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Consider the regression= f(X) + &, whereE(e|X) = 0 and the exact functional
form of f is unknown although we do know thaft is homogeneous of known
degreer. Using a local linear approackve examine two ways of nonparametri-
cally estimatingf: (i) a “direct” approach andi) a “projection based” approach
We show that depending upon the nature of the conditional variande \ay
one approach may be asymptotically better than the oResults of a small sim-
ulation experiment are presented to support our findings

1. INTRODUCTION

An important problem in microeconometrics is the estimation of shape restricted
functions To obtain good estimates without worrying about any potential mis-
specification problemsamposing valid shape restrictions on honparametric es-
timators of these functional forms seems like a good .id=ginning with the
pioneering paper of Hildrettl 954, much work has been done in this ar8ae
for example Gallant(1981), Yatchew(1988, Hardle(1989 Ch. 8), Ryu (1993,
Matzkin (1994, Ruud(1997), and Yatchew and Bo&l997). Readers unfamil-
iar with nonparametric estimation techniques relevant to econometrics are re-
ferred to Biereng1985, Hardle (1989, Hardle and Linton(1994), Yatchew
(1998, and Pagan and Ulla{1999.

In this paper we restrict ourselves to estimating a conditional mean function
f that happens to be homogeneous of known degr&ecall thatf: S — R is
said to be homogeneous of degre€ R if f(ARX) = A'f(X) forall (A, %) E R, X
Ssuch thatAx € S Such functional forms are frequently encountered in micro-
economic theoryFor instancethe profit(resp cos) function for a profit max-

We thank Don Andrews and an anonymous referee for comments that greatly improved thisTpaprst
author thanks Professor Wolfgang Hardle for hospitality at the Institute of Statistics and Econantéuirics
boldt University Berlin, where part of this research was carried.dtinancial support to the first author from
Sonderforschungsbereich 373Quantifikation und Simulation Okonomischer Prozessahd the NSF via
grants SES-0111917 and SES-0214081 is also gratefully acknowleddddess correspondence: tBautam
Tripathi, Department of EconomicdUniversity of Wisconsin—-MadisgnMadison WI 53706 USA; e-mait
gtripath@ssavisc.edu and Woocheol Kimlnstitut fir Statistik und Okonometri¢gdumboldt-Universitat zu Ber-
lin, D-10178 Berlin Germany e-mait woocheol@wiwihu-berlinde

640 © 2003 Cambridge University Press ~ 0266-4668 $1200

https://doi.org/10.1017/5026646660319408X Published online by Cambridge University Press


https://doi.org/10.1017/S026646660319408X

NONPARAMETRIC ESTIMATION OF HOMOGENEOUS FUNCTIONS 641

imizing (resp cost minimizing competitive firm is homogeneous of degree one
in prices Similarly, the Marshallian demand functions for a utility maximizing
agent are homogeneous of degree zero in prices and intom®duction theory
attention is often restricted to production functions that are homogeneous of de-
gree onethat is that exhibit constant returns to scakee for instancethe clas-
sic paper by ArrowCheneryMinhas and Solow(1961). Labor economists often
assume that the matching functjomhich relates the number of jobs formed
during a certain period of time to the number of vacancies available during that
period and some other variablas linearly homogeneouseg for example
Petrongolo and Pissaridé2001) and the references therein

Although many functional forms familiar to economists may satisfy other
shape restrictions besides homogendity now we focus upon homogeneity
alone One reason for doing so is that when compared with some other shape
properties such as concavity or monotoniditgmogeneity is a particularly tract-
able property to analyzé.oosely speakingthis is because the set of all homo-
geneous functionembedded in some larger space such as the set of all twice
continuously differentiable functionss a linear spaceThis linearity simplifies
analysis in many situation®©n the other hanadhe set of all concave or mono-
tone functions is not a linear space but a convex subset of the ambient space
Typically, this makes dealing with concave or monotone functions more diffi-
cult. Therefore focusing on homogeneity alone may often lead to a simplifica-
tion of econometric analysidurthermore as a practical matteimposing
concavity and monotonicity restrictions on function estimates seems to be a
hard though not an impossible task contrastimposing homogeneity in non-
parametric estimates is quite easy and may lead to substantial improvement of
estimates in finite samples

In the parametric case it is well known how to impose a homogeneity restric-
tion. Basically the idea is to restrict the parameter spa€er examplein a
log-linear Cobb—Douglas regression model with two covarjdtesnogeneity
is imposed by requiring that the coefficients on the two factors sum to one
Even in the flexible functional form literaturddomogeneity is imposed by re-
stricting the parameter spackEor instance Gallant (1981) imposes constant
returns to scale by making some parameters in a Fourier flexible form expan-
sion sum to unitySlightly differently Ryu (1993 shows how to impose linear
homogeneity by a polar coordinate transformation

In the fully nonparametric case perhaps the simplest way of imposing homo-
geneity is to use a “direct” approacln this approach we pick one variable as
the numeraire and use it to normalize all variabEestimation is then carried
out using the normalized variableSor instanceRuud (1997, p. 171) follows
this approach in imposing homogeneity on his shape restricted estirRedan
our conversations with many colleagues get the impression that most econ-
omists immediately think of this approach when asked to nonparametrically
estimate a homogeneous conditional expectatRecause we are so used to
working with ratios of variables such as relative priceghich are homo-
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geneous of degree zero by constructitme choice of the direct approach is
perhaps not very surprising

But there is another way of nonparametrically estimating homogeneous con-
ditional meansWe call this the “projection based” approach for reasons that
will be clarified later on In this paper we show how to implement the projec-
tion based and direct approaches using local linear estimators and compare the
asymptotic properties of the estimators obtaingtkir analytical simplicity and
ease of use should make the proposed estimators a useful addition to the tool
kit of the applied econometrician

The paper is organized as followSection 2 lists the maintained assump-
tions and Section 3 describes the procedure for estimating homogeneous func-
tions using the direct and projection based approadhe3ection 4 we compare
the asymptotic performance of the direct and projection based estimators and
show how the error term conditional variance determines which estimator is
better Section 5 describes the results of a small simulation experinaedtin
Section 6 we discuss some additional efficiency related isstesion 7 con-
cludes All proofs are confined to the Appendixes

The following notation is used throughout this pap#e treat all vectors as
column vectors an@most of the time denote them explicitly by using a tilde
In particular X = (Xg,...,Xs)’, W = (X1/Xs, ..., Xs-1/Xs)s & = (Xpj,..., Xsj)’,
andw; = (Xy,j/Xsj,.-., Xs-1,j/Xsj) . HereSy is a compact subset & such that
Xs (the last component of € S;) is positive and bounded away from zelde
mapHy: S, — RS is the homogeneous of degree zero transformétig(ix) =
W, and Sy = Ho(S;) is the image ofS; underH,. We useX, to denote a point
that is fixed inint(S;), andWy = Hy(Xy) denotes its image undét,. Because
the mapg — (W, X) is one to one and continuous & it is straightforward to
verify thatW, € int(Sy). The expression int(S;)) is the set of all real val-
ued functions onnt(S;) that have continuous partial derivatives up to orkler
We say thaf € CK(Sy) if f € CX(int(S;)) andf, including all its partial deriv-
atives up to ordek, can be extended continuously $. Finally, L2(S;) is the
set of all square integrable functions 8pthat are integrable with respect to
the probability distribution ors;, and 7, (resp G,) is the set of all functions in
C2(Sy) (resp L?3(S;)) that are also homogeneous of degre@he symbol=
indicates “approximate equaljtythat is, equality modulo an additive but as-
ymptotically negligible termUnless stated otherwisall limits are taken as
the sample siza — oo.

2. THE SETUP
Consider the nonparametric regressiprs f(%;) + &;.

Assumption 21. The following assumptions are maintained

(i) The dataly;, %;}{-, are independent and identically distributéd.d.) random
variables inR X &, andE(g;|%;) = 0.
(ii) The functional form off € F is unknown but we do knowr.
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(iii) The conditional pdf of y, xs| W) is twice continuously differentiable .

(iv) h(w), the pdf of W = Hy(X), is twice continuously differentiable aflp, and
h(Wg) > 0.

(v) For somey > 0, the mapw — E(|ex}|?>™” |W) is bounded and continuous &.

The restrictions ors;, namely thatS; is compact and that the last coordinate
of X € S is positive and bounded away from zgemsure that the conditional
expectations in LemmasBand 32 in Section 3 exist for alt € R. This al-
lows us to handle any degree of homogeneitye assumption that we know
r is quite weak as economic theory frequently predicts the degree of homo-
geneity' BecauseS; is compact (i) implies thatf is also an element of,.

(i ) implies thatE (yxt | W), E(y2x2" | W), andE (yx3'|W) are twice continuously
differentiable at,. This is used in the proof of Lemma Bin Appendix B We
use(iv) to ensure that the remainder terms in the Taylor expansions employed
in Appendix A are well behavediv) can be made more palatable if we inter-
pret it to mean that we should carry out estimation and inference in regions
where the density is bounded away from zér@) provides sufficient mo-
ments so that we can prove the asymptotic normality of estimatafis of

3. ESTIMATION HEURISTICS

Becausd is homogeneous of degregwe can write

y=x;f(\7v,1)+s<:>x—yr=f(w,1)+%. (1)

S S

The problem we investigate in this paper can be stated quite sirsipbyld we
estimatef (X) using the first representation or the second? We refer to the esti-
mator off (%) based on the first representation as a “projection based” estima-
tor, whereas the estimator based on the second formulation is called a “direct”
estimator It may not be very obvious at this point how we can estinfd
using the first representatipbut as we shall soon shoit is quite easy to do
sa Although algebraically equivalenthe two formulations will in general lead
to estimators with different statistical properties because divisiorslters
the stochastic properties of the error tesmin fact, and this should not sur-
prise the readethe statistical performance of the estimators depends upon the
conditional variance vde|X). In particular we show that if vafe|X) is homo-
geneous of degree zefwhich includes homoskedasticity as a special tase
then the projection based estimator is asymptotically better than the direct es-
timator, whereas if vafs|X) is homogeneous of degree Z 0 then the latter
dominates the former

Notice that ifr = 0O, that is if we are estimating a homogeneous function of
degree zerde.g., a demand functiop the two approaches will yield identical
results Furthermoreif s = 1 the problem is uninteresting because homo-
geneous functions are known up to scale in the one-dimensionallcesause
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whens = 1, homogeneity of implies thatf (x) = x'f(1)). To avoid these trivial
casesfrom now on we assume that# 0 ands > 1.

Our estimation strategy is to approximate sample analogs of optimization
problems that identify (X) using the two representations (ih). At the popula-
tion level we can use the first representation to Wiitg) asx¢ B,(X), whereg,
is identified as

Bp= argmin Efy—x{B(W)}% )
{8:BEL%(Sy)

Because! 8(W) is a homogeneous function of degrefor all 8 € L%(S;), we
can characterize{ 8,(W) as the orthogonal projection gfonto G, using the
usual L? inner productu,v) 2 = E{uv}. In particular we can use Lemma.B

in Tripathi (2000 to show that this projection can be explicitly calculated as
XL E(yx{|W)/E(x2"|W). This explains the ternprojection basedn describing

an estimate obtained by using the first representatidd)inSimilarly, a popu-
lation level specification of (X) using the second representation can be written
asx{ Bq(W), where we identifyB4 as

Bq = argmin ]E{lr - B(W)}Z. 3)
{B:BEL?(Sp)} s

Observe that we can also characterZ@, (W) as the orthogonal projection of
y onto G, using the “weighted” inner produc,v)yeightea = E{UuXs ?}. But
because this projection is not orthogonal with respect to the ustiahrer
product we prefer to describ&l 84(X) as the “direct” population level speci-
fication of f (X).

The preceding discussion shows that to estinfiaiesuffices to estimatg,
and B4. Because a finite amount of data can at best allow us to estimate the
value taken by a function at a certain pointe consider estimating the value
of f atX,. In particular let us now see how we can estim@gWy) andBq(Wo).

So letB be a function in 3(S;) that is sufficiently smoothThink of 8 as
being a generic symbol fg8, or B4. Taylor expanding3 (W) aroundW, and
neglecting all higher order remainder termg can write

B(W) = B(Wp) + VB (Wo) (W — Wp). (4)

The unknown coefficient$8(W,),VB(Wy)} can be estimated by doing least
squares on sample analogs(@j and (3) provided we can maintain the qual-
ity of the linear approximation ii4). This can be achieved by employing the
usual device of local weighting to ensure that when estimdtg(gv,), V3 (Wy)},

the W's closer toW, are given more weight than those observations that
are farther away fronmW,. Following this approach{S,(Wo),VB,(Wy)} and
{B4(Wp),VB4(Wy)} can be estimated as
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. 2 ) W, — Wy
{85, VB, }(Wo) = argmin 3 {y; — x{[bo + BL(W — wo)l} 2| ——— ),

beR® j=1 n

L no(y 3 2 (W — W,
{Ba,VBa}(Wo) = a[gmin2{4 — b — bi(W; — Wo)} IC(’—°>
bers j=1| Xsj an
whereb = (by, by, ...,bs 1) andb, = (by,...,bs_1).
Here,ép(wo) (resp Bq(Wo)) is the projection base@esp direcy local linear
estimator off (Wy,1). Similarly, VB,(Wo) (resp VB4(Wp)) is the projection based
(resp direc) local linear estimator of its gradieft (Wy,1). The kernelC (de-

fined onRS™1) and the bandwidtha, used previously satisfy the following
conditions

Assumption 3L. K(W) = II¥-1«(w; ), wherex : R — R is a continuous den-
sity with support{—1,1] and is symmetric around zer@d/e also definéh, =
Fr2(u)dy, g, = [ U2k (U) dy andSe = [~1,1]°

Assumption . The bandwidtha, is a sequence of positive numbers such
thata, — 0, naS™* — oo, andna3*® - A € [0,00).

The asymptotic behavior ¢ and@ is given by the following results

LEMMA 3.1. Let Assumptions 2.1, 3.1, and 3.2 hold. Then

[ \nay Y{B,(Wo) — f(Wp,1) — bias;} ] 9 N®.,.,,3.), where
L \maﬁﬂ{@p(wo) — Vf (WO’]') - biasz} .

2

an 2
_biaS_L 2 IU‘K,Ztr{V f(WOal)}
bia - a and
| P1a% " f k() 0’ V2f (W, 1) 0 da
_2/"Ll<,2 Sc sx1
[ E(x2" & | Wo) Ry - |
2(y2r O(sfl)xl
E*(x$" | Wo) h(Wp)
= E(X§r82|wo)f aa’C2(a) da
5 S
I (e E2(xZ[Wo)h(Wo) 25 Joxs

LEMMA 3.2. Let Assumptions 2.1, 3.1, and 3.2 hold. Then

\nas M By(Wo) — f (W, 1) — bias;}

—_ d N GSX 72 ’
\jnaﬁﬂ{V,Bd(Wo) — Vi(Wo,1) — biasz}:| 7 NG o)
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where bias and bias are defined in Lemma 3.1, and

[ E(xS 2 62| W) NS

0
h(WO) (s—1)x1
2 =
d E(xs2 e2|W,) | oo’K2(0)da
~ Sc
Orc
L (5=t h(wo):“i,Z Jdsxs

We usefy(R0) = XoBp(Wo) andfyr(Xo) = xoB4(Wo) to denote the pro-
jection based and direct local linear estimate$ (o). Notice thatf,,,; andfg;
are homogeneous of degreby constructionthat is we have obtained homo-
geneity constrained nonparametric estimators Ahother nice feature of using
the local linear approach is that batt®,,1) and its partial derivatives can be
obtained simultaneously¥his comes in handy when one wants to calculate mar-
ginal effects or elasticitieg-urthermore solving these optimization problems
is straightforward because they can be expressed in a weighted least squares
framework See the proof of Lemma.B in Appendix A for details

Local linear estimators of conditional mean functipmsthout any homo-
geneity restrictionshave been extensively studiegke for instanceFan(1992,
Ruppert and Wan¢1994), Gozala and Lintor§2000, and the references therein
If instead of a first-order approximation (@) we had taken amth-order Tay-
lor expansion of3 (W) around®,, wherem > 1, we would have obtainedhth-
order local polynomial estimators @, andB4. In our case such higher order
approximations are unnecessary because a linear approximation suffices to com-
pare the asymptotimseof Bp(wo) andB4(W,). Of course we could also have
obtained locally constantbetter known as Nadaraya—Watgastimators of
Bo(Wo) and B4(Wo) by considering the “zeroth™-order approximatigiw) =
B(Wy) in (4). In fact, it is easy to show that the projection based and direct
Nadaraya—Watson estimatorsf@f,) are given by

2 Yx K a

fvproj(XO) = X;o

Ms| b
S
=
P
S
|
=
N————

f:dir(XO) = Xsr,O n (WO — W )
I

The reason we prefer working with local linear estimatoegher than the
locally constant estimatorss that the asymptotic bias terms for the former are
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simpler(and thus much easieto handle analyticallyin particulay as shown in
Lemmas 3L and 32, they do not have any terms involving the first derivatives
of f(W,1):

NP e v C 0% (W, 1)
bias{ froj(Xo)} = bias{ fgi (Xo)} = 0.54 2w, , X o tr oW
Hence whenAIocaI linear estimators are ysgamparing the asymptotimseof
foroj(X0) andfy;(Xo) reduces to comparing their asymptotic variandascon-
trast in Appendix B it is shown that for the Nadaraya—Watson estimators of

f(%o),

bias{ fvproj(XO)} = 0.587 1, 2 Xd0

92f (Wo,1) 2 [ of (Wy,1) oh(W,) . of (Wy,1)
IWOW'’ h(W,) oW oW’ oW

Xf)E(xﬁflwo) h(%,)
oW’ E(x2 | W) ||’

4 9%f (Wo, 1 2 9f(We,1) oh(w,
bias{ fy; (%)} = 0.582 1, o XL otr { (Wo,1) (Wo,1) ah( o)]‘

OWON’ h(W,) oW oW’

Although in Appendix B we also show that Vil o;(%o)} = var{ foe(%0)} and
var{ f4i (%)} = var{ f4(%o)}, the squared bias df,;(%o) andfy(X,) cannot
be ranked Therefore if we use Nadaraya—Watson estimators we cannot ana-
lytically compare the projection based estimator with the direct estimator in
terms of asymptotiense

Finally, let f (%,) denote the usual unrestricted local linear estimatdi( &)
in the regression model= f(X) + ¢, that is

= " ~ % — X
{f(%),Vf (%)} = argmin > {y; — by — b'(% — Xo)}2H<J—O>7 (%)

(bo, D) ERXR® j=1 bn

where’ is an appropriate kernel diR® and the bandwidtl, is a sequence of
positive numbers such that — 0 andnb$ — co. Note that wherf is homo-
geneous of degreg f will converge at a slower rate tbthan . or fy.
Imposing homogeneity on estimatorsfafeduces the dimension of the regres-
sor space by one and leads to estimators with improved rates of convergence
In thq simulations we will compare the finite sample behaviof;Q,f and fy;

with f.
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4. COMPARING f,,o; (%) AND fy; (Xo)

Following Lemmas 3 and 32, it is easy to see that the asymptotic variances
of fprej(Xo) @andfy;(Xo) are

X2HE(x2" &2 | Wo) NSt
E2(xZ" | W) h(Wo)

’

var{ fore(%o)} =

XZHE (x5 % 62| W) 15
(W)

var{ fgr(%o)} =

To simplify the form of these variancesbserve that the transformaticn—
(W, Xs) is one to one and apply iterated expectatioftss yields

E(x¥e?|W) = E(xZ02(X)|W) and E(Xs? e?|W) = E(xg 2 0 ?(X)|W),

whereo?(%) = var(g|X) is the conditional variance functioit does not seem
possible(at least to usto compare the two variances df?(X) is completely
unknown However we can obtain some useful insights about the asymptotic
variance off,qj(%o) andfy,(Ro) if o2(%) satisfies the following assumption

Assumption 41. Assume that either

(i) o?(%) = (W) for some unknowny; that is the error terms are conditionally
heteroskedastic such tha{ x) is homogeneous of degree zero in the covarjates
or

(i) o2(%) = x22(W) for some unknowny; that is the error terms are condition-
ally heteroskedastic such that(X) is homogeneous of degree# 0 in the
covariates

Notice that Assumption .4(i) is automatically satisfied if the error term is
homoskedasti®As an example of a model where homoskedasticity @fcom-
patible with linear homogeneity df consider the following simple setup

Example 4.1.

Lety be the observed profif the unobserved profit function of a competitive
firm, and X the vector of observed output and factor prickssuming that the
prices are measured without error but there is measurement error in the ob-
served profit we can writey = f(X) + . Becausef is a profit function it is
homogeneous of degree graad asc is treated as pure measurement error we
can assume that it is homoskedastic

Although homoskedasticity of additive errors is often a convenient statistical
assumptionit is sometimes hard to justify from a structural point of vidw
many casesAssumption 41(ii) may be more plausibléAs an example of a
situation where botler (%) andf(X) are homogeneous of degree poensider
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the following modelwhich is motivated by the discussion in McFadd&é884
p. 1406.

Example 4.2.

Let X be the vector of observed output and factor pricesfdiid;u) the unob-
served profit function of a competitive firnThe termu denotes a firm specific
random parameter that is distributed independently.dt is unobserved by

the researcher but is known to the firm itsdfor instanceu could represent
variables that are unobserved by the economist but are used by the firm when
making production decision8ecausd * is a profit function we assume that

for eachu € U the mapx — f *(X;u) is linearly homogeneousnonotone and
convex in the pricesLety = f *(X;u) denote the maximum observable profit
Then using the fact thatis independent of, we can writey = f(X) + & where

f(X) = fuf*(X;u)dF(u) and

s=f*(X;u)—fuf*(i;u)dF(u|X)=f*(X;u)—fo*(X;u)dF(u).

Note thatk — f(X) has all the properties of a profit functiolm particular it is
homogeneous of degree omdoreover we can also verify thak(s|X) = 0 and
thato (X) is homogeneous of degree one

Now it is easy to see that

E{xs? 2| W} = ¢2(W)E{xs | W}
E{xZ"e?| W} = ¢*(W) E{x" | W},
E{xs? e®|W} = ¢*(W)
E{xZ' 2| W} = > (W) E{x{" | W}.

Assumption 41(i) = [

Assumption 41(ii) = {

Hence the expressions for the asymptotic variances simplify to

r

2 (W) NS I XZHE(Xs 2" | W)
h(Wo)

P2 (W) RY *x3o

L E(X2"| W) h(Wp)’

( 2 As—14,2r

var f, ()} = S

2 (Wo) Ny XxZHE (xS [ Wo)

E2(X¢"|Wo) h(Wo)

var{ fg;, (%)} =
Assumption 41(i) =
var{ f;roj(xo)} =

Assumption 41(ii) =

var{ f;)roj(xo)} =
\

Because by the Cauchy—Schwarz inequality

E(xs " |WE(XZ|W) = E2(xs"x{|W) =1 and E(x"|W) = E*(xZ|W),
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we get that

var{ fo(%o)} = var{ fy, (%)}
under Assumption 4(i), and
var{ f, (%)} = var{ f,;(%o)}

under Assumption 4(ii) As the asymptotic bias for the two estimators is iden-
tical, we havems¢g fpm,(xo)} = msH fyi (%)} under Assumption 4(i) and

mse fuir (%)} = msg fpm,(xo)} under Assumption 4(ii). Therefore as ex-
pected there is no general ranking for the estimators in terms of asymptotic
mse Hence the choice of which estimator to use is not obvious but depends
upon the nature of the heteroskedasticity of the error term

5. SIMULATION

A small simulation experiment was performed to study the finite sample prop-
erties of the proposed estimatoiGode was written in GAUSSand we re-
stricted our attention to the case= 2. A numbern of observat|ons oy were
generated frony = f(Xy, X2) + 0 (Xq, Xo) e, wherexy, X, = UIID[l 2] ande

was chosen mdependently 0%, X»). A Gaussian kernel was used to obtain
foro fair, @nd f. For the first two estimators the bandwidth used veas/®,
whereas foff the bandwidth used wams~Y/®. Three different choices afwere
consideredc € {0.5,1,2}. As seen in Tables 1 and the results do not seem to
be very sensitive to the choice of bandwidilwo particular specifications fdr
ande were selected

fi(X, %) = 100X %, and e, 2 N(0,0.75), (Model 1)
fo(Xy, Xo) = 10(x05 + x95)2 and &, = N(0,1). (Model 2)

TaBLE 1. Averagemseover grid for Model 1(Cobb—Douglas

o(X, %) =1 0 (X1, X2) = Xz
Average
n mse c=05 c=1 c=2 c=05 c=1 c=2
50 },,Oj 0.046 Q039 Q045 Q101 Q083 Q087
f:m 0.049 Q042 Q051 Q094 Q078 Q082
f 0.074 Q054 Q060 Q164 Q116 Q120

100 proj 0.023 Q023 0029 Q050 Q044 Q048

ir 0.025 Q025 Q032 Q047 Q042 Q047
0.038 Q031 Q036 Q085 Q062 Q063
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TaBLE 2. Averagemseover grid for Model 2(CES

o(X, %) =1 0 (X1, X2) = X
Average

n mse c= 0.5 c=1 c=2 c=05 c=1 c=2
50 f;roj 0.122 Q120 Q139 Q275 Q230 Q266
fuir 0.128 Q132 Q151 Q258 Q221 Q251

f 0.196 Q162 Q175 Q448 Q324 Q352

100 f},roj 0.066 Q067 Q097 Q146 Q132 Q148
fair 0.069 Q074 Q107 Q136 Q128 Q150

f 0.105 Q090 Q118 Q247 Q179 Q188

The termdf, andf, represent a Cobb—Douglas and constant elasticity of substi-
tution (CES specificationrespectivelyNote that bott, andf, are homogeneous
of degree oneThe model parameters were chosen so thaf Mar, x,)}/var{y},
which can be thought of as a measure of 8165 + N) ratio, for each model is
around 08. Two simple forms foro (x4, X,) were chosen to satisfy Assump-
tion 4.1: o (X4, Xo) = 1, which satisfies 4.(i), ando (X4, X2) = X, which satis-
fies 41(ii). Each function was estimated at a X010 uniform grid in[1,2] X
[1,2] and themsecalculated at each grid point in(DO replications

Recall that our asymptotic results are about the pointwise behavior of the
mse But because the reader may find point by point comparisansgon the
10 X 10 grid a tedious taskve present the averagever 100 grid pointsmse
in Tables 1 and 2

As seen in the tableshe averagenseis ranked according to our asymptotic
results Moreover except in one casehis ranking does not change wheiis
varied Wheneg is homoskedast;dprOJ dommatesalthough there does not seem
to be a dramatic difference betweé,nol and fy, in terms of averagense
When the conditional variance efis homogeneous of degree om@, has the
smallest averagmsealthough once again the difference betwdm} andfy; is
not very substantiaHowever in each case the homogeneity constrained esti-
mators clearly outperform the unrestricted local linear estimatorfofThere-
fore, whenf is indeed homogeneoussing a homogeneity constrained estimator
seems sensibl®f course the reader must keep in mind the usual caveat about
any simulation resulisnamely that they are limited in nature and may vary if
the underlying model parameters are changed

6. DISCUSSION

In this section we address two efficiency related iss&ést, recall that we can
rank f,r0(Xo) andfg(Xo) in terms of the asymptotimseif we have some in-
formation about the homogeneity &f— o (X). Hence an obvious question is
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in the absence of such information abet(tx), can we do better bysay) look-
ing at a linear combination of the two? The second issue is more subtle and
concerns the role of the numeraig(the last component o) in the definition
of f;roj(xo) andfy,(%o). Statistically choosing a particular element &fas the
numeraire mattersFor example Lemmas 3L and 32 show how the asymp-
totic bias and variance cf[,roj(xo) andfg, (%) depend uporxs. Assuming that
we have more than one candidate for the numeraaeh particular choice leads
to a different estimatofprojection based or direcfor f(Xy). Hence another
interesting question ifhow can we optimally combine these estimators to ob-
tain an estimator that is invariant to numeraire choice?

To answer these questigns helps to reformulate the estimation problem
described in Section 3 in more general ter8e let5(X) be a nonnegative
function and consider the following weighted local least squares problem

n

W — N W, — W,
{B5,VBs}HWo) = aggminE 1y — x¢ ;oo + bi(W, — WO)]}ZIC< : a 0) 8(X)).
j

ER® j=1 n

Letting f5(%o) = x;O,és(Vvo), it is apparent that the preceding optimization
problem leads to a family of local linear estimators f¢k,) that are indexed
by 4. In particular for 5(X) = 1 we obtain the projection based estimaﬁ)qrj(xo)
whereass (%) = x5 2" yields the direct estimatdg;(%o).

Following the arguments in Appendix A leading up(#.7), it can be easily
shown thatf5(%,) is asymptotically lineat that is

\nas H{ 5(%o) — f(%o) — 0.582 1, o XLo tr[ V2F (o, )]} (7)
_ Xg0 1 n ) W, — W,
- E{xZ'8(X)|Wo}h(W,) \/nas zl gj ij’C<—an )B(Xj) + 0,(1).

Thi§ representation is quite useffor example using the influence function
of f5(Xo) in (7), a straightforward application of the central limit theorem re-
veals that

\nas H{ f3(%o) — (Ro) — 0.583 o XL o r[V2F (o, 1]}
a XZE{X2" o (%)8%(%)| Wo) i *
=N O TR @ s () [ wosh(wo)

®)

Expression(8) shows that the asymptotic variancefgf%,) depends upon the
weight 6 but the asymptotic bias does ndi get some intuition behind the
former result note thaté and K act on different arguments in the weighted
local least squares problerm particular 6 operates orx; whereasC operates

on ((W, — Wp)/a,). The latter fact ensures that all expectations in the asymp-
totic variance off; are conditional ori,. Hence asx is not predictable byw,

the weighting functiors (%) survives in the limit Clearly, this will not happen

if IC andé have the same arguments particular solving
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- o [ K %o
min E {y; — by — b'(% — Xo)}?H b 3(X)),

(bo, b)E]RX]RS n

which is thes-weighted version of5), will yield local linear estimators off(Xy)
whose asymptotic bias and variance are independedf of

Let us determine the optimal that minimizes the asymptotic variance of
f5(%o). Observe that because

X2r

E?{xZ"8(%)|Wo} = E{xJ" 0%(%)8? (X)WO}E{ 2(%) | Wo }
by the Cauchy—Schwarz inequalitye have
X X2yt
var{ f5(%X,)} = 20

{ o?(%)

Now if we chooses (X) = co ~?(X), wherec can be any arbitrary positive con-
stant then(8) reveals that

for all 6. (9)
|W0} h (W)

2r g}’tsfl

var{ f,, 2(x (%)} = er
B

2(%)

Thus by(9) and (10), it follows that the optimal weight function is given by
8(X) = co~?(X). Furthermoreon comparing6) with (9), we can see thd,groj(xo)
is asymptotlcally efficient under Assumptionidi) Whereas‘d,r(xo) is asymp-
totically efficient under Assumption.ii). Therefore fp,ol(xo) (resp fyir(%o))
automatically incorporates the optimal weighting scheme whég) is homo-
geneous of degree= 0 (resp r # 0). Hence it suffices to restrict attention to
the projection based estimator whelx) is homogeneous of degree ze®&m-
ilarly, there is no loss of generality in only looking at the direct estimator when
o (X) is homogeneous of degree# 0. This suggests that if we have no prior
information about the homogeneity af(X), the best way to proceed may be to
first estimate the conditional variance function and then do the weighted local
linear regression described eatrlier

Another way of improving orfproj(xo) andfdlr(xo) is to consider an optimal
linear combination of the twdSo letf = ( fproj(xo) f4ir(%o)) anda@ = (011, as) €
R? such thata; + a, = 1. Thena'f denotes a linear combination q;‘mj(xo)
andfy;, (%) that is consistent fof (%,). It remains to determine the optimal
for which the asymptotienseof @'f is minimized To do sg we need the joint
distribution off. Using (7) and the Cramér-Wold devigcit is easy to show that

\nas M f16i(0) — F(%6) — O Saﬁmzxs,otr[vzf(wo,l)]}
ynay~ {fdir(xo) — (%) — O‘SaﬁMK,ZXS,Otr[sz(WO’l)]}

(10)
|Wo} h(Wo)

(OSX 1 V)
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where
XZHE{XZ" o2 (%) | Wo Nt XZoE{o 2 (%) | Wo RSt
v Up Upd| E2{xZ" | Wo}h (W) E{x2"| Wo}h (W)
Upd Vd XZOE{o2(R) [ W Ne T XZHE{xXs 2 0 2(X)| Wo RSt
E{xZ"| Wy }h (W) h(%,)

Because the asymptotic bias @ff does not depend upak minimizing its
asymptoticmsereduces to minimizinge'Va. It is straightforward to verify that
for any symmetric positive definite matri®,.,,

P i v'Py (ll)
= =~ = argmin ,
TP 1 ety

wherel denotes a conformable vector of onklence using11),

Ud — Upd
vyt vg— 2v
p d pd . ~\J~
= argmin a'va.
Up ~ Upd (@aerR?: a'1=1}
Vp T vg = 20pg

Therefore the optimal linear combination df,q;(%o) andfg;(%o) is

Ug — VU N Uy, — U N

0= —— " (%) + ———— fy(%o). (12)

Vp T vg — 20pg Vp T vg — 20pg
In general § (which is also homogeneous of degngeputs nonzero mass on
pr,Oj(XO) and f; (%). However if (%) is homogeneous of degree zethen
Upa = Up a@nd the entire mass is put on the projection estimagonilarly, if
o (X) is homogeneous of degree* 0, thenv,y = vgq and all mass is put on the
direct estimatarln practice § can be implemented by using a preliminary es-
timator of V.’

Finally, we construct estimators that are invariant to numeraire ch8icdet
Z={l=i = s:x is positive and bounded away from zgrthat is 7 denotes
the set of all valid numeraire indiceBor i € Z, defineW;(i) = (Xy;/Xi ,-..,
Xi—1,j/Xi,j,Xi+1,j/Xi,j,--A-,ij/xi,j), Zg(i) = (X1,0/Xi,05+-+> Xi—1,0/%i,0,1, Xi +1,0/
Xi.0:+-+>X50/Xi,0), @NdTs(Ko;i) = X{ o Bs(Wo(i)). As in (7), we can show that

a8 H £5(Ro3 1) — F(Ro) = 0,583 . X{o r[V2F (2o(i)]}

_ X{ o 1
—E{xZ 8()|Wo(i)h(Wo(i)) y/nas t
xS xi[,-/c(M)a(xj) +0,(1). (13)
=1 n
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Notice that the choice of numeraitim this case théth component oX) influ-
ences the asymptotic bias in addition to the asymptotic varianég xf: i ).

Now let {5;(X):i € Z} be a collection of weight functiondor conve-
nience assume thaf has cardinalityT and letd, §o, and & denoteT X 1
vectors whoseth componentgfor i € 7) are given byf;i(xo;i), f(Xo), and
0.5AY2u, X o tr[V2f(24(i))], respectively We also letW be aT X T
diagonal matrix such that itsith diagonal element is given by
XEOE{X?" 0 2(R) 87 (X) | Wo (I IR /E2{ X" 8; ()| Wo (1) (W (1)), wherei € T.

Using (13) and the Cramér—Wold device along with the fact tha}™ — A,
we can show that/nas (g — o) - N( i, W).2 Next let & be aT x 1 vector
such that its components sum to oiteat is > a; = 1. Then

a'g=> af5(Xo;i)
€T

denotes a consistent estimatorf@i&,) that is invariant to numeraire choice
Therefore the invariant estimator that minimizes asymptatiseis given by

g = a.g, where
o + W) 1
a = argmin a'(ag +wWa? —~(,/L1u~, ) —.
{@eRT:a'1=1} 1 (MM ""W) 1

Here ¢ yields the optimal projection based invariant estimator on setting
6i(%x) = 1 for all i € Z. Similarly, the optimal direct invariant estimator is
obtained by setting;(X) = x 2 for i € Z. Feasible versions can be imple-
mented by using preliminary estimators @fand W. One final point the di-
agonal nature ofV suggests that asymptotic variance can also be reduced by
constructing an estimator based on more than one numekdineever be-
cause the asymptotic bigs depends upon numeraire chaiseich an estima-

tor is not guaranteed to show any improvement in terms of asympictee

7. CONCLUSION

In this paper we nonparametrically estimate a homogeneous of degosli-
tional mean functior{ f) using local linear estimator$Ve compare a “projec-
tion based” estimator with a more conventional “direct” estimaBased on
our asymptotic resultsve recommend the following guidelines when estimat-
ing f in practice

(i) Whenf is homogeneous of degreguse a homogeneity constrained estimator as
opposed to some unrestricted nonparametric estimatérTie dimension re-
duction due to homogeneity allows the constrained estimators to possess faster
rates of convergence than the unrestricted estimator

(ii) Use the projection based approaclrifk) is homogeneous of degree zefdis
includes the case whenis homoskedastic

(iii) Use the direct approach éf(X) is homogeneous of degree# 0.
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Results of a small simulation experiment support these recommendations al-
though there does not seem to be a big difference in the avenagéor the
two approaches ifii) and(iii ), at least for the models used in our simulation

If no prior information is available about the conditional variance fungtion
the best way to proceed may be to first estimate the conditional variance func-
tion and then do a weighted local linear regresslorany casga good empir-
ical practice is to report estimates bfising the projection basedirect and
also the unrestricted local linear estimatorfofA large discrepancy between
the reported results may indicate that the homogeneity restrictiohisoper-
haps misspecifiedBased on the degree of divergence a formal test of this mis-
specification can be constructed following the approach of Hardle and Mammen
(1993, although we do not pursue this issue in the current paper

Finally, the reader should bear in mind that in this paper we have limited our
investigations to the case whdris homogeneous of degrage But as men-
tioned earlierin microeconomic theory homogeneity of functional forms is of-
ten accompanied by other shape restrictions such as monotonicity and concavity
(or convexity. An interesting topic for future research is to find new ways of
nonparametrically imposing these additional shape restrictions on functional
forms and determine the statistical properties of such shape restricted estimators

NOTES

1. Some well known examples are described earlier in Section 1

2. Hengartner and Lintofi.996 show that though nonparametric estimators of conditional mean
functions remain asymptotically normal at points where the density of the conditioning variable is
zerq their rate of convergence slows down and the constants associated with the limiting distribu-
tion change

3. Here0s.; denotes & X 1 vector of zeros

4. For Model 2 whem = 100 andc = 2. However a decomposition of the averagesefor this
case revealed that although the average variancé&;favas smaller than the average variance of
f;roj, the average squared bias for the former was bigger than the average squared bias for.the latter
Therefore although the ranking with respect to the variances is preserved according to out theory
the average bias differs for the two modettence in this case the higher average biasfgf
caused the ranking to change

5. To see thisreplaceK((W, — Wo)/a,) in the proof of Lemma 3 by (W — Wo)/a,)5(X;).

6. Jones(1993 obtains a similar result for the asymptotic variance éfweighted Nadaraya—
Watson(i.e., locally constantestimator However his results also show that the asymptotic bias of
the weighted Nadaraya—Watson estimator does depend dipswe have just showrthis does
not hold for local linear estimators

7. The optimala in (12) depends upon the evaluation poiat This dependence can be elimi-
nated by minimizing#'(fx s, V d%,) @, the integrated version at’'Va. Hence the optimal linear
combination that minimizes integrated asymptatiseis given by

f (Ud - Upd)dXO f (vp - Upd)dXO
S ~ S ~
fproj(XO) + fdir(X0)~

f (v + vg — 20p)dRg
S

f (vp + vg — 20p4) A%,
S

Numerical integration can be used to construct the feasible weights
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8. Becauseﬁél (Wo(i)) Aamd,é’(sl (W0(|)2 are evaluated at different points whegt |, the asymp-
totic covariance betweefy (Xo;i) andfs (Xo;1) is zero fori # |. Hence the asymptotic variance-
covariance matriXV is diagonal

9. Notice thata@. depends upoR,. The optimala that minimizes integrated asymptotitse(and
hence does not depend upRy) is given by{[s (i’ + W)dge} *1/1{fs (A + W)dRo} 11
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APPENDIX A: TECHNICAL DETAILS—
LOCAL LINEAR ESTIMATORS

Proof of Lemma 3.1. (The referee has pointed out that Lemma$% &nd 32 are
special cases of Theorem 2 in Gozalo and Lint8000. However as some readers
may find it instructive to see a direct prgafe provide ong Throughout this proof let
Q = diagsxs[L, an,...,an] and Q = diagyn[K(F, — Wo)/ap),..., (W, — Wo)/an)].
Furthermorewe also define

R W — W
0o(Wo) Xg1 Xsr,1< la 0)
PN A n
é(\'/TI ) _ el(wo) . IBp(WO) Z -
° : VBp(Wo) |or’ o ’
é r r Wn — Wo
s—1(Wo) XS” XS” a
n nxs

andy = (yi,...,Yn). Using this notationit is straightforward to see tha@k(Wo) is the
solution to the following weighted least squares probhlem

min (y — ZQb)'Q(y — ZQb).

beR

As is well known the solution to this problem is given by
6(Wy) = Q~1(Z2'0Z)"1Z2'0y.

Let us write §(Wo) = Q~1S~If, where S = (1/nag 1)Z2'QZ andf = (1/naS 1)Z’'Qy.
Straightforward calculations show that we can wiEeas the partitioned matri§ =
|:%o So1
So1 Su1
1

i W, — Wo W; — Wo
— > X2 K , and
na, j=1 an an

L3 o (o) (W - (W~ T
S11= s—1 2 Xéﬁ K .
nay j=1 an a, an

Similarly, we writef = [I"], wherety = (1/na5 1) 2L, v, & K (W, — Wo)/an) andt, =
1

1/nag P 3,y xE (W — Wo)/an) K((W, — Wo)/an). But becausey; = x{; f(W;,1) + ¢,
we can exprest= 7 + ¥, where

], wheresoo = (1/nag ") ZjLy X3 K(W — Wo/an),

So1 =
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n ) W, — W
2 g Xg; K a

1 To 1 j=1 n
7= — = — and
naS | nas ! W, — Wy W, — W,
> X K
j=1 an a'n
[ - 2r W‘ — WO
L E x20 (W, 1)K a
~ j=1 n
= — (A1)
nag* zn: 20 £ (% .1) W, — Wo K W, — Wo
Xzt -y
= S, i a, a,
. [ (.0
Hence lettingd (W) = [Vf(wo,l)]’ we have that
6(Wo) — 0(Wo) = Q1S 17 + Q1S H* — 0(W,). (A.2)

Let us first look atQ 'S~ {* — 6(Wp). For all W, in ana,-neighborhood offp, Tay-
lor expandf (W;,1) aroundf (Wo,1) to get

W — Wo

f(W,,1) = f(Wo,1) + an< >’ Vi (W, 1)

n

as (W — W\ W — Wo
+ = — | V2 (W, 1 + o(a?).
2( o (Wo,1) a, (an)

But this implies thaf* reduces to

0,(a3)
az .
= SQ (W) + > c+ : , Where

Op(ar21) sx1

S o (W Wo\ W; — Wo W; — Wo
s—1 E Sy V2f (Wo,1) K
nas & a, a, a,
1

n W — Wy \' W, — W, W, — W, W, — W,
s—1 2 Xérj -4 vzt (Wo,l) ] ° K ] ° ] °
nas j=1 a, an a, an

Because it is easy to verify that

(A.3)

p E(str‘wo)h(wo) Gésfl)xl
S5 2 s
Os—px1 e 2B (XS [ Wo) N (Wo) g
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wherels_; denotes thés — 1) X (s — 1) identity matrix we get that
op(a7)

Q1S — 0(W,) = a; Qs e+ Op(:a“)

Op(an) sx1

Let us further simplify the right-hand side of this equati@o do sgq first use a law of
large numbers to show that

vec (p,ols 1)
p 2r 2
¢ 25 E(xZ'|Wy) h(Wp) f dic(G)vee (o) o ved V2f (W, 1)) (A.4)
Sc

Next, using(A.3), (A.4), and a little matrix manipulatign

2 0,(aj)
= e o tr{V 2 (W, 1)} ’
a,% o 2 ’ Op(an)
PR
= fGIC(U)l]’VZf(WO,l)UdCI
22 Js, 0,(an) f o1

_ (88/2) pr 2 tr{iV2F (Wo, 1)}
Thus lettingbias = , (A.2) reduces to
(an/zlu’x,Z) J-SC DK(G)U’VZf (WO’]-)G dU

0,(a7)

~ — o Op(an)
6(Wo) — 6(Wp) — bias= Q'S 17 + .

(A.5)
Op(an) sX1

Now we show thaS~1# is asymptotically normalA straightforward application of
the Lindeberg—Lyapunov central limit theorem for triangular arrays and the Cramér—
Wold device reveals that under Assumptio(2)

\fnas 17 % N(O.q, KE(£2X2 | W) (W), (A.6)

where
f K2(0) da Os— 1)1
SC

Os-1x1 J aa’xC2(a)y da
S

sXs
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Thus by(A.1), (A.3), (A.6), and Slutsky

To Op(l)
+| L5 N(@gey, 3p)-

My 2 Op(l) sx1

1
 E(XZ|Wo)h(W,)4/nag

nas s~

Finally, premultiplying both sides ofA.5) by 4/na3 'Q and using the fact that the se-
quencenast® is boundedwe have

\na3 'Q{A(W,) — 6(W,) — bias}
1 To Op'(l)

= 71 + : D
BT |Wo) n(Wo) \nay | —=
(x&" [ Wo) h( 0)\/ a M2 0p(1) Jexs

Therefore it follows that

\na; Q1A (Wo) — 6(Wo) — bias} > N(Os. ).

But this is the desired result |

Proof of Lemma 3.2 In the proof of Lemma 3, replacex; by 1, y; by y, /x$;, and
&j by € /g ;. n

APPENDIX B: TECHNICAL DETAILS—
KERNEL ESTIMATORS

The following results are essentially an exercise in using the delta meffoodexam-
ples on the use of the delta method or linearization techniques in nonparametric regres-
sion see Schustefl972 and Hardle(1989.

LEMMA B.1. var{ fooi(%0)} = (RS 1/nas 1) (xZE(xZ" 62| Wo)/E2(x2" |Wy) h(Wy)).

Proof of Lemma B.1. Observe that we can wrifg.;(%o) = A(%0)/B(%o) andf (Xo) =
A(Xy)/B(Xo), Where

A X;o . r WO — WJ r ' =
A(Rg) = nas1 > Y Xe i K a ) A(Rg) = Xg o E(yx$|Wo)h(Wp),
-1

« 0 Wo — WJ
B(Xp) = —— Z X§EIC< >, and B(%y) = E(xZ|W)h(®,).
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Then by a Taylor expansiofAssumptions 2L(iii) and (iv) ensure that the remainder
terms in this Taylor expansion are well behaye@ avoid introducing any explicit re-
mainder terms in this analysis as they do not affect the outcome of the)paper

. . 1 . . f(Xo) o .
fproj(xo) —E fproj(xo) = m {A(Xo) - EA(XO)} - BEXO)) {B(Xo) - EB(XO)}-
0 0
Therefore
. _ 1 X f2(R) o
var{ fooi(Xo)} = W var{ A(%o)} + B2(%,) var{B(%,)}
0 0
-2 f(%o) coV{A(Ry), B(%o)} (B.1)
B2(%o) on e |

Recall that Wy lies in the interior of §; and that the mapsE(yx{|W)h(®),
E(y2x2"|W)h(W), and E(yx3|W)h(W) are twice continuously differentiable af.
By the usual change of variablese can show that for large enough

rs—1

var{A(Ro)} =

XSZBE(YZX32r|Wo)h(Wo)»

s—1

K

Var{é(xo)} = nas 1IE(X;"|WO)h(WO), and
. . st s
CoV{A(Xp), B(%o)} = Ks,l XsrsoE(stqu)h(Wof

Therefore substituting these results in equatitB.1) and using the fact thdt(Xy) =
X$of(Wp,1), a little algebra shows that

. . Rt X2t
varl fyo(%o)} = {245 Fr i (o) + EOGH (0] o)

— 2E(yx"f(R)|Wo)}

_ 9Tt xOEOC y — ()} W)
S onagt E2(x2|Wo)h(W,)

_ T XDE(E e W) -
na; t E2(x2"[Wo)h(W,)

LEMMA B .2 var{ fgir(%0)} = (RS /nag ) [xZE(Xs ¥ &2 Wo)/h(Wp)].

Proof of Lemma B.2. Similar to the proof of Lemma B.
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LEMMA B .3.

92f (Wo,1) 2
IWOW' ] E(xZ"|Wo)h(W,)

y of (Wo, 1) a[E(str|Wo)h(Wo)}

bias{ f0(%o)} = O.Saﬁ,uk,zx;otr{

oW oW’
Proof of Lemma B.3. By a Taylor expansian

f(%o)
B(%o)

. 1 . «
]Efproj(xo) - f(xo) = —— {EA(XO) - A(Xo)} - {EB(XO) - B(Xo)}-

B(%o)

But asWy € int(Sy) andE(yx!|W)h(W), E(x2"|W)h(®) are twice continuously differ-
entiable atWp, a change of variables yields that

y IP{E(yxE | W) (W,
EA(x())—A(xo)éo.saﬁx;oJ g IEOS W) o) 4 and
S OWOW
. 02{IE (X2" | Wo ) h (W,
]EB(XO)—B(XO)éO.Saﬁf o B | °,) ( O)}CIIC(O)dl]
S IWOW

for large enoug. Because it is easy to see that for apy

9%n (W 9%n (W
fu’ﬁu/@(a)dwudtr{"—()},
s OWOW 20| omow’

the expressions for the bias Afand B reduce to

9Z[E(yx{ | Wo)h(W)] }
and

IWOW’

az[E(xSf\wo)h(wo)]}
IWOW' ’

EA(%,) — A(%X,) = O.Saﬁxgo,uk,ztr{

EB(%,) — B(%,) = O.Saﬁ,uk,ztr{

Some algebraand the fact thaf (%) = x{,f(Wy,1), now leads to the desired result
|

LEMMA B .4.

. 92f (Wg, 1 2 of(Wg,1) oh(wm,
bias{fdir(xo)}é0.5aﬁ,u,(’2x;0tr{ (o. 1) (Wo. 1) o 0)}.

WO’ h(W,) oW oW

Proof of Lemma B.4. Similar to the proof of Lemma B.
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