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Abstract

This work reports on a spin-pure configuration-based implementation of the

heatbath configuration interaction (HCI) algorithm for selective configuration interac-

tion. Besides the obvious advantage of being spin-pure, the presented method com-

bines the compactness of the configurational ansatz with the known efficiency of the

HCI algorithm and a variety of algorithmic and conceptual ideas to achieve a high

level of performance. In particular, through pruning of the selected configurational

space after HCI selection by means of a more strict criterion, a more compact wave-

function representation is obtained. Moreover, the underlying logic of the method

allows us to minimize the number of redundant matrix-matrix multiplications while

making use of just-in-time compilation to achieve fast diagonalization of the Hamilto-

nian. The critical search for 2-electron connections within the configurational space

is facilitated by a tree-based representation thereof as suggested previously by Gopal

et al. Usage of a prefix-based parallelization and batching during the calculation of

the PT2-correction leads to a good load balancing and significantly reduced memory

requirements for these critical steps of the calculation. In this way, the need for a

semistochastic approach to the PT2 correction is avoided even for large configura-

tional spaces. Finally, several test-cases are discussed to demonstrate the strengths

and weaknesses of the presented method.
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1 | INTRODUCTION

Multireference (MR) electronic structure calculations allow for a

correct description of molecular systems with strongly correlated

electrons. Therefore, they constitute a valuable means to gain under-

standing on a molecular level in multiple branches of chemistry, for

example, photochemistry and transition metal chemistry.1-3

Nowadays, the vast majority of MR calculations rely on the “active

space” concept that invokes the choice of a set of active electrons

and orbitals. This active space is treated on a higher level of theory

than the remaining inactive electrons and orbitals. In the framework

of the complete active space (CAS) approach, the electronic wave

function is expanded in a complete set of Nact-electron functions

within the active orbital space. In other words, the full configuration

interaction (FCI) problem is solved within the active space. Accord-

ingly, the number of wave function parameters grows exponentially
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with the number of active electrons and orbitals and thus quickly

becomes intractable. To alleviate the unfavorable computational scal-

ing, a number of approximate FCI solvers has been developed and

employed in practical use. Among them, the density matrix renormali-

zation group (DMRG) and the FCI quantum Monte-Carlo (FCIQMC)

are most prominent.4-14 As increasingly popular alternatives, different

variants of selective configuration interaction (SCI) methods have

emerged in recent years.15-27

The aim of SCI (as well as the other approximate FCI solvers) is to

find a lower-dimensional representation of the CAS wave function

ΨCAS
�� �

without significant loss of accuracy. In the first formulation of

SCI by Huron et al., denoted CIPSI,28 the set of basis functions chosen

to represent ΨCAS
�� �

is selected in an iterative fashion, starting from a

small reference space P. During every iteration, P is supplemented by

the set of Slater determinants (SDs) or configuration state functions

(CSFs) that are deemed important according to a first-order perturba-

tion theory based selection criterion. Over the years, alternative selec-

tion criteria have been proposed. Most notably, Umrigar and

coworkers introduced a new variant termed heatbath configuration

interaction (HCI), in which a many-body basis function is selected for

P, if it interacts sufficiently strongly with the reference wave function

through the Hamiltonian operator.17 This selection criterion allows for

an efficient reformulation of the selection of SDs (CSFs) compared to

the CIPSI method such that significant speedups are be obtained. A

recent blind challenge for the ground state energy of benzene

highlighted the great performance of the semistochastic HCI (SHCI)

implementation by Umrigar and coworkers in this context.19,20,29

Perhaps an even stronger case for the performance of SHCI can be

made based on additional works on the Gaussian-2 set, Cr2 and a vari-

ety of transition metal atoms, ions, and monoxides.30-32

Importantly, the aforementioned SHCI implementation relies on a

wave function expansion in terms of Slater determinants. On one

hand, this choice of basis simplifies the expressions for all Hamiltonian

matrix elements, which in turn enables the implementation of an

extremely efficient computer code. On the other hand, in SD-basis,

the spin symmetry is not strictly conserved. Furthermore, the SD-

representation of the wave function is less compact than in alterna-

tive formulations based on CSFs or configurations.24,33

Herein, we report on a configuration-based implementation of

HCI. Instead of selecting single SD or CSFs individually, our algorithm

selects complete sets of spin-adapted CSFs that belong to a given

electronic configuration. While such a selection scheme necessarily

entails larger expansion spaces than CSF-based SCI,24 it facilitates a

largely vectorized implementation and does not suffer from an active

orbital ordering dependence of the total energy.26 A vital factor for

the efficiency of the presented code is the availability of one-electron

coupling coefficients at a low computational cost as provided by the

recursive approach recently introduced by us.34 Another important

aspect of a configuration-based formulation is the concomitant strict

obedience to spin symmetry that enables the user to directly target

specific spin states—a feature that is particularly helpful during studies

of transition metal compounds with multiple open shells or close-lying

spin states (vide infra). In addition to the aforementioned conceptual

advantages (and disadvantages) of the presented method, this work

puts a strong focus on the details of its implementation as they are a

key factor to its performance and applicability.

This work begins with a brief recapitulation of SCI and its HCI

variant in Section 2.1 before describing the intricacies of spin-

adaptation in the present context in Section 2.2. Subsequently,

Section 3 provides a detailed description of the current implementa-

tion. Finally, the results of calculations on four test cases reported in

Section 4 demonstrate the capabilities and shortcomings of the pre-

sented program.

2 | THEORY

In the following, indices i, j,k, l are used for internal orbitals, a,b,c,d for

external orbitals, t,u,v,w for active orbitals and p,q, r,s for general

molecular orbitals. Capital indices such as I,J are used to denote gen-

eral many-body basis functions such as SDs or CSFs.

2.1 | The heatbath-CI algorithm

Within the CAS approach, one seeks to find the eigenfunction Ψj i
that corresponds to the lowest eigenvalue of

Ĥ¼ hefftu Etuþ
P
tuvw

ðtujvwÞ EtuEvw�δuvEtwf g ð1Þ

with

hefftu ¼ htuþ
P
i
f2ðiijtuÞ�ðitjuiÞg ð2Þ

in a complete set of Nact-electron functions f ΦIj ig that are con-

structed from the active orbital set f ϕtj ig. The Etu ¼ â†tαâuαþâ†tβâuβ in

equation (1) are spin-traced replacement operators in second quanti-

zation notation while htu and ðtujvwÞ are molecular one- and two-

electron integrals, respectively. For active space sizes up to 16–18

electrons and orbitals, this problem can be solved within the full

f ΦIj ig-space (FCI) by means of Davidson35,36 or Lanzcos37 algo-

rithms.34,38,39 The central quantity that needs to be computed in

these algorithms is the σ-vector that is obtained by multiplying the

Hamiltonian matrix with a trial vector,

σ¼HC: ð3Þ

Owing to the steep increase of the number of N-electron basis

functions, ΦIj i� PCAS, with growing number of active electrons and

orbitals, the calculation of σ becomes intractable for sufficiently large

active spaces. As mentioned in the previous section, this problem can

be alleviated by selecting a subset of FCI configurations that is well

suited to represent Ψj i. Such a selective CI concept was first intro-

duced by Huron et al. in their seminal work on configuration interaction

by perturbation with multiconfigurational zeroth-order wave function
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selected by iterative process (CIPSI)28 from 1973 and has found its way

into various quantum chemistry programs since then. The starting

point of CIPSI is a set of reference functions P that could, for example,

consist of only the Hartree-Fock (HF) wave function ΦHFj i. In the fol-

lowing, P will be referred to as the variational space. If P consists of

multiple functions, the lowest eigenvalue EP of the Hamiltonian matrix

HP and the corresponding eigenvector,

ΨPj i ¼ P
I � P

CI ΦIj i, ð4Þ

are found through diagonalization. In the next cycle of the CIPSI-

algorithm, a function ΦAj i =2 P, is selected for a new variational space

P0, if

fCIPSIð ΦAj iÞ¼
P

I � P ΦAjĤjΦI

D E

EP� ΦAjĤjΦA

D E
������

������≥ εsel: ð5Þ

With P0 at hand, the pair of EP0 and ΨP0j i are again obtained

through Hamiltonian diagonalization. This cycle is repeated until

either no new many-body functions are found important according to

Equation (5) or the change in energy between two iterations is below

a certain threshold, that is, ΔE¼ jEP0 �EPj> εE . Obviously, for a func-

tion ΦAj i =2 P to be selected, it has to belong to the first order interact-

ing space (FOIS) of P. Hence, in case of P consisting only of ΦHFj i in
the first iteration, only up to doubly excited N-electron basis functions

can be selected. In the second iteration, up to quadruply excited func-

tions can be selected and so on (see Figure 1).

The final variational energy can be improved by calculating a per-

turbative correction,

ΔEPT2 ¼
P
A =2 P

P
I � P ΦAjĤjΦI

D E� �2

EP� ΦAjĤjΦA

D E : ð6Þ

Thus, the total CIPSI energy contains a variational and a non-

variational part, ECIPSI ¼ EPþΔPPT2. By incorporating the perturbative

correction, the CIPSI method is able to calculate energies near the

FCI-limit while the corresponding wave function representation is

considerably more compact than that of FCI. It should be noted at this

point that when SCI methods like CIPSI are used in the context of

active space calculations, the perturbative correction takes only per-

turber functions into account that are part of the active space. Any

effect of functions outside of the active space would have to be con-

sidered through a separate Ansatz, for example, CASPT2 or

NEVPT2.40-42

In 2016 Umrigar and coworkers introduced the Heatbath CI (HCI)

algorithm, a particularly efficient SCI variant.17 Within HCI, a function

ΦAj i =2 P is selected if

fHCIð ΦAj iÞ¼ j ΦAjĤjΦI

D E
CIj> εsel, ð7Þ

for any ΦIj i�P. This modified selection criterion emphasizes the role

of the numerator in Equation (5) and refers to the interaction strength

between elements of P and its FOIS. More importantly, it allows for

an efficient reformulation of the selection algorithm (see

Algorithm 1). Before any fHCIð ΦAj iÞ values are actually calculated,

the two-electron integrals ðtujvwÞ are sorted in descending order of

their absolute value for each orbital pair ðtuÞ. As pointed out by

Umrigar and coworkers in their original work, these absolute

values correspond to the magnitude of a double excitation in

which electrons in orbitals w and u are excited to orbitals v and t.17

F IGURE 1 Schematic representation of the iterative selection
procedure in the framework of CIPSI and modern variants thereof.

From the reference function Φ0j i the set of most important
interacting functions are identified based on a simple criterion
(represented by the blue arrow) and appended to the variational space
P. In the next iteration, the most important interacting functions are
identified for P0 (represented by the green arrows). This procedure is
repeated until self-convergence is reached. This Figure has been
adapted from Reference 3.

Algorithm 1 HCI selection procedure.
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Then, doubly excited functions ΦAj i ¼ EtuEvw ΦIj i� FOIS are created

by looping overall ΦIj i�P, orbital pairs ðtuÞ and finally orbital pairs

ðvwÞ. If the product jHAICIj exceeds the user-defined threshold εsel,

ΦAj i is selected for P0, otherwise it is discarded. In the original formu-

lation of HCI all functions ΦI and ΦA are SDs. Hence, for a given com-

bination of I and ðt,uÞ, the value of fHCIð ΦAj iÞ only depends on the

size of jHAIj ¼ jðtujvwÞj. Since these have been ordered in a descend-

ing order all the following values fHCIð ΦAj iÞ within the loop over ðv,wÞ
will necessarily descend, too. Accordingly the loop over ðv,wÞ can be

terminated after the first fHCIð ΦAj iÞ value falls below εsel. In this way,

many functions ΦAj i are never considered, which substantially

reduces the computational effort of the selection step. The algo-

rithm described in here can also be applied to reduce the cost of

computing the perturbative correction ΔEPT2. Finally, it should be

mentioned that the procedures described for the electronic ground

state in this section are readily transferred to electronically excited

states.

2.2 | Spin-adaptation

The Hamiltonian in Equation (1) commutes with both, the Ŝz and the

Ŝ2 operators, that is,

½Ĥ,Ŝz� ¼ ½Ĥ,Ŝ2� ¼0: ð8Þ

Consequently, a common basis of eigenfunctions of Ĥ, Ŝz, and Ŝ2

can be found. That means, the electronic states can be characterized

as spin a singlet, triplet and so forth with a magnetic spin quantum

number M. While Slater determinants composed of molecular orbitals

are eigenfunctions of Ŝz, they are not necessarily eigenfunctions of Ŝ2.

In fact, as soon as two electrons that do not occupy the same spatial

orbital are antiferromagnetically coupled, the corresponding Slater

determinant is not a true spin eigenfunction anymore. While the use of

spin-adapted guess vectors as a starting point in CI calculations allevi-

ates this problem, spin contamination can still occur through usage of

ill-suited preconditioners and the effect of numerical noise.43,44 As a

consequence, different approaches have been developed to purify the

total spin of Ψj i in SD-based CI calculations.43,45-47 CSFs on the other

hand obey spin symmetry by construction. Hence, a CSF-based CI for-

mulation comes with certain advantages. For example, since Ĥ trans-

forms as a S¼0 operator it takes a block-diagonal form when

expanded in a basis of CSFs. Accordingly, only a submatrix of H has to

be diagonalized which usually leads to a more compact representation

of Ψj i. Perhaps more importantly, a (selected) CI formulation in terms

of CSFs allows the user to target specific spin states.

A given CSF is characterized by its orbital occupation pattern or

configuration (CFG) n, spin quantum numbers S and M and an addi-

tional index μ that is necessary to distinguish the fNS degenerate spin

functions for a given number of N unpaired electrons and total spin

S.48 As discussed elsewhere in detail, there are multiple ways of con-

structing the fNS spin eigenfunctions that belong to a given combina-

tion of N (and hence n) and S.48 Herein, all CSFs correspond to spin

eigenfunctions that were generated according to the genealogical coupling

scheme. Thus each spin eigenfunction XμðN,S,MS ¼ SÞ corresponds to a

Yamanouchi-Kotani branching diagram. Using this basis, the central

quantities during a SCI calculation, that is, σ-vector and the perturba-

tive correction ΔEPT2, become contractions of molecular integrals,

state vectors and spin-adapted coupling coefficient matrices

(vide infra).24,34 These coupling coefficients are matrix elements of

second quantized replacement operators between CSFs, that is,

AIμ,Jν
pq ¼ nISIMIμjEpqjnJSJMJνh i: ð9Þ

As is common practice in nonrelativistic quantum chemistry, only

the principal component with M¼ S will be considered in this work.

All other M components give rise to degenerate states as long as no

spin-dependent terms enter the Hamiltonian. Due to a prototypical

symmetry, only a limited number of unique coupling coefficients exist.

More precisely, the value of AIμ,Jν
pq depends only on the following

quantities34:

• ðprel ,qrelÞ, the position of indices p and q relative to the singly occu-

pied orbitals in nI.

• NI, the number of unpaired electrons in nI.

• SI , the total spin of ΦI.

• ðμ,νÞ, the pair of indices that distinguish the spin eigenfunctions of

ΦI and ΦJ, respectively, among the fNISI and fNJSJ degenerate sets

of spin eigenfunctions.

Throughout this work, all degenerate spin eigenfunctions for a

given combination of n and S will be treated simultaneously. Accord-

ingly, the unique coupling coefficients required in Hamiltonian diago-

nalization and ΔEPT2 calculation are handled as coupling coefficient

(CC-) matrices ANS
prelqrel with dimension ðfNISI � fNJSJ Þ. This simultaneous

treatment of all CSFs belonging to a given configuration renders the

presented approach “configuration-based.”

3 | IMPLEMENTATION

This section outlines the details of our configuration-based HCI imple-

mentation. Subsection A describes the HCI selection procedure

before subsections B and C elaborate on the efficient calculation of

the σ-vector and the HCI perturbative correction, respectively. In the

following, orbital configurations (CFGs) that can be represented by an

occupation number vector n will be labeled with indices I, J and so

forth. Configuration state functions (CSFs) that correspond to an

occupation vector n together with a spin eigenfunction carry two

labels, for example, Iμ.

3.1 | Configuration selection

In the configuration-based HCI, the reference space P consists of a

set of configurations f ΦIj ig. All configurations ΦIj i�P can interact

UGANDI AND ROEMELT 2377
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through the Hamiltonian with up to at most doubly excited configura-

tions that are created as

Epq ΦIj i ! ΦAj i, ð10Þ

EpqErs ΦIj i ! ΦBj i ð11Þ

with ΦAj i, ΦBj i =2 P. The action of the replacement operator Epq on

configuration ΦIj i is defined by reducing the q'th and increasing the

p'th occupancy of nI by one. Of course, if through this process any

occupancy of nI becomes larger than 2 or smaller than 0, the action

results in 0. In the HCI-algorithm, the importance of configurations

ΦAj i and ΦBj i in the wave function is determined by the absolute inte-

gral values, tpq and vpq,rs defined as tpq ¼ jheffpq �0:5
P

rðprjrqÞj, vpq,rs ¼
jðpqjrsÞj and the corresponding CI-coefficient cmax

I ¼ maxμfjcIμjg.
More precisely, the importance function for singly and doubly excited

configurations is defined as

f1ð ΦAj iÞ ¼ tpq �cmax
I , ð12Þ

f2ð ΦBj iÞ ¼ vpq,rs �cmax
I : ð13Þ

A configuration is selected for inclusion in P if its corresponding

importance function exceeds a user-defined threshold εsel. Note that

the same threshold is used for single and double excitations. Further-

more, the values of coupling coefficients are removed from the impor-

tance function since they are bounded by 2 and 4 for single and

double excitations, respectively.

As outlined in Section 2.1, the efficiency of HCI configuration

selection originates from the early termination of many loops over

orbital indices p,q, r,s during excited configuration generation. This is

made possible by sorting the configurations and integrals in such a

way that the outermost loop is terminated as soon as the importance

function drops below the selection threshold εsel. A setup of the con-

figuration selection consists of the following steps:

1. Create and store maps I1 and I2:

I1 ¼fp!fðq,tpqÞgg where p,q� ½1,M�, ð14Þ

I2 ¼fp,q!fðr,s,vpq,rsÞgg where p,q, r,s� ½1,M�: ð15Þ

In I1, every key p is connected to a list of values fðq,tpqÞg that con-
sist of pairs of orbital indices q and their corresponding integrals

tpq, that is, each element is a pair ðq,tpqÞ. Importantly, the list

fðq,tpqÞg is sorted in descending order of tpq. Likewise, I2 connects

key pairs ðp,qÞ with sorted lists fðr,s,vpq,rsÞg. During the creation of

I1 and I2, tmax ¼ maxpqftpqg and vmax ¼ maxpqrsfvpq,rsg are deter-

mined and stored.

2. Create a set of generator configurations, Pgen as a subset of all var-

iational configurations of P, that satisfy cmax
I > εgen and sort the

generator configurations in a descending order based on their

cmax
I -value.49

With this data at hand, the configuration generation and selection

using the HCI-algorithm can be readily carried out. Algorithm 2 summa-

rizes all steps of the process of selecting singly-excited configurations.

The selection of doubly-excited configurations works analogously.

Although the HCI-algorithm is known for its efficiency,29 it tends

to not provide a compact wave function due to the underlying

approximations as pointed out by Tubman et al.50 Therefore, we uti-

lize the CIPSI method for further pruning of configurations after an

initial HCI-selection. To describe our CIPSI-implementation briefly, we

shall recall the corresponding importance function,

fCIPSIð ΦAμ

�� �Þ¼
P

IνHAμ,IνcIν
E�HAμ,Aμ

����
����, ð16Þ

where E is the variational energy of the previous iteration.28 The

importance function of a configuration ΦAj i is taken as the maximum

value of fCIPSI of all corresponding CSFs ΦAμ

�� �
, that is,

fCIPSI-HCI ΦAj ið Þ¼ maxμ fCIPSI ΦAμ

�� �� �� 	
: ð17Þ

During the calculation of matrix elements HAμ,Iν, the HCI-

algorithm is utilized to screen only significant configuration connec-

tions. The summation in Equation (16) does not run over all configura-

tions in P but rather over the generator configurations. Hence, while

generating the HCI-configurations according to Algorithm 2 and its two-

electron counterpart, we also find the configuration connections neces-

sary to conduct the additional CIPSI-pruning according to Equations (16)

and (17). This two-step selection procedure allows us to make efficient

use of CIPSI, which would be significantly more time-demanding if all sin-

gly and doubly excited configurations were generated and probed.

3.2 | Prefix algorithm

The HCI-algorithm for configuration selection is used in both, the vari-

ational part and the perturbative energy correction in Equation (6).

Algorithm 2 HCI singly excited configuration

selection.

2378 UGANDI AND ROEMELT
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A way to further speed up these steps is through parallel processing.

However, a parallelization over the generator configurations f ΦIgj i is
problematic, since generator configurations belonging to different

processes might interact with the same excited configuration ΦAj i
through Ĥ. Therefore, we propose a prefix-based parallelization within

the FOIS, which ensures that the parallel processes generate non-

overlapping sets of excited configurations. In this scheme, different pro-

cesses generate excited configurations that feature distinct patterns in

fixed segments of the occupation vector, called prefixes. This idea is per-

haps similar to the recent constraint-based PT2 approach by Tubman

et al.21 A straightforward way to generate the prefixes would be to con-

sider the first k orbitals and create 3k prefixes from all possible occupa-

tion patterns. However, this implies that k needs to be small and it

would infer generation of many prefixes that will likely never occur in the

HCI configuration space, such as “00000.”We propose a different proce-

dure for the creation of prefixes that aims to create more realistic prefixes

and thus achieve an improved load balancing. In our procedure, the length

k of the prefix is chosen as the number of occupied orbitals in the

HF-reference. An initial set of prefixes of length k is obtained by

extracting all of the ones that occur in the generator space Pgen. As in

a single HCI iteration, only up to double excitations can occur, so this ini-

tial set is extended by singly and doubly excited prefixes. Since the single

and double excitations can also involve orbitals out of ½1,k�, prefixes that
are obtained by incomplete excitations have to be considered. For

example, for Epq with p> k and q< k, we have to apply only the annihi-

lation operation âq on the prefix, whereas â†p is discarded. With the

final set of prefixes at hand, they are distributed evenly among the

parallel processes. The method is summarized in the following steps:

1. Gather all the unique prefixes present in the set of generators.

2. Increase the set of prefixes by performing single and double excita-

tions on the current prefixes. For the details on this step, please

look at Appendix B. 3. Distribute the prefixes among processes.

The prefix algorithm essentially introduces an intermediate for-

loop in the HCI configuration generation/selection (see Algorithm 3).

In this intermediate loop, it is tested whether the prefix can be

reached from the current generator by single and double excitations

(jΔnj≤4). If so, configuration generation and selection is performed

from that generator. We shall mention that the loop over prefixes is

set as the outermost one during computation of the PT2-correction

(cf. Equation (6)). There, the loop over prefixes is divided into batches

such that the PT2-energy is calculated incrementally. This allows for

an efficient adaption of the procedure to the available memory.

3.3 | Variational part

3.3.1 | Configuration connections

An efficient approach to compute σ-vectors during the diagonalization

of Ĥ within the P-subspace is to utilize configuration connections. In

this work, the construction of these connections is similar to the

singles and doubles Hamiltonian construction algorithm from the

review by Tubman et al.50 The one- and two-electron connections are

defined and stored as lists of triplets,

C1 ¼ ðI,J,pqÞjI,J�Ωconf; pq�Ω1
orb

� 	
, ð18Þ

C2 ¼ ðI,J,pqrsÞjI,J�Ωconf; pqrs�Ω2
orb

� 	
, ð19Þ

where Ωconf is the set of configuration indices while Ω1
orb and Ω2

orb are

the sets of composite indices for one-and two-electron excitations

respectively. The time-critical step in constructing configuration con-

nections is performing the required searches on the list of

P-configurations. In our implementation, the configurations are stored

as C++ strings which suggests the use of an unordered map for stor-

age and performing the searches. However, despite the undoubted

efficiency of hash maps, this method can become expensive for large

orbital and configuration spaces. An alternative, in this context more

efficient, approach is to make use of a prefix-tree or trie.24 A trie is a

recursive data structure that can be used to store configurations as a

set of linked nodes. In the present implementation, each node consists

of an array of three pointers, which correspond to the three possible

orbital occupations 0, 1, and 2. These pointers store the memory loca-

tions of the next nodes. A walk in the trie from top to bottom corre-

sponds to a configuration. Figure 2 illustrates this concept for two

example configurations, 20j i and 02j i. The main advantage of using a

trie is that one can perform prefix searches, that is, if a node has no

children (three crossed lines), the search is terminated early. There-

fore, a trie-based algorithm for configuration searches consists of

walking down the trie and applying creation and annihilation opera-

tors on the starting configuration along the way. For this procedure to

work efficiently, the creation and annihilation operations in Epq or

EpqErs have to be applied in an ordered manner. Consider the sum of

one-electron replacement operators as it appears in the Hamiltonian,

P
pq
Epq ¼

P
p> q

Epqþ
P
p< q

EpqþEpp: ð20Þ

For finding all one electron connections within P, two separate

walks are performed—one for p> q and the other for p< q. For the

Algorithm 3 HCI prefix-based singly excited

configuration selection.
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diagonal terms, no configuration-searches are performed. For p< q,

the search procedure is outlined in Algorithm 4. The search when

q< p, works similarly by swapping the pq-indices.

In case of two-electron connections, the search works analo-

gously, but to allow for efficient trie searches many more relations

between the indices have to be considered. A complete list of

search patterns is given in Appendix A. Finally, it should be men-

tioned that during the process of finding configuration connec-

tions, the relevant information (vide supra) about which coupling

coefficients are associated with the connection is gathered

as well.

3.3.2 | σ-vector calculation

The most time-consuming step in CI-calculations is usually the evalua-

tion of the σ-vector σ¼Hc with elements

σ I ¼
P
J

P
pq
hpqA

IJ
pqcJþ

1
2

X
J

X
pqrs

BIJ
pq,rsðpqjrsÞcJ: ð21Þ

Using a configurational resolution-of-the-identity (RI) ansatz, the

two-electron coupling coefficient CC-matrix can be rewritten as

BIJ
pq,rs ¼

P
K
AIK
pqA

KJ
rs : ð22Þ

While Siegbahn's approach for evaluating σ as product of vector-

ized intermediates51 works remarkably well in the context of FCI,

where the CI-space coincides with the RI-space, it may lead to mem-

ory and performance problems for SCI calculations as the configura-

tional RI space is usually significantly larger than the CI space P. As an

alternative, the presented program constructs, stores and utilizes two-

electron configuration connections during the σ-vector evaluation.

Clearly, the bottleneck in this approach is the calculation of matrix

F IGURE 2 A simple configuration trie. The left path of
connecting lines corresponds to 02j i and the right one to
20j i. The crossed lines refer to null pointers, which means
that a node has no children.

Algorithm 4 Generation of one electron configuration connections when p < q.
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products AIK
pqA

KJ
rs . We shall first note that since replacement operators

provide a one-to-one mapping between configurations, the summa-

tion over K in Equation (22) can be removed leading to

BIJ
pq,rs ¼AIK

pqA
KJ
rs : ð23Þ

To minimize the number of matrix-times-matrix multiplications,

the loops in the σ-vector calculation are arranged such that the read-

ing of one-electron CC-matrices from memory or the computation of

2-electron CC-matrices is done in the outermost loop. Each CC is then

used many times in multiplications with c. Such a loop arrangement

can be done by a making use of two maps, M1 and M2, that are con-

structed during the construction of configuration connections. Each

key of the maps is a set of numbers that uniquely specifies either a

one- or two electron coupling coefficient matrix, whereas the value is

a list of configuration connections corresponding to the specified CC-

matrix. In the case of an arbitrary one-electron excitation

Epq ΦIj i! ΦJj i, the involved one-electron CC-matrix is uniquely identi-

fied by a tuple of 5 integers,

t1 ¼ðe,nI,nJ,prel,qrelÞ, ð24Þ

comprising the excitation type e, the numbers of unpaired elec-

trons nI, nJ in configurations I and J and relative positions prel, qrel

of donor and acceptor orbitals p and q with respect to the

singly occupied orbitals. Similarly, for a double excitation

Epq ΦIj i! ΦKj i, Ers ΦKj i! ΦJj i, a tuple of nine integers

t2 ¼ðe1,e2,nI,nK ,nJ,prel1,qrel1,prel2,qrel2Þ, ð25Þ

fully identifies the corresponding 2-electron CC-matrix. These tuples

can be conveniently used as a key for an ordered map in C++ by mak-

ing use of the STL objects std::tuple and std::map. Thus, M1

and M2 have the following structure:

M1 ¼ t1 !C1f g, ð26Þ

M2 ¼ t2 !C2f g, ð27Þ

where C1 and C2 are configuration connection lists. The σ-vectors are

constructed through loops over keys in M1 and M2 that in turn feature

loops over connections in the corresponding lists as outlined in

Algorithm 5.

Due to the frequent application of matrix-matrix or matrix-vector

operations in the time-limiting parts of the code, the method is well-

suited for making use of fast linear algebra libraries. In particular, the

rearrangement of loops in the σ-vector calculation poses a suitable

case for using just-in-time (JIT) compilation. By applying JIT to the

outermost-loop of Algorithm 5, a runtime function or kernel is pre-

pared to carry out the matrix-vector products in the innermost loop.

We have found that typically for a single matrix-product in the outer-

most loop, many subsequent matrix-vector products are calculated.

This means that the time for kernel-preparation is negligible. In

addition, most of the CC-matrices have relatively small dimensions

(below 100), in which case JIT methods are known to be advanta-

geous over conventional BLAS/LAPACK routines. For the matrix-

vector product via JIT-kernel, we used the LIBXSMM library.52 For

the rest of linear algebra operations, we used the C++ Armadillo

library linked with Intel MKL.53,54 Since the CC-matrices have some

sparsity and some elements equal to one, we believe that further

speedups could be gained in the future by developing more specific

runtime-compiled kernels.

3.4 | Perturbative correction

The perturbative correction to the SCI energy is calculated by

ΔEPT2 ¼
P
Aν

ðPIμHAν,IμcIμÞ2
E�HAν,Aν

, ð28Þ

During the evaluation of Equation (28), the prefix algorithm

described above (see Section 3.2) is employed to achieve paralleliza-

tion with a reasonable load-balance. Furthermore, it allows for the cal-

culation of ΔEPT2 in a batched manner, which reduces the memory

requirement of this step, thereby avoiding the need for a semistochas-

tic approach.20 In the present implementation, each batch comprises

20 prefixes. This choice yielded a reasonable performance with

respect to the memory usage in our test calculations. As mentioned

above, the configuration connections through Ĥ in the summation of

Equation (28) are efficiently screened in the same way as during the

configuration selection (see, for example, Algorithm 2). In order to

achieve accurate results, the selection thresholds are chosen typically

1–3 orders of magnitude smaller and all elements of P are considered

“generators,” that is, Pgen ¼P.

4 | RESULTS

This section presents results of a series of test calculations that have

been chosen to demonstrate some key properties, strengths and also

weaknesses of the presented approach. Computational details of the

underlying calculations that are not of immediate relevance to the

presented data (e.g., basis sets) can be found in Section 5.

Algorithm 5 Two-electron contributions to the

σ-vector calculation.
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4.1 | Cyanogen

Three sets of test calculations on the cyanogen molecule ((CN)2,

18 electrons in 32 orbitals) were conducted with the aim of demon-

strating different aspects of the implemented method. First, the

behavior of variational energy with respect to different configuration

selection procedures and parameters is investigated. Then, the depen-

dence of PT2 correction on the corresponding selection thresholds

are scrutinized before convergence of the total energy towards FCI

limit is compared to DMRG, an alternative approximate FCI method

that employs a spin-adapted basis.55

4.1.1 | Variational part

As outlined above, there are several options for performing configura-

tion selection in our HCI implementation. The HCI configuration

selection can be used by itself or together with CIPSI-pruning. Addi-

tionally, the selection procedure can be performed based on all config-

urations in the current variational space ðεgen ¼0Þ or based on the

generators subset ðεgen > 0Þ. Accordingly, four different settings for

the configuration selection have been tested and compared

(I) HCI with εgen ≠0.

(II) HCI with εgen ¼0.

(III) HCI with CIPSI-pruning and εgen ≠0.

(IV) HCI with CIPSI-pruning and εgen ¼0.

Tables 1 and 2 present the variational energies as obtained with

and without the generator configuration approximation, respectively,

for varying selection thresholds. We shall discuss the results from

Table 1 first. As expected, the CIPSI-pruned scheme provides a wave

function with a smaller CSF-dimension compared to “pure”

HCI-selection. For combinations of loose thresholds (εgen ≥0:5�10�1),

CIPSI-pruning reduces the CSF dimension between 4% and 17%. This

reduction comes at the cost of a variational energy increase between

3.3 mEh ðεgen ¼1�10�1) and 0.8 mEh (εgen ¼0:5�10�1). Upon further

tightening of thresholds, the energy difference between CIPSI-pruned

HCI and “pure” HCI selection schemes become smaller while the CSF

dimension reduction slightly increases to values between 15% and 25%.

Thus, the quality of CIPSI-pruned selection relative to the “pure” HCI

selection improves with tighter thresholds. This finding can be rational-

ized by considering the perturbative nature of CIPSI, which is expected

to become more accurate as the quality of the reference wave function

reference improves. In general, CIPSI-pruning acts to partially remedy

the tendency of HCI to select a considerable number of unimportant

configurations in addition to the important ones. Most likely, the

improvement in this regard achieved by CIPSI pruning is due to the

inclusion of the denominator in Equation (16). In terms of timings,

CIPSI-pruning has two opposing effects. While the time required for

configuration selection is necessarily increased, the reduced dimension

of P infers lower computational costs during the Davidson diagonali-

zation procedure. Our data indicates that for loose thresholds, the for-

mer effect outweighs the latter, leading to slightly larger calculation

times, whereas the CIPSI-pruned calculation times are reduced by up

to 40% when tight thresholds are invoked.

While the general trends observed in the previous paragraph are

also seen when Pgen ¼P, that is, for scheme II and IV, the difference

between “pure” HCI selected and CIPSI-pruned selection is larger in

terms of both, variational energies and CSF dimension. It should fur-

thermore be noted that when εvar is chosen such that similar CSF

dimensions are obtained, the CIPSI-pruned scheme provides lower

energies. For example, compare the results with εvar ¼0:9�10�3 for

the “pure” HCI selection and with εvar ¼0:3�10�3 for the CIPSI-

pruned scheme. Since CIPSI-pruning in general leads to more compact

wave function representations at only moderately higher

TABLE 1 Calculated variational HCI
energies for the cyanogen molecule using
approximations I and III, the generator
approximation is applied, εgen ≠0.

Approximation I Approximation III

εgen εvar
a Nvar(CSF) Evar tb Nvar(CSF) Evar tb

1.00 1.00 4612 �184.7010 1.1 4409 �184.6977 1.2

0.90 0.90 4667 �184.7010 1.0 4455 �184.6976 1.1

0.80 0.80 4731 �184.7010 1.1 4494 �184.6976 1.7

0.70 0.70 48,538 �184.7255 5.2 40,482 �184.7247 4.9

0.60 0.60 67,067 �184.7291 6.5 55,856 �184.7282 6.2

0.50 0.50 68,990 �184.7291 6.5 57,760 �184.7283 6.0

0.40 0.40 77,348 �184.7321 7.0 92,268 �184.7351 9.4

0.30 0.30 203,689 �184.7438 16.9 171,263 �184.7428 15.7

0.20 0.20 437,237 �184.7502 35.2 350,784 �184.7498 28.5

0.10 0.10 2,132,793 �184.7643 271.0 1,588,065 �184.7638 227.3

0.09 0.09 2,502,339 �184.7651 338.9 1,868,880 �184.7647 207.2

0.08 0.08 2,886,956 �184.7659 432.5 2,158,406 �184.7656 303.8

Note: All energies are given in Hartrees, wall time is given in seconds.
aεgen ¼ �10�1, εvar ¼ �10�4.
bThe calculations were performed on one compute node with AMD EPYC 7451 24-core processor.
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computational costs (if at all higher), we would advocate use of the

HCI/CIPSI-scheme for configuration selection.

4.1.2 | PT2-correction

The combination of the HCI algorithm with the above described prefix

algorithm enables efficient calculation of perturbative corrections in our

configuration-based HCI implementation. While the former reduces the

space of considered perturber-functions, the latter allows for a well-

balanced parallelization and memory-efficient batching. The results and

timings for a set of calculations with varying εPT2 presented in Table 3

support this assessment. For example, even with a tight threshold of

εPT2 ¼0:1�10�6, only about a billion CSFs out of the complete set of

over 7 billion CSFs in the FOIS (cf. value of NðCSFÞ for εPT2 ¼0:0) are

considered during the calculation of EPT2, resulting in a significant

speedup at almost no loss of accuracy. In fact, the difference of EPT2 is

less than 10�5 Eh, whereas the calculation time is reduced by a factor

of � 5. Of course, when εPT2 is relaxed NðCSFÞ and tPT2 are further

reduced at the cost of accuracy. Yet, at εPT2 ¼1:0�10�6 the error

introduced to the perturbation correction still amounts to less than

1 mEh. It is noteworthy that the perturbation correction becomes

larger with a less tight threshold emphasizing its non-variational char-

acter. Finally, we would like to note that in other test cases (vide infra)

tighter thresholds were necessary to achieve a similar level of

accuracy.

4.1.3 | Comparison with DMRG

Lastly, we demonstrate the ability of the HCI method to efficiently

provide energies near the FCI-limit. In Table 4, the approximate FCI

energies as obtained from the DMRG with different bond dimensions

are compared to the HCI energy. Convergence of the DMRG energy

with respect to the bond dimension indicates that the final energy at

M¼4000 is sufficiently accurate for the current purpose. With

thresholds of εgen ¼1�10�3, εvar ¼1�10�6 and εPT2 ¼1�10�7 the

HCI energy is calculated to be 0.02 mEh below this DMRG result at

approximately 5% of the computational cost. The variational and per-

turbative parts took 1797 and 2182 s on three CPU nodes with

24 cores, respectively. It must be noted, however, that the DMRG

energy is fully variational whereas the perturbative correction of the

HCI energy that amounts to about 2.5 mEh in this case is

nonvariational.

TABLE 2 Calculated variational HCI
energies for the cyanogen molecule using
approximations II and IV, the generator
approximation is not applied, εgen ¼0.

Approximation II Approximation IV

εvar
a Nvar(CSF) Evar tb Nvar(CSF) Evar tb

1.00 189,677 �184.7405 27.4 38,890 �184.7241 9.9

0.90 226,632 �184.7426 32.4 44,857 �184.7264 11.8

0.80 276,233 �184.7447 42.8 52,382 �184.7290 13.2

0.70 342,875 �184.7469 38.8 62,014 �184.7317 14.6

0.60 440,203 �184.7493 55.9 76,394 �184.7348 17.8

0.50 596,395 �184.7521 66.5 97,631 �184.7380 26.8

0.40 877,798 �184.7555 109.5 134,236 �184.7419 30.3

0.30 1,439,571 �184.7593 202.1 203,074 �184.7468 55.6

0.20 2,837,127 �184.7637 420.3 377,624 �184.7530 103.6

0.10 8,342,299 �184.7683 1365.6 1,107,033 �184.7616 271.3

0.09 9,691,958 �184.7687 1653.6 1,293,958 �184.7626 391.6

0.08 11,444,844 �184.7692 1919.3 1,539,819 �184.7635 387.7

Note: The energies are given in Hartrees, wall time is given in seconds.
aεvar ¼ �10�3.
bThe calculations were performed on one compute node with AMD EPYC 7451 24-core processor.

TABLE 3 Calculated HCI energies of (CN)2 with varying
thresholds for the PT2-correction.

εPT2
a EPT2 EHCI NPT2(CSF) tPT2

b

1.0 �0.00971 �184.77356 485,849,589 513.7

0.9 �0.00969 �184.77353 520,075,880 580.6

0.8 �0.00966 �184.77351 558,335,553 594.7

0.7 �0.00964 �184.77349 601,282,559 614.0

0.6 �0.00962 �184.77347 649,727,983 627.3

0.5 �0.00961 �184.77346 705,287,008 657.6

0.4 �0.00959 �184.77344 770,073,206 686.1

0.3 �0.00958 �184.77343 849,282,942 727.6

0.2 �0.00957 �184.77342 954,714,920 789.0

0.1 �0.00957 �184.77341 1,131,387,989 857.9

0.0 �0.00957 �184.77342 7,667,081,295 4311.5

Note: For the variational part, fixed thresholds εgen ¼10�2 and εvar ¼ 10�5,

were used. The energies are given in Hartrees and the timings in seconds.
aεPT2 ¼ �10�6.
bThe calculations were performed on one compute node with AMD EPYC

7451 24-core processor.
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4.2 | Fe(II)Porphyrin

The prediction of triplet-quintet (T-Q) energy gap, ΔET-Q ¼ Eð3A2gÞ
�Eð5A1gÞ, in Fe(II) porphyrin has served as a challenging test case for

multireference methods in many instances56-59 and despite intense

efforts the size of the gap is still subject of an ongoing debate.59 A

proper quantitative description of this system is out of the scope of

the current work since at least two important ingredients for such a

treatment are not considered but will be subject to future work:

active-active orbital rotations and dynamical electron correlation.

Instead, the presented results will serve to demonstrate the perfor-

mance of the current HCI method in describing higher spin states. In

Table 5, we have compiled the results of HCI calculations of the low-

est triplet and quintet states of Fe(II) porphyrin with an active space

of 40 electrons in 42 orbitals. Starting from a set of quasi-natural

NEVPT2 orbitals60,61 (see Section 5 for details), the molecular orbitals

were optimized under consideration of internal-active, internal-

external, and active-external rotations. The orbital coefficients of the

final set of orbitals are provided in the Electronic Supporting Informa-

tion. When only the variational part of the HCI energies is considered,

the T-Q gap is predicted to amount to ΔET-Q ¼6:5 mEh (0.17 eV),

which corresponds to a quintet ground state. Upon inclusion of the

perturbative correction the value decreases to ΔET-Q ¼0:0 mEh (0.0

eV). This result points towards a negative T-Q gap, which is in agree-

ment with previous theoretical estimates that include dynamic elec-

tron correlation57,59 and experimental evidence for structurally

related compounds.62-69

In the current context it is instructive to consider and discuss the

number of configurations and CSFs involved in the different steps of

the underlying HCI calculations. The number of configurations

selected in the variational and perturbative part of the quintet calcula-

tion is smaller than for the triplet calculation but both CSF dimensions

are larger. This finding is connected to the increasing number of CSFs

for a given configuration with increasing spin multiplicity.70 On aver-

age, the multiplicity of selected configurations in the variational and

perturbative step of the quintet calculation is larger. Consequently,

the calculation of the quintet state energy required significantly more

computer time than the corresponding triplet calculation, especially so

during the perturbative step. At this point we would like to mention

that while the presented deterministic approach to the PT2 correction

is able to take into account quite a large number of CSFs, the 3-step

semistochastic approach presented in Reference 20 appears to take

into account a significant larger number of Slater determinants. Yet, a

direct comparison of the two approaches for the same system on the

same computational setup has not been made for this work.

Finally, it is noteworthy that the variational energy calculation of

the triplet state is quite efficient compared to the DMRG for this par-

ticular case. A DMRG calculation on the triplet state with M¼2000

resulted in a total energy of EDMRG ¼�2244:1619 Eh in 41,073 s

using the same computational setup as the aforementioned HCI calcu-

lations. In comparison, the variational HCI energy is by 2.5 mEh lower

while the calculation was about 10-times faster faster. In our view,

this clearly indicates the potential of a configuration-based HCI imple-

mentation for applications in transition metal chemistry.

4.3 | Co-based valence tautomer

An additional set of test calculations on [Co(sq)2(bpy)] (sq—semiqui-

none, bpy—2,2'-bipyridine, see Figure 3), 1, a known valence

tautomer,71 aims to highlight one of the key features of the presented

configuration-based HCI method: its ability to selectively target a

user-defined number of states for a given spin state. In its electronic

ground state, 1 features a CoIII center with a d6 low-spin configuration

together with a ligand-centered radical. On account of the presence

of two symmetry-equivalent quinone ligands, two (near-) degenerate

TABLE 4 Calculation of approximate FCI energies of (CN)2 near the FCI-limit.

DMRG HCI

M 1500 2000 3000 4000 Var. PT2 Total

E �184.77348 �184.77373 �184.77396 �184.77406 �184.77159 �0.00249 �184.77408

ta 12,767 18,828 44,826 101,619 2177 1783 3960

Note: M denotes the DMRG bond-dimension. For HCI the thresholds were εgen ¼1�10�3, εvar ¼1�10�6 and εPT2 ¼1�10�7. Energies are given in

Hartrees, calculation time in seconds.
aThe calculations were performed on three compute nodes with AMD EPYC 7451 24-core processor—in total 72 cores.

TABLE 5 Calculated HCI energies for iron porphyrin.

Triplet Quintet

Evar �2244.1645 �2244.1710

EPT2 �0.0431 �0.0366

EHCI �2244.2076 �2244.2076

Nvar (CSF) 49,329,073 82,365,454

NPT2 (CSF) 37,637,828,661 52,146,277,933

Nvar (CFG) 1,377,227 1,025,103

NPT2 (CFG) 279,468,444 174,169,922

tvar 3221 13,188

tPT2 62,368 276,736

tHCI
a 65,588 289,924

Note: The HCI thresholds were εgen ¼1�10�2, εvar ¼1�10�5

and εPT2 ¼1�10�6.

Abbreviations: CFG, configuration; CSF, configuration state function.
aThe calculations were performed on three compute nodes with AMD

EPYC 7451 24-core processor—in total 72 cores.
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states with the unpaired electron being localized on either of the two

ligands exist. Upon heating 1 beyond a solvent-dependent critical

temperature Tc, the nature of the electronic state changes consider-

ably as indicated by a number of experimental observations. It is

assumed that this change of spectroscopic and physical properties is

induced by a ligand-to-metal charge transfer as observed in numerous

other Co based valence tautomers.72 Such a charge transfer gives rise

to a d7 configuration on the Co center and two holes in the ligand

valence shell thereby giving rise to a number of near-degenerate

states of doublet, quartet and sextet spin multiplicity.

Table 6 summarizes the calculated energies for the four lowest dou-

blet states, three lowest quartet states and the lowest sextet state of

1 and the corresponding computer timings. For these calculations, the

CIPSI-pruned HCI method with an active space of 20 electrons in

20 orbitals was used. Analogous to the implementation by Holmes et al.,73

the union of selected configurations for the ground and each excited state

is chosen to build the variational space during HCI-iterations.

Overall, the calculation of the three quartet states was most time

consuming whereas the calculation of the four doublet states required

the least computer time. This observation can likely be attributed

again to the increase of the number of CSFs with increasing spin mul-

tiplicity of a given configuration. Owing to the lowest number of cal-

culated roots and the concomitant reduction of NvarðCSFÞ the

variational part of the sextet calculation was about one order of mag-

nitude faster than the other two sets of calculations. Yet, tPT2 is on

the same order of magnitude for all three sets; again owing to the

connection between spin multiplicity and NðCSFÞ. Finally, we would

like to emphasize that it is the spin-adapted nature of the many-

electron basis in the presented HCI implementation that allows for an

a priori targeting of a user-specified number of roots for each spin

multiplicity.

4.4 | Nickel-oxyl complex

In a number of chemical and biological oxidation reactions high valent

transition metal oxo species are key intermediates.74-76 An interesting

question with regard to these compounds is their electronic

TABLE 6 Calculated ground and
excited states energies for a co-valence
tautomer in different spin states.

State Nvar(CSF) Evar EPT2 EHCI tvar tPT2 tHCI
a

Doublet

1 6,156,555 �2632.8940 �0.0390 �2632.9329 15,536 14,467 30,004

2 �2632.8012 �0.0410 �2632.8423

3 �2632.8004 �0.0384 �2632.8388

4 �2632.7970 �0.0467 �2632.8437

Quartet

1 3,995,439 �2632.8958 �0.0219 �2632.9177 22,300 44,416 66,717

2 �2632.8943 �0.0270 �2632.9213

3 �2632.8059 �0.0262 �2632.8321

Sextet

1 1,778,740 �2632.8935 �0.0025 �2632.8961 1602 40,847 42,449

Note: The energies are given in Hartrees and time in seconds. The thresholds were εgen ¼ 1�10�2, εvar ¼
1�10�5 and εPT2 ¼1�10�6.
aThe calculations were performed on two compute nodes with AMD EPYC 7451 24-core processor—in

total 48 cores.

F IGURE 3 Tautomerization
of the investigated [Co(sq)2(bpy)]
complex 1.
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distribution in the vicinity of the active metal center, for example,

whether the compound can be characterized as metal-oxo (M=O) or

metal-oxyl (MO�). Obviously, the spin density is a useful means to

judge the relative importance of the two resonance structures as it

provides immediate access to the localization of unpaired electrons. In

the presented HCI method, the spin density is readily calculated

through contraction of operator matrices TIJ
p,q that contain matrix ele-

ments of the spin tensor operator

TIμ,Jν
p,q ¼ nISIMIμh j 1ffiffiffi

2
p ða†pαaqα�a†pβaqβÞ nJSJMJνj i ð29Þ

with state vectors. Appendix C provides the details of how these

operator matrices are efficiently calculated for the principle compo-

nents with M¼ S. To demonstrate the utility of this feature of our HCI

method, we have conducted a HCISCF calculation on Ni-oxo interme-

diate 2 (top panel of Figure 4) which has been studied previously on

the DFT level of theory by Figg and Cundari.77 The bottom panel of

Figure 4 depicts an isosurface of the spin density that corresponds to

the lowest triplet state obtained with an active space of 20 electrons

in 20 orbitals. These orbitals comprise a blend of metal 3d orbitals and

ligand based π orbitals and oxygen p-orbitals as suggested by the

ASS1ST procedure.60,61 It is obvious that the spin density is consider-

ably spread over both, the Ni center and the oxygen ligand thus indi-

cating the existence of Ni(III) oxyl rather than a Ni(IV) oxo species.

This assessment is further substantiated by Mulliken spin populations

of 1.1 and 1.0 on the Ni O atoms, respectively.

5 | COMPUTATIONAL DETAILS

This section outlines the computational steps and methods used to

produce the results presented in the previous section.

Cyanogen. The geometry of the cyanogen molecule (CN)2 was

taken from Reference 78. Molecular orbitals for the presented MR

calculations were obtained from a restricted HF calculation with

ORCA (version 5.0.3) using Ahlrichs SV basis set.79,80 Subsequent HCI

and DMRG calculations were performed with an active space of

18 electrons in 32 orbitals.

Fe(II) porphyrin. A CASSCF (12e,12o) and PC-NEVPT2 calculation

was performed using the ORCA program package to yield PC-

NEVPT2 natural orbitals as the starting orbitals. Then, a DMRGSCF

(24e,22o) calculation was carried out with the MOLBLOCK program

which interfaces the BLOCK code as an active space DMRG

solver.55,81 On top of the converged DMRGSCF calculation, ASS1ST

provided further improved starting orbitals for the presented HCI cal-

culations.60,61 During the ASS1ST procedure a maximum bond dimen-

sion of M¼500 was used. The ASS1ST quasi-natural orbitals were

then fed as starting orbitals for HCISCF orbital optimization. Several

optimizations were carried out by sequentially tightening the thresh-

olds. Finally, a HCI calculation including the PT2-correction was per-

formed to yield final energies for the calculation of the triplet-quintet

energy gap. In the HCISCF orbital optimization, active-active rotations

and the PT2-correction were not included. All calculations on

Fe(II) porphyrin employed the def2-SVP basis set.82

Co-valence tautomers. We considered the cobalt complex

[Co(sq)2(bpy)] (sq – semiquinone, bpy – 2,2'-bipyridine) from a previ-

ous DFT-study by Sato and coworkers.71

The geometry was optimized at DFT level using the TPSSh func-

tional with a ZORA def2-TZVP(-f) basis set. The starting orbitals for

SCI calculations were obtained from a state-averaged DMRGSCF

optimization with M¼3000. In the start of SCI calculations, the basis

set was projected from def2-SVP to the def2-TZVP basis set.80 For

geometry optimization Orca5 was used.79 The multireference calcula-

tions were carried out with the MOLBLOCK/BLOCK codes.55

Nickeloxyl. The geometry was taken from a previous study by

Figg and Cundary.77 The final active space was chosen to be 20 elec-

trons in 20 orbitals based on results from the ASS1ST procedure with

M¼500. The orbitals from ASS1ST were optimized using HCISCF, in

the end of which spin densities were obtained. All calculations on

2 utilized the def2-SVP basis set.

6 | CONCLUSIONS

We have developed and implemented a configuration-based SCI

method designed to capture static electron correlation within the

active space framework for the electronic ground and excited states

F IGURE 4 Chemical structure
(top) and the corresponding
calculated spin density (bottom)
of the investigated Ni-oxo
complex 2.
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of molecules. The selective nature of the method reduces the wave

function dimension compared to FCI significantly, thereby enabling

calculations with large active spaces using modest computational

resources. In particular, through the use of HCI algorithm coupled

with CIPSI-pruning, a compact wave function representation is

obtained efficiently. Moreover, applying the HCI concept for calcula-

tion of the perturbative energy correction leads to massive savings in

required computational resources. A set of test calculations have

demonstrated that the performance of the presented method in terms

of computer timings is competitive with other approximate FCI

schemes. For example, it outperforms the DMRG for ground state cal-

culations of cyanogen and the lowest triplet state Fe(II) porphyrin.

Yet, we believe it should be noted at this point that a simple compari-

son of timings might not always be the single relevant factor when

evaluating the utility of a given theoretical method for a planned com-

putational investigation. Other criteria such as variationality or spin-

symmetry of the wave function might be similarly important.

A key feature of the method presented in here is that the com-

puted wave functions are expanded in a strictly spin-adapted basis. As

a result, electronic states with a given spin multiplicity can be specifi-

cally targeted by the user, which can turn out to be essential, for

example, during computational studies of molecules with multiple

open shells like the Co-based valence tautomer 1. Furthermore, since

all spin eigenfunctions for a given configuration are treated simulta-

neously, the calculated electronic energies do not depend on the

order of active orbitals and all relevant computations rely on efficient

matrix operations. Through a simple adaptation of the underlying gen-

eration routines for one-electron coupling coefficients, the presented

configuration based HCI program allows for the evaluation of spin

densities at a small extra cost.

While the HCI algorithm is inherently efficient, the demon-

strated performance of the method relies to a high degree on details

of its implementation. For example, the chosen loop structure mini-

mizes the number of redundant matrix operations which in turn are

optimized by choosing regular BLAS or JIT-compiled routines

depending on the matrix-size. Our prefix-based parallelization

scheme ensures an efficient and well-balanced parallelization of the

workload during calculation of the σ-vector and the perturbative cor-

rection. In this way, a (semi-) stochastic treatment of the perturbative

correction as required in previous HCI implementations could be

avoided. Moreover, the usage of a trie-based data structure leads to

significant speedups during the many necessary searches in the con-

figurational space.

Despite the performance of our configuration-based HCI

implementation, we envisage several routes for improvements and

extensions. First, the selection of spin functions for configurations

with a large number of unpaired electrons ( > 20) will have to be

done in a CSF-specific manner to avoid an unfavorable scaling of

required computer memory and time. Moreover, a combination of

MPI- and OpenMP-based parallelization would improve the parallel

computational performance while keeping memory requirements

lower. Finally, the presented implementation will form the basis for a

specifically designed adaptation of the NEVPT2 approach to the

calculation of dynamic electron correlation effects and nuclear gradients

for state-averaged CASSCF calculations with large active spaces.
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APPENDIX A: TWO-ELECTRON CONFIGURATION

CONNECTIONS

To reduce the number of connections to be stored and also save some

time in the σ-vector calculation, we make use of the symmetries,

ΦIh jĤ ΦJj i ¼ ΦJh jĤ ΦIj i, ðA1Þ

EpqErs ¼ ErsEpq ðwhen jΔnj ¼4Þ, ðA2Þ

where we have defined Δn¼PM
p jnIp�nJpj to denote the accumulative

difference between two configurations. We split the two-electron

replacement operator into multiple parts,83
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To construct the two electron configuration connections, we have

to apply the replacement operators on the starting configurations.

There are multiple ways to order the creation and annihilation

operations in a double excitation and we shall consider all of them

here. In the following, the superscript 0 on orbital index denotes

application of both annihilation and creation or vice versa. When

jΔnj ¼4, we have enforced that pq< rs. Since we can write

pq¼ pMþq, it follows that p< r) pq< rs and if p¼ r, q< s) pq< rs. In

the 4-th case of EpqErs, the constraint p< r leaves q and s undeter-

mined. Their order does not change the final configuration that is cre-

ated in the excitation, but it determines which kind of CCs are

involved. Hence in the implementation, for each EpqErs-excitation, we

also consider an excitation with q,s-swapped in the generation of con-

figuration connections.

• jΔnj ¼2

1. EpqEqr

q0 < p† < r, ðA7Þ

q0 < r < p†, ðA8Þ

p† < q0 < r, ðA9Þ

r < q0 < p†, ðA10Þ
p† < r < q0, ðA11Þ

r < p† < q0: ðA12Þ

2. EprErp

p0 < q< r†, ðA13Þ

p0 < r† < q, ðA14Þ

q< p0 < r†, ðA15Þ

r† < p0 < q, ðA16Þ

q< r† < p0, ðA17Þ

r† < p< p0: ðA18Þ

• jΔnj ¼4

1. EpqEpq

2�p† < q, ðA19Þ

q<2�p†: ðA20Þ

2. EpqEpr

2�p† < q< r, ðA21Þ

q<2�p† < r, ðA22Þ

q< r < 2�p†: ðA23Þ

3. EpqErq

2�q< p† < r†, ðA24Þ

p† <2�q< r†, ðA25Þ

p† < r† <2�q: ðA26Þ

4. EpqErs

p† < q< r† < s, ðA27Þ

p† < r† < q< s, ðA28Þ

p† < q< s< r†, ðA29Þ

q< p† < r† < s, ðA30Þ

q< s< p† < r†, ðA31Þ

q< p† < s< r†: ðA32Þ
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Note that, although the order of creation and annihilation opera-

tions can be swapped for the purpose of performing prefix searches,

the order has to be restored back to the canonical order when the

connection is established. For example, for the ordering p† < r† < q< s,

we have to restore the order pqrs—the two-electron integrals and CC-

matrices have some symmetry, but they are not completely permuta-

tionally invariant.

APPENDIX B: GENERATION OF PREFIXES

In the configuration selection procedure, only single and double exci-

tations are applied on the set of generator configurations. This con-

strains, which kind of prefixes can occur in the space of excited

configurations. Because the prefix is usually smaller than the configu-

ration, k ≤M, it can happen that the creation and annihilation opera-

tions of a single or double replacement operator split between the

prefix and the rest of the configuration. We have to consider all of

these possible splittings to ensure that we do not miss any possible

excitations. Below, we list the different possibilities of annihilation

and/or creation operations that can be applied on the prefixes:

1. Epq

p≤ k,q> k : p†, ðB1Þ

p> k,q≤ k : q, ðB2Þ

p≤ k,q≤ k : p†q: ðB3Þ

2. EpqErs

p≤ k,q> k, r ≤ k,s> k : p†r†, ðB4Þ

p> k,q≤ k, r > k,s≤ k : qs, ðB5Þ

p≤ k,q≤ k, r ≤ k,s> k : p†qr†, ðB6Þ

p≤ k,q≤ k, r > k,s≤ k : p†qs, ðB7Þ

p≤ k,q≤ k, r ≤ k,s ≤ k : p†qr†s: ðB8Þ

Note that the possibilities, where only one operation occurs in

the prefix, was covered in the Epq-case.

APPENDIX C: SPIN TENSOR OPERATOR MATRICES

Just like their singlet counterparts Epq, the triplet spin tensor opera-

tors T̂
0
pq used to produce spin densities in here correspond to single

excitations on the level of occupation number vectors nI. Accordingly,

four different kinds of matrix elements can be formed,

DOMO!SOMO, SOMO!Virtual, SOMO!SOMO and DOMO!Vir-

tual. As demonstrated in Reference 34, the first two classes and the

last two classes are connected through simple matrix transpositions.

Furthermore, just like for AIJ
pq-matrices the number of nonredundant

matrices is rather limited. Analogous to eq. (24) of Reference 34, oper-

ator matrices that correspond to SOMO!SOMO excitations can be

computed through

TN
S ðT̂

0

pqÞ¼ sðp,qÞ �C�USðR̂NÞ�USðP̂NÞ, ðC1Þ

where sðp,qÞ¼1, �1 is a sign factor connected to the relative posi-

tions of p and q with respect to the singly occupied orbitals in the bra

and ket occupation number vectors while USðR̂NÞ and USðP̂NÞ are rep-

resentation matrices of permutation operators P̂
N
and Q̂

N
in the basis

of genealogical spin eigenfunctions with N unpaired electrons and

totals spin S. Operators P̂
N
and R̂

N
act to bring the two involved singly

occupied molecular orbitals p and q to positions N�1 and N with

respect to the other singly occupied orbitals. Finally, the projection

matrix C takes the form

Ckk0 ¼

2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ2Þð2Sþ1Þp if k¼ k0 þ f11

2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ1Þð2SÞp if k¼ k0 þ f11þ f12

0 otherwise,

8>>>>>><
>>>>>>:

ðC2Þ

where f11 ¼ fN�2Sþ1 and f12 ¼ fN�2S are the numbers of independent

spin functions for N�2 unpaired electrons and total spins of S�1

and S, respectively. Note, that Equation (C2) is a slight variation of

eq. (21) of Reference 34.

Triplet spin tensor operators that correspond to DOMO!SOMO

excitations are calculated according to

TN
S ðT̂pqÞ¼TN

S ðT̂pNþ1Þ�AN
S ðÊNþ1qÞ, ðC3Þ

where Nþ1 corresponds to an empty dummy orbital as described in

the seminal work by Knowles and Werner.84 Hence, TN
S ðT̂pNþ1Þ and

AN
S ðÊNþ1qÞ are readily evaluated using Equations (C1) and (24) of

Reference 34, respectively.
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