Software and Systems Modeling (2023) 22:1099-1111
https://doi.org/10.1007/s10270-022-01067-0

THEME SECTION PAPER l‘)

Check for
updates

On the use of domain knowledge for process model repair

Kate Revoredo'?

Received: 30 December 2021 / Revised: 5 October 2022 / Accepted: 3 November 2022 / Published online: 14 December 2022
© The Author(s) 2022

Abstract

Process models are important for supporting organizations in documenting, understanding and monitoring their business. When
these process models become outdated, they need to be revised to accurately describe the new status quo of the processes
in the organization. Process model repair techniques help at automatically revising the existing model from behavior traced
in event logs. So far, such techniques have focused on identifying which parts of the model to change and how to change
them, but they do not use knowledge from practitioners to inform the revision. As a consequence, fragments of the model
may change in a way that defies existing regulations or represents outdated information that was wrongly considered from the
event log. This paper uses concepts from theory revision to provide formal foundations for process model repair that exploits
domain knowledge. Specifically, it conceptualizes (1) what are unchangeable fragments in the model and (2) the role that
various traces in the event log should play when it comes to model repair. A scenario of use is presented that demonstrates
the benefits of this conceptualization. The current state of existing process model repair techniques is compared against the
proposed concepts. The results show that only two existing techniques partially consider the concepts presented in this paper

for model repair.

Keywords Process model repair - Process mining - Concept drift - Theory revision

1 Introduction

Business process management (BPM) [1] relies on process
models to support organizations in documenting, understand-
ing and monitoring their processes. These models are also
important for model-driven software development [2], when
it comes to managing various workflows around software
development such as issue-to-resolution process, bug-fixing,
version release-planning etc. Such models can be manually
specified by stakeholders of the process or automatically
discovered from process data (i.e., observed behavior: infor-
mation of past process instances) traced in event logs, using
process discovery techniques [3]. Over time, changes in the
regulations, business or organizations culture, may make
these models obsolete and less useful for monitoring. Thus,

Communicated by Dalila Tamzalit and Ludovico Iovino.

< Kate Revoredo
kate.revoredo @hu-berlin.de
Humboldt-Universitit zu Berlin, Berlin, Germany

Vienna University of Economics and Business (WU), Vienna,
Austria

there is need to revise these process models to meet the new
understanding of the business.

In the BPM area, there are some initiatives on process
model repair [4] to automatically revise the current model
from process data. They use event data collected from infor-
mation systems to guide the necessary changes in the model.
This is typically done by applying conformance checking [5]
techniques for identifying non-conforming traces and apply-
ing local changes to the model to make it compliant to the
analyzed traces. These techniques mainly focus on identi-
fying where to apply the change and how to change the
model. However, they overlook the importance of domain
knowledge in guiding the revisions, for instance to avoid
changing fragments of the model that represent a regulation
and therefore should be modeled exactly as it was previously
or by indicating cultural behavior that should be avoided.
Although current techniques can learn a repaired model with
high quantitative quality (e.g., maximal fitness), these models
may not fully align with practitioners needs. When prac-
titioner knowledge is used, the repair techniques lead to a
repair model with better precision and alignment with the
practitioners needs [6].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01067-0&domain=pdf
http://orcid.org/0000-0001-8914-9132

1100

K. Revoredo

The necessary changes to the process model can have the
goal to represent new behavior or to prevent undesired behav-
ior. For instance, the organization may decide to switch to a
more sustainable business and manage their internal projects
digitally. In this scenario, it is important to distinguish in the
historical data between desired and undesired behavior (i.e.,
behavior that the practitioners accept to happen and behav-
ior that must not happen, respectively). That is, events from
the previous physically managed cases should be marked as
undesired, while events from the digitally handled process
should be marked as desired behavior. The process model
repair technique should take these markings into account to
guarantee that the final model accurately represents the cur-
rent business process. Another benefit of considering domain
knowledge concerns specific fragments of the process which
represent normative work (e.g., safety fallback procedures
in case of emergency, organization code of conduct). This
kind of work is described by activities which must be done
exactly as described in the model. Also, some parts of the
model were derived from extensive discussions among the
different stakeholders and they represent a common under-
standing among the process participants. It is important that
the model repair technique does not change these parts, so the
final model is more aligned with practitioners needs. In this
paper, I address the problem of how can domain knowledge
from practitioners support process model repair. Based on
concepts from Theory revision [7,8], I formulate how prac-
titioner knowledge can be used as input for process model
repair techniques.

Theory revision [7,8] is part of the Inductive Logic Pro-
gramming [9] (ILP) area and it is motivated by concept drifts
(i.e., the situation in which properties and relations of the
studied data can change over time) [10]. It focuses on min-
imally changing a logical theory in the presence of positive
and negative observations with the aim of finding a more
accurate theory. Theory revision brings two advantages to
the practitioner. First, it allows to distinguish between posi-
tive and negative observations (i.e., facts that must or must
not be explained by the revised theory). Second, it allows to
precisely specify parts of the model to be kept unchanged
during the revision.

This paper aims at bridging process model repair and the-
ory revision. More specifically, it provides the fundamental
concepts needed to formulate a process model repair prob-
lem as a theory revision problem. To this end, it provides a
schema which can be used to guide (i) the distinction between
desired (positive) and undesired (negative) behavior, and (ii)
changeable and unchangeable model fragments to be con-
sidered in the model repair. With that, it is expected that the
final model is closer to the practitioners needs and with bet-
ter quality characteristics. The idea of framing an existing
task as a theory revision task has been used in other areas
such as learning game rules [11], updating social network

@ Springer

in the presence of stream data [12] and discovering links in
real biological networks [13]. This paper is a first attempt to
provide formal foundations for process model repair. Espe-
cially, it sheds light on the necessity of the fragmentation
of the initial process model and the partition of the event
log involving practitioners’ knowledge. This paper extends
initial ideas presented in [14], providing a more detailed for-
malization, a scenario of use and a systematic analysis of
existing process model repair techniques exploring whether
concepts of theory revision are already in use and which are
further concepts that are useful for model repair.

The rest of the paper is structured as follows. Section 2
reviews preliminary concepts. Section 3 presents the formal
conceptualization for process model repair based on theory
revision. Section 4 illustrates the conceptualization with a
scenario of use considering the Process Discovery Contest
2021 dataset. Section 5 presents the empirical evaluation of
the existing process model repair approaches, positioning
them against the derived concepts. Section 6 briefly describes
existing literature related to this work. Section 7 concludes
the paper and outlines future work.

2 Preliminaries

The scope of this article is to indicate how practitioner
knowledge can be input into process model repair. The moti-
vation derives from the area of Theory Revision, where it is
known that background knowledge improves the quality of
the revised theory. In a business process context, background
knowledge and revised theory are mapped into, respectively,
practitioners knowledge and repaired process model. Practi-
tioners in BPM [1] are also known as stakeholders who have
an understanding of the process and are able to express vari-
ous process-related concepts such as the goals, the activities,
the resources, the time, the logical control flow, etc. Typically,
these stakeholders cover jobs such as Process Owners, Pro-
cess Managers, Business Analysts. A revised theory in BPM
is translated as a repaired process model (i.e., a process model
that was changed in its structure in order to conform/comply
to new needs or requirement, or to best represent reality).

This section gives the fundamental background to under-
stand how theory revision can be used for process model
repair. More specifically, Sect. 2.1 briefly reviews the con-
cept of process model repair, while Sect. 2.2 describes the
concept of theory revision.

2.1 Process model repair

A process model (M) is a description of the business process.
It represents the sequence of process events (i.e., the activities
and control-flow of the process). Usually, this is represented
as a directed graph where the nodes represent the events and

On the use of domain knowledge for process model repair

1101

Final Process Model

Initial Process Model
]
@

Model
— & Repair
N
L\\O]-{] —————— EEN Lo

Fig.1 Process model repair schema

the edges represent the potential flow of control among the
events. An event log (L) is a multi-set of traces and each trace
(T) represents the execution of a process instance, (i.e., the
sequence of process activities). Techniques for automatically
discovering a process model from an event log were proposed
in the literature [3]. The final process model is expected to
conform to the event log (i.e., the model M is expected to
replay all the traces T in L).

The event log represents the observed behavior while
the model represents the expected behavior. Over time, the
expected and the observed behavior may not align anymore,
for instance because of concept drift [10]. In this case, pro-
cess model repair [15] may be applied. Process model repair
aims to improve the quality of a model through process data
by applying minimal changes to the initial model. Existing
methods take as input a model and an event log, and produce
a new model that resembles the original one as much as pos-
sible while still guaranteeing that the new model is able to
replay the traces in the log.

Figure 1 illustrates the process model repair schema.

In more detail, process model repair techniques need two
inputs: a process model and an event log. A process model
typically uses a graph-based notation to express the partial
order relation of the activities within the different traces con-
stituting the event log. Such model may have been designed
manually by a person using a modeling tool or may have
been generated by a process discovery tool. An event log
typically comes from an information system (e.g., a BPMS,
a database, etc). The data present in the event log may record
events about a large amount of time, including time periods
in which the process is enacted differently (i.e., the actual
process changed with respect to its model). This means that
the initial model is no longer able to accurately describe the
behavior recorded in the event log, especially when it comes
to newer traces. Thus, the task of model repair is that to pro-
duce a new process model that is able to best describe all the
facts and relations observed in the event log.

Let us consider the example illustrated in Fig. 2. In the
upper part, the input of the model repair technique is depicted,
that is, a process model (left) and an event log (right). The
process model can be expressed in any modeling language.
In this example, circles represent events, labeled rectangles
represent activities, diamonds represent choices and arrows

Initial process model Event log

(a,b,c e @
2 (a,b,d e @
@bden (X)
4 | ajk @

Final process model

ii“ -
o | _

Fig.2 Process model repair example

represent ordering relations. The activities in the process
model are labeled with capital letters denoting the type
of activity. In the event log, traces contain sequences of
instances of the activities denoted with small letters. The
lower part depicts the result of the model repair technique.
The green components represent newly introduced parts. The
repair technique starts by replaying the event log in the ini-
tial model and checking conformance of the traces. The input
event log has four traces. Traces 1 and 2 are conformant (i.e.,
they can be replayed by the initial process model) while traces
3 and 4 are non conformant (i.e., they cannot be replayed by
the initial process model). Trace 3 has a final event f that
is not expected according to the model. As a possible repair,
activity F isincluded in the model as an alternative flow after
activity E. For trace 4, events j and k are not instances of any
activities of the model. As a repair, the sequence J followed
by K is included in the model as an alternative flow after
activity A. With these repairs both not previously replayed
traces are then replayed by the final process model, improv-
ing the fitness [16] of the model.

Process model repair can be positioned in between pro-
cess discovery [3] and conformance checking [5] (i.e., taking
a predefined model as the norm and checking whether the
event log complies with it). The final model may reflect real-
ity (i.e., observed behavior recorded in the event log) better
than the initial model, but may also be very different from
it, which can make the final model useless in practice. For
instance, practitioners may heavily rely on the initial model to
understand how a particular process functions. Presenting to
them a model very different from the one they are accustomed
to may result in the final model being ignored by them. To
address this issue, a minimality criterion is considered when
repairing the initial model guaranteeing that the final model
is as similar as possible to the initial one. However, the min-
imality criterion does not guarantee that still important parts
(e.g., commonly agreed pieces of the process that represent
a shared understanding of the work) are not changed by the
technique. In this paper, I argue that the repair would be more

@ Springer

1102

K. Revoredo

useful to the practitioners if it takes into account predefined
fragments of the model that they do not want to modify.
Furthermore, as stated in [17,18], existing approaches for
process model repair are applied to the whole event log. They
apply the changes based on all the traces that did not comply
with the model, thus including traces that the practitioners
do not want to take into account for the repair. As a conse-
quence, the final models is unnecessarily complex and harder
to understand by the practitioners. In this paper, I also argue
that the repair technique can benefit from a pre-processing
step, in which the relevant traces for the repair are identified.

2.2 Theory revision

A theory revision technique receives as input an initial log-
ical theory (7;) and a set of factual data (C). The theory is
composed by a set of logic rules and can be either speci-
fied manually by domain analysts or automatically learned
using an Inductive Logic Programming (ILP) system [9].
Furthermore, the initial theory is divided into two parts: an
unchangeable part, which is assumed to be correct, and a
changeable part that can be modified by the revision. The data
are split into positive (C,) and negative (C,) observations.
The final theory (T'f) should logically imply all the positive
observations (completeness) (Yc, € Cp, Ty ¥ c)), none of
the negative observations (consistency)(Yc, € Cy,, Ty ¥ c;)
and satisfy a criterion of minimality [7]. Figure 3 illustrates
the theory revision schema.

In more detail, theory revision needs two inputs: an initial
theory and a dataset. The initial theory is an approximately
correct (i.e., only a few parts of the theory is preventing it
from correctly explaining the dataset) set of logical rules, and
it is divided into two parts: a changeable set of rules and an
unchangeable one. The approximately correct requirement
guarantees that revising the theory is more beneficial than
relearning the theory from scratch, given that only a few parts
of the theory are preventing it from correctly reflecting the
dataset. Rules may be expressed in first-order logic notation
(e.g., Horn clauses). These rule sets may have been specified
manually by a practitioner or may have been learned via a
machine learning technique. A dataset is a collection of facts

Initial Theory
- | [unchangeatle
rule,;

| |changeable

o
W rulec

Data

Final Theory

ruley

Theory
& Revision

|changeable
rulecy;

&
0@

Fig.3 Theory revision schema

@ Springer

that may come from an information system (e.g., a database).
The data present in the dataset is divided into two sets: the
positive and the negative sets. The positive set represents facts
that must be explained by the theory whereas the negative
set represent facts that must not be explained. The task of
theory revision is to generate a final theory in which all the
unchangeable rules of the initial theory are still present and
some changeable rules have been replaced by new ones.

When applying theory revision, three considerations must
be made. First, it must be clear where the theory should be
modified (revision points). Second, it must be clear how the
theory should be revised (revision operators). Third, it must
be clear what evaluation function is going to be considered
in order to choose the best revision.

Revision points are defined through the data. Positive
observations define generalization revision points while neg-
ative observations define specialization revision points. The
first are the literals in a rule responsible for the failure of prov-
ing a positive example (failure point) and other antecedents
(contributing points) that may have contributed to this fail-
ure. The second are defined by clauses used in successful
proofs of negative examples. The specification of a revision
point determines the type of revision operator that will be
applied to make the theory consistent with the data. General-
ization operators are used when a positive observation is not
proved by the theory, i.e., the theory must be more generic in
order to explain a positive observation. The second group is
applied when a negative observation is proved by the theory,
i.e., the theory should be more specific in order to not explain
a negative observation.

Theory revision relies on operators that propose modifi-
cations at each revision point. Any operator used in machine
learning of first-order logic can be used in a theory revision
system. For instance, the specialization operator delete-rule,
that deletes the rule that is causing the proof of a nega-
tive observation and the operator add-antecedent, that adds
antecedents to a rule in an attempt to make negative observa-
tions unprovable. As examples of generalization operators,
we can consider the delete-antecedent operator that deletes
antecedents from a rule making this rule more generic and
therefore allowing the proof of positive observations pre-
viously not proved by the theory. Another operator is the
add-rule operator. This operator leaves the original rule in
the theory and generates new ones based on the original
rule in two steps. First it copies the original rule and, using
hill-climbing antecedent deletion, deletes antecedents with-
out allowing any negative observation to be proven, and also
those that allow one or more previously unprovable positive
observations to be proven (even if doing so allows proofs of
negatives). Then it creates one or more specializations of this
core rule using the add-antecedents operator, to allow proofs
of the desired positives while eliminating the negatives. An

On the use of domain knowledge for process model repair

1103

evaluation function such as accuracy is used to select the best
proposed revision to be implemented.

3 Process model repair as a theory revision
task

This section discusses how to frame the task of process model
repair as a theory revision task. After introducing the over-
arching method shown in Fig. 4, it delves into the details of
its constituting components.

As input, a process model repair technique receives an
initial model (M;) and an event log (L) and outputs a revised
(M y). The initial model approximately fits the event log, i.e.,
its evaluation is sufficiently high (e.g., its fitness is above a
threshold) which justifies the repair instead of discovering
a new model from scratch. The initial model is divided into
two parts. The first one (M,,) represents the part of the pro-
cess model that should be unchangeable during the repair
procedure. The specification of this part is done by the prac-
titioners, based on their knowledge about the domain. For
instance, it can represent some external or internal regula-
tions that should be kept. Once the protected part of the
process model is defined, all the rest is associated to the
changeable part (M.,). For the repair to happen, it is neces-
sary that M., is defined. The M, can be empty meaning that
the practitioners chose to allow repair to be considered in the
whole structure of the process model. The event log is also
divided in two parts: positive (L) and negative (L,) event
logs. L, corresponds to the traces representing acceptable
behavior while L, corresponds to behavior that should be
avoided. The model repair technique implements changes in
the model (M,,) guided by the event logs generating a final
model (M) that includes the unchangeable part (M) plus
the repaired model (Mcf).

The changes are made in a batch mode, i.e., all the traces
are received at once and the changes to the model are made
considering all of them. There are some approaches for
model repair that work in an incremental manner. In [19],
an approach for incrementally learning declarative process
models was proposed. The constrains are represented in
a fragment of first-order logic consisting of Datalog Horn
clauses. The approach implements changes in the model
based on one trace. It can learn from scratch as well as

Initial Model
-o| [unchangeatie Crangeatie
o] Final Model
[] L (Unchangeable Changeable
“j/ Model
& Repair
® 8 "eP
NGRS

Fig. 4 Process model repair framed as a theory revision problem
schema

implementing modifications to an existing model. It does
not require the definition of positive and negative observa-
tions. It implements the modifications only based on positive
observations. Incremental approaches are not in the scope of
the present work.

3.1 Fragmenting the process model

The main motivation for repairing an existing model instead
of re-learning it from scratch is to try to keep the repaired
model as similar as possible to the original one. The reason
for that is that learning a model is not a trivial task. Very often
automatic discovery techniques learn complex models and do
post-processing with the goal of simplifying them [20]. The
final model must be useful to the practitioners. The manual
specification of the model is also not an easy task, being very
time demanding and complex, sometimes requiring many
interactions between the process stakeholders until conver-
gence to a final model. The point is that the current model,
although not up-to-date can have many fragments that still
cope with the business and/or reflect an understanding that
the process stakeholders want to keep.

This paper argues that a model repair procedure should be
flexible to allow the specification of fragments of the model
as unchangeable, while the rest are tagged as changeable.
Repair proposals will only be applied to the changeable frag-
ments of the model. The idea of fragmenting a process model
has been investigated when learning a process model from
scratch [21]. Techniques for decomposing a process model
(e.g., [22]) can be used for defining fragments of the model
that can be changed and the fragments that should remain
unchanged. The distinction between the fragments that can
be changed from the ones that cannot is a manual task per-
formed by the practitioners.

3.2 Partitioning the event log

Information Systems such as enterprise resource planning
(ERP) store their execution information into event logs,
which are a powerful source of observed behavior. Event logs
are stored using the IEEE XES (Extensible Event Stream)'
format. Its quality should be checked before running any pro-
cess mining technique (or process model repair technique),
given that the quality of the final model is closely associ-
ated to the quality of the event log. Techniques such as the
one presented in [23] may be used to assess the quality of the
event log. Usually, process model repair approaches consider
these observed traces as acceptable behavior of the process
and guide the modifications in the model with the aim of
complying with these traces. However, some of these trace

! https://xes-standard.org/

@ Springer

https://xes-standard.org/

1104

K. Revoredo

may represent undesirable behavior, e.g., unsuccessful pro-
cess execution or violation to an external regulation, and they
should be separated from the desirable ones. Furthermore,
some behavior that was prevented from happening, e.g., with
constraints implemented in the information system, is not
stored in these logs, given that they were never observed.
Such behavior is still relevant to be known during the repair
procedure to guarantee that a repair proposal will avoid it and
therefore support practitioners on preventing them from hap-
pening in the future. I argue that the model repair task should
consider positive and negative observations of the process,
i.e., it should rely on a set of desirable and undesirable pro-
cess instances.

The definition of the set of positive and negative traces
can be made manually, semi-automatically or automatically.
The starting point in all the cases is an event log. In a manual
generation the practitioner goes over the event log and distin-
guishes desirable and undesirable behavior defining positive
and negative event logs, respectively. The inclusion of addi-
tional behavior is also possible, specially in the negative event
log to represent behaviors that were never observed and one
wants to guarantee that the final model will not replay them
in the future.

For defining the event log automatically, some strategies
can be considered. For instance, one can assume that the
whole event log represents desirable behaviors and has high
quality, defining the positive event log. For the generation
of the negative event log some existing techniques may be
applied. In [24,25], the authors propose a tool to simulate
declare rules and generate an event log that satisfies those
rules. This technique can be used for generating the negative
traces, i.e., defining unacceptable behavior as declare rules
and simulating these rules. In [26], the event log was enriched
with negative events. A negative event was considered by the
authors as an event never observed in the event log, meaning
an event prevented from happening. The traces generated
with negative events may compose the negative event log.

In most scenarios, a manual definition of the positive and
negative event log may be impractical. Conversely, automatic
approaches may be able to find positive and negative event
log, but they may lack quality which can compromise the
quality of the final model. In this direction, semi-automatic
approaches are suitable for the task. For instance, in [27], the
authors propose a combination of different filters that parti-
tion the event log in two sets, the first one is composed by the
traces that satisfy the filters and the second is composed by
the remaining traces. A process model is learned from each
of the sets. This approach could be used for generating the
positive and the negative set of traces, i.e., the filtered traces
would represent the positive observations while the unfiltered
traces would represent the negative observations. The practi-
tioner defines the filters accordingly to her understanding of
the domain guiding the split into positive and negative event

@ Springer

logs. In [28], Key Performance Indicators (KPIs) are used to
filter out traces that follow some KPIs and these traces are
used for the repair. This approach can be used to generate the
positive and negative event logs, e.g., traces that align with
the KPI are included in the positive event log and traces that
do not are included in the negative event log.

As in any model learning approach, the quality of the
repaired model is directly related to the quality of the input
data, i.e., the positive and the negative event logs. There-
fore, existing approaches for evaluating the quality of the
event log, e.g., checking for missing events (i.e., events that
occurred in the IS but were not recorded) or log errors (i.e.,
events that did not occur, but were stored in the event log) and
improving it when necessary can be used as a pre-processing
step to guarantee that the provided positive and negative event
log have the necessary quality for the repair task.

3.3 Model repair

In this section, I sketch the main steps one should consider
when developing a process model repair technique that incor-
porates practitioner knowledge or when extending an existing
technique. Algorithm 1 depicts the top level algorithm for a
process model repair framed as theory revision problem. The
algorithm receives as input an initial process model (M;)
with the specification of the fragments that should remain
unchanged (M,,) and the fragments that can be changed (M.,)
during the repair, an event log (L) partitioned in positive event
log (L) and negative event log (L) and an evaluation func-
tion (e.g., fitness). It returns as output a final model (M)
composed by the unchanged fragments (M,) and revised
fragments (M. ,).

The algorithm starts by generating the revision points
which are parts in M., where deviations were found. Con-
formance checking [5] techniques can be used for this
task. When incorporating practitioner knowledge, the pro-
cess model repair technique designers must keep track of
the two possible types of revision points, generalization or
specialization revision points. The former are sequences of
activities that did not replay part of a positive trace and the
latter are the sequences of activities that allowed a negative
trace to be replayed.

Then, for each revision point, proposals of repair are made.
At this point, the designers also must consider two types
of revision operators, generalization or specialization revi-
sion operators, that would be applied correspondingly to the
types of revision points. Different revision operators may
be applied, e.g., for including an activity or a sub-process or
removing infrequent activities. Each of these proposal repairs
are then evaluated considering an evaluation criterion, e.g.,
fitness [16]. Also, a minimality criterion should be consid-
ered and proposed changes that affect the model minimally
should have preference over changes that entail a bigger mod-

On the use of domain knowledge for process model repair

1105

Algorithm 1 Process Model Repair

Require: Initial Model M; = M, U M., Event Log L = L, U L,
Evaluation function ef

Ensure: Revised Model My = M, U M,

1: repeat

2: generate revision points in M, based on L

3 for all revision points do

4 generate revisions

5 evaluate revisions based on ef

6: implement the best revision found

7

8:

end for
until the model cannot be improved

ification, e.g., given that the evaluation function returns the
same value, the repair that includes less activities should be
preferable. The repair that improved the most the model is the
one implemented. The repair finishes when the model can-
not be improved anymore, i.e., the value of the evaluation
measure can not be improved anymore.

The core of the algorithm is the input in which the prac-
titioners are able to contribute by defining unchangeable
fragments (M,,) and providing acceptable (L ,) and unaccept-
able (L,) behaviors. The identification of the revision points
and the definition of the revision operators are a decision for
the process model repair approaches designers. And existing
process model repair approaches can potentially be extended
by receiving the new inputs and by proposing changes on
their repair technique to consider them.

4 Scenario of use

In this section, I illustrate how a process model repair tech-
nique can be extended to consider domain knowledge, i.e.,
how a process model repair technique can be framed as a
theory revision problem in what concerns the fragmentation
of the process model and the partitioning of the event log.
Section 4.1 describes the setting of the scenario of use, and
Sect. 4.2 describes the results obtained with the repair.

4.1 Setting

To illustrate how to frame the process model repair prob-
lem as a theory revision problem, I chose the process model
repair technique proposed in [29], given that it is the avail-
able technique more closely related to the concepts proposed
in this paper. Section 5 describes in detail the analysis of the
available techniques.

For the event log, I used the Process Discovery Contest
2021 data set®>. The dataset contains 480 training logs, 96
corresponding test logs, 96 corresponding ground truth logs,
and 96 process models. The dataset was generated from a

2 https://icpmconference.org/2021/process-discovery-contest/

base model, which was inspired by a model discovered from
a real-life event log. The logs are all stored using the IEEE
XES file format, while the models are workflow nets (a sub-
class of Petri nets) stored in a PNML file. I randomly chose
an event log from the set of test logs and its corresponding
process model. The event log (L) contains 250 cases with
7097 events. The process model (M;) has 50 transitions and
44 places and it is depicted in Fig. 5, where circles represent
places, squares transitions and black squares silent transitions
(transitions that are not stored in event logs). I use fitness
as the evaluation function (ef). The fitness of the event log
with respect to the initial process model is 0.76. Consider-
ing a threshold of 0.70 for the fitness, it justifies to repair
the initial model instead of discovering a new model from
scratch.

As regards the inputs of the model repair procedure, I
manually chose the fragment of the model that should kept
unchanged, and I used filtering based on an activity to auto-
matically split the event log. For that, I used the Filter log
by attributes plugin from the UMA package in the Prom
toolkit®>. For model repair, I used the approach proposed
in [29] through its plugin “Repair Model” implemented in
the Prom toolkit. The revision points are identified by using
conformance checking and the revision operators focus on
including sub-processes or loops to the current model. The
approach was run with its default parameters, except for the
parameter concerning the removal of infrequent nodes which
was set to not remove infrequent nodes.

4.2 Results

As abenchmark, the repair approach was applied to the initial
process model (M;) without setting unchangeable fragments,
and to the event log (L) without partitioning it. The fitness
of the repaired model (M y) was 1. My is shown in Fig. 6.
Analyzing the initial fragment of M; and its repair M s
(see Fig. 9 (a) and (b) respectively), it is possible to observe
that transition 09 was not always executed. In a first sce-
nario (Scenario 1), a practitioner considers that this optional
behavior is an unacceptable behavior (e.g., it represents a
regulation), and therefore she wants to indicate that the
sequence flow transition 109 followed by transition /0 must
always happen. Then, this fragment of M; was manually set
to unchangeable (M,). Given that the approach presented
in [29] does not consider the concept of changeable and
unchangeable fragments, in order to simulate it, I renamed
the transitions to unknown labels. With that, it is expected
that the repair approach would not change the behavior
described by this fragment, given that it was not observed
in the event log, and it would not remove it, given that the
input parameter was set to keep all nodes including infrequent

3 https://www.promtools.org/doku.php

@ Springer

https://icpmconference.org/2021/process-discovery-contest/
https://www.promtools.org/doku.php

1106

K. Revoredo

Fig.5 Initial model (M;)

a5

Fig. 6 Benchmark: repaired model (M) learned using the event log (L) without partitioning it, and the initial model (M;) without setting

unchangeable fragments

Fig.7 Scenario 1: repaired model (M = M, U M.) with the initial fragment of M; set as an unchangeable fragment

ones. All the rest of fragments of M; are changeable (M,,)
for the repair approach. The repair approach runs receiv-
ing as input M; = M, U M., and L. The repaired model
(My = M, U M) can be seen in Fig. 7 and its initial frag-
ment in Fig. 9 (c). The fitness of the repaired model (M)
was 1. It is possible to see that the initial fragment is kept,
but the traces containing the undesired behavior, i.e., exe-
cution of transition ¢/0 without the execution of 109 before,
were considered by the repair approach and changes in the
model were done in order to fit these traces. In Scenario 2,
the practitioner wants to enforce that these are undesirable

aw

'L

behavior that should not be replayed by the final process
model. The event log is partitioned with traces that contain
109 representing desirable behavior (L) and the traces with-
out transition 709 representing undesirable behavior (L,).
Event log L, contains 178 traces while L, contains 72. The
repair approach runs receiving as input M; = M, U M., and
L = L, U Ly. The repaired model (My = M, U M.,) is
depicted in Fig. 8 and its initial fragment is shown in Fig. 9
(a) having the same initial fragment as the initial model. The
fitness of the repaired model (M) was 1.

Fig.8 Scenario 2: repaired model (M s = M, U M) with the initial fragment of A; set as an unchangeable fragment and the event log partitioned

based on having transition #09 (L) and not having transition 09 (L,)

@ Springer

On the use of domain knowledge for process model repair

1107

@ @ O
. D
v @— [—O

t09 t10
© @ D O &

t09 t10

Fig. 9 (a) Initial fragment of the initial process model; (b) initial
fragment of the repaired model learned using the event log without parti-
tioning it, and the initial model without setting unchangeable fragments;

With this illustrative scenario of use, it was possible to
show that the final model depends on the choices made for the
inputs and the practitioner plays an important role in setting
these inputs appropriately. Being the domain expert, the prac-
titioner is able to identify the parts of the model that should
not be changed and also the relevant data that should be con-
sidered for the changes. Although the fitness of the repaired
models found for the Benchmark, Scenario 1 and Scenario 2
are the same, their structure is different representing differ-
ent behaviors. The ones in Scenario 1 and Scenario 2 reflect
practitioners needs. It is worth mentioning that none of the
existing approaches for process model repair provide a tool
for directly implementing the ideas discussed in this paper.
In the following section, I analyze the existing approaches in
more detail.

5 Analysis of literature on existing process
model repair techniques

This section reports the results of the analysis of the existing
approaches for process model repair with respect to the pro-
posal of framing the problem as a theory revision problem,
i.e., how close to the framing proposal are the current process
model repair approaches.

The selection and analysis of the existing process model
repair techniques was done accordingly to systematic map-
ping studies [30]. To identify the existing approaches, I
performed keyword search on scientific databases. I searched

t10

t09

(c) initial fragment of the repaired model learned using the sequence
flow 109 — 110 as unchangeable and the event log without partitioning
it

for scientific papers with the keywords “process” AND
“model repair” in title, abstract or keywords using the Sco-
pus* and DBLP> databases. A total of 151 papers were
collected, 118 from Scopus and 48 from DBLP. The first
excluding criteria were duplication and papers not related to
the process area and in a language different than English.
Then, the remaining 52 papers were read to exclude works
that were not based on data or procedural process model
repair. Also, only fully automatic process model repair
approaches were considered. A total of 24 papers were then
selected for analysis.

All the approaches rely on using conformance checking
techniques [5] for identifying traces not conforming with
the model and to guide the necessary repair in the model.
Therefore, the techniques identify revision points. They vary
mainly according to the conformance checking technique
used (e.g., token-replay based, footprint-based or alignments
based). For repairing the revision points the techniques vary
according to the proposed repair method (e.g., adding a
concurrent branch or a sub-process). Thus, the techniques
use revision operators for proposing changes to the process
model. This paper then focused the analysis of the exist-
ing approaches for process model repair on (i) specification
of fragments of the initial model defining changeable and
unchangeable fragments; (ii) partitioning of the event log
into positive and negative traces; (iii) application of the min-

4 http://scopus.com
> https://dblp.uni-trier.de/

@ Springer

http://scopus.com
https://dblp.uni-trier.de/

1108

K. Revoredo

Table 1 Summary of the model repair approaches

Approach Model frag- Event log par- Minimality
mentation titioning criterion
(31] .
(32] o
[33-45] .
[46-48] ° .
[49] o
[50] .
[15,29] . .
[51] o
[52] °

imality criterion, i.e., the guarantee of the repair procedure
that the initial model was minimally changed.

This paper considered approaches where the revision pro-
cedure is fully automatized. Table 1 summarizes the findings.

In [31], the alignment of a trace and a process model is
used to propose changes in the model. The approach uses a
metric to calculate the alignment of the proposed repaired
model with the initial one, aiming for repairs that provide
minimal repair, thus a minimality criterion is used.

In [32], an impact-driven process model repair was pro-
posed. The model repair problem was addressed as an
optimization problem where each possible repair had a cost
and the task was to find the repaired model that maximize
fitness constrained by the cost. A maximum degree of change
was considered, in this way the minimality criterion is met.

The approaches in [33—45] use the concept of Logic Petri
net to repair a process model represented as a Petri net.
They differ mainly by the conformance checking technique
used (e.g., alignment-based [34], token-replay-based [35]
and footprint-based [36]), requirements for the input Petri net
(e.g., concurrency structure [37] or non-free choice structures
[43]), and proposal repair (e.g., building choice structure [36]
or loop structure [44]). In all the approaches, the authors
argue that by only changing the structure in the Petri net
associated with the deviations the initial model is minimally
changed.

In [46,47], the principle of divide and conquer was used
to decompose the initial process model in several fragments.
Then, each fragment is classified as a good or bad frag-
ment, depending on whether they conform to the event log
or not, respectively. Repair operations are applied to the bad
fragments and the generated repair fragments are then com-
posed with the good ones generating a final repaired model.
The changes to the fragments are made locally. In [48], the
approach is extended to also consider non-local changes to
the process model by allowing changes that connect frag-
ments. These works align partially with (i) decomposing the

@ Springer

model in changeable and unchangeable fragments. However,
the choice is based on the conformance to the event log and
not as a prior decision based on the understanding of the busi-
ness and the needs of the practitioners as stated in this paper.
Moreover, it can be the case that a part of the model that
conforms with the data should not. By focusing on changing
only the parts that did not conform with the event log keep-
ing as much as possible of the initial model, the minimality
criterion is considered.

In [49], the process model (workflow net) and the event log
are both represented as footprint matrix. The repair approach
implements modification in the model based on differences
found between the two footprint matrices. The approach
searches for a minimal change in the model and considers
all the traces of the event log as desirable traces.

In [50], the authors presented the task of generalized con-
formance checking. A level of quality trust is associated to
the log and to the model and this quality is used to repair both
the log and the model. Although the authors acknowledge the
possibility of the event log not representing all the possible
behaviors or representing undesirable behavior, the model
repair does not consider these issues in a different way, also
because they are not distinguished in the event log. There-
fore the consideration of positive and negative event logs
is not taken into account by this approach. The alignment
between the original model and the final model is calculated,
but the trust value associated to the model defines the amount
of change accepted. If the trust on the model is high (i.e.,
the model is approximately correct), then the model will be
changed minimally, similarly to theory revision therefore the
approach follows a minimality criterion.

The approach proposed in [15,29] is the most related to
the concepts presented in this paper. It uses conformance
checking to find the sequence of the model most similar to
the traces that did not conform. Then the parts that did not
conform are separated and process discovery technique are
used to learn the correspondent sub-processes that are then
included in the initial model repairing it. They separated the
traces that should not be replayed by the model in a different
log. Therefore, they partially considered negative and posi-
tive traces. The approach satisfies a minimality criterion.

In [51], an approach for repairing a process model by
including missing edges is proposed. The event log is used
to identify flow sequences that are observed in the event log,
but not in the process model. The approach focuses on only
including the missing edges, changing the model as minimal
as possible, therefore following a minimality criterion.

In [52], the problem of process model repair was built as a
multi-objective problem with the goal of changing the initial
process model by maximizing the coverage of new behav-
ior observed in the event log and minimizing the cost of the
changes. The approach aims for reducing the complexity of
the repaired model by not focusing only on increasing the

On the use of domain knowledge for process model repair

1109

fitness of the model in face of the new behavior observed
in the event log. The search for changes that minimize the
cost in terms of simplicity of the model and only focusing
on changing the model where it is necessary follows a mini-
mality criterion.

As a result of the analysis of the existing techniques for
process model repair it is possible to observe that the tech-
niques use a minimality criterion to guarantee that the final
model resembles as much as possible the initial model. How-
ever, the techniques can be improved by the involvement
of the practitioners for fragmentation of the initial model
and partitioning of the event log. The approaches proposed
in [46—48] and [15,29] partially fulfilled these two points,
respectively.

6 Related work

The contribution of this paper has been on process model
repair in which the model follows the procedural paradigm,
and the repair is done automatically. In Sect. 5, it was
shown that the use of practitioners knowledge to support
process model repair under these requirements has been mod-
est. In this section, I describe related work, i.e., work that
consider similar ideas for process model repair. I classify
this prior research to two streams: (i) non data-aware pro-
cess model repair that consider undesirable behavior and/or
unchangeable fragments of the model; and (ii) data-aware
declarative process model repair that consider undesirable
behavior and/or unchangeable fragments of the model.

For what concerns stream (i), [53] proposes to identify
incorrect free-choice segments in a process model and repair
it based on a transition system that represent the same seg-
ment as a non free-choice segment. The approach keeps the
fitness of the model with the event log used to discover the
process model and improves precision, given that prevents
the model from modeling undesirable behavior previously
represented in the free-choice segment. This work imple-
ments the concept of undesirable behaviors and the necessity
of the process model to avoid covering these behaviors, how-
ever these behaviors are not explicit in the event log and
therefore the repair is not data oriented.

For what concerns stream (ii), given the analyzed sources
of the literature, it can be observed that the concept of the-
ory revision has not yet been considered for process model
repair when the model follows a procedural paradigm. When
the process model is represented with a declarative paradigm,
work such as [54] can be mentioned. Theory revision con-
cepts were used to improve DECLARE [55] rules, where a
set of positive and negative event logs were built and used
for the revision of the set of DECLARE rules. In the context
of process discovery, the approach presented in [56] used a

partitioning of the event log into positive and negative event
logs to learn declarative process model.

7 Conclusion

Process models support practitioners when it comes to man-
aging various workflows around software development such
as issue-to-resolution processes, bug-fixing, version release-
planning, etc. If these models become outdated over time,
the monitoring of the process becomes inaccurate. Process
model repair proposes to change the model in order to cope
with the latest changes in the data recorded in event log. From
the area of ILP, theory revision techniques allow the revision
of a logical theory, i.e., a set of rules, guided by positive
and negative observations. The logical theory is minimally
changed in order to explain all the positive observations and
none of the negative observations.

This paper explored the area of process model repair fram-
ing it as a theory revision problem. It identified two main
points from theory revision that can contribute to process
model repair: (i) the fragmentation of the initial process
model in a way that the practitioners may indicate fragments
that should not be considered for repair and (ii) the definition
of two event logs, namely positive and negative logs. The
first event log includes behavior that should be replayed by
the model and the second one includes behavior that should
be avoided by the model. To use theory revision for pro-
cess model repair, two main challenges should be addressed,
namely the fragmentation of the initial process model and
the partitioning of the event log.

As future work, I intend to (i) formalize other aspects of
theory revision and (ii) explore other facets of the broader
area of theory refinement [7]. For what concerns (i), as
existing works are already implicitly using the concepts of
revision points and revision operators, I plan to formally
define them. For what concerns (ii), the automatic improve-
ment of logic knowledge bases, known as theory refinement,
can be divided into two classes: theory revision and theory
restructuring. Both aim at improving the quality of the log-
ical theory. The revision task involves changing the answer
set of the given theory, i.e., improving its inferential capabil-
ities by adding previously missing answers (generalization)
or by removing incorrect answers (specialization). On the
other hand, the task of restructuring does not change the
answer set of the given theory; its objective is to improve
performance and/or user understandability of the theory. As
a follow-up work, I intend to investigate how concepts of
theory restructuring can support the task of process model
repair, e.g., process simplification [20].

Furthermore, this paper was based on the assumption that
the input is a event log in XES format. However, the source
can be a database and approaches such as [57] which extract

@ Springer

1110

K. Revoredo

event logs with specific characteristics following the goal of
business analysts can also be used. The extraction could be
made following requirements of desirable and undesirable
events generating in this way the negative and positive event
logs.

Lastly, I intend to develop of a prototype to be used to
collect feedback from the practitioners concerning ease of
use, usability, and trustworthiness when incorporating their
knowledge into process model repair.

Acknowledgements This work was partially supported by WU Wien
via the WU-Project Projekt-IA 27001663 and by Teaming.Al project in
the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No 95740.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management, 2nd edn. Springer, New York
(2018)

2. Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Com-
put. Soc. 39(2), 25 (2006)

3. van der Aalst, W.M.P.: Process Mining - Data Science in Action,
2nd edn. Springer, New York (2016)

4. Armas-Cervantes, A.: Process model repair. In: Encyclopedia of
Big Data Technologies. Springer, New York (2019)

5. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Confor-
mance Checking - Relating Processes and Models. Springer, New
York (2018)

6. Barriga, A., Heldal, R., Iovino, L., Marthinsen, M., Rutle, A.: An
extensible framework for customizable model repair, pp. 24-34.
In: MoDELS. ACM (2020)

7. Wrobel, S.: First order theory refinement. In: De Raedt, L. (ed.)
Advances in Inductive Logic Programming. I0S Press (1996)

8. Taylor, C., Nakhaeizadeh, G.: Learning in dynamically chang-
ing domains: theory revision and context dependence issues. In:
ECML, vol. 1224, pp. 353-360. Springer, New York (1997)

9. Muggleton, S.: Inductive logic programming. New Gener. Comput.
8(4), 295-318 (1991). https://doi.org/10.1007/BF03037089

10. Sato, D.M.V,, Freitas, S.C.D., Barddal, J.P., Scalabrin, E.E.: A sur-
vey on concept drift in process mining. ACM Comput. Surv. 54(9),
1-38 (2021)

11. Muggleton, S., Paes, A., Costa, V.S., Zaverucha, G.: Chess revision:
acquiring the rules of chess variants through FOL theory revision

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

from examples. In: ILP, vol. 5989, pp. 123-130. Springer, New
York (2009)

Guimaraes, V., Paes, A., Zaverucha, G.: Online probabilistic theory
revision from examples with ProPPR. Mach Learn. 108(7), 1165-
1189 (2019)

Raedt, L.D., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.:
Compressing probabilistic Prolog programs. Mach Learn. 70(2-3),
151-168 (2008)

Revoredo, K.: Process model repair meets theory revision - initial
ideas. In: POEM, vol. 432, pp. 184—194. Springer, New York (2021)
Fahland, D., van der Aalst, W.M.P.: Repairing process models to
reflect reality. In: BPM, vol. 7481, pp. 229-245. Springer, New
York (2012)

Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, WM.P.: On
the role of fitness, precision, generalization and simplicity in pro-
cess discovery. In: OTM Conferences (1), vol. 7565, pp. 305-322.
Springer, New York (2012)

Armas-Cervantes, A., van Beest, N.R.T.P., Rosa, M.L., Dumas, M.,
Raboczi, S.: Incremental and interactive business process model
repair in apromore. In: BPM (Demos), vol. 1920. CEUR-WS.org
(2017)

Armas-Cervantes, A., van Beest, N.R.T.P., Rosa, M.L., Dumas, M.,
Garcia-Bafiuelos, L.: Interactive and incremental business process
model repair. In: OTM Conferences (1), vol. 10573, pp. 53-74.
Springer, New York (2017)

Ferilli, S.: Incremental declarative process mining with woman. In:
EAIS, pp. 1-8. IEEE (2020)

Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process
models in a controlled manner. Inf Syst. 38(4), 585-605 (2013)
Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Freezing sub-
models during incremental process discovery. In: ER, vol. 13011,
pp. 14-24. Springer, New York (2021)

van der Aalst, W.M.P.: Decomposing Petri nets for process min-
ing: a generic approach. Distrib. Parallel Databases 31(4), 471-507
(2013)

Martin, N., Van Houdt, G., Janssenswillen, G.: DaQAPO: support-
ing flexible and fine-grained event log quality assessment. Expert
Syst. Appl. 191, 116274 (2022). https://doi.org/10.1016/j.eswa.
2021.116274

Ackermann, L., Schonig, S.: MuDePS: Multi-perspective declara-
tive process simulation. In: BPM (Demos), vol. 1789, pp. 12-16.
CEUR-WS.org (2016)

Ackermann, L., Schonig, S., Jablonski, S.: Simulation of multi-
perspective declarative process models. In: Business Process Man-
agement Workshops. vol. 281, pp. 61-73 (2016)

Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen,
J.: Process mining as first-order classification learning on logs with
negative events. In: Business Process Management Workshops, vol.
4928, pp. 42-53. Springer, New York (2007)

Vidgof, M., Djurica, D., Bala, S., Mendling, J.: Cherry-
picking from spaghetti: multi-range filtering of event logs. In:
BPMDS/EMMSAD @CAISE, vol. 387, pp. 135-149. Springer,
New York (2020)

Dees, M., de Leoni, M., Mannhardt, F.: Enhancing process models
to improve business performance: a methodology and case studies.
In: OTM Conferences (1), vol. 10573, pp. 232-251. Springer, New
York (2017)

Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process
models to reality. Inf. Syst. 47, 220-243 (2015)

Kitchenham, B., Charters, S.: Guidelines for Performing System-
atic Literature Reviews in Software Engineering (2007)

Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F.,
van der Aalst, W.M.P.: Improving business process models using
observed behavior. In: Cudre-Mauroux, P., Ceravolo, P., Gasevié,
D. (eds.) Data-Driven Process Discovery and Analysis, pp. 44-59.
Springer, Berlin Heidelberg (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/j.eswa.2021.116274
https://doi.org/10.1016/j.eswa.2021.116274

On the use of domain knowledge for process model repair

mm

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Polyvyanyy, A., van der Aalst, W.M.P.: ter Hofstede AHM, Wynn
MT impact-driven process model repair. ACM Trans. Softw. Eng.
Methodol. 25(4), 28:1-28:60 (2017)

Xu, Y., Du, Y., Qi, L., Luan, W., Wang, L.: A logic petri net-
based model repair approach by constructing choice bridges. IEEE
Access 7, 18531-18545 (2019). https://doi.org/10.1109/ACCESS.
2019.2896079

Zhang, X., Du, Y., Qi, L., Sun, H.: An approach for repairing pro-
cess models based on logic petri nets. IEEE Access 6,29926-29939
(2018)

Teng, Y., Du, Y., Qi, L., Luan, W., Wang, L.: A simple logic transi-
tion repair method for business process models via logic petri nets.
IEEE Access 7, 76628-76644 (2019)

Xu, Y., Du, Y., Luan, W., Qi, L.: A process model repair approach
by constructing choice structures via logic petri nets. IEEE Access
7, 172387-172402 (2019)

Zheng, W.,Du, Y., Qi, L., Wang, L.: A method for repairing process
models containing a choice with concurrency structure by using
logic petri nets. IEEE Access 7, 13106-13120 (2019)

Teng, Y., Du, Y., Qi, L.: A logic petri net-based repair method of
process models with incomplete choice and concurrent structures.
Comput. Inf. 39(1), 264-297 (2020)

Teng, Y., Du, Y., Qi, L., Luan, W.: A logic petri net-based method
for repairing process models with concurrent blocks. IEEE Access
7, 8266-8282 (2019)

Xu, Y., Du, Y., Luan, W., Qi, L., Sun, H.: Repairing process models
with logical concurrent and casual relations via logical petri nets.
IEEE Access 6, 56340-56355 (2018)

Zhang, X., Du, Y., Qi, L., Sun, H.: Repairing process models
containing choice structures via logic petri nets. IEEE Access 6,
53796-53810 (2018)

Bai, E., Su, N., Liang, Y., Qi, L., Du, Y.: Method for repairing
process models with selection structures based on token replay.
Comput. Inf. 40(2), 446468 (2021)

Zheng, W., Du, Y., Wang, S., Qi, L.: Repair process models con-
taining non-free-choice structures based on logic petri nets. IEEE
Access 7, 105132-105145 (2019)

He, Z., Du, Y., Qi, L., Du, H.: A model repair approach based
on petri nets by constructing free-loop structures. IEEE Access 7,
24214-24230 (2019)

Qi, H., Du, Y., Qi, L., Wang, L.: An approach to repair Petri
net-based process models with choice structures. Enterp. Inf Syst.
12(8-9), 1149-1179 (2018)

Mitsyuk, A.A., Lomazova, I.A., Shugurov, L.S., van der, Aalst
W.M.P.: Process model repair by detecting unfitting fragments.
In: AIST (Supplement), vol. 1975, pp. 301-313. CEUR-WS.org
(2017)

Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Using event
logs for local correction of process models. Autom. Control Com-
put. Sci. 51(7), 709-723 (2017)

Mitsyuk, A.A.: Non-local correction of process models using event
logs. In: 2017 Ivannikov ISPRAS open conference (ISPRAS), pp.
6-11 (2017)

Sun, Y., Du, Y., Li, M.: A repair of workflow models based on mir-
roring matrices. Int. J. Parallel Program. 45(4), 1001-1020 (2017)
Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal,
A.:Inlog and model we trust? A generalized conformance checking
framework. In: BPM, vol. 9850, pp. 179-196. Springer, New York
(2016)

51.

52.

53.

54.

55.

56.

57.

Fernandez-Ropero, M., Reijers, HA., Pérez-Castillo, R., Piattini,
M.: Repairing business process models as retrieved from source
code. In: BMMDS/EMMSAD, vol. 147, pp. 94-108. Springer, New
York (2013)

Francescomarino, C.D., Tiella, R., Ghidini, C., Tonella, P.: A multi-
objective approach to business process repair. In: ICSOC, vol. 8831,
pp. 32-46. Springer, New York (2014)

Kalenkova, A.A., Carmona, J., Polyvyanyy, A., Rosa, M.L.: Auto-
mated repair of process models using non-local constraints. In:
Petri Nets, vol. 12152, pp. 280-300. Springer, New York (2020)
Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental
declarative process mining. In: Smart Information and Knowledge
Management, vol. 260, pp. 103—127. Springer, New York (2010)
Pesic, M., Schonenberg, H., van der, Aalst W.M.P.: DECLARE: full
support for loosely-structured processes. In: EDOC, pp. 287-300.
IEEE Computer Society (2007)

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari,
S.: Exploiting inductive logic programming techniques for declar-
ative process mining. Trans. Petri Nets Other Model Concurr. 2,
278-295 (2009)

de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Con-
necting databases with process mining: a meta model and toolset.
Softw. Syst. Model. 18(2), 1209-1247 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Kate Revoredo is a research asso-
ciate at the Chair of Process Man-
agement and Information Systems
at the Department of Computer
Science at Humboldt-Universitit
zu Berlin, Germany, and previ-
ously an assistant professor at the
Institute for Information Business
at Wirtschaftsuniversit ~ Wien
(WU Vienna), Austria. Her main
research interest is on data-centric
approaches for information
systems. This includes topics in
the area of business process man-
agement, data science, semantic

web and knowledge representation. She has published more than
80 research papers in various outlets, among others in Computers
in Industry, Information Systems and Machine Learning. She is a
member of the Brazilian Commission in Artificial Intelligence and
a reviewer for several journals and conferences, among others Busi-
ness & Information Systems Engineering, The Knowledge Engineer-
ing Review, International Joint Conference on Artificial Intelligence
(IJCAI) and Conference on Artificial Intelligence (AAAI).

@ Springer

https://doi.org/10.1109/ACCESS.2019.2896079
https://doi.org/10.1109/ACCESS.2019.2896079

	On the use of domain knowledge for process model repair
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Process model repair
	2.2 Theory revision

	3 Process model repair as a theory revision task
	3.1 Fragmenting the process model
	3.2 Partitioning the event log
	3.3 Model repair

	4 Scenario of use
	4.1 Setting
	4.2 Results

	5 Analysis of literature on existing process model repair techniques
	6 Related work
	7 Conclusion
	Acknowledgements
	References

