ϕ̄ = Φ , φ̄ = Ψ , Āa = Âa , Āā = Âā . (3.65)



67

We then define the projection p0 : X0 → X̄0 these quantities,

p0(Ψ) = Ψ̄ , (3.66)

using the notation (3.47). It follows by a simple computation that the original
fields are can be written in terms of their projections as

hab̄ = h̄ab̄ + DaFb̄ − Db̄Fa ,

φ = φ̄ + Ḟ0 ,

ϕ = ϕ̄− 1
2

DaFa − 1
2

DāFā ,

Aa = Āa + Ḟa + Da(F̃0 + F0) ,

Aa = Āā + Ḟā + Dā(F̃0 − F0) ,

(3.67)

where the pure gauge F terms read

Fa = Ba −
1
2

DaE ,

Fā = Bā +
1
2

DāE ,

F0 =
1
2
(Ė + A− Ā) ,

F̃0 =
1
2
(A + Ā) .

(3.68)

We can deduce the homotopy map s0 from fields to gauge parameters

s0(Ψ) =


Fa

Fā

F̃0

F0

 . (3.69)

Acting s0 on a field that is pure gauge yields the invariant part (3.59) of the gauge
parameter:

s(∂ξ) = ξ̄ . (3.70)

Then with (3.57), (3.62), and (3.63), we see that the homotopy relation on ξ ∈ X1

is satisfied
(id− ip)(ξ) = ξ = ∂(s(ξ)) + s(∂ξ) = ∂ f + ξ̄ . (3.71)
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Lastly, the homotopy relation on Ψ ∈ X0 reads

(id− ip)(Ψ) = Ψ− Ψ̄ = ∂(F) = ∂(s(Ψ)) , (3.72)

where we used (3.67) and (3.69). It is satisfied if we take the homotopy map to act
trivially on the space of field equations,

s−1 = 0 . (3.73)

At this point, we have established a homotopy retract from the sub-complex
X2 → X1 → X0 to the gauge invariant complex.

Let us now extend the homotopy retract to the entire chain complex, which
will need two more new non-trivial homotopy maps. As is the case for Yang-Mills
theory and gravity, the spaces of Noether identities and the Noether identities of
Noether identities are projected to zero:

X̄−2 = X̄−3 = {0} , p−2 = p−3 = 0 . (3.74)

In degree −1 the projector p−1 : X−1 → X̄−1 is non-trivial and projects onto the
space of tensors that satisfy the Noether identities identically. These are defined
by Ē = p(E), where

Ēab̄ = Eab̄ + 2Da∆−1(∂E)b̄ − 2Db̄∆−1(∂E)a

+ 4DaDb̄∆−2
(
( ˙∂E)0 − 1

2
Dc(∂E)c −

1
2

Dc̄(∂E)c̄

)
,

Ēφ = Eφ ,

Ēϕ = Eϕ ,

Ēa = Ea + Da∆−1
(
(∂E)0 + (∂E)0

)
,

Ēā = Eā − Dā∆−1
(
(∂E)0 − (∂E)0

)
,

(3.75)

where the components of (∂E) are defined in (3.55). Consequently, one can con-
firm that the relations in (3.55) hold identically:

0 ≡ Db̄Ē ab̄ + 2DaĒϕ − 2∂tĒ a ,

0 ≡ DbĒ bā − 2DāĒϕ + 2∂tĒ ā ,

0 ≡ DaĒ a + DāĒ ā ,

0 ≡ DaĒ a − DāĒ ā − ∂tĒφ .

(3.76)
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Now that the projections have been defined, we will now find the remaining
homotopy maps.

Assuming the homotopy from the space of field equations to the space of
fields to be trivial, s(E) = 0. In order to find the homotopy map on the space
of Noether identities X−1 let us evaluate the homotopy relation on E ∈ X−1:

(id− ip)(E) = E − Ē = s(∂E) . (3.77)

By inspecting the expression of the projection (3.75) in terms of ∂E , we can imme-
diately write the homotopy map:

s(G)ab̄ = −2Da∆−1Gb̄ + 2Db̄∆−1Ga − 4DaDb̄∆−2
(
Ġ0 − 1

2
DcGc −

1
2

Dc̄Gc̄

)
,

s(G)φ = 0 ,

s(G)ϕ = 0 ,

s(G)a = −Da∆−1
(
G0 + G0

)
,

s(G)ā = Dā∆−1
(
G0 − G0

)
.

(3.78)

Next we evaluate the homotopy relation on G ∈ X−2 and recalling (3.74),

(id− ip)(G) = G = ∂(s(G)) + s(∂G) . (3.79)

The first term on the RHS can be computed with (3.55) and (3.78):

∂(s(G)) = G + 2


Da∆−1(Ġ0 +

1
2 DcGc − 1

2 Dc̄Gc̄
)

Dā∆−1(Ġ0 +
1
2 DcGc − 1

2 Dc̄Gc̄
)

0
0

 . (3.80)

Looking back at (3.56) we infer that the failure of ∂(s(G)) to give back G involves
∂G. This implies that (3.79) is satisfied if we define a non-trivial homotopy map
s : X−3 → X−2 as follows

s(ρ) = −2


Da∆−1ρ

Dā∆−1ρ

0
0

 . (3.81)
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Lastly we verify that the homotopy relation holds on ρ ∈ X−3:

(id− ip)(ρ) = ρ = ∂(s(ρ)) , (3.82)

using ∂ρ = 0, (3.56) and (3.81). We have finally completed the proof of the homo-
topy retract from the entire chain complex (3.46) of linearized double field theory
on flat space can be to the complex X̄0 → X̄−1 of gauge invariant fields and their
field equations, where all redundancies have been eliminated.

3.2.4 Gauge Invariant Action

By replacing the fields with their projections, we can express the quadratic double
field theory Lagrangian (3.34) in terms of the gauge invariant variables.

L = −4Φ̇2 − ĥab̄ � ĥab̄ +
1
2

Âa∆Âa −
1
2

Âā∆Âā − 4Φ∆Φ + 4Ψ∆Φ , (3.83)

where � = − ∂2

∂t2 + ∆. Following a similar diagonalization procedure as we have
done in conventional gravity, we perform the field redefinition

Ψ→ Ψ′ = Ψ−Φ + ∆−1Φ̈ , (3.84)

which removes the Φ̇2 term, resulting in the Lagrangian,

L = −ĥab̄ � ĥab̄ +
1
2

Âa∆Âa −
1
2

Âā∆Âā + 4Ψ′∆Φ . (3.85)

In this form, it is clear that only ĥab̄ propagates, while the other modes could be
integrated out to eliminate them, i.e., in the vacuum case the Lagrangian reduces
to

L = −ĥab̄ � ĥab̄ . (3.86)

We infer that the four propagating degrees in ĥab̄ are the spin-2 tensor modes with
two degrees of freedom, the scalar mode given by the B-field and the scalar mode
given by the dilaton.
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3.3 DFT on Time-Dependent Backgrounds

Now let us expand around a background that is purely time-dependent as fol-
lows:

EA
M(t, X) = ĒA

M(t)− hA
B(t, X)ĒB

M(t) , (3.87)

Φ(t, X) = Φ̄(t) + ϕ(t, X) , (3.88)

n(t, X) = n̄(t)(1 + φ(t, X)) , (3.89)

NM(t, X) = n̄(t)AM(t, X) . (3.90)

Again we will omit the bar on the background quantities for readability. We
assume that a gauge has been chosen for the (background) frame transforma-
tions for which ḠAB is constant and does not depend on time. The corresponding
background version of the metric (3.25) is then also constant, which allows us to
raise and lower flat indices under time derivatives. As done previously for the
flat space case, we fix a gauge so that the independent fluctuation is given by
hab̄ = −hb̄a.

3.3.1 Background Equations

Inserting the above expansion into the action, one obtains to leading order an
action for the purely time-dependent background fields encoding their dynamics:

S0 =
∫

dt
∫

d2dX n−1 e−2Φ
(
− 4Φ̇2 − 1

8
tr
(
Ṡ2)) , (3.91)

where we employ matrix notation, with SM
N the background generalized metric

with one index raised, and the dot denotes the time derivative. The field equa-
tions read

S̈ + SṠ2 − 2
(

Φ̇ +
1
2

∂t log n
)

Ṡ = 0 ,

−4Φ̈ + 4Φ̇2 + 4Φ̇∂t log n− 1
8

tr
(
Ṡ2) = 0 ,

4Φ̇2 +
1
8

tr
(
Ṡ2) = 0 .

(3.92)
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It will be convenient to express these equations explicitly in terms of the back-
ground frame field. We define

LA
B ≡ 1

n
∂tEA

MEM
B , (3.93)

in terms of which the equations of motion are

1
n

L̇a
b̄ − La

cLc
b̄ + La

c̄Lc̄
b̄ − 2

n
Φ̇La

b̄ = 0 , (3.94)

−4Φ̈ + 4Φ̇2 + 4Φ̇∂t log n + n2 La
b̄Lb̄

a = 0 , (3.95)

4Φ̇2 − n2 La
b̄Lb̄

a = 0 . (3.96)

It is instructive to rewrite these equations in terms of derivatives that are co-
variant under background frame transformations with parameter Λ̄A

B and time
reparametrization with parameter ξ̄0. These transformations act on LA

B, the lapse
function n and generic vectors Va and Vā as

δ̄LA
B = ξ̄0∂tLA

B +
1
n

∂tΛ̄A
B + Λ̄A

CLC
B − Λ̄C

BLA
C ,

δ̄n = ∂t(ξ̄
0n) ,

δ̄Va = ξ̄0∂tVa + Λ̄a
bVb ,

δ̄Vā = ξ̄0∂tVā + Λ̄ā
b̄Vb̄ .

(3.97)

All other fields transform as scalars under ξ̄0 and as tensors under Λ̄A
B. The

first line of (3.97) implies that La
b and Lā

b̄ transform as connections under back-
ground frame transformations, while La

b̄ transforms as a tensor. We then have
the covariant derivatives

∇tVa =
1
n

∂tVa − La
bVb ,

∇tVā =
1
n

∂tVā − Lā
b̄Vb̄ ,

(3.98)

which transform covariantly in that

δ̄ (∇tVa) = ξ̄0∂t
(
∇tVa

)
+ Λ̄a

b∇tVb ,

δ̄ (∇tVā) = ξ̄0∂t
(
∇tVā

)
+ Λ̄ā

b̄∇tVb̄ .
(3.99)
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(3.94) can now be written more compactly as

∇tLa
b̄ − 2

n
Φ̇La

b̄ = 0 , (3.100)

or, equivalently,
∇t

(
e−2ΦLab̄

)
= 0 . (3.101)

In addition, upon adding (3.95) and (3.96) one obtains the useful equation

Φ̈− 2Φ̇2 − Φ̇ ∂t log n = 0 , (3.102)

or, equivalently,
∂t

(
e−2Φn−1Φ̇

)
= 0 . (3.103)

3.3.2 Quadratic Fluctuations

Next, we assume that the background equations are satisfied, so that the terms
linear in fluctuations drop out. The action for the quadratic fluctuations is given
by

S(2) =
∫

dt
∫

d2dX L , (3.104)

where

L = n e−2Φ
{
− 4Γ2 + 2φ

(
4

Φ̇
n

Γ− Lab̄ωab̄

)
−ωab̄ωab̄ +

1
2
(ωabωab + ωāb̄ω āb̄)

− 1
2
(
KabKab + Kāb̄Kāb̄)+ 4Lab̄(ϕKab̄ + Γhab̄) + V (2)(φ, ϕ, h)

}
,

(3.105)

and we defined

Γ ≡ ∇t ϕ +
1
2

∂MAM ,

ωab̄ ≡ ∇thab̄ − Kab̄ ,

ωab ≡ 2h[ac̄Lb]c̄ + Kab ,

ω āb̄ ≡ 2hc[āLc
b̄] + Kāb̄ ,

(3.106)

with
KAB ≡ KAB(A) = DAAB − DBAA . (3.107)
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KAB satisfies the identities:

DAKBC + DBKCA + DCKAB = 0 , (3.108)

DBKAB − DADBAB = 0 , (3.109)

the latter being a consequence of the strong constraint (3.15), which in terms of
this flattened derivative takes the form

DaDa + DāDā = 0 . (3.110)

Also note that the flattened spatial derivatives and the covariant (time) derivative
satisfy the commutation relations:

[
Da,∇t

]
VB = −La

c̄Dc̄VB , (3.111)[
Dā,∇t

]
VB = −Lā

cDcVB . (3.112)

In the action we collected the terms with only spatial derivatives into V (2), de-
fined as

V (2)(φ, ϕ, hab̄) = 8DaφDa ϕ− 8Da ϕDa ϕ− 8Da ϕDb̄hab̄ + 4DaφDb̄hab̄ − 2Dahbc̄Dahbc̄

+ 2Dchab̄Dahcb̄ − 2Dc̄hab̄Db̄hac̄ .

(3.113)

This can be rewritten in terms of

ϕ± ≡ ϕ± 1
2

φ , (3.114)

which yields

V (2)(φ, ϕ−, hab̄) = 2DaφDaφ− 8Da ϕ−Da ϕ− − 8Da ϕ−Db̄hab̄ − 2Dahbc̄Dahbc̄

+ 2Dchab̄Dahcb̄ − 2Dc̄hab̄Db̄hac̄ .

(3.115)

We next turn to the gauge invariance of the quadratic action, which for time-
dependent backgrounds is quite subtle even for the free theory. Under linearized
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gauge transformations one finds

δ(0)hab̄ = Daξ b̄ − Db̄ξa − ξ0Lab̄ ,

δ(0)φ =
1
n

∂tξ
0 ,

δ(0)ϕ = ξ0 Φ̇
n
− 1

2
Daξa − 1

2
Dāξ ā ,

δ(0)Aa = ∇tξ
a + Lb̄

aξ b̄ + Da(ξ0 + ξ0) ,

δ(0)Aā = ∇tξ
ā + Lb

āξb + Dā(ξ0 − ξ0) ,

(3.116)

where we performed the following rescaling of gauge parameters,

ξ0 → 1
n

ξ0 , ξ0 → nξ0 . (3.117)

It is also convenient to note that with respect to spatial generalized diffeomor-
phisms with parameters ξM = ĒA

Mξ A the gauge transformations for ϕ and
AM = ĒA

MAA simplify as follows:

δ(0)ϕ = −1
2

∂MξM ,

δ(0)AM =
1
n

∂tξ
M .

(3.118)

The gauge transformations in (3.116) act trivially for the special case:

ξa = Daχ , ξ ā = Dāχ , ξ0 = −∇tχ , (3.119)

where χ is an arbitrary function. For δ(0)hab̄ this can be seen by inspection, for
δ(0)ϕ by the constraint (3.15), and for δ(0)Aa and δ(0)Aā by using the commutators
(3.111) and (3.112).

3.3.3 Canonical Formulation of the Quadratic Theory

In order to elucidate the gauge structure of the quadratic double field theory on
a time-dependent backgrounds we find it convenient to introduce a canonical
formulation. We begin by computing the canonical momenta of the fields ϕ and
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hab̄:

pϕ ≡
δL

δ∂t ϕ
= e−2Φ(− 8Γ + 8n−1Φ̇φ + 4Lab̄hab̄

)
,

pab̄ ≡ δL
δ∂thab̄

= e−2Φ(− 2φLab̄ − 2ωab̄) .
(3.120)

In the following we rescale the dot by a factor of n−1: ḟ ≡ n−1∂t f . It is also
convenient to rescale the canonical momenta by multiplying by the background
quantity e2Φ:

Pϕ ≡ e2Φ pϕ = −8Γ + 8Φ̇φ + 4Lab̄hab̄ ,

Pab̄ ≡ e2Φ pab̄ = −2φLab̄ − 2ωab̄ .
(3.121)

Under the gauge transformations in (3.116), the canonical momenta transform as:

δPϕ = 4∆ξ0 + 4Lab̄(Daξ b̄ − Db̄ξa) ,

δPab̄ = 4Φ̇ξ0Lab̄ − 4DaDb̄ξ0 − 2La
c̄(Dc̄ξ b̄ − Db̄ξ c̄) + 2Lb̄

c(Dcξa − Daξc) .
(3.122)

The Hamiltonian density is the Legendre transform of L, defined as follows:

H = n e−2Φ(Pϕ ϕ̇ + Pab̄ḣab̄)−L , (3.123)

which yields explicitly for the above fields

H = n e−2Φ
{
− 1

4
Pab̄Pab̄ − 1

16
P2

ϕ − φLab̄Pab̄ + Pab̄(Kab̄ + La
chcb̄ + Lb̄

c̄hac̄)

− 1
2

∂MAMPϕ + Φ̇φPϕ +
1
2
(Lab̄hab̄)Pϕ

− 4Φ̇(Lab̄hab̄)φ + Lb
d̄Lc̄

bha
c̄ha

d̄ + Lc
b̄Lb̄

dhc
āhd

ā + 2La
b̄Lc

d̄ha
d̄hc

b̄

− 2Lc
b̄hcāKāb̄ − 2Lbc̄ha

c̄Kab

− 4Lab̄Kab̄ ϕ− (Lab̄hab̄)
2 − V (2)

}
.

(3.124)

In terms of this Hamiltonian density the complete quadratic action can be written
with the original fields and the canonical momenta in the following first-order
form:

S =
∫

dt
∫

d2dX
[
n e−2Φ(Pab̄ḣab̄ + Pϕ ϕ̇

)
−H

]
. (3.125)
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Naturally, upon integrating out the canonical momenta one recovers the original
second-order action. Specifically, the equations of motion E = 0 following from
this action are encoded in the following components:

EPϕ =
1
8

Pϕ + ϕ̇ +
1
2

∂MAM − Φ̇φ− 1
2

Lab̄hab̄ , (3.126)

EPab̄ =
1
2

Pab̄ +∇thab̄ − Kab̄ + φLab̄ , (3.127)

Eϕ = −∇tPϕ + 2Φ̇Pϕ + 4Lab̄Kab̄ + 4∆φ− 8∆ϕ + 8DaDb̄hab̄ , (3.128)

Eab̄ = −∇tPab̄ + 2Φ̇Pab̄ −
1
2

Lab̄Pϕ + 2(Lcd̄hcd̄)Lab̄ + 4Φ̇φLab̄

− 2Ld̄
cLcb̄ha

d̄ − 2La
d̄Ld̄

chcb̄ + 4La
d̄Lb̄

chcd̄ + 2La
d̄Kb̄d̄ + 2Lc

b̄Kac

+ 8DaDb̄ ϕ− 4DaDb̄φ− 2∆hab̄ − 4DaDchcb̄ + 4Db̄Dc̄hac̄ , (3.129)

Ea = −Db̄Pab̄ −
1
2

DaPϕ + 4Lab̄Db̄ ϕ + 2Lb
c̄Dbhac̄ − 2La

c̄Dbhb
c̄ , (3.130)

Eā = DbPbā −
1
2

DāPϕ − 4LbāDb ϕ− 2LcāDb̄hcb̄ + 2Lc
b̄Db̄hc

ā , (3.131)

Eφ = Lab̄Pab̄ − Φ̇Pϕ + 4Φ̇Lab̄hab̄ + 4∆ϕ− 4DaDb̄hab̄ . (3.132)

If one solves EPϕ = 0 and EPab̄ = 0 for the canonical momenta and substitutes
the expressions into the action, one recovers the original Lagrangian (3.105). The
tensors defining the equations of motion above satisfy Bianchi identities G = 0
with the following components:

G0 ≡ DaEa + DāEā , (3.133)

G0 ≡ DāEā − DaEa − Ėφ + 2Φ̇Eφ + Φ̇Eϕ − Lab̄Eab̄ + 4Φ̇Lab̄EPab̄

+ 4∆EPϕ − 4DaDb̄EPab̄ , (3.134)

Ga ≡ Db̄Eab̄ −∇tEa + 2Φ̇Ea + La
b̄Eb̄ +

1
2

DaEϕ + 2Lc
b̄DcEPab̄

− 2La
b̄DcEPcb̄ + 4La

b̄Db̄EPϕ , (3.135)

Gā ≡ − DbEbā −∇tEā + 2Φ̇Eā + Lā
bEb +

1
2

DāEϕ − 2Lb̄
cDb̄EPcā

+ 2Lā
cDb̄EPcb̄ + 4Lā

bDbEPϕ. (3.136)

For the explicit expressions for the E tensors in (3.126)–(3.132) the G tensors van-
ish identically. This fact expresses the Bianchi identities. Furthermore, the Bianchi
identities provide a straightforward proof of gauge invariance of the action, since
one may verify with (3.116) and (3.122) that the gauge variation of the action can
be written as the sum over the gauge parameter times the corresponding Bianchi
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identity:

δ(0)S =
∫

dt
∫

d2dX n e−2Φ(ξ0G0 + ξ0G0 + ξaGa + ξ āGā
)
= 0 . (3.137)

3.3.4 Cubic Theory

We now turn to the cubic terms in the action obtained by expanding about a
generic time-dependent background to third order in fluctuations. The corre-
sponding Lagrangian reads

L(3) = n e−2Φ
{

2ωab̄ωa
chcb̄ + 2ωab̄ωb̄

c̄hac̄ − 2Lab̄ωcd̄had̄hcb̄ − 2Lab̄Kcd̄hcb̄had̄

+ 4Lab̄ωab̄ ϕ2 + 2ωab̄AM∂Mhab̄ + 8
(

Γ− Φ̇
n

φ

)
AM∂M ϕ

+ 4Lab̄ ϕ+AM∂Mhab̄ − 2ϕ+W(φ,A, ϕ, h) + V (3)(φ, ϕ−, h)
}

,

(3.138)

where we have grouped objects familiar from the quadratic action into

W(φ,A, ϕ, h) = − 4Γ2 −ωab̄ωab̄ +
1
2
(
ωabωab + ωāb̄ω āb̄)− 1

2
(
KabKab + Kāb̄Kāb̄)

+ 2φ

(
4

Φ̇
n

Γ− Lab̄ωab̄
)

.

(3.139)

Moreover, we defined
V (3)(φ, ϕ−, h) = T + U , (3.140)

where

T = 4hab̄(Dahcd̄Db̄hcd̄ − Dahcd̄Dd̄hcb̄ − Db̄hcd̄Dchad̄)

+ 4ϕ−(Dahcd̄Dahcd̄ + Dahab̄Dchcb̄ − Db̄hab̄Dc̄hac̄ + 2hab̄DaDchcb̄ − 2hab̄Db̄Dc̄hac̄)

− 16hab̄ ϕ−DaDb̄ ϕ− − 8ϕ2
−DaDa ϕ− ,

U = 4ϕ−DaφDaφ + 8ϕ−φDaDaφ− 4φDaφDaφ + 4hab̄φDaDb̄φ .

(3.141)

We note that T matches the form of the cubic expansion of the double field theory
action around a constant background without space-time split in [65], with ϕ−
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playing the role of the dilaton.
Finally, expanding the full gauge transformations (3.26) to first order in fields

(i.e. including all terms quadratic in fields and gauge parameters) one finds:

δ(1)hab̄ = ξ0ωab̄ + ξN∂Nhab̄ + (Db̄ξ c̄ − Dc̄ξ b̄)hac̄ + (Daξc − Dcξa)hcb̄ ,

δ(1)φ =
1
n

∂t(ξ
0φ)−AM∂Mξ0 + ξM∂Mφ ,

δ(1)ϕ = ξ0Γ + ξN∂N ϕ ,

δ(1)Aa = −2hab̄Db̄ξ0 + 2φDaξ0 + ξBDBAa + (DaξB − DBξa)AB ,

δ(1)Aā = −2hbāDbξ0 − 2φDāξ0 + ξBDBAā + (DāξB − DBξ ā)AB .

(3.142)

Gauge invariance of the action to cubic order in fluctuations requires

δ(1)S(2) + δ(0)S(3) = 0 , (3.143)

as the reader may verify with the above formulas by a straightforward but te-
dious computation.

3.4 Gauge Invariant Cosmological Perturbations

In this section we decompose the fundamental fields of double field theory into
irreducible components by performing an SVT decomposition. This is done for a
special class of FLRW backgrounds which we will describe in the first subsection.
After constructing the gauge invariant variables, we will express the quadratic
double field theory action in terms of them. This analysis extends what was al-
ready done for fluctuations with respect to a flat background in [18].

3.4.1 FLRW backgrounds

A general time-dependent metric Gij(t) and Kalb-Ramond B-field can be pack-
aged into

Eij(t) = Gij(t) + Bij(t) . (3.144)

In order to write a general frame EA
M(t) without gauge fixing one needs to intro-

duce on top of this two independent d-dimensional frame fields ea
i(t) and ēā

i(t),
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for then we can write

EA
M =

(
Eai Ea

i

Eāi Eā
i

)
=

1√
2

(
Ejiea

j −ea
i

Eij ēā
j ēā

i

)
, (3.145)

or, in matrix notation with E = (EA
M), e = (ea

i) and ē = (ēā
i),

E =
1√
2

(
eE −e
ēE t ē

)
. (3.146)

This background satisfies the constraint (3.24) in that

GAB =

(
−ea

ieb
jGij 0

0 ēā
i ēb̄

jGij

)
. (3.147)

This parametrization of the frame preserves the full O(d, d) and GL(d)× GL(d)
covariance, since we have 3d2 degrees of freedom (e, ē and E ), as it should be
for a frame with (2d)2 = 4d2 components satisfying the d2 constraints (3.24) (i.e.,
the GL(d) × GL(d) covariant constraints that the off-diagonal blocks of (3.147)
vanish).

We now turn to the class of time-dependent backgrounds with the largest de-
gree of symmetry: the FLRW spaces with vanishing spatial curvature. These are
characterized by a single time-dependent function, the scale factor a(t). Specifi-
cally, since the B-field vanishes, the metric in (3.144) reduces to Eij(t) = a2(t)δij. It
will furthermore be convenient to introduce two constant but otherwise arbitrary
bases or frames ea

i and ēā
i for the doubled spatial geometry. Since these bases

are unconstrained, the ‘tangent space’ metrics defined in terms of the flat spatial
metric by

gab = ea
ieb

jδij , gāb̄ = ēā
i ēb̄

jδij , (3.148)

are then independent constant metrics (of Euclidean signature). As usual, we
use δij and δij to lower and raise indices i, j, . . ., while gab and gab, respectively
gāb̄ and gāb̄, are used to lower and raise indices a, b, . . . and ā, b̄, . . .. Using the
frames ea

i and ēā
i, together with their inverses denoted by ei

a and ēi
ā, to convert

indices a, b, . . . and ā, b̄, . . . to i, j, . . ., one may verify that the different operations
of raising and lowering indices are mutually compatible. For instance, in

eia = δijej
a = gabeb

i , (3.149)
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the second equation follows by contraction with ea
k and using the inverse of

(3.148). Notably, there are tensors

ga
b̄ := ea

i ēi
b̄ , gā

b := ēā
i ei

b (3.150)

that connect unbarred and barred indices and that satisfy

ga
b̄ gb̄

c = δa
c , etc. (3.151)

With these objects we can write the full background frame as

EA
M(t) =

1√
2

(
a(t)δijea

j −a−1(t)ea
i

a(t)δij ēā
j a−1(t)ēā

i

)
. (3.152)

The corresponding tangent space metric then satisfies the constraint (3.24)
with the constant metric on the doubled tangent space

GAB =

(
−gab 0

0 gāb̄

)
. (3.153)

Note the relative sign in the upper-left block, which will lead to a change of con-
vention in raising and lowering indices later in 3.4.2. The differential operators
DA are given by

Da = − 1√
2

(
a−1(t)∂a − a(t)∂̃a

)
,

Dā =
1√
2

(
a−1(t)∂ā + a(t)∂̃ā

)
,

(3.154)

using the notation ∂a = ea
i∂i, ∂̃a = ea

i∂̃i, and similarly for barred indices. Note
that despite the notation there is only one kind of momentum and one kind of
winding derivative: with (3.150) we have ∂ā = gā

b∂b and ∂̃ā = gā
b∂̃b.

We can next give the explicit form of the tensor LA
B in (3.93). Using (3.152)

one finds for its components

La
b̄ = Hga

b̄ , Lā
b = Hgā

b , La
b = Lā

b̄ = 0 , (3.155)

with Hubble parameter

H ≡ ȧ
a

. (3.156)
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With this choice of backgrounds, the background equations of motion in (3.94)-
(3.96) become:

(Ḣ − 2Φ̇H)ga
b̄ = 0 , (3.157)

−4Φ̈ + 4Φ̇2 + dH2 = 0 , (3.158)

4Φ̇2 − dH2 = 0 . (3.159)

As done before in sec. 2, we can add (3.158) and (3.159) to obtain the equation

− Φ̈ + 2Φ̇2 = 0 . (3.160)

The equations of motion imply that the following quantity is conserved,

β ≡ Φ̇
H

, (3.161)

since by taking its time derivative we have

β̇ =
(Φ̈H − Φ̇Ḣ)

H2 =
2Φ̇2H − Φ̇(2Φ̇H)

H2 = 0 . (3.162)

We note that since we are now considering a rather special class of back-
grounds, under a general O(d, d) or GL(d) × GL(d) transformation the back-
ground frame will of course not stay in the same class. However, under constant
or time independent GL(d) × GL(d) transformations the above backgrounds
transform into themselves, just with the frames ea

i and ēā
i rotated. The genuine

duality transformation left in O(d, d) is given by

h =

(
a b
c d

)
=

(
0 1
1 0

)
: E ′(t) = E−1(t) ⇔ a′(t) =

1
a(t)

. (3.163)

This is the expected T-duality or scale-factor duality property of string cosmology.
A closer analysis in our work in [20] shows that the invariance group of generic
FRW backgrounds is given by the diagonal subgroup diag(O(d)×O(d)).

3.4.2 Scalar-Vector-Tensor Decomposition

We now take the backgrounds to be of the form (3.152) with scale factor a(t).
According to (3.155) we then have La

b = Lā
b̄ = 0, so that the covariant derivatives
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defined in (3.98) simplify:

∇tVa = V̇a , ∇tVā = V̇ā . (3.164)

As for double field theory on flat space we also have the spatial Laplacians that
are related by the level-matching constraint as follows:

∆ ≡ 2gabDaDb = 2gāb̄DāDb̄ . (3.165)

In contrast to flat space there is a new differential operator based on the tensor
(3.150):

♦ ≡ 2ga
b̄DaDb̄ = 2gb̄

aDaDb̄ , (3.166)

which satisfies the commutation relations:

[∇t, ∆] = 2H♦ ,

[∇t,♦] = 2H∆ .
(3.167)

Explicitly, these two Laplace-type operators are given by

∆ = a−2(t)∂2 + a2(t)∂̃2 ,

♦ = −a−2(t)∂2 + a2(t)∂̃2 ,
(3.168)

where
∂2 ≡ ∂i∂i ≡ δij∂i∂j , ∂̃2 ≡ ∂̃i∂̃i ≡ δij∂̃

i∂̃j , (3.169)

are the independent spatial (Euclidean) Laplacians of the doubled space.
At this stage a comment is in order regarding our conventions for raising and

lowering indices. In the general frame formulation of double field theory the
tangent space metric GAB of signature (d, d) is used to raise and lower flat indices.
For the FLRW backgrounds to be used here this metric takes the form (3.153) in
terms of the positive-definite (Euclidean) metrics gab and gāb̄, respectively, which
will be used from now on to raise and lower indices (as alluded to after (3.148)).
Since Gab = −gab this amounts to a change in convention. To be definite, let us
take the elementary fields of the theory to be given by

φ , ϕ , hab̄ , Aa , Aā , (3.170)

i.e., these fields are considered to be metric-independent, as are the differential
operators ∂a, ∂̃a, etc., with lower indices. Any expression involving these objects



84

with an upper index is then interpreted to mean that the index is raised with
gab or gāb̄, respectively. This change of convention leads to sign changes but has
desirable internal consistency properties. For instance, the Laplacians in (3.169)
are then also writable as ∂2 = ∂a∂a = ∂ā∂ā and ∂̃2 = ∂̃a∂̃a = ∂̃ā∂̃ā, as follows
quickly by recalling ∂a = ea

i∂i, ∂̃a = ea
i∂̃i, and similarly for barred indices. As

a consequence, in all formulas to follow we may freely raise and lower indices
without having to worry about sign factors.

After this digression, we turn to the problem of decomposing the complete
list of fields (3.170) into ‘irreducible’ components by performing a scalar-vector-
tensor (SVT) decomposition. For the A fields we write

Aa = Aa + ∂a A + ∂̃a Ã ,

Aā = Aā + ∂ā Ā + ∂̃ā
¯̃A .

(3.171)

Here we see the first instance of an important novelty of a genuinely doubled field
theory on cosmological backgrounds: the SVT decomposition of a vector yields,
compared to standard gravity, an additional scalar mode, corresponding to the
possibility of subtracting the divergence with respect to winding derivatives, in
addition to ordinary derivatives. Correspondingly, the remaining vector mode is
now divergence-free (transverse) with respect to both derivatives:

∂a Aa = ∂̃a Aa = ∂ā Aā = ∂̃ā Aā = 0 . (3.172)

Thus, each of the transverse vectors has d− 2 degrees of freedom. The logic here
is that one imposes as many constraints as possible on the remaining vector or
tensor mode. This ultimately guarantees the complete decoupling among tensor,
vector and scalar modes. Turning then to the tensor field hab̄ we postulate the
decomposition

hab̄ = ĥab̄ + gab̄E + ∂aBb̄ − ∂b̄Ba + ∂̃aB̃b̄ − ∂̃b̄B̃a + ∂a∂b̄C + ∂̃a∂̃b̄C̃ + ∂a∂̃b̄D + ∂̃a∂b̄D̃ ,
(3.173)

with now five independent scalar modes and four independent vector modes,
which are subject to the constraints analogous to (3.172), i.e., every divergence
vanishes:

∂aBa = ∂̃aBa = ∂āBā = ∂̃āBā = 0 , ∂aB̃a = ∂̃aB̃a = ∂āB̃ā = ∂̃āB̃ā = 0 . (3.174)
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Similarly, the irreducible tensor mode obeys

Qa ≡ ∂b̄ĥab̄ = 0 , Qb̄ ≡ ∂aĥab̄ = 0 ,

Q̃a ≡ ∂̃b̄ĥab̄ = 0 , Q̃b̄ ≡ ∂̃aĥab̄ = 0 , Q ≡ gb̄
aĥa

b̄ = 0 .
(3.175)

These constraints are not independent but rather subject to

∂aQa = ∂b̄Qb̄ , ∂̃aQa = ∂b̄Q̃b̄ ,

∂aQ̃a = ∂̃b̄Qb̄ , ∂̃aQ̃a = ∂̃b̄Q̃b̄ .
(3.176)

Let us verify that hab̄ so written encodes the right number of (off-shell) degrees
of freedom. As for A, the vector modes Ba, Bā, B̃a, B̃ā together encode 4(d − 2)
degrees of freedom. The number of components of ĥab̄ is d2 minus the number
of constraints. Since the constraints (3.175) in turn are subject to (3.176) we have
4d+ 1− 4 = 4d− 3 independent constraints, so that ĥab̄ carries d2− 4d+ 3 degrees
of freedom. In total, together with the five scalar modes E, C, C̃, D, D̃ and the
4(d− 2) vector modes, the irreducible components carry 4(d− 2) + d2− 4d + 3+
5 = d2 degrees of freedom, as it should be.

At this stage it is appropriate to briefly discuss the counting of degrees of free-
dom done above and to relate it to the familiar counting in, say, four spacetime
dimensions (for which d = 3). Consider, for instance, the Fourier expansion of a
vector mode in (3.171):

Aa(x, x̃) = ∑
k,k̃

Aa(k, k̃)ei(k·x+k̃·x̃) . (3.177)

As before we assume that the Fourier modes Aa(k, k̃) are only non-zero provided
k · k̃ = 0, so that the weak constraint is obeyed. The two constraints in (3.172)
yield

ka Aa(k, k̃) = k̃a Aa(k, k̃) = 0 , (3.178)

which implies that among the three components of Aa (for d = 3) generically only
one survives. For instance, for k = (0, 0, 1) and k̃ = (0, 1, 0), for which k · k̃ = 0,
the constraints imply A2 = A3 = 0, so that only A1 remains as a physical degree
of freedom. So what happened to the familiar two polarizations of a spin-1 vector
mode in four dimensions? These spin-1 modes are still present for the special case
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that the individual modes carry only momentum or only winding, say in the form

Aa(x, x̃) = ∑
k

Aa(k)eik·x + ∑̃
k

Ãa(k̃)eik̃·x̃ , (3.179)

for which the level-matching constraint is trivially satisfied. Then for each of the
two terms one of the constraints (3.172) trivializes, so that the corresponding vec-
tor mode carries the expected two polarizations. Therefore, if we consider vector
modes that live only in x-space, or vector modes that live only in x̃-space, they do
carry the familiar two polarizations (effectively eliminating the additional scalar
modes). It is only for modes that both carry genuine momentum and winding
that the degrees of freedom organize differently. Similar remarks apply to the
tensor modes. Indeed, naively ĥab̄ carries zero degrees of freedom in four dimen-
sions, but if we consider tensor modes that live only in x-space, or only in x̃-space,
some of the constraints trivialize, so that they do carry the two polarizations of a
spin-2 mode.

Returning to our discussion of the SVT decomposition, let us verify that these
decompositions exist by proving that the SVT components satisfying the appro-
priate constraints can always be defined from the given fields (3.170). More pre-
cisely, this is the case if ∂2 and ∂̃2 are invertible operators, as we will assume in
the following. For instance, the scalar modes of hab̄ can be expressed in terms of
the original fields as:

C =
d− 1
d− 2

∂−4(∂a∂b̄hab̄)−
1

d− 2
∂−2(gb̄

aha
b̄ − ∂̃−2(∂̃a∂̃b̄hab̄)

)
,

C̃ =
d− 1
d− 2

∂̃−4(∂̃a∂̃b̄hab̄)−
1

d− 2
∂̃−2(gb̄

aha
b̄ − ∂−2(∂a∂b̄hab̄)

)
,

D = ∂−2∂̃−2(∂a∂̃b̄hab̄) , D̃ = ∂̃−2∂−2(∂̃a∂b̄hab̄) ,

E =
1

d− 2
(

gb̄
aha

b̄ − ∂−2∂a∂b̄hab̄ − ∂̃−2∂̃a∂̃b̄hab̄
)

.

(3.180)

The vector modes of hab̄ in turn can be defined as

Ba = −∂−2(∂b̄hab̄ − gab̄∂b̄E
)
+ ∂aC + ∂̃aD̃ ,

Bb̄ = ∂−2(∂ahab̄ − gab̄∂aE
)
− ∂b̄C− ∂̃b̄D ,

B̃a = −∂̃−2(∂̃b̄hab̄ − gab̄∂̃b̄E
)
+ ∂̃aC̃ + ∂aD̃ ,

B̃b̄ = ∂̃−2(∂̃ahab̄ − gab̄∂̃aE
)
− ∂̃b̄C̃− ∂b̄D ,

(3.181)

where one should view the scalar modes in here as defined in terms of hab̄ via
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(3.180). Finally, ĥab̄ can then be defined by inserting these scalar and vector modes
(3.180) and (3.181) into (3.173) and solving for ĥab̄. Similarly, the scalar and vector
modes of the vector fields Aa and Aā can be defined in terms of these fields as

A = ∂−2(∂aAa) , Ã = ∂̃2(∂̃aAa) , Ā = ∂−2(∂āAā) , ¯̃A = ∂̃−2(∂̃āAā) ,

Aa = Aa − ∂a
(
∂−2(∂bAb)

)
− ∂̃a

(
∂−2(∂b̄Ab̄)

)
,

Aā = Aā − ∂ā
(
∂̃−2(∂̃b̄Ab̄)

)
− ∂̃ā

(
∂̃−2(∂̃b̄Ab̄)

)
.

(3.182)

We will next determine the gauge transformations of the SVT components. To
this end we decompose the gauge parameters ξa and ξ ā into scalar and diver-
genceless vector components:

ξa = ζa + ∂aλ + ∂̃aχ , ξ ā = ζ ā + ∂āλ̄ + ∂̃āχ̄ , (3.183)

where ∂aζa = ∂̃aζa = ∂āζ ā = ∂̃āζ ā = 0. With this decomposition, the gauge
transformations (3.116) become:

δhab̄ =− ξ0Lab̄ +
1√
2

(
a∂̃aζ b̄ − a−1∂aζ b̄ − a∂̃b̄ζa − a−1∂b̄ζa

)
+

1√
2

(
∂̃a∂b̄(aλ̄− a−1χ) + a∂̃a∂̃b̄(χ̄− χ)− a−1∂a∂b̄(λ + λ̄)

− ∂a∂̃b̄(a−1χ̄ + aλ)
)

,

δφ =ξ̇0 ,

δϕ =Φ̇ξ0 +
1

2
√

2

(
− a−1∂2(λ + λ̄) + a∂̃2(χ− χ̄)

)
,

δAa =ζ̇a − La
b̄ζ b̄ + ∂a

(
λ̇− Hλ̄− a−1

√
2
(ξ0 + ξ0)

)
+ ∂̃a

(
χ̇− Hχ̄ +

a√
2
(ξ0 + ξ0)

)
,

δAā =ζ̇ ā − Lā
bζb + ∂ā

(
˙̄λ− Hλ +

a−1
√

2
(ξ0 − ξ0)

)
+ ∂̃ā

(
˙̄χ− Hχ +

a√
2
(ξ0 − ξ0)

)
.

(3.184)
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Comparing this with (3.171), (3.173) we can then read off the gauge transforma-
tion of the SVT components of the fields:

δĥab̄ = 0 , δE = −Hξ0 ,

δBa =
a−1
√

2
ζa , δBā = −

a−1
√

2
ζ ā , δB̃a =

a√
2

ζa , δB̃ā =
a√
2

ζ ā ,

δC = − a−1
√

2
(λ + λ̄) , δC̃ =

a√
2
(χ̄− χ) ,

δD =
1√
2
(−a−1χ̄− aλ) , δD̃ =

1√
2
(aλ̄− a−1χ) ,

δAa = ζ̇a − La
b̄ζ b̄ , δAā = ζ̇ ā − Lā

bζb ,

δA = λ̇− Hλ̄− a−1
√

2
(ξ0 + ξ0) , δÃ = χ̇− Hχ̄ +

a√
2
(ξ0 + ξ0) ,

δĀ = ˙̄λ− Hλ +
a−1
√

2
(ξ0 − ξ0) , δ ¯̃A = ˙̄χ− Hχ +

a√
2
(ξ0 − ξ0) .

(3.185)

Note that the tensor mode ĥab̄ is gauge invariant.

3.4.3 Gauge Fixing

In order to verify that the number of gauge independent fields is as expected
(i.e. equal to the number of off-shell degrees of freedom minus the number of
gauge redundancies) we can impose simple gauge fixing conditions, as we do in
the following.

From the second line in (3.185) we see that ζa and ζ ā can be used to gauge fix
two vectors to zero, e.g.,

B̃a = B̃ā = 0 . (3.186)

This fixes the gauge invariance under ζa, ζ ā completely and does not require any
compensating gauge transformations. Next, we observe with the last two lines in
(3.185) that ξ0 and ξ0 can be used to gauge away two scalars, say:

Ã = ¯̃A = 0 . (3.187)

This again fixes the gauge invariance under ξ0, ξ0 completely, but now we require
compensating gauge transformations that determine these parameters in terms of
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the remaining scalar gauge parameters:

a√
2
(ξ0 + ξ0) = −χ̇ + Hχ̄ ,

a√
2
(ξ0 − ξ0) = − ˙̄χ + Hχ . (3.188)

We are now left with four scalar gauge parameters (λ, χ, λ̄, χ̄), so naively we
would expect that we can gauge away four more scalar field modes, but it turns
out that, due to the gauge for gauge symmetry, only three more scalar modes can
be gauged away. Let us pick the gauge that, say,

C̃ = D = D̃ = 0 . (3.189)

The first condition fixes, say, the parameter χ̄ = χ. The second gauge condition
can then be achieved by means of λ, which in turn fixes the compensating gauge
transformation to be λ = −a−2χ̄ = −a−2χ. Finally, the third gauge condition can
be achieved by means of λ̄, which in turn fixes the compensating gauge transfor-
mation to be λ̄ = a−2χ. In total we have reduced the gauge redundancy to one,
with independent parameter χ and compensating transformations in terms of χ:

χ̄ = χ , λ = −a−2χ , λ̄ = a−2χ . (3.190)

However, from the third line of (3.185) we then infer that C is gauge invariant and
thus cannot be set to zero. Similarly, using (3.190) in (3.188) yields

ξ0 = −
√

2a−1(χ̇− Hχ) , ξ0 = 0 , (3.191)

and with this it follows that the other remaining scalar modes (E, A and Ā) are all
gauge invariant and can thus not be gauged away. Thus, the apparent remaining
parameter χ in fact does not act at all on the remaining fields. This is just a con-
sequence of there being a scalar gauge-for-gauge symmetry. Thus, we have fixed
the gauge redundancy completely.

Summarizing, the gauge independent fields can be chosen to be, for instance:

• tensor modes: ĥab̄ [d2 − 4d + 3] ,

• vector modes: Aa , Aā , Ba , Bā [4(d− 2)] ,

• scalar modes: E , C , A , Ā , φ, ϕ [6] ,

where we also included the two scalar modes φ, ϕ that were present from the
beginning. We displayed in parenthesis the number of degrees of freedom, which
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adds to d2 + 1. This is equal to the total number of off-shell degrees of freedom of
the fields (3.170), given by d2 + 2d + 2, minus the number of gauge redundancies
for parameters ξa, ξ ā, ξ0, ξ0, which is given by 2d + 1 (taking into account the one
gauge-for-gauge redundancy).

3.4.4 Gauge Invariant Variables

We now aim to rewrite the field variables and the theory in terms of gauge invari-
ant combinations of the SVT components. This is essentially equivalent to fixing
a gauge in the sense that the resulting gauge invariant variables are subject to
constraints that are formally identical to gauge fixing conditions. A gauge invari-
ant formulation may always be reconstructed from a gauge fixed one. We have
already noted that ĥab̄ gauge invariant. In addition, one can build the following
gauge invariant variables:

φ̂ =φ +
1

2
√

2
∇t
(
a(A + Ā +

√
2aĊ)− a−1(Ã− ¯̃A +

√
2a−1 ˙̃C)

)
,

Âa =Aa −
1√
2
∇t(aBa + a−1B̃a)−

1√
2

La
b̄(aBb̄ − a−1B̃b̄) ,

Âā =Aā +
1√
2
∇t(aBā − a−1B̃ā) +

1√
2

Lā
b(aBb + a−1B̃b) ,

Â =a(A + Ā +
√

2aĊ) + a−1(Ã− ¯̃A +
√

2a−1 ˙̃C) ,̂̃A =a(A− Ā−
√

2aĊ− 2
√

2aHC) + a−1( ¯̃A + Ã +
√

2a−1 ˙̃C− 2
√

2a−1HC̃)

+ 2
√

2Ḋ ,̂̄A =a(Ā− A−
√

2aĊ− 2
√

2aHC)− a−1( ¯̃A + Ã−
√

2a−1 ˙̃C + 2
√

2a−1HC̃)

− 2
√

2 ˙̃D ,

Ĉ =D− D̃− a2C + a−2C̃ ,

B̂a =
1
2
(aBa − a−1B̃a) ,

B̂ā =
1
2
(aBā + a−1B̃ā) ,

ϕ̂ =ϕ +
1

2
√

2
Φ̇
(
a(A + Ā +

√
2aĊ)− a−1(Ã− ¯̃A +

√
2a−1 ˙̃C)

)
+

1
2
(−∂2C + ∂̃2C̃) ,

Ê =E− 1
2
√

2
H
(
a(A + Ā +

√
2aĊ)− a−1(Ã− ¯̃A +

√
2a−1 ˙̃C)

)
,

(3.192)
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as follows with simple computations using (3.185). These gauge invariant vari-
ables are of course not unique, as any linear combination of gauge invariant fields
is also gauge invariant. Moreover, there is one relation among them: the scalarŝ̃A and ̂̄A satisfy ̂̃A + ̂̄A = 2

√
2 ˙̂C . (3.193)

We next aim to rewrite the quadratic double field theory action directly in
terms of gauge invariant variables that are linear combinations of (3.192). Given
that the latter take a rather complicated form, a priori this seems to be a difficult
task that, however, is simplified by the following trick: We use that the original
fields can be expressed in terms of specific combinations of the gauge invari-
ant fields plus terms that take the form of an infinitesimal gauge transformation
(3.116). Specifically, we claim that

hab̄ = h̄ab̄ + DaFb̄ − Db̄Fa − F0Lab̄ ,

Aa = Āa + Ḟa − La
b̄Fb̄ + Da

(
F̃0 + F0)

Aā = Āā + Ḟā − Lā
bFb + Dā(F̃0 − F0) ,

ϕ = ϕ̄ + Φ̇F0 − 1
2 DaFa − 1

2 DāFā ,

φ = φ̄− Ḟ0 ,

(3.194)

where the gauge invariant fields, denoted by a bar, are given by

h̄ab̄ = ĥab̄ + (a−1∂a + a∂̃a)B̂b̄ − (a−1∂b̄ − a∂̃b̄)B̂a + Êgab̄

+
1
2
(a−2∂a∂b̄ + 2∂a∂̃b̄ − 2∂̃a∂b̄ − a2∂̃a∂̃b̄)Ĉ , (3.195)

Āa = Âa +
a−1

4
∂a
(

Â− ̂̄A + 2
√

2HĈ
)
+

a
4

∂̃a
(

Â + ̂̃A + 2
√

2HĈ
)

, (3.196)

Āā = Âā +
a−1

4
∂ā
(

Â− ̂̃A + 2
√

2HĈ
)
− a

4
∂̃ā
(

Â + ̂̄A + 2
√

2HĈ
)

, (3.197)

ϕ̄ = ϕ̂ +
1
4

∆Ĉ , (3.198)

φ̄ = φ̂ , (3.199)
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while the ‘effective gauge parameters’, denoted by F, are given by

F0 =− 1
2
√

2

(
a(A + Ā +

√
2aĊ)− a−1(Ã− ¯̃A +

√
2a−1 ˙̃C)

)
,

F0 =
1

2
√

2

(
a−1(Ã + ¯̃A)− a(A− Ā)

)
,

Fa =
1√
2
(aBa + a−1B̃a) +

√
2a−1

4
∂a(−3a2C− 2D̃ + a−2C̃)

+

√
2a
4

∂̃a(−3a−2C̃− 2D + a2C) ,

Fā =−
1√
2
(aBā − a−1B̃ā) +

√
2a−1

4
∂ā(−3a2C + 2D + a−2C̃)

+

√
2a
4

∂̃ā(3a−2C̃− 2D̃− a2C) .

(3.200)

These quantities transform under gauge transformations as

δF0 = ξ0 ,

δF0 = ξ0 − η̇ ,

δFa = ζa + ∂a
(
λ− 1√

2
a−1η

)
+ ∂̃a

(
χ + 1√

2
aη
)
= ξa − 1√

2
a−1∂aη + 1√

2
a∂̃aη ,

δFā = ζ ā + ∂ā
(
λ̄ + 1√

2
a−1η

)
+ ∂̃ā

(
χ̄ + 1√

2
aη
)
= ξ ā +

1√
2

a−1∂āη +
1√
2

a∂̃āη ,

(3.201)

where the gauge-for-gauge parameter η is given by

η =

√
2

4

(
aλ− aλ̄− a−1χ− a−1χ̄

)
. (3.202)

Using the expressions (3.200) and those for the gauge invariant variables (3.192)
one may verify that (3.194) are just identities. These identities are very useful,
however, since they decompose the fields into their gauge invariant parts plus
terms of the ‘pure gauge form’ (3.116).

We can now replace each appearance of a field in the quadratic action by its
right-hand side in (3.194). Gauge invariance then implies that the pure gauge
terms drop out, so that in effect we may simply replace each field by its gauge
invariant version, i.e., we just put a bar on each field. Afterwards we use the
expressions in terms of the SVT components, which in turn allows us to express
each divergence, trace, etc., of a tensor or vector in terms of appropriate scalar
modes, thereby achieving complete decoupling.
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In order to perform this computation it is convenient to first display the
quadratic Lagrangian (3.105) in terms of the derivatives ∂ and ∂̃:

L = ne−2Φ
{
− 4ϕ̇2 + 8Φ̇φϕ̇ + H(2φ + 4ϕ)gb̄

aḣa
b̄

+ ḣab̄ḣab̄ + 2H2hab̄hab̄ − 2H2ga
c̄gd̄

bhad̄hbc̄

+
1√
2
(a∂̃āAā + a−1∂āAā − a∂̃aAa + a−1∂aAa)(−4ϕ̇ + 4Φ̇φ− 2Hgb̄

aha
b̄)

+
1√
2

H(4ϕ + 2φ)(−a∂̃āAā + a−1∂āAā + a∂̃aAa + a−1∂aAa)

− 1
2
Aā∆Aā − 1

2
Aa∆Aa −

1
2
(a∂̃aAa − a−1∂aAa)

2 − 1
2
(a∂̃āAā + a−1∂āAā)

2

+
√

2Ab̄(a∂̃a − a−1∂a)ḣab̄ −
√

2Aa(a∂̃b̄ + a−1∂b̄)ḣab̄

−
√

2Hgb
d̄Ab(a∂̃ahad̄ − a−1∂ahad̄) +

√
2Hgb̄

cAb̄(a∂̃āhcā + a−1∂āhcā

−
√

2HAb̄(a∂̃ahab̄ + a−1∂ahab̄) +
√

2HAa(a∂̃b̄hab̄ − a−1∂b̄hab̄)

+ 4φ∆ϕ− 4ϕ∆ϕ + (4ϕ− 2φ)(a−2∂a∂b̄ − ∂̃a∂b̄ + ∂a∂̃b̄ − a2∂̃a∂̃b̄)hab̄

+ hab̄∆hab̄ + (a−1∂a − a∂̃a)ha
b̄(a−1∂c − a∂̃c)hcb̄

+ (a−1∂b̄ + a∂̃b̄)hab̄(a−1∂c̄ + a∂̃c̄)hac̄
}

.

(3.203)

Following the above procedure one obtains the decoupled quadratic action in
terms of gauge invariant variables:

S =
∫

dt
∫

d2dX n e−2Φ(LT + LV + LS
)

, (3.204)

where LT, LV and LS denote the Lagrangians for the tensor, vector and scalar
modes, respectively. As emphasized before, the action should completely decou-
ple among these modes, as indeed it does. Specifically, the action for the tensor
modes is given by

LT = ˙̂hab̄
˙̂h

ab̄
+ 2H2 ĥab̄ ĥab̄ − 2H2ga

c̄gd̄
b ĥad̄ ĥbc̄ + ĥab̄∆ĥab̄ , (3.205)
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while the action for the vector modes reads

LV = − ˙̂Bā∆ ˙̂B
ā
− ˙̂B

a
∆ ˙̂Ba − H2B̂a∆B̂a − H2B̂ā∆B̂ā

+ 4H2ga
b̄B̂a♦B̂b̄ − B̂a(∆2 −♦2)B̂a − B̂ā(∆2 −♦2)B̂ā

− 1
2

Âā∆Âā − 1
2

Âa∆Âa −
√

2Âa♦( ˙̂Ba + Hga
b̄B̂b̄) +

√
2Âā♦( ˙̂Bā + Hgā

bB̂b) .

(3.206)

Note that while this action carries two more vector modes than in standard grav-
ity, the A modes are actually auxiliary as they may be eliminated by their own
equations of motions. Indeed, varying with respect to Âa and Âā and assuming
∆ is invertible, we obtain

Âa = −
√

2∆−1♦( ˙̂Ba + Hga
b̄B̂b̄) ,

Âā =
√

2∆−1♦( ˙̂Bā + Hgā
bB̂b) ,

(3.207)

which may be reinserted into the action to obtain:

LV(B) =− ˙̂Bā∆ ˙̂B
ā
− ˙̂B

a
∆ ˙̂Ba − H2B̂a∆B̂a − H2B̂ā∆B̂ā

+ 4H2gb̄
aB̂b̄♦B̂a − B̂ā(∆2 −♦2)B̂ā − B̂a(∆2 −♦2)B̂a

+ ( ˙̂Bā + Hgā
bB̂b)∆

−1♦2( ˙̂B
ā
+ HgācB̂c) + ( ˙̂Ba + Hga

b̄B̂b̄)∆
−1♦2( ˙̂B

a
+ Hgac̄B̂c̄) .

(3.208)

The action for the scalar modes is

LS =− 4 ˙̂ϕ
2
+ 8Φ̇φ ˙̂ϕ + d ˙̂E

2
+ 2dH(φ̂ + 2ϕ̂) ˙̂E +

1
4

˙̂C(∆2 −♦2) ˙̂C +
1
2

H2Ĉ(∆2 −♦2)Ĉ

+

√
2

2
Â♦(2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ) +

√
2

2
Â∆
(

H(φ̂ + 2ϕ̂) + ˙̂E
)

−
√

2
4

HÂ(∆2 −♦2)Ĉ +
1

16
Â(∆2 −♦2)Â−

√
2

8
̂̄A(∆2 −♦2) ˙̂C +

1
16
̂̄A(∆2 −♦2) ̂̄A

+ 4φ̂∆ϕ̂− 4ϕ̂∆ϕ̂ + (d− 2)Ê∆Ê + 2(φ̂− 2ϕ̂)♦Ê− 1
2
(φ̂− 2ϕ̂)(∆2 −♦2)Ĉ .

(3.209)

Here, ̂̄A, and Â are auxiliary fields. Varying the action with respect to these fields
yields

(∆2 −♦2)(−
√

2 ˙̂C + ̂̄A) = 0 , (3.210)
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1
8
(∆2−♦2)(Â− 2

√
2HĈ)+

√
2

2
♦(2 ˙̂ϕ− 2Φ̇φ̂+ dHÊ)+

√
2

2
∆
(

H(φ̂+ 2ϕ̂)+ ˙̂E
)
= 0 .

(3.211)
Since ∆2 −♦2 = 4∂2∂̃2 and ∂2 and ∂̃2 are invertible, we can solve for ̂̄A and Â,

̂̄A =
√

2 ˙̂C , (3.212)

Â = 2
√

2HĈ−
√

2∂−2∂̃−2(♦(2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ) + ∆
(

H(φ̂ + 2ϕ̂) + ˙̂E
)

, (3.213)

and re-insert these into the action, which yields

LS = (d− 1) ˙̂E
2
+ 2(d− 1)H(φ̂ + 2ϕ̂) ˙̂E +

1
8

˙̂C(∆2 −♦2) ˙̂C

+ 2Ĉ♦(2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ) + 2Ĉ∆
(

H(φ̂ + 2ϕ̂) + ˙̂E
)

+ (d− 1)H2φ̂2 − 4H2φ̂ϕ̂− 4H2 ϕ̂2 + d2H2Ê2 + 4dH ˙̂ϕÊ− 4dHΦ̇Êφ̂

+ 4φ̂∆ϕ̂− 4ϕ̂∆ϕ̂ + (d− 2)Ê∆Ê + 2(φ̂− 2ϕ̂)♦Ê− 1
2
(φ̂− 2ϕ̂)(∆2 −♦2)Ĉ

− 1
2
(2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ)∂−2∂̃−2(a4∂̃4 + a−4∂4)(2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ)

− 1
2
(

H(φ̂ + 2ϕ̂) + ˙̂E
)
∂−2∂̃−2(a4∂̃4 + a−4∂4)

(
H(φ̂ + 2ϕ̂) + ˙̂E

)
− (2 ˙̂ϕ− 2Φ̇φ̂ + dHÊ)∂−2∂̃−2(a4∂̃4 − a−4∂4)

(
H(φ̂ + 2ϕ̂) + ˙̂E

)
.

(3.214)

We close this section by pointing out that the definition of gauge invariant
variables can be extended to cubic order, using our procedure of gauge invariant
variables described in Chapter 2. As before, the cubic action in terms of these
variables takes the same form as the gauge fixed action, but with the fields being
the fully gauge invariant ones. We will leave the details to future work.
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Chapter 4

Homological Quantum Mechanics

Let us now turn to the application of homotopy algebras to quantum mechan-
ics. In this chapter, our goal is to compute physically relevant observables in
quantum mechanics, namely, quantum expectation values. Traditionally these
are computed via the canonical formulation or the path integral. In the canon-
ical formulation, one defines the state of a quantum system in terms of vectors
in a Hilbert space. Observables, such as position, momentum or energy, are no
longer numbers as in classical mechanics but are rather self-adjoint operators on
the Hilbert space. A measurement of an observable is an expectation value, which
is computed by taking an initial state, acting on it with the operator correspond-
ing to this observable, and projecting the result onto a final state. In the path
integral formulation, one computes expectation values by summing over all the
paths a system can take when evolving from its initial to final state. The paths
are weighted by exp(iS/h̄) where S is the action of the system. Since the path in-
tegral works with the Lagrangian instead of the Hamiltonian, it is advantageous
to canonical quantization by preserving symmetries of the system, and thus has
been essential in the development of quantum field theory. However, summing
over infinitely many paths lacks in mathematical rigour. Our partial reformu-
lation presented in [19] circumvents this issue by computing expectation values
algebraically instead of through analysis. It has yet to be a full reformulation,
since we only demonstrate our method for computing expectation values for the
harmonic oscillator and its perturbations. As a first step towards an extension to
quantum field theory, we apply our method to rederive the Unruh effect in the
context of quantum field theory in curved spacetime. Whether our method can
be applied broadly in quantum field theory, especially for gauge theories, still
remains an open question.
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Given the tools and systematics that we have learned about so far, to accom-
plish our goal of computing quantum expectation values, we might think of com-
puting the cohomology of the algebraic structure which encodes the theory, be-
cause that is where we expect to find our physical observables. To start with,
we observe that the cohomology of the L∞ algebra of the theory does not provide
sufficient information, since this corresponds to the classical configurations of the
system that satisfy the equations of motion. In order to do quantum mechanics,
additional structures seem to be required – for us this is the BV algebra. As men-
tioned in 1.3.3, the BV algebra is defined on the space of functionals F (V) which
is dual to the vector space V underlying the theory. Although at first glance it
might seem unintuitive to work with functionals in the dual space, it is not sur-
prising when one recalls that the path integral does the same – it is indeed a
functional integral.

Nevertheless, the resulting expectation value is a function, namely of the ini-
tial and final boundary conditions which live in R2n for a quantum mechanical
system with n degrees of freedom. Instead of computing the functional integral,
in our approach, we reach the resulting function by defining a projection from
the space of functionals to the space of functions of boundary conditions,

P : F (V)→ F (R2) . (4.1)

Our claim is that given a functional F, its quantum expectation value is given by
its projection P(F) whose inclusion to the space of functionals is a member of the
δ-cohomology class of F, i.e.

I(P(F)) = F− δG , (4.2)

where G ∈ F (V). This turns out to be exactly the relation given by the homotopy
retract from the BV algebra to the space of functions of the boundary conditions.
After reviewing the standard formulation to establish notation, we will show how
to compute P(F) for the harmonic oscillator and compare our results with the
standard path integral.

The notion that the cohomology of the BV differential is related to quantum
expectation values had already been developed for the finite-dimensional model1

in section 2.3 of [66] and in [67]. The quantum mechanical system described by

1In the finite-dimensional model, the action is a function instead of a functional and so the
path integral is over R instead of an infinite-dimensional space of functions.
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the action
S(x) =

1
2

ax2 , (4.3)

is considered as an example. It can be shown that the cohomology of the BV
differential computes the expectation value of polynomials xn as defined as

〈xn〉 =
∫

dx xne−ax2/2h̄∫
dxe−ax2/2h̄

∣∣∣∣
a→−ia

(4.4)

where the substitution a → −ia is performed after integration. One starts by
defining the BV complex on the graded vector space given by the space of func-
tions of the form

F(x, x∗) = f (x) + x∗g(x) , (4.5)

where x∗ is an anti-commuting number and f and g are polynomials. The space
in degree zero is given by the functions that have g = 0 and the space in degree
−1 is given by the functions that have g 6= 0. The BV Laplacian is

∆ = − ∂2

∂x∂x∗
(4.6)

and the bracket is given by

{a, b} = ∂ra
∂x∗

∂b
∂x
− ∂a

∂x
∂lb
∂x∗

. (4.7)

The BV-differential corresponding to this action is

δ = −ax
∂

∂x∗
+ ih̄

∂2

∂x∂x∗
. (4.8)

Let us compute the cohomology. First we find the kernel of δ by applying δ on
F(x, x∗) in (4.5):

δF(x, x∗) = −axg(x) + ih̄g′(x) . (4.9)

Setting this to zero, we find that g(x) = eiax2/2h̄ is a solution but is not a polyno-
mial, so g(x) must be zero. Thus the kernel of δ is given by the functions F(x, x∗)
where g(x) = 0:

ker δ = {F(x, x∗) ≡ f (x)} . (4.10)
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Next we find the image of δ. We take a look at how δ acts on functions where
f (x) = 0 and g(x) = xn, i.e. functions G(x, x∗) = x∗xn:

δG(x, x∗) = −axn+1 + ih̄nxn−1 . (4.11)

In cohomology, we therefore have

axn+1 ∼ ih̄nxn−1 . (4.12)

Inserting n = 0 into (4.12), we see that x ∼ 0. If n = 1, then x2 ∼ ih̄
a . For n = 2,

we deduce that x3 ∼ 3ih̄
a x ∼ 0. And for n = 3, we get x4 ∼ 3( ih̄

a )x2 ∼ 3( ih̄
a )

2.
Continuing the pattern, we have

xn ∼

 0 for n odd(
ih̄
a

) n
2
(n− 1)(n− 3) · · · · · 1 for n even

(4.13)

These are the cohomology classes for xn for all n. Each polynomial xn can be
represented by one number, and this is the expectation value 〈xn〉 (see for instance
p. 14 in Zee’s textbook [68]). In our formulation, we will extend this to infinite-
dimensional models for computing expectation values for the harmonic oscillator
with respect to position and momentum eigenstates, as well as coherent states.

Path integral

In order to compare our formulation with the path integral formulation, we
would like to briefly review the path integral and establish some general nota-
tion.

Consider a non-relativistic particle moving in one dimension with the Hamil-
tonian

H[x, p] =
p2

2m
+ V(x) , (4.14)

where x = x(t) and p = p(t) are its position and momentum respectively
parametrized by time t and where V(x) is an arbitrary potential. In the path in-
tegral formulation of quantum mechanics, the amplitude of measuring a particle
at a final position x(t f ) = x f given its initial position x(ti) = xi is

〈x f |xi〉 =
∫ x(t f )=x f

x(ti)=xi

Dx exp(iS[x]/h̄) . (4.15)



100

where S is the classical action functional S[x] =
∫

dtL[x, ẋ] =
∫

dt (pẋ− H[x, p]).
The functional integral

∫
Dx sums over all paths x(t) which begin at x(ti) = xi

and end at x(t f ) = x f .
Suppose we have a function F(x) which defines an operator F(x̂) in the

Schrödinger picture in the sense that

F̂(x̂) =
∫

dx |x〉 〈x| F(x) . (4.16)

where |x〉 are the eigenstates of x̂, i.e. x̂ |x〉 = x |x〉. One can show that the
expectation value of F̂(x̂) is given by

〈x f |F̂(x̂)|xi〉 =
∫ x(t f )=x f

x(ti)=xi

Dx F[x] exp(iS[x]/h̄) . (4.17)

Wick contractions

In our work we will reproduce Wick contractions using a homological approach.
In the standard formulation, when computing vacuum expectation values of
products of field operators, one often uses Wick’s theorem. Just as position and
momentum operators of the quantum harmonic oscillator can be rewritten in
terms of creation and annihilation operators, field operators Φ are split into its
creation part Φ+ and annihilation part Φ−:

Φ = Φ+ + Φ− , (4.18)

where Φ− annihilates the vacuum, Φ− |Ω〉 = 0. Wick’s theorem dictates how to
organize time-ordered products of operators. Time-ordering of a product places
an operator to the right of another if it is defined at an earlier time, so that the
time at which an operator is defined in the product increases from right to left.
For a product of two operators, time-ordering yields

T(Φ(x)Φ(y)) =Φ+(x)Φ+(y) + Φ−(x)Φ−(y)

+ Θ(ty − tx)(Φ+(y)Φ−(x) + Φ−(y)Φ+(x))

+ Θ(tx − ty)(Φ+(x)Φ−(y) + Φ−(x)Φ+(y)) ,

(4.19)

where Θ is the step function. Wick’s theorem says that the time-ordered product
is the normal-ordered product plus Green’s functions. A product of operators Φ
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is normal-ordered when all the Φ+ operators are on the left of Φ−. For example,

N(Φ(x)Φ(y)) = Φ+(x)Φ+(y) + Φ+(x)Φ−(y) + Φ+(y)Φ−(x) + Φ−(x)Φ−(y) .
(4.20)

One can show that the time-ordered product can be given as

T(Φ(x)Φ(y)) = N(Φ(x)Φ(y))− iGF(x− y) , (4.21)

where GF is the Feynman propagator. When evaluating the expectation value
with respect to the vacuum, the normal-ordered product vanishes since the an-
nihilation operators are on the right. Wick’s theorem shows how to extend this
result to compute products of an arbitrary number of field operators.

〈Ω|T(Φ(x1) · · ·Φ(xn)|Ω〉 = ∑
pairs

GF(xi1 − xi2)GF(xi2 − xi3) · · ·GF(xin−1 − xin) .

(4.22)

4.1 Homological approach

Let us now describe our general approach. We would like to do quantum me-
chanics for a theory with an action of the form,

S[φ] =
∫ t f

ti

dtL(φ(t) , φ̇(t), t) , where φ(t) ∈ C∞([ti, t f ]) . (4.23)

The free theory can be organized into a chain complex (V, ∂):

0 V0 V1 0 ,∂ (4.24)

where V0 and V1 are vector spaces C∞([ti, t f ]) of the smooth functions on the
interval [ti, t f ]. The differential ∂ acting on a field φ ∈ V0 yields its equation of
motion, i.e.

∂φ = EL(φ(t)) ∈ V1 , (4.25)

where EL(φ(t)) = 0 are the Euler-Lagrange equations. The fields in V0 are as-
signed even degree and the elements in V1, called anti-fields, have odd degree.
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Let us define functionals on V,

F[φ, φ∗] =
∫

dt1 · · ·dtkds1 · · ·dsl f (t1, ..., tk, s1, ...sl)φ(t1) · · · φ(tk)φ
∗(s1) · · · φ∗(sl) ,

(4.26)
where φ(t) ∈ V0 and φ∗(s) ∈ V1 and the coefficient functions f (t1, ..., tk, s1, ...sl)

are totally symmetric in ti and totally antisymmetric in si. The vector space F (V)

of these functionals admits a grading,

F (V) = · · · ⊕ F(V)−2 ⊕ F(V)−1 ⊕ F(V)0 , (4.27)

where the degree of a functional is given by minus the number of φ∗ it contains,
|F| = −l. The BV complex is defined by equipping F (V) with the BV differential
δ = Q− ih̄∆, where

Q = −
∫ t f

ti

dt EL(φ(t))
δ

δφ∗(t)
, and ∆ = −

∫ t f

ti

dt
δ2

δφ(t)φ∗(t)
, (4.28)

and δ is a degree +1 map since Q and ∆ both decrease the number of φ∗ by 1.
One can check that δ2 = 0 and that in addition, Q2 = 0. One may notice that the
definition of δ is different from what we expect from the definition in (1.85). For
∆ to satisfy (1.83) and (1.84), the Poisson bracket is defined as

{F, G} = δF
δφ∗

δG
δφ
− δF

δφ

δG
δφ∗

, (4.29)

With (1.85) and the above definition, we expect Q to be of the form

{S,−} = − δS
δφ

δ

δφ∗
. (4.30)

However, δS
δφ and the Euler-Lagrange equations are only equal up to boundary

terms. For traditional applications of the BV formalism, the specific form in (4.30)
is important, and in fact there is an extension of the BV formalism, called the
BV-BFV formalism [69, 70] which deals with boundary terms.2 For our purposes,
however, what we define in (4.28) is sufficient.

Given the BV complex (F (V), δ) of the theory, we would like to compute

2In particular the symplectic form which induces the bracket {−,−} is no longer invariant
under Q due to boundary terms, but this is irrelevant in our formulation since we do not consider
the symplectic form.
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expectation values of functionals with respect to initial and final boundary con-
ditions corresponding to position or momentum eigenstates in the canonical for-
mulation, for example,

〈T(F̂(x̂))〉 =
〈y; t f |T(F̂(x̂))|x; ti〉
〈y; t f |x; ti〉

, (4.31)

where x̂ |x; ti〉 = |x; ti〉. Let us stress that the words "operator" and "state" are only
used in the context of comparing our method to the canonical formulation, and
that these concepts are non-existent in our formulation. As sketched at the begin-
ning of this chapter, the expectation value is given by the projection to the space of
functions of boundary conditions. To define this projection requires some steps.
Our procedure starts by establishing a homotopy retract from the chain complex
of the free theory (V, ∂) to the space of the boundary conditions, also called the
phase space R2. Then, we lift this homotopy retract to a homotopy retract on the
dual complexes. By applying the perturbation lemma, we can incorporate the in-
teracting theory structure and the quantum piece of the BV differential to finally
obtain the cohomology of δ. In the following we elaborate on each of these steps.

We begin by considering only the free theory without interactions. We build
a chain complex of the on-shell functions, namely, solutions to the free equations
of motion parametrized by boundary conditions. As an example, let φxix f be a
unique solution with the boundary conditions,

(φxix f (ti), φxix f (t f )) = (xi, x f ) , (xi, x f ) ∈ R2 . (4.32)

In other words, for every pair of boundary conditions, we can map to a solution
of the equations of motion, hence defining the inclusion map,

i : R2 → V , (xi, x f ) 7→ (φ, φ∗) = (φxix f , 0) . (4.33)

For a field in V, we can project to its boundary values,

p : V → R2 , (φ, φ∗) 7→ (φ(ti), φ(t f )) . (4.34)

Elements in V1 map to 0 because on-shell fields trivially satisfy the equations of
motion, so there are no equations of motion left in the phase space. We can also
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consider more general boundary conditions, namely the projections

p : V → R2 ,

φ 7→ (aiφ(ti) + biφ̇(ti) , a f φ(t f ) + b f φ̇(t f )) .
(4.35)

Summarizing the above data into a diagram, we have

0 V0 V1 0

0 R2 0 0

∂

p 0

0

(4.36)

The two chain complexes are homotopy equivalent if there exists a homotopy
retract between them. This means that their cohomologies are the same and in
this case it is obvious since the phase space is the cohomology of ∂. The homotopy
retract requires the existence of a homotopy map, h, of degree −1, which satisfies

i ◦ p = id− h ◦ ∂− ∂ ◦ h . (4.37)

Acting on elements in V0, the third term on the RHS of the equation vanishes
since there is no V−1. Thus for objects in V0, we have the relation

i ◦ p = id− h ◦ ∂ . (4.38)

Acting (4.37) on elements in V1, we will have 0 on the LHS and the second term
on the RHS vanishes since there is no V2. Thus, V1 elements, we have the relation

id = ∂ ◦ h . (4.39)

Equation (4.39) might look familiar. Given a differential operator L(t), the
Green’s function K(t, s) is a solution to the equation L(t)K(t, s) = δ(t− s), where
δ(t− s) is the Dirac delta function. In our case, the Green’s function for the dif-
ferential operator ∂ is the integral kernel of the homotopy map h. In other words,
we define the map h : V1 → V0 for any function f ∈ V1,

h( f )(t) =
∫ t f

ti

dsK(t, s) f (s) , (4.40)
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where K(t, s) is defined such that

φ f (t) =
∫ t f

ti

dsK(t, s) f (s) (4.41)

is a solution of
∂φ = f . (4.42)

This observation will become useful later on when we compare our formalism to
the path integral.

Now that we have established the homotopy retract from (V, ∂) to the phase
space (R2, 0), we will lift the maps to act on the space of functionals F (V). First
we lift the inclusion and projection maps. These are defined by the pullbacks:

i∗ : F (V)→ F (R2) , i∗(F) := F ◦ i . (4.43)

p∗ : F (R2)→ F (V) , p∗( f ) := f ◦ p . (4.44)

For readability we rename the maps:

I ≡ p∗ , P ≡ i∗ . (4.45)

The differential on the space of functionals F (V) is the free, classical piece of the
BV differential, which we call Q0. The homotopy map on this space satisfies

Q0H(t)[φ] = t[φ]− IPt[φ] (4.46)

and
HQ0(t)[φ∗] = t[φ∗] , (4.47)

where t[φ] is the evaluation functional that takes in a function φ and returns φ(t),
i.e. t[φ] = φ(t). Consequently, to define the homotopy map on any functional in
F (V), the homotopy map is defined to act on products of t[φ] and t[φ∗] as

H(FG) =
1
2
(H(F)G + (−)F p∗i∗(F)H(G) + (−)FG{H(G)F + (−)G p∗i∗(G)H(F)

}
.

(4.48)
This definition of the homotopy map satisfies

Q0H + HQ0 = id− IP (4.49)

on products FG, as long as it holds on F and G individually, meaning that the
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action of H on any functional can be successively reduced to its action on t[φ]
and t[φ∗] in (4.46) and (4.47). In summary, a homotopy retract from (V, ∂) to
(R2, 0) gives rise to a homotopy retract from (F (V), Q0) to (F (R2), 0).

What we are really after is a homotopy retract from (F (V), δ) to (F (R2), 0).
We can apply the homological perturbation lemma, with the interaction term
QI = {SI ,−} and the quantum piece −ih̄∆ as a perturbation:

δ = Q0 + η , η = QI − ih̄∆ . (4.50)

The homological perturbation lemma gives us the homotopy retract
(F (V), δ, H′)→ (F (R2), 0) with the new projection and inclusion maps.

P′ = P ∑
n≥0

(−ηH)n , I′ = I . (4.51)

The inclusion map remains unperturbed because of degree reasons, and in the
dual picture it implies that p is unperturbed. This means p is untouched by inter-
actions.

With these new projection and inclusion maps, given a functional F ∈ F (V),
let us define

f := P′(F), F′ := I′P′(F) . (4.52)

The homotopy retract tells us that

F− F′ = (1− I′P′)(F) = δ(H′(F)) . (4.53)

This means that F and F′ are in the same cohomology class with respect to δ. For
a functional F ∈ F (V), we can find a member of its δ-cohomology class that can
be written as F′ = I′( f ) = p∗( f ) for a function f on phase space R2. Our claim is
that the expectation value of F in (4.31) is equal to the function f = P′(F):

〈T(F̂(x̂))〉 =
〈y; t f |T(F̂(x̂))|x; ti〉
〈y; t f |x; ti〉

= f (x, y) . (4.54)

We can apply this method for more general boundary conditions and this will be
discussed in 4.2.4.
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4.1.1 Uniqueness of the Expectation Value

Let us prove that the expectation value that we have computed in our approach
is unique. Concretely, we would like to prove that there is a unique function
f ∈ F (R2) such that there is a functional F′ in the same cohomology class of F
such that F′ = p∗( f ). The proof can be outlined in the following way:

1. Establish that the cohomology of the complex with the classical piece of the
BV differential H(F (V), Q) where Q = Q0 + QI is isomorphic to the co-
homology of the complex with the full quantum interacting BV differential
H(F (V), δ) where δ = Q− ih̄∆.

2. Show that the cohomology H(F (V), Q) is isomorphic to the space of func-
tionals of solutions which satisfy EL(φ) = 0.

3. Show that p∗ : F (R2) → F (V) is a one-to-one map when the image is
restricted to functionals on solutions.

Then p∗ is a one-to-one map between the space of functions F (R2) and the space
of functionals of solutions which is isomorphic to the cohomology H(F (V), Q).
Thus there is a one-to-one map betweenF (R2) and the cohomology H(F (V), Q).
Let us now describe each of these steps in detail.

Step 1. We recall the homological perturbation lemma discussed in 1.3.2. The ho-
mological perturbation lemma ensures that given the original equivalence data
(F (V), Q0), H → (F (R2), 0), the perturbed data (F (V), δ), H′ → (F (R2), 0)
is a homotopy equivalence data as defined in (1.68). Since the perturbed
projections and inclusions are quasi-isomorphisms (just like the unperturbed
ones), by definition they induce isomorphisms on cohomology. Therefore the
cohomologies of the original and perturbed complexes must be isomorphic
H(F (V), Q) ' H(F (V), δ).

Step 2. First, let us clarify what we mean by the space of functionals of solutions.
Let us define the space of solutions, E ⊆ V defined as

E = {φ ∈ V0|EL(φ(t)) = 0} . (4.55)

The functionals that take in the solutions as an input belong to the space F (E).
This is defined in the following way. Since E is a subspace of V0, any functional
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on V0 can be restricted to a functional on E , defining the projection,

r : F (V0)→ F (E) , F 7→ F|E . (4.56)

We assume that any functional in F (E) can be obtained via r and that the map
r has a right-inverse, so that any functional on E extends to a functional on V0.
In general, r is not a bijection since it may have a non-trivial kernel, but upon
modding out the kernel we have an isomorphism:

F (V0)

ker r
' F (E) . (4.57)

Next, we show that the cohomology of (F (V), Q) in degree 0 is equal to the
space F (E) and that the cohomology in degree −1 vanishes. We start with the
functionals of degree 0. Since functionals of degree 0 contain no anti-fields, by
recalling the definition of Q in (4.28) it follows that they are annihilated by Q.
Therefore, ker Q0 = F (V0) when restricted to degree 0 (here the subscript de-
notes the degree, i.e. Qi : F (V)i → F (V)i+1, and should not be confused with
the free part of Q).

In degree 0, the image of Q consists of functionals of φ proportional to the
equation of motion. To see this, consider a functional of degree −1,

G−1 =
∫ t f

ti

dsφ∗(s)g−1[φ, s] , (4.58)

where g−1[φ, s] =
∫

dt1 · · ·dtk f−1(t1, ..., tk, s)φ(t1) · · · φ(tk). By applying Q in
(4.28) on G−1, we obtain

Q(G−1) = −
∫ t f

ti

dt EL(φ(t))g−1[φ, t] . (4.59)

When restricting to E , the above expression vanishes. Assuming that any func-
tional in the kernel of r is of the form (4.59) (see appendix B in [71] for a discussion
on this assumption), for a suitable function g−1, the image of Q−1 is equal to the
kernel of r, im Q−1 = ker r. Therefore, the cohomology in degree 0 is

H0(Q) =
ker Q0

im Q−1
=
F (V0)

ker r
' F (E) (4.60)

where we have used (4.57).
For the computation of the cohomology in degree −1, the kernel of Q consists
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of the functionals which satisfy Q(G−1) = 0. We observe that the RHS of (4.59)
has the form of the variation of the action. Setting the variation to zero, we can
interpret the action to be invariant under the transformation δφ(t) ≡ g−1[φ, t].
Computing Q acting on functionals of degree −2, which have the form

G−2 =
∫

ds1ds2φ∗(s1)φ
∗(s2)g−2[φ, s1, s2] (4.61)

Q(G−2) yields functionals of the form G1 above where

g−1[φ, t] =
∫ t f

ti

ds EL(φ(s))g−2[φ, s, t] , g−2[φ, s, t] = −g−2[φ, t, s] . (4.62)

Under the gauge symmetries interpretation, these functionals g−2 correspond to
the trivial gauge symmetries. Therefore the cohomology ker Q−1/im Q−2 contain
the non-trivial gauge transformations. Since we are only considering models
without gauge symmetry, the cohomology in degree−1 vanishes. This argument
can be applied to cohomologies in arbitrary negative degree. Therefore, the
cohomology of (F (V), Q) is given by the cohomology in degree zero (4.60). This
concludes the proof that the cohomology of the complex (F (V), Q) is equal to
the space of functionals of on-shell functions F (E).

Step 3. Now we must prove that p∗ is a one-to-one map when the image is re-
stricted to F (E). p∗ is defined in (4.44) as p∗( f ) = f ◦ p, so we must show that p
in (4.34) is invertible on the space of solutions E . This will imply that the pullback
p∗ is invertible on F (E).

The projection p to the boundary conditions evaluates a solution at the bound-
aries ti and t f :

p : E → R2 , p(φp) := (φp(ti), φp(t f )) . (4.63)

The inclusion i to the space of solutions is

i : R2 → E , i(x, y) := φx,y (4.64)

where φx,y is a solution, EL(φx,y) = 0, with the boundary values

φx,y(ti) = x , and φx,y(t f ) = y . (4.65)
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It is easy to show that p ◦ i = id and i ◦ p = id. First,

p ◦ i(x, y) = p(φx,y) = (φx,y(ti), φx,y(t f )) = (x, y) , (4.66)

where the last equality follows from (4.65). To show that i ◦ p = id,

i ◦ p(φp) = i(φp(ti), φp(t f )) = φφp(ti),φp(t f )
= φp , (4.67)

since φφp(ti),φp(t f )
is indeed the solution with the boundary values

φφp(ti),φp(t f )
(ti) = φp(ti) and φφp(ti),φp(t f )

(t f ) = φp(t f ). Therefore p is a one-
to-one map between the space of solutions E and R2.

From the identities p ◦ i = id and i ◦ p = id and the definitions (4.44) and
(4.43), it follows that p∗i∗ = id and i∗p∗ = id. Therefore, p∗ is a one-to-one map
when the image is restricted to F (E).

4.1.2 Homotopy Retract for Harmonic Oscillator

Here we give an example of the homotopy retract for the harmonic oscillator on
which we will apply our methods and compare our results with the standard
formulation. For the harmonic oscillator, the differential ∂ : V0 → V1 acts as

∂φ = φ̈ + ω2φ . (4.68)

We consider the initial conditions for solutions given by (φ(ti), φ̇(ti)), which de-
fines the projection from V to R2.

p : V → R2 , p(φ) = (φ(ti), φ̇(ti)) . (4.69)

The inclusion map takes a pair of boundary conditions in R2 and maps it into a
solution in V0 written as

i(q, p) = q cos ω(t− ti) +
p
ω

sin ω(t− ti) . (4.70)

For the boundary conditions given by p in (4.69), the homotopy map h : V1 → V0

is
h( f )(t) =

∫ t f

ti

dsK(t, s) f (s) , (4.71)

where
K(t, s) := θ(t− s)

sin ω(t− s)
ω

, (4.72)
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where θ is the step function. The homotopy map can be extended to the full
complex V by defining h(φ) = 0 for φ ∈ V0.

Let us comment that the homotopy depends on the boundary conditions that
are chosen for the projection. For instance, one can also choose the projection
corresponding to Dirichlet boundary conditions,

p(φ) = (φ(ti), φ(t f )) , (4.73)

and the corresponding inclusion is

i(xi, x f ) = xi
sin ω(t f − t)
sin ω(t f − ti)

+ x f
sin ω(t− ti)

sin ω(t f − ti)
. (4.74)

The Green’s function is then

KDD(t, s) = θ(t− s)
sin ω(t− s)

ω
− sin ω(t− ti)

sin ω(t f − ti)

sin ω(t f − s)
ω

, (4.75)

which yields the homotopy map

h( f ) =
∫ t

ti

ds f (s)
sin ω(t− s)

ω
− sin ω(t− ti)

sin ω(t f − ti)

∫ t f

ti

ds f (s)
sin ω(t f − s)

ω
. (4.76)

The Green’s function satisfies the boundary conditions,

KDD(ti, s) = KDD(t f , s) = 0 . (4.77)

These ensure that there is a strong deformation retract (1.75).
We lift the homotopy retract from the space of functions to the space of func-

tionals (F (V), Q0), where

Q0 =
∫ t f

ti

dt(φ̈(t) + ω2φ(t))
δ

δφ∗(t)
(4.78)

The projection and inclusion maps between the chain complex (F (V), Q0) and
the chain complex of functions (R2, 0) as prescribed in (4.43) and (4.44) are

P(F)(q, p) = F[i(q, p), 0] , (4.79)

I( f )[φ, φ∗] = f (p(φ)) = f (φ(ti), φ̇(ti)) , (4.80)
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where i is defined in (4.70). The homotopy map is defined on the functionals as

H(t)[φ] :=
∫ t

ti

ds
sin ω(t− s)

ω
φ∗(s) ≡

∫ t f

ti

dsK(t, s)φ∗(s) ,

H(t)[φ∗] := 0 ,
(4.81)

and is extended to the whole space F (V) by its action on products (4.48).

4.1.3 Perturbation Lemma

We would like to show that by using P′ : F (V) → F (R2), f = P′(F) computes
the expectation value and compare our formalism to the path integral approach.
We will apply the homological perturbation lemma in two steps, first consider-
ing the quantum part of the perturbation and then the interacting part, using the
finite-dimensional cases in [66, 72, 73] as guides. We will see that the quantum
perturbation will give rise to what are equivalent to Wick contractions, and by
adding the interacting part we will reproduce the full path integral for the quan-
tum interacting theory.

Without taking interactions into account, the perturbation to Q0 is η = −ih̄∆.
There will neither be a induced differential on R2, nor a perturbation to the inclu-
sion I, however the perturbation to the projection is

P1 = P ∑
n≥0

(ih̄∆H)n , (4.82)

where we denote the perturbed projector by P1 since later we will consider a
second perturbation to be denoted P2. In order to compare with the standard
formulation, we would like to write out explicitly how this expression acts on
F (V). Though we could in principle use the definition of H in (4.48), it turns out
that we can obtain a more user-friendly version by first decomposing the space
F (V) into on-shell and off-shell functionals.

Let us recall that the maps i and p defined in (4.33) and (4.34) relate the space
of fields V to the phase space R2. We decompose the space of fields,

V = ip(V)⊕ (id− ip)(V) =: Vp ⊕Vu . (4.83)

where Vp is the ”physical” space of on-shell fields which project to solutions to
the equations of motion, and Vu is the ”unphysical” space of off-shell fields. Any
field can be written as φ = φp + φu, where φp is a solution to the equations of
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motion. Applying the homotopy relation on degree zero elements in (4.38), one
can see that φu depends on the choice of homotopy. Moreover, it satisfies the same
boundary conditions as the Green’s function used to construct the homotopy, e.g.
for Dirichlet boundary conditions (4.77), φu(ti) = φu(t f ) = 0. On the dual space
of functionals, (4.83) induces the decomposition

F (V) =: Fp ⊕Fu , (4.84)

where Fp = F (Vp) is the space of functionals depending on φp only and Fu is
the space of functionals that contain at least one φu or at least one φ∗.

Given our decomposition, we also need to define how derivatives act on the
functionals F[φ, φ∗]. In other words, we would like to decompose the functional
derivative δ

δφ(t) into the functional derivative in the direction of Vp and Vu (the
functional derivative w.r.t. φ∗ remains the same because we do not decompose
the anti-fields). The functional derivative δ

δφ(t) is defined as

∫
dtg(t)

δF[φ, φ∗]

δφ(t)
:=

d
dε

∣∣∣∣
ε=0

F[φ + εg, φ∗] (4.85)

where g ∈ V. Since Vp is isomorphic to R2, let us label the on-shell fields as φp;x,y

with (x, y) ∈ R2. Then the functional derivative in the direction of Vp is simply
given by partial derivatives along directions in the phase space:

(∂xF)[φ, φ∗] :=
d
dε

∣∣∣∣
ε=0

F[φ+φp;x+ε,y, φ∗] , (∂yF)[φ] :=
d
dε

∣∣∣∣
ε=0

F[φ+φp;x,y+ε, φ∗] .

(4.86)
The functional derivative in the direction of Vu is written as

∫
dt gu(t)

δF[φ, φ∗]

δφu(t)
:=

d
dε

∣∣∣∣
ε=0

F[φ + εgu, φ∗] , (4.87)

where gu ∈ Vu. We are ready to decompose δ
δφ(t) into ∂x, ∂y, δ

δφu(t)
. Let us briefly

neglect the φ∗ dependence and write F[φ] as a functional F[φu, x, y], where φu, x, y
are seen as functions of φ:

F[φ] = F[φu(φ), x(φ), y(φ)] . (4.88)

φu takes the function φ and subtracts the part which is projected to Vp, and x and
y map φ to its projected part in Vp and maps the result to the coordinate x and
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y in the phase space R2. The functional derivative can then be expressed by the
chain rule,

δ

δφ(t)
=
∫

ds
δφu(s)
δφ(t)

δ

δφu(s)
+

δx
δφ(t)

∂

∂x
+

δy
δφ(t)

∂

∂y
. (4.89)

To define how the homotopy acts on the functionals, we first define

Vh :=
∫

dt ds φ∗(t)K(t, s)
δ

δφu(s)
, (4.90)

where K is a Green’s function for the harmonic oscillator. We will see that, up to
a rescaling, this implements the homotopy action on functionals in Fu. We recall
the differential Q0 corresponding to the free theory,

Q0 =
∫

dt
(
φ̈u(t) + ω2φu(t)

) δ

δφ∗(t)
, (4.91)

where we used φ = φu + φp and that φp satisfies the equations of motion and thus
drops out. We can compute the anticommutator of Q0 and Vh,

{Q0, Vh} =
∫

dt
{

φu(t)
δ

δφu(t)
+ φ∗(t)

δ

δφ∗(t)

}
=: N , (4.92)

which counts the total number of fields φu and anti-fields φ∗ in the functional:

N(φu(t1) · · · φu(tk)φ
∗(tk+1) · · · φ∗(tn)) = nφu(t1) · · · φu(tk)φ

∗(tk+1) · · · φ∗(tn) .
(4.93)

We claim that on the space Fu of functionals that are at least linear in φu or φ∗,
on which N is a positive operator, the homotopy map is implemented by

Hu := N−1Vh , (4.94)

where we have identified N with its eigenvalue (which is always positive on Fu,
so N−1 is well-defined). Indeed, the homotopy relation is then satisfied:

{Q0, Hu} = N−1{Q0, Vh} = N−1N = id , (4.95)

recalling that the subspace Fu is projected to 0. Finally, we can extend Hu to a
homotopy H on the total space F (V) = Fu ⊕ Fp by declaring H to be zero on
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Fp ⊆ F (V). We then have {Q0, H} = id− IP, which defines a strong deforma-
tion retract from F (V) to Fp.

Having defined a more convenient lift of the homotopy map H we can now
work out how to apply (4.82) on functionals. Since P1 is of degree zero, it is zero
on functionals with at least one anti-field. Thus we consider functionals of fields
only, and with the definition of the Laplacian ∆ in (4.28) and H in (4.94), ∆H acts
as

∆H =
∫

dt ds K(t, s)
δ2

δφ(t)δφu(s)
1
N

. (4.96)

Since the action of δ
δφ(t) reduces to δ

δφu(t)
when it is integrated against a function

satisfying the boundary conditions of Vu, 3 as does K(t, s), we can define

C :=
∫

dt ds K(t, s)
δ2

δφu(t)δφu(s)
, (4.97)

and rewrite (4.96) as

∆H = C
1
N

. (4.98)

Let us now recall our decomposition of the functionals F[φu, x, y]. Any func-
tional in F (V) can be written as a superposition of functionals of the form

F[φu, x, y] = φu(t1) · · · φu(tm) f (x, y) , (4.99)

for fixed t1, ..., tm and for f (x, y) polynomial in x and y. Thus the effect of P1 in
(4.82) on all functionals can be deduced from its effect on F by linearity. Since
P(φu(t)) = 0, the only non-zero contribution to P1 in (4.82) comes from the term
where ∑n≥0(ih̄∆H)n eliminates all fields φu. Recalling the action of N in (4.93),
this can only happen when m is even, i.e., m = 2k, for which only the term with
n = k contributes. We then find with (4.98)

P1(F) = f (x, y)(ih̄C)
1
2
· · · (ih̄C)

1
2k− 2

(ih̄C)
1
2k

φu(t1) · · · φu(t2k)

= f (x, y)
1
k!

(
ih̄
2

C
)k

φu(t1) · · · φu(t2k) .
(4.100)

3This follows from setting g(t) in (4.85) to gu(t) and comparing the expression with the defini-
tion in (4.87).
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This implies that on arbitrary functionals we have

P1 = P exp
(

ih̄
2

C
)

. (4.101)

We can identify the operator C with the operator ∂P in lemma 3.4.1 in [72] that
generates Wick contractions. P can be interpreted as a normal ordering opera-
tion and P1 implements Wick’s theorem. In 4.2.2 we will compute the two-point
function with respect to coherent states of the harmonic oscillator, where we will
reconfirm that P1 indeed results in Wick contractions.

We have seen that the quantum perturbation to the differential Q0 gave us
the Wick contractions. Now we will apply the perturbation lemma a second time
to combine our result for P1 with the interacting piece QI and compute the per-
turbed projection:

P2 = P1 ◦ ∑
n≥0

(−QI H)n . (4.102)

We would like to reproduce the full interacting path integral as defined in theo-
rem 3 of [73] as

P̃2(F) =
P1

(
F exp

(
i
h̄ SI

))
Z

, (4.103)

with normalization
Z = P1 exp

(
i
h̄ SI

)
, (4.104)

by following the proof in [73] for our model. The proof consists of three steps:

1. Show that
P̃2 ◦ I = id . (4.105)

2. Show that
P̃2 − P2 = P̃2H2δ + P̃2δH2 . (4.106)

3. Show that the two terms on the RHS of (4.106) vanish.

Now let us navigate through each of these steps.

Proof of step 1. First, consider the numerator of (4.103) acting on an element
F = I( f ), where f ∈ F (R2). Recalling the properties of a strong deformation
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retract (1.75), HI = 0. Applying the expression for P1 in (4.82) on I( f ) exp(iSI/h̄),

P̃2(I( f ))Z = P1

(
I( f )ei SI

h̄

)
= P

(
∑
n≥0

(ih̄∆H)n
(

I( f )ei SI
h̄

))
= P

(
I( f ) ∑

n≥0
(ih̄∆H)nei SI

h̄

)
= PI( f )P

(
∑
n≥0

(ih̄∆H)nei SI
h̄

)
= PI( f )Z

= f Z .

(4.107)

For the third equality, since HI = 0 the action of the sum is ∑n≥0(ih̄∆H)n I( f ) =
I( f ). Then for the fourth equality we used the fact that P is an algebra morphism,
i.e. P(FG) = P(F)P(G). Last we used the property PI = id. Thus P̃2 ◦ I = id.

Proof of step 2. We use the homotopy retract relation for P2,

id− I ◦ P2 = H2 ◦ δ + δ ◦ H2 , (4.108)

where δ = Q0 + QI − ih̄∆ and H2 = H ∑n≥0(ih̄∆ − QI)
n. We apply P̃2 to both

sides of (4.108) and use the identity from step 1 (4.105). Then,

P̃2 − P2 = P̃2H2δ + P̃2δH2 . (4.109)

Proof of step 3. Since P̃2 is non-zero only in degree zero, it follows that the first
term on the RHS of (4.106) vanishes: P̃2H2δ = 0. For the second term, we show
that ZP̃2δ = 0, and with the invertibility of Z, P̃2δ = 0. Let us decompose the BV
differential as δ = δ0 + QI , where δ0 = Q0 − ih̄∆. We assume that SI does not
contain derivatives. We then write QI = {SI , ·} due to the absence of boundary
terms. For a generic functional F, we compute

δ0
(
e

i
h̄ SI F

)
= δ0

(
e

i
h̄ SI
)

F + e
i
h̄ SI δ0F− ih̄

{
e

i
h̄ SI , F

}
= e

i
h̄ SI δ0F + e

i
h̄ SI
{

SI , F
}

= e
i
h̄ SI δF .

(4.110)

Here we used that δ acts as a derivation of the product,

− ih̄(−1)F{F, G} = δ(FG)− δFG− (−1)FFδG . (4.111)

The first term in the first line of the RHS of (4.110) vanishes because δ0
(
e

i
h̄ SI
)
= 0,
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which follows because both S0 and SI contain no anti-fields. For the third term
in the first line on the RHS we used {eX, F} = eX{X, F} for any degree-zero
object X, which follows from the graded Leibniz rule (1.81). In the last line we
reconstructed δ from the decomposition δ = δ0 + {SI , ·}. Acting ZP̃2 on δF, we
have

ZP̃2(δF) = P1
(
δFe

i
h̄ SI
)
= P1δ0

(
e

i
h̄ SI F

)
= 0 , (4.112)

where we used (4.110) in the second equality and for the last equality P1δ0 = 0,
i.e. that P1 is a chain map with respect to Q0− ih̄∆, as implied by the perturbation
lemma. This concludes the proof of P2 = P̃2.

With this last proof, we have been able to reproduce the expression for the full
path integral for the interacting theory. The quantum perturbation to the projec-
tion resulted in Wick contractions for the free theory, as one would expect. The
non-linear interacting perturbation to the projection computes expectation val-
ues with respect to the free theory with functionals F weighted by the interacting
part e

i
h̄ SI . This is what we expect– this gives rise to the computation of Feynman

diagrams.

4.1.4 Path Integral

In the previous proof, we showed that the projection we have defined P2 is equal
to the expression P̃2 in (4.103) which was defined in [73], but without explicitly
showing how (4.103) is equal to the path integral. To close this section, we mo-
tivate the expression by starting from the path integral and reorganizing it to
compare with what P2 computes:

〈y; t f | T(F[φ]) |x; ti〉
〈y; t f |x; ti〉

=

∫ φ(t f )=y
φ(ti)=x Dφ F[φ] e

i
h̄ S[φ]∫ φ(t f )=y

φ(ti)=x Dφe
i
h̄ S[φ]

=
P1(Fe

i
h̄ SI )

P1(e
i
h̄ SI )

≡ P2(F) . (4.113)

We first split the action as S = S0 + SI , where S0 =
∫ 1

2 φ̇2− 1
2 ω2φ2 and SI is the

non-linear piece. Instead of integrating over functions with boundary conditions
(x, y), we can choose to integrate over functions with simpler boundary condi-
tions (0, 0), and add the contribution coming from the solution with the generic
boundary conditions. Concretely, let us decompose the functions φ = φu + φp

and choose the reference boundary conditions,

φu(ti) = φu(t f ) = 0 . (4.114)
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φp is the unique classical solution φp = i(x(ti), y(t f )) with generic boundary con-
ditions

φp(ti) = x, φp(t f ) = y , (4.115)

Assuming that the integral measure is invariant under constant shifts, substitut-
ing φ = φu + φp yields Dφ = Dφu. We compute

〈y; t f | F[φ] |x; ti〉 =
∫ φu(t f )=0

φu(ti)=0
Dφu F[φu + φp] e

i
h̄ SI [φu+φp]e

i
h̄
∫ t f

ti
1
2 (φ̇

2
u−ω2φ2

u)ei∂S(φp) ,

(4.116)
where

∂S =
1
2

φp(t f )φ̇p(t f )−
1
2

φp(ti)φ̇p(ti) . (4.117)

Because we chose the boundary conditions (4.114), ∂S does not depend on φu and
the phase ei∂S(φp) can be scaled out of the path integral:

〈y; t f | F[φ] |x; ti〉 = ei∂S(φp)
∫ φu(t f )=0

φu(ti)=0
Dφu F[φu + φp] e

i
h̄ SI [φu+φp]e

i
h̄
∫ t f

ti
1
2 (φ̇

2
u−ω2φ2

u) .

(4.118)
The expression for the normalization factor is obtained with F = 1:

〈y; t f |x; ti〉 = ei∂S(φp)
∫ φu(t f )=0

φu(ti)=0
Dφu e

i
h̄ SI [φu+φp]e

i
h̄
∫ t f

ti
1
2 (φ̇

2
u−ω2φ2

u) . (4.119)

We claim that the projection P1 in (4.101) is equivalent to the integral

P1(F) =
∫ φu(t f )=0

φu(ti)=0
Dφu F[φu + φp] e

i
h̄
∫ t f

ti
1
2 (φ̇

2
u−ω2φ2

u) . (4.120)

In the standard formulation, the integral on the RHS of (4.120) can be computed
by using Wick contractions. Since we have shown that P1 is the operation which
generates Wick contractions, as long as we use the appropriate Green’s func-
tion, P1(F) computes this integral. The result is a function on phase space R2

parametrized by the boundary conditions imposed on φp. If we accept the above
claim, then it is easy to see that (4.118) and (4.119) can be written in terms of P1,
and consequently

∫ φ(t f )=y
φ(ti)=x Dφ F[φ] e

i
h̄ S[φ]∫ φ(t f )=y

φ(ti)=x Dφe
i
h̄ S[φ]

=
P1(Fe

i
h̄ SI )

P1(e
i
h̄ SI )

, (4.121)
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where the phases ei∂S(φp) in the numerator and denominator have cancelled each
other out. This concludes the comparison of the homological formulation with
the path integral.

4.2 Harmonic oscillator

In this section we apply the homological formulation to the one-dimensional har-
monic oscillator. In particular we compute two-point functions with respect to
position eigenstates and with respect to coherent states. Since for a free theory
all expectation values can be computed in terms of the two-point function using
Wick contractions, which can also be generated using our formulation, we only
show the computation for two-point functions. We then check our results using
the canonical formulation of quantum mechanics. Much of this section has been
adapted from [19].

4.2.1 Homological Computation for Position Eigenstates

The BV differential for the quantum harmonic oscillator reads

δ =
∫ t f

ti

dt
[(

φ̈(t) + ω2φ(t)
) δ

δφ∗(t)
+ ih̄

δ2

δφ∗(t)δφ(t)

]
. (4.122)

We want to compute the two-point function, meaning that we would like to com-
pute the expectation value of the functional for fixed t, s ∈ R,

F[φ, φ∗] = φ(t)φ(s) . (4.123)

In order for F′ = f ◦ p to be in the same cohomology as F there should be a G
such that F − F′ = δG, where G has degree minus one. Let us assume Dirichlet
boundary conditions. The perturbation lemma immediately gives us the function
f as follows:

f = P1(F) , P1 = i∗ exp
(
− ih̄

2
C
)

, (4.124)

where C is (4.97) defined in terms of the Green’s function with Dirichlet boundary
conditions,

C =
∫

dt ds KDD(t, s)
δ2

δφ(t)δφ(s)
, (4.125)
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where KDD is the Green’s function defined in (4.75). Note that here P2 = P1 since
we are considering the free theory. We thus have

f = i∗
(

1− ih̄
2

C
)

φ(t)φ(s) , (4.126)

using that the higher-order terms in h̄ vanish when acting on the functional
(4.123) with two φ. For the second term on the right-hand side we need to use
(4.125) to compute

C
(
φ(t)φ(s)

)
= 2 KDD(t, s) , (4.127)

for which one uses that KDD is symmetric. To evaluate then f (x, y) the first term
in (4.126) maps (x, y) via the inclusion map (4.74) to a solution φp with boundary
conditions φp(ti) = x and φp(t f ) = y and then evaluates the functional on this
solution. Doing so yields

f (x, y) = ∏
r=t,s

{
sin ω(r− ti)

sin ω(t f − ti)
y +

sin ω(t f − r)
sin ω(t f − ti)

x

}
− ih̄KDD(t, s) . (4.128)

Thus we have computed the normalized two-point function,

〈y|T(F)|x〉
〈y|x〉 = f (x, y) . (4.129)

4.2.2 Homological Computation for Coherent States

Here we will perform the computation of the two-point function with respect to
coherent states. In the language of the canonical formulation, coherent states are
the eigenstates |z〉 of the annihilation operator a. Let us use the convention

a |z〉 = z |z〉 , 〈z| a† = 〈z| z , for all z ∈ C . (4.130)

With this convention, 〈z̄| is the hermitian conjugate of |z〉, where z̄ denotes the
complex conjugate of z. For this computation we would like to use the Feynman
propagator. This means that we want to derive an inclusion iF and projection
pF, such that {∂, h f } = id− iF ◦ pF, with the homotopy map being the Feynman
propagator

hF( f )(t) = i
∫ t

ti

ds f (s)
e−iω(t−s)

2ω
+ i

∫ t f

t
ds f (s)

eiω(t−s)

2ω
=: h+( f )(t) + h−( f )(t) .

(4.131)
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Because hF( f ) is complex, even when f is real, it is not sufficient to work with the
field space V; we must work with the complexified field space V ⊗C.

Let us now compute {∂, h f }. Since (4.131) is a Green’s function it satisfies
(∂2

t + ω2)hF( f )(t) = f (t). On equations of motion φ̈ + ω2φ we find

h+(φ̈ + ω2φ)(t) = i
φ̇(t)
2ω
− i

φ̇(ti)

2ω
e−iω(t−ti) +

φ(t)
2
− φ(ti)

2
e−iω(t−ti) , (4.132)

h−(φ̈ + ω2φ)(t) = −i
φ̇(t)
2ω

+ i
φ̇(t f )

2ω
eiω(t−t f ) +

φ(t)
2
−

φ(t f )

2
eiω(t−t f ) , (4.133)

and so for the sum

hF(φ̈ + ω2φ)(t) =φ(t)− 1
2

(
φ(ti)−

ḟ (ti)

iω

)
e−iω(t−ti)

− 1
2

(
f (t f ) +

ḟ (t f )

iω

)
eiω(t−t f ). (4.134)

We next define new (complex) functionals a(t) and a†(t) by

φ(t) =

√
h̄

2ω
(a†(t) + a(t)) , φ̇(t) = i

√
h̄ω

2
(a†(t)− a(t)) . (4.135)

These expressions are motivated by the mode expansion of the harmonic oscilla-
tor, but we should emphasize that here these are just regular functions, not quan-
tum operators. In particular, the function a† is just the complex conjugate of the
function a, with the notation just reminding us of the usual raising and lowering
operators. In terms of these we have

hF(φ̈ + ω2φ)(t) = φ(t)−
√

h̄
2ω

(
a(ti)e−iω(t−ti) + a†(t f )e

iω(t−t f )
)

. (4.136)

This suggests that we define a projector pF : V ⊗C → C2 by

φ 7→ (a(ti), a†(t f )) , φ∗ 7→ 0 , (4.137)

and the inclusion iF : C2 → V0 ⊗C by

(x, y) 7→
√

h̄
2ω

(
xe−iω(t−ti) + yeiω(t−t f )

)
, (4.138)

with zero image in V1. With these definitions we have pF ◦ iF = id.
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We can check whether it is reasonable that pF gives rise to correlators with
coherent states by looking again at the two-point function. By either applying the
perturbation lemma or going through the same steps as in the previous section,
we find that the representative F′ of the cohomology of F = φ(t)φ(s) satisfying
F′ = f ◦ pF is given by

F′ =− ih̄KF(t, s)

+
h̄

2ω

(
a(ti)e−iω(t−ti) + a†(t f )e

iω(t−t f )
)(

a(ti)e−iω(s−ti) + a†(t f )e
iω(s−t f )

)
.

(4.139)

We therefore claim that

f (w, z) =
〈w| T(φ(t)φ(s)) |z〉

〈w|z〉 , (4.140)

where

f (w, z) = −ih̄KF(t, s) +
h̄

2ω

(
ze−iω(t−ti) + weiω(t−t f )

)(
ze−iω(s−ti) + weiω(s−t f )

)
.

(4.141)
It is straightforward to verify equation (4.140) in the familiar operator lan-

guage of quantum mechanics, as we do now. We first recall that Wick’s theorem
implies

T(φ(t)φ(s)) = −ih̄KF(t, s) + N(φ(t)φ(s)) , (4.142)

where N is the normal ordering operation. We have the operator relation

φ̂(t) =

√
h̄

2ω

(
a(ti)e−iω(t−ti) + a†(t f )e

iω(t−t f )
)

, (4.143)

where a and a† are now interpreted as the creation and annihilation operators of
the harmonic oscillator, satisfying the familiar commutation relations. Usually
the above expression appears in textbooks for ti = t f = 0 and normal ordering is
defined with respect to a := a(0) and a† := a†(0). But this is the same as normal
ordering a(ti) and a†(t f ), since they only differ from a and a† by phases. We can
now compute

〈w|N(φ(t)φ(s)) |z〉 (4.144)

by evaluating a(ti) at z and a†(t f ) at w. This follows because N moves all anni-
hilation operators to the right, where we can then use a(ti) |z〉 = z |z〉. Similarly,
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when creation operators are on the right, we can use 〈w| a†(t f ) = 〈w|w. There-
fore,

〈w|N(φ(t)φ(s)) |z〉 = h̄
2ω

(
ze−iω(t−ti)+weiω(t−t f )

)(
ze−iω(s−ti)+weiω(s−t f )

)
〈z|w〉 .

(4.145)
Combining this with (4.142) then proves (4.140).

In case of the Feynman propagator, this result explains why the perturbation
lemma gives Wick’s theorem via the projector P1 (and P) in (4.101) can be inter-
preted as normal ordering. Recall that P = i∗ evaluates functionals on-shell, with
boundary conditions specified by the inclusion map i. this is just what we did
in (4.145). We evaluated φ(t)φ(s) on the solution with a(t) = z at t = ti and
a†(t) = w at t = t f . Of course, there is nothing special about the two-point func-
tions considered here, and so the perturbation lemma says that P1 is really Wick’s
theorem squeezed between coherent states.

4.2.3 Comparison with the Canonical Formulation

In the previous two sections we applied the homological recipe to compute cor-
relators with respect to position eigenstates and with respect to coherent states.
The respective projectors were given by

p(φ, φ∗) = (φ(ti), φ(t f )) , pF(φ, φ∗) = (a(ti), a†(t f )) . (4.146)

Using Wick’s theorem, for pF it was straightforward to see that our approach
agrees with the operator language. For p, however, it is harder to verify that f
defined via F′ = f ◦ p actually computes the correlator with respect to position
eigenstates, although our formal path integral manipulations above suggest that
this must be so. The general claim following from the homological approach is

f (x, y) =
〈y; t f | T(φ(t)φ(s)) |x; ti〉

〈y; t f |x; ti〉
, (4.147)

where f is the function whose pullback p∗( f ) equals F = φ(t)φ(s) in cohomology.
Our goal in this subsection is to check this statement using the standard formal-
ism of quantum mechanics. Since the operator computation is quite involved, for
simplicity we set x = y = 0. Then, the result we have computed with the pertur-
bation lemma (4.128) equals the Green’s function KDD(t, s). Let us recompute the
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result, calling it g(t, s), and try to produce the identity,

− ih̄KDD(t, s) =
〈y = 0; t f | T(φ(t)φ(s)) |x = 0; ti〉

〈y = 0; t f |x = 0; ti〉
=: g(t, s) , (4.148)

using the canonical formulation.
We will use the coherent states as a basis. Given a general state |ψ〉, its overlap

with a coherent state 〈z| gives a holomorphic function in z,

ψ(z) := 〈z|ψ〉 . (4.149)

The inner product of two such states is

〈ψ1|ψ2〉 =
1
π

∫
d2z ψ̄1(z̄)ψ2(z)e−|z|

2
. (4.150)

The Hilbert space equipped with this inner product is called the Segal-Bargmann
space. The identity can be written as

1 =
1
π

∫
d2ze−|z|

2 |z〉 〈z̄| . (4.151)

The creation operator acts by multiplication since

〈z| â† |ψ〉 = zψ(z) ⇒ (â†ψ)(z) = zψ(z) . (4.152)

We can then deduce from the inner product (4.150) that â acts by differentiation,
i.e.

〈z| â |ψ〉 = ∂

∂z
ψ(z) ⇒ (âψ)(z) =

∂

∂z
ψ(z) . (4.153)

As a consistency check we note that [â, â†] = 1 in this representation. Since the
vacuum state |0〉 is annihilated by â, the vacuum is represented by ψ0(z) = 〈z|0〉
that is in fact constant (and equal to one if we normalize it). Likewise, the nth
excited state is

〈z|n〉 = 1√
n!

zn , (4.154)

while a coherent state reads
〈z|w〉 = ezw . (4.155)
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We now come back to the original goal of this section, i.e. establishing the
identity (4.148) in the operator language. To do so, we use Wick’s theorem

T(φ(t)φ(s)) = −ih̄KF(t, s) + N(φ(t)φ(s)) , (4.156)

where KF is the Feynman propagator and N denotes normal ordering. Using this
in (4.148), we find

g(t, s) = −ih̄KF(t, s) +
〈y = 0; t f |N(φ(t)φ(s)) |x = 0; ti〉

〈y = 0; t f |x = 0; ti〉
. (4.157)

In order to compute the overlap involving the normal ordering, we express it in
terms of coherent states using (4.151). We then need to express |x = 0〉 in terms
of coherent states. For an arbitrary state |ψ〉 we have

〈x|ψ〉 = 1
π

∫
d2z e−z̄z 〈x|z〉 〈z̄|ψ〉 . (4.158)

This formula can be reduced to an integral over the reals. For example, one can
show that [74]

〈x|ψ〉 = ψ(x) = Ce−x2/2
∫

dy e−y2/2 〈x + iy|ψ〉 , (4.159)

where C is some constant and 〈x + iy| is a coherent state, and so

〈x| = Ce−x2/2
∫

dye−y2/2 〈x + iy| . (4.160)

In particular,

〈x = 0| = C
∫

dy e−y2/2 〈iy| . (4.161)

We now use this in (4.157) to compute g(t, s). We first compute the denominator

Z := 〈y = 0; t f |x = 0; ti〉 = 〈y = 0| ei H
h̄ (t f−ti) |x = 0〉 , (4.162)

where we used the time evolution operator with respect to the Hamiltonian H =

h̄ω(a†a + 1
2) of the harmonic oscillator. Thus, using (4.161), we will need the time

evolution of a coherent state. Defining T = t f − ti, we need to compute ei H
h̄ T |z〉,

which can be done by inserting a complete set of eigenstates |n〉 of the Hamilto-
nian and using the overlap (4.154). With this, we find ei H

h̄ T |z〉 = ei ω
2 T |e−iωTz〉.

Defining λ := e−iωT we thus have ei H
h̄ T |z〉 = λ−

1
2 |λz〉. Using this together with
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(4.161) we have:

Z = C2λ−
1
2

∫
dy1dy2e−(y

2
2+y2

1)/2 〈iy2| − iλy1〉

= C2λ−
1
2

∫
dy1dy2e−(y

2
2+y2

1)/2+λy1y2

=
C1√

λ− λ3
,

(4.163)

where we performed the Gaussian integral, and C1 := 2πC2 is another constant
that will cancel in the end. Next we turn to the numerator of (4.157). Expanding
φ(t) in terms of ladder operators,

φ(t) =

√
h̄

2ω
(a†eiωt + ae−iωt) , (4.164)

and using this in (4.157), we need to compute expectation values of operators
quadratic in a and a†. For example, we find that

〈y = 0; t f | a†a |x = 0; ti〉 = C2λ−
1
2

∫
dy1dy2 λy1y2 e−(y

2
2+y2

1)/2+λy1y2

=
C1λ

3
2

(1− λ2)
3
2
= Z

λ2

1− λ2 .
(4.165)

Similarly, we have

〈y = 0; t f | aa |x = 0; ti〉 = −Z
ei2ωti

1− λ2 , (4.166)

〈y = 0; t f | a†a† |x = 0; ti〉 = −Z
e−i2ωt f

1− λ2 . (4.167)

Since the operators are normal ordered we do not need to compute
〈y = 0; t f | aa† |x = 0; ti〉. We can now use the above to compute the normal or-
dered correlator in (4.157), for which we find after some algebra

g(t, s) =− ih̄KF(t, s)− h̄
e−i2ωt f

1− λ2 (2ω)−1eiω(t+s) − h̄
ei2ωti

1− λ2 (2ω)−1e−iω(t+s)

+ h̄
λ2

1− λ2 (2ω)−1(eiω(t−s) + e−iω(t−s)) .

(4.168)
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In order to relate this to KDD we rewrite the Feynman propagator,

−iKF(t, s) = (2ω)−1θ(t− s)e−iω(t−s) + (2ω)−1θ(s− t)eiω(t−s)

= −iKR(t, s) + (2ω)−1eiω(t−s) ,
(4.169)

where KR(t, s) = θ(t− s) sin ω(t−s)
2ω is the retarded propagator. This yields

g(t, s) =− ih̄KR(t, s)− h̄
e−i2ωt f

1− λ2 (2ω)−1eiω(t+s) − h̄
ei2ωti

1− λ2 (2ω)−1e−iω(t+s)

+ h̄
1

1− λ2 (2ω)−1eiω(t−s) + h̄
λ2

1− λ2 (2ω)−1e−iω(t−s)

=− ih̄KR(t, s) + ih̄
cos ω(t + s− ti − t f )− cos ω(t− s + t f − ti)

sin ω(t f − ti)
,

(4.170)

where we reintroduced ti and t f through λ = e−iω(t f−ti). We can now make use
of the identity

cos ω((t− ti)+ (t f − s))− cos ω((t− ti)− (t f − s)) = −2 sin ω(t− ti) sin ω(t f − s) ,
(4.171)

to arrive at

〈y = 0; t f | T(φ(t)φ(s)) |x = 0; ti〉
〈y = 0; t f |x = 0; ti〉

= −ih̄KR(t, s) + ih̄
sin ω(t f − s)

ω

sin ω(t− ti)

sin ω(t f − ti)

= −ih̄KDD(t, s) ,

(4.172)

which is what we wanted to show.

4.2.4 General Boundary Conditions

In the previous subsection we exemplified our approach using two differ-
ent projectors, which where given by pDD(φ) = (φ(ti), φ(t f )) and pF(φ) =

(a(ti), a†(t f )). Our computations showed that these determine different types
of correlation functions.
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We now want to generalize to arbitrary linear boundary conditions. More
precisely, we look at boundary conditions of the form

x = aφ(ti) + b
φ̇(ti)

ω
, y = cφ(t f ) + d

φ̇(t f )

ω
, (4.173)

where the numbers (a, b, c, d, x, y) can in general be complex. The numbers (x, y)
parametrize solutions to the equations of motion. In this way, we obtain a projec-
tor

p : C∞([ti, t f ])⊗C −→ C2 ,

φ 7−→ (aφ(ti) + b
φ̇(ti)

ω
, cφ(t f ) + d

φ̇(t f )

ω
) .

(4.174)

As usual, we extend p to V• ⊗ C by setting p|V1 = 0. We recover pDD when
(a, b) = (c, d) = (1, 0), while pF is given by (a, b) = (c̄, d̄) = (

√
ω
2h̄ , i

√
ω
2h̄ ).

A solution with boundary conditions (4.173) is given by

φx,y(t) =
ya sin ω(t− ti)− yb cos ω(t− ti) + xc sin ω(t f − t) + xd cos ω(t f − t)

(ad− bc) cos ω(t f − ti) + (ac + bd) sin ω(t f − ti)
,

(4.175)
This solution defines an inclusion

i : C2 −→ V0 ⊗C ,

(x, y) 7−→ φx,y .
(4.176)

which we extend to V• via the inclusion V0 ↪→ V•. To find the homotopy h from
the identity to i ◦ p, we note that the homotopies hDD and hF satisfy the boundary
conditions (4.173) with x = y = 0. So our ansatz for the homotopy h( f ) is the
unique solution to φ̈ + ω2φ = f satisfying p ◦ h = 0. It is given by

h( f )(t) =
∫ t

ti

f (s)Ki(t, s) +
∫ t f

t
K f (t, s) , (4.177)

where

Ki(t, s) =K f (s, t)

=
(a sin ω(s− ti)− b cos ω(s− ti))(c sin ω(t− t f )− d cos ω(t− t f ))

(ad− bc)ω cos ω(t f − ti) + (ac + bd)ω sin ω(t f − ti)
.

(4.178)
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In kernel notation, we have

K(t, s) = θ(t− s)Ki(t, s) + θ(s− t)K f (s, t) . (4.179)

Note that K(t, s) is manifestly symmetric in its arguments. A lengthy computa-
tion now shows that

h(φ̈ + ω2φ)(t)

=φ(t)−
(

aφ(ti) + b
φ̇(ti)

ω

) c sin ω(t f − t) + d cos ω(t f − t)
(ad− bc) cos ω(t f − ti) + (ac + bd) sin ω(t f − ti)

−
(

cφ(t f ) + d
φ̇(t f )

ω

)
a sin ω(t− ti)− b cos ω(t− ti)

(ad− bc) cos ω(t f − ti) + (ac + bd) sin ω(t f − ti)
,

(4.180)

as well as ḧ( f ) + ω2h( f ) = f . Therefore, the homotopy relation {∂, h} = 1− i ◦ p
is satisfied.

One application using these more general projectors and homotopies would
be the computation of correlators with in- and out states living in different rep-
resentations of the Hilbert space. For example, one could choose (a, b) = (1, 0)
and (c, d) = (0, 1). In this case, the homotopy satisfies Dirichlet boundary con-
ditions at t = ti and Neumann boundary conditions at t = t f . The associated
representative of the cohomology then uses position eigenstates |x; ti〉 as in-states
and momentum eigenstates 〈p; t f | as out-states.

4.3 Unruh Effect

In this section we present the first application of the homological formulation
in the realm of genuine field theories. Specifically, we apply our homological
method in the context of quantum field theory on curved spacetime by provid-
ing an alternative derivation of the Unruh effect: the quantum effect according
to which the number of particles detected depends on the observer [75]. In the
vacuum state an inertial observer in Minkowski space sees no particles, while in
the same state a uniformly accelerated observer sees a thermal bath of particles.
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4.3.1 Generalities and Homotopy Retract

Let us begin with a brief review of general features of uniformly accelerated ob-
servers in two-dimensional Minkowski spacetime with metric

ds2 = dt2 − dx2 . (4.181)

The trajectory of an observer is then parametrized by xµ(τ) =
(
t(τ), x(τ)

)
, where

τ is proper time, so that the 2-velocity uµ(τ) = dx(τ)/dτ satisfies the normaliza-
tion condition

ηµνuµuν = 1 . (4.182)

The Lorentz-invariant condition for the acceleration being constant is expressed
in terms of aµ(τ) = u̇µ(τ) as

ηµνaµ(τ)aν(τ) = −a2 , (4.183)

where a is a constant. The trajectory of a uniformly accelerated observer satisfy-
ing these two conditions can be written as

t(τ) =
1
a

sinh aτ , x(τ) =
1
a

cosh aτ . (4.184)

Next, let us relate the inertial frame to a frame that is comoving with the ob-
server. This means that denoting these coordinates by (t̃, x̃) the observer’s world-
line is a vertical line x̃ = 0, so that the observer is indeed at rest in this frame. The
Rindler coordinates having this property are defined by

t = a−1eax̃ sinh at̃ , (4.185)

x = a−1eax̃ cosh at̃ , (4.186)

and the inverse relation

t̃ =
1
2a

ln
x + t
x− t

, (4.187)

x̃ =
1
2a

ln
[
a2(x2 − t2)

]
. (4.188)

From these relations one finds the metric in Rindler coordinates,

ds2 = (dt)2 − (dx)2 = e2ax̃[(dt̃)2 − (dx̃)2] , (4.189)
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which is thus conformally equivalent to the Minkowski metric.
We now consider the action of a massless scalar field φ in a 1 + 1 dimensional

spacetime,

S[φ] =
1
2

∫
d2x

√
−g gµν∂µφ ∂νφ , (4.190)

where gµν is the metric and g is its determinant. In the inertial frame,

S[φ] =
1
2

∫
dtdx

[
(∂tφ)

2 − (∂xφ)2] . (4.191)

The action in the accelerated frame takes the same form:

S[φ] =
1
2

∫
dt̃dx̃

[
(∂t̃φ)

2 − (∂x̃φ)2] , (4.192)

as a consequence of the conformal invariance of the action (4.190) in two di-
mensions and the Rindler metric (4.189) being conformally equivalent to the
Minkowski metric. The equations of motion are

φ̈− ∂2
xφ = 0 , (4.193)

∂2
t̃ φ− ∂2

x̃φ = 0 , (4.194)

where the dot denotes the partial derivative with respect to time t. Note that as
a scalar we have for the coordinate-transformed field φ̃(t̃, x̃) = φ(t, x), so that in
the second equation we could replace φ by φ̃.

As a preparation for the homotopy retract we have to introduce the Fourier
transform with respect to the spatial coordinate, both in inertial and Rindler co-
ordinates:

φk(t) :=
∫ +∞

−∞

dx√
2π

e−ikxφ(t, x) , φ̃l(t̃) :=
∫ +∞

−∞

dx̃√
2π

e−ilx̃φ̃(t̃, x̃) . (4.195)

Note that even though in the second integral we could replace φ̃(t̃, x̃) by φ(t, x),
the Fourier mode φk as a function of k of course differs from φ̃l as a function of l.
The inverse relations are

φ(t, x) =
∫ +∞

−∞

dk√
2π

eikxφk(t) , φ̃(t̃, x̃) =
∫ +∞

−∞

dl√
2π

eilx̃φ̃l(t̃) . (4.196)

Since the scalar functions on the left-hand sides are equal (more precisely, we
have φ(t, x) = φ̃(t̃(t, x), x̃(t, x))), we have two different expansions of the same φ
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into Fourier modes:

φ(t, x) =
∫ +∞

−∞

dk√
2π

eikxφk(t) =
∫ +∞

−∞

dl√
2π

eilx̃(t,x)φ̃l
(
t̃(t, x)

)
. (4.197)

We will also use the following change of basis for the Fourier modes and their
time derivatives:

φk =

√
h̄

2ωk

(
a†
−k + ak

)
, φ̃l =

√
h̄

2Ωl

(
b†
−l + bl

)
, (4.198)

φ̇k = i

√
h̄ωk

2
(
a†
−k − ak

)
, ∂t̃φ̃l = i

√
h̄Ωl

2
(
b†
−l − bl

)
, (4.199)

where ωk ≡
√

k2, Ωl ≡
√

l2. The inverse relations read:

ak =

√
ωk
2h̄

(
φk +

i
ωk

φ̇k

)
, a†

−k =

√
ωk
2h̄

(
φk −

i
ωk

φ̇k

)
, (4.200)

bl =

√
Ωl
2h̄

(
φ̃l +

i
Ωl

∂t̃φ̃l

)
, b†

−l =

√
Ωl
2h̄

(
φ̃l −

i
Ωl

∂t̃φ̃l

)
. (4.201)

As for the harmonic oscillator these relations are motivated by the familiar def-
inition of creation and annihilation operators, but we emphasize that also here
these are just functions.

We now discuss the homotopy retract, beginning with the chain complex
defining the theory:

0 V0 V1 0 .∂ (4.202)

Here the space of fields and the space of anti-fields are given by

V0 = C∞([ti, t f ]×R) , V1 = ΠC∞([ti, t f ]×R) . (4.203)

The notation indicates that the (anti-)fields depend on t, restricted to the interval
[ti, t f ], and the space coordinate x living on the full real line R. The differential is

∂(φ) = (∂2
t − ∂2

x)φ . (4.204)

The important new feature in field theory is that the projector p : V• →
C∞(R) × C∞(R) no longer maps to a finite-dimensional space like R2 but to
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infinite-dimensional functions spaces, however, with functions of one less coordi-
nate. Specifically, the projector evaluates the functions a and a† defined in (4.200)
at ti and t f , respectively:

φ 7→
(
ak(ti), a†

l (t f )
)

, φ∗ 7→ 0 . (4.205)

Next, we need to define the inclusion map i : C∞(R)× C∞(R) → V0 that takes
two functions in momentum space, say c(k) and d(k), and produces a field in V0

(i.e. in the present example a scalar field in two-dimensional Minkowski space).
The proper inclusion map satisfying p ◦ i = 1 is given by

(
c, d
)
7→ φ(c,d)(t, x) :=

∫ +∞

−∞

dk√
2π

eikx

√
h̄

2ωk

(
d(−k)eiωk(t−t f ) + c(k)e−iωk(t−ti)

)
.

(4.206)
The homotopy map h : V1 → V0 is defined, for any f ∈ V1, in terms of the
Green’s function of the operator ∂2

t − ∂2
x:

h( f )(t, x) =
∫ t f

ti

ds
∫ +∞

−∞
dy K(t− s, x− y) f (s, y) , (4.207)

where the kernel is explicitly given by

K(t− s, x− y) =
∫ +∞

−∞

dl
4πωl

i
(
Θ(t− s)e−iωl(t−s)+il(x−y)+Θ(s− t)eiωl(t−s)−il(x−y)) .

(4.208)
Indeed, one can verify that with the above definitions for projector, inclusion and
homotopy the homotopy relation ∂h + h∂ = 1− ip is satisfied. To this end one
needs to assume that φ(t, x) and ∂xφ(t, x) vanish at x = −∞ and x = +∞.

For completeness we also display the important operations of the dual space
of functionals on which the BV algebra is defined. The BV complex F (V•) is
equipped with the differential,

Q =
∫ t f

ti

dt
∫ ∞

−∞
dx
(
φ̈(t, x) + ∂2

xφ(t, x)
) δ

δφ∗(t, x)
. (4.209)

In addition, the BV-differential is defined as

δ ≡ Q− ih̄∆ , ∆ ≡ −
∫ t f

ti

dt
∫ ∞

−∞
dx

δ

δφ∗(t, x)
δ

δφ(t, x)
. (4.210)
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For a functional F[φ, φ∗] in F (V•), we obtain the pull-back functional in
F [C∞(R)× C∞(R)] defined by

i∗(F)(c, d) = (F ◦ i)(c, d) . (4.211)

Similarly, the pullback of a functional f in F [C∞(R)×C∞(R)] with respect to the
projection is the functional in F (V•) given by

p∗( f )(φ, φ∗) = ( f ◦ p)(φ, φ∗) . (4.212)

4.3.2 Number Expectation Value

To derive the Unruh effect, one assumes that the number of particles measured
by an accelerated observer is given by the expectation value of the number oper-
ator with respect to Rindler space, i.e., with respect to creation and annihilation
operators defined with the Fourier modes in Rindler space. More precisely, one
computes

Nk := 〈Nk〉 ≡ 〈0| b̂†
k b̂k |0〉 , (4.213)

where b̂k and b̂†
k are the Rindler space annihilation and creation operators defined

in analogy to (4.201), and |0〉 is the Minkowski vacuum state. This state is defined
so that it is annihilated by the inertial frame operator âk:

âk |0〉 = 0 . (4.214)

For definiteness we take the Heisenberg picture operators b and b† to be at time
t̃ = 0 (which is equivalent to t = 0 for all x). The usual textbook computation
involves relating the creation and annihilation operators of the accelerated and
inertial frames through Bogolyubov transformations. We provide an alternative
approach which does not require finding the Bogolyubov transformations. In-
stead, our strategy is to define the functional F[φ] of the massless scalar field φ

to be given by b†
k bk, with b†

k and bk being defined in terms of the classical field φ

via (4.201). Following our approach for the harmonic oscillator in sec. 4, we then
find f (c, d) such that F′ = f ◦ p is in the same cohomology class as F[φ]. Then
f (c, d) computes the expectation value

f (c, d) = lim
t̃→0

〈d| T
(
b̂†

k(t̃)b̂k(0)
)
|c〉

〈d|c〉 , (4.215)
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where |c〉 and |d〉 are coherent states with respect to ak, i.e.,

ak |c〉 = c(k) |c〉 , (4.216)

and analogously for |d〉. Here we take the limit t̃ → 0 after performing the com-
putation, as opposed to setting t̃ = 0 from the beginning, since some care is
needed in order to deal with the step functions entering the Green’s function.
Note that the result does not depend on whether one takes the limit from above
or from below, which follows from the symmetry of the Green’s function. Finally,
in order to find the expectation value of the Rindler number operator with respect
to the Minkowski vacuum, we set c = d = 0, i.e.,

Nk = f (0, 0) . (4.217)

The choice c = d = 0 is the analog of the equation (4.214) specifying the
Minkowski vacuum.

We begin by expressing the functional b†
k(t̃)bk(0) in terms of φ(t, x). By taking

the Fourier transform of (4.201), one obtains bk and b†
k in terms of φ and ∂t̃φ:

bk(t̃) =
∫

dx̃ e−ikx̃

√
Ωk

4πh̄

(
φ +

i
Ωk

∂t̃φ

)
, (4.218)

b†
k(t̃) =

∫
dx̃ eikx̃

√
Ωk

4πh̄

(
φ− i

Ωk
∂t̃φ

)
. (4.219)

For the second equation we use the chain rule to obtain

∂t̃φ =
∂t
∂t̃

φ̇ +
∂x
∂t̃

∂xφ = eax̃ cosh(at̃)φ̇ + eax̃ sinh(at̃)∂xφ . (4.220)

Note that this is only valid when x > |t| since the Rindler coordinates only cover
this part of the Minkowski spacetime. With (4.218) – (4.220), we can explicitly
write out the functional F[φ] = b†

k(t̃)bk(0):

F[φ] =
∫

dx̃
∫

dỹ eik(x̃−ỹ) Ωk
4πh̄

(
φ(t, x)φ(0, y) +

i
Ωk

eaỹφ(t, x)φ̇(0, y)

+
1

Ω2
k

ea(x̃+ỹ)( cosh(at̃)φ̇(0, y)φ̇(t, x) + sinh(at̃)φ̇(0, y)∂xφ(t, x)
)

− i
Ωk

eax̃( cosh(at̃)φ(0, y)φ̇(t, x) + sinh(at̃)φ(0, y)∂xφ(t, x)
))

,

(4.221)
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where of course t and x on the right-hand side must be viewed as functions of
(t̃, x̃).

We apply the perturbation lemma to find f (c, d), by using P1 in (4.101),

P1 = i∗ exp
(
− ih̄

2
C
)

, (4.222)

where the functional derivatives in the C operator are now with respect to φ(t, x):

C =
∫

dt dx ds dy K(t− s, x− y)
δ2

δφ(t, x)δφ(s, y)
, (4.223)

and K(t− s, x− y) is given in (4.208). Applying P1 on F[φ],

P1(F)(c, d) = i∗F(c, d)

− ih̄
∫

dx̃
∫

dỹ eik(x̃−ỹ) Ωk
4πh̄

(
K(t, x− y)− i

Ωk
eaỹ∂tK(t, x− y)

− 1
Ω2

k
ea(x̃+ỹ)[ cosh(at̃) ∂t∂tK(t, x− y) + sinh(at̃)∂t∂xK(t, x− y)

]
− i

Ωk
eax̃[ cosh(at̃)∂tK(t, x− y) + sinh(at̃)∂xK(t, x− y)

])
.

(4.224)

There are no further terms in the expansion of exp
(
− ih̄

2 C
)

because F[φ] only
contains two φs. Let us start by treating the first term on the right-hand side of
(4.224). Since we set c = d = 0, the inclusion to the space of fields (4.206) is
i(0, 0) = 0. Therefore, with (4.211), the first term on the right-hand side of (4.224)
vanishes:

i∗F(0, 0) = 0 . (4.225)

Next, we take the limit t = t̃ = 0. After inserting the derivatives of K(t, s), using
(4.208), and writing these in terms of Rindler coordinates, we obtain

f (0, 0) = P1(F)(0, 0)

=
∫

dx̃
∫

dỹ
∫

dl
Ωk

16π2ωl
eik(x̃−ỹ)eila−1(eax̃−eaỹ)×(

1 +
1

Ω2
k

ea(x̃+ỹ)ω2
l −

ωl
Ωk

eax̃ − ωl
Ωk

eaỹ
)

.

(4.226)
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We now perform the change of variables:

u = eax̃ ,
1

au
du = dx̃ , (4.227)

v = eaỹ ,
1
av

du = dỹ . (4.228)

Then f (0, 0) takes the form

f (0, 0) =
∫ ∞

0
du
∫ ∞

0
dv
∫ ∞

−∞
dl eika−1(ln u−ln v) Ωk

16π2a2ωl
eila−1(u−v)×(

1
uv

+
ω2

l
Ω2

k
− ωl

Ωk

1
v
− ωl

Ωk

1
u

)
.

(4.229)

Evaluating the integrals over u and v,4

f (0, 0) =
∫ ∞

−∞
dl

Ωk
4π2a2ωl

Γ
(
− ik

a

)
Γ
(

ik
a

)
(−1)ik/a . (4.231)

As a consistency check, one may verify that the integrand in (4.231) coincides
with the expression in equation (8.43) of [76]. By using the identity for Gamma
functions,

|Γ(ik/a)|2 =
πa

k sinh(πk/a)
=

2πa
|k|

eπ|k|/a

(e2π|k|/a − 1)
, (4.232)

we obtain

f (0, 0) = (e2π|k|/a − 1)−1
∫ ∞

−∞
dl

1
2πaωl

, (4.233)

as long as we choose (−1)ik/a = e−π|k|/a. The expectation value of the number of
particles observed by an accelerated observer is a Bose-Einstein distribution with
the Unruh temperature

T =
h̄a

2πkB
, (4.234)

where kB is the Boltzmann constant. The divergent integral in (4.233) is also
present in the conventional derivation of the Unruh effect (see, e.g., chapter 8

4For this computation we used the integral identities:∫ ∞

0
dx eiA ln(x)eiBxx−1 = (−iB)−iAΓ(iA) ,

∫ ∞

0
dx eiA ln(x)eiBx = (iA)(−iB)−1−iAΓ(iA) .

(4.230)



139

in [76]) and is interpreted as the infinite volume of the entire space.
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Chapter 5

Outlook

Having investigated the applications of homotopy algebras to gauge theories and
quantum mechanics, let us mention some questions that might branch out from
this work.

In chapter 2 we have constructed a procedure to derive an action of a gauge
theory in terms of gauge invariant variables. However, the procedure is far from
complete; as we have seen in section 2.5, it can still be a challenge to identify
which gauge invariant variables are dynamical. When reducing the scalar part
of the quadratic action on FLRW backgrounds, it took a considerable amount of
field redefinitions in order to arrive at the Mukhanov-Sasaki action. Within the
L∞ algebraic framework there seems to be no systematic procedure to finish the
analysis. Perhaps it may be feasible to define a projection to a complex of solu-
tions to the constraints, in the same way that we can project to a theory of gauge
invariant variables or to the homology of a chain complex. Then one would be
left to find the field redefinitions needed to reorganize the action in a system-
atic way. If successful, one could apply this new method to the gauge invariant
quadratic expansion of double field theory developed in chapter 3 towards the
process of computing observables.

In chapter 3 we have given a gauge invariant quadratic expansion of dou-
ble field theory on time-dependent backgrounds. As mentioned before, the next
step in the program of applying double field theory to cosmology would be to
compute correlation functions from both the quadratic and the cubic theory. By
comparing these with the cosmic microwave background data, one could even-
tually test different cosmological scenarios. Our findings show that in contrast to
general relativity, in double field theory the degrees of freedom are distributed
differently among scalar, vector and tensor modes. This suggests that observa-
tional signatures would be different from those predicted by general relativity
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coupled to ordinary matter. It would be helpful to develop more systematic tech-
niques to investigate this.

In addition, in the long run, it would be desirable to construct a more realistic
cosmological model. For instance, it would be important to add further matter,
perhaps initially in the form of a generic duality invariant energy-momentum
tensor. Eventually one would need to incorporate real observational parameters.

In chapter 4 we have presented a partial reformulation of quantum mechanics.
We have demonstrated that our approach works for the harmonic oscillator and
its perturbations. However, we have yet to apply our approach to theories with
gauge symmetries, such as Yang-Mills theory. We expect to find an extension to
theories with gauge symmetries, since the BV formalism was invented for gauge
theories in the first place.

Furthermore, our homological formulation is not just defined for perturbation
theories but can in principle be applied to non-perturbative problems. Since per-
turbation theory is only applicable for theories with weak coupling, but not for
strongly coupled physics such as quantum chromodynamics, it would be worth-
while to investigate to apply the homological formulation to non-perturbative
problems.

An additional follow-up project for the homological approach would be to
consider systems with spin. Since spin is a purely quantum quantity and does
not have a classical equivalent, our method of setting up the classical theory with
the chain complex and upgrading to quantum theory might not be sufficient.
In order to have a complete reformulation of quantum mechanics, it would be
necessary to be able to describe systems with spin.

As a final remark, it might be interesting to map out the connections between
homotopy Lie algebras and Hopf algebras in the context of quantum field the-
ory. For instance we have seen that gauge theories have L∞ algebraic structure,
and upon quantization, the BV formalism and the highly related BV algebras be-
come important structures. Beyond this, the Hopf algebras dictate the algebraic
structure of Feynman diagrams and play a key role in renormalization [25, 26]. It
would be fascinating to study the possibility of bridging together all of these al-
gebraic structures for a more mathematically sound foundation of quantum field
theory.
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