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Summary
The work presented in this thesis set out to test various forms of learning and

behavior adaptation. The bulk of this work was done using a naturally occurring

clonal fish species, the Amazon molly Poecilia formosa. This sociable, all female

species produces genetically identical offspring through asexual reproduction. With

the advent of increasingly detailed approaches to discriminate behavioral differences,

such clonal species are vital in ethology as they serve as a perfect natural model

to test for individual behavioral differences and the development of such. Since

genetical variation can largely be excluded as a confounding factor, attention can

be drawn towards the differences among individuals due to their prior experience.

In the first three chapters of the work presented here, the individual information

and experience was altered by applying operant conditioning or by exposing the

animals to novel or well-known situations. This was done both individually and in a

group setting. By doing so, the effect of the social context, as well as the physical

surroundings on behavioral aspects such as swimming speed and jumping probability

was determined. Minute behavioral differences were then evaluated in the following

chapter by comparing manual approaches and automated quantification tools. Lastly,

a methodological approach was taken in which the power of artifical neural networks

was harnessed to track individuals in convoluted natural scenes during predator-prey

interactions.
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Zusammenfassung
Die in dieser Arbeit vorgestellten Arbeiten zielten darauf ab, verschiedene Formen

des Lernens und der Verhaltensanpassung in Tieren zu testen. Hierbei wurder

der Großteil dieser Arbeit an einer natürlich vorkommenden klonalen Fischart, der

Amazonas-Molly Poecilia formosa, durchgeführt. Diese gesellige, ausschließlich

weibliche Art erzeugt durch ungeschlechtliche Fortpflanzung genetisch identis-

che Nachkommen. Mit dem Aufkommen von immer detaillierteren Ansätzen zur

Unterscheidung von Verhaltensunterschieden sind solche klonalen Arten in der

Ethologie von entscheidender Bedeutung, da sie als perfektes natürliches Modell

dienen, um individuelle Verhaltensunterschiede und deren Entwicklung zu testen.

Da genetische Variationen als Störfaktor weitgehend ausgeschlossen werden können,

kann die Aufmerksamkeit auf die Unterschiede zwischen Individuen aufgrund ihrer

Vorerfahrungen gelenkt werden. In den ersten drei Kapiteln der hier vorgestellten

Arbeit wurden die individuellen Erfahrungen durch operante Konditionierung oder

durch das Aussetzen der Tiere gegenüber neuen oder bekannten Situationen verän-

dert. Das jeweilige Verhalten wurde sowohl alleine, als auch im sozialen Kontext

untersucht. Auf diese Weise wurde die Auswirkung des sozialen Kontexts sowie der

physischen Umgebung auf Verhaltensaspekte wie Schwimmgeschwindigkeit und

Sprungwahrscheinlichkeit ermittelt. Kleinere Verhaltensunterschiede wurden dann

im folgenden Kapitel durch den Vergleich von manuellen Ansätzen und automatis-

chen Quantifizierungsinstrumenten bewertet und evaluiert. Schließlich wurde ein

methodischer Ansatz augearbeitet, bei dem die Leistungsfähigkeit künstlicher intelli-

genz in Form von neuronalen Netze genutzt wurde, um Individuen in komplizierten,

natürlichen Szenen während Räuber-Beute-Interaktionen zu verfolgen.
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“Throughout our daily lives we are confronted with known and

unknown, as well as pleasant and un-pleasant situations. We go

about our routines and traditions, take both the past and the present

for granted and may not even be aware of any changes taking place.

Surely the seasons can be experienced and one can determine a

scholar from a novice, but the exact point in time at which one

is found and the other has left remains uncertain. Thus, we are

reliant on external sources such as the position of the sun in the

short winter days or the sound of a note played to perfection to

gain more information about the state of our surroundings. We

ourselves hold information as well. Experience, ingrained and

stored among our cells over a lifetime allows us to compare - known

against unknown, comprehensible against confused, predictable

against uncertain. Alas, it is us who carry a piece of the world

inside us. Like the vikings using their sunstone to find their path in

unforseeable weather, we navigate our way from the naïve infantile

darkness to enlightenment and death clutching our own internal

and imperfect reference. Let this be a story of learning...”

- Myself, 2023
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1. Introduction

As a highly social species ourselves, human curiosity has long been drawn to other

aggregates of animals and the intricate forms these may take on. Observing the flight

of a flock of starlings or the highly synchronized motion of a school of sardines has

hypnotized humans for centuries. More recently the concepts regarding individual

interaction rules and underlying processes governing the collective behavior of such

groups have been studied in much more detail [127, 53, 226, 104]. This has lead to the

emergence of the interdisciplinary research field of collective behavior which bridges

many scientific domains such as biology, psychology, computer science, robotics

and engineering. The interdisciplinary nature of the research area is given by the

fact that any system comprised of interacting but individualistic units can be seen

as a collective. Understanding the evolutionary history of such systems in nature

can therefore give insights into the optimal information sharing strategies [111],

space use approaches [133] or decision making processes [145]. These insights can

then be applied in designed systems of our own, such as networks of independent

servers or self-driving vehicles [182]. Not only is this field of research important for

engineered aspects of our daily life, but also has shown to be applicable to other

decision-making and consensus processes in human societies [89]. In this thesis the

biological aspect of learning and adaptation was evaluated in more detail, spanning

from individual to group level behavior. This was done by using social fish species,

which represent a biological form of multi-agent system with individuals interacting

on a collective level to acquire information, find a food source or seek shelter. To date,

both the proximate, as well as the ultimate aspects of behavior have been studied at

the individual level [92, 138] and at the collective level [127, 90, 212]. Yet, an unified

understanding of benefits and costs of group heterogeneity and individual variation

across various contexts is still missing [104].

The overall goal of this work therefore was to extend the research combining both

individual aspects and group aspects at the same time. Work such as that by

Herbert-Read et al. [90], MacGregor and Ioannou [147] and Jolles et al. [104] has

achieved some remarkable insights in this direction, on which the work presented

here heavily built upon. In order to achieve both individual and group level insights

at the same time some novel methodological approaches are necessary. As part

of this work, state-of-the-art techniques to record animal movement and behavior

were incorporated and evaluated. Technological innovations as such can be used to

bridge certain aspects of individual and group level quantification in both the lab

environment and natural surroundings of animals.

In more detail, the questions of interest in this piece of work focus mainly on the

ability of individuals to learn and adapt to novel situations and conspecifics, and how
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to quantify such behavioral changes - How do individuals address the trade-off be-

tween acquiring information alone and spending time with others? Which behavior

is socially mediated and why? How can minute behavioral changes be determined by

an observer? How can we bridge the gap between controlled, lab based experiments

and natural behavior in the wild? These questions were addressed by designing

experimental paradigms in a laboratory setting and developing novel methods of

behavioral quantification. Such methods allow for standardization of scientific

procedures and ensure reproducability across observers, experiments and model

species [33]. Given that individual and group level aspects were of interest, many

of the experiments presented here were done using the naturally occurring, clonal,

live-bearing fish species the Amazon molly Poecilia formosa (Girard, 1859). Using such

animals as model organism further reduces confounding effects which would other-

wise arise due to genetic differences among individuals [140]. Behavioral differences

were quantified using manual observations, as well as computer assisted techniques

to track the individual’s position and body posture over time. These behavioral

descriptors in form of coordinates were then analyzed as time series from which

behavioral traits such as swimming speed or learning efficiency were derived. This

allows for behaviors to be resolved on a high spatio-temporal scale, by which timing of

events and their consequences can be distinguished and analyzed in the given context.

The structure of this thesis is the following. First, a historical background is given,

covering some of the most important concepts of animal learning and adaptation.

In the first empirical work shown in chapter 2, aspects of individual and social

learning are tested, such as the cost of varying information among social partners.

Following such learning paradigms at the individual level, aspects of social contagion

of behavior over time are highlighted (Chapter 3). Given that individual behavior is

shown to be effected by the social context, the effect of social and physical environment

on the behavioral adaptation at the individual and group level were tested over a

longer time scale (Chapter 4). Effects of temporal changes in environmental variation

were then further tested by exposing individuals to differing feeding regimes and

food availability and repeatedly measuring certain behavioral traits, such as motility

(Chapter 5). Lastly, in chapter 6, methodological tools which were developed to

determine minute behavioral differences using algorithmic approaches (Section 6.1)

and detect and track multiple individuals in complex natural scenes in the wild

(Section 6.2) are introduced and evaluated.

Overall, the results of this work support the findings of previous work on consistent

behavioral differences in animal behavior, showing that it is present in various

situations and traits [67, 90, 138]. In the here presented work, an aspect found

to greatly effect these differences is time. Over time habituation, adaptation and

learning can take place, by which information is acquired which in turn alters the

behavior of an individual. Measuring and evaluating these behavioral changes
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over time can be difficult, due to the gradual transition and unknown onset. With

computational power readily available, behavior can now be quantified continuously

and over various time scales, using highly specialized techniques [33, 230]. These

include tracking an animals behavior as body position and posture
1

over time and

allow for changes in behavior to be detected and analyzed. As part of this body

of work, methodological advances were implemented and tested which allow the

classification and quantification of behavior on a sub-second level. Although not

unique to this work (see Berman et al. [22], Brown and de Bivort [33]), it is a highly

valuable tool in order to analyze and predict behavioral phenotypes and changes

in such [168]. This in combination with the established work on collective behavior

[127] gives rise to a plethora of questions on how individuals aggregate, and what

choices are made when doing so, while being behaviorally heterogeneous. Many of

such questions can likely be addressed in real-time and pave the way for an exciting

future of ethology [109].

To give an introduction into the bulk of the field of animal learning, main concepts

and key ideas which are fundamental to the here presented work are highlighted in

the following section.

1.1. Background
Learning, adaptation and habituation can be difficult concepts to disentangle, where

each has been studied to great extent [143, 32]. All aspects have however one

key criterium in common, as they are all time dependent processes, making them

challenging, yet fascinating to study. In the following, emphasis is placed on animal

learning and adaptation, as these are two means by which an animal can react to

changes within the proximate environment, alter the information it acquires and

change its behavior over time [143, 32].

As Miller and Dollard [158] concluded in 1941, the concept of learning can be de-

scribed as follows: “[...] in order to learn one must want something, notice something,

do something and get something.” This simplistic, yet sufficient statement is a good

starting point for understanding various forms of learning, which exist across the

various fields of research, such as biology, psychology, informatics and engineering.

This concept further gives a distinct approach to the understanding of behavior and,

more generally, to the processes that may drive its evolution.

Defined in more clear terms, the Four Fundamentals of Learning have been described

by Miller and Dollard [158] as drive, response, cue and reward. A certain behavior

can be defined as a goal directed action, based on intrinsic motivation with some

1
Specific terms and key concepts are highlighted and further explained in the separate glossary

section A.1
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mismatch between realized goal and anticipated goal [87]. Series of such behaviors

have been suggested to follow a hierarchical structure, allowing for continuous

adaptation and dynamic response to changing circumstances [137, 57]. Together,

this can be formulated as a working definition of learning as “An incremental, goal

oriented behavior, intrinsically motivated by a given state (drive), by which the

environment is sensed (cue) and acted upon (response) resulting in a new intrinsic

state (reward)”. However, learning only applies if the initial state (“want” or drive)

and the new intrinsic state (“get” or reward) are not identical. Only then can an

informational gradient be detected and acted upon (learnt). The opposing case of

no gradient being present does not allow for any difference to be noticed or acted

upon, and therefore merely facilitates identical behavior or continuation, and does

not require the behavior to be updated or changed. The process of learning therefore

describes the minimization of error between a predicted and an actually realized

outcome.

In a more biological sense, the ability to learn has been recognized to depend heavily

on the species, its ecological context and an individual’s internal state, as well as

the utility of the resulting behavior [180]. Given these constraints, the learning

abilities are not easily generalized across taxa, let alone tested on a common scale

[217, 29, 30, 180, 61].

The ability to learn likely shares the same fate of being under constant selective

pressure, as any other individual trait on which evolution can act upon [30, 47, 177].

Conceptually, individuals can acquire information directly by interacting with their

environment [54] (i.e. individual learning see Glossary) or by observing others in a

social context (i.e. social learning) [12]. The concept of a theory of mind and other

forms of mental representations allow for the internalization of possible realities

and their outcomes, and for conceptualizing reactions [69, 128]. The information

gained through individual experience is commonly referred to as private information,

if acquired alone, and public information, if accessible to, and acquired by many

[158, 54]. Further, a distinction between the sources of information can be made,

separating low correlation cues (e.g. a small, barely visible light source) providing

private information from high correlation cues (e.g. a loud sound) which provide

public information [111]. In accordance with B. F. Skinner, cues can further be

categorized into positively and negatively reinforcing, depending on whether they

lead to aversive or pleasurable consequences [203, 74].

For centuries, the concept of intelligence has been of interest to psychologist and

biologists alike. The great philosopher Aristotle took interest in animals and their

intricate behaviors and Darwin himself systematically observed and documented

animal behaviour and contributed intelligence, which he published in his book titled

The Descent of Man [55]. After Darwin’s death, much of his work on this topic was

revised, extended and published later by George Romanes [188, 189]. In response,

Romanes received harsh criticism by Conway Lloyd Morgan, who rigorously revised
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and tested many of the statements and assumptions proposed by Romanes [160].

Sparked by these insights at the time, Thorndike most famously proposed a series

of experiments to understand the mechanisms behind “animal intelligence” and,

more accurately “learning” [217, 218]. He tried to systematically compare animals

based on their learning abilities by having them perform analogous tasks. These

experiments aimed at testing the prevailing opinion that there must be a common

process defining learning in all organisms. His insights led him to conclude that

learning took place in a gradual manner, could not be facilitated by imitation and

that no complex cognitive abilities were at play. Although the comparison across

taxa could not easily be done, he further suggested that some properties at play

during learning may be the same across species [217, 218].

Today we know that learning can in fact be facilitated by imitation [43] and that the de-

gree of cognitive abilities may scale with the complexity of the corresponding actions

to be learned [180, 42, 14]. Thorndike went on to formulate his law of effect, according

to which behaviors followed by positive reinforcement are strengthened and those

followed by negative consequence weakened [217]. Simultaneously, physiologist

Ivan Pavlov laid out the fundamentals of classical conditioning in 1897, by initiating

salivation in dogs in response to a bell [170]. These experimental findings were

further refined and published in 1913, marking the advent of modern Behaviouralism

with Watson [232] and later Hull [95, 96, 98], who famously coined the systematic

behavior or drive theory in 1943 [97]. B. F. Skinner built upon these insights and later

defined operant conditioning, also known as instrumental conditioning, as extended

form of learning, where positively reinforced behavior is more likely to be repeated

and negatively punished behaviour is less likely to be expressed [203]. In other

words, an animal learns to associate a specific behavior (such as pressing a lever)

with a consequence (such as receiving a food reward), resulting in a subsequent

increase or decrease in the frequency of that behavior
2
.

Learning has historically been the tackled by the fields of biology [217, 221, 144], com-

parative psychology [98, 200] and anthropology alike [222], which have concluded

that learning enables individuals to adapt to their environment within their lifetime

or shorter, and solve problems which they encounter repeatedly. Thus, learning is the

fastest way an individual can cope with repeatedly occurring environmental changes.

Hence, the ability to learn should be under strong selection pressure as individuals

that can learn are predicted to outcompete those that cannot. Ultimately, the ability

to learn then increases an individual’s Darwinian fitness and proximate adaptability.

This process has been nicely conceptualized by Plotkin [177], where the hierarchical

levels of information acquisition and storage across various spatio-temporal scales is

demonstrated. In biology learning situations can generally be seen as all “problems

that animals encounter repeatedly and that can be solved by learning”, which was

2
For further information on the topic of learning theory see Hull [98] and Byrne et al. [43]
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adapted from Bitterman [29] and of which some of the general categorizations are

described as follows.

1.1.1. Individual Learning

Various forms of learning exist which have historically been discussed and categorized,

where the learning mechanism may be the main mean of differentiation [192, 185].

Further, internal as well as external constraints influence the form of learning which

is most effective under any given circumstances [199]. In simple cases, such as those

eluded to by the work of Pavlov [170], Thorndike [218] and Skinner [203], individual

learning takes place by sequential trial-and-error. Individuals acquire information

alone, in absence of social cues and without any influence from others. An individual

attempts an action and by doing so receives positive or negative reinforcement.

A second form of individual learning is termed discrimination learning, where a

distinction between varying stimuli needs to be made [98]. Both forms of information

uptake lead to associations (good or bad) that further reinforce and condition the

learning process towards a specific outcome [96]. Here, independent stimuli have

independent reactions. The training is often achieved in a massed or spaced manner,

in which training instances leading to reinforcement are either continuous (massed),

or spaced randomly or intermediately with periods of no training taking place

(spaced) [98]. The reinforcement does not necessarily lead to a single, task specific

outcome (auto-shaping), but is highly dependent on the circumstances, the individual

and the species in which conditioning takes place [37].

1.1.2. Social Learning

Social learning, or observational learning refers to the process by which an animal

learns from the observations or experiences of others. The transfer of information in

these situations is often affected by social facilitation, local enhancement and imitation

[158, 93, 227, 143]. As the term suggest, social facilitation describes the process by

which the presence of social partners enables an individual to perform better than

when alone [244]. Local enhancement refers to added emphasis given to certain

stimuli or informational cues in proximity to other individuals [220]. Individuals

within a social group continuously face the choice of acquiring information directly

or gaining it through others, via social learning. This conundrum, at the individual

level between exploring in order to gain better information and exploiting the

already known sources, leads to the public goods problem known as the exploration-

exploitation dilemma at the level of information [150, 223]. Exploitation, in this

case refers to the processes of social learning, which has been observed in various

non-human animal societies [73], and human social systems [12, 13]. Exploration
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refers to the process of acquiring information alone [170, 218, 203]. Once skills or

other manifestations of information can be socially acquired, they can be passed on

over generations leading to the cultural transmission of information. The information

being transmitted by means of social learning is diverse, including song types [75, 76],

foraging techniques [115, 6, 9] and food preferences [131]. Commonly it is beneficial

to the individual to acquire knowledge through social learning, as it removes the need

to test all possibilities alone. However, this form of learning need not only be positive,

but can also lead to maladaptive behaviour [134] or be associated with certain costs,

such as increased energetic effort [133], misinformation [80] or decrease of biological

fitness [176, 201]. Nonetheless, the mean of informational exchange through social

transmission and across generations (aka. culture) is of such importance to gregarious

animals, that it has been suggested to act as a ‘second inheritance system’ in parallel

to genetic evolution [47].

1.1.3. Collective Learning

Individual learning theories are limited when it comes to assessing a multi-agent

system, or group of animals, as a learning system itself [113, 120]. Yet, evidence

exists that group dynamics do not merely reflect a summary of all its individuals

characteristics, but that each group has entirely new, yet consistent traits. This

congruent evidence comes from work on fish schools [146, 105] as well as human

groups [241] and leads to the assumption that a further form of learning may also be

at play, namely that at the system level [120].

The formulation by Kilgore [120], coming from a sociological perspective, describes

a process by which a collective, defined by its collective identity and consisting of

unique individuals, is acting towards a common goal. Information can be seen as a

resource which is spatio-temporally distributed [167], and ambiguously (public) or

locally (private) preserved [111]. On a higher level interpretation, the information

is stored within a system with memory capacity (i.e. single agent, multi-agent

collective or group) [179] and transported through time and space. As information

is encapsulated within these systems, they can be seen as information vectors

[81]. Within the collective, both the common goal and the information available to

each member is subject to individual interpretation and experience, which leads

to variation and group heterogeneity under the unifying umbrella of the collective

identity [120]. Recent research has further elicited that collective learning may

be induced by social learning [126], alluding towards a more continuous and less

categorical difference between social and collective learning.
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1.1.4. Learning Processes
A learning process can be seen to be comprised of a learning situation (i.e. the

situation that requires learning) and the learning phenomenon (i.e. the means by

which learning takes place). Let us consider a simple learning process as example,

which is given by classical conditioning in accordance to Pavlov [170]. An individual

is conditioned on an association between a neutral stimulus (e.g. light, sound) and

an unconditioned response (e.g. salivation, flight). In this case the learning situation

is given by the fact that a connection between both stimuli and response needs to be

made. The learning phenomenon is an individual discrimination learning approach,

given that the correct stimulus needs to be discriminated and learning takes place

in absence of any social partners. In a second case of learning process based on

the work by Laland and Williams [133], individuals acquire information about an

optimal path to reach a foraging location. The learning situation is a spatial memory

task, and learning takes place in a social context where the learning phenomenon is

social learning via local enhancement.

In most learning experiments, the learning process that can be inferred from the

learning performance or the data describing the performance is far removed from the

actual learning mechanism [29]. A common process leading to such divergences is by

one stimulus masking or overshadowing another [215]. Blocking takes place when

the learning of component A of a compound task AB is reduced or compromised

by the presence of B [215]. A further process effecting and often compromising

learning data is habituation and adaptation, which can take place when the subject

is repeatedly confronted with a situation or stimulus. Each confrontation with a

stimulus leads to an altered reaction in any successive encounter where learning and

habituation can be at play [216].

1.1.5. Adaptation
“The significance of an adaptation can only be understood in relation to the
total biology of the species.” - Huxley et al. [99]

According to one of the most classical definitions in biology, adaptation is the fit

between organism and their environment [56]. Interestingly enough the accounts of

this predate Darwin and his book titled On the Origin of Species from 1859 [56]. Of

such early accounts the most controversial view, otherwise strongly opposing those

of Darwin, is the creationist philosophy. It suggests that organisms were designed by

God to be best adapted to the environment they are placed in [202, 32]. While Darwin,

partially opposed to such religious views, suggested an alternative mechanism of best

fit via natural selection and evolution over generations. Others such as Jean-Baptiste

Lamarck advocated for changes to take place on a much smaller time scale. According

to Lamarck, individuals would adapt to their environment and the conditions they
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face during their lifetime and pass these on via some mechanism. Today we know

that this has been proven to some degree, when considering epigenetic alterations

of the genome based on environmental effects which can be passed on to future

generations. Darwinian fitness, or simply fitness refers to the reproductive success

due to adaptedness of an organism to its surroundings. In the simplest form, a more

adapt trait of an individual would lead to more offspring and higher fitness. In

evolutionary terms such adaptive traits leading to differential reproductive success

can evolve under natural selection and be subject to random drift before becoming

fixed in the population. This is true for natural conditions under which populations

sizes are finite. How strong the drift occurs highly depends on the population size

and selection pressure acting upon the trait [32].

Much of the here presented work set out to highlight adaptedness in respect

to behavior. The smallest unit that evolution can act upon is a population of

interbreeding individuals. Such interacting individuals can gain adaptive superiority

through fixed genetic pedigree or dynamic updating within their own lifetime

through processes such as learning. This nicely closes the loop addressed in the

here presented work, by which individuals have inherent differences (behavioral

consistencies) which are affected by their experience and immediate Umwelt. The

social and physical environment creates the link between individuals and allows

for the exchange of information [240, 87, 111, 225]. Of course, the time scales taken

into consideration in lab-based studies, as those presented in this thesis are arguably

much shorter than those allowing for natural selection and fitness trade-offs to

take place. However, incremental accumulation of experience and information can

lead to sudden changes at a given point in time, or a single decision can have huge

implications on future survival giving such smaller time scales great relevance as

well [28, 225, 58].
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2. Information Transfer and the Cost of Social
Learning

2.1. Introduction

In 1514 Machiavelli already stated that "Men nearly always follow the tracks made

by others and proceed in their affairs by imitation". This is not unique to humans

alone, as many gregarious animal species often acquire information about their

environment from their social partners [54, 79]. This process is commonly referred

to as observational or social learning [28, 36, 233]. It contrasts private learning,

where information is gained by exploring solutions alone and in absence of others

[132, 111]. In general, social learning involves the observation of others and the

copying of the their actions, where some produce information and others scrounge

[73]. For example, task-naive Amazon Parrots (Amazona amazonica) have been shown

to copy the behaviour of other, more experienced individuals in order to access an

obstructed food source [172]. Reader et al. [183] demonstrated that wild guppies

(Poecilia reticulata) could copy the food patch preference and predator avoidance

behaviour from other conspecifics. However, how such social learning processes are

affected by the initial skill levels of interacting individuals is only poorly understood.

For one, social partners may differ in performance skills and thus in the quality of

the information they can provide. Variation in information quality can in turn lead

to error propagation and accumulation, giving rise to a potential trade-off between

individual and social information use [80, 117]. Nevertheless, there is evidence

that demonstrators’ skill levels per se do not determine the extent to which they are

copied by less experienced observers. For example, in the guppy, familiarity among

individuals seems to be much more important than a demonstrator’s skill when

it comes to being copied [117]. Similarly, Roy and Bhat [191] found that utilizing

social information led to food income equality in zebrafish (Danio rerio), where

observers relied on visual behavioural cues of successful demonstrators to find food

themselves. While these studies allowed for full contact among individuals and

targeted leader-follower interactions, it still remains unclear how an individual’s

performance in learning a complex task by pure visual interaction with a partner is,

in turn, affected by the partners performance skills. Nevertheless, some pioneering

work has been done decades ago, on which the here presented work heavily builds

on, investigating the relationships and potential costs and mismatches between

observer and demonstrator [125, 23, 166].

Although numerous studies have highlighted the benefits of social learning to the

observing or eavesdropping individuals as it allows an individual to circumvent

11



exploring all possible solutions on its own, and thus saves time and energy, e.g.,

opportunity costs are reduced [214, 234, 34, 36, 183, 117, 173, 85], these benefits

might not be shared mutually with the observed and copied [224, 246]. While the

mere presence of more individuals is beneficial during predator encounters [127],

experienced demonstrators may lose task solving performance when interacting

with inexperienced naive individuals, either due to distraction [191] or changed time

budgets as more time is allocated to social interactions than to the task at hand [77].

But also direct negative effects of the copying behaviour are known. For example, in

many fish species males copy the mate choice decisions of other males by observing

these copulating with females which may help the observer determine high quality

females. However, this behaviour will likely increase the risk for sperm competition

and thus is costly for the copied male that initially mated with the female [174]. As a

counter strategy, males may change their mate choices to mislead others and conceal

their real preferences, which is referred to as audience effects [175, 247], a form of

social deception [239]. In the context of learning a task by observation alone, the

question remains of how the performance gradient among interacting individuals

affects the outcome for all participants.

In addition to situations where there is an information discrepancy among individuals,

social partners may also be faced with a counterpart with the same prior experience

as themselves. Here, no additional task-specific, social information can be gained

from observing such a partner, as the information would be highly correlated to the

own experience and therefore deemed redundant [213, 111].

In the here presented study we aimed at testing how variation in skill levels

between visibly interacting partners affected their learning performances (for those

lacking prior information), as well as overall task performances (for those already

experienced). We used the Amazon molly (Poecilia formosa), a naturally occurring

clonal fish species that reproduces gynogenetically and gives birth to live offspring

that are genetically identical to their sisters and mothers [194, 136, 209]. Through its

clonal genetic background as well as its gregarious life-style, this species has been

proposed to represent a useful model organism for the study of individual behavioural

differences and the influence of behavioural traits on the social functioning of groups

[59, 140, 141, 148]. However, to date no research has been conducted on the learning

abilities of these fish. Due to this intricate natural history all individuals in this study

were of same genetic composition and near identical rearing background. In a first

step (private information acquisition), an operand conditioning procedure (5 days,

3 times training per day) was used to produce two differently experienced cohorts

of otherwise genetically identical individuals: One cohort was trained to find food

in a opaque cylinder (the task, see Figure 2) and therefore given the opportunity to

learn to solve the task (task-experienced/trained individuals). The second cohort

was trained to find food distributed randomly, with no ability to learn an association

between food and cylinder location (task-inexperienced/naive individuals). In a
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second step (social information acquisition), we paired two individuals to have visual

access to each other, enabling them to observe each other while we continued (for

trained individuals) or started (for those naive) the conditional training (5 days, 3

times training per day). Our full factorial design allowed us to create pairs of fish with

all possible experience combinations: naive-naive, naive-trained and trained-trained.

With this design, we tested first whether Amazon mollies are able to learn the

task and whether there were consistent individual differences in both the learning

rate and overall task performance at the end of the private information acquisition

phase. We then explored how the skill level of the partner affected learning and

overall performance when social information becomes available. The prediction

was that naive fish paired with a trained partner will have a higher probability to

reach a novel food source compared to individuals that were paired with another

task-naive partner. For experienced Amazon mollies, the prediction was that the

task performance would be worse when paired with naive individuals, compared

to those interacting with a similarly proficient individual. The reasoning behind

this assumption being, that individuals paired with a similarly skilled partner

which provides redundant information may allocate more time and efforts towards

acquiring private information - this can outweigh the potential opportunity costs

that arise through the social interactions and which should be apparent when paired

with both naive and experienced partners.

2.2. Methods

2.2.1. Study organism and maintenance

This study we used the Amazon molly (P. formosa), a naturally occurring clonal

freshwater fish. This is an all-female species that originated from a rare hybridisation

event between a male Sailfin molly (P. latipinna, ♂) and a female Atlantic molly

(P. mexicana, ♀) about 100.000 years ago [94, 194, 197, 136, 209, 231]. This species

reproduces through gynogenesis which means that females require sperm from

males of closely related Poeciliid species to induce embryogenesis [65]. However, no

genetic material from the male is incorporated into the embryo, allowing the Amazon

molly to produce broods of offspring that are genetically identical to each other

and their mothers [193]. The herein used clonal linage has been reared for many

generation in captivity and regular molecular checks confirm that individuals are

clones. Fish were bred with Atlantic molly males as sperm donors at the animal care

facilities of Humboldt Universität zu Berlin. Fish were reared in 200-L tanks filled

with aged tap water at a temperature of 26 °C and fed twice daily ad libitum with

commercially available flake food as well as defrosted blood worms (Chironomidae
sp.). All animal experiments were conducted under the animal experiment number
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#0089/21 of the German State Office for Health and Social Affairs (LAGeSo).

Figure 1. The Amazon molly Peocilia formosa

2.2.2. Experimental design

For our experiment, we first generated two different treatment groups, one that

was fed three times per day for one week only inside an opaque cylinder (‘trained

cohort’, Figure 2), while the other one was fed with food dispersed randomly in the

experimental tank (‘naive cohort’). In a second step, we visually paired fish with

individuals from the same or a differing training regime and either continued (for

those already trained) or started to feed only in the cylinder (for those habituated,

but naive).

To start the experiment, we placed pairs of size-matched, unfamiliar fish (N=36,

23±2 mm) in each of six identical test aquariums (300 × 600 × 200 mm). Fish

were taken from multiple husbandry tanks ensuring that familiarity was not given,

and size-matched in order to reduce dominance effects and most importantly to

account for any age differences. All individuals were randomly distributed across

all experimental tanks. An opaque divider separated each tank into two same-sized

compartments, each containing one fish. This divider could be exchanged with

a transparent one during experimentation to allow visual interactions (see Figure

3). Each two-compartment tank was externally filtered (EHEIM Professional 3 250)

throughout the entire trial in order to maintain water quality and to provide olfactory

cues to the fish. Water quality was checked weekly (SERA pH, NH3/NH4,NO2,NO3)

and 50 percent of the water was exchanged at the same interval. The temperature

was maintained within the range of 23-26 °C and adjusted through the ambient room

temperature. Water levels were maintained at 70 mm, resulting in a total of 18.7 l

per tank and 3.5 l per individual compartment. In order to enhance the learning

outcome, the fish were kept on a continuous light cycle, which has been shown to

have no effect on the stress level of a closely related species, while improving the

learning abilities [129]. All fish were fed with frozen blood worms, which were

thawed approximately 30 min. before each experiment.
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Figure 2. A Schematic of the general recording setup. Each inlet and outlet was attached to an
individual circulating filter system. B Concealed food source used in the conditioning trials. Food was
presented within an opaque cylinder, that could only be accessed through a horizontal opening. Entry
into the cylinder was monitored through the top opening, vertically facing the camera. The cylinders
were glued to ceramic plates to ensure stability. This further ensured that food particles and olfactory
cues were contained within the cylinder.

Figure 3. Top-down view of the holding tanks, showing the
central most compartments, housing one individual on each
side. The location at which the cylinder as food source was
placed is denoted as region of interest and marked in red.
The exchangeable central division, which could be either
clear or opaque is shown in the middle. The position of
the separator to standardize the starting distance at the
beginning of each test instance is shown as green dashed
line.
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2.2.3. Food conditioning experiments

Individual Learning Phase - Week 1

For the individual conditioning, we randomly selected future demonstrators and

observers within each of six simultaneously trained pairs. Demonstrators were

then trained on six occasions per day, for at least five consecutive days without

visual access to the conspecific partner. Each training instance, consisting of eight

minutes, was recorded using consumer-grade webcams (c920 HD Pro Logitec, USB

3.0, 432 × 240 px, grayscale, 30 fps) mounted above each individual tank. It was

ensured that the camera was centered precisely above the tank in order to keep

occlusions and perspective distortion minimal and evenly distributed among both

individuals being recorded. During a training instance the individual was either

presented with a white opaque, vertical PVC cylinder (height: 100 mm, �: 50 mm,

see Figure 2), containing food as stimulus or with a mock stimulus (50:50 - mock:real).

This resulted in three mock treatments and 3 actual training instances per day, for

every individual. To standardize the starting distance of the fish to the food source,

individuals were limited to one side of the compartment at the beginning of each

instance. This was done using a small separator (see Figure 3). For mock treatments

the fish underwent all steps, as if it was an actual training instance, being constrained

to one side of the compartment and having this separator subsequently removed,

but without the following stimulus presentation. The choice for true conditional or

mock stimulus was randomized over the course of the day, while ensuring that each

accounted for 50% of the total daily tests (3 true, 3 mock). Mock treatments were

introduced to reduce any association with other neutral stimuli of the procedure and

to ensure that the focus was drawn to the actual task being learned [52, 186, 7]. For

the trained cohort of fish, the cylinder was stocked with blood worms (N≈8) which

were visually occluded from the fish and only accessible through a round opening in

the side of the vertically oriented cylinder (see Figure 2). Fish of the naive cohort

were treated with identical conditions as their trained counterparts, with the only

difference being the location at which food was presented. Here, the same amount

of food was distributed randomly within the tank and accessible for the duration of

the test instance. The task was found to be solved when an individual continuously

spent 1 s or more inside the cylinder. At the end of each test instance the cylinder as

well as any remaining food particles were removed from the tank using a pipette.

Social Learning Phase - Week 2

In the second week of the experiment, individuals were regrouped with a new

size-matched partner and randomly redistributed across the six experimental tanks.

This was done to ensure that each individual was relocated to a new test tank.

Regarding the individual’s own and the partner’s initial training, the following social
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treatments were created: trained paired with trained individuals (TT), naive paired

with trained (NT) or trained with naive (TN) as well as naive paired with naive (NN).

The previously opaque division, separating the two individuals was replaced by a

clear one, enabling full visual access between both individuals (see Figure 3). This

clear division was left in place for the entire duration of the social trial, which lasted

for five consecutive days. During this period all individuals were being trained

and tested according to the individual conditioning procedure previously described,

receiving food only within the cylinder (see Figure 2).

2.2.4. Video Analysis

In order to quantify the learning outcome, fish were tracked using a custom developed

tracking software implemented in Python and using the computer vision library

OpenCV [31]. The fish were detected by using frame-wise motion tracking, based on

simple background averaging and subsequent background subtraction. Detected

objects were further filtered based on size, speed and using an isolation forest

algorithm to limit detections to actual fish and reduce noise due to reflections and

moving particles to an absolute minimum. Individual positions were given as two-

dimensional Cartesian coordinates, calculated as the center of mass of each filtered

detection contour. Since background subtraction can result in missing observations

due to little movement of the animal, all coordinates were interpolated linearly over

time to account for this. The first 30 s of each test instance were considered the

acclimation phase, in which the animals were allowed to settle after having the

separator removed. This period was exempted from further analysis. To further

standardize recordings, all recordings were restricted to a maximum duration of 433 s,

leading to a total duration from start to end of 403 s. Given that each individual was

restricted to its specific compartment, identities were maintained based on spatial

discrimination. Presence and position of the stimulus cylinder were automatically

determined by using an implementation of the Hough transformation, returning

the coordinates of the center of mass and the radius of the detected cylinder. This

enabled the exact measurement of the Euclidean distance of each individual to the

cylinder center at each given time point. In addition to the automated process, all

videos were manually checked for validity of cylinder detection and tracking results.

2.2.5. Statistical analysis

All statistical analysis was run in R (v3.6.3 ‘Holding the Windsock’) and statistical

inference based on generalized mixed effects models (more specifically logit models)

which were composed using the function glmer in library lme4 (v1.1-32). After

tailoring models to the experiment and research questions, further model selec-

tion was done based on Akaike’s information criterion (AIC) or conditional AIC,
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where applicable, using the library cAIC4 (v1.0) and AICcmodavg (v2.3-1). Valida-

tion and estimation of accuracy was done using the check_model function in the

performance library (v0.10.3). Test statistics and summary calculations were done

using tab_model in the library sjPlot (v2.8.14). For testing variance components,

we use the boundary correction described by Stram and Lee [211] for linear mixed

effect models. Significance is reported on a 95%-level and all confidence intervals

(CIs) provided are given as 95% CIs.

Individuals 𝑖 = 1, . . . , 36, equipped with universal unique identifiers (UUIDs), are

defined to have reached the region of interest (i.e. solved the task) in test instance

𝑗 = 1, . . . , 15 (response 𝑦𝑖 𝑗 = 1) if their distance to the cylinder center was smaller

than 2.5 cm over a duration of 1 s or more, and to fail otherwise (𝑦𝑖 𝑗 = 0). Predicting

that fish should increase the likelihood to solve the task when being fed within the

cylinder, we associate the learning performance of individual 𝑖 with its probability of

reaching the region of interest and employ a statistical learning model based on logit

regression reflecting each of our main hypotheses in a single model coefficient. Two

slightly different model variants are used for experiments of Week 1 (Model 1) and

Week 2 (Model 2). Model 1, addressing questions of private information acquisition,

is given by

log odds𝑖 𝑗 = 𝐴𝑖 + 𝐵𝑖 𝑡𝑖 𝑗 = 𝛼0 + 𝛼1𝑥T𝑖 + 𝑎𝑖 +
(
𝛽0 + (𝛽1 + 𝑏𝑖) 𝑥T𝑖

)
𝑡𝑖 𝑗 (2.1)

where probabilities 𝑃𝑖 𝑗 of success 𝑦𝑖 𝑗 = 1 are modelled via odds odds𝑖 𝑗 =
𝑃𝑖 𝑗

1−𝑃𝑖 𝑗
of

‘expected # solved : expected # failed’, allowing for interpretation via odds ratios

(OR). The combined intercept 𝐴𝑖 determines the baseline odds of reaching the

region of interest. This corresponds to the baseline likelihood of an individual

reaching the region of interest, before having any prior experience on entering it

(Test Instances 1-2, illustrated in Figure 4). The slope 𝐵𝑖 reflects the learning rate

of individual 𝑖, with odds𝑖 𝑗 expected to increase with the number of visits 𝑡𝑖 𝑗 after

initially solving the task (count variable, Time since solved ≤ 15, illustrated in Figure

4). For the probability 𝑝𝑖 𝑗 of solving the task, this results in a sigmoidal learning

curve in 𝑡𝑖 𝑗 (Figure 6). With 𝑥T𝑖 = 1 if individual 𝑖 is trained and 0 otherwise

dummy-coding the training status, 𝐵𝑖 = 𝛽0 + (𝛽1 + 𝑏𝑖) 𝑥T𝑖 is composed of a reference

slope 𝛽0 reflecting the learning behaviour of un-trained individuals and the gain in

the learning rate 𝛽1 for trained individuals as fixed effects, plus a random effect 𝑏𝑖
reflecting subject-specific deviations of trained individuals. This applies analogously

for 𝐴𝑖 as well. The random effects 𝑎𝑖 and 𝑏𝑖 are assumed normally distributed with

standard deviations 𝜏𝑎 and 𝜏𝑏 , respectively, and correlation 𝜌. The random slope

𝑏𝑖 is restricted to trained individuals, which are of major interest. In this model,

𝛽1 > 0 corresponds to Hypothesis I that clonal fish are capable of learning to feed

inside the provided cylinder, in that it reflects deviation from zero in the learning

rate, and 𝜏𝑏 > 0 corresponds to Hypothesis II that learning behaviour is subject
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specific, as it describes the variation among individual learning abilities. Including

an indicator 𝑥
solved 𝑖 𝑗 as additional covariate into Model 2.1, which is 1 if the 𝑖th

individual has reached the region of interest before the 𝑗th training instance and 0

otherwise, has been considered to enable less gradual learning behaviour but turned

out unfavorable in AIC-based model selection.

Model 2, designed for comparing learning behaviour of individuals in pairs with

different training history, is given by

log odds𝑖 𝑗 = 𝐴𝑖 + 𝐵𝑖 𝑡𝑖 𝑗 = 𝛼0 + 𝛼1𝑥NT𝑖 + 𝛼21TN(𝑖) + 𝛼3𝑥TT𝑖 + 𝑎𝑖 (2.2)

+ (𝛽0 + 𝛽1𝑥NT𝑖 + 𝛽2𝑥TN𝑖 + 𝛽3𝑥TT𝑖 + 𝑏𝑖) 𝑡𝑖 𝑗

where 𝑥NT𝑖 = 1 if individual 𝑖 is in group NT, i.e. was not trained in Week 1 but has

an experienced partner, and 0 otherwise. Analogously for TN and TT. Accordingly,

𝛽0 describes the baseline learning rate in reference group NN and 𝛽1, 𝛽2, 𝛽3 reflect

the deviation from that in the other treatment groups. In particular, 𝛽1 ≠ 0 indicates

differences in learning behaviour of naive fish with trained partners (Hypothesis

III). Random effects 𝑎𝑖 and 𝑏𝑖 are specified analogously to Model 2.1 to account for

subject-specific variations.

Figure 4. Definition of the ‘time since solved’ 𝑡𝑖 𝑗 used as
variable for individually describing the learning process. Un-
til the food inside of the cylinder was first found by individual
𝑖 at test instance 𝐽𝑖 = min{ 𝑗 : 𝑦𝑖 𝑗 = 1}, no training effect
can occur and 𝑡𝑖 𝑗 = 0 for 𝑗 < 𝐽𝑖 . After that, individual training
commences and training time monotonically increases as
𝑡𝑖 𝑗 = 𝑗 − 𝐽𝑖 .
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Figure 5. Overview of space use across treatment groups in the second week of training
(order from left to right: NN, NT, TN, TT). Only instances where the cylinder was present are
shown. Darker coloration represents higher number of occurrences, lighter lower. Sample
trajectories are shown for random individuals of each treatment group. All trajectories where
centered on the cylinder, for better visualization.

2.3. Results

2.3.1. Amazon mollies are able to quickly learn foraging task

Our first question was whether clonal fish were capable of learning to feed inside the

provided cylinder. We verify this based on Model 2.1, which captured the variance

within the data well, while random effects accounted for a large proportion of the

variance (marginal 𝑅2
: 0.830, conditional 𝑅2

: 0.839, following Nakagawa et al. [162])

(see Supplemental Material Table 3). At baseline, we obtain odds of about 1 : 9

(probability 𝑃𝑖 𝑗 = 0.10) for an untrained fish to reach the region of interest within

a test instance (given by intercept 𝛼0 = −2.18, CI = [−2.80,−1.57], for 𝑏𝑖 = 0). This

corresponds to the probability of an individual to enter the region of interest without

having ever entered it before (see Figure 4: Test Instance 0-2). For individuals being

trained, and thus not being fed outside the region of interest, we obtain a slightly

higher baseline probability, with the odds increased by a factor of exp(𝛼1) = 1.55

(CI = [0.67, 3.56], p=0.302), which is, however, not significantly different to those not

being trained. While we even observe a slightly negative ‘learning effect’ of entering

the cylinder (𝛽0 = −0.14, CI = [−0.35, 0.065], not significant) for individuals not

being trained, a significant positive learning effect is obtained for trained individuals

(𝛽1 = 1.37, CI = [0.60, 2.14], p<0.001 ***). The likelihood of trained individuals to

reach the food source significantly increased, once they had solved the task for the first

time (see Figure 4: Test Instances > 3), with an odds ratio of OR = exp(𝛽0 + 𝛽1) = 3.42,

CI = [1.60, 7.30] more than tripling the odds for the next visit (in a conditional ceteris

paribus interpretation used also in the following). Figure 6 depicts estimated mean

learning curves with and without training, showing probabilities 𝑃𝑖 𝑗 of solving the
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task in dependence on 𝑡𝑖 𝑗 , and illustrates how the time spent by fish in the region of

interest increases with 𝑡𝑖 𝑗 .

Figure 6. Learning outcome of the two treatment groups (trained/naive) in the
first week. Both graphs show results from 36 individuals: Naive: N=18, Trained:
N=18. A: Model output the first week of training in form of estimated marginal
means (lines, thin: individual; bold: group mean) and raw data (points). Instances
along the x-axis are in respect to the first time the goal was reached. Confidence
intervals are based on the Upper Control Limit (UCL) and the Lower Control Limit
(LCL) at a 95% confidence level. B: Visualization of time spend within goal area
across both treatment groups (trained/naive) and over all test instances in the
first week. A truncated linear fit is shown as trend line (between instance 5-11),
estimated over all data points and for each treatment group. A slight jitter was
applied along x in order to reduce overlap.
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2.3.2. Clonal Amazon mollies individually differ in learning ability

We approached the question, whether individual variability was observable among

the learning abilities, and more specifically the probability to reach the goal area,

using the same model as in I (Equation (2.1)) by investigating the random effect 𝑏𝑖 on

the learning rate of trained individuals. A standard deviation of 𝜏𝑏 = 0.74 is estimated

for 𝑏𝑖 which bespeaks considerable variation across individuals accounting for about

𝜏𝑏/(𝛽0 + 𝛽1) = 60% of their mean learning rate, and testing for 𝜏𝑏 > 0 confirms

significant inter-individual differences in the learning behaviour (p<0.001 ***). Aside

of differences in the learning rate, the standard deviation 𝜏𝑎 = 0.43 of the random

intercepts 𝑎𝑖 could be interpreted to reflect differences in the exploration behaviour

of individual fish. It is, however, not significantly > 0 (p=0.386). Inter-individual

differences are also supported in terms of model selection, preferring Model 2.1 with

random effects (marginal AIC = 314, condictional cAIC = 259) over an analogous

model without random effects (AIC = 342).

2.3.3. Social effects of informed partner can hinder own learning

The pairwise interactions in the second week, allowed to assess whether task

performance was worse in observers paired with naive demonstrators, compared to

those interacting with task-proficient ones. For this purpose we refer to results of

Model 2.2, which are also illustrated in Fig. 7 A. Overall the model (see Model 2.2)

to determine these effects captured the variance within the data well (marginal 𝑅2
:

0.716, conditional 𝑅2
: 0.903) (see Supplemental Material Table 4). In Week 2, naive

individuals showed similar baseline probabilities for initially entering the region of

interest when paired with naive partners as they did in Week 1 (reference group NN:

odds exp(𝛼0) = 0.07, CI = [0.02, 0.25]). The baseline probabilities are substantially

increased for experienced individuals (TN vs. NN: OR = exp(𝛼1) = 24.74, CI =

[2.82, 216.76], p=0.004 **) in accordance with the training effect affirmed above.

However, there was no evidence for a positive effect of the partner’s experience on

own probability of initially entering the cylinder. By contrast, our data indicates

a negative effect of having an experienced partner on both naive and trained

individuals (NT vs. NN: 𝑂𝑅 = exp(𝛼1) = 0.39, CI = [0.04, 4.04], p=0.432; TT vs.

TN: 𝑂𝑅 = exp(𝛼3 − 𝛼2) = 0.92, CI = [0.10, 7.79], p=0.938) which is smaller for

the trained: the odds to initially reach the goal area were decreased by ∼ 61% in

naive individuals, when paired with an informed individual. For already trained

individuals paired with another trained partner this effect was smaller, amounting for

a 8% decrease. Although these effects on the initial detection probability are subject

to considerable estimation uncertainty and not significant, a significant negative

effect of the partner’s experience on the learning rate (reference NN: 𝛽0 = 2.03,

CI = [1.14, 2.92]) is found for naive individuals (𝛽1 = −1.77, CI = [−2.99,−0.56],
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Figure 7. Learning outcomes of four treatment groups, depending on the fo-
cal individual and partner denoted in brackets: Naive (Naive): 𝑁 = 12, Naive
(Trained): 𝑁 = 6, Trained (Naive): 𝑁 = 6, Trained (Trained): 𝑁 = 12. A: Model
output the second week of training in a social context. Results are shown in form
of estimated marginal means (lines, thin: individual; bold: group mean) and raw
data (points). Instances along the x-axis are in respect to the first time the goal
was reached. B: Visualization of time spent withing goal area across all treatment
groups and over all test instances in the second week. For better visibility, first
solved instances are shown with large icons and higher contrast. All remaining
data is shown with less contrast. A truncated linear fit is shown as trend line
(between instance 5-11), estimated over all data points, for each treatment group
independently. In order to reduce overlap in the plot a slight jitter was applied to
the data.
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p=0.004 **). For NT vs. NN, the probability for reentering the region of interest

after the first visit is, hence, significantly reduced with an odds ratio of 𝑂𝑅 = 0.17

(CI = [0.05, 0.57]), when paired with a experienced social partner. For experienced

individuals, the negative effect of having an experienced partner is less distinctly

expressed, yielding 𝑂𝑅 = 0.87 (CI = [0.20, 3.64], p=0.847, not significant) for TT vs.

TN. In our experimental setup, we thus consistently find performance decreased for

individuals with experienced partners when comparing them to individuals with

naive partners – an effect that is significant, however, only for the learning rate of

naive individuals with experienced partners, where it is also most pronounced.

2.4. Discussion

In the present study, we found that clonal Amazon mollies can be trained according

to a classical operant conditioning task, that they exhibited among-inter-individual

differences in their learning performance, and that the presence of a task-experienced

social partner reduces own learning and task-solving performance, especially for

task-naive individuals.

Clonal Amazon mollies can learn in an operant conditioning paradigm within a

few days and a low number of repeated training sessions to associate food with

a location in their laboratory environments. This is in line with current research

on fish cognition, which shows that fish are avid learners and have sophisticated

cognitive abilities [35, 124, 40, 24]. Further, Fuss and Witte [71] and Fuss et al. [70]

found similar learning capabilities in both parental species of the Amazon molly,

P. latipinna and P. mexicana, and also in the closely related guppy (P. reticulata). It

was shown that both mollies and guppies are capable of operant conditioning as

well as reversal learning, thus it is not surprising that we found similar cognitive

capabilities in the clonal Amazon molly. Our results suggest consistent individual

variation in the learning curves during the solitary phase of the experiment. There is

substantial knowledge about consistent individual differences in behavioural traits

[184], including clonal animals like Amazon mollies [196, 67, 26]. However, learning

as an individual trait has only recently been shown in great detail in the fruit fly

D. melanogaster [204]. Here, we show that this individuality in learning can also be

found in a naturally-occurring clonal vertebrate.

Eager learning can be seen as an adaptation, allowing individuals to respond

to environmental changes and unforeseen circumstances. Why even genetically-

identical individuals differ in their learning performance may have multiple reasons,

including pre-birth processes like epigenetics differences, maternal effects [114]

and developmental stochasticity [92], and may be due to post-birth processes like

differences in previous experience [119] and encountered, environmental conditions

[67, 5]. In the here presented study all individuals were genetically identical and
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reared under near identical conditions. However, we used individuals from different

mothers and individual variability among our test subjects can thus be due to a variety

of these variance-inducing processes [26]. Further experimentation is needed in

order to point out which factors are the most prominent drivers of among-individual

variation in the learning performance of this clonal vertebrate species.

As shown here, the skill level and performance of a social partner indeed has

a strong influence on own performance but in an unexpected way. We found

that naive individuals paired with trained ones exhibited slowest learning, when

compared to naive individuals paired with other naive ones. Trained individuals

that were associated with naive partners did not significantly differ from trained

individuals that were paired with other trained ones, although our results tend

towards hindering, rather than supportive effects of observing trained partners.

Therefore, it seems as though being accompanied by highly skilled conspecifics did

not improve own learning performance, and that having a naive social partner was

more beneficial during learning, when being naive to the task as well. So, how can

such counter-intuitive effects be explained?

First, the goal areas of both social partners were in mirrored locations (see Figure

3), such that the behaviour of the other would not necessarily lead to the same

information, visual cues and ultimate learning outcome. Trained individuals have

acquired experience and established a procedure of solving the task. This can

manifest in behaviours such as accessing the goal from a certain direction, location

or at a specific time, which in turn do not necessarily match those of the social

partner leading to a dissonance between observed and performed behaviour. For

two naive individuals performing the task together this could not have such an

impact, since both individuals are acquiring the knowledge about the novel task at

the same time, leading to more synchronous experience between both individuals.

Following the logic that naive social partners simultaneously learning the task from

initial non-proficiency show more undirected and variable behaviour, Kohn [125]

argued that a continued perception of change, as would be the case when watching

another naive individual trying to perform a novel task, can maintain attention and

act reinforcing to the observer. The experienced partner would merely repeat its

already learnt behaviour and result in less variation and subsequent reinforcement

for the naive observer.

Second, our task was designed in a way that the observer did not see the demonstrator

actually feed. In studies that found local or stimulus enhancement effects [36],

observers could actually see demonstrators getting the benefit and we argue that a

lack of seeing the direct benefit in our study hampered the social learning especially

from experienced demonstrators that virtually disappeared when performing the

task. This is underpinned by the fact that trained partners have little effect on initially

reaching the cylinder and food source in their naive social partners, where we only

observe a smaller, non-significant effect. However, the detrimental effect of having an
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experienced partner is clearly pronounced in the chance to subsequently re-visit the

region of interest in the naive individuals, where we observe a strong and significant

decrease in their learning rate. This indicates a more complex effect than pure spatial

misguidance, due to mere copying and also rules out positive effects such as stimulus

enhancement [207] or local enhancement [220] due to the trained demonstrator.

2.5. Conclusion

In congruence with our results, weak or absent positive effects of highly skilled

partners have been found in studies using full-contact designs during demonstrator-

observer interaction and path learning tasks. In the guppy, naive individuals

were following familiar, but less skilled partners more readily through unknown

maze setups [214]. Similarly, in zebrafish food income equality was enforced via

social information, where observers relied on visual, behavioural cues of successful

demonstrators to find food themselves [191]. In pigeons, Biederman and Vanayan

[23] showed that naive individuals observing demonstrators performing a task

at chance and gradually improving, outcompeted those observing well proficient

demonstrators in speed of learning and overall task accuracy. Further, although

near identical and clonal, our tested individuals show consistent differences in their

learning behaviour which is in line with previous studies proposing consitent among-

individual differences being common also in clonal animals [196, 26, 67] In sum, this

study builds upon the well established field of operant learning and conditioning,

utilizing a naturally clonal fish species as model organism, in which learning has not

yet be studied. The here presented work adds a sleek and interpretable approach to

analysing both the learning efficiency, as well as the inter-individual differences in

the learning performance. This is done by carefully constructing a statistical model,

along side the experimental design, in which all components represent key aspects of

interest, and biologically relevant terms such as learning rate and overall exploration.

The here highlighted insight, that prior knowledge, or information contained within

one’s social partners has an effect on the own performance in certain contexts has

broad implications for collective behaviour and group performance. It has already

been shown that information differences can explain dynamics within animal

collectives [100, 146]. Information quality [111], such as uncertainty and redundancy,

as well as the processes by which novel information is generated or affected by the

social environment most likely play a key role in the learning behaviour of gregarious

individuals [91, 187]. In light of learning - a process of information uptake and

integration over time - the here presented results give a concise approach to shed light

on the timing of such events. The process of learning and timing of informational

cues gives rise to a multitude of interesting questions, such as how information is

being distributed in a multi agent system, or fish school, in order to achieve optimal
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exposure and learning for each of its individual members.

In more biological terms, what drives an individual to take on a certain role in the

group, move to a specific location or perform a given behaviour is still very much

an open question, which yearns to be answered. As shown here, the experience

and prior knowledge of social partners has an effect on the learning performance

of individuals. Therefore, the social environment during certain experiences likely

effects the ability of individuals to learn and adapt to novel situations. These insights,

as well as the unique modelling approach shown here to address such learning

processes and their timing, should pave the way for more experiments in this exciting

direction.
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3. Jumping as a Socially Mediated Behavior

As the previous work highlighted, behavior is affected by the presence and actions

of others. This was based on the experimental conditioning of single individuals

and pairs. In the following, we focused on the social contagion of behavior in larger

groups of individuals. To do so, instantaneous behavior which clearly can be seen

as the result of an individuals’ decision was investigated. A behavior fish exhibit

and which is readily observed during experiments, often to the discomfort of the

experimentor, is the jumping behavior. In the case of a jump the fish launches

itself vertically from the water and into the air. The reliability of such behavior in a

laboratory setting was used, to test contagion of such behavior and the associated

decision in a social context.

3.1. Introduction

In gregarious animals, group members readily synchronize their behaviours and

often respond quickly to their neighbors’ actions [127]. As a consequence of this

coordination, a cascading spread of information (e.g., in the form of behavioral state

changes) can be observed, for example when single individuals perform evasive

movements that are then adopted by neighbors leading to wave-like phenomena

running through large parts of the group. These phenomena have been intensively

studied in shoaling fish, as they often readily show anti-predatory behavioral

responses [190, 59, 206, 121, 106, 60, 178]. The degree to which individuals adopt

and copy behavioral decisions of neighboring individuals may well depend on the

social context. For example, guppies (Poecilia reticulata) follow familiar conspecifics

more readily into unknown areas, compared to unfamiliar ones [214]. Further, young

guppies copy mate choice decisions from older, more experienced individuals but not

vice versa [62]. In addition, other social factors like size of the group (group density)

or perceived or actual risk of predation can affect quantity and quality of social

contagion phenomena [206, 121, 178]. So, for a mechanistic, as well as functional

understanding of social contagion processes, we still need to understand how and

which social factors may influence the decision to adopt behavioral changes from

neighboring conspecifics. Here we focus on the influence of social factors (familiarity

as well as group size) on an individuals’ tendency to adopt conspecifc decisions using

a highly social all-female fish species, the clonal Amazon molly (Poecilia formosa).

We make use of the fact that this species, as many other fish species, occasionally

jumps out of the water. Fish may do so in order to leave unsuitable habitats [11, 195]

or escape attacking predators [16]. These jumps, similar to evasive fast-starts [190],
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occur spontaneously without a triggering, external stimuli, and therefore allow us

to investigate (a) whether the familiarity towards a jumping conspecific facilitates

the own decision to jump (as would be predicted by leader-follower experiments of

Swaney et al. [214] and Reader et al. [183]) and (b) whether the number of conspecifs

in the group increases the likelihood of initiating and copying the jumping decisions

[244, 236]. Specifically, we asked whether fish would jump more readily when

paired with a known, familiar conspecific partner as compared to when paired with

an unknown, unfamiliar partner. Using the clonal Amazon mollies, a naturally

occurring clonal Poeciliid species, for our experiments, we reduced effects of sex and

genetic differences that may affect the tendency to copy and follow a conspecific.

This species is highly social and individuals are able to familiarize with conspecifics

when reared together [149, 59] . Specifically, we predicted that the likelihood that at

least one individual out of a familiar pair jumps into the unknown is higher than in

the unfamiliar pairs and that if one individual jumps the likelihood that the other

one jumps is also increased. To test these predictions, we observed the individual

likelihood to jump when familiar and unfamiliar pairs were transferred into small

bowls, from which they could only escape by jumping into the unknown outer area

of the tank. In a second experiment, we asked whether jumping decisions of single

individuals can influence their neighbors’ likelihood to jump, leading to cascade-like

collective jumping. Here, group size may play a role which is why we observed

groups of varying sizes in a large tank and extracted time and location of evasive

jumps. By modelling the influence of a previous jumping event on the probability

to jump in the next time step, we explored whether found patterns point towards

socially induced decisions for jumping thus social facilitation of a life-and-death

decision.

3.1.1. Jumping behaviour in fishes

The peculiarities of fish jumping was already described in 1951 by Aronson et al. [11],

who made early observation of frillfin gobies (Bathygobius soporator) jumping from

one tide pool to another. Since then, besides studies on the kinematic mechanisms

[78, 205, 39] and a recent approach by De Waele et al. [58], jumps have sparsely been

explored. This is peculiar, since the stakes are high and an individual’s decision to

jump out of the water is a decision of life-and-death as the final destination of the

jump is often uncertain or unknown. Mobile animals are able to actively choose

their habitats to some extent and thus move towards places where environmental

conditions are favourable for their homeostasis [50]. When conditions become

unsuitable in one habitat, animals often switch to more favorable habitats and this

is relatively easy for terrestrial or aerial species. For those species bound to the

aquatic realms, movement between habitats is often more constrained. Some fish,

the Snakehead murrel (Channa striata) and some members of the air-breathing catfish
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family (Clarias) for example have adapted to walk over land [130], but others such as

the zebra fish (Danio rerio) and the killifish (Gambusia affinis), use terrestrial jumps

as escape response [78]. The Trinidadian guppy (Poecilia reticulata), a well studied

member of the genus Poecilia, has also been shown to perform such evasive jumps

[205]. Further, De Waele et al. [58] showed that guppies are capable of incorporating

information to direct their jumps towards safe locations.

3.2. Methods

3.2.1. Animal maintenance

All animal experiments were conducted under the animal experiment number

#0089/21 of the German State Office for Health and Social Affairs (LAGeSo). Experi-

mental fish (strain PfII_1304) were kept and bred in the laboratories at HU Berlin over

successive generations. Fish were housed in 34.1 L communal aquaria, which were

part of a 400 L recirculating system. All holding tanks were maintained at 24
◦
C and

water values were tested weekly (SERA test drops) to assure optimal water quality

(8.11 pH, 14.67 GH, 8.67 KH, 0.02 NO2 mg/L, 17.33 NO3 mg/L, < 0.05 NH4 mg/L,

0.62 PO4 mg/L, 2.96 mS/cm Conductivity). To mimic natural diurnal patterns all

animals were kept on a 12:12 hour light-dark cycle. Fish were fed a variety of dry

flake food, live bloodworms (Glycera sp.) and Artemia sp. three times a day (0930,

1400, 1600).

3.2.2. Experiment I: Pairs

In order to investigate the effect of familiarity of the group members on an individuals’

decisions to jump into an unknown environment, we created pairs of adult Amazon

mollies that were either kept together since birth (familiar) or fully unknown to each

other (non-familiar). These pairs were transferred into a water filled bowl (diameter:

14 cm�, Ceramic, 5 cm water level) that was placed into a larger tank (diameter:

120 cm�, PVC) with a slightly lower water level, but otherwise identical conditions.

We simultaneously observed 10 pairs (5 familiar, 5 non-familiar) for 90 minutes

and repeated this setup 4 times to reach a total sample-size of 20 familiar and 20

non-familiar pairs (Total number of individuals: N-familiar=40, N-unfamiliar=40).

Body size (total length) was measured from still images and treatment groups did

not differ significantly (familiar: 34.2 mm, non-familiar 32.8 mm; t-test: t78=1.686,

p=0.096). During the observation period, the tank was vertically filmed from above

using a high resolution camera (Basler acA2040-90umNIR, 2048×2048 px, gray-scale,

25 fps) and by using the Motif video recording software (loopbio GmbH, Vienna,

Austria). From the videos, the time point at which a fish jumped out of the bowl
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into the outer compartment of the tank as well as the distance of the jump were

extracted. After the observation period all fish were transferred back into their

respective holding tanks and were not subject to any further experimentation.

To answer the question whether individuals with a familiar partner were more likely

to jump compared to those with an unfamiliar partner, we first compared the number

of pairs in which at least one individual jumped between familiar and non-familiar

treatments using chi2 tests. Subsequently, we compared the number of pairs for

which both individuals jumped to the cases where none or only one fish was jumping

between treatments (chi2 tests). Using the time until a fish jumped out as dependent

variable, we further compared treatments via a survival analysis (cox regression)

including average body size in a pair as well as body size difference as covariates.

Individuals that did not jump until the end of the observation period were censored.

Furthermore, we compared individual jump distance between treatments using a

linear regression with average body size as well as body size difference as covariates.

3.2.3. Experiment II: Groups

In order to ensure sufficient randomization all fish were caught from the holding tanks

prior the experiments and separated into individual containers. Once all individuals

were captured they were each randomly assigned to one of the designated groups

of varying sizes (N = 4, 8, 16, 32). Once groups were created these were allowed to

familiarize for one week, before testing. In total two separate, yet methodologically

identical runs were performed resulting in N=8 groups (2×N=4, 2×N=8, 2×16, 2×32)

and 16 recordings. However, to limit the number of total fish required, individuals

from the previous groups (run 1) were randomly recombined into new groups in

the second run. Two individuals had to be replaced with naive fish from the stock

between run 1 and run 2 because two fish had died between runs. During pilot

studies it was established that over the course of 60 minutes individuals began to

initiate jumping behaviour directed towards the outer boundaries of their tanks.

This was therefore chosen as the sufficient time frame for all further recordings of

this study.

Every group was then recorded twice in a white, opaque, circular arena (height:

80 cm, diameter: 76 cm�, PVC) for a total of 65 minutes. This was done using a high

resolution camera (Basler acA5472-17um, 3672×3672 px, grayscale, 15 fps), which

was installed vertically above the tank (1 m) and using the Motif video recording

software (loopbio GmbH, Vienna, Austria). Consecutive recordings for each run

were done on two separate days. Water levels were kept at 7 cm to reduce overlap

among individuals and limit movement to the optimal focal depth of the camera.

Between recordings the water was replaced with fresh, acclimatized water to ensure

aeration and reduce contamination of olfactory cues and excrements.
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3.2.4. Analysis

In order to quantify jumping events in larger groups, all individuals were detected

and tracked over time using freely available and open source software [230]. By

using a custom implementation of the Hough transformation [86, 102], designed

to find circular structures, the outer, circular boundary of the tank, given by the

water level on the surrounding walls was automatically detected. This allowed for

jumps to be quantified as detections outside of the returned boundary circumference.

These values were compared to manual annotations of frames in which jumps took

place, as ground truth approach. The spatial pattern of such jumps was recorded

by determining the angle of the line connecting the center of the arena and the

corresponding jump location coordinates. This resulted in angular distributions

around the arena center for each recording, where 0
◦
/360

◦
denotes due north and

180
◦

denotes due south. The spatial distance between two consecutive jumps was

calculated as angular difference. Given that the arena had a diameter of 76 cm, one

degree angular change corresponds to 1.33 cm of the circular arc along the arena

boundary. Further, the temporal distribution of jumps was given by time points at

which jumps were detected, resulting in a fully resolved spatio-temporal distribution

of jumping events across all groups.

Figure 8. Example time series of jump detections over the course of 60 min for a group
of N=16 individuals. A Time points at which jumps occurred, B Cumulative counts of
jump events over time

Given that each group size (N=2,4,8,16,32) would likely elicit different spatial and

temporal jumping patterns, comparison was done by comparing the time differences

(inter-jump intervals) between jumps to those derived from randomly shuffled time

series (see Figure 10). Random shuffling breaks any temporal correlation between

jumps and therefore gives a good null model to begin with. Random shuffling

was done by drawing the same number of observations (frames) as seen in the real

data, from a binomial distribution with probability of success 𝑃(𝑗𝑢𝑚𝑝), where the

probability rate of jumping is given as:
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𝑃(𝑗𝑢𝑚𝑝) =
𝑁𝑗𝑢𝑚𝑝𝑠

𝑁𝑜𝑏𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛𝑠
(3.1)

3.3. Results

3.3.1. Experiment I: Pairs
Overall, from 40 investigated pairs observed for 90 minutes each, there were 33

where at least one individual jumped and the likelihood that at least one individual

jumped did not differ between familiar (4/16) and non-familiar 3/17; chi2-test: 0.17,

p=0.67) pairs. However, pairs consisting of non-familiar fish had a significantly

increased likelihood for both individuals to jump out of the bowl (both jumped

familiar treatment: 5/20 pairs; both jumped non-familiar treatment: 12/20 pairs,

chi2=5.01, p=0.025, Figure 9A). Thus, there were overall more fish jumping in the

non-familiar treatment (29 vs 21) which is reflected also in a significant effect of

the factor treatment in the cox regression (treatment: chi2: 5.26, p=0.022, Figure

9B). Interestingly, most jumps (48/50) occurred within the first hour of observation

(Figure 9B). The distance of a jump was not affected by the treatment (LM: F1,46=0.791,

p=0.38, Figure 9C) and body size neither affected the likelihood to jump (avg. body

size: chi2: 2.631, p=0.105; size difference: chi2: 2.311, p=0.128) nor the distance

jumped (avg. body size: F1,46=0.008, p=0.93; size difference: F1,46=0.264, p=0.61).
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Figure 9. A Proportion of pairs in which no, one or both individuals jumped B Cumulative
probability of an individual to jump over time and across treatments C Distance of jumps
performed in each treatment

3.3.2. Experiment II: Groups
The individual probability to jump increased with time in the experiment (odds

ratio: 𝑂𝑅 = exp(frame) = 1.46, CI = [1.35, 1.58], p<0.001 ***), group size (odds ratio:

𝑂𝑅 = exp(n) = 9.35, CI = [1.61, 54.50], p=0.014 ***) and local fish density (odds ratio:

𝑂𝑅 = exp(NND) = 1.51, CI = [1.35, 1.68], p<0.001 ***). The analysis of the time
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intervals and locations between jumps revealed that jumps in all four investigated

group sizes were clustered both temporally as well as spatially. The time intervals

between two consecutive jumps were significantly smaller than expected from a

random jump occurrence in all tested groups (see Figure 10A, Kolmogorov-Smirnov

𝑁4: D=0.6, p=0.052 .; 𝑁8: D=0.25, p=0.002 **; 𝑁16: D=0.36, p<0.001 ***, 𝑁32: D=0.37,

p<0.001 ***). Similarly, the spatial distance between two consecutive jumps was

significantly smaller than expected for random jumps (see Figure 10B, Kolmogorov-

Smirnov 𝑁4: D=0.55, p=0.075 .; 𝑁8: D=0.52, p<0.001 ***; 𝑁16: D=0.55, p<0.001 ***,

𝑁32: D=0.37, p<0.001 ***). For both intervals and spatial distance, coefficients of

distribution above 1 were calculated which are indicative of a clustered occurrence of

jumps in space and time. These results indicate that fish synchronized their jumps

upon each other both in time and space.
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Figure 10. A Kernel density estimate of the temporal difference between consecutive
jumps. Medians are shown as vertical, dashed lines and color denotes group size.
Random estimates were established by sampling the same number of jumps per
recording across the total time duration and calculating the corresponding interval
lengths B Kernel density estimate of the angular difference between consecutive jumps.
Random samples were drawn from a uniform distribution centered at 0 with limits -180
and 180. The number of random samples was matched to the total number of observed
jumps across all group sizes.

3.4. Discussion
The here presented work shows how familiarity of social partners alters the decision-

making process and risk taking in the Amazon mollies. Individuals paired with
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familiar sisters were less likely to jump into the unknown when compared to those

paired with unfamiliar partners. Familiarity among these fish therefore reduced

the overall jumping probability, and coinciding risk taking significantly. This is in

contrast with our initial prediction that familiar partners should follow each other

more readily into the unknown as compared to non-familiar individuals. As for

larger group sizes an individual’s probability to jump was found to be independent

of group size, while showing an increasing trend with time spent in an unstructured

and barren environment. The individual jump probability appears to be socially

mediated given that nearly all groups showed a smaller than random difference in

time between jumps and distance between jumps (see Figure 10). The only outlier

in this case being the temporal difference in the group size N=4, where sparse data

most likely doesn’t allow for a conclusive statement.

Familiarity has been shown to have immediate fitness benefits in other contexts by

leading to faster predator avoidance in brown trout Salmo trutta [82] and damsel

fish (Chromis viridis) [161] and enhanced survival and body condition in Arctic

char Salvelinus alpinus [198]. The here presented work is in line with these insights

showing that familiarity decreases risk-taking and leads to enhanced survival. This

holds to be true when taking into account the fact that the surrounding into which the

fish displace themselves by jumping is unknown to them and could potentially lead

to a higher risk when compared to remaining in proximity with a familiar individual

under no proximate risk. Given the previous work staying close to a familiar partner

leads to a better outcome and response when compared to an unfamiliar one, should

a potential risk arise [82, 161].

Group size did not affect individual jumping probability, although group density

was not specifically accounted for which also increased with group size, given the
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fixed arena size. Further, to give more detail to the individual decision making

process a leaky integrator and fire model (LIF) or drift defusion model would be

a good extension to this work and is planned for future approaches. In the case of

a LIF model The individual would receive input (e.g. visual stimulus or physical

sound) about it’s social partner’s decisions. These would be integrated over time at

an individual level with a certain proportion of ‘leak’ allowing the internal value

to decay when no input is received. Integration is done until a certain threshold is

met at which the individual makes a decision itself, resetting the internal value and

leading to a behavioral change e.g. jump. A parameterized model as such allows for

the individual level values (threshold, decay, attentiveness or accumulation value) to

be estimated from the data to gain insights into the processes driving such individual

and collective level behavior.

3.5. Conclusion
While gregarious animals have been shown to be affected by their social partners

[127, 53] and may alter their opinion based on the behavior of others [183, 117] it is

not always clear which behavior is socially mediated. The question to be answered

in this work was whether jumping behavior of clonal fish was under social influence

and how familiarity to social partners would alter this behavior. It was shown that

the decision of jumping into a possibly unknown environment with unforeseen

risks is socially modulated. In pairs familiarity facilitated longer waiting times and

reduced likelihood to jump. In larger groups, both time and location of jumps were

found to be socially dependent leading to subsequent jumps being in close spatial

and temporal proximity of each other.

Familiarity has been shown to improve predator avoidance behavior in damselfish

[161], while increasing inter-individual aggression in P. formosa used in this study [59].

It is likely that familiarity does not have a single effect on behavior and is in contrast

highly context dependent. The Amazon molly shows effects of familiarity and is a

good system to investigate familiarity and the co-occurring change of behavior over

various time scales [138].
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4. Behavioral Heterogeneity and Adaptation in
Groups

Knowing that behaviors can be learnt and effected by conspecifics the question arose,

to what extent individual behavioral differences play a role in this. Individuals

learn at different rates and effect each other in their decisions, but are individual

differences maintained in groups and are these constant or adaptive? These were

the questions which motivated a subsequent piece of work to understand individual

and group level behavior and their dynamics.

4.1. Introduction

Forming social aggregates is a common phenomenon among group living animals

and has been shown to have many advantages for the individual, such as reduced

predation pressure, higher foraging success and access to more sexual partners [127].

Among individuals persistent differences are apparent early in life [138] and arise

due to varying factors such as experience [19], state [26, 156] and environmental

stochasticity [92]. The ecological environment further shapes the way individuals

interact with each other, and determines what kind of interactions are established

in a social context [83, 88, 142]. Certain individual differences have been shown to

diminish while others increase in a social context [90, 147]. Social groups of multiple,

interacting individuals have further been shown to develop consistent traits of their

own over time [241, 147]. By looking at individuals in a consistent social aggregation

and habitat over time we can begin to understand the fine scale dynamics which

change on an individual and inter-individual level. In the Amazon molly Poecilia
formosa this has been done for individuals but not in a social context [138]. Therefore,

this study set out to shed light on the dynamics behind such individual differences

in persistent groups of interacting individuals. To do so the individual behavior was

first recorded in a solitary setting and then consistently continued over four weeks

in a group setting. An environmental variable was introduced to create novelty and

variation among experience and to test how this would further effect differences

among interacting individuals.
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4.2. Methods

4.2.1. Animal Model and Husbandry

Here we used the naturally clonal fish species Poecilia formosa which was previously

described (see Section 2) and was bred in the same animal housing facilities and

reared under the same conditions (see Section 2.2.1). All animal experiments were

conducted under the animal experiment number #0089/21 of the German State

Office for Health and Social Affairs (LAGeSo). It was emphasised that all fish

were unfamiliar with each other and the test environment at the beginning of

the experimental phase, in order to reduce any effect of prior familiarization and

habituation. For this study, roughly 100 female Amazon Molly (P. formosa) of similar

age (1.5 months) and ranging from 20 to 30 mm in total length (TL) were manually

sorted from stock population kept in a separated holding tank with gravel bottom

and plants, a week in prior to the beginning of experiments. Fish were fed twice a

day ad libitum with fish flakes and kept on a 12h:12h light:dark cycle, with water

temperature around 24
◦
C and the water quality being measured weekly. In order

to visually identify individual fish during manual sorting and automated tracking

(Trex software trex.run), a total of 88 fish were marked with a color stripe on the

left side of the body using Visible Implant Elastomer (VIE by Northwest Marine

Technology, Inc.). Four highly distinguishable, fluorescent colours (red, blue, yellow

and green) were used to mark the individuals, while the tagging equipment was

prepared and used following the user’s manual of Northwest Marine Technology.

After a 3 min exposure of each fish to water with clove oil, a thin needle (standard

insulin syringe) was used to implant the subcuticular tag in a way that it remained

externally visible. Posterior to the incision, the needle was moved towards the fish

snout, the material was injected as the needle was retracted leaving a color mark

of 2-5 mm in length. All marked fish survived the procedure and none showed

ill signs of discomfort, unusual swimming postures or aversive behavior. A week

after tagging the total length (TL) was manually measured from the tip of the snout

to the end of the caudal fin on a millimeter paper as well as photographed to get

the standard length (SL) using the open source image processing program ImageJ

1.8.0 for later comparisons for each individual. After sizing, individuals were sorted

into individual reusable plastic containers with water according to tag colours and

were then randomly sorted into shoals of four individuals. In total 22 groups were

formed with size matched individuals (± 0.2 mm), where each fish had a distinct

and different tag color. These groups were then placed together in individual tanks

of 10 L for acclimation without visual access to other groups, one week prior to the

beginning of the experiments.
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4.2.2. Individual recordings

Twenty-Four individual tanks (28 cm W × 28 cm L × 24.5 cm H) with water levels

set to 4 cm were used to record fish individual behaviour. Tanks were individually

labeled to provide identification in the videos. The arenas were illuminated from

bellow using consumer grade LED lights in order to improve contrast and subsequent

tracking quality. Before each trial a water change was performed after which the

individual fish were randomized across all experimental tanks and allowed to

acclimatise for 1 minute. Behavioral recordings were then done for 5 minutes each

in an open field fashion, allowing the fish to move around freely. The sequence of

recordings was randomized per day, in a way that a group would not be recorded

twice a day and each individual would be recorded for three times over the course of

all recordings. Recordings were done using two overhead cameras (Basler acA1920-

155um, 1920 × 1200 px, grayscale, 30 fps) installed at a height of 80 cm and the

Media Recorder software (Version 4.0.544.8 Noldus Information Technology, The

Netherlands).

4.2.3. Group recordings

A round experimental tank (height: 50 cm, diameter: 74 mm�) made of opaque,

white acrylic and was used to evaluate group behaviour over the course of four weeks.

The circular tank was placed on a square pedestal surrounded by white curtains

functioning as light diffusers. During experimental recordings the groups were

exposed to two different environments inside the tank: 1) complex, with a total of

eight white, small clay pots (height: 7 cm, diameter: 4 cm�) arranged in 2 concentric

circles, four pots per circle (R1=25 cm, R2=12.5 cm) (see Figure 15); 2) simple, with

nothing but water i n the tank. The water level of the tank was therefore set to 7

cm to ensure that all obstacles were covered but to be low enough to prevent the

fish from passing over them. Water temperature was the same as in the rack system

where the groups were kept (24
◦
C). Water was replaced at the beginning of every

recording day and fish were always tested prior to having been fed. The sequence of

recordings was chosen randomly taking into account that a single group should not

be exposed to both environments on the same day, hence three days were needed to

complete one training session with all the groups and this procedure was repeated

for four weeks. Recordings were done for 10 minutes with 1 minute acclimation time.

Video observations were acquired using an overhead camera (Basler acA5472-17uc,

3400 × 3400 px, RGB, 15 fps) installed at a height of 130 cm and using the Motif video

recording software (loopbio GmbH, Vienna, Austria).
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Figure 15. Top-down view of the experimental tank
used for group behavior recordings showing a complex
environment setup and four individual fish. Obstacles
(green/blue) and fish were automatically detected and
tracked over time to get exact locations in each frame

4.2.4. Analysis

From the individual and group recordings trajectories were retrieved using openly

available tracking software which is capable of maintaining individual identities and

capturing their posture over the course of the recordings [230]. These individual

trajectories were manually corrected and matched across all recording instances to

achieve continuous tracks for all individuals and across all recordings. This allowed

us to analyse the correlation between individual median swimming speed alone

and that shown when swimming in a group as well as individual variance and

inter-individual variance over time. Individual trajectories were interpolated after

which the median speeds were calculated, resulting in individual time series for

recording. Swimming speeds were then filtered to be between 0 and 20 cm/s in order

to remove extreme outliers which were mostly due to interpolation of erroneous

tracking instances.

Statistical Analysis

All statistical analysis was done in R (v4.2.2 ‘Innocent and Trusting’, lme4 v1.1-29)

and Python (v3.8.0, scipy v1.10.0). Statistical models were designed according to

the experimental setup and finding the best appropriate architecture via conditional
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Figure 16. Example trajectory of a single fish over the course of 3
seconds sampled at 5 Hz. Superimposed is a contour, highlighting the
midline and the 7 points distributed along it which represent the fish’s
posture and detail of tracking.

Akaike information criterion (cAIC) (AICcmodavg v2.3-1). Consistent inter-individual

differences were established following the variance decomposition according to

Nakagawa and Schielzeth [163] and using the openly available software package

(rptR v0.9.22, nboot=1000, npermut=1000, [210]).

4.3. Results

Behavior in Solitude

A total of 88 individuals, corresponding to 22 complete groups were analyzed

in respect to their individual behavior recorded alone, without social context.

A Gaussian linear mixed-effects model was used to analyse the effect of repeated

measures and initial size on the individual swimming speed. To account for consistent

inter-individual differences across three consecutive measurements, individual ID

was incorporated into the model as random effect. Overall the model’s total

explanatory power was weak (conditional R
2

= 0.06) and that related to the fixed

effects alone (marginal R
2
) was of 3.43e-03 (see Supplemental Material Table 5). The

model’s intercept, corresponding to the average median speed observed across all

individuals in the first recording (date_index = 0), was found to be at 0.52 (CI=[0.36,

0.68], t255=6.36, p<0.001 ***). Both initial size and time, as subsequent recording index

in days, had no significant effect on the performed median swimming speed (𝛽𝑑𝑎𝑡𝑒=-

0.03, CI=[-0.08, 0.03], t255=-0.90, p=0.369; 𝛽𝑠𝑖𝑧𝑒=-6.88e-03, CI=[-0.05, 0.03], t255=-0.34,
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p=0.734). Over the course of the measurements in absence of social partners,

the individual behavioral consistency, given as repeatability or within-individual

variance was weak and non-significant (R=0.06, CI=[0, 0.185], p=0.197).
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Figure 17. A Individual average swimming speed is plotted against the individual swimming
speed within a group. Each point (black) represents one individual. B Difference between
mean individual speed and that of the group partners for all individuals (black) over the
course of the experiment. Linear trends are shown as first degree least squares polynomial
fit (red)

Behavior in Social Context

A total of 72 individuals, corresponding to 18 complete groups were analyzed in

respect to their individual behavior with and without social context. Individual

swimming speeds recorded in social isolation were not significantly correlated to

those retrieved in the social context (Spearman: r72=-0.102, p=0.393, n-permutations:

10000; retrieved with subsequent permutation test, for correction of low sample

size, Figure 17A). However, the difference between the individual speed and that

of the other group members was found to be positively correlated with subsequent

recordings (Spearman: r536=0.240, p<0.001 ***, n-permutations: 10000; retrieved with

subsequent permutation test, for correction of low sample size, Figure 17B).

Only individuals for which the first and last recording instance were included in

the analysis were considered for this comparison. Overall the individual speed

decreased over the course of time (see Figure 18). This decrease across individual

speeds between the initial and the last experimental trial was significant in the case

of the complex environment (Paired T-Test: t11=5.48, p<0.001 ***, Figure 18) but not

significant in the simple environment (Paired T-Test: t7=1.69, p=0.135, Figure 18).

A Gaussian linear mixed model was used to predict the detailed effect of individ-
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ually recorded speed, body size (TL, cm), environmental complexity and subse-

quent test days on the median group speed in each recording instance (formula:

group_median_speed.cm.s
˜

ind_speed.BL.s + size.cm + environment + date_index).

To account for consistent inter-individual differences, individual ID was incorpo-

rated into the model as random effect. The model’s total explanatory power was

substantial (conditional R
2

= 0.56) and the part related to the fixed effects alone

(marginal R
2
) reached 0.25 (see Supplemental Material Table 7). The model’s inter-

cept, corresponding to the average median group speed for any given individual

when first being introduced to the group arena (date_index = 0), was estimated at

0.42 (CI=[0.10, 0.73], t829=2.60, p=0.010). Reduced environmental complexity (simple)

had a significant, positive effect on the group swimming speed, although overall

the swimming speed significantly declined over time (𝛽𝑒𝑛𝑣=0.08, CI=[0.07, 0.09],

t529=11.20, p<0.001; 𝛽𝑡𝑖𝑚𝑒=-5.62e-03, CI=[-6.49e-03, -4.75e-03], t529=-12.69, p<0.001,

see Figure 18). Individual speed recorded in isolation showed a negative effect, while

individual body size had a positive effect on group speed (𝛽𝑠𝑝𝑒𝑒𝑑=-0.10, CI=[-0.38,

0.18], t529=-0.70, p=0.484; 𝛽𝑠𝑖𝑧𝑒=0.04, CI=[-0.09, 0.16], t(529)=0.56, p=0.574). However,

both individual speed in isolation, as well as initial body size were not found to be of

statistical significance.

Similarly, the effect of subsequent recordings, initial speed, body size and environ-

ment on the individually expressed median swimming speed within the group

produced similar results. The total explanatory power of the model was substantial

(R
2

= 0.56, conditional R
2

= 0.24) with an intercept at 0.49, corresponding to the

average individual speed across all groups at the beginning of the experiment

(CI=[0.17, 0.81], t529=2.98, p=0.003) (see Supplemental Material Table 6). Time, as

subsequent days negatively influence the individual swimming speed, reducing it

significantly, while reduced environmental complexity significantly increased the

individual swimming speed (𝛽𝑡𝑖𝑚𝑒=-5.69e-03, CI=[-6.58e-03, -4.79e-03], t529=-12.51,

p<0.001; 𝛽𝑒𝑛𝑣=0.08, CI=[0.06, 0.09], t529=10.82, p<0.001).

To estimate the within-individual variance components the same model was used as

previously described. Individuals showed significant consistency in their median

individual swimming speed across all repeated measurements of being observed

within their groups (R=0.421, CI=[0.31, 0.523], p<0.001 ***). To further test for

the effect of environmental complexity on the individual behavioral variation in

median swimming speed the repeatability analysis was performed on the data

subsets for each environmental treatment (’Complex’, ’Simple’). While the individual

behavioral consistency was significant in both cases, it was slightly elevated in the

simple and non-occluded environment (R
complex

=0.426, CI=[0.283, 0.552], p<0.001

***; R
simple

=0.449, CI=[0.307, 0.565], p<0.001 ***).
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represent linear mixed model estimation with corresponding confidence interval

4.4. Discussion

Considering individual behavior under the influence of the social environment and

in isolation helps understand the interplay between individuals and their social

context. In this work we show that individuals exhibit different behavioral traits i.e.

median swimming speed depending on the availability of social partners (see Figure

17A). The overall speeds were lower compared to those shown in similar studies

[138]. When alone, we observed low individual consistency in the swimming speed,

which increased in the social context. The effect of social partners has been shown to

influence behavior in humans [241, 17] and other non-human species alike [90]. This

is in line with our findings that individual behavior observed in solitude does not

fully predict the behavior expressed in a social context. However, Herbert-Read et al.

[90] found that individuals adjusted their speed to each other leading to higher social

conformity in groups and less individual variability of swimming speeds. In the

here presented data, we were able to reproduce the finding that individuals reduce

behavioural variability i.e. showing higher repeatability and individual consistency

in social groups (see Section 4.3). However, in this work individuals showed highest

social conformity on the first day of recording, where habituation and familiarity

can be expected to be lowest. This conformity decreased over time, leading to the

highest differences among median swimming speeds of the individuals within a

group on the last day of recording (see Figure 17B)).

The complexity of the physical environment has been shown to alter the observ-

able behavioral variability in fruit flies Drosophila melanogaster [5] and rats Rattus
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norvegicus [240]. In the here presented work, individual Amazon mollys likewise

showed elevated behavioural variation in a simple non-occluded environment, when

compared to an environment of higher structural complexity (see Section 4.3).

Besides physical complexity, temporal aspects were found to greatly influence the

individual swimming speed within groups. This would be expected due to habit-

uation, a form of adaptation to both the physical and social surroundings taking

place over time and subsequent exposures [216]. Responsiveness and the transfer of

information have been shown to be dependent on swimming speed in fish schools,

which can in turn allow the individuals to adapt their speed to the informational

requirements of the situation [169]. In an uncertain environment, as is the case in

the initial recording prior to any experience speed would be kept low to be more

responsive to the neighbors and other external stimuli. Over time certainty is estab-

lished and habituation takes place allowing for higher individual swimming speeds

within the group. Although in the here presented work individuals show increasing

individual differences in swimming speeds over time (see Figure 17B), the speed was

not found to be lowest at day 0. However, it is lower in the convoluted environment

which can be seen as suggestive evidence of the uncertainty argument (see Figure

18). The process of habituation most likely is not linear, where more rigorous testing

would be advantageous to highlight the causal effects. Methodologically however

this already emphasizes the importance of acquiring multiple repeated recordings in

order to establish a representative value, even for such reduced behavioral traits as

swimming speed might be seen as.

4.5. Conclusion

Aggregating towards likewise behaving individuals has many benefits for gregarious

animals, such as the diluted risk of predation and higher foraging success [127].

However, a question that remains unanswered and for which we still lack sufficient

experimental studies, is what fitness cost is associated with being individually flexible

compared to being more stubborn in such social scenarios. Given that individuals

often show high levels of inter-individual variation and, as shown in this work, are

capable of adaptively changing it according to the physical and social environment,

we may pose the question as to when this change is advantages and when not. In

times of sparse information or high uncertainty this can lead individuals to be more

responsive to their environment, in turn leading to higher conformity. This need

not be an active decision at the individual level and could merely be a mechanism

to deal with limited attention [63] but inherently allows for more efficient flow

of information and subsequent distribution of knowledge [169]. Building on the

ability to record individual behavior over long periods of time and in high detail

(see Laskowski et al. [138]), while keeping track of the individual identities even in a
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social context the ultimate and proximate causes of individuality and it’s adaptations

should further be explored. Possibly the most intriguing aspects of such studies are

the temporal dynamics of behavioral change taking place over various timescales.

Within seconds the location can be changed leading to new sensory input while

over days, weeks and years adaptation can take place and information can become

learned and ingrained into consistent behavioral traits. These aspects of behavioral

research are often complicated to capture and distil but hold much potential for

future work.
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5. The Effect of Motile Prey on Swimming
Activity

To recapitulate, by now we know individuals learn, show consistent individual

differences and are effected by conspecifics in their behavior. But how does the

physical surrounding and the experienced variability of such effect the behavior? As

alluded to in the previous work on individual and group level processes, the physical

environment has a significant effect on the behavior being observed and cannot be

excluded in such studies. This is mainly due to the fact that the environment can

shape experience and, in turn behavior [5]. The following work was motivated by

the question whether food availability in the environment would have an effect on

certain behavioral traits, such as swimming speed.

5.1. Introduction
On the one hand animal behavior has become increasingly interesting for aquaculture

facilities as means of managing livestock health and animal welfare [49, 10]. On the

other hand, the research field of animal behavior has been interested in observing and

understanding natural behavior for decades [157, 219]. Live prey has regularly been

used to foster fish growth and larval survival in marine and freshwater husbandry

facilities across the world [18]. The Japanese water flea Moina macrocopa, a commonly

used live feed in commercial aquaculture, is frequently used along side brine shrimp

Artemia for larval rearing in many ornamental and agricultural fish species [108, 181].

Yet little attention is drawn towards the effect of using naturalistic, live food on

the behavior in behavioral ecology [101, 107], while this is a well studied field in

aquaculture. Environmental complexity, as experienced by an individual, has been

shown to effect the behavior in fruit flies Drosophila melanogaster [5] and rats Rattus
norvegicus [240], and has been touched upon in the sections above (see Chapter

4). Further, animals conditioned on unreliable food sources have been shown to

increase their foraging effort in order to compensate for potential food shortage - A

process termed “incentive hope” by Anselme and Güntürkün [8], which can shape

the foraging behavior [7].

The Amazon molly (P. formosa), is a naturally occurring clonal freshwater fish. This

all-female species originated from a rare hybridisation event between a male Sailfin

molly (P. latipinna, ♂) and a female Atlantic molly (P. mexicana, ♀) dated back to about

100.000 years ago [94, 194, 197, 136, 209, 231]. These highly social fish are of interest

for the understanding of consistent inter-individual differences and the development

of individual heterogeneity in light of environment and experience [26, 140, 141].
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Here we set out to test the effect of live prey on the open field behavior. In particular

we were interested in testing whether changes in swimming speeds, as proxy for

foraging effort would take place in response to food availability. First, we established

a feeding regime for three treatment groups. These consisted of commercial dry food,

fresh non-motile prey and live motile prey. Subsequently, we tested for differences

due to the treatment, in growth rate and behavioural traits such as preferred speed.

5.2. Methods

Experimental fish were kept individually in 12 L tanks (14 cm W × 40 cm L × 20 cm

H). These individual tanks were part of a circulating water system with a common

sump reserve and filter (total volume: 400 L), while the outlets where blocked by

fine sponge material. This was done to maintain stable temperature and continuous

water exchange, while keeping food particles constrained inside the individual tanks.

The rack system was further supplied with a UV sterilized (deBary 25 W) in order

to reduce the overall bacterial load. Fish were kept on a rigorous feeding regime of

commercial dry food (‘Comercial’), freshly killed M. macrocopa (‘Dead’) or live M.
macrocopa (‘Live’) over the course of four weeks, with food being distributed once

a day. Commercially fed individuals received 0.001 g flake food (TetraMin Flakes),

while all other treatment groups received M. macrocopa which were strained through

a 100 µm mesh, to ensure same maximal size and rinsed with fresh water. Live fed

fish were then fed with M. macrocopa, while dead fed fish were fed with freshly

killed (frozen) M. macrocopa. Each individual fish was given 3 mL of the well mixed

M. macrocopa solution, of which the prey density was automatically determined,

using a custom script based on object detection (see ‘Thing_counter.py’, see Figure

19) and recorded for each feeding instance and individual. To record growth we

used a custom developed, freely available, open-source measuring software for

semi-automatic measuring based on images, ensuring controlled and reproducible

results [2]. Size of the fish, measured as Total length (TL), was recorded once per

week using the freely available measuring software. This allows us to establish a

growth curve across all individuals and treatment groups.

5.2.1. Video and Image Analysis

Over the course of four weeks, all individuals were checked for size differences

and subjected to one behavioral, open field recording every week in absence of

food. Individual recordings were done once a week for 60 minutes and using

overhead cameras (Basler acA5472-17um, 3684 × 3684 px, grayscale, 15 fps). Sizes

were measured as total length (TL) and recorded using semi-automatic procedure to

reduce experimentor bias. However, to ensure comparability and test the accuracy
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Figure 19. Administered prey densities received by each individual in the corresponding treatment
groups

of the automated methodology, all individual were also manually measured from

top-down images (Fĳi v2.9.0) (The comparative work is not included in this thesis).

From the automated measurements the individual growth curves were established.

5.2.2. Postprocessing and Statical Analysis

Post-processing of the obtained trajectories and data was done in Python and subse-

quent statistical analysis using R (v4.2.2 ‘Innocent and Trusting’). Median speed was

calculated by tracking the individual fish using openly available software [230] and

subsequently calculating the metrics for each session from the time series of cartesian

coordinates (x,y). From the trajectories the instantaneous speed was calculated as

time series for each individual and recording and filtered to be within the range of 0

- 20 cm/s. Outliers were further removed from the median speed calculation by the

standard deviation of these time series. Data points with a standard deviation of

speed outside the range of two standard deviations from the mean of all data points

were excluded (Mean ±2×𝑆𝐷). This was done to account for tracking inconsistencies

leading to increased speed.

For the analysis using a Linear mixed-effects model approach, models were con-

structed with gaussian error distribution using the library lme4 (v1.1-29) and best fit

was established through comparison of the corrected Akaike information criterion

(cAIC) (aictab, AICcmodavg v2.3-1) and automatic model design (buildmer v2.8).

The model with the lowest cAIC as well as all models within 4 ΔcAIC units are

considered equally supported. Initial size and test tank were included as fixed effects

to account for any initial variance among individuals in size and their randomly

assigned recording arenas. Where appropriate and to further account for individual

variation a random effect in form of a random intercept was added for each unique

ID (rptR, v0.9.22).
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5.3. Results

At the beginning of the trials a total of N=20 individual fish were included in each

treatment group, resulting in a total of N=60 fish. Three fish were removed prior to

reaching the end of the experiment at day 40 due to poor health which resulted in a

total of N=57 successfully reaching the last day of trials. However, for consistency the

measurements of all individuals were incorporated into the final analysis. Growth

was established as the size increase over the course of the experiment and growth

rate as the increase in size per time unit (day).

5.3.1. Growth

Growth rates were obtained across the entire experimental duration of four weeks

and across all treatment groups (see Figure 20). A Kruskal-Wallis test was performed

to test for the effect of feeding regime on growth rate, which revealed a significant

difference between treatments (𝐻2=28, p<0.001 ***). Conventionally fed fish showed

the highest total growth (⟨𝑥⟩conv=2.65 cm, ⟨𝑥⟩
live

=2.09 cm, ⟨𝑥⟩
dead

=2.12 cm; Dunn

post-hoc test with Benjamini-Hochberg p-value adjustment: Conventional - Dead,

p<0.001 ***; Conventional - Live:, p<0.001 ***; Dead - Live: , p=0.694).
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Figure 20. A Individual size over the course of the experiment and across all individuals (N=20)
per treatment group. Raw data is shown as points with jitter added for better visibility. A model
fit is shown as line with 95% confidence intervals given as shaded area. B Growth rate across
treatment groups. Asterisks indicate results from post hoc pairwise comparisons
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5.3.2. Speed

Concerning the behavioral response in swimming speed there was no observable

difference between the median swimming speeds across treatment groups. The

effect of food treatment on the median speed was analyzed using a linear mixed

model with time, treatment and the initial size added as fixed effects. The suggested

model of best fit did not include treatment or a random effect which were added

for experimental representation and consistency. The final model was fit to the

behavioral response across all individuals (N=58). A random intercept was added per

unique individual to account for individual variance across repeated measurements

(formula: MedianSpeed
˜

InitialSize + RecordingIndex + Treatmemt + (1 | ID)). The

total explanatory power achieved by the final model was substantial (conditional

R
2

= 0.31, marginal R
2

= 0.27) (see Supplemental Material Table 8). Concerning

the estimate of the fixed effects, the initial size had a significant, positive effect on

the median swimming speed, while time had a significant negative one (𝛽𝑠𝑖𝑧𝑒=0.51,

CI=[0.29, 0.73], t199=4.58, p<0.001; 𝛽𝑡𝑖𝑚𝑒=-0.03, CI=[-0.04, -0.02], t199=-7.71, p<0.001).

In other words, initially larger individuals swam faster, while over time all individuals

reduced their swimming speed. There was no significant effect of treatment on the

median swimming speed (F2=0.0.453, p=0.638; see Figure 21). Variability among

individuals measured as variance component accounted for by the random effect

was low and non-significant over repeated measurements (R=0.056, CI=[0, 0.206],

p=0.286).

To test for the effect of prey density on the median speed and to account for variability

in food availability among days a similar approach was taken. However, for this

comparison only the two treatment groups fed on a M. macrocopa diet were used.

This was done, given that the other treatment group, fed with conventional food

did not experience any daily variability in food availability. The same statistical

model as previously described was used with the addition of daily, individually

received prey count as fixed effect (formula: MedianSpeed
˜

InitialSize.mm +

Treatment + RecordingIndex + PreyCount + (1 | ID)). Again, the explanatory power

achieved by the final model was substantial (conditional R
2
=0.37, marginal R

2
=0.32)

(see Supplemental Material Table 9). The prey count was not found to have any

significant effect on the swimming speed (𝛽=-5.05e-04, CI=[-3.57e-03, 2.56e-03],

t127=-0.33, p=0.745) while initial size and time remained to have a significant positive

and negative effect respectively on the swimming speed (𝛽𝑠𝑖𝑧𝑒=0.68, CI=[0.37, 0.99],

t127=4.32, p<0.001; 𝛽𝑡𝑖𝑚𝑒=-0.03, CI=[-0.04, -0.02], t127=-6.65, p<0.001). Daily variation

in prey abundance therefore did not significantly affect the observed swimming

speeds.
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5.4. Discussion

In this study we set out to determine the effect of food regime and prey motility on the

swimming behavior of fish. We see significant difference in growth across treatment

groups, where the group fed with commercial food showed highest increase in total

length (see Figure 20A). Although live and naturalistic prey can lead to enhanced

feeding behavior [181] it can also introduce pathogens such as Vibrio spp. to the

system [18]. The fish in this study were examined daily for infections and other

anomalies. Over the course of the experiment three fish (one of each treatment)

were removed due to such irregularities, suggesting that the difference between the

treatments is likely not due to any infection. It is more likely that the effects are due

to nutritional differences between live prey and conventional food, especially given

that prey fed diets (live and immotile) showed the same growth rates (see Figure

20B). Contrary to the initial assumption there was no treatment level effect of diet on

the median swimming speed (see Figure 21). This can be due adaptations such as

the adjustment of foraging activity to the nutritional demand, by which individuals

receiving a low nutrition diet would compensate by increase foraging effort [135].

An increase in foraging effort would be reflected in a higher median speed, which

is suggestive in the early trials of the live and immotile prey treatments. However,

given that the fish were always fed after the behavioral recordings this is likely by

chance and not due to any treatment effects. Prey fluctuations were not found to have

any significant explanatory power for predicting the median swimming speed (see

Section 5.3.2 and Figure 21A). This further suggests that no behavioral adaptation in

response to food availability took place in these animals. The fact that the animals

are capable of learning when and where food was presented could further explain

the lack of treatment level differences in behavior [41]. Animals would then adjust

their foraging strategy to match the timing of food availability more closely.
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5.5. Conclusion
This study set out to test the influence of live prey and motile prey on the swimming

behavior of captive, naturally clonal fish. In the here presented work diet composition

and food motility had no effect on the recorded behavior and did not lead to any

strategy shift towards increased exploration [150]. Adding live prey to the diet

of captive, lab reared animals can enhance survival and lead to more naturalistic

behavior [135]. However, the here presented results show no alteration of behavior

in form of swimming speed allowing for comparable results across diets. Although,

adaptation of exploration behavior to nutritional needs can take place it was not

apparent in this experiment suggesting that fluctuations in prey densities did not

lead to immediate nutrient deficiencies [135]. Importantly, this work allows for

insights and applications of more naturalistic circumstances and conditions in lab

based behavioral studies. In order to study naturalistic behavior such attempts

need to be made to recreate more natural conditions under which behavior can be

observed even under laboratory conditions [157, 118].
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6. Quantitative Tools for Ethological Studies

6.1. Unsupervised Behavioral Quantification
Given that behavior takes place across multiple time scales (e.g. shaking a hand

vs. learning to walk) behaviors are not always easy to quantify [33, 4]. Observing

animals and noting their actions according to standardized reference catalogues i.e.

ethograms has been the standard approach in behavioral research. With the advent

of computer assisted methods to analyse complex data, behavioral quantification

can now be done using unsupervised and programmatic tools [22, 33, 4]. To find

behavioral differences, bridge these approaches with established methodologies and

test their utility, both manual and automated methods were tested on an empirical

behavioral data set as shown in the following.

6.1.1. Introduction

Behavior, as the context dependent response of an individual to it’s environment,

commonly exhibits high levels of variation in natural systems [165]. This variation can

stem from a multitude of sources, such as inter-individual differences in morphology,

genotype or experience [92, 81] allowing for the distinction between intra- and

inter-individual variation. Intra-individual variation refers to the difference within a

certain behaviour, which an individual may express and inter-individual variation

accounts for the variation among individuals. Such variation at the individual level

can further be broken down into variation among and within behavioural elements

i.e., elementary motor acts and postures following the description of [221]. These

elementary units of behavior can be combined and reorganized to form a multitude

of motor patterns or behaviors, analogous to proteins being composed of various

amino acids. Consistent individual traits have become an aspect of interest among

many fields, with specific focus drawn towards ethology, ecology and evolution.

The variation among individuals has been well documented and continues to give

promising results [26, 140, 139]. However, the role of such individual differences

within a group or collective is still underrepresented in this body of work. Although

of great interest, little research has focused on the conditions under which individual

differences are expressed or when these are diminished and the dynamics controlling

such processes. The field of collective behavior has produced ground breaking

insights into the functionality of collectives and answering the question of how

multiple agents may interact to create a collective behavioural state [53, 226] or highly

coordinated predator response [60]. Yet an aspect which many of theses studies

have in common is the often made assumption, that all individuals are following
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the same behavioural rules and acting upon the same information [228, 53]. Given

the substantial evidence of individual differences there has been a growing interest

in the interaction between individual heterogeneity and homogeneous collective

behavior, eluding towards the importance of considering both [103, 104]. This

combined with the fact that it is now becoming possible to determine individual

behavioural differences at an unprecedented spatio-temporal resolution [138] and

under complex natural conditions [212, 66, 123] we are now able to apply quantitative

methods for behavioral classification to such data in an unsupervised manner

[33]. Such behavioural quantification methods which enable the classification and

quantification of minute behavioural changes at the sub-second level are capable

of determining inter-, and intra-individual variation. They further allow fine scale

analysis of variation at the level of the behavioural elements, enabling the comparison

of specific motion patterns and study of developmental changes along behavioral

axis [208, 22, 122, 33, 92, 81, 229, 118]. More generally, these methods enable objective

analysis, standardized interpretation and reduce confirmation bias in behavioral

studies [151].

Here, we set out to compare manual observations used as reference data to one such

unsupervised behavioural quantification method. Highly stereotypic behaviour of

the live bearing, freshwater fish Poecilia mexicana which is endemic to central America

was analyzed [159]. Specifically, male P. mexicana fight for access to sexual partners

and to establish dominance which has been shown to follow ritualized and highly

stereotypic rules [25]. Behaviors and traits shown in such fights are often under

natural selection, as they serve as an honest signal of health and strength to any

bystander or potential mate [38]. Given the importance of such behaviors and the

information they contain, the goal of this study was to determine small scale variation

in behaviors among two fighting male P. mexicana and test whether a behavioral

signature exists which allows the prediction of the fight outcome. Thus, in addition

to comparing the performance of the two, manual and automated behavioral labeling

methods, the outcome of adversarial interactions was quantified on a fine scale using

behavioral time series in 3D.

6.1.2. Methods

Tracking and Data Collection

Individual, male P. mexicana were combined with conspecific males into size matched

pairs. Males of this species commonly initiate fights to establish dominance and

these fights are composed of highly stereotypic behaviours and usually end with a

clear winner and loser. Each individual was subject two two recordings, where the

partners were re-shuffled between recordings. Pairs were introduced to a calibrated

imaging tank equipped with a circulating water system. Fights were recorded from
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three angles synchronously using a custom recording interface (Loopbio, Vienna;

Basler acA2040-90um, 2048×2048 px, grayscale, 50 fps). A recording consisted of

six minutes acclimation time, after which the fish were allowed to interact. The a

recording ended when no aggressive interactions were observed for ten consecutive

minutes or a clear outcome, signified by winner and looser was achieved. The

outcome was determined by one individual showing clear appeasement behavior

towards the other and/or fleeing. Each camera head was calibrated using a custom

script and utilizing the computer vision library OpenCV [102]. Individual tracking

was done in 2D for each view independently, using a mask based, deep neural

network [1] to consistently detect the fish from all angles. Network initiation and

training was done following the procedure described in [66]. Individual tracks were

checked for false detections and other inconsistencies and manually merged using

the openly available software tool TrackUtils (see supplemental materials Francisco

et al. [66]), which was custom designed for this task.

Figure 22. Example reconstruction of the 3D trajectory of
two interacting fish

Detections were tracked for each individual in 2D for each synchronized camera

head (viewing angle) independently, resulting in time series of length of the video for

each coordinate (𝑥, 𝑦). Three dimensional trajectories were acquired in a consecutive

step through pairwise triangulation of 2D detections from two views, using a custom

pipeline. Output in this case was a three dimensional trajectory which served as raw

input to the unsupervised behavioural quantification pipeline.
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Manual Annotations and Ground Truth Dataset

All fights were manually viewed and the time points classified with the corresponding

behaviours using the software BORIS [68]. Behavioural categories were drawn from

a classical ethogram, following Bierbach et al. [27] and Bierbach et al. [25]. This

resulted in the ground truth data set to which all further unsupervised findings were

compared to.

Behavioural Quantification

For each individual, trajectories along the three spatial axis (𝑥, 𝑦, 𝑧) and with length

of the video, are used to further calculate instantaneous speed and direction along

the 𝑥-𝑦 plane. The speed and direction along the 𝑥-𝑦 plane was chosen, as fish

tend to move more along these axes and not as much along the 𝑧 dimension. To

reduce computational load data was extracted at 25 Hz and was processed in the

further steps. By applying a wavelet transformation with 100 frequency bands to

the signal time series each point in time (frame) is represented by 100 dimensions,

while adding a time dependent component (see signal.cwt in scipy v1.10.0). From

the transformed signals only every other of the hundred frequencies was used for

further analysis, resulting in a 50 dimensional feature vector for each time point 𝑖

and each of the input metrics (𝑥, 𝑦, 𝑧, speed, direction). Every other frequency band

is chosen to span a wider range of temporal scales, as opposed to using 50 signal

frequencies directly during the wavelet transformation. The resulting total feature

vector 𝑣 amounts to 𝑣𝑖 ∈ R𝐷 where 𝐷 = 5 × 50 = 250 for each time point 𝑖 along the

time series 𝑡𝑠 for a given individual 𝑛 ∈ 1, ..., 𝑁 , where 𝑁 = 16 is the total number

of individuals. This dimensional fan-out step serves to increase the feature space

describing a single observation and adds a temporal component to an otherwise

discrete measurement. In order to predict behavioural classes a hourglass neural

network, also know as autoencoder (see Figure 23) is trained on a all data, in shape

of a single data frame. The data frame was constructed as a concatenation of all

individual time series wavelet transformations. For every individual 𝑛 ∈ 1, ..., 𝑁 ,

each times series 𝑡𝑠𝑛 , with the dimensions 250 × 𝑡𝑛 was stacked on to the next time

series block along the first dimension resulting in a 134016 × 250 data frame. This

serves as input to the encoder and allows it to be trained iteratively ,where the

weights of the model are updated row by row. The aim here is for the encoder

to learn lower dimensional representations within the data [153], which has been

shown to be useful when applied to behavioral data [15, 154, 110, 51, 4, 164]. Further,

by doing so the similarity between time points is evaluated based on the wavelet

transformation, which takes the temporal neighborhood of a certain time point into

account.

Using the autoencoder approach allows for continuous updating and streaming
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Figure 23. Schematic of a standard autoencoder architecture
containing input, encoder, decoder and output

of new data, while avoiding computational bottlenecks. An added benefit of such

approaches is that once trained, the network/model can be applied to predict the

behavioural states. This is done by supplying the trained encoder with a new input

vector of same shape as the previous training data, from which it will generate a lower

dimensional representation or encoding. This representation is then drawn from the

bottleneck (smallest and most central; here 15 Nodes) layer, where information is

condensed most. Each node of the bottleneck layer accumulates distinct information

about the input data and is therefore forms a abstract representation of it. These are

similar but not the same as the principal component axis or eigenvectors in other

approaches to reduce dimensionality. For large bottleneck layers an additional step

can be added to reduce the dimensions further. This is achieved by applying Uniform

Manifold Approximation and Projection (UMAP) to the bottleneck layer output (see

https://umap-learn.readthedocs.io/en/latest/). By using UMAP the dimensionality

of the autoencoder output is reduced to two dimensions. In the here presented

approach the autoencoder output, taken from the bottleneck layer (15 dimensions),

was directly clustered using a hierarchical extension of the Density-Based Spatial

Clustering of Applications with Noise algorithm (DBSCAN), termed HDBSCAN

(see https://hdbscan.readthedocs.io/en/latest/index.html) [46]. This is a highly

efficient yet conservative approach which results in labels for each time point, while

excluding noise or uncategorized data. Each point within the final, two dimensional

point cloud represents an individual time point, where these time points are clustered

based on the high-dimensional similarity along their initial feature vector (𝑣𝑖). The

number of clusters and cluster association is mainly determined by the minimum

cluster size, which defines how many samples are needed to create a new cluster. In

the end each cluster consists of time points belonging to the same behavioural motif.

Motifs are extracted from all time series using the cluster index, returned by the

clustering algorithm. A motif is a series of the same predicted behavioural classes

over consecutive time points. More complex motifs can be defined as repetitive,
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sequential or unique patterns which can be found across the labeled instances. Such

minute changes among detailed behavioral classes can then be used to determine

initiation events or more precise changes in an individuals behavior.

Pairwise Analysis

Here, labeled time series were used to estimate the leader-follower dynamics of

biologically relevant and highly stereotypic behaviors in fighting P. mexicana males.

Detections were labeled at a sub-second level and grouped accordingly, resulting in

highly resolved time series of behavioral classes (see Figure 25). These signals (see

Figure 25) were correlated using pairwise cross-correlation (see signal.correlate in

scipy v1.10.0) to estimate the temporal delay between the two individuals and, more

specifically their behavioral display during fights. The cross-correlation resulted in a

maximum correlation value and corresponding time lag for each recording of an

interacting pair (see Figure 25). Timing offsets or lags between signals were then

compare across the groups of winners and losers. This was done using a generalized

linear mixed-effects model (GLMM) with binomial distribution family to allow for

a binomial response, and to asses if the lag would signify a fight outcome (win=1,

lose=0).

Behavioral Composition

The behaviors observed within a time series were quantified by presence-absence,

allowing for the comparison of behavioral sequences by their pairwise Bray-Curtis

dissimilarity:

BC𝑖 𝑗 = 1 −
2 ∗ 𝐶𝑖 𝑗

𝑆𝑖 + 𝑆 𝑗
(6.1)

The Bray-Curtis dissimilarity (𝐵𝐶) is defined by the sum of the least abundant but

shared entries across two samples 𝑖 and 𝑗, divided by the sum of the total numbers

of entries detected (𝑆𝑖 and 𝑆 𝑗) across both sites. Therefore the dissimilarity is 0 when

both sites share all species and 1 if none are common. This metric is commonly

used in ecology to asses species compositions between sampling sites. Here, our

sites correspond to the behavioral time series and the species are the observed

behaviors. To compare the behavioral sequence of winners and loser the Bray-Curtis

(see Equation 6.1) dissimilarity was calculated across all possible pairs of individuals

and statistically evaluated.

How the behavioral frequency was determined by the fight outcome was tested

using a linear mixed-effects model (LMM) with gaussian distribution family. This

was done to account for multiple confounding variables and to test all behaviors at

the same time. Manually labeled time series were each chunked into 10 samples,
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where the probability of each observed behavior was calculated as the total number

of observations per chunk divided by the length of the chunk. The LMM model

was designed to have the behavioral probability as the response variable and time

(continuous), chunk index (10 level, factor), fight outcome (2 level, factor, win=1,

lose=0) and the behavioral label (12 level, factor). An interaction term was added

between outcome and behavioral label to test for behavioral differences between

winners and losers. To account for individual variation and consistencies across

recordings individual identity was added as random effect.

All statistical analysis was done using R (v4.2.0 ‘Vigorous Calisthenics’), where

models were constructed using the library lme4 (v1.1-32) and best fit was established

through comparison of the corrected Akaike information criterion (cAIC) (aictab,

AICcmodavg v2.3-1). The statistical model with the lowest cAIC as well as all models

within 4 ΔcAIC units are considered equally supported, while emphasis was given

to models which also best represent the experimental design.

6.1.3. Results

In total eight pairs of P. mexicana males were tested (N=16) resulting in eight winners

and eight losers. Of these 16 fish only six individuals were fully tracked and their

manual and automated behavioral data collected. However, for the purely automated

approach all 16 individuals were used. Overall 12 behaviors were scored manually

(Appeasement, Bite, Chase, Circle, Copulation, Flight, Lift tail, Nipping, Ram, S-

position, Spread fins, Tail swing) which were scored according to their description

Bierbach et al. [25] and done so by D. Bierbach (description can be found in the

supplemental material 1). As for the automated approach a total of 93 behaviors

were categorized, by which the trajectories were labeled accordingly (see Figure 24

and 25).

Methodological Comparison

The difference between manual and automated behavioral classification is most

prevailent in the number of behaviors being detected. Manually 12 behaviors were

described, while the automated approach resulted in 93 individual categories (92

when excluding the class of ‘unknown’). In order to determine sampling bias between

both methods (manual/automated) the proportion of detected to total number of

behaviors per recording was estimated. This was then correlated in order to show any

sampling bias. Manual scoring detected lower proportions of behaviors compared

to the automated approach, where an increase in manually scored behaviors lead

to a decrease in those automatcially detected. The correlation between manual

and automated was negative but not statistically significant (Spearman: r8=-0.331,
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Figure 24. Trajectories of two interacting fish (left and right) over the course of 6
minutes and labeled with 12 of the most prevalent automatically determined behavioral
categories out of a total of 93. Grey shadows show the extent of the full trajectory
along the corresponding x-y and x-z planes

p=0.425, n-permutations: 10000; retrieved with subsequent permutation test, for

correction of low sample size, Figure 26).

Behavioral Variation

The Bray-Curtis dissimilarities between both winners and losers were compared in

a full factorial fashion (i.e winner-winner, winner-loser, loser-winner, loser-loser)

using a Kruskal–Wallis one-way analysis of variance (scipy v1.10.0). Winners and

losers were found to significantly differ in their manually observed behavioral

patterns (𝐻1=6.51, p=0.011 *), which was not the case for the automated approach

(𝐻1=0.178, p=0.672). By closely looking at the manual behavioral differences between

winners and losers the frequency of both appeasement and flight behavior differ

(see Figure 27). When examining the behavioral frequencies among the tested

individuals a significant difference was only found in the probability of appeasement

behavior (Appeasement: t3=-2.660, p=0.038 *; Flight: t3=-1, p=0.356; see Figure 27).

Appeasement was then left out of subsequent analysis to determine other influential

behaviors using a LMM, given that it was only observed in individuals that had

lost a fight. The total explanatory power of the resulting linear mixed model was

substantial (conditional R
2

= 0.61, marginal R
2

= 0.28). The interaction between

fight outcome and behavior was of specific interest, where a significant positive

interaction effect was only found for the spread fin behavior in winners, meaning

that this behavior was observer significantly more often in winning individuals

(𝛽=0.12, CI = [0.04, 0.21], t940=2.76, p=0.006 *). Further, a positive and non-significant

but suggestive effect was found for the S-positioning in winners as well (𝛽=0.08,

CI = [−4.99𝑒 − 03, 0.17], t940=1.85, p=0.065 ·).
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Figure 25. Cross-correlation between two behavioral time series (colored ribbons) of two individ-
uals interacting over the course of 6 minutes. Time-series (bottom left and right) are shown below
in color. Each frame is labeled with one of 25 automatically determined behavioral categories
and corresponding color.

As for the automated approach, although no difference was found in the abundancies

of the labeled behaviors between winners and losers (see Bray Curtis comparison

above) a differences could be shown in the expression magnitude of each component.

This is done by looking at the loadings for each dimension spanning the behavioral

state space. In other words, each behavior is expressed by a certain composition

of dimensional weights or values. The label for a given behavior may be the same

and therefore the dimensions which it is comprised by, but their overall magnitude

can still vary, putting each behavior on a scale from weak to strong. The twelve

most predominant of the 93 behaviors labeled using the automated autoencoder

were analyzed in a pairwise fashion. This was done by comparing the dimensional

loading between the group of those that had won and those that had lost, where no

differences were found between treatment groups and their corresponding behaviors

(see Figure 28 and Appendix Table 2).

Social Interaction

To investigate the coupling between the two fighting individuals, automatically

derived behavioral labels were used to compare cross-correlational time delays

between interacting individuals. The automated labels were used, given that

this method suggested a higher level of resolution when compared to the manual

descriptions (i.e 92 vs. 12 behaviors). No significant effect of the inter-individual cross-

correlation time lags was found on the outcome of a fight when comparing winners

and losers using a GLMM as described above (see Section 6.1.2) (odds
lag

= 3.067,

CI = [0.003, 2991], p=0.750). This means that there was no clear correlational

structure that could be resolved from the behavioral time series of the interacting

opponents.
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Figure 26. Correlation between the proportion of behaviors de-
tected in a given recording to total behaviors observed across
all recordings. Manual proportions are shown along the x-axis,
while automatic proportions are shown on the y-axis.
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Figure 27. Histograms of the proportion of each manually observed behavior across
winners (left) and losers (right). Error bars are acquired across individual recordings.
Significant differences are labeled with an asterisk (*) and suggestive results with a dot
(·)

6.1.4. Discussion

In this study we found that behavioral differences are found between fighting male

fish, performing highly ritualized and stereotypic behaviors. These behavioral

differences were evaluated both manually by using a classical ethogram and scoring
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Figure 28. Example histograms of four selected behavioral clusters, as labeled by the
autoencoder. Each dimension is shown as separate bar per labeled behavior along
the x-axis while the corresponding loading in that dimension is given along the y-axis.
Behavioral labels are separated by winners (top) and losers (bottom).

the behavioral classes, and via a unsupervised method using a trained neural network

to classify the trajectories. In the latter approach the behaviors are not defined prior

to the analysis but are found by spatio-temporal similarity of body positions and

motion. The manual approach lead to 12 distinct behavioral classes as defined by

Bierbach et al. [25], while the automated approach resulted in 93 categories. Since

both approaches differ substantially in the way they classify behaviors they were

compared by the proportion of behaviors detected in a given recording to the total

number behaviors across all recordings. This allowed for the correlation between

both methods to be established, which was negative but non-significant, meaning

that detecting more behaviors manually would lead to less detection in the automated

approach. The manual approach was able to distinguish differences in the behavioral

repertoire expressed by the fighting individuals. It was found that losing individuals

showed significantly higher proportions of appeasement behavior, while winners

showed elevated sigmoid display and significantly higher amount of time displaying

spread fins. The automated process on the other hand did not detect any differences

among the individuals although it arguably classified the behavioral time series

on a finer scale. Using the fine grained behavioral classifications the interaction

among fighting individuals was further dissected. This was done using the paired

cross-correlation of the time series to determine whether individuals were leading or

following concerning their behavioral patterns. Here, as well no significant evidence

for differences among the winners and losers was found in their temporal lag to
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each other. Lastly, the automatically determined behavioral classes were compared

in their fine scale composition across winners and losers to determine if minute

differences between the individual behavioral classes could be found. However, here

as well there was no difference between the two groups.

Overall, the here presented work shows how behavior can be quantified and compared

across individuals. This study however highlights an important aspect of the

development of ethology which has seen an influx in computational and quantitative

tools in the recent years [33]. Quantitative tools are being applied to recover fine scale

behavioral states and motifs and should be compared to the traditional approach of

human observational descriptions. Manual observations have an inherent observer

bias leading to difficulties when comparing behaviors across data sets or behaviors

of different species. This is the main aspect unsupervised, quantitative methods as

the one shown here try to address. In this work the manual observations resulted in

significant insights, which does not mean that the other approach was not fruitful. The

detail at which data is collected from these standardized and automated approaches

is very high (see Figure 25 and 28) An explanation as of why differences were found

in the manual approach but not in the automated can simply be due to the finer

granularity and selection of time scales. By observing animals and classifying their

behavior manually the time scale is inherently flexible and being shifted continuously.

A bite behavior happens on a different time scale as an appeasement behavior, and

a ram is quick while spreading the fins may take more time. An observer adjusts

these time scales dynamically often without noting the difference and this has to

be explicitly implemented in an algorithm to recover behaviors across such scales.

In the here presented approach the various time scales were estimated using the

wavelet transformation (similar to a Fourier-Transformation) of the original signal.

To accommodate larger time scales, as the manual observations most likely did, the

frequencies used here should likely be adjusted or a more explicit method be chosen

(see Costa et al. [51]). The subsequent clustering step introduced confounding effects

and biases as well such as the minimum number of clusters or the minimum number

of samples per cluster. These can be adjusted and fine tuned for better results or

other methods can be chosen (e.g K-Means Clustering).

Given the two ways of labeling the same behavioral time series (manual and

automated) the most intuitive comparison would be to do so on a behavioral level.

One behavioral class can be compared to those derived from the other method.

Unfortunately this was not applicable in this case since the exact overlap between

both manual and automated time series was not available.

Although the differences between both methodological approaches are apparent

an interesting point of discussion is the impression that an observer may classify

multiple behaviors at the same time e.g "A bite happening while having the fins

spread". From the instantaneous labels of the automated output it seems as though

a time point can only be labeled with a single class. The data used for the automated
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analysis was derived from point detections and 3D coordinates. These are limited

predictors of the actual behavioral space, given that an individual can deform its

body to take on various shapes where their posture over a specific time scale defines

the behavior. Therefore, although the recordings were done in three dimensions, a

shortcoming of this work is the dimensionality of the behavioral space analytically

observed. This can be mitigated by recording multiple body point locations or the

entire body shape over time and use this as input for the subsequent classification

process. Such approaches are widely used in other study species by now such as

fruit flies [122] and rodents [112] while the application in fish and their intricate

social behavior is still limited and is a great avenue for further work.

6.1.5. Conclusion

In the here presented work we highlight the differences between manual observations

using traditional ethograms and a novel approach of quantifying behavior using

neural networks trained on behavioral data. The goal was to determine behavioral

differences among fighting male fish (P.mexicana) and highlight whether behaviors

exist which predict the outcome of such an interaction. Both manual and automated

approaches hold benefits and costs, as manual observations are straight forward and

allow for the immediate recording of the data, while automated application remove

observer bias and allow for higher levels of standardization across individuals and

recordings[33]. Classical ethograms were developed to standardize observations as

well, and are likely to be surpassed by algorithms performing their job. However,

to put a biologically valid label on the algorithmic output a professional opinion is

always needed. Therefore, only by merging both an experienced observers opinion

and an unsupervised approach will behavioral classification and description be

advanced.

6.2. Detection and Tracking in Convoluted Scenes

Finally, as all previous work has focused on laboratory based experiments, it remains

vital to understand behavior in the natural context in which it evolved. This is

especially important when investigating naturalistic behavior, where captive animals

often show confounded and limited behavioral repertoires [157, 118]. To do so can

be cumbersome, where bringing equipment to the field and recording data of the

same quality as in the lab is often tiresome and near-impossible. However, with the

help of computerized methods, such as object detection and tracking using artificial

intelligence, drones and computer vision, highly resolved data can be acquired in

the natural terrain [66, 123]. The main goal of the following work was to bridge the

fields of computer vision and biology further, and achieve similar results as Koger
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et al. [123] but in the open ocean. Most importantly, such approaches need to be easy

to use, in order to allow researchers to acquire data from field recordings and speed

up the process of hypothesis testing.

6.2.1. Introduction

Ethology and the study of animal behavior often faces the problem of restricting the

subjects behavior in order to achieve measurable outcomes, while simultaneously

trying to minimize all confining factors of naturalistic behavior [118, 219]. Undeniably

the most naturalistic behavior can only be observed in nature itself, where animals are

interacting with, and responding to the environment in which they evolved in. While

naturalistic scenes can be replicated in a laboratory setting animals can be tagged

or tracked directly in the wild using a multitude of methods ranging from GPS,

RFID and accelerometer tags [116], to arguably less invasive image based approaches

using drones and cameras [66, 123]. Drone based approaches as those applied by

Koger et al. [123] are appropriate for terrestrial terrain, where the abundance of

terrain features allow for the camera location to be accurately estimated. In the open

ocean this is not so easy, since reliable and fixed environmental features are sparse

or absent. Image based approaches have gained popularity, aided by the fact that

detection and tracking algorithms have greatly improved within the last decade and

it is now possible to consistently identify and track individuals in various terrains

and environments [152, 66, 230, 123, 171]. An advancement which has lead to great

improvement in these techniques is the implementation of artificial neural networks

which are capable of learning to segment out region of interest and distinguish these

from the background. These networks are commonly trained on a subset of the data

where the objects of interest are annotated and classified manually. Once trained

the networks, also referred to as models, can be used to make predictions on novel

images. The form of annotation somewhat defines the data which can be learned

and prediction output format, where a variety of methods exists. For example, the

entire image can be classified depending on what object is visible in the scene where

an image containing a cat could be classified as “cat”. However, this approach does

not us to determine the exact position of the object in the image. Therefore a finer

scale can be applied in which a bounding box is drawn around the object of interest,

commonly resulting in a representation defining the box and a label. A similar but

more detailed approach is the segmentation mask, which is drawn around the object

of interest and represents a polygon with approximately the shape of the object and

a label. Lastly, the finest scale which is achieved is by annotating individual points

in the image. These are commonly called key point annotations and can be used to

estimate body part locations and subsequent pose.

Today the technical innovations and field based approaches are coming together

leading to interdisciplinary work and opportunities which pave the way for highly
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detailed and unprecedented insights into the live of animals in the wild [116, 212,

66, 123]. The goal of the here presented work was to minimize the gap between

innovation and application and create a streamlined, easy-to-use approach for

quickly testing and retrieving data from complicated scenes in the wild. To do so

the object detection and scene segmentation network Detectron2 was used, which

was developed by Meta Open Source [243]. It was applied to video footage of

striped marlin Kajikia audax aggregations predating schools of sardines Sardinops
sagax in open water of the coast of Mexico. The predatory groups hunt down the

schools of prey and collectively diminish these, subsequently referred to as bait balls,

over the course of the day [84]. The material incorporated both overhead drone

and underwater recordings and therefore represents a multi-angle representation

of the objects of interest. Detections were subsequently tracked using the openly

available NORFAIR library. In order to make the entire process of custom annotation,

model training, prediction, tracking and data retrieval as simple as possible it was

incorporated into a single pipeline using all open source applications. These were

further simplified by creating simple user interfaces (Python library Gooey). This

allowed for user friendly, single click applications, in which the user can select all

options manually and is guided through the process without the need to interact

with any raw code.

6.2.2. Methods

Beginning from raw video material a total of 200 annotation images were randomly

selected from the video frames using the freely available, command line tool ffmpeg.

Other options exist using optical flow or clustering to retrieve maximally different

images, but for simplicity random selection was sufficient in this case. Four classes

of objects (Human, Sealion, Marlin, Bait Ball) were annotated as segmentation masks

in all images using the online tool makesense.ai and exported in the Common

Object in Context (COCO) format. The segmentation mask is an outline drawn

around an object, and allows for the object’s center (in form of Euclidean coordinates)

and the shape of the object’s outline to be analyzed. A default model architecture

(pretrained mask_rcnn_X_101_32x8d_FPN_3x), training schedule and settings were

then used to train a network on these annotations (92 annotated images, 4 classes,

500 warm-up iterations, learning rate: 0.00025, 100000 iterations). Training was done

on a consumer grade GPU (NVIDIA Quadro RTX 4000) and took roughly 48 hours.

Once sufficiently trained, the model was used to predict on entire videos from both

top-down and side view observations, of hunting events. The predictions returned

are in form of binary pixel based masks for each detection. For example, in a frame

in which there is a marlin and a bait ball visible, the model would likely give two

prediction images (masks) with the same dimensions as the input image, where pixel

are encoded as 1 if they are predicted to belong to the corresponding class and 0 if
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not. Each prediction further is associated with a probability score, representing the

confidence with which the given class is detected by the model. Predictions were

then passed through the NORFAIR algorithm to obtain semi-continuous tracks, with

consistent identities of the individual detections over time.

All detections are frame-wise, pixel based and commonly refined to a row corre-

sponding to an object’s center coordinates (x, y), time stamp (frames), class label and

prediction confidence score. In order to retrieve real world coordinates and derived

values such as longitude and latitude and distances in meters the images need to be

references to a global coordinate system. This system is provided by the onboard

GPS system of the drone which collected the images and allows for the images to

be back-transformed, similar to the procedure shown in Francisco et al. [66]. The

movement of the drone, or image capturing device needs to be removed from each

trajectory in order for the actual position and subsequent speed to be calculated.

This step of the process is similar to the work done by Koger et al. [123], but was not

part of the here presented work and is yet ongoing.

Figure 29. Example visualization of output retrieved from model predictions. A Mask based object
detection results, B tracking result of the frame-wise detections over time shown with trailing trajectories

6.2.3. Results

The entire workflow was broken down into easily executable, smaller steps and

incorporated into a interactive notebook (Jupyter Notebook). Further, a user interface

(GUI, using Gooey) was developed for each of the individual modules for increased

utility and a user-friendly experience. As for the preliminary data, the resulting

trajectories of both predators and prey were used to calculate descriptive statistics

and relevant values such as the inter-individual distance and distance between

predators and prey. Given that the coordinates were not transformed into real world

coordinates all measurements are in pixels. Further, given that the motion and

momentary height of the camera was not compensated for in this work, only relative

distances in pixel values between objects could be established (see Figure 31). These
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results only highlight the further possibilities which can be achieved with the here

presented methods.

Figure 30. Example showing the user interface (GUI)
developed to make the training of the classification
network easier and more user-friendly

6.2.4. Discussion
Computer assisted methods for object detection and tracking have led to substantial

advances in the study of animal behavior [212, 33, 66, 123] and these benefits have

been highlighted with this work. A goal of the here presented simplified approach

is to make the process of object detection and tracking more user friendly and

streamlined allowing researchers to spend less time working on the methodology

and enable them to dive directly into collecting data and testing their hypotheses.

A main aspect of streamlining such approaches was to make it customizable for

various conditions and questions, such as varying image quality and viewing angles,

different object classes of interest and occlusions. Further, it was emphasized in

this methodology to only use freely available and open-source software. This was

done to remove limitations due to financial constraints and paywalls which some

may face during their work. From a biological point of view the main insight

and gain from these methods is the fact that they enable behavioral observations

to be done on a high spatio-temporal resolution, across multiple individuals and

species. Interdisciplinary approaches as these are important to push the boundaries

of what individual research fields can achieve and lead to innovation across them.

A limitation which is always at play is the expert knowledge of researchers in

one field which is not always easily shared all members of a research group or
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Figure 31. Visualization showing the cumulated data of a total of 14 recordings A distance in pixels
between predator (marlin) and prey (Bait Ball), B Distribution of interindividual distances between
predators (blue) and their distance to the prey (red)

community. Therefore a common ground needs to be established from which to

work from. Further, although object detection has made great advance in recent

years the consistent tracking of such objects leading to individual based trajectories

is still lagging behind and is only slowly catching up [230]. While trajectories which

are not individually corrected can be useful for relative measures, such as nearest

neighbor distances, or to calculate distances between predator and prey they do not

allow for precise estimation of individual behavior and subsequent responses.

The ability to observe undisturbed multi-species communities and predator-prey

interactions in their natural habitat is groundbreaking. These methodological

advances have the potential to enable a flood of innovative and long standing

biological questions to be addressed. It is not unlikely that the resolution of prey

behavior can further be advanced as well by which minute individual behaviors and

their outcome can be studied (i.e. “turning away from the rest of the school in a

certain moment and the resulting likelihood of being eate”). In the case shown here

the bait ball can be detected in each frame in which it is visible in and subsequently

cropped out and enlarged. In a second pass individual sardines could be detected

within the bait ball, movement of pixels can be estimated through optical flow to

determine whether self-sorting processes are in place or the shape of the school can

be analysed in more detail in response to increased risk or predation.

6.2.5. Conclusion

The here presented methods are advancing quickly and continuously becoming

replaced by newer, faster and more precise approaches. However, the implementation

in applied fields such as behavioral research is often lagging behind, which is often
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due to little convergence or interdisciplinary exchange. Here, the approach was

taken to bridge this gap and create a link between the fields of computer vision,

machine learning and ethology. Overall these approaches are continuously necessary

to join innovation with application. Expertise from various fields must be coupled by

which researchers must reach a common ground to work from. The study of animal

behavior is a perfect conjuncture allowing for such interdisciplinary work to take

place and lead to groundbreaking new insights. The main innovation being, that

these approaches continuously enable wild animals to be studied in their natural

and unconstrained environment in which they have evolved at a precision of lab

based approaches [212, 66, 123]. In order to reduce redundancies among scientific

fields the exchange of expertise and knowledge is needed. This is not only needed on

a conceptual level where ideas and theories align but also on the level of individual

research endeavors and scientific teams. As the complexity of most modern sciences

increases the most productive teams grow in size and interdisciplinary breadth

which is a necessity for tackling these complex biological research questions as well

[242, 48].
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7. Discussion

The variation in research topics and approaches shown in this piece of work high-

lights the complexity of understanding behavior and learning in a dynamic and

adaptable way. Starting by elucidating the concept of learning in the genetically

identical, freshwater fish species the Amazon molly P. formosa individual and social

aspects of behavior and learning were investigated. By pairing individuals that

were previously experienced or un-experienced gradients of information in a task

proficiency were created within such a social pair. The effect of such gradient on the

subsequent task performance was evaluated to disentangle change in performance

with prior knowledge. As a result, it was found that the individuals could be trained

on a classical operant conditioning task and consistently differed in their learning

ability. Further, the presence of previously experienced individuals hindered those

un-experienced in performing the task themselves. This effect was not found when

the information gradient was not present i.e. in cases where both partners had the

same prior information and experience.

Following this analysis of individual and social learning the attention was shifted

towards social contagion of behavior in larger groups and the effect of familiarity

among individuals on such behavior. Here the naturally occurring jumping be-

havior was investigated in groups (N=2,4,8,16,32) of the same clonal fish species

as mentioned before, where all individuals are genetically identical. Individuals

were found to perform evasive jumping behavior in all group sizes. Familiarity

was tested in pairs of unfamiliar and familiar individuals where their individual

probability to jump was determined. Familiarity was found to have an effect on

the waiting time before jumps were initiated, suggesting that social partners can

effect such behavior. Further, in larger groups the social contagion of jumping

behavior was tested and it was found that this behavior is in fact socially influenced,

as the spatial and temporal distributions of individual jumps were significantly

non-random. Inter-jump intervals in time and space were shifted towards smaller

values, when compared to random samples suggesting a form of social coupling

taking place.

These social aspects of behavior as well as their temporal change over time and

adaptation to various aspects of the environment were then tested in the subsequent

analysis of behavioral variation in isolation and within a social context. Again,

the clonal Amazon mollies were used as model organism and grouped into social

groups of four size matched individuals. To estimate the variation in individual

behavior individuals were repeatedly tested in isolation and subsequently in a social

context, where the median speed was used as behavioral proxy. Environmental

complexity was altered by adding visual occlusions through structural barriers to
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add a non-social aspect of adaptation. As a result no correlation between individually

acquired behavior and that observed in a social context was found. In isolation

individuals showed no consistent individual differences in their swimming speed,

while this was the case over all observations within the social group. Overall, it was

found that the social context, physical environment, as well as habituation time had

an effect on the behavior in these fish.

Behavioral adaptation to food availability was tested given that metabolic state, as

well as the energetic requirements and the availability of prey are drivers of behavioral

variability. Clonal fish were separated across three feeding regimes receiving either

conventional food, live prey or immobile prey. The growth rates and behavioral

response in form of median swimming speed were recorded over the course of 40

days. The main results suggest that while feeding regime had an effect on the growth

rate it did not effect the swimming performance. Further, the variability in prey

density did not predict the variation in swimming performance, showing that no

behavioral adaptation was observed over the course of the experiments.

Behavioral adaptation was further investigated at a higher spatio-temporal resolution

and by comparing behavioral annotations done by an expert observer and those ac-

quired through a trained artificial neural network. By doing so both methodological

approaches were compared and behavioral differences between individuals, as well

as their effect during competitive interactions were evaluated. Here, it was shown

that manual observations allow for a distinction between winners and losers of an

agonistic interaction, while automatic approaches failed to do so. The difference

between partners was found mainly in the frequencies of specific behaviors. Al-

though the automated falls short to give insightful results, these methodological

advances gives way for promising new avenues to continuously map behaviors onto

a common landscape of actions.

As approaches for quantifying behavioral changes improve for the lab based research,

the same can be applied to data acquired in the field. Behavior can then be studied

under all the natural constraints in order to test long standing questions of social

aggregates, predator and prey interaction and collective behavior. Field data is

commonly noisy and inaccurate given that controls can’t be accounted for and

standardization is often impossible. However, by utilizing high speed cameras,

aerial and submersible drones, as well as artificial neural networks, a high level of

precision can yet be achieved. In the here presented collaborative project a custom

object detection and tracking pipeline was developed to acquire data from pelagic

predators collectively hunting small schooling prey in the open ocean. In a short

application, the inter-individual distances between predators, as well as between

predator and prey were established from the obtained trajectories.

From much of the existing research on learning and learning theory it becomes clear

that the learning process highly depends on the situation and context in which it
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evolved in or was necessary. This has led to a great plethora of learning studies

with divergent and congruent results across various taxa making it somewhat hard

to distill the overarching concept. Although this was not even remotely the goal

of this study, reading through some of the vast literature was a requirement to

gain any traction. The field of learning theory and animal learning is vast and has

resulted in many such examples of learning processes and mechanisms, while the

research attempts with focus on the processes involving collective learning have

been limited. This is likely due to the fact that collectives are harder to study in

general, and especially over longer periods of time and at high resolution (although

not impossible, see Wild et al. [238]). Fewer individuals are more readily accessible

and can be followed or tracked more easily. Advanced studies are necessary to shed

light on the processes governing adaptation and learning in groups of individuals

and multi-agent systems, especially focusing on the collective identity and the effect

of group size and individual heterogeneity [120, 111]. This not only allows for

fascinating discoveries in non-human animals, but can also have implications for our

own, everyday behavior as humans. For example, work on the behavior of humans

online and the spread of information and/or misinformation is highly relevant for

managing emergency situations or distributing knowledge [89]. Much of such work

is motivated by research on non-human systems, such as that by Couzin and Krause

[53] and Rosenthal et al. [190]. The direct link between such work is the study of

complex systems which acts as a unifying concept that can be addressed from many

angles. Throughout the here presented work, finding a unifying concept has been a

fundamental aspect of interdisciplinary collaboration and can be put forth as further

finding. From the experience gained in this work, high intellectual and scientific

return can be expected when distant fields, such as computer science and ethology

or physics and evolution come together and find a underlying, common principle in

their work.

A similar connection which is vital in biological experimentation is the bridge

between lab and field based observations. Although the information gained from

lab based approaches is limited, it allows for highly controlled and standardized

approaches. Field approaches contrast this by being highly complex and subject to

high variation, often making experimentation more challenging. Experiments in

both lab and field are therefore highly valuable to understand natural processes and

systems in their relevant context [45]. Many if not all such processes in nature are

time dependent and transient, as behavior is as well [20]. The detailed analysis of

behavioral development over time allows for the probability distribution of applied

motor commands to be estimated and the informational gain to be compared to

previous and future states [44, 245]. By coupling long-term observations over

developmental time scales with such quantification methods, the development not

only of the animal but of the behavioral patterns exhibited can now be studied

comparatively [168]. Such approaches are vital in understanding the utility of

behavior, as well as it’s adaptations and structure [21]. The underlying decision-

making processes in individuals and collectives alike can be studied similarly by

observing multiple individuals interacting and assessing their behavioral changes

[122, 3]. As our societies and close nit circles of friends effect our own actions

and decisions on a daily basis the difference among opinions we perceive and the

behavior of those closest to us changes the way we behave [64]. From non-human
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animal behavior to our own, insights gained from the field of ethology can often be

generalized and lead to humans fundamentally rethinking how they act as a people

[127, 145].

When recapitulating the overall findings shown here a coherent theme is the fact

that behavior, as well as learning takes place on various time scales and is highly

dynamic and context dependent. This has been shown to be true for behavioral

variation in response to environmental complexity [5] and overall learning in animals

[220]. Information is integrated over time and in turn leads to a change in behavior,

while behaviors can be adapted to a certain situation or based on a internal state at a

specific moment in time. Experiments and methods as those shown here are crucial

for understanding the mechanisms that shape behavioral development and learning

over time. Following Hartmann [87] time, space and the corresponding action taken

in form of behavior, give insights into the underlying processes and beliefs being

processed in the brain. This gives rise to a multitude of questions concerning the

effect of sequential experience on behavior and behavior as a context dependent,

generative process which produces information.

On a broader scale, seeing our species and the complex interactions as a dynamical

system and understanding the behavioral processes driving it further allows us to

determine mechanisms to avoid misinformation and help make changes required to

achieve a more sustainable, fair and healthy society [89, 224, 145]. Little is know about

the evolutionary background of behavioral heterogeneity in biological communities

and the potential benefits and costs associated with such and holds many promising

results still to be uncovered [90, 104, 139]. In a sense of community and following

what we know so far, discussions should be fostered and opinions ubiquitously

voiced, in order to remove barriers and undermine inequalities [241, 17, 145].
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A. Appendix

A.1. Supplemental Material

Behavior Description
Ram First attack was categorized as a ram. Pushes at the end of a fight, are categorized as rams.

Bite Attacks subsequent to the first ram are categorized as bites

Flight One individual clearly fleeing from the other

Chase An individual chasing another

Appeasement Fish facing upwards with fins folded

Lift Tail One fish is facing downwards while the other has only its tail lifted upwards

S-position Fish clearly bent in a Sigmoid shaped position

Circle Fish circling each other. Behavior usually performed by both individuals simultaneously

Tail Swing Swing with the tail directed towards the opponent

Table 1. Ethogram as described and used by D. Bierbach

Behavioral Label df t-value p-value
0 14 1.633 0.125

1 14 -0.027 0.979

2 14 -0.435 0.670

4 14 -0.154 0.880

5 14 0.674 0.512

8 14 0.366 0.720

10 14 0.528 0.606

12 14 0.231 0.821

14 14 -0.518 0.613

16 14 1.145 0.271

19 14 -0.942 0.362

20 14 -0.687 0.503

Table 2. Overview of the results of paired t-test between winners and losers across the 15 dimensions of
the behavioral labels.

A.2. Glossary
artificial neural networks Inspired by natural brains, a artificial neural network (ANN) is

composed of single neurons or nodes connected through synapses or edges and
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Successfully solved task
without Social Context

Predictors Odds Ratios CI p
(Intercept) 0.11 0.06 – 0.21 <0.001
Trained [True] 1.55 0.67 – 3.56 0.302

Time since solved 0.87 0.71 – 1.07 0.180

Trained [True] ×

Time since solved

3.93 1.83 – 8.45 <0.001

Random Effects
𝜎2

3.29

𝜏00 ID 0.19

𝜏
11 ID Trained:Time since solved

0.55

𝜌01 ID 1.00

ICC 0.06

NID 36

Observations 450

Marginal R
2

/ Conditional R
2

0.830 / 0.839

Table 3. Model summary for the estimation of the effect of training on the success of solving the task in an
individual setting without social partner. Statistically significant values are highlighted with bold font. Results
table was generated in R using sjPlot v2.8.14 and lme4 v1.1-32

commonly structured in layers. It receives input and processes it by which the nodes

and edges are weighted.

auto-shaping A form of conditioning in which reinforcement following a stimulus leads to

the performance of task irrelevant behaviour (similar to superstition) [37].

autoencoder An artificial neural network commonly used to learn higher level representation

or encoding of unlabeled data. This corresponds to a form of dimensionality reduction,

where the input dimension is reduced to the smallest layer of the network. Autoencoders

can be used for classification problems and are inherently generative models, which

can generate new data similar to its input..

classical conditioning A simple form of associative learning, also known as Pavlovian or

respondent conditioning, developed by I. Pavlov and J. Watson [170, 232]. During

classical conditioning, an unconditioned stimulus which under normal circumstances

creates an unconditioned response is coupled with a neutral stimulus. By doing so

the neutral stimulus becomes a conditional stimulus and the unconditioned response

becomes a conditioned response.

collective identity According to Melucci et al. [155] and Kilgore [120] the collective identity

is a common understanding of ‘ends, means and field of actions’, shared among

all members of the collective and giving a sense of ‘continuity and permanence’.

Analogous to Hartmann [87], the collective can here be seen as a system performing

an action, according to its goal setting, choice of means and realization.
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Successfully solved task
with Social Context

Predictors Odds Ratios CI p
(Intercept) 0.07 0.02 – 0.25 <0.001
Treatment [NT] 0.39 0.04 – 4.04 0.432

Treatment [TN] 24.74 2.82 – 216.76 0.004
Treatment [TT] 22.74 4.00 – 129.19 <0.001
Time since solved 7.59 3.13 – 18.43 <0.001
Treatment [NT] ×

Time since solved

0.17 0.05 – 0.57 0.004

Treatment [TN] ×

Time since solved

0.45 0.11 – 1.81 0.262

Treatment [TT] ×

Time since solved

0.39 0.11 – 1.33 0.134

Random Effects
𝜎2

3.29

𝜏00 ID 3.21

𝜏
11 ID Time since solved

0.21

𝜌01 ID 0.02

ICC 0.66

NID 36

Observations 520

Marginal R
2

/ Conditional R
2

0.716 / 0.903

Table 4. Model summary for the estimation of the effect of training on the success of solving the task in an
individual setting with a social partner. Statistically significant values are highlighted with bold font. Results
table was generated in R using sjPlot v2.8.14 and lme4 v1.1-32
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Individual Median Speed
without Social Context (cm/s)

Predictors Estimates CI p
(Intercept) 0.52 0.36 – 0.68 <0.001
Date -0.03 -0.08 – 0.03 0.369
Individual Size (cm) -0.01 -0.05 – 0.03 0.734

Random Effects
𝜎2

0.14

𝜏00 ID 0.01

ICC 0.06

NID 88

Observations 260

Marginal R2/ Conditional R2 0.003 / 0.063

Table 5. Model summary for the estimation of the effect of individual traits and environmental factors on the
median swimming speed of individuals alone and without any social context. Statistically significant values
are highlighted with bold font. Results table was generated in R using sjPlot v2.8.14 and lme4 v1.1-32

collective learning When conceptualizing a group of agents itself as a learning entity, the

process by which this entity learns would then be considered collective learning

according to Kasl et al. [113]. However, the distinction between individual contribution

and group contribution when focusing on learning is harder to make and deserves

special attention [120].

correlated cue Accessible to many simultaneously, leading to redundant information given

that the same information is distributed across multiple receivers. This form of

information has lower variance within the information quality and high correlation

among receivers.

culture According to Galef [72] and Whiten et al. [237] culture (often referred to as tradition
in ethology) is a process involving socially learnt behaviours and inter-generational

transmission of information.

darwinian fitness Increased Darwinian fitness of an individual is defined as the ability to

pass on more of ones own genetic material to the next generation. Commonly this is

associated with having more offspring.

generalized linear mixed-effects model The generalized linear mixed-effects model is an

extension of the linear mixed-effects model. Most importantly it allows for the response

to be connected to the linear model through a link function.

GPS Global Positioning System.

GUI A Graphical User Interface is a platform which allows the user to interact with a program

visually without the need for command line input or other means of code execution.

The alternative is the Command Line Interface (CLI), which allows the user to interact

with a program directly from the terminal or command line prompt.
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Individual Median Speed
with Social Context (cm/s)

Predictors Estimates CI p
(Intercept) 0.49 0.17 – 0.81 0.003
Date -0.01 -0.01 – -0.00 <0.001
Individual Speed (BL/s) -0.07 -0.35 – 0.21 0.623

Individual Size (cm) 0.01 -0.12 – 0.13 0.930

Environment [Simple] 0.08 0.06 – 0.09 <0.001

Random Effects
𝜎2

0.01

𝜏00 ID 0.01

ICC 0.42

NID 72

Observations 536

Marginal R
2

/ Conditional R
2

0.236 / 0.555

Table 6. Model summary for the estimation of the effect of individual traits and environmental factors on the
individual median swimming speed in the social context. Statistically significant values are highlighted with
bold font. Results table was generated in R using sjPlot v2.8.14 and lme4 v1.1-32

imitation There are two aspects which can be generalized as being part of imitation: 1)

matched-dependent, where a demonstrator can read relevant, environmental cues and

act upon these, while the follower cannot and 2) copying where a copying individual

iteratively repeats an action to match an observed action. This requires the individual

to be capable of estimating its own performance [158].

individual learning The process by which an individual acquires information by interacting

with its environment in absence of any social context [95, 96, 29].

linear mixed-effects model Linear mixed-effects model of linear mixed models an extended

form of a simple linear model which allow for the incorporation of fixed and random

effects. These are especially of interest when there is non independence in the data.

These are commonly found in hierarchical or nested data structure such as individuals

within groups..

local enhancement Being in proximity to a certain location, situation, event, or individual

can effect the future performance based on this experience, which is referred to as

being local enhancement. For example, following successful conspecifics can lead to

better mate choice preferences via local enhancement and eavesdropping [235].

operant conditioning A simple form of associative learning, also known as instrumental

conditioning and mainly accredited to the findings of B.F Skinner [203] and based

on Thorndike’s law of effect [217]. Similar to classical conditioning unconditioned

responses are coupled with neutral stimuli. However, the difference here being, that

the neutral stimulus elicits a positive or negative consequence, which reinforces the

association.
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Group Median Speed (cm/s)
Predictors Estimates CI p

(Intercept) 0.42 0.10 - 0.73 0.010
Date -0.01 -0.01 – -0.00 <0.001
Individual Speed (BL/s) -0.10 -0.38 – 0.18 0.484

Individual Size (cm) 0.04 -0.09 – 0.16 0.574

Environment [Simple] 0.08 0.07 – 0.09 <0.001

Random Effects
𝜎2

0.01

𝜏00 ID 0.00

ICC 0.42

NID 72

Observations 536

Marginal R
2

/ Conditional R
2

0.246 / 0.563

Table 7. Model summary for the estimation of the effect of individual traits and environmental factors on the
group median swimming speed. Statistically significant values are highlighted with bold font. Results table
was generated in R using sjPlot v2.8.14 and lme4 v1.1-32

overshadowing According to the American Psychological Association overshadowing is

“in classical conditioning, a decrease in conditioning with one conditioned stimulus

because of the presence of another conditioned stimulus. Usually a stronger stimulus

will overshadow a weaker stimulus.”.

posture The instantaneous pose or posture of an animal can be seen as a specific configuration

of body points and their orientation to each other (2D or 3D). Posture observed over

time results in behavioral units, which in turn can make up a behavioral sequence. It

is important to note that posture does not contain any temporal information, as it is a

snap-shot or still image taken in time.

private information Information which is acquired individually, in absence of others.

public information Information which is accessible and acquired by many individuals. Cues

leading to this form of information can further be categorized into high correlation

cue (all individuals receive very similar information) and low correlation cue (all

individuals receive highly variable information) [111].

RFID Radio-frequency identification used for Telemetry.

social facilitation Describes the circumstances under which a process, such as learning is

facilitated by the mere presence of others [244].

social learning The process by which an individual interacts with its environment and

acquires information purely through social contact.
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Individual Median Speed (cm/s)
Predictors Estimates CI p
(Intercept) -0.02 -0.53 – 0.49 0.943
Initial Size (mm) 0.51 0.29 – 0.73 <0.001
Recording Index -0.03 -0.04 – -0.02 <0.001
Treatment [Conventional

Food]

0.04 -0.12 – 0.20 0.629

Treatment [Live Prey] 0.08 -0.08 – 0.24 0.343

Random Effects
𝜎2

0.19

𝜏00 ID 0.01

ICC 0.06

NID 56

Observations 206

Marginal R
2

/ Conditional R
2

0.273 / 0.314

Table 8. Model summary for the estimation of the effect of feeding regime and total length on the individual
median swimming speed. Statistically significant values are highlighted with bold font. Results table was
generated in R using sjPlot v2.8.14 and lme4 v1.1-32

Individual Median Speed (cm/s)
Predictors Estimates CI p
(Intercept) -0.32 -1.06 – 0.41 0.387
Initial Size (mm) 0.68 0.37 – 0.99 <0.001
Treatment [Live Prey] 0.08 -0.10 – 0.26 0.356
Recording Index -0.03 -0.04 – -0.02 <0.001
Prey Density (N) -0.00 -0.00 – 0.00 0.745

Random Effects
𝜎2

0.21

𝜏00 ID 0.02

ICC 0.08

NID 37

Observations 134

Marginal R
2

/ Conditional R
2

0.319 / 0.370

Table 9. Model summary for the estimation of the effect of feeding regime, prey count and total length on
the individual median swimming speed. Statistically significant values are highlighted with bold font. Results
table was generated in R using sjPlot v2.8.14 and lme4 v1.1-32
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theory of mind Theory of Mind (ToM), often described as mind-reading, mentalizing, mental-

state attribution, and perspective-taking. ToM conceptualizes the process by which

mental states are ascribed to others in order to understand their actions better [69]. It

can be extended to where external processes, concepts and objects are mentalized in

order to predict future outcomes and behaviours [128].

uncorrelated cue Accessible to single receivers at a time, leading ambiguous information

among all receivers. This form of information inherently has a higher variability within

the information quality and low correlation among receivers.
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