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Consider the regressiony 5 f ~ Ix! 1 «, whereE~« 6 Ix! 5 0 and the exact functional
form of f is unknown, although we do know thatf is homogeneous of known
degreer+ Using a local linear approach, we examine two ways of nonparametri-
cally estimatingf: ~i! a “direct” approach and~ii ! a “projection based” approach+
We show that depending upon the nature of the conditional variance var~« 6 Ix!,
one approach may be asymptotically better than the other+ Results of a small sim-
ulation experiment are presented to support our findings+

1. INTRODUCTION

An important problem in microeconometrics is the estimation of shape restricted
functions+ To obtain good estimates without worrying about any potential mis-
specification problems, imposing valid shape restrictions on nonparametric es-
timators of these functional forms seems like a good idea+ Beginning with the
pioneering paper of Hildreth~1954!,much work has been done in this area+ See,
for example, Gallant~1981!, Yatchew~1988!, Härdle~1989, Ch+ 8!, Ryu ~1993!,
Matzkin ~1994!, Ruud~1997!, and Yatchew and Bos~1997!+ Readers unfamil-
iar with nonparametric estimation techniques relevant to econometrics are re-
ferred to Bierens~1985!, Härdle ~1989!, Härdle and Linton~1994!, Yatchew
~1998!, and Pagan and Ullah~1999!+

In this paper we restrict ourselves to estimating a conditional mean function
f that happens to be homogeneous of known degreer+ Recall thatf :Sr R is
said to be homogeneous of degreer [ R if f ~l Ix! 5 lr f ~ Ix! for all ~l, Ix! [ R11 3
Ssuch thatl Ix [ S+ Such functional forms are frequently encountered in micro-
economic theory+ For instance, the profit ~resp+ cost! function for a profit max-
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imizing ~resp+ cost minimizing! competitive firm is homogeneous of degree one
in prices+ Similarly, the Marshallian demand functions for a utility maximizing
agent are homogeneous of degree zero in prices and income+ In production theory,
attention is often restricted to production functions that are homogeneous of de-
gree one, that is, that exhibit constant returns to scale+ See, for instance, the clas-
sic paper by Arrow, Chenery,Minhas, and Solow~1961!+ Labor economists often
assume that the matching function, which relates the number of jobs formed
during a certain period of time to the number of vacancies available during that
period and some other variables, is linearly homogeneous+ See, for example,
Petrongolo and Pissarides~2001! and the references therein+

Although many functional forms familiar to economists may satisfy other
shape restrictions besides homogeneity, for now we focus upon homogeneity
alone+ One reason for doing so is that when compared with some other shape
properties such as concavity or monotonicity, homogeneity is a particularly tract-
able property to analyze+ Loosely speaking, this is because the set of all homo-
geneous functions~embedded in some larger space such as the set of all twice
continuously differentiable functions! is a linear space+ This linearity simplifies
analysis in many situations+ On the other hand, the set of all concave or mono-
tone functions is not a linear space but a convex subset of the ambient space+
Typically, this makes dealing with concave or monotone functions more diffi-
cult+ Therefore, focusing on homogeneity alone may often lead to a simplifica-
tion of econometric analysis+ Furthermore, as a practical matter, imposing
concavity and monotonicity restrictions on function estimates seems to be a
hard though not an impossible task+ In contrast, imposing homogeneity in non-
parametric estimates is quite easy and may lead to substantial improvement of
estimates in finite samples+

In the parametric case it is well known how to impose a homogeneity restric-
tion+ Basically, the idea is to restrict the parameter space+ For example, in a
log-linear Cobb–Douglas regression model with two covariates, homogeneity
is imposed by requiring that the coefficients on the two factors sum to one+
Even in the flexible functional form literature, homogeneity is imposed by re-
stricting the parameter space+ For instance, Gallant ~1981! imposes constant
returns to scale by making some parameters in a Fourier flexible form expan-
sion sum to unity+ Slightly differently, Ryu ~1993! shows how to impose linear
homogeneity by a polar coordinate transformation+

In the fully nonparametric case perhaps the simplest way of imposing homo-
geneity is to use a “direct” approach+ In this approach we pick one variable as
the numeraire and use it to normalize all variables+ Estimation is then carried
out using the normalized variables+ For instance, Ruud ~1997, p+ 171! follows
this approach in imposing homogeneity on his shape restricted estimator+ From
our conversations with many colleagues, we get the impression that most econ-
omists immediately think of this approach when asked to nonparametrically
estimate a homogeneous conditional expectation+ Because we are so used to
working with ratios of variables such as relative prices, which are homo-
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geneous of degree zero by construction, the choice of the direct approach is
perhaps not very surprising+

But there is another way of nonparametrically estimating homogeneous con-
ditional means+ We call this the “projection based” approach for reasons that
will be clarified later on+ In this paper we show how to implement the projec-
tion based and direct approaches using local linear estimators and compare the
asymptotic properties of the estimators obtained+ Their analytical simplicity and
ease of use should make the proposed estimators a useful addition to the tool
kit of the applied econometrician+

The paper is organized as follows+ Section 2 lists the maintained assump-
tions, and Section 3 describes the procedure for estimating homogeneous func-
tions using the direct and projection based approaches+ In Section 4 we compare
the asymptotic performance of the direct and projection based estimators and
show how the error term conditional variance determines which estimator is
better+ Section 5 describes the results of a small simulation experiment, and in
Section 6 we discuss some additional efficiency related issues+ Section 7 con-
cludes+ All proofs are confined to the Appendixes+

The following notation is used throughout this paper+ We treat all vectors as
column vectors and~most of the time! denote them explicitly by using a tilde+
In particular, Ix 5 ~x1, + + + , xs!

', Kw 5 ~x10xs, + + + , xs210xs!
', Ixj 5 ~x1, j , + + + , xs, j !

' ,
and Kwj 5 ~x1, j 0xs, j , + + + , xs21, j 0xs, j !

' + HereS Ix is a compact subset ofRs such that
xs ~the last component ofIx [ S Ix! is positive and bounded away from zero+ The
mapH0 :S Ix r Rs21 is the homogeneous of degree zero transformationH0~ Ix! 5
Kw, andS Kw 5 H0~S Ix! is the image ofS Ix underH0+ We use Ix0 to denote a point

that is fixed inint~S Ix!, and Kw0 5 H0~ Ix0! denotes its image underH0+ Because
the map Ix ° ~ Kw, xs! is one to one and continuous onS Ix, it is straightforward to
verify that Kw0 [ int~S Kw!+ The expression Ck~int~S Ix!! is the set of all real val-
ued functions onint~S Ix! that have continuous partial derivatives up to orderk+
We say thatf [ Ck~S Ix! if f [ Ck~int~S Ix!! andf, including all its partial deriv-
atives up to orderk, can be extended continuously toS Ix+ Finally, L2~S Ix! is the
set of all square integrable functions onS Ix that are integrable with respect to
the probability distribution onS Ix, andFr ~resp+ Gr ! is the set of all functions in
C2~S Ix! ~resp+ L2~S Ix!! that are also homogeneous of degreer+ The symbol5°

indicates “approximate equality,” that is, equality modulo an additive but as-
ymptotically negligible term+ Unless stated otherwise, all limits are taken as
the sample sizen r `+

2. THE SETUP

Consider the nonparametric regressionyj 5 f ~ Ixj ! 1 «j +

Assumption 2+1+ The following assumptions are maintained+

~i! The data$ yj , Ixj %j51
n are independent and identically distributed~i+i+d+! random

variables inR 3 S Ix, andE~«j 6 Ixj ! 5 0+
~ii ! The functional form off [ Fr is unknown, but we do knowr+
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~iii ! The conditional pdf of~ y, xs6 Kw! is twice continuously differentiable atKw0+
~iv! h~ Kw!, the pdf of Kw 5 H0~ Ix!, is twice continuously differentiable atKw0 and

h~ Kw0! . 0+
~v! For someg . 0, the map Kw ° E~6«xs

r 621g 6 Kw! is bounded and continuous atKw0+

The restrictions onS Ix, namely, thatS Ix is compact and that the last coordinate
of Ix [ S Ix is positive and bounded away from zero, ensure that the conditional
expectations in Lemmas 3+1 and 3+2 in Section 3 exist for allr [ R+ This al-
lows us to handle any degree of homogeneity+ The assumption that we know
r is quite weak as economic theory frequently predicts the degree of homo-
geneity+1 BecauseS Ix is compact, ~ii ! implies thatf is also an element ofGr +
~iii ! implies thatE~ yxs

r 6 Kw!,E~ y2xs
2r 6 Kw!, andE~ yxs

3r 6 Kw! are twice continuously
differentiable at Kw0+ This is used in the proof of Lemma B+1 in Appendix B+We
use~iv! to ensure that the remainder terms in the Taylor expansions employed
in Appendix A are well behaved+ ~iv! can be made more palatable if we inter-
pret it to mean that we should carry out estimation and inference in regions
where the density is bounded away from zero+2 ~v! provides sufficient mo-
ments so that we can prove the asymptotic normality of estimators off+

3. ESTIMATION HEURISTICS

Becausef is homogeneous of degreer, we can write

y 5 xs
r f ~ Kw,1! 1 « m

y

xs
r 5 f ~ Kw,1! 1

«

xs
r + (1)

The problem we investigate in this paper can be stated quite simply: should we
estimatef ~ Ix! using the first representation or the second? We refer to the esti-
mator of f ~ Ix! based on the first representation as a “projection based” estima-
tor, whereas the estimator based on the second formulation is called a “direct”
estimator+ It may not be very obvious at this point how we can estimatef ~ Ix!
using the first representation, but as we shall soon show, it is quite easy to do
so+ Although algebraically equivalent, the two formulations will in general lead
to estimators with different statistical properties because division byxs

r alters
the stochastic properties of the error term«+ In fact, and this should not sur-
prise the reader, the statistical performance of the estimators depends upon the
conditional variance var~« 6 Ix!+ In particular, we show that if var~« 6 Ix! is homo-
geneous of degree zero~which includes homoskedasticity as a special case!
then the projection based estimator is asymptotically better than the direct es-
timator, whereas if var~« 6 Ix! is homogeneous of degree 2r Þ 0 then the latter
dominates the former+

Notice that ifr 5 0, that is, if we are estimating a homogeneous function of
degree zero~e+g+, a demand function!, the two approaches will yield identical
results+ Furthermore, if s 5 1 the problem is uninteresting because homo-
geneous functions are known up to scale in the one-dimensional case~because
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whens5 1, homogeneity off implies thatf ~x! 5 xr f ~1!!+ To avoid these trivial
cases, from now on we assume thatr Þ 0 ands . 1+

Our estimation strategy is to approximate sample analogs of optimization
problems that identifyf ~ Ix! using the two representations in~1!+ At the popula-
tion level we can use the first representation to writef ~ Ix! asxs

r bp~ Ix!, wherebp

is identified as

bp 5 argmin
$b : b[L2~S Kw!%

E$ y 2 xs
r b~ Kw!%2+ (2)

Becausexs
r b~ Kw! is a homogeneous function of degreer for all b [ L2~S Kw!, we

can characterizexs
r bp~ Kw! as the orthogonal projection ofy onto Gr using the

usual L2 inner product̂ u, v&L2 5 E$uv% + In particular, we can use Lemma B+2
in Tripathi ~2000! to show that this projection can be explicitly calculated as
xs

r E~ yxs
r 6 Kw!0E~xs

2r 6 Kw!+ This explains the termprojection basedin describing
an estimate obtained by using the first representation in~1!+ Similarly, a popu-
lation level specification off ~ Ix! using the second representation can be written
asxs

r bd~ Kw!, where we identifybd as

bd 5 argmin
$b : b[L2~S Kw!%

EH y

xs
r 2 b~ Kw!J2

+ (3)

Observe that we can also characterizexs
r bd~ Kw! as the orthogonal projection of

y onto Gr using the “weighted” inner product̂u, v&weighted5 E$uvxs
22r % + But

because this projection is not orthogonal with respect to the usual L2 inner
product, we prefer to describexs

r bd~ Ix! as the “direct” population level speci-
fication of f ~ Ix!+

The preceding discussion shows that to estimatef, it suffices to estimatebp

and bd+ Because a finite amount of data can at best allow us to estimate the
value taken by a function at a certain point, we consider estimating the value
of f at Ix0+ In particular, let us now see how we can estimatebp~ Kw0! andbd~ Kw0!+

So let b be a function in L2~S Kw! that is sufficiently smooth+ Think of b as
being a generic symbol forbp or bd+ Taylor expandingb~ Kw! around Kw0 and
neglecting all higher order remainder terms, we can write

b~ Kw! 5° b~ Kw0! 1 ¹b~ Kw0!'~ Kw 2 Kw0!+ (4)

The unknown coefficients$b~ Kw0!,¹b~ Kw0!% can be estimated by doing least
squares on sample analogs of~2! and ~3! provided we can maintain the qual-
ity of the linear approximation in~4!+ This can be achieved by employing the
usual device of local weighting to ensure that when estimating$b~ Kw0!,¹b~ Kw0!% ,
the Kw’s closer to Kw0 are given more weight than those observations that
are farther away from Kw0+ Following this approach, $bp~ Kw0!,¹bp~ Kw0!% and
$bd~ Kw0!,¹bd~ Kw0!% can be estimated as
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$ Zbp, Z¹bp%~ Kw0! 5 argmin
Db[Rs

(
j51

n

$ yj 2 xs, j
r @b0 1 Db*' ~ Kwj 2 Kw0!#%2KS Kwj 2 Kw0

an
D,

$ Zbd , Z¹bd %~ Kw0! 5 argmin
Db[Rs

(
j51

n H yj

xs, j
r 2 b0 2 Db*' ~ Kwj 2 Kw0!J2

KS Kwj 2 Kw0

an
D,

where Db 5 ~b0,b1, + + + ,bs21! and Db* 5 ~b1, + + + ,bs21!+
Here Zbp~ Kw0! ~resp+ Zbd~ Kw0!! is the projection based~resp+ direct! local linear

estimator off ~ Kw0,1!+ Similarly, Z¹bp~ Kw0! ~resp+ Z¹bd~ Kw0!! is the projection based
~resp+ direct! local linear estimator of its gradient¹f ~ Kw0,1!+ The kernelK ~de-
fined on Rs21! and the bandwidthan used previously satisfy the following
conditions+

Assumption 3+1+ K~ Kw! 5 Pi51
s21k~wi !, wherek :R r R is a continuous den-

sity with support@21,1# and is symmetric around zero+ We also defineRk 5
*21

1 k2~u! du, mk,2 5 *21
1 u2k~u! du, andSK 5 @21,1# s21+

Assumption 3+2+ The bandwidthan is a sequence of positive numbers such
that an r 0, nan

s21 r `, andnan
s13 r l [ @0,`!+

The asymptotic behavior ofZb and Z¹b is given by the following results+

LEMMA 3 +1+ Let Assumptions 2.1, 3.1, and 3.2 hold. Then3

F Mnan
s21$ Zbp~ Kw0! 2 f ~ Kw0,1! 2 bias1%

Mnan
s11$ Z¹bp~ Kw0! 2 ¹f ~ Kw0,1! 2 bias2%

G d
&& N~ E0s31,Sp!, where

Fbias1

bias2
G 5 3

an
2

2
mk,2 tr$¹2f ~ Kw0,1!%

an

2mk,2
E

SK
IuK~ Iu! Iu'¹2f ~ Kw0,1! Iu d Iu4

s31

and

Sp 5 3
E~xs

2r «2 6 Kw0!Rk
s21

E2~xs
2r 6 Kw0!h~ Kw0!

E0~s21!31
'

E0~s21!31

E~xs
2r «2 6 Kw0!E

SK
Iu Iu'K2~ Iu! d Iu

E2~xs
2r 6 Kw0!h~ Kw0!mk,2

2

4
s3s

+

LEMMA 3 +2+ Let Assumptions 2.1, 3.1, and 3.2 hold. Then

F Mnan
s21$ Zbd~ Kw0! 2 f ~ Kw0,1! 2 bias1%

Mnan
s11$ Z¹bd~ Kw0! 2 ¹f ~ Kw0,1! 2 bias2%

G d
&& N~ E0s31,Sd !,
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where bias1 and bias2 are defined in Lemma 3.1, and

Sd 5 3
E~xs

22r «2 6 Kw0!Rk
s21

h~ Kw0!
E0~s21!31
'

E0~s21!31

E~xs
22r «2 6 Kw0!E

SK
Iu Iu'K2~ Iu!d Iu

h~ Kw0!mk,2
2

4
s3s

+

We use Zfproj~ Ix0! 5 xs,0
r Zbp~ Kw0! and Zfdir~ Ix0! 5 xs,0

r Zbd~ Kw0! to denote the pro-
jection based and direct local linear estimates off ~ Ix0!+ Notice that Zfproj and Zfdir

are homogeneous of degreer by construction; that is, we have obtained homo-
geneity constrained nonparametric estimators off+ Another nice feature of using
the local linear approach is that bothf ~ Kw0,1! and its partial derivatives can be
obtained simultaneously+ This comes in handy when one wants to calculate mar-
ginal effects or elasticities+ Furthermore, solving these optimization problems
is straightforward because they can be expressed in a weighted least squares
framework+ See the proof of Lemma 3+1 in Appendix A for details+

Local linear estimators of conditional mean functions, without any homo-
geneity restrictions, have been extensively studied+ See, for instance, Fan~1992!,
Ruppert and Wand~1994!, Gozala and Linton~2000!, and the references therein+
If instead of a first-order approximation in~4! we had taken anmth-order Tay-
lor expansion ofb~ Kw! around Kw0, wherem . 1, we would have obtainedmth-
order local polynomial estimators ofbp andbd+ In our case such higher order
approximations are unnecessary because a linear approximation suffices to com-
pare the asymptoticmseof Zbp~ Kw0! and Zbd~ Kw0!+ Of course, we could also have
obtained locally constant~better known as Nadaraya–Watson! estimators of
bp~ Kw0! and bd~ Kw0! by considering the “zeroth”-order approximationb~ Kw! 5°

b~ Kw0! in ~4!+ In fact, it is easy to show that the projection based and direct
Nadaraya–Watson estimators off ~ Ix0! are given by

Xfproj~ Ix0! 5 xs,0
r

(
j51

n

yj xs, j
r KS Kw0 2 Kwj

an
D

(
j51

n

xs, j
2r KS Kw0 2 Kwj

an
D ,

Xfdir~ Ix0! 5 xs,0
r

(
j51

n yj

xs, j
r KS Kw0 2 Kwj

an
D

(
j51

n

KS Kw0 2 Kwj

an
D +

The reason we prefer working with local linear estimators, rather than the
locally constant estimators, is that the asymptotic bias terms for the former are
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simpler~and thus much easier! to handle analytically+ In particular, as shown in
Lemmas 3+1 and 3+2, they do not have any terms involving the first derivatives
of f ~ Kw,1!:

bias$ Zfproj~ Ix0!% 5 bias$ Zfdir~ Ix0!% 5 0+5l102mk,2 xs,0
r tr H ]2f ~ Kw0,1!

] Kw] Kw' J +
Hence when local linear estimators are used, comparing the asymptoticmseof
Zfproj~ Ix0! and Zfdir~ Ix0! reduces to comparing their asymptotic variances+ In con-

trast, in Appendix B it is shown that for the Nadaraya–Watson estimators of
f ~ Ix0!,

bias$ Xfproj~ Ix0!% 5° 0+5an
2 mk,2 xs,0

r

3 tr H ]2f ~ Kw0,1!

] Kw] Kw'
1

2

h~ Kw0!F ]f ~ Kw0,1!

] Kw
]h~ Kw0!

] Kw'
1

]f ~ Kw0,1!

] Kw

3
]E~xs

2r 6 Kw0!

] Kw'
h~ Kw0!

E~xs
2r 6 Kw0!GJ ,

bias$ Xfdir~ Ix0!% 5° 0+5an
2 mk,2 xs,0

r tr H ]2f ~ Kw0,1!

] Kw] Kw'
1

2

h~ Kw0!

]f ~ Kw0,1!

] Kw
]h~ Kw0!

] Kw' J +
Although in Appendix B we also show that var$ Xfproj~ Ix0!% 5 var$ Zfproj~ Ix0!% and
var$ Xfdir~ Ix0!% 5 var$ Zfdir~ Ix0!% , the squared bias ofXfproj~ Ix0! and Xfdir~ Ix0! cannot
be ranked+ Therefore, if we use Nadaraya–Watson estimators we cannot ana-
lytically compare the projection based estimator with the direct estimator in
terms of asymptoticmse+

Finally, let Zf ~ Ix0! denote the usual unrestricted local linear estimator off ~ Ix0!
in the regression modely 5 f ~ Ix! 1 «, that is,

$ Zf ~ Ix0!, Z¹f ~ Ix0!% 5 argmin
~b0, Db![R3Rs

(
j51

n

$ yj 2 b0 2 Db'~ Ixj 2 Ix0!%2HS Ixj 2 Ix0

bn
D, (5)

whereH is an appropriate kernel onRs and the bandwidthbn is a sequence of
positive numbers such thatbn r 0 andnbn

s r `+ Note that whenf is homo-
geneous of degreer, Zf will converge at a slower rate tof than Zfproj or Zfdir+
Imposing homogeneity on estimators off reduces the dimension of the regres-
sor space by one and leads to estimators with improved rates of convergence+
In the simulations we will compare the finite sample behavior ofZfproj and Zfdir

with Zf+
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4. COMPARING Zfproj ( Ix0) AND Zfdir ( Ix0)

Following Lemmas 3+1 and 3+2, it is easy to see that the asymptotic variances
of Zfproj~ Ix0! and Zfdir~ Ix0! are

var$ Zfproj~ Ix0!% 5
xs,0

2r E~xs
2r «2 6 Kw0!Rk

s21

E2~xs
2r 6 Kw0!h~ Kw0!

,

var$ Zfdir~ Ix0!% 5
xs,0

2r E~xs
22r «2 6 Kw0!Rk

s21

h~ Kw0!
+

To simplify the form of these variances, observe that the transformationIx °
~ Kw, xs! is one to one and apply iterated expectations+ This yields

E~xs
2r «2 6 Kw! 5 E~xs

2r s2~ Ix!6 Kw! and E~xs
22r «2 6 Kw! 5 E~xs

22r s2~ Ix!6 Kw!,

wheres2~ Ix! 5 var~« 6 Ix! is the conditional variance function+ It does not seem
possible~at least to us! to compare the two variances ifs2~ Ix! is completely
unknown+ However, we can obtain some useful insights about the asymptotic
variance of Zfproj~ Ix0! and Zfdir~ Ix0! if s2~ Ix! satisfies the following assumption+

Assumption 4+1+ Assume that either

~i! s2~ Ix! 5 c2~ Kw! for some unknownc; that is, the error terms are conditionally
heteroskedastic such thats~ Ix! is homogeneous of degree zero in the covariates,
or

~ii ! s2~ Ix! 5 xs
2r c2~ Kw! for some unknownc; that is, the error terms are condition-

ally heteroskedastic such thats~ Ix! is homogeneous of degreer Þ 0 in the
covariates+

Notice that Assumption 4+1~i! is automatically satisfied if the error term is
homoskedastic+ As an example of a model where homoskedasticity of« is com-
patible with linear homogeneity off, consider the following simple setup+

Example 4.1.

Let y be the observed profit, f the unobserved profit function of a competitive
firm, and Ix the vector of observed output and factor prices+ Assuming that the
prices are measured without error but there is measurement error in the ob-
served profit, we can writey 5 f ~ Ix! 1 «+ Becausef is a profit function it is
homogeneous of degree one, and as« is treated as pure measurement error we
can assume that it is homoskedastic+

Although homoskedasticity of additive errors is often a convenient statistical
assumption, it is sometimes hard to justify from a structural point of view+ In
many cases, Assumption 4+1~ii ! may be more plausible+ As an example of a
situation where boths~ Ix! and f ~ Ix! are homogeneous of degree one, consider
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the following model, which is motivated by the discussion in McFadden~1984,
p+ 1406!+

Example 4.2.

Let Ix be the vector of observed output and factor prices andf *~ Ix;u! the unob-
served profit function of a competitive firm+ The termu denotes a firm specific
random parameter that is distributed independently ofIx+ It is unobserved by
the researcher but is known to the firm itself+ For instance, u could represent
variables that are unobserved by the economist but are used by the firm when
making production decisions+ Becausef * is a profit function, we assume that
for eachu [ U the map Ix ° f *~ Ix;u! is linearly homogeneous, monotone, and
convex in the prices+ Let y 5 f *~ Ix;u! denote the maximum observable profit+
Then using the fact thatu is independent ofIx, we can writey 5 f ~ Ix! 1 « where
f ~ Ix! 5 *U f *~ Ix;u! dF~u! and

« 5 f *~ Ix;u! 2E
U

f *~ Ix;u! dF~u6 Ix! 5 f *~ Ix;u! 2E
U

f *~ Ix;u! dF~u!+

Note that Ix ° f ~ Ix! has all the properties of a profit function+ In particular, it is
homogeneous of degree one+ Moreover, we can also verify thatE~« 6 Ix! 5 0 and
that s~ Ix! is homogeneous of degree one+

Now it is easy to see that

Assumption 4+1~i! n HE$xs
22r «2 6 Kw% 5 c2~ Kw!E$xs

22r 6 Kw%

E$xs
2r «2 6 Kw% 5 c2~ Kw!E$xs

2r 6 Kw%,

Assumption 4+1~ii ! n HE$xs
22r «2 6 Kw% 5 c2~ Kw!

E$xs
2r «2 6 Kw% 5 c2~ Kw!E$xs

4r 6 Kw%+

Hence the expressions for the asymptotic variances simplify to

Assumption 4+1~i! n 5var$ Zfdir~ Ix0!% 5
c2~ Kw0!Rk

s21xs,0
2r E~xs

22r 6 Kw0!

h~ Kw0!

var$ Zfproj~ Ix0!% 5
c2~ Kw0!Rk

s21xs,0
2r

E~xs
2r 6 Kw0!h~ Kw0!

,

Assumption 4+1~ii ! n 5var$ Zfdir~ Ix0!% 5
c2~ Kw0!Rk

s21xs,0
2r

h~ Kw0!

var$ Zfproj~ Ix0!% 5
c2~ Kw0!Rk

s21xs,0
2r E~xs

4r 6 Kw0!

E2~xs
2r 6 Kw0!h~ Kw0!

+

Because by the Cauchy–Schwarz inequality

E~xs
22r 6 Kw!E~xs

2r 6 Kw! $ E2~xs
2r xs

r 6 Kw! 5 1 and E~xs
4r 6 Kw! $ E2~xs

2r 6 Kw!,
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we get that

var$ Zfproj~ Ix0!% # var$ Zfdir~ Ix0!%

under Assumption 4+1~i!, and

var$ Zfdir~ Ix0!% # var$ Zfproj~ Ix0!%

under Assumption 4+1~ii !+ As the asymptotic bias for the two estimators is iden-
tical, we havemse$ Zfproj~ Ix0!% # mse$ Zfdir~ Ix0!% under Assumption 4+1~i! and
mse$ Zfdir~ Ix0!% # mse$ Zfproj~ Ix0!% under Assumption 4+1~ii !+ Therefore, as ex-
pected there is no general ranking for the estimators in terms of asymptotic
mse+ Hence the choice of which estimator to use is not obvious but depends
upon the nature of the heteroskedasticity of the error term+

5. SIMULATION

A small simulation experiment was performed to study the finite sample prop-
erties of the proposed estimators+ Code was written in GAUSS, and we re-
stricted our attention to the cases 5 2+ A numbern of observations ony were
generated fromy 5 f ~x1, x2! 1 s~x1, x2!«, wherex1, x2 5

d
UIID @1,2# and «

was chosen independently of~x1, x2!+ A Gaussian kernel was used to obtain
Zfproj, Zfdir, and Zf+ For the first two estimators the bandwidth used wascn2105,

whereas for Zf the bandwidth used wascn2106+ Three different choices ofc were
considered: c [ $0+5,1,2% + As seen in Tables 1 and 2, the results do not seem to
be very sensitive to the choice of bandwidth+ Two particular specifications forf
and« were selected:

f1~x1, x2! 5 10Mx1 x2 and «1 5
d

N~0,0+75!, (Model 1)

f2~x1, x2! 5 10~x1
0+5 1 x2

0+5!2 and «2 5
d

N~0,1!+ (Model 2)

Table 1. Averagemseover grid for Model 1~Cobb–Douglas!

s~x1, x2! 5 1 s~x1, x2! 5 x2

n
Average

mse c5 0+5 c 5 1 c 5 2 c 5 0+5 c 5 1 c 5 2

50 Zfproj 0+046 0+039 0+045 0+101 0+083 0+087
Zfdir 0+049 0+042 0+051 0+094 0+078 0+082
Zf 0+074 0+054 0+060 0+164 0+116 0+120

100 Zfproj 0+023 0+023 0+029 0+050 0+044 0+048

Zfdir 0+025 0+025 0+032 0+047 0+042 0+047
Zf 0+038 0+031 0+036 0+085 0+062 0+063
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The termsf1 andf2 represent a Cobb–Douglas and constant elasticity of substi-
tution ~CES! specification, respectively+ Note that bothf1 andf2 are homogeneous
of degree one+ The model parameters were chosen so that var$ f ~x1, x2!%0var$ y% ,
which can be thought of as a measure of theS0~S1 N! ratio, for each model is
around 0+8+ Two simple forms fors~x1, x2! were chosen to satisfy Assump-
tion 4+1: s~x1, x2! 5 1, which satisfies 4+1~i!, ands~x1, x2! 5 x2, which satis-
fies 4+1~ii !+ Each function was estimated at a 103 10 uniform grid in@1,2# 3
@1,2# and themsecalculated at each grid point in 1,000 replications+

Recall that our asymptotic results are about the pointwise behavior of the
mse+ But because the reader may find point by point comparison ofmseon the
103 10 grid a tedious task, we present the average~over 100 grid points! mse
in Tables 1 and 2+

As seen in the tables, the averagemseis ranked according to our asymptotic
results+ Moreover, except in one case4 this ranking does not change whenc is
varied+When« is homoskedastic, Zfproj dominates, although there does not seem
to be a dramatic difference betweenZfproj and Zfdir in terms of averagemse+
When the conditional variance of« is homogeneous of degree one, Zfdir has the
smallest averagemsealthough once again the difference betweenZfproj and Zfdir is
not very substantial+ However, in each case the homogeneity constrained esti-
mators clearly outperformZf, the unrestricted local linear estimator off+ There-
fore, whenf is indeed homogeneous, using a homogeneity constrained estimator
seems sensible+ Of course, the reader must keep in mind the usual caveat about
any simulation results, namely, that they are limited in nature and may vary if
the underlying model parameters are changed+

6. DISCUSSION

In this section we address two efficiency related issues+ First, recall that we can
rank Zfproj~ Ix0! and Zfdir~ Ix0! in terms of the asymptoticmseif we have some in-
formation about the homogeneity ofIx ° s~ Ix!+ Hence an obvious question is:

Table 2. Averagemseover grid for Model 2~CES!

s~x1, x2! 5 1 s~x1, x2! 5 x2

n
Average

mse c5 0+5 c 5 1 c 5 2 c 5 0+5 c 5 1 c 5 2

50 Zfproj 0+122 0+120 0+139 0+275 0+230 0+266
Zfdir 0+128 0+132 0+151 0+258 0+221 0+251
Zf 0+196 0+162 0+175 0+448 0+324 0+352

100 Zfproj 0+066 0+067 0+097 0+146 0+132 0+148

Zfdir 0+069 0+074 0+107 0+136 0+128 0+150
Zf 0+105 0+090 0+118 0+247 0+179 0+188
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in the absence of such information abouts~ Ix!, can we do better by~say! look-
ing at a linear combination of the two? The second issue is more subtle and
concerns the role of the numerairexs ~the last component ofIx! in the definition
of Zfproj~ Ix0! and Zfdir~ Ix0!+ Statistically, choosing a particular element ofIx as the
numeraire matters+ For example, Lemmas 3+1 and 3+2 show how the asymp-
totic bias and variance ofZfproj~ Ix0! and Zfdir~ Ix0! depend uponxs+ Assuming that
we have more than one candidate for the numeraire, each particular choice leads
to a different estimator~projection based or direct! for f ~ Ix0!+ Hence another
interesting question is: how can we optimally combine these estimators to ob-
tain an estimator that is invariant to numeraire choice?

To answer these questions, it helps to reformulate the estimation problem
described in Section 3 in more general terms+ So let d~ Ix! be a nonnegative
function and consider the following weighted local least squares problem:

$ Zbd , Z¹bd%~ Kw0! 5 argmin
Db[Rs

(
j51

n

$ yj 2 xs, j
r @b0 1 Db*' ~ Kwj 2 Kw0!#%2KS Kwj 2 Kw0

an
Dd~ Ixj !+

Letting Zfd~ Ix0! 5 xs,0
r Zbd~ Kw0!, it is apparent that the preceding optimization

problem leads to a family of local linear estimators forf ~ Ix0! that are indexed
by d+ In particular, for d~ Ix! 5 1 we obtain the projection based estimatorZfproj~ Ix0!
whereasd~ Ix! 5 xs

22r yields the direct estimatorZfdir~ Ix0!+
Following the arguments in Appendix A leading up to~A+7!, it can be easily

shown that Zfd~ Ix0! is asymptotically linear,5 that is,

Mnan
s21$ Zfd~ Ix0! 2 f ~ Ix0! 2 0+5an

2 mk,2 xs,0
r tr @¹2f ~ Kw0,1!#% (7)

5
xs,0

r

E$xs
2r d~ Ix!6 Kw0%h~ Kw0!

1

Mnan
s21 (

j51

n

«j xs, j
r KS Kwj 2 Kw0

an
Dd~ Ixj ! 1 op~1!+

This representation is quite useful+ For example, using the influence function
of Zfd~ Ix0! in ~7!, a straightforward application of the central limit theorem re-
veals that

Mnan
s21$ Zfd~ Ix0! 2 f ~ Ix0! 2 0+5an

2 mk,2 xs,0
r tr @¹2f ~ Kw0,1!#%

d
&& NS0,

xs,0
2r E$xs

2r s2~ Ix!d2~ Ix!6 Kw0%Rk
s21

E2$xs
2r d~ Ix!6 Kw0%h~ Kw0! D+ (8)

Expression~8! shows that the asymptotic variance ofZfd~ Ix0! depends upon the
weight d but the asymptotic bias does not+ To get some intuition behind the
former result, note thatd and K act on different arguments in the weighted
local least squares problem+ In particular, d operates onIxj whereasK operates
on ~~ Kwj 2 Kw0!0an!+ The latter fact ensures that all expectations in the asymp-
totic variance of Zfd are conditional on Kw0+ Hence as Ix is not predictable by Kw,
the weighting functiond~ Ix! survives in the limit+ Clearly, this will not happen
if K andd have the same arguments+ In particular, solving
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min
~b0, Db![R3Rs (

j51

n

$ yj 2 b0 2 Db'~ Ixj 2 Ix0!%2HS Ixj 2 Ix0

bn
Dd~ Ixj !,

which is thed-weighted version of~5!, will yield local linear estimators off ~ Ix0!
whose asymptotic bias and variance are independent ofd+6

Let us determine the optimald that minimizes the asymptotic variance of
Zfd~ Ix0!+ Observe that because

E2$xs
2r d~ Ix!6 Kw0% # E$xs

2r s2~ Ix!d2~ Ix!6 Kw0%EH xs
2r

s2~ Ix!
6 Kw0J

by the Cauchy–Schwarz inequality, we have

var$ Zfd~ Ix0!% $
xs,0

2r Rk
s21

EH xs
2r

s2~ Ix!
6 Kw0J h~ Kw0!

for all d+ (9)

Now if we choosed~ Ix! 5 cs22~ Ix!, wherec can be any arbitrary positive con-
stant, then~8! reveals that

var$ Zfcs22~ Ix!~ Ix0!% 5
xs,0

2r Rk
s21

EH xs
2r

s2~ Ix!
6 Kw0J h~ Kw0!

+ (10)

Thus by~9! and ~10!, it follows that the optimal weight function is given by
d~ Ix! 5 cs22~ Ix!+ Furthermore, on comparing~6! with ~9!, we can see thatZfproj~ Ix0!
is asymptotically efficient under Assumption 4+1~i! whereas Zfdir~ Ix0! is asymp-
totically efficient under Assumption 4+1~ii !+ Therefore, Zfproj~ Ix0! ~resp+ Zfdir~ Ix0!!
automatically incorporates the optimal weighting scheme whens~ Ix! is homo-
geneous of degreer 5 0 ~resp+ r Þ 0!+ Hence it suffices to restrict attention to
the projection based estimator whens~ Ix! is homogeneous of degree zero+ Sim-
ilarly, there is no loss of generality in only looking at the direct estimator when
s~ Ix! is homogeneous of degreer Þ 0+ This suggests that if we have no prior
information about the homogeneity ofs~ Ix!, the best way to proceed may be to
first estimate the conditional variance function and then do the weighted local
linear regression described earlier+

Another way of improving on Zfproj~ Ix0! and Zfdir~ Ix0! is to consider an optimal
linear combination of the two+ So let Df 5 ~ Zfproj~ Ix0!, Zfdir~ Ix0!! and Ja 5 ~a1,a2! [
R2 such thata1 1 a2 5 1+ Then Ja ' Df denotes a linear combination ofZfproj~ Ix0!
and Zfdir~ Ix0! that is consistent forf ~ Ix0!+ It remains to determine the optimalJa
for which the asymptoticmseof Ja ' Df is minimized+ To do so, we need the joint
distribution of Df+ Using ~7! and the Cramér–Wold device, it is easy to show that

FMnan
s21$ Zfproj~ Ix0! 2 f ~ Ix0! 2 0+5an

2 mk,2 xs,0
r tr @¹2f ~ Kw0,1!#%

Mnan
s21$ Zfdir~ Ix0! 2 f ~ Ix0! 2 0+5an

2 mk,2 xs,0
r tr @¹2f ~ Kw0,1!#%

G d
&& N~ E0s31,V !,
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where

V 5 F vp vpd

vpd vd
G5 3

xs,0
2r E$xs

2r s2~ Ix!6 Kw0%Rk
s21

E2$xs
2r 6 Kw0%h~ Kw0!

xs,0
2r E$s2~ Ix!6 Kw0%Rk

s21

E$xs
2r 6 Kw0%h~ Kw0!

xs,0
2r E$s2~ Ix!6 Kw0%Rk

s21

E$xs
2r 6 Kw0%h~ Kw0!

xs,0
2r E$xs

22r s2~ Ix!6 Kw0%Rk
s21

h~ Kw0!
4 +

Because the asymptotic bias ofJa ' Df does not depend uponJa, minimizing its
asymptoticmsereduces to minimizingJa 'V Ja+ It is straightforward to verify that
for any symmetric positive definite matrixPp3p,

P21 D1
D1'P21 D1

5 argmin
$ Jg[Rp : Jg ' D151%

Jg 'P Jg, (11)

where D1 denotes a conformable vector of ones+ Hence using~11!,

3
vd 2 vpd

vp 1 vd 2 2vpd

vp 2 vpd

vp 1 vd 2 2vpd

4 5 argmin
$ Ja[R2 : Ja ' D151%

Ja 'V Ja+

Therefore, the optimal linear combination ofZfproj~ Ix0! and Zfdir~ Ix0! is

[q 5
vd 2 vpd

vp 1 vd 2 2vpd

Zfproj~ Ix0! 1
vp 2 vpd

vp 1 vd 2 2vpd

Zfdir~ Ix0!+ (12)

In general, [q ~which is also homogeneous of degreer ! puts nonzero mass on
Zfproj~ Ix0! and Zfdir~ Ix0!+ However, if s~ Ix! is homogeneous of degree zero, then
vpd 5 vp and the entire mass is put on the projection estimator+ Similarly, if
s~ Ix! is homogeneous of degreer Þ 0, thenvpd 5 vd and all mass is put on the
direct estimator+ In practice, [q can be implemented by using a preliminary es-
timator of V+7

Finally, we construct estimators that are invariant to numeraire choice+ So let
I 5 $1 # i # s: xi is positive and bounded away from zero%, that is, I denotes
the set of all valid numeraire indices+ For i [ I, define Kwj ~i ! 5 ~x1, j 0xi, j , + + + ,
xi21, j 0xi , j , xi11, j 0xi , j , + + + , xs, j 0xi , j !, Iz0~ i ! 5 ~x1,00xi ,0, + + + , xi21,00xi ,0,1, xi11,00
xi,0, + + + , xs,00xi,0!, and Zfd~ Ix0; i ! 5 xi,0

r Zbd~ Kw0~i !!+ As in ~7!, we can show that

Mnan
s21$ Zfd~ Ix0; i ! 2 f ~ Ix0! 2 0+5an

2 mk,2 xi,0
r tr @¹2f ~ Iz0~i !!#%

5
xi,0

r

E$xi
2r d~ Ix!6 Kw0~i !%h~ Kw0~i !!

1

Mnan
s21

3 (
j51

n

«j xi, j
r KS Kwj ~i ! 2 Kw0~i !

an
Dd~ Ixj ! 1 op~1!+ (13)
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Notice that the choice of numeraire~in this case thei th component of Ix! influ-
ences the asymptotic bias in addition to the asymptotic variance ofZfd~ Ix0; i !+

Now let $di ~ Ix! : i [ I % be a collection of weight functions+ For conve-
nience, assume thatI has cardinalityT and let Ig, Ig0, and Im denoteT 3 1
vectors whosei th components~for i [ I ! are given by Zfdi

~ Ix0; i !, f ~ Ix0!, and
0+5l102mk,2 xi,0

r tr @¹2f ~ Iz0~i !!# , respectively+ We also let W be a T 3 T
diagonal matrix such that itsi th diagonal element is given by
xi,0

2r E$xi
2r s2~ Ix!di

2~ Ix!6 Kw0~i !%Rk
s210E2$xi

2r di ~ Ix!6 Kw0~i !%h~ Kw0~i !!, where i [ I+
Using ~13! and the Cramér–Wold device along with the fact thatnan

s13 r l,
we can show thatMnan

s21~ Ig 2 Ig0! d
&& N~ Im,W!+8 Next, let Ja be aT 3 1 vector

such that its components sum to one, that is, (i[I ai 5 1+ Then

Ja ' Ig 5 (
i[I

ai Zfdi
~ Ix0; i !

denotes a consistent estimator off ~ Ix0! that is invariant to numeraire choice+
Therefore, the invariant estimator that minimizes asymptoticmseis given by
[g 5 Ja*' Ig, where9

Ja* 5 argmin
$ Ja[RT : Ja ' D151%

Ja '~ Im Im' 1 W! Ja 5
~11! ~ Im Im' 1 W!21 D1

D1'~ Im Im' 1 W!21 D1
+

Here [g yields the optimal projection based invariant estimator on setting
di ~ Ix! 5 1 for all i [ I+ Similarly, the optimal direct invariant estimator is
obtained by settingdi ~ Ix! 5 xi

22r for i [ I+ Feasible versions can be imple-
mented by using preliminary estimators ofIm and W+ One final point: the di-
agonal nature ofW suggests that asymptotic variance can also be reduced by
constructing an estimator based on more than one numeraire+ However, be-
cause the asymptotic biasIm depends upon numeraire choice, such an estima-
tor is not guaranteed to show any improvement in terms of asymptoticmse+

7. CONCLUSION

In this paper we nonparametrically estimate a homogeneous of degreer condi-
tional mean function~ f ! using local linear estimators+ We compare a “projec-
tion based” estimator with a more conventional “direct” estimator+ Based on
our asymptotic results, we recommend the following guidelines when estimat-
ing f in practice+

~i! Whenf is homogeneous of degreer, use a homogeneity constrained estimator as
opposed to some unrestricted nonparametric estimator off+ The dimension re-
duction due to homogeneity allows the constrained estimators to possess faster
rates of convergence than the unrestricted estimator+

~ii ! Use the projection based approach ifs~ Ix! is homogeneous of degree zero+ This
includes the case when« is homoskedastic+

~iii ! Use the direct approach ifs~ Ix! is homogeneous of degreer Þ 0+
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Results of a small simulation experiment support these recommendations al-
though there does not seem to be a big difference in the averagemsefor the
two approaches in~ii ! and ~iii !, at least for the models used in our simulation+

If no prior information is available about the conditional variance function,
the best way to proceed may be to first estimate the conditional variance func-
tion and then do a weighted local linear regression+ In any case, a good empir-
ical practice is to report estimates off using the projection based, direct, and
also the unrestricted local linear estimator off+ A large discrepancy between
the reported results may indicate that the homogeneity restriction onf is per-
haps misspecified+ Based on the degree of divergence a formal test of this mis-
specification can be constructed following the approach of Härdle and Mammen
~1993!, although we do not pursue this issue in the current paper+

Finally, the reader should bear in mind that in this paper we have limited our
investigations to the case whenf is homogeneous of degreer+ But as men-
tioned earlier, in microeconomic theory homogeneity of functional forms is of-
ten accompanied by other shape restrictions such as monotonicity and concavity
~or convexity!+ An interesting topic for future research is to find new ways of
nonparametrically imposing these additional shape restrictions on functional
forms and determine the statistical properties of such shape restricted estimators+

NOTES

1+ Some well known examples are described earlier in Section 1+
2+ Hengartner and Linton~1996! show that though nonparametric estimators of conditional mean

functions remain asymptotically normal at points where the density of the conditioning variable is
zero, their rate of convergence slows down and the constants associated with the limiting distribu-
tion change+

3+ Here E0s31 denotes as 3 1 vector of zeros+
4+ For Model 2 whenn 5 100 andc 5 2+ However, a decomposition of the averagemsefor this

case revealed that although the average variance forZfdir was smaller than the average variance of
Zfproj, the average squared bias for the former was bigger than the average squared bias for the latter+

Therefore, although the ranking with respect to the variances is preserved according to our theory,
the average bias differs for the two models+ Hence, in this case the higher average bias ofZfdir

caused the ranking to change+
5+ To see this, replaceK~~ Kwj 2 Kw0!0an! in the proof of Lemma 3+1 by K~~ Kwj 2 Kw0!0an!d~ Ixj !+
6+ Jones~1993! obtains a similar result for the asymptotic variance of ad-weighted Nadaraya–

Watson~i+e+, locally constant! estimator+ However, his results also show that the asymptotic bias of
the weighted Nadaraya–Watson estimator does depend upond+ As we have just shown, this does
not hold for local linear estimators+

7+ The optimal Ja in ~12! depends upon the evaluation pointIx0+ This dependence can be elimi-
nated by minimizing Ja '~* Ix0[S Ix V d Ix0! Ja, the integrated version ofJa 'V Ja+ Hence the optimal linear
combination that minimizes integrated asymptoticmseis given by

E
S Ix

~vd 2 vpd!d Ix0

E
S Ix

~vp 1 vd 2 2vpd!d Ix0

Zfproj~ Ix0! 1

E
S Ix

~vp 2 vpd!d Ix0

E
S Ix

~vp 1 vd 2 2vpd!d Ix0

Zfdir~ Ix0!+

Numerical integration can be used to construct the feasible weights+
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8+ Because Zbdi
~ Kw0~i !! and Zbdl

~ Kw0~l !! are evaluated at different points wheni Þ l, the asymp-
totic covariance betweenZfdi

~ Ix0; i ! and Zfdl
~ Ix0; l ! is zero fori Þ l+ Hence the asymptotic variance-

covariance matrixW is diagonal+
9+ Notice that Ja* depends uponIx0+ The optimal Ja that minimizes integrated asymptoticmse~and

hence does not depend uponIx0! is given by$*S Ix~ Im Im
' 1 W!d Ix0%21 D10 D1'$*S Ix~ Im Im

' 1 W!d Ix0%21 D1+
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APPENDIX A: TECHNICAL DETAILS—
LOCAL LINEAR ESTIMATORS

Proof of Lemma 3.1. ~The referee has pointed out that Lemmas 3+1 and 3+2 are
special cases of Theorem 2 in Gozalo and Linton~2000!+ However, as some readers
may find it instructive to see a direct proof, we provide one+! Throughout this proof let
Q 5 diags3s@1,an, + + + ,an# and V 5 diagn3n@K~~ Kw1 2 Kw0!0an!, + + + ,K~~ Kwn 2 Kw0!0an!# +
Furthermore, we also define

Zu~ Kw0! 5 3
Zu0~ Kw0!

Zu1~ Kw0!

I

Zus21~ Kw0!
4 5 F Zbp~ Kw0!

Z¹bp~ Kw0!Gs31

, Z 5 3
xs,1

r xs,1
r S Kw1

' 2 Kw0
'

an
D

I I

xs,n
r xs,n

r S Kwn
' 2 Kw0

'

an
D4

n3s

,

and Iy 5 ~ y1, + + + , yn!+ Using this notation, it is straightforward to see thatZu~ Kw0! is the
solution to the following weighted least squares problem:

min
Db[Rs

~ Iy 2 ZQ Db!'V~ Iy 2 ZQ Db!+

As is well known, the solution to this problem is given by

Zu~ Kw0! 5 Q21~Z 'VZ!21Z 'V Iy+

Let us write Zu~ Kw0! 5 Q21S21 *t, where S 5 ~10nan
s21!Z 'VZ and *t 5 ~10nan

s21!Z 'V Iy+
Straightforward calculations show that we can writeS as the partitioned matrixS 5

Fs00 s01
'

s01 s11
G, wheres00 5 ~10nan

s21!(j51
n xs, j

2r K~ Kwj 2 Kw00an!,

s01 5
1

nan
s21 (

j51

n

xs, j
2rS Kwj 2 Kw0

an
DKS Kwj 2 Kw0

an
D, and

s11 5
1

nan
s21 (

j51

n

xs, j
2rS Kwj 2 Kw0

an
DS Kwj

'2 Kw0
'

an
DKS Kwj 2 Kw0

an
D+

Similarly, we write *t 5 Ft0
t1
G, wheret0 5 ~10nan

s21!(j51
n yj xs, j

r K~~ Kwj 2 Kw0!0an! andt1 5

10nan
s21 (j51

n yj xs, j
r ~~ Kwj 2 Kw0!0an!K~~ Kwj 2 Kw0!0an!+ But becauseyj 5 xs, j

r f ~ Kwj ,1! 1 «j ,
we can express*t 5 It 1 *t *, where
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It 5
1

nan
s21 Ft0

t1
G5

1

nan
s21 3 (

j51

n

«j xs, j
r KS Kwj 2 Kw0

an
D

(
j51

n

«j xs, j
r S Kwj 2 Kw0

an
DKS Kwj 2 Kw0

an
D4 and

*t * 5
1

nan
s21 3 (

j51

n

xs, j
2r f ~ Kwj ,1!KS Kwj 2 Kw0

an
D

(
j51

n

xs, j
2r f ~ Kwj ,1!S Kwj 2 Kw0

an
DKS Kwj 2 Kw0

an
D4 + (A.1)

Hence lettingu~ Kw0! 5 F f ~ Kw0,1!

¹f ~ Kw0,1!G, we have that

Zu~ Kw0! 2 u~ Kw0! 5 Q21S21 It 1 Q21S21 *t * 2 u~ Kw0!+ (A.2)

Let us first look atQ21S21 *t * 2 u~ Kw0!+ For all Kwj in anan-neighborhood of Kw0, Tay-
lor expandf ~ Kwj ,1! aroundf ~ Kw0,1! to get

f ~ Kwj ,1! 5 f ~ Kw0,1! 1 anS Kwj 2 Kw0

an
D'¹f ~ Kw0,1!

1
an

2

2 S Kwj 2 Kw0

an
D'¹2f ~ Kw0,1!S Kwj 2 Kw0

an
D1 o~an

2!+

But this implies that *t * reduces to

*t * 5 SQu~ Kw0! 1
an

2

2
Ic 1 3

op~an
2!

I

op~an
2!
4

s31

, where

Ic 5 3
1

nan
s21 (

j51

n

xs, j
2rS Kwj 2 Kw0

an
D'¹2f ~ Kw0,1!S Kwj 2 Kw0

an
DKS Kwj 2 Kw0

an
D

1

nan
s21 (

j51

n

xs, j
2rS Kwj 2 Kw0

an
D'¹2f ~ Kw0,1!S Kwj 2 Kw0

an
DKS Kwj 2 Kw0

an
DS Kwj 2 Kw0

an
D4 +

Because it is easy to verify that

S
p
&& FE~xs

2r 6 Kw0!h~ Kw0! E0~s21!31
'

E0~s21!31 mk,2E~xs
2r 6 Kw0!h~ Kw0! Is21

G , (A.3)
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whereIs21 denotes the~s 2 1! 3 ~s 2 1! identity matrix, we get that

Q21S21 *t * 2 u~ Kw0! 5
an

2

2
Q21S21 Ic 1 3

op~an
2!

op~an!

I

op~an!
4

s31

+

Let us further simplify the right-hand side of this equation+ To do so, first use a law of
large numbers to show that

Ic p
&& E~xs

2r 6 Kw0!h~ Kw0! 3
vec'~mk,2 Is21!

E
SK
IuK~ Iu!vec'~ Iu Iu' ! d Iu4 vec~¹2f ~ Kw0,1!! (A.4)

Next, using~A+3!, ~A+4!, and a little matrix manipulation,

an
2

2
Q21S21 Ic 5 3

an
2

2
mk,2 tr$¹2f ~ Kw0,1!%

an

2mk,2
E

SK
IuK~ Iu! Iu'¹2f ~ Kw0,1! Iu d Iu4 1 3

op~an
2!

op~an!

I

op~an!
4

s31

+

Thus letting Hbias5 F ~an
202!mk,2 tr$¹2f ~ Kw0,1!%

~an02mk,2!*SK IuK~ Iu! Iu'¹2f ~ Kw0,1! Iu d IuG , ~A+2! reduces to

Zu~ Kw0! 2 u~ Kw0! 2 Hbias5 Q21S21 It 1 3
op~an

2!

op~an!

I

op~an!
4

s31

+ (A.5)

Now we show thatS21 It is asymptotically normal+ A straightforward application of
the Lindeberg–Lyapunov central limit theorem for triangular arrays and the Cramér–
Wold device reveals that under Assumption 2+1~v!

Mnan
s21 It d

&& N~ E0s31,KE~«2xs
2r 6 Kw0!h~ Kw0!!, (A.6)

where

K 5 3 ESK
K2~ Iu! d Iu E0~s21!31

'

E0~s21!31 E
SK
Iu Iu'K2~ Iu! d Iu4

s3s

+
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Thus by~A+1!, ~A+3!, ~A+6!, and Slutsky,

Mnan
s21S21 It 5

1

E~xs
2r 6 Kw0!h~ Kw0!Mnan

s21 3
t0

t1

mk,2
4 1 3

op~1!

I

op~1!
4

s31

d
&& N~ E0s31,Sp!+

Finally, premultiplying both sides of~A+5! by Mnan
s21Q and using the fact that the se-

quencenan
s13 is bounded, we have

Mnan
s21Q$ Zu~ Kw0! 2 u~ Kw0! 2 Hbias%

5
1

E~xs
2r 6 Kw0!h~ Kw0!Mnan

s21 3
t0

t1

mk,2
4 1 3

op~1!

I

op~1!
4

s31

(A.7)

Therefore, it follows that

Mnan
s21Q$ Zu~ Kw0! 2 u~ Kw0! 2 Hbias% d

&& N~ E0s31,Sp!+

But this is the desired result+ n

Proof of Lemma 3.2 In the proof of Lemma 3+1, replacexs, j
r by 1, yj by yj 0xs, j

r , and
«j by «j 0xs, j

r + n

APPENDIX B: TECHNICAL DETAILS—
KERNEL ESTIMATORS

The following results are essentially an exercise in using the delta method+ For exam-
ples on the use of the delta method or linearization techniques in nonparametric regres-
sion, see Schuster~1972! and Härdle~1989!+

LEMMA B +1+ var$ Xfproj~ Ix0!% 5° ~Rk
s210nan

s21!~xs,0
2r E~xs

2r «2 6 Kw0!0E2~xs
2r 6 Kw0!h~ Kw0!!+

Proof of Lemma B.1. Observe that we can writeXfproj~ Ix0! 5 XA~ Ix0!0 XB~ Ix0! andf ~ Ix0! 5
A~ Ix0!0B~ Ix0!, where

XA~ Ix0! 5
xs,0

r

nan
s21 (

j51

n

yj xs, j
r KS Kw0 2 Kwj

an
D, A~ Ix0! 5 xs,0

r E~ yxs
r 6 Kw0!h~ Kw0!,

XB~ Ix0! 5
1

nan
s21 (

j51

n

xs, j
2r KS Kw0 2 Kwj

an
D, and B~ Ix0! 5 E~xs

2r 6 Kw!h~ Kw0!+
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Then by a Taylor expansion~Assumptions 2+1~iii ! and ~iv! ensure that the remainder
terms in this Taylor expansion are well behaved; we avoid introducing any explicit re-
mainder terms in this analysis as they do not affect the outcome of the paper!,

Xfproj~ Ix0! 2 E Xfproj~ Ix0! 5°
1

B~ Ix0!
$ XA~ Ix0! 2 E XA~ Ix0!% 2

f ~ Ix0!

B~ Ix0!
$ XB~ Ix0! 2 E XB~ Ix0!%+

Therefore,

var$ Xfproj~ Ix0!% 5
1

B2~ Ix0!
var$ XA~ Ix0!% 1

f 2~ Ix0!

B2~ Ix0!
var$ XB~ Ix0!%

2 2
f ~ Ix0!

B2~ Ix0!
cov$ XA~ Ix0!, XB~ Ix0!%+ (B.1)

Recall that Kw0 lies in the interior of S Kw and that the mapsE~ yxs
r 6 Kw!h~ Kw!,

E~ y2xs
2r 6 Kw!h~ Kw!, and E~ yxs

3r 6 Kw!h~ Kw! are twice continuously differentiable atKw0+
By the usual change of variables, we can show that for large enoughn

var$ XA~ Ix0!% 5°
Rk

s21

nan
s21 xs,0

2r E~ y2xs
2r 6 Kw0!h~ Kw0!,

var$ XB~ Ix0!% 5°
Rk

s21

nan
s21 E~xs

4r 6 Kw0!h~ Kw0!, and

cov$ XA~ Ix0!, XB~ Ix0!% 5°
Rk

s21

nan
s21 xs,0

r E~ yxs
3r 6 Kw0!h~ Kw0!+

Therefore, substituting these results in equation~B+1! and using the fact thatf ~ Ix0! 5
xs,0

r f ~ Kw0,1!, a little algebra shows that

var$ Xfproj~ Ix0!% 5°
Rk

s21

nan
s21

xs,0
2r

E2~xs
2r 6 Kw0!h~ Kw0!

$E~ y2xs
2r 6 Kw0! 1 E~xs,0

2r f 2~ Ix!6 Kw0!

2 2E~ yxs
2r f ~ Ix!6 Kw0!%

5
Rk

s21

nan
s21

xs,0
2r E~xs

2r $ y 2 f ~ Ix!%2 6 Kw0!

E2~xs
2r 6 Kw0!h~ Kw0!

5
Rk

s21

nan
s21

xs,0
2r E~xs

2r «2 6 Kw0!

E2~xs
2r 6 Kw0!h~ Kw0!

+ n

LEMMA B +2 var$ Xfdir~ Ix0!% 5° ~Rk
s210nan

s21!@xs,0
2r E~xs

22r «2 6 Kw0!0h~ Kw0!# +

Proof of Lemma B.2. Similar to the proof of Lemma B+1+
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LEMMA B +3+

bias$ Xfproj~ Ix0!% 5° 0+5an
2 mk,2 xs,0

r trH ]2f ~ Kw0,1!

] Kw] Kw' #
1

2

E~xs
2r 6 Kw0!h~ Kw0!

3
]f ~ Kw0,1!

] Kw
]@E~xs

2r 6 Kw0!h~ Kw0!

] Kw' J +
Proof of Lemma B.3. By a Taylor expansion,

E Xfproj~ Ix0! 2 f ~ Ix0! 5°
1

B~ Ix0!
$E XA~ Ix0! 2 A~ Ix0!% 2

f ~ Ix0!

B~ Ix0!
$E XB~ Ix0! 2 B~ Ix0!%+

But as Kw0 [ int~S Kw! andE~ yxs
r 6 Kw!h~ Kw!, E~xs

2r 6 Kw!h~ Kw! are twice continuously differ-
entiable at Kw0, a change of variables yields that

E XA~ Ix0! 2 A~ Ix0! 5° 0+5an
2xs,0

r E
SK
Iu'

]2$E~ yxs
r 6 Kw0!h~ Kw0!%

] Kw] Kw'
IuK~ Iu! d Iu and

E XB~ Ix0! 2 B~ Ix0! 5° 0+5an
2E

SK
Iu'

]2$E~xs
2r 6 Kw0!h~ Kw0!%

] Kw] Kw'
IuK~ Iu! d Iu

for large enoughn+ Because it is easy to see that for anyh

E
SK
Iu'

]2h~ Kw!

] Kw] Kw'
IuK~ Iu! d Iu 5 mk,2 trH ]2h~ Kw!

] Kw] Kw' J ,
the expressions for the bias ofXA and XB reduce to

E XA~ Ix0! 2 A~ Ix0! 5° 0+5an
2xs,0

r mk,2 trH ]2 @E~ yxs
r 6 Kw0!h~ Kw0!#

] Kw] Kw' J and

E XB~ Ix0! 2 B~ Ix0! 5° 0+5an
2 mk,2 trH ]2 @E~xs

2r 6 Kw0!h~ Kw0!#

] Kw] Kw' J +
Some algebra, and the fact thatf ~ Ix0! 5 xs,0

r f ~ Kw0,1!, now leads to the desired result+
n

LEMMA B +4+

bias$ Xfdir~ Ix0!% 5° 0+5an
2 mk,2 xs,0

r trH ]2f ~ Kw0,1!

] Kw] Kw'
1

2

h~ Kw0!

]f ~ Kw0,1!

] Kw
]h~ Kw0!

] Kw' J +
Proof of Lemma B.4. Similar to the proof of Lemma B+3+
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