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Abstract
Conformal field theory (CFT) plays a key role in modern theoretical physics, with appli-
cations in string theory, condensed matter, statistical mechanics, and pure mathematics as
well. Through CFT we describe real physical systems at criticality and fixed points of the
renormalization group flow. It is also central in the study of quantum gravity, thanks to the
AdS/CFT correspondence. This thesis originates in the context of the N = 4 supersym-
metric Yang-Mills (SYM) theory, which represents the CFT side of this correspondence.
N = 4 SYM has been widely studied in the last years, being the simplest interacting

CFT in four dimensions, thanks to its rich pool of symmetries. Interesting extended oper-
ators live in N = 4 SYM. This work mainly revolves around the supersymmetric Wilson
line and its interpretation as a conformal defect. Particularly, we focus on excitations local-
ized on the defect called insertions, whose correlators are described by a one-dimensional
CFT. This 1d theory is an exceptional holographic laboratory to study conformal correla-
tors due to the ample interplay of different techniques to evaluate them, such as bootstrap,
supersymmetric localization, and integrability.

After introducing the technical background, we dive into the first main result: an effi-
cient algorithm for computing multipoint correlation functions of scalar insertions on the
Wilson line. This algorithm consists of recursion relations encoding the possible interactions
between operators of elementary scalar fields up to next-to-leading order at weak coupling.
We show various computations of such four-, five- and six-point correlators, and discuss
their properties. Moreover, we use the four-point function case to illustrate the power of
the Ward identities, which are crucial in deriving a next-to-next-to-leading order result.

The four-point Ward identities also set the stage for a conjecture. Thanks to the cornu-
copia of perturbative correlators obtained through the recursive formulae, we find a family
of differential operators annihilating our correlation functions, which we hypothesize to be
a multipoint extension of the Ward identities satisfied by the four-point functions. These
non-perturbative constraints are shown to be fundamental ingredients in the bootstrap of
a five-point function at strong coupling.

We conclude this thesis with a wider look at 1d CFTs in general. We explore another
tool to represent 1d correlators: the Mellin representation. In the higher-dimensional case,
the Mellin representation of conformal correlators has proven to be an excellent tool for
the study of holographic CFTs. Therefore, we define an inherently one-dimensional Mellin
amplitude, which can be defined at the non-perturbative level with appropriate subtractions
and analytical continuations. This definition allows us to derive an infinite set of non-
perturbative sum rules whose characteristics are discussed in detail, and applications are
sketched. The efficiency of the 1dMellin formalism is manifest at the perturbative level. We
find a closed-form expression for the Mellin transform of leading order contact interactions
and use it to extract CFT data.





Zusammenfassung
Konforme Feldtheorien (CFT) spielen eine Schlüsselrolle in der modernen theoretischen
Physik, mit Anwendungen in der Stringtheorie, der kondensierten Materie, der statistischen
Mechanik und auch in der reinen Mathematik. Mit CFT beschreibt man reale physikalis-
che Systeme bei Kritikalität und Fixpunkte des Renormierungsgruppenflusses. Dank der
AdS/CFT-Korrespondenz spielt sie auch bei der Untersuchung der Quantengravitation eine
zentrale Rolle. Diese Arbeit hat ihren Ursprung im Kontext der N = 4 supersymmetrischen
Yang-Mills-Theorie (SYM), welche die CFT-Seite dieser Korrespondenz darstellt.
N = 4 SYM wurde in den letzten Jahren ausgiebig untersucht, da sie, dank ihrer vie-

len Symmetrien, die einfachste wechselwirkende CFT in vier Dimensionen ist. In N = 4
SYM existieren interessante nicht lokale Operatoren. Diese Arbeit dreht sich hauptsäch-
lich um die supersymmetrische Wilson-Linie und ihre Interpretation als konformer Defekt.
Insbesondere konzentrieren wir uns auf Anregungen, die auf dem Defekt lokalisiert sind,
sogenannte Einfügungen, deren Korrelatoren durch eine eindimensionale CFT beschrieben
werden. Diese 1d-Theorie ist ein außergewöhnliches holographisches Laboratorium, um
konforme Korrelatoren zu studieren, da sie ein reichhaltiges Zusammenspiel verschiedener
Techniken zu ihrer Auswertung bietet, wie Bootstrap, supersymmetrische Lokalisierung und
Integrabilität.

Nach einer Einführung in den technischen Hintergrund wird das erste Hauptergeb-
nis präsentiert: Ein effizienter Algorithmus zur Berechnung von Mehrpunkt Korrelations-
funktionen von Skalareinfügungen auf der Wilson-Linie. Dieser Algorithmus besteht aus
Rekursionsbeziehungen, welche die möglichen Wechselwirkungen zwischen Operatoren ele-
mentarer Skalarfelder bis zur nächsten Ordnung bei schwacher Kopplung kodieren. Es wer-
den verschiedene Berechnungen solcher Vier-, Fünf- und Sechspunkt-Korrelatoren gezeigt
und ihre Eigenschaften diskutiert. Darüber hinaus wird am Beispiel der Vierpunkt-Funktion
die Leistungsfähigkeit der Ward-Identitäten veranschaulicht, die für die Ableitung eines
Ergebnisses nächster, vorletzter und führender Ordnung entscheidend sind.

Die Vierpunkt-Ward-Identitäten bilden auch die Grundlage für eine Vermutung. Dank
der Fülle von Störungskorrelatoren, die durch die Rekursionsformeln erhalten wurden, findet
man eine Familie von Differentialoperatoren. Diese vernichten die Korrelationsfunktionen
und es wird angenommen, dass sie eine Mehrpunkt-Erweiterung der Ward-Identitäten sind,
die durch die Vierpunkt-Funktion erfüllt wird. Diese nichtperturbativen Beschränkungen
erweisen sich als fundamentale Bestandteile des Bootstraps einer Fünfpunkt-Funktion bei
starker Kopplung.

Abschließend wird der Blick auf 1d-CFTs im Allgemeinen gerichtet. Untersucht wird
ein weiteres Werkzeug zur Darstellung von 1d-Korrelatoren: die Mellin-Darstellung. Im
höherdimensionalen Fall hat sich die Mellin-Darstellung von konformen Korrelatoren als
hervorragendes Werkzeug für die Untersuchung von holographischen CFTs erwiesen. Daher
definiert man eine inhärent eindimensionale Mellin-Amplitude, die auf der nichtperturba-
tiven Ebene mit geeigneten Subtraktionen und analytischen Fortsetzungen definiert werden
kann. Diese Definition erlaubt es, einen unendlichen Satz von nichtperturbativen Sum-
menregeln abzuleiten, deren Eigenschaften im Detail diskutiert und deren Anwendungen
skizziert werden. Die Effizienz des 1d-Mellin-Formalismus zeigt sich auf der perturbativen
Ebene. Man findet einen Ausdruck in geschlossener Form für die Mellin-Transformation
von Kontaktwechselwirkungen führender Ordnung, den man verwendet, um CFT-Daten zu
extrahieren.
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CHAPTER 1

Motivation and Main Results

1.1 Why Do We Care About Conformal Field Theory?
The modern theoretical framework to describe our physical world is called Quantum Field Theory
(QFT), and it developed as a fusion of three different precursors: classical field theory, special
relativity, and quantum mechanics. In this paradigm, particles are intended as excitations of more
fundamental structures, namely quantum fields. The interactions between particles are encoded in
a particular functional called Lagrangian, where these fields appear. Throughout the past century,
this fruitful paradigm has given deeper insights into the physical world, and many different branches
of research streamed from it.

In particular, there is one that is quite central in this paradigm: Conformal Field Theory (CFT).
With CFT, we mean a quantum theory invariant under conformal transformations, which are maps
preserving angles, such as rotations, translations, etc. Conformal field theory is ubiquitous in modern
theoretical physics, and for this reason, it has been one of the most active areas of research in the
last decades. In particular, it has relevant applications in string theory, condensed matter, and
statistical mechanics, and it has been inspirational for some development in pure mathematics as
well.

To understand its importance, we first need to point out that conformal field theory plays a
central role in describing phase transitions. In general, we can say that when a system changes
its properties, often discontinuously, as a result of a modification of the external thermodynamical
quantities, we have a phase transition. We can also classify them based on their characteristics.
When the temperature remains constant even if heat is added to the system, we call them first-
order or discontinuous phase transitions. On the other hand, there are second-order or continuous
phase transitions, where the free energy is continuous across the transition. Examples of this type
are the ferromagnetic, superconducting, and superfluid transitions.

Alongside the concept of phase transition is necessary to consider also the notion of critical
point, which is the endpoint of a phase equilibrium curve. Most notably, the example of the liquid-
vapor critical point, the end point of the pressure-temperature curve where liquid and vapor can
coexist. At these points, we can study critical phenomena, namely phenomena associated with
continuous phase transitions. Interestingly, we can characterize them with parameters known as
critical exponents.

One can finally ask what this has to do with CFT. It turns out that CFT can be used to study the
behavior of systems at the critical point. In some cases, this formalism even allows one to solve some
models exactly. The most prominent example is the Ising model, the simplest theoretical description
of ferromagnetism. This model undergoes a phase transition, and at the critical point, it is described
by a two-dimensional conformal field theory, which has been exactly solved [6]. That is not true for
the three-dimensional case, even if it is well-understood at a very high numerical precision. Both
instances point to a remarkable phenomenon called universality, namely when completely different
systems can be described by the same critical exponents, e.g. the critical exponents of the 3d Ising

1
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model coincide in value with the ones found for a liquid/gas transition. This suggests that the
behavior of a system near a critical point depends on the dimension and the symmetries rather than
on the underlying dynamics.

Another related aspect that motivates the study of CFT is the renormalization group flow. The
renormalization group allows us to systematically investigate the changes in a physical system at
different distances or energy/momentum scales. The running of the parameters, like the couplings,
of a certain model induced by a change of scale leads to what is called renormalization group flow.
This tool is powerful and useful in understanding how the system behaves at very long (IR) and
very short (UV) distances. In addition, we know that the theories flow to a so-called fixed point,
where they are scale-invariant, and their couplings become dimensionless. Excluding rare examples,
a quantum field theory that is scale-invariant is also conformally invariant. Therefore, every local
quantum field theory approaches a CFT in the large- and small-distance limits.

Last but not least, CFT plays a key role in the study of quantum gravity through the AdS/CFT
correspondence, a duality stating the equivalence of type IIB superstring theory in AdS5× S5 back-
ground and four-dimensional N = 4 supersymmetric Yang-Mills (SYM) theory [7–9]. The great
success of this conjecture is addressing, in a unified framework, two of the most relevant open prob-
lems in theoretical physics: quantum gravity and strongly-coupled QFTs. In quantum field theory,
one typically computes the probabilities of various physical events using the technique of pertur-
bation theory, an expansion of the solution as a power series of a small parameter. The regime
in which we can apply this technique is called weak coupling because this expansion is performed
around small values of the coupling of a theory. Opposed to this, we have a strong coupling regime.
The AdS/CFT correspondence bridges these two realms, allowing to use perturbative methods to
probe strong coupling regimes. Performing perturbative computations in a CFT allows ideally to
develop a non-perturbative formulation of string theory and vice versa.

1.2 Realm of Research and Main Results
The research work presented in this thesis originates in the context of the AdS/CFT correspondence,
with a particular focus on the CFT side of this duality. N = 4 SYM is considered to be the simplest
interacting non-abelian gauge field theory in four dimensions, especially thanks to its rich pool of
symmetries. It is conformal, maximally supersymmetric, and it is believed to be integrable in the
planar limit. Therefore, it has been at the crossroad of various techniques in the past decades.

In this context, alongside local operators, i.e. local product of fields, their spacetime derivatives,
and their correlation functions, we can study extended operators, which are non-local. An important
non-local observable is the Wilson loop, describing the coupling between a heavy (probe) particle
and the gauge field of the theory. In N = 4 SYM, one may consider supersymmetric extensions
of this operator, known as Maldacena-Wilson loop operators. In particular, one can also study the
configuration of an infinite straight line [7, 10]:

W` := 1
N

trP exp
ˆ +∞

−∞
dτ
(
iẋµ(τ)Aµ(x) + |ẋ(τ)|φ6(x)

)
,

with Aµ(x) the gauge fields, φi(x) the adjoint scalar fields N = 4 SYM and N the rank of the gauge
group. In recent years, there has been a renewal interest in this operator and its circular brother
from the point of view of conformal defects due to a revival of the conformal bootstrap program. We
refer generically to defects as extended p-dimensional operators placed in a d dimensional Euclidean
space. Defects break the original symmetries of a CFT. In particular, for the conformal group
SO(d + 1, 1) we have that SO(d + 1, 1) → SO(p + 1, 1) × SO(q), with p + q = d being q the co-
dimension of the defect. Defects are an interesting frontier in the study of CFTs since they enrich a
system’s dynamic by probing new physics. Moreover, they bring us closer to the study of concrete
setups, as every real physical system contains impurities.

There exist several interesting configurations that can be studied in this setup. In this work,
we focus on excitations localized on the defect itself, for which the correlators are described by a
1d (non-local) CFT. Such defect makes the theory simpler to study compared to its parent theory
N = 4 SYM, but not trivial since the interactions among these defect fields happen in the bulk
of this theory, which is four-dimensional. Moreover, the defect theory inherits some properties
and symmetries from its parent theory N = 4 SYM, which allows to study it using the same rich
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interplay of various techniques, from supersymmetric localization [11–13] and integrability [14–20],
to the numerical/analytical bootstrap [21, 22] and the large charge limit [23–25]. This also makes
it a perfect laboratory to test novel techniques, with the ultimate goal to transfer the know-how to
higher-dimensional theories.

Interestingly this setup, on the strong coupling side, corresponds to a particular gauge fixing
of the non-linear sigma model describing the motion of a string in AdS5× S5 [26–28]. However,
in this context, the gauge fixing provides a worldsheet effective field theory in AdS2 background.
This AdS2/CFT1 correspondence of the open string/Wilson line can be viewed as an example of
“non-gravitational” or “rigid” holography [29]. At zero string coupling and in the limit of large
string tension, the worldsheet decouples from closed string modes in the bulk, and its fluctuations
are suppressed. If one works in static gauge, the worldsheet theory does not contain a dynamical
metric and shares many similarities with QFTs in non-dynamical AdS2.

NNLO Four-Point Function
Even if two- and three-point functions carry non-trivial information about a CFT, namely the CFT
data, their kinematics is trivial, as they are fixed by conformal symmetry up to normalization. That
is not the case for four-point functions. For this reason, four-point functions in this 1d CFT have
been studied extensively both at weak [16, 19] and strong [21, 22, 27] coupling. There is also an exact
topological limit that has been studied using localization [30–32]. In addition, numerical results have
been obtained for arbitrary coupling using a mix of integrability and bootstrap techniques [19].

We also contribute to this line of work by computing the next-to-next-to-leading order of the
simplest four-point correlator at weak coupling, where the ’t Hooft coupling λ := g2N is the pa-
rameter of the perturbative expansion. Our calculation is made possible by the application of the
Ward identity annihilating this correlator. This differential operator constraints the correlator to
such an extent that we can trade the computation of a huge number of complicated Feynman dia-
grams with a handful of simple ones. This ultimately allows us to retrieve the full expression of this
correlator. This result has also been obtained in [19] with a novel technique, combining bootstrap
and integrability. Our derivation offers then an important check of this new method too.

Multipoint Correlators and Ward Identities
The next interesting objects to study after four-point functions are obviously higher-point correla-
tors. However, there has not yet been a broad study of multipoint correlators on the Wilson line
defect CFT, which in general is also lacking in N = 4 SYM, with the exception of some remarkable
work done in [33, 34]. The study of multipoint correlators is essential if we want to embark on the
quest to solve exactly the theory living on the Wilson line defect (and similar CFTs).

More generally, higher-point functions have been one of the long-term goals of the bootstrap
program for CFTs. They could work as a testing ground for multipoint bootstrap techniques.
However, they are also interesting in their own right, as they contain an infinite amount of CFT
data, which includes both protected operators, i.e. operators whose scaling dimension does not
acquire quantum corrections, and unprotected ones. Moreover, higher-point correlators of simple
operators also hold information about lower-point functions of very complicated operators.

For this reason, in this thesis, we explore multipoint correlators in the large N limit and in
the weak coupling regime. In particular, we derive explicit recursion relations that encode next-
to-leading order correlators with an arbitrary number of fundamental scalar fields inserted on the
Wilson line. By pinching fundamental scalars together, we also build operators of higher length1.
This algorithmic procedure is not limited to protected operators as it includes unprotected ones. Our
result then encompasses arbitrary n-point correlators of arbitrary operators made out of fundamental
scalar fields.

Remarkably, we observe that a special class of differential operators annihilates all the correla-
tors of protected operators. We conjecture these constraints to be valid non-perturbatively and to be
extensions of the superconformal Ward identities satisfied by the four-point functions. We also ex-
pand correlators of protected and unprotected operators in conformal blocks to perform consistency
checks and extract new CFT data. Additionally, we pave the way to the bootstrap of the simplest

1Throughout this thesis, we use length as a synonym for scaling dimension.
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five-point function of protected operators at strong coupling by deriving the superconformal blocks
using the power of the conjectured Ward identities.

Mellin Transform
We could say that the results sketched up to this point are, in one way or another, contributing or,
more generally, connecting to the research area of conformal bootstrap. However, as we mentioned,
1d CFTs, as the Wilson line we have just looked at in N = 4 SYM but also in N = 6 super
Chern-Simons theory with matter (ABJM) [35], are extremely interesting from the point of view
of integrability too, as they are believed to be integrable. A lot of remarkable work has been done
exploiting this property, for example, to derive the spectrum of the defect theory exactly [15, 17, 18].
However, it is still an interesting open question how the power of integrability can be exploited in
this setting.

More generally, the study of integrable field theories in curved backgrounds is an active and
largely unexplored research subject, which has recently witnessed some interesting developments
[36–39]. It has been pointed out that, e.g. [27, 40], a crucial ingredient for our understanding of
integrability in curved space would be the analog of flat space S-matrix factorization, and we believe
Mellin space may provide the correct setting to look for such a feature.

More in general, the Mellin representation of conformal correlators [41, 42] has proven to be an
excellent tool, especially for the study of holographic CFTs [43–45] in the higher-dimensional case.
The number of independent cross-ratios for a n-point correlation function of local operators in a
d-dimensional CFT is identical to that of independent variables for a d + 1-dimensional scattering
amplitude. The Mellin representation, or Mellin amplitude, makes this correspondence manifest,
expressing the correlators in a form that is the natural AdS counterpart of flat-space scattering
amplitudes. This form has several nice features too. First, the Mellin amplitude has simple poles
located at the values of the twist of exchanged operators (there are, however, infinitely many ac-
cumulation points of such poles). Secondly, the crossing symmetry of the correlator maps to the
amplitude crossing symmetry. Finally, the language of Mellin amplitudes is particularly suitable for
large N gauge theories, where perturbation theory is described in terms of Witten diagrams.

In this thesis, we use these properties as guiding principles for the definition of an inherently
one-dimensional Mellin transform for 1d four-point correlators. We also discuss the finite number
of subtractions and the analytic continuations necessary to get a fully non-perturbative definition
of this transform. This tool is then used to derive an infinite set of non-perturbative sum rules for
CFT data of exchanged operators, which is tested on known examples. This formalism is finally
applied to a perturbative setup with quadratic interactions and an arbitrary number of derivatives
in a bulk AdS2 field theory to obtain a closed-form expression for the Mellin transform of leading
order contact interactions and for the first correction to the scaling dimension of the “two-particles”
operators exchanged in the generalized free field theory correlator.

1.3 Outline
This thesis is divided into three parts. In the first part we briefly introduce the technical building
blocks necessary to clearly present the research results. These are gathered in the second part, while
all the appendices are collected in the last part.

More in detail, the first part is structured as follows. Chapter 2 includes the basics of confor-
mal symmetry, including the representation of the conformal algebra, the definition of correlation
functions, the operator product expansion, and a short introduction to the philosophy behind con-
formal bootstrap. Chapter 3 introduces supersymmetry and promotes the conformal algebra to a
superconformal algebra. It also features the N = 4 SYM theory with details on its action, the
planar limit, and the Feynman rules. The main character of Chapter 4 is the Maldacena-Wilson
line. Its nature of conformal defect is there explained, as for the 1d theory defined on the line with
its correlators and insertion rules. Chapter 5 concludes the first part with an introduction to the
higher-dimensional Mellin formalism and its role in holographic CFTs.

The second part contains all the novel research results, starting from the recursion relations for
both protected and unprotected operators in Chapter 6, moving to the applications in the following
chapters. Chapter 7 focuses on the study of two- and three-point functions of protected, unprotected,
and composite operators, which give important checks and are useful to set conventions for the rest
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of the work. In Chapter 8, we explore four-point functions, not only using the recursion relations
but also a Ward identity, which allows us to greatly reduce the computational complexity of the
next-to-next-to-leading order of the simplest four-point correlator. In Chapter 9, all this technology
is finally applied to higher-point correlators. There an extension of the Ward identity for four-point
correlators is conjectured for multipoint correlation functions. The ingredients for a bootstrap of
a five-point function are also set, and the bootstrap algorithm is put into action. The last chapter
of this part, Chapter 10, explores instead another representation of correlators in generic 1d CFTs
through the development of an inherently one-dimensional Mellin formalism. Finally, Chapter 11
presents a summary of the results and prospects.

Part III gathers all the relevant appendices.
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CHAPTER 2

Conformal Field Theory

In this chapter, we review the basics of Conformal Field Theory, which is one of the main ingredients
of this thesis. The content is mostly based on [46–48].

In particular, we first introduce conformal symmetry, discussing in detail the generators and the
representations of the conformal algebra. We then move to correlation functions, operator product
expansion and conformal blocks, which combined allow us to access the CFT data of a theory. In
the final section, we briefly explain the philosophy behind conformal bootstrap.

2.1 Conformal Symmetry
A conformal transformation is an invertible mapping x→ x′ which leaves the metric tensor gµν , µ, ν =
1, . . . , d invariant up to a scale Ω(x):

gµν(x′) = Ω(x) gµν(x) . (2.1)

A conformal transformation preserves angles but not distances. The set of conformal transformations
forms a group, which has the Poincaré group as a subgroup (Ω(x) = 1).

Figure 2.1: Various conformal transformations of the regular grid [49].

7
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To classify conformal transformations, we consider the infinitesimal transformation x′µ = xµ +
εµ(x). Requiring that the transformation is conformal, we obtain

∂µεν + ∂νεµ = c(x)γµν , (2.2)

where c(x) is a scalar function. Contracting both sides with gµν gives

c(x) = 2
d
∂d ε

d , (2.3)

for generic d spacetime dimensions. Equation (2.2) is the conformal Killing equation and it is
possible to classify all its solutions (Killing vectors). The most generic Killing vector reads:

εµ(x) = aµ︸︷︷︸
translation

+ ωµνx
ν︸ ︷︷ ︸

rotation

+ λxµ︸︷︷︸
dilatation

+ bµx
2 − 2xµbνxν︸ ︷︷ ︸

special conformal

, ωµν = −ωνµ , (2.4)

where a special conformal transformation (SCT) is nothing but a translation, preceded and followed
by an inversion xµ → xµ/x2. The total number of parameters defining conformal transformations
is 1

2 (d+ 2)(d+ 1), so long as d 6= 2.
The infinitesimal conformal transformations can be exponentiated to give finite transformations. In
particular, for every Killing vector, we can define a generator Qε associated with it:

translation: Pµ = −i∂µ , (2.5a)
dilation: D = −ixµ∂µ , (2.5b)
rotation: Lµν = i (xµ∂ν − xν∂µ) , (2.5c)

SCT : Kµ = −i
(
2xµxν∂ν − x2∂µ

)
. (2.5d)

We can now derive the commutation relations of the generators from those of the Killing vectors:

[Qε1 , Qε2 ] = Q−[ε1,ε2] , (2.6)

where [ε1, ε2] is a commutator of vector fields1. We then obtain combining (2.6) with (2.5):

[D,Pµ] = iPµ , (2.7a)
[D,Kµ] = −iKµ , (2.7b)
[Kµ, Pv] = 2i (ηµνD − Lµν) , (2.7c)

[Kρ, Lµν ] = i (ηρµKv − ηρvKµ) , (2.7d)
[Pρ, Lµν ] = i (ηρµPv − ηρvPµ) , (2.7e)

[Lµv, Lρσ] = i (ηvρLµσ + ηµσLvρ − ηµρLvσ − ηνσLµρ) . (2.7f)

We can rewrite these relations in a more elegant form by redefining the generators:

Jd+1,µ = Pµ −Kµ

2 , Jd+2,µ = Pµ +Kµ

2 , Jµν = Lµν , Jd+1,d+2 = D . (2.8)

If we now introduce the metric ηab = diag(−1, 1, 1 . . . , 1) in Rd+1,1, then these new generators obey
SO(d+ 1, 1) commutation relations:

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) . (2.9)

This is how we observe the isomorphism between the conformal group in d dimensions and the
group SO(d + 1, 1) with 1

2 (d + 2)(d + 1) parameters. It is also the starting point of the embedding
space formalism, which rethink the action in terms of Rd+1,1 instead of Rd, providing a simple and
powerful way to understand the constraints of conformal invariance [50–59].

To conclude this section, we construct conformal invariants or conformal cross-ratios, i.e. func-
tions of n points that are unchanged by all types of conformal transformations. Translations and

1The minus sign in (2.6) comes from the fact that when the generators Qi are represented by differential
operators Di, repeated action reverses the order [Q1, [Q2,O]] = D2D1O.
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rotations imply that cross-ratios can depend only on the distances between a pair of distinct points:

xij = |xi − xj | . (2.10)

Scale invariance implies that only ratios of such distances appear. Finally, applying a special con-
formal transformation, we observe that it is impossible to construct an invariant with only 2 or 3
points. The simplest cross-ratios are the following functions of four-points:

u = x2
12 x

2
34

x2
13 x

2
24
, v = x2

23 x
2
14

x2
13 x

2
24
. (2.11)

The reason behind having exactly two independent cross-ratios with four-points can be under-
stood by following these steps:

• using translations, we move the point x1 to zero,
• using special conformal transformations, we move the point x4 to infinity,
• using rotations and dilatations, we move x3 to (1, 0, . . . , 0),
• using again rotations, we can move x2 to (x, y, 0, . . . , 0).

Figure 2.2: We can use conformal transformations to move four points on a plane in the
above configuration.

At the end of this procedure, which we refer to as taking the conformal limit, only two quantities
x, y are undetermined, precisely the two independent conformal invariants. We can then evaluate u
and v in the conformal limit, obtaining

u = z z̄ , v = (1− z)(1− z̄) , (2.12)

with z = x+ iy. The number of independent cross-ratios in a d-dimensional spacetime is given by

n < d+ 1 : 1
2 n(n− 3),

n ≥ d+ 1 : nd− 1
2(d+ 1)(d+ 2) .

(2.13)

2.2 Representations of the Conformal Algebra
In conformal field theory, as in any quantum field theory, physical operators transform in repre-
sentations of the global symmetries, which in this case is the conformal symmetry. To understand
how fields are affected by conformal transformations, we can use the same trick as for the smaller
Poincaré algebra, where the subgroup of Poincaré that leaves the point x = 0 invariant, the Lorentz
group, is studied. In the case of the conformal group, this subgroup is represented by the rotations,
the dilatations and the special conformal transformations. Therefore the operators at the origin
must transform as irreducible representations of Lµν , D and Kµ. We assume that they transform
as

[D,O(0)] = ∆O(0) , [Lµν ,O(0)] = (Sµν) ab Ob(0) , (2.14)
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where ∆ is the eigenvalue of the dilatation operator, and it is referred to as scaling dimension of
O. Regarding rotations, the operators transform in a representation of SO(d). Note that in the
following, we suppress the indices a, b, appearing in the second equation, to simplify the notation.
Acting now on the operator O(0) with Pµ/Kµ leads to a higher/lower scaling dimension, allowing
us to form the conformal multiplet, our irreducible representation.

In physical interesting theories, the spectrum of the dilatation operator is real and bounded from
below, the so-called unitarity bound2, so that the conformal multiplet must contain an operator of
the lowest dimension. We take then, without loss of generality, O(0) to be the operator with the
lowest scaling dimension in its conformal multiplet:

[Kµ,O(0)] = 0 . (2.15)

Such operators are called primary operators. They are characterized by their scaling dimension ∆,
and they are the highest weight representation of the conformal group. All the other operators in
the multiplet, the descendants, are obtained from the primaries by acting with Pµ, meaning they are
simply their derivatives. In general, we refer to these multiplets as long multiplets. However, when
the unitarity bound is saturated, the conformal representation becomes reducible and contains a
sub-representation of states with zero norm, known as the null states. Quotienting out these states
in a consistent way leads us to a final irreducible representation containing fewer states than the
initial multiplet. Hence, we refer to this as short multiplet. The most notable short multiplets are

free scalar multiplet: [P 2,O(0)] = 0 , (2.16a)
conserved current multiplet: [Pµ, Jµ(0)] = 0 , (2.16b)

stress-tensor multiplet: [Pµ, Tµν(0)] = 0 . (2.16c)

We come back to representation theory in the context of supersymmetry in Section 3.2.2.
We end this section by deriving the action of the conformal generators on an operator at an

arbitrary location. Therefore, we need to translate the operator inserted at the origin with Pµ:

O(x) = ex
µPµ O(0) e−x

µPµ , (2.17)

which we then explicitly calculate using the Hausdorff formula:

e−AB eA = B + [B,A] + 1
2! [[B,A], A] + 1

3! [[[B,A], A], A] + . . . , (2.18)

to get

[Pµ,O(x)] = ∂µO(x) , (2.19a)
[D,O(x)] = (xµ∂µ + ∆)O(x) , (2.19b)

[Lµν ,O(x)] = (xν∂µ − xµ∂ν + Sµν)O(x) , (2.19c)
[Kµ,O(x)] = (2xµ(x · ∂)− x2∂µ + 2∆xµ − 2xνSµν)O(x) . (2.19d)

2.3 Correlation Functions and the CFT Data
After having discussed the conformal group with its generators and representations, we can now
introduce the main observables in conformal field theories: correlation functions of local operators.
We then enter into detail about what we intend for CFT data, how we define the OPE for a conformal
field theory and how we can use conformal symmetry to constrain our correlation functions.

2.3.1 Correlation Functions
We start by exploring correlators of scalar operators since the whole thesis revolves around them. As
mentioned above, the conformal operators transform in rank-s symmetric-traceless representations
of the rotation group SO(d). Scalar operators are then the zero-rank case. To read about more
general representations, we advise [55–58].

2In our case of interest, namely for scalars, the unitarity bound is satisfied for ∆ ≥ d
2 − 1 or ∆ = 0.
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Let us analyze then the constraints that conformal symmetry imposes on the scalar correlators
of primary operators, starting from the simplest case of one-point functions. By Lorentz invariance,
only scalars can acquire one-point functions. Translational invariance implies that they have to be
constant, while scale invariance fixes this constant to zero unless the operator has ∆ = 0, meaning
it is the identity. It is convenient to normalize the path integral such that 〈1〉 = 1.

Moving to two- and three-point functions, we observe that conformal symmetry is so constraining
that they are completely fixed up to a multiplicative constant. In particular,

〈O(x1)O(x2)〉 =


cO1O2

x 2∆
12

, if∆1 = ∆2 ≡ ∆,

0, otherwise .
(2.20)

where normally the constant cO1O2 is reabsorbed in the definition of the field in theories without
defects.
Similarly, three-point functions are constrained by conformal symmetry to take the form:

〈O(x1)O(x2)O(x3)〉 = cO1O2O3

(x2
12)∆123(x2

23)∆231(x2
13)∆132

, (2.21)

with ∆ijk = ∆i + ∆j − ∆k. The constant cO1O2O3 is often called three-point coupling, structure
constant of the operator algebra or OPE coefficient, since it has a fundamental role in the operator
product expansion, as we observe in the next section.

Conformal symmetry is remarkably powerful, as it constrains the form of two- and three- point
functions, but it is insufficient to fix the form of four-point functions. Nevertheless, we can still infer
the following form for identical scalars of scaling dimension ∆:

〈O(x1)O(x2)O(x3)O(x4)〉 = 1
x2∆

12 x2∆
34
A(u, v) , (2.22)

where u and v are the cross-ratios defined in (2.11).
We could go on and consider correlation functions with a higher number of points. This topic

is actually central to this thesis, and we study it in the next part. Though, it is worth noticing
here that in principle, higher-point functions can be reconstructed from the three-point functions
and the scaling dimensions, what it is commonly referred to as CFT data. This implies that the
full knowledge of the CFT data is sufficient to determine completely the theory. Unfortunately the
set of CFT data is infinite. It is true that there are some consistency checks that we could use as
input to determine the CFT data, as we see in the following. However, it is quite hard to solve these
constraints. That is why we study higher-point correlators. As mentioned in the introduction, they
contain information about an infinite number of lower-point functions by means of the OPE, that
we now introduce.

2.3.2 Operator Product Expansion
The operator product expansion or OPE is a general tool of quantum field theory, which consists of
approximating the product of two local operators with an infinite sum of local operators:

O(x1)O(x2) x1→x2=
∑
Ok

f12k(x12)Ok , (2.23)

where the sum runs over all the conformal primaries Ok. Since all operators can be constructed
from primaries, we can rewrite this expression in the following way:

O(x1)O(x2) x1→x2=
∑
Ok

cO1O2OkC12k(x12, ∂2)Ok , (2.24)

where cO1O2Ok are the coefficient of the three-point functions (2.21) and the operator C12k(x12, ∂2)
encodes the contributions from the descendants and it is completely fixed by conformal symmetry
in terms of the operators scaling dimensions ∆k. For this reason and considering that the OPE has
a finite radius of convergence [60, 61], it is more powerful in CFT than in regular QFT, being there
just an asymptotic expansion.
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Coming back to higher-point functions, they can be then expressed as infinite sums of products
of lower-point functions by repetitively applying the OPE. In this sense, no new data is contained
in higher-point functions: all dynamical information is encompassed by three-point functions, which
determine, together with scaling dimensions, higher-point correlation functions.

If we now think about applying the OPE to a correlator, we realize that there are many different
options since it can affect pairs of operators in different orders. However, every combination should
be equivalent, meaning that the correlator cannot depend on the order the OPE is taken. Let us
consider the canonical example of a four-point function. It can be decomposed in the following ways,
which must be equal by associativity:

〈O(x1)O(x2)O(x3)O(x4)〉 = 〈O(x1)O(x2)O(x3)O(x4)〉 , (2.25)

where the square brackets stand for taking the OPE between those operators. We refer to the OPE
limit on the LHS as s-channel (χ → 0) and on the RHS as t-channel (χ → 1). This relation is
represented graphically in Figure 2.3.

This equation is an important consistency check. It points to a fundamental property known
as crossing symmetry, the starting point of the so-called conformal bootstrap. We enter into more
detail in Section 2.3.4.

Figure 2.3: Graphical representation of the OPE associativity spelled out in (2.25).

2.3.3 Conformal Blocks
We can now effectively take the OPE between operators in a correlation function. In particular, we
consider again a generic four-point function, and we perform the OPE as in the LHS of (2.25). This
result in

〈O(x1)O(x2)O(x3)O(x4)〉 =
∑
Ok

cO1O2OkcO3O4OkC12k(x12, ∂2)C34k(x34, ∂4) 〈Ok(x2)Ok(x4)〉 .

(2.26)
If we compare this equation to the expression of the four-point (2.22), we find

A(u, v) =
∑
Ok

cO1O2OkcO3O4Ok g
12,34
∆k

(u, v) , (2.27)

where the functions g∆k
(u, v) are called conformal blocks and allow us to obtain a representation of

the otherwise arbitrary function A(u, v) in terms of the CFT data. For d > 1 conformal blocks also
feature an implicit sum over the spins and depend on the spin representation.

These functions have been widely studied by Dolan and Osborn [60, 62, 63], which observed
that acting with the Casimir3 operator on a four-point function allows to select the contribution
from a single conformal family to the OPE. This implies that conformal blocks are solutions to a

3The Casimir of a Lie algebra g is the operator C that commutes with all the elements of the algebra:
[C, x] = 0 , ∀x ∈ g.
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differential equation of the form(
C(1+2)

2 − c2
)
〈O(x1)O(x2)O(x3)O(x4)〉 = 0 , (2.28)

where C(1+2)
2 is the quadratic Casimir acting of the points x1 and x2 defined by

C(1+2)
2 = −1

2
∑
A,B

(
L

(1+2)
AB

)2
, L

(1+2)
AB = L

(1)
AB + L

(2)
AB , (2.29)

with the differential operators being the generators introduced in (2.8) and c2 being the eigenvalue
of the Casimir operator when acting on an operator with scaling dimension ∆ in d dimensions, i.e.
c2 = ∆(∆− d).

Conformal blocks are known in closed-form expressions in even dimensions (up to six dimen-
sions), where they can be written as hypergeometric functions. However, they are much more
complicated in odd dimensions, where a closed form has yet to be found. We discuss them more in
detail for our cases of interest in Section 4.4.3.

2.3.4 Conformal Bootstrap
To conclude this section on conformal field theory, we combine the ingredients we have just in-
troduced to explain the philosophy behind conformal bootstrap. Conformal bootstrap is a set of
non-perturbative techniques to characterize, constrain and solve CFTs using physical consistency
conditions like symmetry, unitarity and causality.

In the previous section, we showed that we can expand a four-point function in conformal blocks:

A(u, v) =
∑
Ok

cO1O2OkcO3O4Ok g∆k
(u, v) . (2.30)

This equation is quite powerful for two reasons. If we know the correlator explicitly, then we can
use the expansion to extract infinitely many OPE coefficients cOiOjOk . Conversely, if we know the
OPE coefficients, then the expansion provides a way to reconstruct the correlation function.

In this thesis, we mostly encounter computations of the first type, meaning we compute some
correlators using perturbation theory and extract some CFT data from those. The bootstrap method
approaches the problem of solving a CFT somewhat differently. Even when the four-point function
A(u, v) and the CFT data are not known, equation (2.30) can lead to powerful constraints on the
CFT data, allowing even to reconstruct the correlator in specific cases. This is possible thanks to
crossing symmetry, which we introduced in Section 2.3.2.

As a matter of fact, when we combine the conformal blocks decomposition with crossing sym-
metry, we obtain these crossing equations:∑
Ok

(
cO1O2OkcO3O4Ok v

∆2+∆3
2 g12,34

∆k
(u, v)

)
=
∑
Ok

(
cO2O3OkcO1O4Ok u

∆1+∆2
2 g23,14

∆k
(v, u)

)
, (2.31)

which are highly non-trivial consistency conditions that any set of CFT data must satisfy. The goal
of the bootstrap program is to solve these equations, but unfortunately, this is everything but trivial.
First of all, because there are infinitely many equations to solve to fully determine the infinite set of
CFT data, and moreover, the conformal dimensions are real numbers. An additional complication
is that one block on the LHS is not directly mapped to a block on the RHS; quite the opposite. It
corresponds indeed to infinitely many blocks on the RHS.

However, some progress has been made in solving these equations numerically, which allowed
to at least carve out the space of legit CFT data from the space of all possible parameters (see
Figure 2.4). The ultimate hope is that solving these equations for a sufficiently high number of
correlators shrinks the space of parameters to a point, allowing the theory to be solved. For further
information, especially recent progress, see e.g. [64–66].

Finally, there has been a comprehensive exploration of analytical methods to solve these con-
straints. For an overview of the advancement in this topic, check [67].
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Figure 2.4: This picture is taken from [68], where the 3d Ising model was studied. It
depicts the allowed regions for the scaling dimensions (∆σ,∆ε) of the two operators σ and ε
in the space of possible CFT data. These bounds are obtained using the crossing symmetry
and unitarity of three different correlators made up of the two operators. These constraints
yield a small region in the CFT data space compatible with the known values in the 3d Ising
CFT that are indicated with black crosshairs.



CHAPTER 3

Superconformal Field Theory

In this chapter, we review another important symmetry which plays a central role in modern quan-
tum field theory: supersymmetry or SUSY. In particular, we first consider supersymmetry alone,
with a particular focus on the four-dimensional case, and then combine it with conformal symmetry.
In the context of superconformal symmetry, we discuss the famous case of N = 4 super Yang-Mills,
the simplest interacting superconformal QFT in 4d. We then explore various facets of this theory:
the action, the planar limit, and the Feynman rules.

3.1 Supersymmetry
Supersymmetry relates the two fundamental classes of particles: bosons (integer spin) and fermions
(half-integer spin). In this theory, each particle in one class has an associated superpartner in the
other class. For a detailed introduction to this topic, see e.g. [69, 70].

Supersymmetry represents a way to evade the no-go theorem introduced by Coleman and Man-
dula in 1967 [71], which states that it is only possible to combine spacetime and internal symmetries
trivially. This theorem is valid under a list of reasonable assumptions, and supersymmetry relaxes
one of these assumptions, allowing the presence of fermionic generators together with bosonic ones.

Thanks to these additional elements, this extension of the Poincaré algebra is promoted to
a graded-Lie algebra1 or a superalgebra. Therefore, in addition to the usual Poincaré generators
(translations, boosts, and rotations), the SUSY generators include complex, anticommuting spinors
Q and their conjugates Q̄:

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (3.1)

where α, β = 1, 2 are the indices usually used for the spinors and α̇, β̇ = 1, 2 for the conjugates. The
non-trivial extension of the Poincaré symmetry arises because the anticommutator of Q and Q̄ gives
a translation generator Pµ:

{Qα, Q̄α̇} = 2σµαα̇Pµ , (3.2)

with
σµαα̇ =

(
1, σi

)
, σ̄µα̇α =

(
1,−σi

)
(3.3)

and σi being the usual three-dimensional Pauli matrices. Moreover, we have

[Qα, Lµν ] = (σµν) βα Qβ , (3.4a)

[Q̄α̇, Lµν ] = εα̇β̇ (σ̄µν)β̇γ̇ Q̄
γ̇ , (3.4b)

1Note that, despite the name, this is not a Lie algebra because the fermionic generators break the
antisymmetry property.

15
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with the generators of Lorentz transformations, σµν and σ̄µν , defined by

(σµν)α
β = i

4
(
σµαα̇σ̄

vα̇β − σvαα̇σ̄µα̇β
)
, (3.5a)

(σ̄µν)α̇ β̇ = i

4

(
σ̄µα̇ασvαβ̇ − σ̄

vα̇ασµαβ̇

)
. (3.5b)

All the other (anti)commutation relations vanish, meaning, for example, that the SUSY generators
commute with translations:

[Pµ, Qα] = [Pµ, Q̄α̇] = 0 . (3.6)

There is an additional global symmetry called R-symmetry which makes Qα invariant under
multiplication by a phase:

Qα → eipQα , Q̄α̇ → e−ipQ̄α̇ , (3.7)

with a global parameter p, so that in general there is one linear combination of U(1) charges, the
R-charges, that does not commute with Q and Q̄:

[Qα, R] = Qα , [Q̄α̇, R] = −Q̄α̇ . (3.8)

The corresponding R-symmetry group is called U(1)R.

3.1.1 Extended Supersymmetry
So far, we have considered the case where there is only one spinor supercharge, but the superalgebra
can be easily extended to accommodate N supercharges. After having introduced a new index to
keep track of this, our extended superalgebra then becomes:

{QAα , Q̄α̇ B} = 2σµαα̇PµδAB , (3.9a)

[QAα , Lµν ] = (σµν) βα Q
A
β , (3.9b)

[Q̄Aα̇ , Lµν ] = εα̇β̇ (σ̄µν)β̇γ̇ Q̄
A γ̇ , (3.9c)

where A,B = 1, . . . ,N . This allows for a generalization of the symmetry of equation (3.8) to a
U(N )R symmetry, which rotates the supercharges.

The superalgebra can be further extended to include central charges ZAB and Z̄AB , such that
equations (3.1) turn into

{QAα , QBβ } = εαβZ
AB , {Q̄α̇ A, Q̄β̇ B} = εα̇β̇Z̄AB , (3.10)

where the central charges are antisymmetric with respect to A and B.

3.1.2 SUSY Representations
In general, single particles states fall into irreducible representations of the SUSY algebra called
supermultiplets. Since Q is a spinor, it produces a fermionic state when it acts on a bosonic state.
The supermultiplets contain then both fermions and bosons. Actually, it can be shown that each
supermultiplet with non-zero energy contains the same number of bosonic and fermionic degrees of
freedom.

Since PµPµ commutes with Q and Q̄, all the particles in the same supermultiplet have the same
mass, and for an analogous argument, they also have to be in the same representation of the gauge
group.

We now focus on massless representations of the SUSY algebra, since massive ones are not
relevant for this work. Massless states are labeled by their momentum pµ and helicity λ. If we
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choose the frame where pµ = (E, 0, 0, E), then the SUSY algebra reduces to

{Q1, Q̄1} = 4E , (3.11a)
{Q2, Q̄2} = 0 , (3.11b)
{Qα, Qβ} = 0 , (3.11c)
{Q̄α̇, Q̄β̇} = 0 . (3.11d)

Therefore we have an algebra with only one raising operator that we use to define creation and
annihilation operators as follows

aA ≡ QA1
2
√
E
, a†A ≡

QA 1̇

2
√
E
, with {aA, a†B} = δAB . (3.12)

To construct a multiplet, we, therefore, first pick a vacuum of a fixed helicity, which satisfies

QA1 |Ω〉 = 0 , (3.13)

and we then act with the creation/annihilation operators. QA1 lowers the helicity by 1/2, i.e. QA1 |p, λ〉
has helicity λ− 1/2, while QA1̇ raises the helicity by 1/2.

3.2 N = 4 supersymmetric Yang-Mills
Now that we are acquainted with the concepts of supersymmetry, superalgebra and their extensions,
we can introduce one of the main players of this work: N = 4 supersymmetric Yang-Mills theory
(SYM). This theory is a realization of maximally extended supersymmetry, as we explore in the next
section.

Historically the interest in this theory arose due to its finiteness property: its β function has
been proven to vanish in perturbation theory, and the same is supposed to be true at the non-
perturbative level. The theory, in fact, contains only massless particles, and conformal symmetry is
preserved at the quantum level.

There was also a renewed interest due to the AdS/CFT correspondence proposal by Maldacena
[7], which relates type IIB supergravity in d+ 1 dimensional Anti-de-Sitter space and d dimensional
(super)conformal theories. N = 4 SYM is also believed to be integrable in the planar limit (N →∞),
which we discuss in Section 3.2.4. Finally, the theory possesses exact electric-magnetic duality due
to its invariance under S-duality group SL(2,Z) [72].

Thanks to these numerous symmetries and interesting features, this theory is used as a laboratory
to develop and improve methods to approach more complex theories and, therefore, it has been
studied with a variety of different techniques, from perturbation theory to conformal bootstrap,
from localization to integrability.

3.2.1 Maximally Extended SUSY
As we have just briefly mentioned, N = 4 SYM has the maximal amount of supersymmetry possible
for a supersymmetric theory in four dimensions. A greater number of supercharges would require
fields of spin larger than one and, therefore, the inclusion of gravity.

Using the N = 4 supersymmetry, we can transform the gauge bosons into N = 4 different
supersymmetric fermionic partners and vice versa. By applying the creation/annihilation operator
(3.12) with A = 1, . . . , 4, we can explicitly construct the supermultiplet that contains one vector
field Aµ (spin-1 gauge boson), four spinor fields ψaα(x), a ∈ {1, 2, 3, 4} (spin-1/2 Weyl fermions) and
six scalar fields φI(x), I ∈ {1, . . . , 6}) (spin-0 bosons), all in the adjoint representation of the gauge
group. R-symmetry allows the four spinors to transform in the fundamental of SU(4)R, the six real
scalars in the rank 2 antisymmetric representation, which is the fundamental of SO(6)R.

3.2.2 Superconformal Algebra
The superconformal algebra is an extension of the conformal algebra we reviewed in Sections 2.1
and 2.2. The superconformal algebra is unique given an N -extended supersymmetry algebra and a
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d-dimensional conformal algebra. In our case of interest, i.e. d = 4, we have

su(2, 2|N ) ⊃ so(5, 1)× su(N )R × u(1)R . (3.14)

In particular, for N = 4 SYM, u(1)R commutes with the rest of the generators and can be quotiented
out, leading to psu(2, 2|4).

To build the superalgebra, we could naively think that it is sufficient to add the supercharges
Q, Q̄ to the generators of the conformal group. However, to ensure the closure of the algebra, we
need to add some fermionic supercharges SAα , S̄Aα, leading to:

{SAα , S̄β̇ B} = 2(σµ)αβ̇Kµδ
A
B , (3.15a)

{QAα , Sβ B} = εαβ (δABD +RAB) + 1
2δ

A
BLµν(σµν)αβ . (3.15b)

The other numerous (anti)commutation relations are gathered in Appendix A.
As we did for the conformal group, we want to explore the representations of the superconformal

algebra. We focus on local and gauge-invariant operators O(x), that are labeled by their scaling
dimension ∆ and by their spin [l, l̄]. To construct a supermultiplet, we start from a superconformal
primary operator. Besides being a conformal primary (2.15), it is annihilated by S, S̄:

[SAα ,O(0)] = [S̄A α̇,O(0)] = 0 , ∀A,α , (3.16)

and forms a representation of the R-symmetry group. To produce the rest of the multiplet, the
superdescendants O′, we just apply any product of generators of the superconformal algebra to the
primaries:

O′ : [Q,O(0)] , [Q, [Q,O(0)]] , [Q, [Q̄,O(0)]] , [P,O(0)] , . . . . (3.17)

Because the Poincaré supercharges are anticommuting spinors, a superconformal multiplet contains
bosons and fermions, which are related to each other by supersymmetry. Furthermore, Q and Q̄ act
at most 2NQ+NQ̄ times, with NQ+NQ̄ being the total number of supercharges. Finally, we choose a
basis where the superdescendants are conformal primaries on their own. In other words, they form
an irreducible representation of the conformal group.

It is fundamental to mention an important class of superconformal primaries, the chiral pri-
maries. These operators fulfill an additional condition besides (3.16):

[QAα ,O] = 0 , (3.18)

meaning they are annihilated by at least one of the supercharges. This is what we call BPS-
condition [73, 74]. Consequently, these operators are protected, meaning their scaling dimension
does not receive quantum corrections [75, 76].

As for the conformal case, we can distinguish again short from long supermultiplets. The
difference between the two is analogous to what we have already outlined in Section 2.2. Long su-
permultiplets are generated from superprimaries with generic scaling dimension above the unitarity
bound, while short multiplets are generated from superprimaries that satisfy a shortening condition,
namely, they are killed by combinations of Poincaré supercharges.

In this work, we focus on a particular kind of operators, since they are leading in the large N
limit, which we discuss in Section 3.2.4. They are called single-trace operators of scalar primaries
φ:

On(x) ≡ tr φI1 . . . φIn , (3.19)

where the trace acts on gauge group indices, and the index I keeps track of the SO(6)R R-symmetry.
A subclass of these operators are 1/2-BPS operators, since they satisfy (3.18) for half of the super-
charges. For this reason, these operators are protected, as their scaling dimension ∆ = n does not
receive quantum corrections. They saturate the unitarity bound and belong, therefore, to a short
multiplet. Finally, these operators are characterized by their quantum numbers ∆, s (spin) and the
R-symmetry Dynkin labels [0, n, 0].

It is worth noticing that there are also unprotected single-trace operators such as the Konishi
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operator, which for N = 4 SYM reads

K = tr (φIφI) . (3.20)

This operator does not satisfy the BPS condition.
Lastly, it is also possible to construct multi-trace operators, which are products of single-trace

operators. 1/4- and 1/8-BPS are realized by such operators, but we are not going to deal with these
operators. For further details, see e.g. [77, 78].

3.2.3 N = 4 SYM Action
Since this thesis is basically built upon perturbation theory, we need to introduce the starting point
of this method: the action of the theory. There are two ways of deriving it. On the one hand, we
can use the fact that N = 4 supersymmetric field theory is by default also N = 1 supersymmetric.
We can then use the N = 1 superspace formalism2, provided that the coupling constants and the
superpotential of the N = 1 theory preserve certain constraints. On the other hand, we can obtain
the N = 4 SYM Lagrangian from dimensional reduction of the N = 1 SYM theory in 10 dimensions.
We do not enter into further detail, but both derivations can be found in e.g. [79].

Coming back to the action, the quantization can be done using the conventional Faddeev-Popov
method, which is standard knowledge and can be found explicitly in many QFT textbooks, e.g. [80].
This procedure introduces ghost fields c and leads us to the following action (after gauge fixing):

S = 1
g2

ˆ
d4x Tr

{
1
2Fµν F

µν +DµφID
µφI − 1

2 [φI , φJ ][φI , φJ ]

+ iψ̄γµDµψ + ψ̄ΓI [φI , ψ] + ∂µ c̄D
µc+ ξ

(
∂µA

µ
)2}

, (3.21)

with the covariant derivative Dµ = ∂µ− i [Aµ, ]. The various fields were introduced in Section 3.2.1
and the coupling constant g is a dimensionless quantity. In particular, to define the action, we used
the covariant gauge fixing condition ∂µAµ = 0, and we set the gauge parameter ξ = 1 to work in
the Feynman gauge. Appendix B collects other conventions and useful identities.

3.2.4 Planar Limit
Another fundamental ingredient we need to apply the perturbative method to this theory is the
expansion in the large N limit. It was introduced by ’t Hooft in [81], and it consists of taking the
limit N →∞, where N is the number of color indices of the gauge group U(N). To properly discuss
this regime, we need to introduce the so-called ’t Hooft coupling:

λ ≡ g2N , (3.22)

where g is the coupling constant of the N = 4 SYM theory that we encountered in the action (3.21).
If we keep λ fixed and we take N → ∞ , we get a divergent factor that is, however, compensated
by the divergence of the number of components N2 in the fields, leaving the action finite [81]. The
radius of convergence of a large N expansion is known to be non-zero [82], although renormalization
effects can spoil it.

We connect now to Feynman diagrams. There the dependence from N is encoded in the color
factors. A propagator contributes with a factor 1/N , while a vertex with N . The Wilson line
(4.5) that we describe in detail later brings a factor 1/N and a color contraction factor N . These
contributions are related to the topologies of Feynman diagrams, which can be distinguished by their
Euler’s characteristics:

χ ≡ V − E + F = 2− 2G , (3.23)

where V is the number of vertices, E the number of edges (propagators), F the number of faces
(index contractions) and G the genus of the diagram. The leading diagrams in the large N limit

2The superspace formulation consists in adding some “anticommuting” dimensions alongside ordinary
space dimensions. The latter parametrizes the bosonic degrees of freedom, while the anticommuting dimen-
sions the fermionic ones.
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are the so-called planar diagrams, and they have the lowest genus so they can be drawn in two
dimensions without crossings.

Figure 3.1: Vacuum diagrams in the double line notation. Interaction vertices are marked
with a small dot. The left diagram is planar, while the diagram on the right has the topology
of a torus (genus 1 surface).

3.2.5 Feynman Rules
We now move to deriving the Feynman rules in position space that we use throughout this thesis.
First of all, we define the bosonic propagators:

I12 ≡
1

(2π)2 x2
12
, xij ≡ xi − xj , (3.24)

which are the Green’s functions of the d’Alembert operator � = ∂µ∂µ.
Similarly, we can derive the fermionic propagator, that we write down together with the other

propagators and their graphical representation:

Scalars:
I, a

1

J, b

2
= g2δIJ δ

abI12 , (3.25a)

Gluons:
µ, a

1

ν, b

2
= g2δµν δ

abI12 , (3.25b)

Gluinos:
a

1

b

2
= ig2δab /∂∆I12 , (3.25c)

Ghosts:
a

1

b

2
= g2δabI12 , (3.25d)

with a, b being SU(N) group indices and where

/∂∆ := γ · ∂
∂∆ , ∆µ := xµ12 ,

with γµ the Dirac matrices.
We now draw all the vertices of the N = 4 theory:

,

(3.26)
which can be directly read from the action (3.21). Not all of them are relevant to this work. We
focus in detail only on the useful ones in the next sections.

In the computation of the Feynman diagrams at next-to-leading order, we encounter three-,
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four- and five-point massless Feynman integrals, which we define as follows:

Y123 = :=
ˆ
d4x4 I14I24I34 , (3.27a)

X1234 = :=
ˆ
d4x5 I15I25I35I45 , (3.27b)

H12,34 = :=
ˆ
d4x5d

4x6 I15I25I36I46I56 , (3.27c)

with Iij the propagator function defined in (3.24). The letter assigned to each integral is evocative
of the drawing of the propagators. Another expression that is encountered is the following:

F12,34 := (∂1 − ∂2) · (∂3 − ∂4)
I12I34

H12,34 . (3.27d)

The notation presented above is standard and has already been used in e.g. [33, 83]. The three- and
four-point massless integrals in Euclidean space are conformal and have been solved analytically
(see e.g. [84, 85] and [16, 33] for the modern notation). The Y - and X-integrals have been solved
analytically and can be found in Appendix C.1.1. The H-integral seems to have no known closed
form so far, but the F-integral (3.27d) can, fortunately, be reduced to a sum of Y - and X-integrals
which we also show in Appendix C.1.1.

In the computation of the Feynman diagrams at next-to-next-to-leading order, we encounter
new types of integrals. In particular,

Kij :=
ˆ
d4x5 I15I25I35 Yij5 , (3.28a)

Ak :=
ˆ
d4x5 I15I25I35 log x2

k5 . (3.28b)

More details, such as explicit expressions and identities for these integrals, can be found in Appendix
C.1.1.

Insertions Rules
We now introduce the insertion rules that we use to compute Feynman diagrams. Keep in mind
that we gather some useful conventions and identities in Appendix B. In particular, here we recall
that with SU(N) as the gauge group and working in the large N limit, the generators obey the
following commutation relation:

[T a , T b] = ifabc T c, (3.29)

in which fabc are the structure constants of the su(N) Lie algebra. The generators are normalized
as

tr T aT b = δab

2 . (3.30)

Note that fab0 = 0 and tr T a = 0. The (contracted) product of structure constants gives fabcfabc =
N(N2 − 1) ∼ N3, where the second equality holds in the large N limit.

We can now move to the three- and four-point insertions. Keeping in mind that the N = 4 SYM
theory contains eight vertices, as shown in (3.26), there are two interesting three-point vertices for
us: two scalar fields with one gauge field and the Yukawa interaction. The insertion rule for the
first vertex can be easily obtained from the action (3.21)3:

I, a
1

J, b
2

µ, c

3
= 2i
g2 TrT d

[
T e, T f

] ˆ
d4x4

〈
φI,a1 φJ,b2 Ac3,µ∂

vφK4,dφ4,e,KA4,v,f

〉
= −g4fabcδIJ (∂1 − ∂2)µ Y123 ,

(3.31)

3Note that for compactness of the expression, we write φ1 to intend φ(x1).
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where Y123 has been defined in (3.27a) and its analytical expression in 1d, the interesting case for
us, as we will see, can be found in (C.1). We do not use an insertion rule for the Yukawa term, as
it arises only in one Feynman diagram among the ones we considered.

Moving to four-point insertions, from the action we can derive a Feynman rule for the four-scalar
vertex:

I, a
1

J, b
2

K, c
3

L, d
4

= −g6 {fabef cde (δIKδJL − δILδJK) + facef bde (δIJδKL − δILδJK)

+fadef bce (δIJδKL − δIKδJL)
}
X1234 ,

(3.32)

where X1234 as an integral can be found in (3.27b).
Finally using the vertex (3.31), we can obtain this four-point insertion:

I, a
1

J, b
2

K, c
3

L, d
4

= g6 {δIKδJLfacef bdeI13I24F13,24 + δILδJKf
adef bceI14I23F14,23

}
, (3.33)

with IIJ the propagator function defined in (3.24) and FIJ,KL as defined in (3.27d). An analytical
expression for FIJ,KL in terms of X- and Y -integrals is given in (C.3).

Scalar Self-Energy
To conclude, we move our attention to the one-loop correction to the scalar-propagator, the only
two-point insertion we need. It consists of the following diagrams:

= + + + . (3.34)

All these diagrams can be computed easily. The first one gives a contribution of

= (−i)2 2
g4

ˆ
d4x3d

4x4
〈
φa1,Iφ

b
2,J Tr ∂µφK3 A

µ
3φ3,K Tr ∂vφL4Av4φ4,L

〉
= 2g4NδabδIJY112 + g4NδabδIJ

1
(2π)2ε2

ˆ
d4x3I13I23 .

(3.35)

Note that the Y -integral of the first term is given explicitly in (C.4) and contains a logarithmic
divergence, while the second term contains a quadratic divergence encoded by the 1/ε2. This factor
arises when defining:

I33 ≡
1

(2π)2ε2 , (3.36)

which consists of a regularization method called point-splitting regularization, where the zero is
replaced by an infinitesimal distance. Effectively, we split two coincident points by inserting a small
distance ε.

The second diagram reads:

= −4g4NδabδIJ

{
Y112 −

2
(2π)2ε2

ˆ
d4x3I13I23

}
, (3.37)

where we recognize the same types of divergences as in the first diagram.



3.2. N = 4 supersymmetric Yang-Mills 23

The last two diagrams differ only by a multiplicative factor and give:

= −5g4NδabδIJ
1

(2π)2ε2

ˆ
d4x3I13I23 , (3.38a)

= −4g4NδabδIJ
1

(2π)2ε2

ˆ
d4x3I13I23 . (3.38b)

Those diagrams contain only quadratic divergences that vanish, as they cancel each other when we
sum up all the contributions. We are left with an expression containing only one log divergence:

= −2g4NδabδIJY112 . (3.39)

This expression is well-known and is the same as the one given in e.g. [33, 86, 87].
We are not going to need the expression for the gluon self-energy. In any case, at next-to-leading

order, it is very similar to the one of the scalar and it can also be found in [86, 87].
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CHAPTER 4

The Wilson Line Defect CFT

We can now introduce another key player in this work: the Maldacena-Wilson line operator. In
particular, we first present the concept of conformal defect as an extended operator inserted in a
generic d-dimensional theory, which partially breaks the symmetries of the original theory. In fact,
the Wilson line can be interpreted as a point-like defect, an impurity, which breaks the symmetries
of the host theory: N = 4 SYM.

We especially explore the one-dimensional CFT living on this line defect in detail, focusing on
its correlators and their various interesting properties. To conclude the chapter, we present the
Feynman rules needed to compute correlators of operators living on the Wilson line.

4.1 Conformal Defects
Let us introduce conformal defects by first considering a d-dimensional CFT on a flat Euclidean
space Rd with coordinates

xµ = (xa, xi) , a = 1, . . . , p and i = p+ 1, . . . , d . (4.1)

We insert then an infinite flat defect extending in the xa directions and located at xi = 0, which
splits the space between parallel (xa) and orthogonal (xi) directions. The defect is then identified
by p, and q ≡ d− p is known as the co-dimension.

As anticipated above, the insertion of a defect breaks the original conformal symmetry we
discussed in Section 2.1 to a subgroup of it:

SO(d+ 1, 1)→ SO(p+ 1, 1)× SO(q) , p+ q = d , (4.2)

namely conformal transformations along the defect and rotations around it.
Moreover, the original rotation group SO(d) (see Section 2.2) is broken to SO(p)× SO(q). We

can consider SO(q) as an “internal symmetry” group of the defect. From a defect point of view, we
have then a p-dimensional conformal field theory (CFTp) with a SO(q) flavour group. However, we
have to make an important remark: in such CFTs, there exists, in general, a stress-tensor, while no
such stress-tensor is part of the spectrum of defect operators.

Lastly, one can analyze these defect conformal theories as usual CFTs, meaning computing
correlations functions and extracting CFT data. Particularly there are two possibilities: either to
consider correlators of insertions, namely operators living on the defect, or a mixture of bulk local
operators and defect operators. In this work, we focus on the first kind of correlation functions.
Before looking at them closely, let us meet our defect operator: the Maldacena-Wilson line.

25
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4.2 Defining the Wilson Line
Before diving into the details of the defect operator we consider, let us briefly introduce the historical
importance of it. The Wilson loop is a gauge invariant operator that was introduced by Wilson in
1974 [88], and it is related to many important observables [89, 90].

We know that there is confinement in QCD at low energies; namely, color-charged particles
cannot be isolated. In particular, quarks appear only in pairs quark-antiquark qq̄. To keep their
distance fixed in time, we consider external heavy quarks which are no more dynamical. In this
setting, the Wilson loop defines and measures the interaction potential between pairs of quark-
antiquark Vqq̄. It is also the traced holonomy of the gauge connection Aµ, meaning the phase factor
picked up by an external quark moving along a closed path C, parametrized by the vector xµ:

WC = 1
dimR

trR P exp
(
i

˛
C

dxµAµ

)
, (4.3)

where dimR is the dimension of the representation R and P is the path-ordering exponential.
The Wilson loop is also central in the context of the AdS/CFT correspondence [7, 91]: a duality

between type IIB string theory compactified on AdS5×S5 and a four-dimensional N = 4 theory. In
this context, it is possible to define a generalization of the Wilson loop, the so-called Maldacena-
Wilson loop [7], which in the fundamental representation is

WC = 1
N

trP exp
˛
C

dτ
(
iẋµAµ(τ) + |ẋ| θIφI

)
, (4.4)

where again xµ parametrizes the loop and θI is an SO(6) vector satisfying θ2 = 1. Moreover,
Aµ ≡ T aAaµ ≡ T aφIa, where T a is a generator of the gauge group of the SYM theory, and I is a
so(6)R index. Interestingly, this operator has been studied for multiple geometries of the path C,
as a circle or as a line [86] but also with cusps [14, 92].

In general (4.4) is only locally supersymmetric [93], however depending on the geometry and on
the choice of the coupling, also global supersymmetry can be preserved. The exact amount can be
computed following the analysis carried out in [94–97]. There are two cases in which the highest
amount of supersymmetry is preserved, i.e. 1/2 BPS loops: the straight line and the circular loop.
One can move from one to the other via a conformal transformation (an inversion). We focus on the
first object, and we finally introduce one of the main characters of this work: the Maldacena-Wilson
line in N = 4 SYM theory.

To define it, we just take the path C in (4.4) to be an infinite straight line, obtaining then:

W` := 1
N

tr P exp
ˆ ∞
−∞

dτ
(
iẋµAµ(τ) + |ẋ|φ6(τ)

)
. (4.5)

Here we have chosen the scalar φ6 to be the one coupling to the line by setting θ = (0, 0, 0, 0, 0, 1) in
(4.4). Note that we have Wick-rotated to Euclidean space and defined the path such that the line
extends in the Euclidean time direction, i.e. ẋµ = (0, 0, 0, 1) and |ẋ| = 1. As just stated above, this
operator preserves the maximal amount of supersymmetry, i.e. half of the supercharges (16 out of
32), hence it is 1/2-BPS. From the discussion in Section 3.2.2 follows that it is a protected operator;
namely it does not receive anomalous contributions to its conformal dimension. In addition, it was
shown perturbatively in [86] that the expectation value of the Wilson line is simply

〈W` 〉 = 1 . (4.6)

Before exploring this operator closely, it is interesting to notice that at strong coupling, Wilson
loops are related by duality to open string minimal surfaces in AdS5 ending on the contour defining
the loop operator at the boundary. In our case of interest, the 1/2-BPS Wilson line is dual to an
AdS2 minimal surface which is embedded in AdS5 and sits at a point on S5.
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Figure 4.1: Four-point function of local operators inserted on the Wilson line from a
Witten diagram on the AdS2 worldsheet.

4.3 The 1d Defect CFT
Now that we have introduced this extended operator, it is time to explain its defect nature. In
Minkowski space, it corresponds to a point-like impurity in the 3d space, which evolves in time.
As a consequence, if we consider the defect to be part of the vacuum, the conformal symmetry of
N = 4 SYM is broken:

SO(5, 1)→ SO(2, 1)× SO(3) . (4.7)

If we restrict ourselves to operators inserted on the line, what we introduced in Section 4.1 under
the name of insertions, then the symmetry group SO(1, 2) corresponds to the 1d conformal group
and its generators correspond to the dilatations, translations and special conformal transformations
along the line. On the other hand, the subgroup SO(3) refers to rotations orthogonal to the defect.

Because of the presence of the scalar field φ6 in (4.5), the defect also breaks the R-symmetry from
SO(6)R to SO(5)R. This choice entails that SO(5)R rotates the five scalars φi (i = 1, . . . , 5) that do
not couple to the line and are therefore protected operators. In this setup, the full superconformal
algebra psu(2, 2|4) ofN = 4 SYM breaks into the N = 8 superconformal quantum mechanics algebra
osp(4∗|4).

The leftover scalar field φ6 is the only scalar of length L = 1 that couples to the Wilson line,
due to our choice of θ = (0, 0, 0, 0, 0, 1). This operator can be seen as the 1d analog of the famous
Konishi operator in 4d N = 4 SYM: it is the lowest-dimensional unprotected operator at weak
coupling, and it is not degenerate. Perhaps the main difference is that it flows to a “two-particle”
state at strong coupling (i.e. ∆ = 2), whereas the Konishi operator decouples in this limit. As a
result, the conformal dimension of φ6 has been determined up to five loops at weak coupling [17]
and up to four loops at strong coupling [22].

In the next section, we enter into detail about the correlation functions of insertions on the
Wilson line. For now, let us underline the fact that they are also constrained by the 1d conformal
symmetry in a way analogous to higher-dimensional CFTs, and they can be interpreted as charac-
terizing a defect CFT1 living on the Wilson line [26, 28]. This CFT1 should then be fully determined
by the spectrum of scaling dimensions and OPE coefficients.

The states of this CFT1 live in unitary representations of OSp(4∗|4), and they can be organized
in superconformal multiplets labeled by four quantum numbers: the scaling dimension ∆ associated
with the 1d conformal group, the spin s associated with the internal SO(3) symmetry and finally the
SO(5) Dynkin labels [a, b] associated with the R-symmetry. These representations were classified
in [98, 99].

This CFT1 particularly hosts 1/2-BPS multiplets denoted by Bk, whose superconformal pri-
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maries have the quantum numbers

{∆, s, [a, b]} = {k, k, [0, k]} , k ∈ Z . (4.8)

These operators are protected, and they are relevant for this work.
The first multiplet we discuss in detail is B1, which contains the simplest superconformal pri-

maries of the theory: the scalars φi (with ∆ = 1). This multiplet also contains the components of
the field-strength Fti ≡ iFti + Diφ

6 (with ∆ = 2) along the directions i = 1, 2, 3 transverse to the
line. Fti is also known as the displacement operator, which can be defined for any defect in any CFT,
and it measures generically the changes of the Wilson line/loop under deformations orthogonal to
the contour.

The other important multiplet is B2 which contains the superconformal primary operators

OijS := φiφj − φjφi − 2
5δ

ijφkφk (4.9)

of protected ∆ = 2.
As introduced in Section 2.2, alongside short multiplets, there are long ones, which in principle,

do not preserve any supercharges. They are denoted by L∆
s,[a,b], with the indices corresponding to

the quantum numbers of the primary. For long operators, ∆ is a non-trivial function of the coupling
g.

In [99] several selection rules for the OPE were deduced. In particular, the followings OPEs are
relevant to us:

B1 × B1 → 1 + B2 +
∑
∆>1

L∆
0,[0,0] , (4.10a)

B1 × B2 → B1 + B3 +
∑
∆

L∆
0,[0,1] , (4.10b)

where L∆
0,[0,0] and L∆

0,[0,1] are the unprotected multiplets. The first transforms as a singlet under the
global SO(5)×SO(3) symmetry and the second is a singlet under SO(3) but transforms in the [0, 1]
representation of SO(5). There are infinitely many multiplets with such quantum numbers, all with
unprotected scaling dimensions. As shown in (4.10), the whole infinite set of such multiplets can
appear in the fusion of two operators in the displacement multiplet.

Before moving to correlation functions, we conclude this section by coming back to the dual
Wilson line picture introduced in Section 4.2. The fundamental open string stretching in AdS
preserves the same OSp(4∗|4) as the Wilson line [100]. In particular, the 1d conformal group is
realized as the isometry of AdS2.

Expanding the string action in static gauge around the minimal surface solution, one finds [101]
that the AdS2 fluctuations transverse to the string include five massless scalars ya corresponding to
the S5 directions, three massive scalars xi with m2 = 2 corresponding to the AdS5 fluctuations and
finally eight fermionic modes.

It is, therefore, natural to identify these excitations, which can be thought of as fields living in
AdS2, with the CFT1 insertions that we have just introduced [102, 103]. Particularly, the massless
ya fields should be dual to the scalars φi, while the three AdS5 fluctuations xi should be dual to
the field strength operators Fti, according to the standard relation m2 = ∆(∆− d) between AdSd+1
scalar masses and the corresponding CFTd operator dimensions. More information about this CFT1
dual can be found in [27], where four-point functions of bosonic excitations have been computed at
strong coupling using Witten diagrams.

4.4 Correlation Functions on the Defect
As anticipated, in this thesis, we consider correlation functions of operators in the scalar sector,
which involve only the six fundamental scalar fields φI(τ) (I = 1, . . . , 6) of the bulk theory. Op-
erators are constructed by effectively inserting them inside the trace of the Wilson line, and we
can now understand why we refer to them as insertions. Moreover, we consider only single-trace
representations of the algebra, which we introduced in Section 3.2.2.
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A generic n-point correlation function of the defect single-trace operators is to be understood
in the following way1:

〈φI1 . . . φIn 〉1d := 1
N
〈 tr P

[
φI1 . . . φIn exp

ˆ ∞
−∞

dτ
(
iẋµAµ + |ẋ|φ6)] 〉4d , (4.11)

where we suppress the dependency on τ1, . . . , τn (for the local insertions) and on τ (for the Wilson
line itself) for compactness. Without loss of generality we consider the τ ’s to be ordered, i.e.
τ1 < τ2 < . . . < τn. This type of correlators is illustrated in Figure 4.2. The brackets on the
left-hand side refer to correlators in the 1d defect theory, while the ones on the right-hand side
correspond to correlators in the 4d bulk theory. From now on 〈 . . . 〉 always refers to 1d correlators,
hence we drop the subscript.

. . .τ1 τ2 τn−1 τn

φI1 φI2 φIn−1 φIn

W`

Figure 4.2: Representation of the correlation functions (4.11) in the 1d defect CFT, defined
by inserting operators on the Maldacena-Wilson line. At the points τ1 , . . . , τn, scalar fields
are inserted inside the trace of the Wilson line operator.

These correlation functions correspond to single-trace operators2, in the sense that there is only
one overall color trace in (4.11). This differs from the bulk theory case, where each operator carries
its own trace. This property is specific to the defect theory, and it is crucial to construct correlators
involving operators of higher R-charge. This can be done by bringing two operators close to each
other. We refer to this limit as pinching, and we explain it in more detail at the end of this section.

In Part II, where we present our perturbative results, we consider in particular unit-normalized
correlation functions, which are defined in the following way:

〈〈φI1 . . . φIn 〉〉 := 〈φ
I1 . . . φIn 〉
√
nI1 . . . nIn

, (4.12)

with nI , the normalization constants related to two-point functions. Indeed this definition is chosen
such that

〈〈φI(τ1)φJ(τ2) 〉〉 = δIJ

τ2
12
, (4.13)

with τij := τi − τj . Note that the (classical) scaling dimension of the fundamental scalar fields φI
is ∆ = 1 due to their origin from a 4d bulk theory, which explains the form of the propagator in
(7.1), in spite of the theory being one-dimensional. The derivation of normalization constants and
their explicit expressions are covered in Section 7.1, where we also discuss in detail the difference
between two-point functions of protected φi and of the unprotected scalar φ6, which can be already
partially appreciated in Figure 4.3. We also assume normal ordering in the correlators, such that
all operators have vanishing one-point functions, as required by conformal symmetry.

Three-point functions of the scalars φI are also kinematically fixed by conformal symmetry and
read

〈〈φI(τ1)φJ(τ2)φK(τ3) 〉〉 =
cφIφJφK

τ∆IJK
12 τ∆JKI

23 τ∆KIJ
31

, (4.14)

with ∆IJK := ∆I + ∆J − ∆K . For protected operators, an appropriate tensor with R-symmetry
indices must be inserted in (7.33), and it follows directly that three-point functions with an odd
number of fundamental fields φi vanish since all R-symmetry indices must be contracted. We discuss
this tensor in detail in the following for the case of four-point functions.

1Generally, one normalizes the correlators by the expectation value of the Wilson loop without insertions.
However, the Wilson line has a trivial expectation value (4.6).

2In principle, multi-trace operators with the same quantum numbers can also be constructed. See
footnote 4 in [2] for more detail.
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Figure 4.3: Examples of diagrams contributing to the two-point functions of fundamental
scalars φI . The diagram on the left contributes to both 〈φiφj 〉 and 〈φ6φ6 〉, while the one
on the right contributes only to 〈φ6φ6 〉. We refer to this type of diagram as U-diagram
and they are described in detail in Section 4.5.2.

For higher n-point functions, conformal symmetry is not strong enough to fix the kinematical
form of the correlators. Nevertheless, it constrains them to be functions of n − 3 cross-ratios χi.
For convenience, we restrict ourselves to correlators of the operators φI , and we use the following
factorized form:

〈〈φI1 . . . φIn 〉〉 = K(τ1,∆φI1 ; . . . ; τn,∆φIn )AI1...In(χ1 , . . . , χn−3) , (4.15)

where we refer to AI1...In as the reduced correlator and χi are the spacetime cross-ratios, define such
that the following limit holds:

(χ1, χ2, . . . , χn−3) (τ1,τn−1,τn)→(0,1,∞)−→ (τ2, . . . , τn−2) , (4.16)

resulting in the following expressions:

χ1 =
τ12τ(n−1)n

τ1(n−1)τ2n
, χ2 =

τ13τ(n−1)n

τ1(n−1)τ3n
, . . . , χi =

τ1(i+1)τ(n−1)n

τ1(n−1)τ(i+1)n
. (4.17)

Notice that the 1− χi (which would be independent cross-ratios in a higher-dimensional CFT) are
given by

1− χ1 =
τ1nτ2(n−1)

τ1(n−1)τ2n
, 1− χ2 =

τ1nτ3(n−1)

τ1(n−1)τ3n
, . . . , 1− χi =

τ1nτ(i+1)(n−1)

τ1(n−1)τ(i+1)n
. (4.18)

Expression (4.15) is adopted whenever we deal with unprotected operators, which basically
means whenever φ6 appears, alone or alongside other (protected) operators. In these cases, the
R-symmetry indices, whenever present, are kept open.

However, anytime we deal only with protected operators, in order to have a more transparent and
useful expression, the reduced correlator depends explicitly not only on the spacetime cross-ratios
but also on n(n− 3)/2 R-symmetry cross-ratios ri , si , tij , to be defined shortly:

〈〈φi1 . . . φin 〉〉 = K(τ1,∆φi1 , u1; . . . ; τn,∆φin , un)A∆1...∆n
(χi; ri , si , tij) , (4.19)

where ui are complex vectors accounting for the R-symmetry indices of the protected operators:

φi ≡ ui · φ , (4.20)

and they satisfy u2 = 0 and u ·θ = 0, with θ introduced below (4.5). Again the prefactor K is chosen
such that the reduced correlator depends only on these cross-ratios.

Moving then to the definition of the R-symmetry cross-ratios, in analogy with the spacetime
cross-ratios, one can start to define the R-symmetry cross-ratios ri such that the indices have a
one-to-one correspondence with the spacetime cross-ratios, i.e.

r1 = (u1 · u2)(un−1 · un)
(u1 · un−1)(u2 · un) , r2 = (u1 · u3)(un−1 · un)

(u1 · un−1)(u3 · un) , . . . , ri = (u1 · ui+1)(un−1 · un)
(u1 · un−1)(ui+1 · un) . (4.21)

This correspondence implies that we have n− 3 ri.
Then the si are defined in analogy to 1− χi. This gives the following n− 3 cross-ratios:

s1 = (u1 · un)(u2 · un−1)
(u1 · un−1)(u2 · un) , s2 = (u1 · un)(u3 · un−1)

(u1 · un−1)(u3 · un) , . . . , si = (u1 · un)(ui+1 · un−1)
(u1 · un−1)(ui+1 · un) . (4.22)
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This convention for the prefactor and the spacetime cross-ratios is prevalent throughout the
paper. However, please note that in Sections 9.1.3, 9.2.1, and 9.2.2 we adopt a different convention
for the correlators presented there. In particular, the prefactor reads

K̃(τ1,∆φI1 ; . . . ; τn,∆φIn ) =
(

τ32

τ21τ31

)∆1 ( τn−1,n−2

τn,n−2τn,n−1

)∆n n−2∏
i=1

(
τi+2,i

τi+1,iτi+2,i+1

)∆i+1

, (4.23)

with τij := τi − τj as usual, while the spacetime cross-ratios are defined as

χ̃i := τi,i+1τi+2,i+3

τi,i+2τi+1,i+3
, (4.24)

and they are positive-definite. The prefactor as well as the cross-ratios are adopted from [104]3,
where they emerge naturally in the derivation of the conformal blocks in a particular channel, called
comb channel. This choice is particularly useful for extracting bosonic CFT data at weak coupling
from the correlators we present in the next part. However, this is not always a convenient choice,
and that is why we do not adopt it throughout the thesis.

4.4.1 Topological Limit
It is well-known that the correlators defined in (4.19) are topological when we set ui ·uj = τ2

ij , i.e. the
functions A∆1...∆n

are constant in this limit, in the sense that they do not depend on the variables
u and τ [34]4:

A(χ; r, s, t) topological lim−→ const . (4.25)

Therefore, we find it useful to define the remaining (n − 3)(n − 4)/2 R-symmetry cross-ratios tij
in such a way that they reduce in the topological sector to the analogs of the following spacetime
cross-ratios:

tij → (χi − χj)2 , (4.26)

namely
tij = (ui+1 · uj+1)(u1 · un)(un−1 · un)

(u1 · un−1)(ui+1 · un)(uj+1 · un) , (4.27)

with i = [1, n− 4] , j = [i+ 1, n− 3] and i < j.

4.4.2 Pinching Technique
To conclude this section, we introduce an important technique. Since the operators are inserted
inside the trace of the Wilson line, the pinching of two operators or more produces again single-
trace operators but with a higher length. For example,

〈〈φI1(τ1) . . . φIn−1(τn−1)φIn(τn)︸ ︷︷ ︸
two operators of length 1

〉〉 τn→τn−1−→ 〈〈φI1(τ1) . . . φIn−1(τn−1)φIn(τn−1)︸ ︷︷ ︸
one operator of length 2

〉〉 . (4.28)

This pinching technique allows to construct any single-trace scalar operator made of fundamental
scalar fields from correlation functions involving operators of length L = 1. Note that this is not the
case in the bulk theory, where the pinching of two single-trace operators produces a double-trace
operator, since each operator carries its own trace. Then, interestingly the information required to
solve the scalar sector of this theory is very much reduced compared to e.g. its bulk counterpart.

We might have concerns about divergences that occur when we bring the operators close together.
However, in the specific context of protected operators, as addressed in this study, it’s worth noting
that all these divergences arising from individual contributions to these correlators actually cancel
out in the final result, as we expect.

3Note that in [104] the points are ordered as τ1 > τ2 > . . . > τn.
4They can however still depend non-trivially on the ’t Hooft coupling λ and the number of colors N .
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4.4.3 Expansion in Conformal Blocks
As we discussed in Section 2.3.3, expanding a correlation function in terms of conformal blocks is a
useful tool, as e.g. it allows to extract CFT data. In our context, the block expansion is relevant
for two reasons. On one hand, it serves as an important consistency check of the results we derive
at weak coupling; on the other hand, it is central to the bootstrap of a five-point function at strong
coupling.

Expanding a four-point correlator, as we illustrated in Section 2.3.3, is quite established. How-
ever, an analogous expansion for multipoint correlators is a realm that nowadays remains largely
unexplored. In this thesis, we move a step further in this exploration.

In this section, we introduce the blocks topologies that we will encounter and use: the comb and
the snowflake OPE channels.

Comb Channel
Let us start by reviewing the comb channel. Four-point blocks in d = 1 have been known for a long
time [105], but only recently this work was extended to higher-point functions [104]. Five-point
point blocks were also derived for generic dimension d in [106].

This channel consists of taking one by one the OPE of an external operator with an internal
operator, as represented in Figure 4.45.

We focus particularly on the case where all the external operators are identical scalar fields of
length L = 1.

∆1 ∆n−3φI1

φI2 φI3 φ
In−2 φ

In−1

φIn

. . .

Figure 4.4: Representation of the comb channel for n-point correlation functions. The
vertices correspond to bosonic OPE coefficients, which can be interpreted as three-point
functions in the bosonic theory. For n external operators, there are n − 3 operators being
exchanged.

For a given R-symmetry channel6, the reduced correlator of such n-point functions can be
expanded in blocks in the following way:

AI1...In =
∑

O1,...,On

cφI1φI2O1cO1φI3O2 . . . cOn−4φ
In−2On−3

cOn−3φ
In−1φIn g∆1,...,∆n−3(χ1, . . . , χn−3) ,

(4.29)

where ∆k refer to the scaling dimension of the exchanged operators, and cO1O2O3 are the three-point
coefficients defined in (7.33). In the case where all the scalar fields are protected, we consider the
highest-weight R-symmetry channel F0. If the operators are all unprotected, then there is only one
R-symmetry channel, which is labeled A6...6.

The functions g∆1,...,∆n−3 correspond to the comb conformal blocks derived in [104] and for
identical external operators φ, they are defined as

g∆1,...,∆n−3(χ1, . . . , χn−3) :=
n−3∏
k=1

χ∆k

k

× FK
[

∆1,∆1 + ∆2 −∆φ, . . . ,∆n−4 + ∆n−3 −∆φ,∆n−3
2∆1, . . . , 2∆n−3

;χ1, . . . , χn−3

]
, (4.30)

5The exception being, of course, the two extremities, where we have to take the OPE of two external
operators.

6An R-symmetry channel corresponds to a fixed choice of indices I1, . . . , I6.
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where the function FK is a multivariable hypergeometric function defined by the following expansion:

FK

[
a1, b1, . . . , bk−1, a2

c1, . . . , ck
; x1, . . . , xk

]

=
∞∑

n1,...,nk=0

(a1)n1
(b1)n1+n2

(b2)n2+n3
· · · (bk−1)nk−1+nk (a2)nk

(c1)n1
· · · (ck)nk

xn1
1
n1! · · ·

xnkk
nk! . (4.31)

Here (a)n = Γ(a+ n)/Γ(a) refers to the Pochhammer symbol.

Snowflake Channel

We now move our attention to the other topology appearing for multipoint functions with
n = 6, the so-called snowflake channel, represented diagrammatically in Figure 4.5.

φI1φI2

φI3

φI4 φI5

φI6∆1
∆2

∆3

Figure 4.5: Representation of six-point functions in the snowflake channel. Here the OPEs
are taken pairwise between external operators and lead to the OPE coefficient consisting of
products of four three-point functions, represented by the vertices.

In this case, the OPE limits consist of bringing two neighboring external operators close
to each other pairwise, and this has for consequence that the OPE coefficient in the middle
can consist of operators that are all different from the external ones, as opposed to the
comb channel of the previous section, where at least one external operator is present in
the three-point functions. As above, we specialize our analysis to the case where all the
external operators are identical and are of length L = 1, i.e. correlation functions that
involve either the protected fundamental scalars φi or the unprotected one φ6.

Explicit expressions for these blocks have already appeared in the literature [107], how-
ever here we use different cross-ratios that make the blocks symmetric in all its arguments.7
Here is the new set of cross-ratios that we use:

z1 = τ12τ46
τ16τ24

, z2 = τ26τ34
τ23τ46

, z3 = τ24τ56
τ26τ45

. (4.32)

As usual, six-point functions can then be decomposed into conformal prefactor and reduced
correlator:

〈〈φI1(τ1) . . . φI6(τ6) 〉〉 = K(τ1,∆φI1 ; . . . ; τ6,∆φI6 )AI1...I6(z1 , z2 , z3) . (4.33)

For the choice of the conformal prefactor, we also adopt the convention of [108], that we
7We thank Lorenzo Quintavalle for sharing these formulae with us.
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specialize to identical operators:

K(τ1,∆φ; . . . ; τ6,∆φ) = 1
τ2∆φ12 τ2∆φ34 τ2∆φ56

. (4.34)

For a given R-symmetry channel, correlators can be expanded in the following way:

AI1...I6(z1 , z2 , z3) =
∑

O1 ,O2 ,O3

cφI1φI2O1cφI3φI4O2cφI5φI6O3cO1O2O3g∆1,∆2,∆3(z1, z2, z3) ,

(4.35)

where now the function g∆1,∆2,∆3 corresponds to the snowflake conformal blocks. For our
purposes, we write a series expansion of the form

g∆1,∆2,∆3 (z1 , z2 , z3) = z∆1
1 z∆2

2 z∆3
3

∑
n1,n2,n3

c̄n1,n2,n3z
n1
1 zn2

2 zn3
3 , (4.36)

where we only need the coefficients c̄n1,n2,n3 for low values of n1, n2, n3
8. It is easy to

determine the coefficients up to an overall normalization by applying the Casimir equations
on the blocks order by order (see Appendix E), and this results in the following expansion
of the full correlator:

AI1...I6(z1 , z2 , z3) = 1 + cφI1φI2O∆=1
cφI3φI4O∆=1

cφI5φI61cO∆=1O∆=11z1z2 + . . . , (4.37)

where we have used the fact that terms with two ∆’s set to zero vanish since one-point
functions vanish. We note that cφI5φI61cO∆=1O∆=11 = 1 because of the unit-normalization of
two-point functions. We have labeled the exchanged operator with (bare) scaling dimension
∆ = 1 as O∆=1, but we see in Section 9.2.3 that in our two cases of interest, this operator
always turns out to be φ6.

4.5 Insertion Rules
In Section 3.2.5, we discussed the Feynman diagrams and the insertions rules for the bulk
diagrams and their respective integrals. However, in the presence of the line, new types of
integral arise, in addition to the bulk ones.

In particular, we have to deal with two types of boundary integrals that we name T -
integrals and U -integrals.

4.5.1 T -Integrals

We denote the first type of integrals that we encounter by Tij;kl9, and define them to be

Tij;kl := ∂ij

ˆ τl

τk

dτm ε(ijm)Yijm , (4.38)

where ε(ijk) encodes the change of sign due to the path ordering, formally defined as

ε(ijk) := sgn τij sgn τik sgn τjk . (4.39)

When the range of integration is the entire line, the integral is easy to perform and
8In [107] a different Taylor expansion is used with a closed-form expression for the corresponding coef-

ficients c̄n1,n2,n3 .
9This class of integrals also appears in [16], where they are defined slightly differently and labeled as

Bij;kl.
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results in
Tij;(−∞)(+∞) = −Iij12 . (4.40)

In the case where (i, j) = (k, l) it gives

Tij;ij = Iij
12 . (4.41)

We enter into further detail about this class of integrals in Appendix C.1.2.

4.5.2 U-Integrals

Since the scalar φ6 couples directly to the Wilson line, there is another class of integrals
that we have to consider. We denote these integrals by Ua;ij and they are defined as

Ua;ij :=
ˆ τj

τi

dτn Ian , (4.42)

where a is the insertion point of the scalar φ6 on the Wilson line and ij indicate the range
of integration. These integrals can be easily performed explicitly, and their expression can
be found in (C.24).

Given that we are interested in next-to-leading order computations, we have to consider
also integrals of the type (4.42), that arise when two scalars φ6 couple to the Wilson line.
We refer to these integrals as U (2)

ab;ij and they are defined as

U
(2)
ab;ij :=

ˆ τj

τi

dτn IanUb;nj =
ˆ τj

τi

dτnIan

ˆ τj

τn

dτmIbm . (4.43)

In Appendix C.1.2, the explicit expressions of these integrals in three different configu-
rations can be found (see equations (C.25)).

Figure 4.6: Illustration of the two types of U -integrals that one can encounter: on the
left, there are two U -integrals of the first type, while on the right, we have one of the second
type. The main difference between them lies in the integration limits.
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CHAPTER 5

Mellin Representation Formalism

In this chapter, we introduce the last character of this thesis: the Mellin formalism for con-
formal theories. In particular, we outline its main features for a generic higher-dimensional
theory. The following quick review is mostly based on [109].

As we mentioned in the introduction Section 1.2, the Mellin representation has proven
to be an excellent tool for finding simpler representations of correlation functions of local
operators in CFTs. These are rather complicated functions of the cross-ratios, of crucial
importance in the AdS/CFT correspondence. For this reason, we would like to apply this
useful representation to the correlators we introduced in the previous chapter, the insertions
on the Wilson line, and their holographic counterparts. Therefore, we set the stage for an
inherently one-dimensional Mellin transform, which is the primary goal of this work [1],
and thus will be presented in detail in Chapter 10.

The Mellin transform has been used in various contexts, for example, in computer
science for the analysis of algorithms due to its scale-invariant properties. Although, it
is only in 2009 that Mellin amplitudes were properly introduced by Mack [41, 110] in the
context of CFT and further developed by Penedones [42]. Throughout the last ten years,
they turned out to be particularly useful for the study of holographic CFTs [43–45], thanks
to their similarity with scattering amplitudes of dual resonance models. In particular, they
are crossing symmetric and meromorphic functions, manifesting a correspondence between
their poles and the OPE coefficients. We can take this analogy further, and in the case of
holographic CFTs, we can get bulk flat space scattering amplitudes as a limit of dual CFT
Mellin amplitudes.

5.1 Definition
Let us consider the n-point function of scalar primary operators and let us write this generic
correlator in terms of the Mellin amplitude M(γij)1:

〈φ1(x1) . . . φn(xn) 〉 =
ˆ

[dγij ]M(γij)
n∏

1≤i<j≤n

Γ(γij)
|xi − xj |2γij

, (5.1)

1We use the shorthand notation M(γij) to denote a function M(γ12, γ13, . . . ) that depend on all the
Mellin variables γij .
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where γij are the Mellin variables. These need to satisfy some constraints imposed by
conformal symmetry:

n∑
j=1

γij = 0 , γij = γji , γii = −∆i , (5.2)

being ∆i the scaling dimension of the operators. We can also define a reduced Mellin
amplitude M̂(γij) = M(γij)

∏n
i<j Γ(γij) for convenience2. We should notice that in the

case of n = 2, 3, the Mellin variables are entirely fixed by the constraints (5.2), therefore
the Mellin representation just gives back the known form of the conformal two- (2.20) and
three-point functions (2.21). The integration measure [dγij ] runs over the independent
Mellin variables, which depends on the number of spacetime dimensions d:

n < d+ 1 : 1
2 n(n− 3) ,

n > d+ 1 : nd− 1
2(d+ 1)(d+ 2) ,

(5.3)

where we include a factor of 1
2πi for each variable. Finally, the integration contour runs

typically parallel to the imaginary axis. However, the precise contour in the complex plane
depends on the poles of the integrand. Normally, the contour must lie on the left/right of
the semi-infinite sequences of poles that run to the left/right. Although, in some cases, to
ensure the convergence of the integral, it is necessary to perform some “regularizations” in
the form of subtractions. This procedure is explained in [111] for the higher-dimensional
case. My collaborators and I specialized it to the one-dimensional case as well in [1]. We
explain this regularization in Section 10.2.2.

Coming back to the constraints (5.2), we can actually solve them by introducing some
fictitious “momentum” variables pi, living in a D-dimensional space:

γij = pi · pj . (5.4)

These variables obey two conditions:

“momentum conservation”:
n∑
i=1

pi = 0 , (5.5a)

“on-shell” condition: p2
i = −∆i . (5.5b)

Counting now these “Mandelstam variables”:

n < D : 1
2n(n− 3) ,

n > D : n(D − 1)− 1
2D(D + 1) ,

(5.6)

we conclude that the number of independent Mandelstam variables in D dimensions coin-
cides precisely with the number of independent conformal cross-ratios in d dimensions if we
set D = d+ 1, and of course with the number of integration variables.

We can consider the more specific case of a four-point function of scalar operators of
dimension ∆. In this case, there are two independent Mellin variables, which we choose to

2The choice of the Γ-functions to factorize out is important to compensate an essential singularity of
the Mellin amplitude. For further details, check out Section 10.2.3.
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be γ12 and γ14, leading to

〈φ∆(x1) . . . φ∆(x4) 〉 = 1
(x13x24)2∆

ˆ +i∞

−i∞

dγ12γ14
(2πi)2 M̂ (γ12, γ14)u−γ12v−γ14 , (5.7)

where u and v are the usual cross-ratios defined in (2.11) and

M̂ (γ12, γ14) = M (γ12, γ14) Γ2 (γ12) Γ2 (γ14) Γ2 (∆− γ12 − γ14) . (5.8)

To understand where the contour lies, we need to consider that the Γ-functions give rise to
semi-infinite sequences of (double) poles at

γ12 = 0,−1,−2, . . . ,
γ12 = ∆− γ14,∆− γ14 + 1,∆− γ14 + 2, . . . ,

(5.9)

and the Mellin amplitude M (γij) also has the same type of semi-infinite sequences of poles,
as we explore in the next section. The integration contour should then pass in the middle of
these sequences of poles, as shown in Figure 5.1. The invariance of the four-point function,
under permutation of the insertion, points xi, leads to the crossing symmetry of the Mellin
amplitude:

M (γ12, γ13, γ14) = M (γ13, γ12, γ14) = M (γ14, γ13, γ12) , (5.10)

where the three variables obey a single constraint: γ12 + γ13 + γ14 = ∆. This is reminiscent
of crossing symmetry for scattering amplitudes, written in terms of Mandelstam invariants.

Figure 5.1: Integration contour for the Mellin variable γ12. The dots represent the (dou-
ble) poles of the Γ-functions given by (5.9). In general, the Mellin amplitude has several
semi-infinite sequences of poles, and each sequence should stay entirely on one side of the
contour.

5.2 Connection with the OPE
A characteristic that makes the Mellin representation so interesting and useful is that it
encodes the OPE into simple analytical properties for M(γij). Let us write again the OPE
of two operators (2.24) that we discussed in Section 2.3.2, this time making explicit the
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first contribution to the sum:

φi(xi)φj(xj)
x1→x2=

∑
φk

cφ1φ2φk

((
x2
ij

)−∆i+∆j−∆k
2 φk (xk) + descendants

)
, (5.11)

where for simplicity, φk is taken to be a scalar operator. To reproduce the leading behavior
as x2

ij → 0, M must have a pole at γij = ∆i+∆j−∆k

2 , as it can be seen by closing the
γij integration contour to the left of the complex plane. More generally, the location of
the leading pole is controlled by the twist τ of the exchanged operator3. For any primary
operator φk of twist τk that contributes to the OPE, M̂(γij) has poles at

γij = ∆i + ∆j − τk − 2n
2 , n = 0, 1, 2 . . . , (5.12)

where the poles with n > 0 correspond to the contributions from the descendants since they
contribute with an infinite sequence of satellite poles. If the CFT has a discrete spectrum
of scaling dimensions, then its Mellin amplitudes are analytic functions with single poles
at its singularities (meromorphic functions). It is also clear that the residues of these poles
are proportional to the product of the OPE coefficient cφ1φ2φk and the Mellin amplitude of
the lower point correlator 〈φk . . . 〉. For the precise formulae, check [41, 112].

We can point out another reason why it is useful to distinguish between the Mellin M
and the reduced Mellin M̂ . In fact, M has simpler factorization properties. In particular,
we come back to the four-point function, and for convenience, we write the Mellin amplitude
in terms of the “Mandelstam invariants”:

s = − (p1 + p2)2 = ∆1 + ∆2 − 2γ12 ,

t = − (p1 + p3)2 = ∆1 + ∆3 − 2γ13 .
(5.13)

Now the s-channel4 OPE implies that the Mellin amplitude M(s, t) has poles in s with
residues that are polynomials of t:

M(s, t) ≈ cφ1φ2φkcφ3φ4φk

Qsk,n(t)
s−∆k + sk − 2n, n = 0, 1, 2, . . . , (5.14)

where Qs,n(t) are kinematical polynomials of degree s in the variable t, called Mack poly-
nomials. This strengthens the analogy with scattering amplitudes. Each operator of spin
s in the OPE φi × φj gives rise to poles in the Mellin amplitude that are very similar to
the poles in the scattering amplitude associated with the exchange of a particle of the same
spin.

5.3 Planar Correlators
We now focus our attention on correlators that are relevant in our case, which is in the
planar limit. We discussed the details of this regime in Section 3.2.4.

The Mellin formalism is quite powerful when applied to planar correlators. While in
a general CFT the analytic structure of Mellin amplitudes is quite complicated, it gets
much simpler at large N . To appreciate this characteristic, we can analyze two different
perspectives.

On the one hand, we can note that in the Mellin representation the Γ-functions have
themselves poles at fixed positions. However, in a generic CFT, there are no operators with

3The twist τ of an operator is given by the conformal dimension minus the spin: τ ≡ ∆− s.
4This corresponds to take the OPE as illustrated in the LHS of (2.25).



5.4. Holographic CFTs 41

these scaling dimensions. Therefore the Mellin amplitude must have zeros at these values
to cancel these unwanted OPE contributions. Nevertheless, we expect precisely this type
of contributions in correlation functions of single-trace operators in large N CFTs.

On the other hand, a remarkable theorem [113, 114] about the spectrum of CFTs in
dimension d > 2 states that for any two primary operators φi and φk of twists τi and τj ,
and for each non-negative integer k, the CFT must contain an infinite family of the so-
called “double-twist” operators with increasing spin s and twist approaching τ1 + τ2 +2k as
s→∞. This implies that the Mellin amplitude has infinite sequences of poles accumulating
at these asymptotic values of the twist, so it is not a meromorphic function.

Merging together these two perspectives, we can note where a key simplification oc-
curs in large N CFTs: the double-twist operators are recognized as the usual double-trace
operators [42]. Therefore we witness a factorization: the poles corresponding to the ex-
changed double-trace operators are precisely captured by the product of the gamma func-
tions

∏n
i<j Γ(γij), while the Mellin M has only poles associated with single-trace operators.

5.4 Holographic CFTs
We conclude this introductory chapter on Mellin amplitudes by showing how this formalism
can be extremely effective in simplifying the expressions of holographic correlators. This
representation could be considered analogous to the Fourier transform for these correlators.

The best way to illustrate this property is by considering a calculation of a Witten
diagram. In particular, we consider a contact Witten diagram as in Figure 5.2, which
corresponds to an interaction vertex λφ1 . . . φn in the bulk lagrangian, what it is commonly
called a D-function.

Figure 5.2: Witten diagram for an n-point contact interaction in AdS. The interior of
the disk represents the bulk of AdS, and the circumference represents its conformal bound-
ary. The lines connecting the boundary points x′i to the bulk point (z, x) represent bulk-to-
boundary propagators.

For external dimensions ∆i and in the general case of AdSd+1, it can be defined as

〈O1(x1) . . .On(xn) 〉 =
ˆ
dzddx

zd+1 K̃∆i

(
z, x;x′1

)
. . . K̃∆i

(
z, x;x′n

)
(5.15)
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via the bulk-to-boundary propagator in d dimensions

K∆i

(
z, x;x′

)
= C∆i

[
z

z2 + (x− x′)2

]∆i

≡ C∆i
K̃∆i

(
z, x;x′

)
, C∆i

= Γ (∆i)
2
√
πΓ
(
∆i + 1

2

) .
(5.16)

Surprisingly the Mellin amplitude of this diagram is just a constant [42]:

M =
ˆ

[dγij ]

π
d/2Γ

[∑
∆i−d
2

]
∏

Γ [∆i]

×∏
i<j

Γ [δij ]
(
x2
ij

)−δij
. (5.17)

This can also be generalized to interaction vertices with derivatives [42].
Moreover, one can consider more complicated Witten diagrams, which are rather in-

volved functions of the cross-ratios but are again much simpler in Mellin space. They
describe the exchange of a bulk field dual to a single-trace boundary operator O∆ of spin
s, as depicted in Figure 5.3.

Figure 5.3: Witten diagram depicting the exchange of a bulk field, dual to an operator of
dimension ∆ and spin s.

The conformal block decomposition of this diagram in the s-channel contains the single-
trace operator O plus double-trace operators, schematically of the form O1

(
∂2)n ∂µ1...µjO2

and O3
(
∂2)n ∂µ1...µjO4. Moreover, the OPE in the crossed channels only contains double-

trace operators. This means that the Mellin amplitude is of the form

M(s, t) = cO1O2OcO3O4O

∞∑
n=0

Qs,n(t)
s−∆ + s− 2n +R(s, t) , n = 0, 1, 2, . . . , (5.18)

where the OPE coefficients cO1O2O and cO3O4O are proportional to the bulk cubic cou-
plings and R(s, t) is an analytic function. The residues are proportional to degree s Mack
polynomials Qs,n(t), which are entirely fixed by conformal symmetry.

To conclude, the Mellin amplitude was also determined for general tree-level scalar
Witten diagrams [43, 44, 115].
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CHAPTER 6

Recursion Relations

After having introduced all the necessary technical background, it is time to dive into
research. The first stop is dedicated to the development of the techniques and the tools
and it is based on [2, 3].

The goal for this chapter is to derive a set of recursion relations that allow us to compute
arbitrary correlators of insertions of fundamental scalar fields φI on the Maldacena-Wilson
line.

Particularly, we derive recursive formulae at weak coupling for both leading and next-
to-leading orders, in the case where an even number of φ6 scalars are inserted, while we
obtain only the leading order for the odd case.

We restrict this analysis to the large N limit, introduced in Section 3.2.4, and use the
’t Hooft coupling λ := g2N as the parameter of the perturbative expansion.

The plan is to first focus on correlators of the protected operators φi. Once we master
those relations, we include the (unprotected) scalar φ6 and study which complications brings
to the recursive formulae.

6.1 Recursion for Protected Operators
As a first step, we only consider operator of length L = 1, not only because it is, of
course, the simplest case but also because, thanks to the pinching property mentioned in
Section 4.4, it is enough to compute all the higher-point correlators of protected scalars.

For compactness, we define the following shorthand notation:

An(1, . . . , n) := 〈φi11 (u1, τ1) . . . φin1 (un, τn) 〉 , (6.1)

which we shall be studying at leading order (LO) and next-to-leading (NLO) order precision.
Notice that for odd n the correlators An vanish due to R-symmetry. Moreover, we consider
correlation functions that are not unit-normalized, since this is the natural normalization
to work with when doing perturbative computations. However, the results presented in the
subsequent chapters are unit-normalized.

6.1.1 Leading Order

We start by deriving a leading-order formula. For operators of scaling dimension ∆ = 1,
it is easy to find a recursive expression for n-point functions at leading order. In fact, this
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problem is related to a more mathematical one concerning meanders and arch statistics,
which was already solved in [116]. Adapting (3.1) of that paper to our case of interest, we
obtain the recursion

ALO
n (1, . . . , n) =

n
2−1∑
j=0

ALO
2 (1, 2j + 2)ALO

2j (2, . . . , 2j + 1)ALO
n−2−2j(2j + 3, . . . , n) , (6.2)

which can be represented diagrammatically as

ALO
n (1, . . . , n) =

n
2−1∑
j=0 1 2j + 2

t t , (6.3)

where t stands for the leading-order correlation function of appropriate length.
In the expression above, the starting values for the recursion are given by the vacuum

expectation value and by the two-point functions:

ALO
0 = 1 , ALO

2 (i, j) = λ

8π2 (ij) , (6.4)

with (ij) being

(ij) := (ui · uj)
τ2
ij

, τij := τi − τj . (6.5)

The two-point ALO
2 is discussed more in detail in Section 7.1.1.

As mentioned above, only correlators with an even number of operators are non-
vanishing, and two- and four-point functions can be compared with the results of [16],
with which they agree perfectly.

6.1.2 Next-to-Leading Order

At next-to-leading order, the situation becomes more intricate, not only because of the
appearance of 4d vertices, but also because some of them couple to the Wilson line. Nev-
ertheless, we can write a recursive diagrammatic formula, which produces all the relevant
Feynman diagrams for an arbitrary n-point function of φi1 operators:

ANLO
n (1, . . . , n) =

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

t t t t t

i j k l

4

+
n−1∑
i=1

n∑
j=i+1

t t t

i j

+
n−1∑
i=1

n∑
j=i+1

(
i−1∑
k=0

t t t t

i jk

+
j−1∑
k=i

t t t t

i jk

+
n+1∑
k=j

tt t t

i j k

)
+
n−3∑
i=1

n∑
j=i+3

t t

i j

A1-loop
j−i−1 .

(6.6)

Let us analyze this expression. First of all, its recursiveness is encoded in two different
aspects: on the one hand in the dependency on the leading-order correlators, which obey
the relation given in (6.2), on the other hand on the NLO correlators, as one can note
from the last term of the sum, where one should insert the NLO correlation function with
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n = j − i− 11.
Let us now describe in detail each term that appears in (6.6).

Bulk Diagrams

We start by looking at the diagrams associated with the bulk interactions, which are dis-
played on the first line of (6.6). In particular, the first one corresponds to the possible NLO
insertions involving four scalar lines, namely

4 := + + , (6.7)

and the associated diagram reads

t t t t t

i j k l

4

= A4
4(i, j, k, l)ALO

i−1(1, . . . , i− 1)ALO
j−i−1(i+ 1, . . . , j − 1)

×ALO
k−j−1(j + 1, . . . , k − 1)ALO

l−k−1(k + 1, . . . , l − 1)

×ALO
n−l(l + 1, . . . , n) . (6.8)

Using the insertion rules (3.32) and (3.33), we define the following four-point correlator as
a NLO building block:

A4
4(i, j, k, l) :=λ3

8 [(2(ui · uk)(uj · ul)− (ui · ul)(uj · uk)− (ui · uj)(uk · ul))Xijkl

+(ui · ul)(uj · uk)IilIjkFil;jk − (ui · uj)(uk · ul)IijIklFij;kl] . (6.9)

The results for the integrals Xijkl and Fij;kl associated with the insertion rules can be found
in Appendix C.1.1. Note that all the diagrams encompassed by this term are perfectly finite
as long as the external points are distinct.

The second and third lines in (6.6), corresponding to self-energy and Y -diagrams, also
add up to a finite result since divergences coming from the self-energy cancel with the ones
arising in the Y -diagrams. To be precise, the self-energy diagrams read

t t t

i j

= ASE
2 (i, j)ALO

i−1(1, . . . , i−1)ALO
j−i−1(i+1, . . . , j−1)ALO

n−j(j+1, . . . , n) ,

(6.10)
where we use as a building block the well-known expression for the scalar propagator at
NLO (see (3.39))

ASE
2 (i, j) := −λ2 (ui · uj)Yiij . (6.11)

Boundary Diagrams

We turn now our attention to the boundary contributions, which are encoded in the dia-
grams on the second line and in the first diagram of the third line of (6.6). In particular,
we start with the Y -diagrams. Note that inserting a gluon field on the Wilson line, which
we indicate with light blue dots, corresponds to expanding the exponential of (4.11) up to
the first order, and thus it results in a one-dimensional integral between the points before

1Note that it is recursive with respect to correlators on a finite line and not extending to ±∞. This is
explained in more detail below (6.20).
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and after the insertion. For example,

t t t t

k k + 1

:=
ˆ τk+1

τk

dτα t t t t

k α k + 1

. (6.12)

In order to show that the divergences cancel with the ones coming from the self-energy
graphs, it is convenient to express the Y -diagrams differently:

i−1∑
k=0

t t t t

i jk

= t t t

i j

−
i−2∑
α=1

i−1∑
β=α+1

t t t t t

α β i j

, (6.13)

where the red dots indicate the places where the gluon line should be connected. The sum
over i, j is implied here. It should be clarified that the diagrams on the right-hand side
should not be considered non-planar when the gluon line is crossing a scalar line. Similarly,
such a crossing does not generate an additional 4d vertex. Here the dots are intended to
only indicate the range of integration. It is easy to check that the relation (6.13) holds by
rewriting the integration limits of the left-hand side as

´ b
a =
´∞
−∞−

´ a
−∞−

´∞
b .

The same can be performed for the other two terms with Y -vertices, and we are left
with the following diagrams to compute:

t t t

i j

−
i−2∑
α=1

i−1∑
β=α+1

t t t t t

α β i j

−
j−2∑
α=i+1

j−1∑
β=α+1

t t t t t

α βi j

−
n−1∑
α=i+1

n∑
β=α+1

t t t t t

i j α β

,

which of course also have to be summed over i and j. By doing so, we have isolated the
divergences inside the first term since the integration ranges of the other terms do not
include the points τi and τj . Moreover, since the limits of integration of the first term are
−∞ and +∞, we can perform the integral analytically and extract the divergences. We
then find

t t t

i j

= AY,div
2 (i, j)ALO

i−1(1, . . . , i−1)ALO
j−i−1(i+1, . . . , j−1)ALO

n−j(j+1, . . . , n) ,

(6.14)
with

AY,div
2 (i, j) := λ2(ui · uj)Yiij + λ2

4 (ui · uj)Tij;0(n+1) , (6.15)

where the integral Tij;kl is defined in (4.38), with the subscripts 0 and n + 1 referring
respectively to −∞ and +∞. The case (0, n+1) = (−∞,+∞) can be found in (4.40). Since
the recursive structures of (6.10) and (6.14) are identical, it is clear that the divergences
of (6.11) and (6.15) cancel perfectly, and since the remaining T -integrals are finite, we are
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left with a finite expression.
The remaining term on the RHS of (6.13) is also finite and reads

t t t t t

α β i j

=AY
4 (i, j, α, β)ALO

α−1(1, . . . , α− 1)

×ALO
β−α−1(α+ 1, . . . , β − 1)ALO

i−β−1(β + 1, . . . , i− 1)

×ALO
j−i−1(i+ 1, . . . , j − 1)ALO

n−j(j + 1, . . . , n) , (6.16)

where the starting point evaluates to

AY
4 (i, j, α, β) := λ3

32π2τ2
αβ

(uα · uβ)(ui · uj)Tij;αβ . (6.17)

The two other terms (center and right) can be implemented in the very same way. For
the center term, we have

t t t t t

α βi j

=AY
4 (i, j, α, β)ALO

i−1(1, . . . , i− 1)

×ALO
α−i−1(i+ 1, . . . , α− 1)ALO

β−α−1(α+ 1, . . . , β − 1)

×ALO
j−β−1(β + 1, . . . , j − 1)ALO

n−j(j + 1, . . . , n) , (6.18)

while for the right one, we obtain

t t t t t

i j α β

=AY
4 (i, j, α, β)ALO

i−1(1, . . . , i− 1)

×ALO
j−i−1(i+ 1, . . . , j − 1)ALO

α−j−1(j + 1, . . . , α− 1)

×ALO
β−α−1(α+ 1, . . . , β − 1)ALO

n−β(β + 1, . . . , n) . (6.19)

The integrals in (6.17) give different results depending on the ordering of the variables
τi, τj , τα, τβ . The results have been collected in (C.21).

Recursive Diagram

The last term of the formula given in (6.6) encodes the recursiveness with respect to the
full next-to-leading order formula:

t t

i j

A1-loop
j−i−1 = ANLO

j−i−1(i+1, . . . , j−1)ALO
i−1(1, . . . , i−1)ALO

2 (i, j)ALO
n−j(j+1, . . . , n) .

(6.20)
However, we must be careful here, because the limits of integration for the inserted NLO
expression are not ±∞ but (0, n+ 1) = (i, j) for the Y -diagrams in (6.15).

The recursion relation (6.6) and the associated expressions are enough to determine
n-point functions of protected operators of length ∆ = 1. We meet correlators computed
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with this recursive formula in the following chapters. Anyway, many correlation functions
have been obtained using this recursion and can be found in [2] and in the ancillary Math-
ematica notebook.

6.2 Recursion Including Unprotected Operators
It is now time to add the remaining field φ6 in the recursion relation. In particular, we have
to distinguish between two cases: the formulae depend on whether an even or odd number
of φ6 operators is inserted on the Wilson line.

Similarly to (6.1), in this section, we use for compactness the following shorthand no-
tation for the correlators:

AI1...In := 〈φI1(τ1) . . . φIn(τn) 〉 . (6.21)

Note that this differs from (6.1) by the fact that we keep the R-symmetry indices open.
Of course, it is still valid that a correlator containing an odd number of protected scalars

φi vanishes, because of the R-symmetry indices. Therefore, in the following, we consider
the number of φi to always be even.

6.2.1 Even Case

We start our analysis by studying the case where an even number of unprotected scalars
φ6 is included in the correlator. This provides a generalization of the equations (6.3) and
(6.6).

Leading Order

We begin with a formula for the leading order. In this case, computing correlation functions
with an even number of φ6 operators is the same as computing correlation functions of only
protected operators φi, and thus the recursion relation is the same as equation (6.2), with
the difference that we now keep the R-symmetry indices open:

AI1...InLO =
n
2−1∑
j=0

A
I1I2j+2
LO A

I2...I2j+1
LO A

I2j+3...In
LO . (6.22)

The diagrammatical representation is identical to (6.3).
Arbitrary correlation functions of scalar fields can then be obtained by selecting R-

symmetry indices, as long as the number of φ6 is kept even.
In the expression above, the starting values for the recursion are given by the vacuum

expectation value and by the two-point functions:

ALO = 1 , AI1I2LO = λ

8π2
δI1I2

τ2
12

. (6.23)

Next-to-Leading Order

We turn our attention to the next-to-leading order, where the recursion relation becomes
more involved. For arbitrary operators (still with an even number of φ6), it consists of the
diagrams appearing in 〈φi1 . . . φin 〉, which must be complemented with the U -diagrams,
already introduced in Section 4.5.2, that account for the coupling of φ6 to the Wilson line.
An example of such diagrams can be found e.g. on the right in Figure 4.3. Explicitly, we
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have
AI1...InNLO = AI1...InNLO

∣∣∣
old

+ AI1...InNLO

∣∣∣
new

, (6.24)

where AI1...InNLO

∣∣∣
old

refers to (6.6)2, while the second term can be determined by considering
all the possible U -contractions:

AI1...InNLO

∣∣∣
new

=
n−1∑
j=1

n∑
k=j+1

(
n−2∑
l=k

n∑
m=l+2

t t t t t

j k l m

+
n∑
l=k

k−1∑
m=j

t t t t t

j m k l

+
j−3∑
l=0

j−1∑
m=l+2

t t t t t

l m j k

+
k−1∑
l=j

j−1∑
m=0

t t t t t

m j l k

+
k−1∑
l=j

n∑
m=k

t t t t t

j l k m

+
k−3∑
l=j

k−1∑
m=l+2

t t t t t

j l m k

+
j−1∑
l=0

n∑
m=k

t t t t t

jl mk

+
j−1∑
l=0

k−1∑
m=j

t t t t t

l j m k

)

+
n−3∑
j=1

n−1∑
k=j+2

(
n∑

l=k+1

n∑
m=l

t tO t t t

j k l m

+
n∑

l=k+1

l−1∑
m=k

t tO t t t

j k lm

)

+
n−2∑
j=2

n∑
k=j+2

(j−1∑
l=1

j−1∑
m=l

t t t tO t

l j km

+
j−1∑
l=1

l−1∑
m=0

t t t tO t

l j km

)

+
n−3∑
j=1

n−1∑
k=j+2

n∑
l=k+1

j−1∑
m=0

t t tO t t

jm k l

+
n−2∑
j=3

n∑
k=j+2

j−1∑
l=1

n∑
m=k

t t tO t t

l mkj

+
n−5∑
j=1

n−3∑
k=j+2

n−2∑
l=k+1

n∑
m=l+2

t tO t tO t

k l mj

, (6.25)

where every sum should be considered as going in steps of 2. In the recursion, we find tO

to indicate that a leading-order contribution of appropriate odd length has to be inserted
there. These contributions are derived in Section 6.2.2 and are given in equation (6.27).

This recursive expression is lengthy but easy to understand: it corresponds to summing
over all the possible U -diagrams. When propagators end on the Wilson line without a dot,
it means that the integration limit of the U -integral goes from the previous propagator to
the next. More concretely:

i jn a

tt :=
ˆ τj

τi

dτn Ian , (6.26)

where we have not included the leading-order insertions t on the right-hand side for the
sake of clarity.

The explicit form of this diagrammatic expression is particularly long, therefore we give
it in Appendix C.2. It is important to note that two types of U -integrals appear in that
expression, the ones defined in (4.42) and (4.43).

This formula has been implemented in the ancillary notebook of [3] and can readily
be used for producing arbitrary correlators composed of fundamental scalar fields φI (I =

2Note again that when we deal with unprotected operators we keep the indices open. This change is
easy to implement in (6.6) by removing the null-vectors ui and keeping the R-symmetry indices of the
fundamental fields open.
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1 , . . . , 6). The technical details related to the recursion relation and the U -integrals can be
found in Appendices C.1.2 and C.2.

In later sections, we refer to the terms AI1...InNLO

∣∣∣
old

appearing in equation (6.24) as building
blocks since these terms appear in all the correlation functions involving fundamental scalar
fields. On the other hand, the second term AI1...InNLO

∣∣∣
new

is only relevant when some of the
R-symmetry indices are set to Ik = 6.

The recursive nature of this relation is again encoded in (6.20), where now the full
expression AI1...InNLO on the left-hand side of (6.24) should be used as input for this recursive
term.

6.2.2 Odd Case

We finally consider the case where an odd number of φ6 appears in the correlators, while
the number of protected scalars φi is still kept even. We restrict our analysis to the leading
order since a coupling to the Wilson line already appears here and hence it corresponds to
the interacting theory.

Diagrammatically the formula reads

AI1...InLO (1, . . . , n) =
n∑
i=1


i−1

2∑
j=0

t t t

2j i

+
n
2∑

j= i
2

t t t

i 2j


+
n−1∑
i=1

n∑
j=i+2

t tO t

i j

, (6.27)

where the sum in the second line goes in steps of 2, and where tO are the leading-order
correlation functions with an odd number of points of the appropriate length. Again it
is fairly easy to understand the formula: these three terms ensure that all the possible
U -diagrams are represented, either when the propagator of equation (6.26) closes over
leading-order contractions (the first two terms) or when the U -integral is contained inside
a leading-order propagator (the third one).

The diagrammatic expression given above can be expressed formally as

(6.27) =
n∑
i=1

( i−1
2∑
j=0

λ

8π2 δ
i6Ui;2j(2j+1)A

I1,...,I2j
LO A

I2j+1,...,Ii−1
LO A

Ii+1,...,In
LO

+
n
2∑

j= i
2

λ

8π2 δ
i6Ui;2j(2j+1)A

I1,...,Ii−1
LO A

Ii+1,...,I2j
LO A

I2j+1,...,In
LO

)

+
n−1∑
i=1

n∑
j=i+2

A
IiIj
LO A

I1,...,Ii−1
LO A

Ij+1,...,In
LO A

Ii+1,...,Ij−1
LO , (6.28)

again with the sum in the last line going in steps of 2. The starting values of the recursion
are the same as in (6.23).

To conclude, in this chapter, we presented recursion relations that allow us to compute
arbitrary correlators of fundamental scalar fields φI , both at leading and next-to-leading
orders for the even case and at leading order for the odd case. We underline once more
that these recursive formulae are implemented in the ancillary Mathematica notebook of
[3] and they are ready to be used.

In the following chapters, we consider concrete examples of correlators that can be
computed using these expressions.



CHAPTER 7

Two- and Three-Point Functions

Now that the main techniques and tools have been introduced, we can start to explore
their applications. In particular, as already delineated in the preliminaries, we focus on
insertions of scalar operators on the Maldacena-Wilson line. This chapter is based on [2, 3].

The starting point when looking at conformal correlators is the study of two- and three-
point functions1.We have already introduced their general features in Section 2.3.1, but we
now specialize their analysis to protected and unprotected insertions on the Wilson line.

In particular, for operators of lengths L = 1, 2, we obtain the normalization constants
and scaling dimensions up to next-to-leading order, and compare the results to the literature
when possible. The combination of the recursion relations and the pinching technique allow
us to compute correlation functions of some composite operators too.

7.1 Two-Point Functions and Anomalous Dimensions
We start by computing two-point functions both for protected and unprotected operators
of lengths L = 1, 2. We obtain normalization constants as well as anomalous dimensions,
which for the latter can be compared to the existing literature, while to the best of our
knowledge, the normalization constants are new results. The method presented here can
be extended straightforwardly to operators of higher length consisting of the elementary
scalar fields φI .

7.1.1 Operators of Length L = 1
As explained in Section 4.3, there are two distinct operators of length L = 1, which are
the half-BPS operators φi and the unprotected scalar field φ6. Computing their two-point
correlators is not only useful to extract the normalization constants but it is also a sanity
check.

Starting from the protected operators φi, which have exact conformal dimensions ∆ = 1,
conformal symmetry fixes their two-point functions to be of the form

〈φi(τ1)φj(τ2) 〉 = = ni
ui · uj
τ2

12
, (7.1)

1In general, in CFTs one-point functions are zero. It is also the case in this setup. Though, notice that
if we had considered the correlator of a bulk operator in the presence of a defect (the Wilson line in our
case), we would have obtained a non-vanishing one-point function.
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where the normalization constant ni is known to be [13, 117]

ni = 2B(λ) =
√
λ

2π2
I2(
√
λ)

I1(
√
λ)
, (7.2)

with Ii the modified Bessel function of the first kind, taking the form

Ii(x) =
∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(
x

2

)2m+i
. (7.3)

The function B(λ) in (7.2) is the Bremsstrahlung function with the leading weak-coupling
terms being explicitly

B(λ) = λ

16π2 −
λ2

384π2 +O(λ3) . (7.4)

At leading order we have explicitly

〈φi(τ1)φj(τ2) 〉LO = = λ

8π2
ui · uj
τ2

12
, (7.5)

which is trivially produced by inputting the starting value in (6.23) into the recursion
relation (6.22). At next-to-leading order, we use equation (6.24) in order to generate the
following diagrams:

〈φi(τ1)φj(τ2) 〉NLO = + , (7.6)

where the light blue dots in the second diagram indicate the places where the gluon line
should be connected. This again corresponds to integrals along the Wilson line, similarly to
the case of the U -diagrams and as explained for the boundary diagrams in Section 6.1.2. The
two diagrams are individually divergent and refer to the starting values given in equations
(6.11) and (6.15). The divergences cancel and the two-point function at next-to-leading
order reads

〈φi(τ1)φj(τ2) 〉NLO = − λ2

192π2
ui · uj
τ2

12
, (7.7)

in perfect agreement with (7.2).
One can easily obtain the closed form for two-point functions by taking correlators with

an even number of φ1 and pinching each half together. This results in

n∆ = λ∆

23∆π2∆

(
1− λ

24 +O(λ2)
)
, (7.8)

in perfect agreement with [16].
For the unprotected operator φ6, the non-normalized two-point function reads

〈φ6(τ1)φ6(τ2) 〉 = n6

τ2∆6
12

. (7.9)

Here the normalization constant takes the form:

n6 = 2 B(λ) + Λ(λ) , (7.10)

which can be understood from Feynman diagrams in the following way [118, 119]: the first
term corresponds to diagrams that are common to both φi and φ6, while the term Λ(λ)
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refers to the diagrams unique to φ6, i.e. the diagrams where the scalar field couples directly
to the Wilson line (see Figure 4.3 for an example).

At leading order, however, we find that it coincides with 〈φiφj 〉:

〈φ6(τ1)φ6(τ2) 〉LO = 〈φi(τ1)φj(τ2) 〉LO
∣∣∣
i=j

= = 1
τ2

12

λ

8π2 , (7.11)

and so it is clear that the function Λ(λ) defined in (7.10) satisfies Λ(0) = 0.
However, at next-to-leading order, we observe that new diagrams contribute:

〈φ6(τ1)φ6(τ2) 〉NLO = 〈φi(τ1)φj(τ2) 〉NLO
∣∣∣
i=j

+ + +

+ + +

+ + +O(λ3) . (7.12)

The new diagrams are U -integrals, which are the ones contributing to the function Λ(λ).
To compute the NLO is necessary to make a digression on the scaling dimension of φ6,

which receives quantum corrections. It takes the following form:

∆φ6 = 1 +
∞∑
n=1

λnγ
(n)
φ6 , (7.13)

where the anomalous dimensions γ(n)
φ6 are known up to order n = 5 [17]. The first correction

reads
γ

(1)
φ6 = 1

4π2 . (7.14)

As a consequence, the operator φ6 requires a renormalization procedure. Expanding the
two-point function at λ ∼ 0, we have

〈φ6(τ1)φ6(τ2) 〉 = 1
τ2

12

λ

8π2

{
1 + λγ

(1)
φ6 log ε2

τ2
12

+ . . .

}
, (7.15)

with ε→ 0. In order to cancel the divergence, we promote φ6 to its renormalized version:

φ6
R(τ) := φ6(τ)

{
1− λγ(1)

φ6 log ε2

µ2 + . . .

}
, (7.16)

where µ corresponds to some choice of scale. This results in a finite two-point function:

〈φ6
R(τ1)φ6

R(τ2) 〉 = 1
τ2

12

λ

8π2

{
1 + λγ

(1)
φ6 log µ2

τ2
12

+ . . .

}
. (7.17)

This correlation function is still conformal upon renormalization of the dilatation operator.
In the rest of this thesis, we drop the subscript since we always refer to renormalized
operators.

Now that we defined the renormalization procedure, using the integrals given in Ap-
pendix C.1.2, we find the following result for the leading and next-to-leading orders com-
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bined:

〈φ6(τ1)φ6(τ2) 〉 = 1
τ2

12

λ

8π2

(
1− λ

24
6 + π2

π2 +O(λ2)
)(

1− λ

4π2 log τ2
12 +O(λ2)

)
. (7.18)

This factorized form is useful for reading off the normalization coefficient as well as the
anomalous dimension since it can be compared to (7.9). The first-order correction to the
scaling dimension agrees with (7.13), while the normalization constant is

n6 = λ

8π2

(
1− λ

24
6 + π2

π2 +O(λ2)
)
, (7.19)

which to the best of our knowledge has not been given explicitly in the literature yet.
Comparing this result to (7.10), we determine

Λ(λ) = − λ2

32π4 +O(λ3) . (7.20)

7.1.2 Operators of Length L = 2
We now move our attention to operators of length L = 2. Orthogonal eigenstates of the
dilatation operator at next-to-leading order have been constructed in [119]:

OijS := φiφj + φjφi − 2
5δ

ijφkφk , (7.21a)

OijA :=φiφj − φjφi , (7.21b)
OiA :=φ6φi − φiφ6 , (7.21c)
OiS :=φ6φi + φiφ6 , (7.21d)
O± :=φiφi ±

√
5φ6φ6 . (7.21e)

In this case, the operator OijS is protected, while the other ones are not.
Let us see how to compute the two-point function of the protected operator OijS . In-

serting the definition given in (7.21a) results in

〈OijS (τ1)OklS (τ2) 〉 = 〈φi1φ
j
1φ

k
2φ

l
2 〉+ 〈φi1φ

j
1φ

l
2φ

k
2 〉 −

2
5δ

kl〈φi1φ
j
1φ

m
2 φ

m
2 〉

+ 〈φj1φi1φk2φl2 〉+ 〈φj1φi1φl2φk2 〉 −
2
5δ

kl〈φj1φ
i
1φ

m
2 φ

m
2 〉

− 2
5δ

ij〈φm1 φm1 φk2φl2 〉 −
2
5δ

ij〈φm1 φm1 φl2φk2 〉+ 4
25δ

ijδkl〈φm1 φm1 φn2φn2 〉 ,
(7.22)

where we defined φi1 := φi(τ1) for compactness. Each term can be seen as the pinching
limit of a four-point function of the fundamental protected scalars φi, e.g.

〈φi1φ
j
1φ

k
3φ

l
3 〉 = lim

(2,4)→(1,3)
〈φi1φ

j
2φ

k
3φ

l
4 〉 . (7.23)

The recursion relations (6.3) and (6.6) can be used to efficiently compute each of these
terms up to next-to-leading order.

We now illustrate with an example at leading order how the pinching of the recursion
relation works. In the planar limit, the four-point function consists of the following two
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diagrams:

〈φi1φ
j
2φ

k
3φ

l
4 〉LO = + . (7.24)

In order to generate the first term of (7.22), 〈φi1φ
j
1φ

k
2φ

l
2 〉, we need to pinch (τ2, τ4)→ (τ1, τ3)

and then relabel τ3 to τ2. Only the second diagram in (7.24) survives this pinching, since
the first one results in self-contractions2, and we have

〈φi1φ
j
1φ

k
2φ

l
2 〉 =

ij kl
= δilδjk

λ2

64π4τ4
12
. (7.25)

We can repeat the same procedure for the other terms at leading order and for the next-
to-leading order3. We finally obtain

〈OijS (τ1)OklS (τ2) 〉 = 2
(
δikδjl + δilδjk − 2

5δ
ijδkl

)
λ2

64π4τ4
12

(
1− λ

24 +O(λ2)
)
. (7.26)

In this case, there is no factor corresponding to the correction to the scaling dimension
since this operator is half-BPS and hence protected (∆ = 2). The normalization constant
is

n
OijS

= λ2

64π4

(
1− λ

24 +O(λ2)
)
, (7.27)

which agrees with (7.8) after identifying (u1 · u2)2 → 2
(
δikδjl + δilδjk − 2

5δ
ijδkl

)
.

One can proceed similarly for the other unprotected operators in order to read their
normalization constants as well as the anomalous dimensions. For example, the two-point
function of OijA can be obtained in the following way:

〈OijA(τ1)OklA (τ2) 〉 = 〈φi1φ
j
1φ

k
2φ

l
2 〉 − 〈φi1φ

j
1φ

l
2φ

k
2 〉 − 〈φ

j
1φ

i
1φ

k
2φ

l
2 〉+ 〈φj1φi1φl2φk2 〉 . (7.28)

Note that there are only correlators of protected operators of length L = 1 on the right-
hand side, but that the pinching operation generates logarithmic divergences that can be
related to the anomalous dimension of the operator, as explained in (7.15) and below. We
find that the normalization constant is

n
OijA

= − λ2

32π4

(
1− λ

24 +O(λ2)
)
, (7.29)

while the anomalous dimension turns out to be

γ
(1)
OijA

= 1
4π2 , (7.30)

in perfect agreement with [119].
All the other operators can be treated the same way, even when they involve φ6. We

find their normalization constants to be

nOiA
= − λ2

32π4

(
1− λ

24
6 + π2

π2 +O(λ2)
)
, (7.31a)

2The u vectors introduced in (4.20) ensure that the self-contractions of these protected operators are
evaluated to zero.

3See Section 8.1 and in particular equation (8.11) for more detail on the four-point function at next-to-
leading order.
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nOiS
= λ2

32π4

(
1− λ

24 +O(λ2)
)
, (7.31b)

nO± = 5λ2

32π4

(
1− λ

24π2

(
π2 − 9

2(1±
√

5)
)

+O(λ2)
)
. (7.31c)

while their anomalous dimensions read

γ
(1)
OiA

= 3
8π2 , (7.32a)

γ
(1)
OiS

= 1
8π2 , (7.32b)

γ
(1)
O±

= 5±
√

5
16π2 . (7.32c)

All the anomalous dimensions listed above perfectly match the results of [119] for the
supersymmetric case ζ = 1.

7.2 Three-Point Functions
We now move to the computation of selected three-point functions using the recursion
relations given in Chapter 6. We focus our attention on correlators involving the two
operators of length L = 1: φi and φ6.

Note that from now (if not explicitly stated), we consider unit-normalized correlation
functions, following the definition given in (4.12) and using the normalization constants
just derived in Section 7.1.1.

Considering first protected operators, we can obtain a closed formula in ∆ for the LO
and NLO of three-point functions, as in (7.8):

cφiφjφk =
( √

λ

2
√

2π

)∆i+∆j+∆k (
1− λ

24(δ∆i,∆j+∆k
+ δ∆j ,∆k+∆i

+ δ∆k,∆i+∆j
)
)
, (7.33)

which matches again [16]. For all the cases we looked at, we observed perfect agreement
between (84) in [16] and the pinching of our NLO formula.

We can then compute three-point functions of “mixed” operators, i.e. involving two
protected operators φi together with the only unprotected operator of length L = 1 φ6.
Using the recursion relation for an odd number of φ6 operators given in (6.27), we find the
following result:

〈〈φiφjφ6 〉〉 = 〈φ
iφjφ6 〉
ni
√
n6

= δij

τ12τ23τ31

(
−
√
λ

2
√

2π
+ . . .

)
, (7.34)

which yields, by comparison to (7.33), the OPE coefficient

cφiφjφ6 = −
√
λ

2
√

2π
+O(λ3/2) . (7.35)

The same computation can easily be performed for three unprotected operators φ6. In
this case, we obtain

cφ6φ6φ6 = − 3
√
λ

2
√

2π
+O(λ3/2) . (7.36)

These results are used as consistency checks for the correlation functions that we expand
in conformal blocks in Sections 8.5, 9.1.4 and 9.2.3.
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In the ancillary Mathematica notebook coming along with [3], there are examples of
three-point functions involving unprotected operators of length L = 2 as well.
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CHAPTER 8

Four-Point Functions

After having explored two- and three-point functions, we delve into the study of the first
objects populating a CFT, not completely fixed by the symmetries: four-point functions. In
particular, we start by looking closely at the simplest four-point function 〈〈φ1, φ1, φ1, φ1 〉〉1,
which is retrievable almost by definition from the recursion relations we introduced in
Chapter 6.

Interestingly, this correlator is annihilated by a particular differential operator, giving
rise to a powerful Ward identity that we use to greatly simplify the computation of this
correlator at NNLO. We then include in this study unprotected operators and expand these
correlators in blocks to perform consistency checks and extract new CFT data.

The results presented in this chapter are based on [2, 3], and on [4] which contains
unpublished work.

8.1 The Simplest Four-Point Correlator
We introduce the first correlator we analyze in detail, which is the simplest four-point
function:

〈〈φ1(τ1)φ1(τ2)φ1(τ3)φ1(τ4) 〉〉 = K1111(u, τ)A1111(χ; r, s) , (8.1)

where
〈〈φ1φ1φ1φ1 〉〉 ≡ 〈〈φi1φ

j
1φ

k
1φ

l
1 〉〉 , i, j, k, l = 1 , . . . , 5 , (8.2)

namely, we are considering only protected operators. Notice that in the following we also
omit the insertion points of the operators on the Wilson line, assuming them to be always
distinct.

As explained in Section 4.4, we use the u vectors to keep track of the R-symmetry
indices. Therefore the prefactor and the cross-ratios read

K1111 := (u1 · u2)(u3 · u4)
τ2

12τ
2
34

, (8.3)

and
χ := τ12τ34

τ13τ24
, r := (u1 · u2)(u3 · u4)

(u1 · u3)(u2 · u4) , s := (u1 · u4)(u2 · u3)
(u1 · u3)(u2 · u4) , (8.4)

1This is the simplest four-point correlator because all operators are protected and have length 1.
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where χ satisfies 0 < χ < 1, with the ordering of the spacetime points τ1 < τ2 < τ3 < τ4.
The reduced correlator can be expanded into three R-symmetry channels:

A1111 := F0(χ) + χ2

r
F1(χ) + s

r

χ2

(1− χ)2F2(χ) , (8.5)

where the prefactors have been chosen such that they satisfy on their own the superconfor-
mal Ward identities, which we discuss in detail later.

This correlator is important because it is the starting point to build correlators of
protected and unprotected operators too. On the one hand, it is the input for next-to-
leading-order recursion relations that we explored in Chapter 6, which allow us to compute
correlators of protected operators, on the other hand, it provides the building blocks for
other correlators involving an even number of unprotected operators.

This correlator has been computed perturbatively up to the next-to-leading order in
[16]. We repeat this computation being it instructive not only to compute the next-to-
next-to-leading order (NNLO) but as well for all the other computations that follow.

In particular, the R-symmetry channels, with a unit-normalized correlator, have the
following perturbative expansion:

Fj(χ) =
∞∑
k=0

λkF
(k)
j (χ) . (8.6)

At leading order, equation (6.2) becomes

〈φ1φ1φ1φ1 〉LO =ALO
2 (1, 2)ALO

2 (3, 4) +ALO
2 (1, 4)ALO

2 (2, 3) , (8.7)

which can be represented diagrammatically using (6.3):

〈φ1φ1φ1φ1 〉LO = + . (8.8)

We first input the starting values given in (6.4) and the decomposition into R-symmetry
channels of (8.5). We then unit-normalize the correlator following (4.12) and using the
normalization constant computed in (7.2) resulting in the following channels:

F
(0)
0 (χ) = F

(0)
2 (χ) = 1 , F

(0)
1 (χ) = 0 . (8.9)

At next-to-leading order, the recursion relation given in (6.6) produces the following
diagrams:

〈φ1φ1φ1φ1 〉NLO = + +

+ + +

+ + +

+ + . (8.10)

The first line comes from the term (6.8), while the self-energy diagrams in the second line
are generated by (6.10) and the Y -diagrams in the third line come from (6.14), (6.16),
(6.18) and (6.19). Finally, the last line is obtained from the recursive term (6.20). Using
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the integrals of Appendix C.1, we find the following expressions for the unit-normalized
R-symmetry channels at NLO:

F
(1)
0 (χ) = 1

8π2

(
2LR(χ) + `(χ, 1)

1− χ

)
, (8.11a)

F
(1)
1 (χ) =− 1

8π2
`(χ, 1)
χ(1− χ) , (8.11b)

F
(1)
2 (χ) =− 1

8π2

(
2LR(χ)− `(χ, 1)

χ
− π2

3

)
. (8.11c)

This computation was first performed in [16], and then repeated in [2] with the use of the
recursion relation.

Note that we have used the Rogers dilogarithm, defined as

LR(χ) := Li2(χ) + 1
2 log(χ) log(1− χ) , (8.12)

and satisfying the following properties:

LR(x) + LR(1− x) = π2

6 , (8.13a)

LR(x) + LR(y) = LR(xy) + LR

(
x(1− y)
1− xy

)
+ LR

(
y(1− x)
1− xy

)
. (8.13b)

We also use the following two-variable function introduced in [2]:

`(χ1, χ2) := χ1 logχ1 − χ2 logχ2 + (χ2 − χ1) log(χ2 − χ1) . (8.14)

Note that the function `(χ, 1) is manifestly crossing-symmetric, i.e.

`(χ, 1) = `(1− χ, 1) , (8.15)

and it is related to a special limit of the Bloch-Wigner function D(χ, χ̄) in the following
sense:

`(χ, 1) = χ(1− χ) lim
χ̄→χ

D(χ, χ̄)
2(χ̄− χ) , (8.16)

with
D(χ, χ̄) = 2Li2(χ)− 2Li2(χ̄) + logχχ̄ log 1− χ

1− χ̄ . (8.17)

The function `, which appears in higher-point functions as well, satisfies the following
identities:

`(χ1, χ2) + `(χ2, χ1) = iπ(χ1 − χ2) , (8.18a)
`(χ1, χ2) = χ1 χ2 `(χ−1

2 , χ−1
1 ) for 0 < χ1 < χ2 < 1 , (8.18b)

`(χ1, χ2) + `(1− χ2, 1− χ1) = `(χ1, 1)− `(χ2, 1) . (8.18c)

To conclude, there are some easy checks that one can perform on these results. In
particular, we can use the pinching technique introduce in Section 4.4.2 to get

〈〈φ1(τ1)φ1(τ2)φ1(τ3)φ1(τ4) 〉〉 → 〈〈φ2(τ1)φ2(τ2) 〉〉 , (8.19)

matching the result given in equation (7.8) for the case ∆ = 2. In this case, the limit one
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has to perform is
(u2, τ2)→ (u1, τ1) , (u4, τ4)→ (u3, τ3) . (8.20)

8.2 Ward Identity
As briefly mentioned, when expressed in terms of spacetime and R-symmetry cross-ratios,
this correlator and more generally four-point functions of arbitrary half-BPS operators
satisfy some elegant superconformal Ward identities. In general, Ward identities are a
quantum version of Noether’s theorem and encode the symmetries of the theory. In our case,
they translate superconformal symmetry into powerful constraints that take the following
form [99]:(1

2∂χ + ∂ζ1

)
A∆1∆2∆3∆4

∣∣∣∣
ζ1=χ

= 0 ,
(1

2∂χ + ∂ζ2

)
A∆1∆2∆3∆4

∣∣∣∣
ζ2=χ

= 0 . (8.21)

Equivalently, these two independent equations can be rewritten into one single equation
using our definition of R-symmetry cross-ratios, (see (4.21) and (4.22)), which in terms of
ζ1 and ζ2 are respectively

r = ζ1ζ2 , s = (1− ζ1)(1− ζ2) , (8.22)

resulting in (1
2∂χ + α∂r − (1− α)∂s

)
A∆1∆2∆3∆4

∣∣∣∣r=αχ
s=(1−α)(1−χ)

= 0 , (8.23)

which is valid for any α real. In Section 9.3, we conjecture a multipoint extension of this
Ward identity based on our perturbative results.

This differential equation encodes the constraints of superconformal symmetry on the
correlators and turned out to be essential for bootstrapping the four-point function 〈φ1φ1φ1φ1 〉
at strong coupling [21, 22].

Interestingly, if we now consider (8.21) where we now exchange the spacetime and
the R-symmetry cross-ratios, we still annihilate the four-point functions. The analytic
continuation between the two different types of cross-ratios was first discovered in [99] and
leads to a curious web of correspondences between different defect setups. We briefly discuss
this peculiar fact in the outlook Section 11.2.

We explore further this powerful constraint since it turns out to be quite fundamental
to compute the four-point function 〈〈φ1φ1φ1φ1 〉〉 as NNLO, as we do in the next section.
In particular, in our case where ∆i = 1 for all the operators, the R-symmetry channels
are related algebraically, and remarkably the correlator depends only on one function of
the kinematical variable χ, f(χ), and on one constant F derived using supersymmetric
localization, which are sufficient to completely fix it.

To see this, we can explicitly solve the Ward identity (8.23), and the solution for the
reduced correlator defined in (8.5) reads [21]:

A(χ; r, s) = Df(χ) + F
χ2

r
, (8.24)

where we have introduced the differential operator

D :=
( 2
χ
− 1 + 1− s

r

)
−
(

(1− χ+ χ

r
(1− χ− s)

)
∂χ . (8.25)

F refers to the topological sector (4.25) discussed in Section 4.4.1, which is constant (in
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the sense that it does not depend on kinematic variables2) and known to all orders in the
coupling λ [34]:

F = F0(χ) + F1(χ) + F2(χ)

= 3
π2B2

(
λ

16π2 −B

)
= 3I1(

√
λ)I3(

√
λ)

I2
2 (
√
λ)

, (8.26)

with B the Bremsstrahlung function defined in (7.2). At weak coupling, the topological
sector can be expanded as

F = 2− λ

24 −
λ2

480 +O(λ3) . (8.27)

The R-symmetry channels introduced in (8.5) can be related to f(χ) and F in the
following way:

F0(χ) =
( 2
χ
− 1

)
f(χ)− (1− χ)f ′(χ) , (8.28a)

F1(χ) = F− f(χ)
χ2 −

1− χ
χ

f ′(χ) , (8.28b)

F2(χ) = (1− χ)2

χ2
(
f(χ)− χf ′(χ)

)
. (8.28c)

Therefore, it is sufficient to compute only one channel in order to obtain the full correla-
tor. In the following, we use this property for computing the next order of the four-point
function.

8.3 NNLO Correlator
In Section 8.1 we showed how to compute 〈〈φ1φ1φ1φ1 〉〉 at LO and NLO in the planar limit.
We now want to push this computation further, meaning we aim at the NNLO. The result
has been already derived in [19] using a combination of bootstrap and integrability. We
reproduce this result using perturbative techniques.

To reach our goal, we use a major simplification that the Ward identity offers us in
combination with a constraint that crossing symmetry3 imposes on f(χ). The full correlator
is invariant under the exchange of spacetime and R-symmetry variables (u1, τ1)↔ (u3, τ3)4,
from which it is easy to deduce that the reduced correlator satisfies

A(χ; r, s) = s

r

χ2

(1− χ)2A(1− χ; r, s) . (8.29)

As a consequence, f(χ) satisfies

χ2f(1− χ) + (1− χ)2f(χ) = 0 , (8.30)

which channel-wise translates to

F0(χ) = F2(1− χ) , (8.31a)
F1(χ) = F1(1− χ) . (8.31b)

2It could seem surprising that summing all the channels together gives a constant term, since they
depend on χ, but we can also understand it using the Ward identities. In fact ∂χ

∑5
i=1 Fi(χ) = 0.

3We discussed crossing symmetry more in detail in Section 2.3.2.
4Or, equivalently, (u2, τ2)↔ (u4, τ4).



66 Chapter 8. Four-Point Functions

It is convenient to follow the conventions of [19] and define

f(χ) := χ

1− χh(χ) , (8.32)

such that the crossing equation becomes

h(χ) + h(1− χ) = 0 . (8.33)

In the weak coupling regime, it is easy to derive the expression for h(χ) at leading and
next-to-leading orders:

h(0)(χ) = 1− 2χ , (8.34a)

h(1)(χ) = −2π2

3 χ− 2(H1,0 −H0,1) , (8.34b)

with H~a := H~a(χ) the Harmonic Polylogarithms (HPL) defined in Appendix D. In this
case, it is convenient to introduce the HPL’s not only to make contact with [19] but also to
write the NNLO more compactly and to have a glance at its transcendentality properties.

Note here that the transcendentality weight w(`) of h(`)(χ) is homogeneous (since π2

has weight 2) and w(`) = 2`, being ` the number of loops. Moreover, h(`)(χ) appears to
be composed of one rational function and some transcendental functions without rational
prefactors. This fact was used in [19] for bootstrapping the correlator, and we use it here
as well for determining some of the contributions numerically.

Then, if one channel is enough to retrieve the full correlator, we have to understand
what is the simplest channel to compute. It is quite clear that F1 is the best candidate. This
consideration is based on the lower orders (8.9) and (8.11) and on considering and counting
the possible diagrams in all three channels. It turns out that instead of computing many
(more than fifty) diagrams, namely all the diagrams in all the three channels (this includes
self-energy diagrams at the next order and complicated couplings to the line defect), we only
need to compute fifteen diagrams5. One may be tempted to think that this is a consequence
of the large N limit. However, although this regime greatly simplifies the computation, this
feature appears to be present at finite N too. In any case, without the help of the Ward
identity, this computation would be much more challenging.

The relevant planar diagrams are listed in Table 8.1. As for the NLO computation, we
separate the contributing diagrams into two groups: the bulk and boundary ones.

In the next section, we explore in detail how to compute all the diagrams in this channel.
Note that we can solve analytically all the bulk integrals in the limit τ4 →∞ or in the full
conformal frame, i.e. (τ1, τ2, τ3, τ4) → (0, χ, 1,∞). Unfortunately, this limit is not enough
to do the same for the boundary integrals, which have been solved only numerically.

Moreover, the results for Feynman diagrams are not unit-normalized. This is the nat-
ural framework when dealing with Wick contractions, otherwise, there would be a mixing
of diagrams belonging to different orders. We, therefore, unit-normalize only after the
computations.

8.3.1 Bulk Diagrams

We first focus on computing the diagrams where the interactions happen in the bulk.
5Of course, we have to agree on how we identify one Feynman diagram. Here each self-energy insertion

gives rise to an individual Feynman diagram. A similar reasoning is valid for the XY-diagrams, even if, in
principle, each gluon line insertion could give rise to a new diagram.
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Table 8.1: The relevant Feynman diagrams for the computation of F1(χ) at next-to-next-
to-leading order. The double line separates bulk from boundary diagrams. For the latters,
the dots placed on the Wilson line indicate where the gluon can possibly connect.

Self-energy

XX

XH

Spider

XY

Self-Energy Diagrams

We can start with the self-energy diagrams, which are obtained considering one quartic
scalar vertex (3.32) and a self-energy insertion (3.39). We then perform the Wick contrac-
tions to find that the first diagram evaluates to

= −λ
4

2

ˆ
d4x5 I25I35I45 Y115 , (8.35)

where Y115 is given in (C.4) and log-divergent. It is easier to evaluate this integral in the
conformal frame τ4 → ∞. We can then extract the propagator I45 from the integral, by
doing e.g. the replacement I45 → I24, and the diagram becomes

= −λ
4

2 I24H11,23 +O

( 1
τ3

4

)
, (8.36)

with the H-integral defined in (3.27c). We do not insert the explicit expression of this
integral here as these terms drop at the end of the computation. This is not unexpected, as
the same happens in the NLO case, where the self-energy diagrams are canceled by some
other diagrams.

The other self-energy diagrams can be evaluated in the same way and their sum gives

F SE
1 := + + +

= − λ4

32π2

( 1
I13

(H11,23 +H22,13 +H33,12)− K44
I13

)
, (8.37)

where K44 is a special case of Kij defined in (3.28a), that we write explicitly in (C.10).
If we write explicitly all these integrals, we see contributions of the type log τ2

4 and
log ε2. However for the correlator to be conformal, the log τ2

4 terms must drop at the end
of the computation. This actually provides a strong check of our computations. On top of
that the log ε2 terms must also cancel each other for the correlator to be finite.
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XX-Diagrams

In this channel, i.e. F1, we can only obtain two diagrams using the X-vertex (3.32), which
we call XX-diagrams and that are also easy to compute. The first one reads

= −λ
4

4

ˆ
d4x5X1255 I35I45 , (8.38)

which it is convenient to symmetrize by applying
ˆ
d4x5X1255 I35I45 = 1

2

(ˆ
d4x5X1255 I35I45 +

ˆ
d4x5X3455 I15I25

)
. (8.39)

This integral can be computed in the conformal frame, where it can be shown to give

= − λ4

16 (I34(H11,23 +H22,13 +H33,12) +K44)

+ λ4

128π2 (log τ2
12 + log τ2

4 )I24Y123

− λ4

256π2 I24 (A1 +A2 +A3) +O

( 1
τ3

4

)
, (8.40)

where the A-integrals are defined in (3.28b). These integrals drop if we use the identity
(C.12). We can then analogously compute the other XX-diagram, obtaining this final
expression for the sum of the two diagrams:

FXX1 := +

= −λ
4

8 (I24(H11,23 +H22,13 +H33,12) +K44)

+ λ4

128π2 log τ2
4 I24Y123 +O

( 1
τ3

4

)
. (8.41)

This sum is invariant under the interchange of variables τ1 ↔ τ3. In any case, note again
that all these terms should drop from the final expression since they are either divergent or
not conformal.

XH-Diagrams

The diagrams with two Y -vertices (3.31) and one X-vertex (3.32) are more involved, but
they can also be solved in the conformal frame. The first one gives

= λ4

8

ˆ
d4x5 F15,25 I15I25I35I45

= λ4

32 (I24(3H11,23 + 3H22,13 −H33,12) +K44)

+ λ4

8 I24

(
H12,13 +H12,23 −

2K12
I12

)
+ λ4

512π2

(
log τ

2
12
τ2

23
+ log τ2

4

)
I24Y123 +O

( 1
τ3

4

)
. (8.42)
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This can be obtained using (C.12), followed by the symmetrization (8.39). The integral K12
is defined in (3.28a) and further details can be found in Appendix C.1.1. To simplify this
expression we can also apply some interesting identities relating K-integrals to H-integrals
(C.11) but also H-integrals only (C.13).

The other three XH-diagrams can be computed analogously and their sum reads

FXH1 : = + + +

= λ4

128π2
1
I13

((H11,23 +H22,13 +H33,12) +K44)

+ λ4

128π2
1
I13

(H12,13 +H13,23 + 2H12,23)

− λ4

128π2
1
I13

(
−
(
K12
I12

+ K23
I23

)
+K14 +K34

)
+ λ4

1638π4 log τ2
4
Y123
I13

+O

( 1
τ3

4

)
, (8.43)

where we discarded the terms suppressed in the limit τ4 →∞, such as

I24H12,34 = I24H14,23 = O

( 1
τ3

4

)
. (8.44)

Spider Diagram

We compute now the fermionic loop, which we refer to as the spider diagram. The Wick
contractions yield the following sixteen-dimensional integral:

= λ4

4

ˆ
d4x5

ˆ
d4x6

ˆ
d4x7

ˆ
d4x8 I15I26I37I48

× tr /∂6I56/∂6I67/∂8I78/∂5I58 , (8.45)

where the trace is acting on the γ-matrices. Here we have already extracted the Γ-matrices
with R-symmetry indices by applying the identity (C.14) and selecting the R-symmetry
channel corresponding to δikδjl. We can use the fermionic star-triangle identity (C.16)
twice in order to lift two integrals:

= − 4π4λ4
ˆ
d4x5 I15I25I45

ˆ
d4x7 I27I37I47I

2
57

× tr /x25/x27/x47/x45 . (8.46)

The trace is easy to perform with the γ identity (C.15) and after using the algebraic identity
(C.17), the diagram reduces to

= − 2λ4 1
I24

ˆ
d4x5X2345 I15I25I45

+ 2λ4
ˆ
d4x5 (X2355 I15I45 +X1455 I25I35) . (8.47)

The first line corresponds to the kite integral defined in (C.7), where its solution is also
given in terms of HPL’s. The second line is identical to the XX-diagrams and can be found
in (8.41) up to an overall prefactor.
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All in all the spider diagram reads

F Spider
1 =

= λ4

64π2
1
I13

((H11,23 +H22,13 +H33,11) +K44)− λ4

32π2
1
I13

H12,23

− λ4

8192π4 log τ2
4
Y123
I13

+O

( 1
τ3

4

)
. (8.48)

This concludes our computation of the bulk diagrams, for which we can obtain an analytical
expression in the conformal limit.

8.3.2 Boundary Diagrams

We move now our attention to the boundary integrals. The first diagram in the last line of
Table 8.1 reads

= λ4

8

(ˆ τ2

−∞
+
ˆ ∞
τ4

)
dτ6 ε(τ1 τ3 τ6)

ˆ
d4x5 ∂15Y156 I25I35I45 . (8.49)

This expression is straightforward to obtain from the Wick contractions. The function
ε(τi τj τk) is defined in (C.18). This integral can be shown to give

= λ4

16π2

ˆ
d4x5

1
|x⊥5 |

I15 ∂5X2345

×
{

tan−1
( τ45
|x⊥5 |

)
+ tan−1

( τ25
|x⊥5 |

)
− 2 tan−1

( τ15
|x⊥5 |

)}

− λ4

8

ˆ
d4x5 I25I35I45 (Y125 + Y145)

+ λ4

4

ˆ
d4x5 Y115 I25I35I45 . (8.50)

In order to obtain this result, we use the elementary identity
ˆ
d4x5 ∂5Yij5 Ik5Il5Im5 = −

ˆ
d4x5 ∂5Xklm5 Ii5Ij5 , (8.51)

as well as integration by parts and the identity (∂i−∂j)Yijk = −(2∂j +∂k)Yijk. In the limit
τ4 →∞, this turns into

= λ4

16π2 I24

ˆ
d4x5

1
|x⊥5 |

I15∂5Y235

×
{

tan−1
( τ25
|x⊥5 |

)
− 2 tan−1

( τ15
|x⊥5 |

)
− π

2

}

− λ4

8 I24 (H12,23 − 2H11,23) +O

( 1
τ3

4

)
. (8.52)

Similarly, we have

= λ4

16π2 I24

ˆ
d4x5

1
|x⊥5 |

I25∂5Y135
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×
{

tan−1
( τ15
|x⊥5 |

)
+ tan−1

( τ35
|x⊥5 |

)
− 2 tan−1

( τ25
|x⊥5 |

)}

− λ4

8 I24 (H12,13 +H13,23 − 2H22,13) +O

( 1
τ3

4

)
, (8.53)

= λ4

16π2 I24

ˆ
d4x5

1
|x⊥5 |

I35∂5Y125

×
{

tan−1
( τ25
|x⊥5 |

)
− 2 tan−1

( τ35
|x⊥5 |

)
+ π

2

}

− λ4

8 I24 (H12,23 − 2H33,12) +O

( 1
τ3

4

)
, (8.54)

= λ4

16π2

ˆ
d4x5

1
|x⊥5 |

I45∂5X1235

×
{

tan−1
( τ15
|x⊥5 |

)
+ tan−1

( τ35
|x⊥5 |

)
− 2 tan−1

( τ45
|x⊥5 |

)
+ π

}

− λ4

8 (K14 +K34) + λ4

4 K44 +O

( 1
τ3

4

)
. (8.55)

Unfortunately, this is as far as we can go analytically because we are not able to solve
further the first line of each diagram (8.50)-(8.55), what we call FXY,n1 . The other terms
luckily have been all encountered before, and by gathering them together we have

FXY,a1 = λ4

64π2
1
I13

((H11,23 +H22,13 +H33,11) +K44)

− λ4

128π2
1
I13

(H12,13 +H13,23 + 2H12,23 +K14 +K34)

+ λ4

8192π4π2 log τ2
4 I34

Y123
I13

+O

( 1
τ3

4

)
. (8.56)

Note that the last line was extracted from the first line of (8.55), such that in the following
we consider expressions that are finite in the limit τ4 →∞.

We now solve the remaining integrals numerically. Before this last step, we gather all
the analytical expressions encounter so far and we simplify them further. The expression
shortens quite dramatically:

F a
1 := F SE

1 + FXX1 + FXH1 + F Spider
1 + FXY,a1 =

− λ4

64π2
1
I13

(H12,13 +H13,23 + 2H12,23)

+ λ4

16384π4

(
log τ2

12 + log τ2
23 − 8

) Y123
I13

+O

( 1
τ3

4

)
. (8.57)

We note in particular that all the divergent terms canceled each other. Moreover, the log τ2
4

terms of K14 and K34 cancel the last line of (8.56) as expected.
We can also rewrite (8.57) in terms of HPL’s:

F a
1 = 1

8192π8χ(1− χ)
{
−4H1 +H1,0 +H0,1 − 2H1,1

+ 3(H0,0,1 +H0,1,0 − 2H1,0,0)− 2(H1,1,0 +H1,0,1 − 2H0,0,1)
+ χ (−3ζ3 − 4(H0 +H1)− 2(H0,0 −H1,1)
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−H0,0,1 +H0,1,0 − 2H1,0,0 −H1,0,1 +H1,1,0 − 2H0,1,1)
}
. (8.58)

8.3.3 Numerical Integration

We now proceed with the numerical integration of the remaining terms. In order to be
efficient, we first formulate an ansatz, based on the first two orders of the correlator and the
form of the other terms. This ansatz is a complete basis of HPL’s6 with transcendentality
up to 2`.

A suitable ansatz is

FXY,n1 = λ4

χ(1− χ)

(∑
~a

α~aH~a + χ
∑
~a

β~aH~a

)
, (8.59)

where the transcendentality is then up to 3, as ~a = 0, 1, 2, 3. In addition, the different OPE
limits constrain ~a to contain only combinations of 0 and 1.

We then plot the numerical data and fit it with the ansatz. We find that the sum of
numerical integrals has to be

FXY,n1 = λ4

24576π8
1

χ(1− χ)
(
2
(
6− π2

)
H1 + 3 (H0,1 +H1,0 − 2H1,1)

+ 3 (3H0,0,1 −H0,1,0 − 2H1,0,0) + χ
(
2
(
π2 − 6

)
H0 + 2

(
π2 − 3

)
H1
)

+ 6 (H0,0 −H1,1) + 3 (3 (H0,0,1 +H1,1,0)− (H0,1,0 +H1,0,1)
−2 (H0,1,1 +H1,0,0))− 9ζ3)) .

(8.60)

We then compare the numerical data with the analytic expression in Figure 8.1. We
observe an impressive agreement between the function (8.60) and the numerical integration
of the sum of the terms in the first line of (8.52)-(8.55).

8.3.4 Final Result

We now combine all the elements in order to write down the full correlator at NNLO. In
particular, we sum equations (8.58) and (8.60) that together make up the full expression
of our F1 channel. From here we extract f(χ), which we reinsert in (8.28a) and in (8.28c),
allowing us to reconstruct the other channels, respectively F0 and F2, and to ultimately get
the correlator through (8.5). The last step is to unit-normalize the correlator as in (4.12).
This leads to

F
(2)
1 = 1

192π4 χ(1− χ)
(
π2H1 − 3(H1,0,1 +H1,1,0 − 2(H0,1,0 +H0,1,1 −H1,0,0))

− 3χ(π
2

3 H0 − (H0,0,1 +H1,1,0) +H0,1,0 +H1,0,1 + 3ζ3)
)
,

which agrees perfectly with [19].

8.4 Correlation Function of Unprotected Operators
Since so far we explore four-point functions of protected operators only, in this section,
we have a quick look at a correlator of unprotected operators. Particularly, we insert the
operator φ6 on the Wilson line. Recall that φ6 is the only fundamental field that couples

6We remind that the relevant details about HPL’s can be found in Appendix D.
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Figure 8.1: The light blue dots in this plot show the function FXY,n1 (χ), defined as the
sum of the terms in the first line of (8.52)-(8.55), from which the log τ2

4 dependence was
removed as explained below (8.56). The grey line corresponds to the analytical expression
(8.60), obtained from comparing the ansatz (8.59) to the numerical points. We observe a
perfect agreement, and in particular, the residuals, indicated by the magenta dots, between
the numerical data and the analytical curve are of order 10−10.

directly to the Wilson line. This introduces new types of diagrams as the one illustrated in
Figure 4.3 on the right.

As for the case of protected operators, we introduce a reduced correlator, which can be
read from

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4) 〉〉 = 1
τ2∆φ6

12 τ2∆φ6
34

A6666(χ) . (8.61)

Similarly to (8.6), the reduced correlator obeys the following perturbative expansion:

A6666(χ) =
∞∑
k=0

λkA(k)
6666(χ) . (8.62)

Note that, as opposed to the protected case presented above, this correlator consists of a
single R-symmetry channel.

At leading order, using (6.22) and unit-normalizing we find that it agrees with A(0)
1111:

A(0)
6666(χ) = A(0)

1111(χ) = 1− 2χ(1− χ)
(1− χ)2 . (8.63)

At next-to-leading order, the conformal prefactor in (8.61) produces logs when expanded
around λ ∼ 0 because of the anomalous dimension of φ6:

1
τ2∆φ6

12 τ2∆φ6
34

= 1
τ2

12τ
2
34

(
1− λ γ(1)

φ6 log τ2
12τ

2
34 +O(λ2)

)
. (8.64)
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The log term must be taken into account in order to isolate the reduced correlator A(1)
6666

at next-to-leading order. Moreover, as discussed in Section 6.2.1, the correlator can be
expressed as a sum of building blocks and U -diagrams. Applying (6.24) and computing the
integrals with the help of Appendix C.1 results in the following elegant expression:

A(1)
6666(χ) =A(1)

1111(χ) + λ

12(1− χ)2

(
1− 2χ(1− χ)

+ 3
π2 (3χ(1− χ) + χ2 logχ− (1− χ(2− 3χ)) log(1− χ))

)
.

(8.65)

The first line corresponds to the four-point correlator of protected scalars (8.11) that acts
as a building block, while the extra contributions come from the computation of the U -
diagrams.

We can also use our recursive algorithm to compute four-point functions involving the
composite operators introduced in Section 7.1.2. Some examples can be found in [3] and in
the ancillary Mathematica notebook.

8.5 Four-Point Data
We conclude this chapter by expanding the four-point correlators in conformal blocks, as
a consistency check and to extract CFT data. As described in Section 2.3, the CFT data
consists of the scaling dimensions and the OPE coefficients of the operators in the spectrum.

For these four-point functions, we consider a particular OPE, the comb channel, which
we introduced in Section 4.4.3, and we compare the simplest OPE coefficients (always
involving either φi or φ6) to the results derived in Section 7.2.

Be aware that our analysis is purely bosonic. However, a superconformal analysis for the
correlator 〈φ1φ1φ1φ1 〉 has been carried out in [21], where the superconformal blocks were
also derived. It would be interesting to replicate this analysis also for the NNLO discussed
in Section 8.3 in order to extract CFT. We leave this interesting idea for the future.

Let us dive then into the expansion of the correlators 〈〈φiφjφkφl 〉〉 and 〈〈φ6φ6φ6φ6 〉〉.

∆kφI1

φI2 φI3

φI4
cφI1φI2O∆k

cO∆k
φI3φI4

Figure 8.2: Representation of four-point functions in the comb channel. One operator
labeled O∆k

is being exchanged and the OPE coefficients consist of three-point functions
squared, when all the external operators are identical.

Protected Operators

It can be seen from Figure 8.2 that the four-point function of protected operators 〈〈φiφjφkφl 〉〉
should contain the three-point function 〈〈φiφjφ6 〉〉,when the exchanged operator is O∆k

=
φ6. This correlator has been computed in (7.35) at leading order.
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This coefficient can be easily extracted from7

F0(χ) = 1 + cφiφjφ6cφ6φkφlg∆k=1(χ) + . . .

= 1 + cφiφjφ6cφ6φkφlχ+ . . . , (8.66)

where the first term corresponds to the exchange of the identity operator 1 and is 1 due to
the unit-normalization of the two-point function. According to equation (7.35), we have

cφiφjφ6cφ6φkφl = λ

8π2 +O(λ2) . (8.67)

We now expand the correlator at χ ∼ 0 for the leading and next-to-leading orders and
compare the order O(χ) to (8.66) and (8.67). From (8.9), we see that

F
(0)
0 (χ) = 1 , (8.68)

and this implies that cφiφjφ6cφ6φkφl vanishes at O(λ0) as predicted by (8.67). For the next
order, we expand (8.11) to find that

F
(1)
0 (χ) = 1

8π2χ+ . . . , (8.69)

which is in perfect agreement with (8.66) and (8.67).

Unprotected Operators

We focus now our attention on the four-point function of unprotected operators φ6. In
this case, it is clear from R-charge conservation that the only operator with (bare) scaling
dimension ∆k = 1 that can appear in the exchange is the unprotected scalar φ6 itself. Thus
the correlator 〈〈φ6φ6φ6φ6 〉〉 is expected to contain the three-point function 〈〈φ6φ6φ6 〉〉 in
its expansion. This coefficient has been computed in (7.36) and can be compared to the
four-point function obtained in Section 8.4. Expanding the correlator in blocks following
(4.29), we find

A6666(χ) = 1 + c2
φ6φ6φ6g1(χ) + . . .

= 1 + c2
φ6φ6φ6χ+ . . . , (8.70)

which we compare to the results listed in Section 8.4.
From (8.63), we find that the correlator at leading order can be expanded as

A(0)
6666(χ) = 1 + χ2 + . . . , (8.71)

and thus we observe that c2
φ6φ6φ6 vanishes at O(λ0) as expected from (7.36) since there is

no term of order O(χ). Again the first term corresponds to the exchange of the identity
operator 1 and it is 1 due to the unit-normalization of the two-point function.

We are also able to derive a closed-form expression for the OPE coefficients with arbi-
trary ∆k:

cφ6φ6O∆k
cO∆kφ

6φ6 |O(λ0) = 4
√
π (∆k − 1) Γ(∆k + 1)

4∆k Γ(∆k − 1
2)

. (8.72)

7In principle one needs the superconformal blocks of [21] in order to check that coefficient, but in practice,
it turns out that the highest-weight channel F0 can be expanded in the bosonic conformal blocks given in
(4.30) if the goal is only to check the coefficient corresponding to the operator being exchanged with the
lowest ∆.
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We expect that there exist several operators corresponding to the bare scaling dimensions
∆k > 1, and thus that these coefficients are in fact averages of three-point functions.

We now move to the next order and we expand the expression of the correlator in (8.65)
to find

A(1)
6666(χ) = 9

8π2χ+ . . . . (8.73)

This coefficient should be compared to (7.36), which predicts

c2
φ6φ6φ6 = 9λ

8π2 +O(λ2) . (8.74)

Thus, we observe a perfect match between the OPE coefficient obtained from the four-point
function and the three-point function computed using the recursion relation.



CHAPTER 9

Higher-Point Functions

It is now time to witness the real power of the recursion relations presented in Chapter 6;
we finally compute multipoint correlators. In particular, we focus on five- and six-point
functions. We write down some examples of these correlators, after discussing their kine-
matics. As for the four-point case, we also expand these correlators in conformal blocks, to
perform consistency checks and to extract novel CFT data.

The big pool of perturbative results derived thanks to the recursion relations allow us
to conjecture multipoint Ward identities. We introduce them and discuss their properties.
We even put them immediately to use in the bootstrap of a five-point function at strong
coupling, to which is dedicated the conclusive section.

This chapter is based on [2, 3] and some work in progress [5].
Before jumping straight into the five-point functions, it is worth mentioning the case of

extremal correlators, i.e. correlators for which the length of one operator is equal to the
sum of the lengths of all the other operators:

〈φ∆1(τ1) . . . φ∆n−1(τn−1)φ∆n(τn) 〉 ,

with ∆n = ∆1 + . . . + ∆n−1. We discussed in detail this case in [2], where through the
recursion relations we find a closed form of the correlators up to NLO.

9.1 Five-Point Functions
Of course, we start from five-point functions, particularly from their kinematics. The
discussion that follows on R-symmetry channels is limited to protected operators, so φi, i =
1, . . . , 5.

9.1.1 Kinematics

In this section, we review explicitly the kinematics introduced at the end of Section 4.4.
Here there are two spacetime cross-ratios, which are defined as in (4.17):

χ1 = τ12τ45
τ14τ25

, χ2 = τ13τ45
τ14τ35

, (9.1)

77
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and five R-symmetry cross-ratios defined following (4.21), (4.22) and (4.27)1:

r1 = (u1 · u2)(u4 · u5)
(u1 · u4)(u2 · u5) , s1 = (u1 · u5)(u2 · u4)

(u1 · u4)(u2 · u5) ,

r2 = (u1 · u3)(u4 · u5)
(u1 · u4)(u3 · u5) , s2 = (u1 · u5)(u3 · u4)

(u1 · u4)(u3 · u5) ,

t = (u1 · u5)(u2 · u3)(u4 · u5)
(u1 · u4)(u2 · u5)(u3 · u5) . (9.2)

Using these cross-ratios the correlators can be expressed in terms of R-symmetry channels.
The number of channels depends on the scaling dimensions of the external operators (see
Table 9.1 for some examples). Understanding this number is only a combinatorial matter.

Let us take as an example the simplest five-point: 〈〈φ1φ1φ1φ1φ2 〉〉2. We have to consider
all the possible combinations of the R-symmetry vectors u: u1, u2, u3, u4, u5 and again u5,
since the last operator is φ2. We have to remember that we cannot “pair” the R-symmetry
vectors associated with the same operator, in this case, the u5 vectors. This is ensured by
the properties of the u vectors introduced in (4.20). Therefore we can make in total six
different combinations that we write below:

(u1 · u2)(u3 · u5)(u4 · u5) , (u1 · u3)(u2 · u5)(u4 · u5) ,
(u1 · u4)(u2 · u5)(u3 · u5) , (u1 · u5)(u2 · u3)(u4 · u5) ,
(u1 · u5)(u2 · u4)(u3 · u5) , (u1 · u5)(u2 · u5)(u3 · u4) .

(9.3)

This strategy can be easily implemented to compute the R-symmetry channels of all the
correlators. However, it is not straightforward to obtain a formula for the number of
channels in the most generic case. We thus determined it for the special case in which
all external dimensions are equal to one, where this number is reproduced by the double
factorial: (n− 1)!! = 1 · 3 · 5 · . . . · (n− 1). Here n is the (even) number of operators in the
correlation function, and for example, the six-point function 〈〈φ1φ1φ1φ1φ1φ1 〉〉 consists of
5!! = 1 · 3 · 5 = 15 R-symmetry channels.

In general, at finite N , all the channels would be present at any loop order but in the
planar limit N →∞ many channels do not contribute, at least for the NLO computations.

In the following, we are presenting only two examples of five-point correlators: the
simplest case with protected operators 〈〈φ1φ1φ1φ1φ2 〉〉 and the correlator 〈〈φ6φ6φ6φ6φ6 〉〉
constituted entirely by unprotected operators. However, many more correlators3 have been
computed in [2, 3] and in their respective ancillary Mathematica notebook using the
recursion relations in combination with the pinching technique.

9.1.2 〈〈φ1φ1φ1φ1φ2 〉〉

We start by considering the simplest pinching case, which is obtained by bringing the last
two operators of the six-point function 〈φ1φ1φ1φ1φ1φ1 〉 together by taking the limits

(u6, τ6)→ (u5, τ5) , (9.4)
1Note that we drop the subscript of tij , since in this case there is only one R-symmetry cross-ratio of

this kind.
2Note that the correlator 〈〈φ1φ1φ1φ1φ1 〉〉 is zero due to R-symmetry.
3Examples of correlators computed in [2, 3] are 〈φ1φ1φ2φ2φ4 〉, 〈φ1φ1φ2φ2φ2 〉 and 〈〈φiφjφ6φ6φ6 〉〉. Note

that the different brackets are not typos. In fact, in [2] we did not compute unit-normalized correlators,
while in [3] we did.
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Table 9.1: Number of R-symmetry channels for different five-point functions, obtained by
pinching n-point functions 〈〈φ1 . . . φ1 〉〉 from n = 6 to n = 12.

∆1, ∆2, ∆3, ∆4, ∆5 channels
1, 1, 1, 1, 2 6

1, 1, 1, 1, 4 1
1, 1, 1, 2, 3 6
1, 1, 2, 2, 2 10

1, 1, 1, 2, 5 1
1, 1, 1, 3, 4 6
1, 1, 2, 2, 4 6
1, 1, 2, 3, 3 10
1, 2, 2, 2, 3 15
2, 2, 2, 2, 2 22

∆1, ∆2, ∆3, ∆4, ∆5 channels
1, 1, 1, 3, 6 1
1, 1, 2, 2, 6 1
1, 1, 1, 4, 5 6
1, 1, 2, 3, 5 6
1, 2, 2, 2, 5 6
1, 1, 2, 4, 4 10
1, 1, 3, 3, 4 10
1, 2, 2, 3, 4 15
2, 2, 2, 2, 4 21
1, 2, 3, 3, 3 21
2, 2, 2, 3, 3 29

and it takes the following form:

〈〈φ1φ1φ1φ1φ2 〉〉 = K11112(u, τ)A11112(χ1, χ2, r1, r2, s1, s2, t) . (9.5)

The spacetime cross-ratios have just been introduced in (9.1) as the R-symmetry ones in
(9.1.1). It is particularly convenient to choose the superconformal prefactor to be:

K11112 := (u1 · u4)(u2 · u5)(u3 · u5)
τ2

14τ
2
25τ

2
35

. (9.6)

As for the four-point function, this correlator satisfies crossing symmetry:

〈〈φ1(τ1)φ1(τ2)φ1(τ3)φ1(τ4)φ2(τ5) 〉〉 = 〈〈φ1(τ4)φ1(τ3)φ1(τ2)φ1(τ1)φ2(τ5) 〉〉 , (9.7)

from which we identify:

A(χ1, χ2; r1, r2, s1, s2, t) = A(1− χ2, 1− χ1; s2, s1, r2, r1, t) . (9.8)

On the line of [99], in Figure 9.1 we give a graphical intuition for the crossing symmetry of
this five-point.

Figure 9.1: In this figure we give a graphical illustration of how to interpret the crossing
symmetry for the five-point function.
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This correlator consists of six R-symmetry channels:

A11112 = F0 + r1
χ2

1
F1 + s1

(1− χ1)2F2 + r2
χ2

2
F3 + s2

(1− χ2)2F4 + t

χ2
12
F5 , (9.9)

where we suppress the dependency on the spacetime cross-ratios for compactness, i.e. Fj :=
Fj(χ1, χ2). The R-symmetry channels have the following perturbative expansion

Fj =
∞∑
k=1

λ
k
2F

(k)
j . (9.10)

The prefactor for each channel is chosen such that it becomes 1 in the topological limit.
In particular, the topological sector, which again corresponds to setting equal spacetime

and R-symmetry cross-ratios, takes the form for this five-point at large N :

F = 6 I22
λ I21

2(I1 − 2)(I1 + 28) + λ(2I1 − 19)√
3λ− (I1 − 2)(I1 + 10)

, (9.11)

where we define for compactness

Ia :=
√
λI0(
√
λ)

Ia(
√
λ)

. (9.12)

Expanded in the weak and strong coupling regimes, this function results in

F
λ∼0∼ 3 + 7λ

48 +O(λ2) , (9.13)

F
λ�1∼ 6

√
2− 33√

2
1√
λ

+ 189
8
√

2
1
λ

+O(λ−3/2) . (9.14)

These expansions have been obtained using matrix models in [24], but they could also
be derived by pinching the full correlator up to two- or three-point functions, in order to
compare it to the NLO results given in (7.8) and (7.33).

We compute now the leading order to find that only three channels do not vanish:

F
(0)
1 = F

(0)
4 = F

(0)
5 = 1 , F

(0)
0 = F

(0)
2 = F

(0)
3 = 0 . (9.15)

At next-to-leading order, almost all the channels are present and we obtain the following
contributions:

F
(1)
1 = F

(1),4pt
1

(
χ1
χ2

)
+ 1

48 , (9.16a)

F
(1)
2 = F

(1),4pt
0

(
χ21

1− χ1

)
, (9.16b)

F
(1)
3 = F

(1),4pt
0

(
χ1
χ2

)
, (9.16c)

F
(1)
4 = F

(1),4pt
1

(1− χ2
1− χ1

)
+ 1

48 , (9.16d)

F
(1)
5 = F

(1),4pt
1

(
χ21

1− χ1

)
+ F

(1)
1

(
χ21
χ2

)
+ 1

48 . (9.16e)

The remaining channel F0 is non-planar at this order. These results have been formulated
in terms of F 4pt

i , being the R-symmetry channels of the four-point function 〈〈φ1φ1φ1φ1 〉〉
written in (8.11).
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Some checks can be performed on this result. First, the channels are individually fi-
nite, as expected for correlators of protected operators. In fact, the pinching of operators
produces divergences, but they cancel again when summing up the different contributions.
It is possible to further pinch the operators of the five-point function in order to produce
e.g. four- and three-point functions. In particular we checked that pinching 〈〈φ1φ1φ1φ1φ2 〉〉
accordingly matches the known results for 〈〈φ1φ1φ1φ3 〉〉, 〈〈φ1φ1φ2φ2 〉〉 and 〈〈φ1φ2φ3 〉〉.

We note also that the correlator given above seems to be the top component of a family
of correlators, namely 〈〈φ1φ1φ1φkφk+1 〉〉, for which only the prefactor changes channel-wise.
The additional correlators of this family are in the ancillary Mathematica notebook of
[2]. This classification into families of correlators is expected to hold only at next-to-leading
order and in the planar limit.

9.1.3 〈〈φ6φ6φ6φ6φ6 〉〉

We want to present a second example of five-point functions: the case of all unprotected
operators. When the number of operators is odd, there are no building blocks, and the
recursion relation provides the leading order of the correlators only. We therefore only
compute the correlator of five unprotected scalars φ6 at leading order. It can be factorized
in

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4)φ6(τ5) 〉〉 =
(

τ42
τ2

12τ32τ43τ
2
45

)∆φ6

A66666(χ̃1, χ̃2) , (9.17)

where the cross-ratios are defined according to (4.24) as follows:

χ̃1 = τ12τ45
τ14τ25

, χ̃2 = τ13τ45
τ14τ35

. (9.18)

and the prefactor is set as in (4.23)4.
The reduced correlator obtained using the recursion relation (6.27) obeys the following

perturbative expansion:

A66666(χ̃1, χ̃2) =
∞∑
k=1

λk/2A(k)
66666(χ̃1, χ̃2) . (9.19)

The leading order is O(
√
λ) and we obtain the following expression:

A(1)
66666(χ̃1, χ̃2) = − 3

2
√

2π

(
χ̃1(2(1− χ̃1)− χ̃2

1)
1− χ̃1

+ χ̃2(1− χ̃2)− 1
1− χ̃2

+ χ̃2
1(1− χ̃1)2

(1− χ̃1 − χ̃2)2 + 1− 2χ̃1(1− χ̃1)(1 + χ̃1)
1− χ̃1 − χ̃2

)
. (9.20)

9.1.4 Five-Point Data

In this section, we expand in conformal blocks the five-point function 〈〈φ6φ6φ6φ6φ6 〉〉 just
derived, as a consistency check and to extract CFT data. We analyze in particular the
comb channel, already introduced in Section 4.4.3, performing analogous checks as for the
four-point functions.

Note that we focus our attention on the five-point function of unprotected scalars, since
we explore the expansion of the correlator 〈〈φ1φ1φ1φ1φ2 〉〉 involving protected operators at

4In this section we are using a different convention compared to the previous section because one appli-
cation of this result is the extraction of the CFT data. The bosonic conformal blocks were already present in
the literature and to make use of them, we have to adapt our conventions to the one of those paper authors,
as explained below (4.24).
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the end of this chapter, in the context of the strong coupling bootstrap of this correlator.

∆1 ∆2φI1

φI2 φI3 φI4

φI5
cφI1φI2O∆1

cO∆1φ
I3O∆2

cO∆2φ
I4φI5

Figure 9.2: Representation of five-point functions in the comb channel. Two operators are
being exchanged, labeled in the diagram by the scaling dimensions ∆1 and ∆2. The OPE
coefficients consist of a product of three three-point functions.

The comb channel for five-point functions is represented in Figure 9.2. In this case, we
are interested in checking the three-point function 〈〈φ6φ6φ6 〉〉, which can be accessed e.g.
by setting O1 = φ6, O2 = 1. Thus, the expansion of the correlator in blocks up to this
term reads

A66666(χ̃1, χ̃2) = cφ6φ6φ6g1,0(χ̃1, χ̃2) + . . .

= cφ6φ6φ6χ̃1 + . . . , (9.21)

where the OPE coefficient is just cφ6φ6φ6 because cφ6φ61 = 1. Note that, in this case, there is
no term corresponding to the exchange of two identity operators, since the OPE coefficient
cφ6φ61c1φ61c1φ6φ6 vanishes due to the presence of a one-point function in the middle.

Here we only look at the leading order O(
√
λ) given in equation (9.20), which upon

expanding at χ̃1, χ̃2 ∼ 0 reads

A(0)
66666(χ̃1, χ̃2) = 3

2
√

2π
χ̃1 + . . . , (9.22)

and thus we observe a perfect agreement of cφ6φ6φ6 with equation (7.36).
We can also derive a closed-form expression for the OPE coefficients at leading order:

cφ6φ6O∆1
cO∆1φ

6O∆2
cO∆2φ

6φ6

∣∣∣
O(
√
λ)

=12
√

2
√
λ

4∆1+∆2

Γ(∆1 + ∆2)
Γ(∆1 − 1/2)Γ(∆2 − 1/2)

× (∆1(∆1 − 1) + ∆2(∆2 − 1)δ∆1,1) , (9.23)

with ∆1 < ∆2.

9.2 Six-Point Functions
We now turn our attention to six-point functions of operators of length L = 1, involving
both protected and unprotected scalars, that we compute using the recursion relations given
in Section 6.2.1. With the help of the Mathematica notebook coming with [3], it is just
necessary to input the external operators to get the full result.

As before, the results can be extended to more complicated correlators by combining
the formulae for length L = 1 operators and the pinching technique.

9.2.1 Building Blocks and 〈〈φiφjφkφlφmφn 〉〉

We start by analyzing the six-point function of protected operators and collecting the build-
ing blocks useful to express other correlators, including the ones involving the unprotected
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scalar φ6. As usual, we define a reduced correlator through

〈〈φi(τ1)φj(τ2)φk(τ3)φl(τ4)φm(τ5)φn(τ6) 〉〉 = τ24τ35
τ2

12τ23τ2
34τ45τ2

56
Aijklmn(χ̃1 , χ̃2 , χ̃3)

= 1
τ2

12τ
2
34τ

2
56

1
χ̃2
Aijklmn(χ̃1 , χ̃2 , χ̃3) , (9.24)

where the notation on the second line turns out to be more convenient for expressing the
correlator in terms of R-symmetry channels. The prefactor is picked according to (4.23).
We define three independent spacetime cross-ratios from (4.24)5:

χ̃1 = τ12τ34
τ13τ24

, χ̃2 = τ23τ45
τ24τ35

, χ̃3 = τ34τ56
τ35τ46

. (9.25)

The reduced correlator consists of fifteen R-symmetry channels, which we choose to define
as follows6:

1
χ̃2
Aijklmn = δijδklδmnF0 + δikδjlδmnχ̃2

1F1 + δilδjkδmn
χ̃2

1
(1− χ̃1)2F2 + δijδkmδlnχ̃2

3F3

+ δijδknδlm
χ̃2

3
(1− χ̃3)2F4 + δikδjmδln

χ̃2
1χ̃

2
3

(1− χ̃2)2F5 + δimδjkδlm
χ̃2

1χ̃
2
3

(1− χ̃1 − χ̃2)2F6

+ δikδjnδlm
χ̃2

1χ̃
2
3

(1− χ̃2 − χ̃3)2F7 + δilδjmδkn
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃1)2(1− χ̃2)2(1− χ̃3)2F8

+ δilδjnδkm
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃1)2(1− χ̃2 − χ̃3)2F9 + δimδjlδkm
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃3)2(1− χ̃1 − χ̃2)2F10

+ δimδjnδkl
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃1 − χ̃2)2(1− χ̃2 − χ̃3)2F11

+ δinδjlδkm
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃1 − χ̃2 − χ̃3 + χ̃1χ̃3)2F12

+ δinδjkδlm
χ̃2

1χ̃
2
3

(1− χ̃1 − χ̃2 − χ̃3 + χ̃1χ̃3)2F13

+ δinδjmδkl
χ̃2

1χ̃
2
2χ̃

2
3

(1− χ̃2)2(1− χ̃1 − χ̃2 − χ̃3 + χ̃1χ̃3)2F14 , (9.26)

where we suppressed the dependency on the spacetime cross-ratios, i.e. Fj := Fj(χ̃1, χ̃2, χ̃3).
As usual, these channels (the building blocks) have the following perturbative expansion:

Fj(χ̃1, χ̃2, χ̃3) =
∞∑
k=0

λkF
(k)
j (χ̃1, χ̃2, χ̃3) . (9.27)

At leading order, it is easy to determine the building blocks and they read

F
(0)
0 = F

(0)
2 = F

(0)
4 = F

(0)
13 = F

(0)
14 = 1 , F

(0)
j = 0 . (9.28)

At next-to-leading order the expressions are cumbersome and we gathered them in the
5As anticipated, this is the convention we introduce to make contact with the existing literature, as

stated below (4.24).
6Note that here we decided to keep the R-symmetry indices open since this result is used as a building

block for the correlator of unprotected operators, which does not present R-symmetry channels.
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ancillary notebook of [3]. As an example, we give here the highest R-symmetry channel:

8π2F
(1)
0 =L̄R

( 1
η1

)
+ L̄R

(1− η2
η32

)
+ L̄R

(
− η2
η32

)
+ L̄R

(
η31
η32

)
+ 2

(
LR

(
−η21
η1

)
+ LR

(
−η31
η1

))
+ `(η1, η2)

η21
−
(

η2
η3η21

+ iπ

η31

)
`(η1, η3)

+
( 1

1− η3
+ η1
η3η21

+ iπ

η32

)
`(η2, η3) + `(η1, 1)

1− η1
−
( 1

1− η3
+ iπ

1− η2

)
`(η2, 1)

+ `(η3, 1)
1− η3

+ iπη3
η31

log η1 −
iπ(η3(1− η2)− η2η32)

(1− η2)η32
log η2

− iπ(2η1η32 − η3(η31 + η32))
η31η32

log η3 , (9.29)

where we have defined the following help variables:

η1 := χ̃1χ̃2χ̃3
(1− χ̃1 − χ̃2)(1− χ̃2 − χ̃3) , η2 := χ̃2χ̃3

(1− χ̃1 − χ̃2)(1− χ̃3) , η3 := (1− χ̃1)χ̃3
1− χ̃1 − χ̃2

,

(9.30)
with ηij := ηi − ηj . Note that with these definitions we have the ordering 0 < η1 < η2 <
η3 < 1. We have used the functions LR(χ̃) and `(χ̃1, χ̃2) defined respectively in (8.12) and
(8.14), while we introduced for compactness the new function

L̄R(χ̃) := LR(1− χ̃)− LR(χ̃) . (9.31)

Note that it is easy to derive the five-point function 〈〈φ1φ1φ1φ1φ2 〉〉 from this six-point,
by pinching the last two operators:

〈〈φ1φ1φ1φ1φ2 〉〉 = n1√
n2

lim
6→5
〈〈φ1φ1φ1φ1φ1φ1 〉〉 , (9.32)

where the prefactor here takes into account the unit-normalization (7.8).

9.2.2 〈〈φ6φ6φ6φ6φ6φ6 〉〉

We give another example of a six-point function, namely the case where all the operators
are the unprotected elementary scalar φ6. The reduced correlator is defined through

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4)φ6(τ5)φ6(τ6) 〉〉 =
(

τ24τ35
τ2

12τ23τ2
34τ45τ2

56

)∆φ6

A666666(χ̃1 , χ̃2 , χ̃3)

= 1
τ2∆φ6

12 τ2∆φ6
34 τ2∆φ6

56

1
χ̃∆φ6

2
A666666(χ̃1 , χ̃2 , χ̃3) .

(9.33)

At leading order, the correlator 〈〈φ6φ6φ6φ6φ6φ6 〉〉 coincides with 〈〈φiφjφkφlφmφn 〉〉 with
i = j = k = l = m = n, i.e.

1
χ̃∆φ6

2
A(0)

666666 = 1
χ̃2
A(0)
ijklmn

∣∣∣
i=j=k=l=m=n

= 1 + η2
1

(1− η1)2 + η2
23

(1− η3)2 + η2
1η

2
23(1− 2η3(1− η3))
η2

3(1− η3)2η2
12

, (9.34)

where in the second equality we have used again the cross-ratios defined in (9.30) for
compactness.
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The next order includes U -diagrams as well as the next-to-leading order building blocks
F

(1)
j and it is significantly more involved. These additional terms, as well as the full cor-

relator, can be found in the ancillary notebook of [3]. Several other examples7 of six-
point functions can be found in the ancillary notebook, and it is straightforward to extend
these computations to correlators involving composite operators made of fundamental scalar
fields.

9.2.3 Six-Point Data

We now expand in conformal blocks the six-point functions just derived, as we did with
four- and five-point functions. Interestingly, for n ≥ 6, different OPE limits lead to decom-
positions with different topologies, and therefore there exist multiple n-point blocks. We
expand our six-point correlators in two topologies: the comb and the snowflake channels,
already introduced in Section 4.4.3.

Comb Channel

We replicate the same analysis of Section 8.5 to the comb channel of the six-point functions
of protected fundamental scalars 〈〈φiφjφkφlφmφn 〉〉 and of unprotected ones 〈〈φ6φ6φ6φ6φ6φ6 〉〉.

∆1 ∆2 ∆3φI1

φI2 φI3 φI4 φI5

φI6
cφI1φI2O∆1

cO∆1φ
I3O∆2

cO∆2φ
I4O∆3

cO∆3φ
I5φI6

Figure 9.3: Representation of six-point functions in the comb channel. Three operators are
being exchanged, and the OPE coefficients consist of products of four three-point func-
tions.

〈〈φiφjφkφlφmφn 〉〉. We can start by expanding in conformal blocks the six-point func-
tion of protected operators studied in Section 9.2.1, and compare the three-point function
〈〈φiφjφ6 〉〉 computed in (7.35) with the prediction obtained from the correlator.

The comb channel for this correlator is represented in Figure 9.3, and it is easy to see
that the lowest coefficient we can check corresponds to setting ∆1 = ∆2 = 1, ∆3 = 0, for
which the exchanged operators can only be O1 = φ6, O2 = φh (h = 1, . . . , 5), O3 = 1, due
to conservation of the R-charge. Noticing that the OPE coefficient vanishes when one ∆
is equal to 1 and the two other ∆’s are 0, we can expand the highest-weight channel F0 in
blocks in order to compare to that coefficient. We find that

F0(χ̃1, χ̃2, χ̃3) = 1 + cφiφjφ6cφ6φkφhcφhφl1c1φmφnχ̃1χ̃2 + . . . , (9.35)

where we note that cφhφl1c1φmφn = 1, due to the unit-normalization of the two-point
function. This is also the reason why the leading term is 1, in perfect analogy with the case
of the four-point function.

We now expand the R-symmetry channel F0 of the six-point function studied in Sec-
tion 9.2.1 in order to check whether we find a match for the OPE coefficient mentioned

7Examples of six-point correlators in the ancillary notebook of [3] are 〈〈φiφjφkφlφ6φ6 〉〉 and
〈〈φiφjφ6φ6φ6φ6 〉〉.
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above. At leading order, we see from equation (9.28) that

F
(0)
0 (χ̃1, χ̃2, χ̃3) = 1 , (9.36)

which matches the expectation that cφiφjφ6cφ6φkφh vanishes at order O(λ0), as it was the
case for the four-point function as well.

At next-to-leading order, expanding equation (9.29) at χ̃1, χ̃2, χ̃3 ∼ 0 results in

F
(1)
0 (χ̃1, χ̃2, χ̃3) = 1

8π2 χ̃1χ̃2 + . . . , (9.37)

where the coefficient of χ̃1χ̃2 is to be identified with cφiφjφ6cφ6φkφh according to (9.35). We
observe a perfect match with equation (8.67).

〈〈φ6φ6φ6φ6φ6φ6 〉〉. We can now focus on the expansion of the six-point function of un-
protected operators discussed in Section 9.2.2. This correlator is expected to contain the
three-point function 〈〈φ6φ6φ6 〉〉, which can be checked against (7.36). This coefficient can
be accessed e.g. by setting as (bare) scaling dimensions ∆1 = ∆2 = 1 and ∆3 = 0. As for
the previous cases, the exact correlator can be expanded in blocks and reads

A666666(χ̃1, χ̃2, χ̃3) = 1 + c2
φ6φ6φ6g1,1,0(χ̃1 , χ̃2 , χ̃3) + . . .

= 1 + c2
φ6φ6φ6χ̃1χ̃2 + . . . , (9.38)

where the 1 comes from the exchange of identity operators as always, and the OPE coef-
ficient is just c2

φ6φ6φ6 because of c2
φ6φ61 = 1. Other lower combinations such as ∆1 = 1,

∆2 = ∆3 = 0 vanish because one-point functions are zero in CFT.
We now extract this coefficient at leading and next-to-leading orders and compare it to

the direct computation. At leading order, expanding (9.34) at χ̃1 , χ̃2 , χ̃3 ∼ 0 gives

A(0)
666666(χ̃1, χ̃2, χ̃3) = 1 + χ̃2

1 + . . . , (9.39)

and thus c2
φ6φ6φ6 vanishes at order O(λ0) as predicted by (7.36).

We are also able to determine a closed form for the OPE coefficients at leading order:

cφ6φ6O∆1
cO∆1φ

6O∆2
cO∆2φ

6O∆3
cO∆3φ

6φ6

∣∣∣
O(λ0)

=− 64π3/2

4∆1+∆2+∆3

∆1(∆1 − 1)∆12
(2∆1 − 1)(∆1 + ∆2 − 1)

× Γ(∆1 + ∆2)2

Γ(∆2)Γ(∆1 − 1/2)2Γ(∆2 − 1/2)δ∆1,∆3 ,

(9.40)

with ∆ij := ∆i −∆j , valid when ∆1 < ∆2.
At next-to-leading order, we expand the correlator given in the ancillary notebook and

find
A(1)

666666(χ̃1, χ̃2, χ̃3) = 9
8π2 χ̃1χ̃2 + . . . , (9.41)

which is in full agreement with (7.36).

Snowflake Channel

We now consider the snowflake channel for the same two correlators. Note that here we use
yet another convention for the cross-ratios. We commented on this choice in Section 4.4.3
where the cross-ratios have also been introduced.
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〈〈φiφjφkφlφmφn 〉〉. We start with the correlator of six protected fundamental scalars. As
usual, let us focus on the highest-weight channel F0, the expansion sketched in (4.37) then
becomes

F0(z1 , z2 , z3) = 1 + cφiφjφ6cφ6φkφlz1z2 + . . . , (9.42)

where the exchanged operator can only be φ6 because of R-charge conservation. At leading
order, we have seen in equation (9.28) that

F
(0)
0 (z1 , z2 , z3) = 1 , (9.43)

and thus cφiφjφ6cφ6φkφl = 0 at order O(λ0), in perfect agreement with (7.35).
At next-to-leading order, we can expand (9.29) at z1 , z2 , z3 ∼ 0 to obtain

F
(1)
0 (z1 , z2 , z3) = 1

8π2 z1z2 + . . . , (9.44)

which perfectly matches the order O(λ) of (7.35) squared.

〈〈φ6φ6φ6φ6φ6φ6 〉〉. Let us now perform checks on our result for the six-point function of
unprotected scalars φ6 in the snowflake channel. In this case, equation (4.37) turns out to
be

A666666(z1 , z2 , z3) = 1 + c2
φ6φ6φ6z1z2 + . . . , (9.45)

where again the exchanged operator can only be φ6 because of conservation of the R-charge.
At leading order, we can expand (9.34) and we find

A(0)
666666(z1 , z2 , z3) = 1 + z2

1z
2
2 + . . . , (9.46)

from which we can read that c2
φ6φ6φ6 = 0 at O(λ0), since there is no term of order O(z1z2).

This is fully consistent with (7.36).
At next-to-leading order, we can expand the correlator of the ancillary notebook in

order to obtain
A(1)

666666(z1 , z2 , z3) = 9
8π2 z1z2 + . . . , (9.47)

where the prefactor perfectly matches the c2
φ6φ6φ6 predicted by equation (7.36) at order

O(λ).

9.3 Multipoint Ward Identities
While it is undoubtedly true that the perturbative results we have just introduced are inte-
resting in their own rights, it is especially true that what makes them even more interesting
are the non-perturbative constraints that we can derive from them. In this section, we
introduce a conjecture for multipoint Ward identities that annihilate protected correlators
of generic n. We, then, discuss the properties of these differential equations and we solve
them in a specific case. Basically, we prepare the ground for an application of the Ward
identities coming in Section 9.4 that will prove how powerful these constraints are.

9.3.1 The Conjecture

From the pool of protected correlators that we obtained through the recursion relations up
to n = 8, we find experimentally that all our correlators are annihilated by the following
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family of differential operators:

n−3∑
k=1

(1
2∂χ̃k + αk∂rk − (1− αk)∂sk

)
A∆1...∆n

∣∣∣∣∣ri→αiχ̃isi→(1−αi)(1−χ̃i)
tij→(αi−αj)(χ̃i−χ̃j)

= 0 , (9.48)

with αk being arbitrary real numbers. Notice that these operators are a natural genera-
lization of the differential operator that captures the Ward identity (8.23) for four-point
functions of half-BPS operators. We, then, conjecture that these equations are a multipoint
extension of the superconformal Ward identity satisfied by the four-point functions.

Even though we obtained these equations from NLO correlators, we expect these iden-
tities to be also satisfied in the strong-coupling expansion. This regime is captured by a
well-understood AdS dual [27], which has been used to calculate planar correlators in the
λ → ∞ limit. These are given by simple Wick contractions of the fluctuations of the dual
fundamental string, i.e. the leading, disconnected order corresponds to the generalized free-
field expression, e.g. (4.5) in [27]. It is then easy to check that all our n-point functions
also satisfy (9.48) in the extreme strong-coupling limit. Moreover, a formula was recently
derived [120] for computing arbitrary contact diagrams involving external scalar operators
in AdS2. There it was independently checked that these next-to-leading order correlators
also satisfy our conjectured Ward identities.

We have therefore four non-trivial data points: the first two orders at weak and at strong
coupling. It is then reasonable to assume that the constraints (9.48) are non-perturbative
and valid at all loop orders.

9.3.2 Considerations

Let us start by saying that superconformal constraints are insensitive to gauge-theory quan-
tum numbers, which means our identities (9.48) should go beyond the planar limit. Indeed,
we checked that they also hold for the first non-planar corrections in the N expansion, up
to n = 8 and for certain cases, we have checked that it also holds at the next-to-leading
order.

Secondly, we expect the Ward identities we have just derived to be powerful constraints,
as they encode the symmetries of the theory. As we have seen in Section 8.2, Ward identities
can help in reducing the number of independent functions of a correlator. In addition, they
can be used to obtain superconformal blocks, as we show in Section 9.4, where we apply
the Ward identities to derive the superblocks of the five-point function 〈〈φ1φ1φ1φ1φ2 〉〉.

We conclude these considerations with an important remark: our conjecture (9.48)
cannot represent the full set of superconformal constraints on the correlators. That is
because our analysis of protected operators only focuses on the highest-weight component,
and we are ignoring possible fermionic descendants. Working in a suitable superspace, it
is known that for four-points the full superconformal correlator can be reconstructed from
the highest weight, and so it is safe to set the fermions to zero. Starting with five-point and
up, one expects nilpotent invariants8. In general, for generic n-point functions the Ward
identities should be a collection of partial PDEs relating the components associated with
each fermionic structure. The fact that we obtained a differential operator that only acts on
the highest weight and still annihilates the correlator is unexpected. It would be advisable
to do a proper superspace analysis (similar to what was done in [121]) and prove that
our “experimental” observation is indeed one of the constraints imposed by superconformal
invariance.

8We thank Paul Heslop for discussions on this topic.
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9.3.3 Solving the Ward Identities

In Section 8.2, we also discussed the solution of the Ward identities for the four-point that
was found in [99]. We now want to extend this analysis to multipoint functions. However,
we focus on a particular example: the five-point function 〈〈φ1φ1φ1φ1φ2 〉〉. Not only the
WI solution is useful to re-express the weak-coupling result in a compact way, but it is also
fundamental for the strong-coupling analysis of Section 9.4.

We have already discussed the correlator 〈〈φ1φ1φ1φ1φ2 〉〉 at weak coupling in Sec-
tion 9.1.2. The only difference is that here we use new R-symmetry cross-ratios ζ and
η instead of r and s:

r1 = ζ1ζ2 , s1 = (1− ζ1)(1− ζ2) , (9.49)
r2 = η1η2 , s2 = (1− η1)(1− η2) . (9.50)

The R-symmetry channel decomposition (9.9) then is rewritten as

A(χ1; ri, si, t) = F0 + ζ1ζ2
χ2

1
F1 + (1− ζ1)(1− ζ2)

(1− χ1)2 F2 + η1η2
χ2

2
F3 + (1− η1)(1− η2)

(1− χ2)2 F4 + t

χ2
12
F5 .

(9.51)

This formulation is convenient, as the topological limit is reached for

ζi = χ1 , ηi = χ2 , t = χ2
12 . (9.52)

In order to solve (9.48), we start by formulating an ansatz, keeping in mind that first
all the R-symmetry channels of (9.51) have to appear and second we want to isolate the
constant contribution corresponding to the topological sector, such that A = F when we
set R-symmetry and spacetime variables equal to each other.

To make this clearer, let us look at the channel decomposition (9.51) and focus on the
terms that have ζ1 and ζ2 as prefactors. There are two degrees of freedom (F1 and F2), and
the sum of these two functions is a polynomial of the form

(ζ1 + ζ2)g1(χ1, χ2) + ζ1ζ2 g2(χ1, χ2) . (9.53)

Notice that the term without ζ’s is left out, as it will be covered in the ansatz later on.
Moreover, we have used the symmetry ζ1 ↔ ζ2 for reducing the ansatz to two functions g1
and g2 only. This preserves the number of degrees of freedom as expected.

To have vanishing prefactors in front of g1 and g2 in (9.53) in the topological limit, we
simply write:

ζi → χ1 − ζi , (9.54)

such that (9.53) becomes

(χ1 − ζ1 + χ1 − ζ2)g1(χ1, χ2) + (χ1 − ζ1)(χ1 − ζ2) g2(χ1, χ2) . (9.55)

Repeating this process for the η’s and for t leads to the following ansatz:

A(χi; ri, si, t) = g0(χ1, χ2) + (v1 + v2) g1(χ1, χ2) + v1v2 g2(χ1, χ2)
+ (w1 + w2) g3(χ1, χ2) + w1w2 g4(χ1, χ2)
+ z g5(χ1, χ2) , (9.56)

where we have defined the shorthand notation

vi := χ1 − ζi , wi := χ2 − ηi , z := χ2
12 − t . (9.57)
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In this formulation, the topological sector fixes one function to be constant:

A(χi;χi, 1− χi, χij) = g0(χ1, χ2) = F , (9.58)

as we requested before. We discussed the topological sector of this correlator in Sec-
tion 9.1.2.

We now apply the Ward identities on (9.56). This leads to three constraints, which can
then be used for writing the general solution

A(χi; ri, si, t) = F +
3∑
i=1

Difi(χ1, χ2) , (9.59)

where we have defined the differential operators

D1 := (v1 + v2) + v1v2 (∂χ1 + ∂χ2) , (9.60a)
D2 := (w1 + w2) + w1w2 (∂χ1 + ∂χ2) , (9.60b)
D3 := z + χ12(v1v2 − w1w2) (∂χ1 + ∂χ2) , (9.60c)

and the functions g have been renamed into f as follows:

g1 → f1 , g3 → f2 , g5 → f3 . (9.61)

In terms of the R-symmetry channels given in (9.9) and (9.51), the f -functions read

f1(χ1, χ2) = − 1
χ1
F1(χ1, χ2) + 1

1− χ1
F2(χ1, χ2) , (9.62a)

f2(χ1, χ2) = − 1
χ2
F3(χ1, χ2) + 1

1− χ2
F4(χ1, χ2) , (9.62b)

f3(χ1, χ2) = − 1
χ2

12
F5(χ1, χ2) . (9.62c)

Note that F0 does not appear in this decomposition. This is because the topological sector
(9.58) fully eliminates one channel.

To conclude, it might be possible to give a general solution of the Ward identities for a
given number n of external operators. For four-point functions, the general solution can be
found in [99]. Although, it seems that for n ≥ 6 is not possible to find a decomposition of
the R-symmetry channels similar to (9.51). We can realize this by looking at e.g. the six-
point function 〈〈φ1φ1φ1φ1φ1φ1 〉〉, whose R-symmetry channels are given in (9.26). The fact
that the R-symmetry cross-ratios appear in products makes it more difficult to formulate
an ansatz on the line of (9.56). In any case, such a general analysis of the Ward identities
and their solutions is left for future work.

Re-Expressing the Weak Coupling Result

The solution (9.59) to the Ward identity reduces the number of functions from six R-
symmetry channels to just three functions fi and one constant F, which can be computed
from supersymmetric localization.

Our weak-coupling results can be expressed in terms of these functions. In particular,
we start from the R-symmetry channels decomposition given in (9.51) and we insert the
various F (0)

i from (9.15) and F (1)
i from (9.16) in (9.62), to get the fi, which at leading order
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read
f

(0)
1 (χ1, χ2) = − 1

χ1
, f

(0)
2 (χ1, χ2) = 1

1− χ2
,

f
(0)
3 (χ1, χ2) = − 1

χ2
12
, F(0) = 3 .

(9.63)

Notice the following relations:

f
(0)
1 (χ1, χ2) = −f (0)

2 (1− χ2, 1− χ1) ,

f
(0)
3 (χ1, χ2) = f

(0)
3 (1− χ2, 1− χ1) .

(9.64)

These equations hold non-perturbatively, and follow from the crossing symmetry of the
correlator, given by (9.8).

At next-to-leading order, the solution of the Ward identity reads

f
(1)
1 (χ1, χ2) = − 1

8π2

(
log

(
1− χ1

χ2

)
+ χ1

1− χ2
log

(
1− χ1 − χ2

χ1 − 1

)
− χ1
χ1 − χ2

(
log

(
χ2 − 1
χ1 − 1

)
+ log

(
χ1
χ2

))
+ π2

6

)
,

f
(1)
2 (χ1, χ2) = − f (1)

1 (1− χ2, 1− χ1) ,

f
(1)
3 (χ1, χ2) = − 1

8π2χ2
12

(
(χ2 − 1)

(
log

(
χ2 − 1
χ1 − 1

)
+ (χ1 − χ2) log

(
χ1 − 1χ2
χ1 − 1

))
+ 2LR

(
χ1 − χ2
χ1 − 1

)
+ (χ1 ↔ 1− χ2) + π2

6

)
,

F(1) = 7
48 .

(9.65)

with LR(χ) the Rogers dilogarithm defined in (8.12). The analysis done in this section is
used for bootstrapping this correlator in the strong-coupling regime.

9.4 Towards Multipoint Correlators at Strong Coupling
We now basically have (almost) all the ingredients we need to attempt the bootstrap of a
correlator at strong coupling.

In this chapter, we started from the weak coupling results of five- and six-point functions,
that we used to conjecture multipoint Ward identities. These are fundamental to reducing
the degrees of freedom of the correlation functions. In particular, we have just solved them
for the case of the five-point function 〈〈φ1φ1φ1φ1φ2 〉〉, which is precisely our guinea pig for
this bootstrap experiment. In the following, we realize that the Ward identities are also
central in deriving the superconformal blocks, which are the last essential element we need.

Just a quick comment, before starting. We are not bootstrapping a four-point function,
even if that would be the obvious starting point because the correlator 〈〈φ1φ1φ1φ1 〉〉 has
already been derived using bootstrap at strong coupling up to NNNLO in [22]. Indeed, we
keep this remarkable result in mind, as its derivation is our guide in this attempt.

9.4.1 Superconformal Blocks

As promised, our first stop is the derivation of the superconformal blocks, which play a
crucial role in the bootstrap strategy. In the case of the four-point functions [21], the
superconformal blocks were obtained with the help of the Ward identities (8.21), bypassing
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the use of Casimir equations. We perform a similar analysis here and show that the five-
point superblocks can also be entirely fixed thanks to the Ward identities.

Figure 9.4: We sketch the two possible ways of performing the OPEs for the correlator
〈〈φ1φ1φ1φ1φ2 〉〉. The figure on the left shows the symmetric channel (9.66), while the one
on the right presents the asymmetric channel given in (9.70). The black bold lines refer
to the way the OPEs are being performed. Pink lines refer to the OPE (4.10a), while the
light blue line corresponds to (4.10b).

We consider here two ways, represented in Figure 9.4, of performing the OPE. Indeed,
one can either consider two pairs of φ1×φ1 and leave φ2 untouched, giving rise to what we
call symmetric channel, or first perform φ1 × φ2, which leads to the asymmetric channel.
These names refer to the fact that in the symmetric channel, the two OPEs are the same
(φ1 × φ1), while in the asymmetric one, they are different. Having two different OPE
channels imply the derivation of two different block expansions, which we now go through
in detail.

The Symmetric Channel

We have already introduced explicitly the relevant OPE in Section 4.3, particularly in
equation (4.10a). This OPE leads to the following expansion in superblocks

A11112(χi; ri, si, t) = c112(G1,B2 + GB2,1) + c2
112c222GB2,B2

+
∑
∆
c112c11∆c22∆(GB2,L∆ + GL∆,B2)

+
∑

∆1,∆2

c11∆1c11∆2c2∆1∆2GL∆1 ,L∆2
,

(9.66)

where ∆ indicates the dimension of the exchanged operators9 and L∆ := L∆
0,[0,0]. Moreover,

we omitted the dependence on the spacetime and R-symmetry variables on the RHS for
compactness.

The superblocks themselves take the form

GX ,Y(χi; ri, si, t) =
∑

αg(∆1,∆2, [a, b][c, d])h[a,b][c,d](ri, si, t) g∆1,∆2(χi) , (9.67)

where h[a,b][c,d] correspond to the R-symmetry blocks10 and g∆1,∆2 are the bosonic blocks11.
9Note that we write ∆ without specifying if it is the operator exchanged on the left or the right because

in this case, it does not matter. The formula is the same for both of them. Whenever it matters, we write
it explicitly.

10[a, b] are the Dynkin labels of the representation corresponding to the first multiplet exchanged on the
left X , while [c, d] refers to the multiplet Y on the right.

11Here ∆1 and ∆2 correspond to the bosonic scaling dimension of the operators being exchanged respec-
tively on the left and on the right.
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These blocks are known and they read:

g∆1,∆2(χi) = χ∆1−2
1 (1− χ2)∆2−2F2(∆1 + ∆2 − 2,∆1,∆2, 2∆1, 2∆2;χ1, 1− χ2) , (9.68)

where F2 is the Appell Hypergeometric function. Unfortunately the relative coefficients
αg(∆1,∆2, [a, b][c, d]) still have to be determined. For the most complicated block GL∆1 ,L∆2

,
there are about 50 coefficients to fix. Nevertheless, remarkably all the coefficients are fixed
by (9.48), up to an overall normalization constant. This illustrates the great power of the
conjectured Ward identities.

We leave the full derivation, which is quite long and intricate, and the explicit expression
of all the derived superblocks to the future paper [5]. Although, we illustrate how to derive
some specific cases for the asymmetric channel in Appendix F.

Before moving to the other OPE channel, note that the expansion in superblocks largely
truncates in the topological sector. In particular, we have that

F = 2c112

(
1− 5

2c112c222

)
, (9.69)

thanks to the fact that all the contributions from the longs drop out, which is a non-trivial
check of the validity of these expressions.

The Asymmetric Channel

We now turn our attention to the asymmetric channel. In this case, we need both OPEs in
(4.10). This results in an expansion in superblocks of the following form:

A11112(χi; ri, si, t) = c112G1,B1 + c3
112GB2,B1 + c2

112c123GB2,B1

+
∑
∆1

(
c2

11∆1GL∆1 ,B1 + c11∆1c13∆1c123GL∆1 ,B3

)
+
∑
∆2

c112c
2
12∆2GB2,L

∆2
0,[0,1]

+
∑

∆1,∆2

c11∆1c12∆2c1∆1∆2GL∆1L∆2
.

(9.70)

Here the subscripts in ∆1 and ∆2 are more than a label; they are a shorthand notation to
refer to the long operators L∆1

0,[0,0] and L
∆2
0,[0,1], which have different R-charges.

The topological sector in this channel reads

F = c112

(
1 + 2c112 −

21
2 c112c123

)
. (9.71)

We remind that in Appendix F we derive some blocks in this channel and we give their
expressions too.

9.4.2 Bootstrapping a Five-Point Correlator

With this derivation of the superconformal blocks, we collected another key ingredient for
our attempt to bootstrap 〈〈φ1φ1φ1φ1φ2 〉〉 at strong coupling. What we still need is the
input from the Witten diagrams. In this section, we give the results for the leading and
next-to-leading orders, while the higher-loop orders will be presented in the upcoming work
[5].
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Generalized Free Field Theory

It is really important for the bootstrap of the higher orders to extract the CFT data of the
leading order, which corresponds to the generalized free field (GFF) theory12.

It is easy to compute the corresponding Witten diagrams, which are depicted in Fig-
ure 9.5. The AdS propagators correspond to [13, 117]

Figure 9.5: Witten diagrams contributing to the leading order of the five-point function.

I

1

J

2
= 2B(λ)δ

IJ

τ2
12
, (9.72)

where B(λ) is the Bremsstrahlung function, already encountered in equation (7.2), whose
expansion at strong coupling is

B(λ) =
√
λ

4π2 −
3

8π2 +O

( 1√
λ

)
. (9.73)

If we now take the leading order propagator, we get the R-symmetry channel decompo-
sition (see (9.9))

F
(0)
j =

√
2 , (9.74)

which in terms of the solution of the Ward identity (9.59) translates into

f
(0)
1 = −

√
2 1− 2χ1
χ1(1− χ1) , f

(0)
2 = −

√
2 1− 2χ2
χ2(1− χ2) ,

f
(0)
3 = −

√
2

χ2
12
, F = 6

√
2 .

(9.75)

This result can be expanded in the superconformal blocks introduced in Section 9.4.1.
For the symmetric channel, we find the following OPE coefficients:

c112 =
√

2 , c2
112c222 = −4

√
2

5 ,

c112c11∆c22∆|∆ even =
√
π(∆− 1)Γ(∆ + 3)
2

4∆+1
2 Γ

(
∆ + 3

2

) ,

c11∆1c11∆2c2∆1∆2 |∆1,2 even = π(∆1)3(∆2)3Γ(∆1 + ∆2)

2
4(∆1+∆2)+7

2 Γ
(
∆1 + 3

2

)
Γ
(
∆2 + 3

2

) .
(9.76)

Note that the OPE coefficients with odd ∆ vanish.
12Generalized free-field theory, often called mean field theory, is a non-local theory of operators with

generic dimension ∆ and whose correlators are computed by Wick contractions. GFF has no conserved
stress tensor and its AdS2 dual is the theory of a free massive scalar.
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From the asymmetric channel, we obtain

c112 =
√

2 , c3
112 =

√
2 , c2

112c123 = −2
√

2
7 ,

c2
11∆1

∣∣∣
∆1 even

=
√
π(∆1 − 1)Γ(∆1 + 3)

2
4∆1+3

2 Γ
(
∆1 + 3

2

) ,

c112c
2
12∆2

∣∣∣
∆2 even

=
√
π(∆2 − 2)2(∆2)6Γ(∆2)

2
4∆2+7

2 3(∆2 + 1)(∆2 + 4)Γ
(
∆2 + 3

2

) ,
c11∆1c12∆2c1∆1∆2 |∆1 even

∆2>∆1

= 2
√

2∆21(∆1 − 1)3Γ(∆1 + 3)Γ(∆2 − 1)Γ(∆1 + ∆2 + 4)
Γ(2∆1 + 3)Γ(2∆2 + 3) ,

(9.77)

where all the other OPE coefficients are zero.

First Correction

We now bootstrap the next order. Note that deriving this order via Witten diagrams is
still doable. However, the next-to-next-to-leading order is extremely involved. Therefore
bootstrapping this order is fundamental to testing our bootstrap routine and the newly
derived superblocks since we can double-check our result with the Witten diagrams. We
leave the bootstrap of the NNLO for future publication [5].

Our starting point is the crossing symmetry given in (9.8) that relates the different func-
tions fj(χ1, χ2). Additional braiding constraints can be obtained by considering different
orderings of the operators in 〈φ1φ1φ1φ1φ2 〉. In this case, the functions are equal up to a
phase.

We begin by writing an ansatz for f1 and f3
13 based on the OPE limits. They take the

form

f1(χ1, χ2) = p1(χ1, χ2) + r1(χ1, χ2) logχ1 + r2(χ1, χ2) logχ2

+ r3(χ1, χ2) log(1− χ1) + r4(χ1, χ2) log(1− χ2)
+ r5(χ1, χ2) logχ21 ,

(9.78)

and

f3(χ1, χ2) = p3(χ1, χ2) + s1(χ1, χ2) logχ1 + s2(χ1, χ2) logχ2

+ s3(χ1, χ2) log(1− χ1) + s4(χ1, χ2) log(1− χ2)
+ s5(χ1, χ2) logχ21 ,

(9.79)

where the functions pi and rj are rational functions.
The crossing and braiding symmetries result in the following constraints on the rational

functions present in (9.78) and (9.79):

p1(χ1, χ2) = −p1(1− χ1, 1− χ2) ,
r1(χ1, χ2) = −r3(1− χ1, 1− χ2) ,
r2(χ1, χ2) = −r4(1− χ1, 1− χ2) ,
r5(χ1, χ2) = −r5(1− χ1, 1− χ2) ,

(9.80)

13Recall that f2 is fixed by (9.8).
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and

p3(χ1, χ2) = p3(χ2, χ1) ,
p3(χ1, χ2) = p3(1− χ2, 1− χ1) ,
s2(χ1, χ2) = −s1(χ2, χ1) ,
s3(χ1, χ2) = −s1(1− χ1, 1− χ2) ,
s4(χ1, χ2) = −s1(1− χ2, 1− χ1) ,
s5(χ1, χ2) = −s5(χ2, χ1) ,
s5(χ1, χ2) = −s5(1− χ2, 1− χ1) .

(9.81)

This already eliminates five functions. Moreover, we also have relations that connect f1 to
f3:

p1(χ1, χ2) = − 1− χ1
χ2

2
p3

(
χ1
χ2
,

1
χ2

)
+ χ1

(1− χ2)2 p3

(
χ12

1− χ2
,− χ2

1− χ2

)
,

r1(χ1, χ2) = − 1− χ1
χ2

2
s1

(
χ1
χ2
,

1
χ2

)
+ χ1

(1− χ2)2 s5

(
χ12

1− χ2
,− χ2

1− χ2

)
,

r2(χ1, χ2) = 1− χ1
χ2

2

(
s1

(
χ21
χ2

,−1− χ2
χ2

)
+ s1

(
−1− χ2

χ2
,
χ21
χ2

)
+ s1

(
χ1
χ2
,

1
χ2

)
+ s1

( 1
χ2
,
χ1
χ2

)
+ s5

(
χ1
χ2
,

1
χ2

))
+ χ1

(1− χ2)2 s1

(
− χ2

1− χ2
,
χ12

1− χ2

)
,

r5(χ1, χ2) = − 1− χ1
χ2

2
s1

(
χ21
χ2

,−1− χ2
χ2

)
+ χ1

(1− χ2)2 s1

(
χ12

1− χ2
,− χ2

1− χ2

)
,

(9.82)

from which we can eliminate four more functions.
Thus, we are left with three rational functions to fix, which we choose to be p3, s1, and

s5. We now assume a Regge behavior for the anomalous dimensions, as well as the relations
(9.81) and boundary conditions following from the OPE expansion, which allow us to fix
these functions up to two constants, corresponding to F and c112. These are known from
supersymmetric localization, and we use these results as input in our bootstrap routine. F
is given in (9.11), while c112 can be computed from [11] and reads

c112 =
√

2− 3
2
√

2
√
λ
− 9

16
√

2λ
+O(λ−3/2) . (9.83)

All in all, we find the remaining rational functions to be

p3(χ1, χ2) = 1
2
√

2
√
λ

( 4
χ1χ2

+ 4
(1− χ1)(1− χ2) + 19

χ2
12

)
,

s1(χ1, χ2) = −
√

2√
λ

χ1(χ1(1− 3χ2) + 4χ2
2)

χ2
2χ

3
12

,

s5(χ1, χ2) =
√

2√
λ

( 1
χ2

1
+ 1
χ2

2
+ 1

(1− χ1)2 + 1
(1− χ2)2

)
,

(9.84)

which gives a degenerate anomalous dimension, independent from the multiplying OPE
coefficient

γ(1) = ∆(∆ + 2)
2
√
λ

, (9.85)



9.4. Towards Multipoint Correlators at Strong Coupling 97

solving the mixing between all the operators appearing in the OPE.
With this, we conclude our computation of the next-to-leading order. We are able

to reconstruct all the f -functions from (9.84) and the constraints listed above it. This
however was just a warm-up for the real challenge, which is the next order. As anticipated,
computing it only via Witten diagram seems too complicated. Therefore, our idea is to
apply the same bootstrap algorithm to bootstrap this next order. We are optimistic that
this is doable. We will (hopefully) report about this in [5]. In any case, the next step in this
direction consists of extracting the CFT data from the correlator presented in this section,
which then can be used as input in the same way as it was done here.
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CHAPTER 10

Mellin Amplitudes for 1d Correlators

In this chapter, we move a bit away from multipoint correlators and the Wilson line specifi-
cally, to meet a broader view on 1d CFTs in general. In particular, we explore an alternative
way of expressing correlators, which could help simplify the expression of correlation func-
tions and also expose their interesting features. We are talking about the Mellin formalism.
In higher-dimensional theories, it has been proven already quite effective, especially in holo-
graphic setups. It is therefore very appealing to apply this framework to one-dimensional
CFTs.

Since there is a parallelism between Mellin and Mandelstam variables, one would natu-
rally expect a Mellin amplitude with the typical properties of a two-dimensional S-matrix
for CFT1 correlators. One option to proceed in the definition of such a Mellin amplitude
would be to start from the higher-dimensional definition and enforce the relation u = v1

(so-called diagonal limit) among cross-ratios. This constraint does not entail a relation in
the Mellin variables and thus does not provide an inherently one-dimensional Mellin defini-
tion. Nevertheless, given a certain Mellin representation of the correlator, one can integrate
out one of the Mandelstam variables thus obtaining a one-dimensional Mellin transform. A
similar approach was followed in [122], leading to a successful, though technically involved,
implementation of the Mellin-Polyakov bootstrap [123–125].

Therefore, we follow a different route and we propose a new definition of the Mellin trans-
form, inherently one-dimensional and inspired by the guiding principles outlined above. The
general strategy is to infer the analytic properties of the Mellin amplitude M(s) (where s
is the complex Mellin variable) from physical, nonperturbative requirements on the corre-
lator, which we take to be a four-point of identical scalars. As we explain in Section 10.2,
more than one choice is possible and throughout most of our analysis we use the one which
displays a transparent correspondence between the dimensions of the operators exchanged
in the correlator OPE and the simple poles of the Mellin amplitude.

Crucially, building a non-perturbative definition requires a finite number of subtractions
and analytic continuations, which we perform along the lines of [111]. This leads us to a
Mellin counterpart of the conformal block expansion, which provides a clear picture of how
to extract the CFT data in Mellin space, while the Regge behavior of the correlator imposes
some powerful bounds on the growth of the Mellin amplitude at large s.

In addition, we derive an infinite set of non-perturbative sum rules from our Mellin
1We have in mind a four-point function in d > 1, which depends on two cross-ratios, u and v introduced

in (2.11).
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definition. These are not dispersive sum rules, because they have only single zeros at
∆n = 2∆φ + n. Such single zeros prevent the presence of positivity properties that are
typical of dispersive sum rules. Even if such an absence of positivity limits their powerful-
ness and makes them harder to use within the standard toolkit of the modern conformal
bootstrap, we test these sum rules on some known examples and discuss their applicability
in a perturbative setting.

The efficiency of the 1dMellin formalism that we propose is manifest in the perturbative
setup. Below, in Section 10.4, we consider first-order deformations from generalized free-
field (GFF) theory produced by quartic interactions in a bulk AdS2 field theory. We limit
our analysis to leading order contact diagrams, for which we find the perturbative Mellin
amplitude in closed form.

This result can be then efficiently used to extract CFT data. In particular, we find a
closed-form expression for the first correction to the classical dimension of “two-particle”
operators2, reproducing existing bootstrap results [122].

Finally, we also present an alternative definition of the Mellin transform for which even
simpler results for Mellin amplitudes of contact interactions may be obtained. In that
context, we attempt to extend this Mellin representation beyond correlators of identical
scalars.

This chapter is mostly based on [1] but it also contains some unpublished results.

10.1 Correlation Functions in 1d CFT
We have already discussed 1d correlators in Section 4.4 so the purpose of this section is
mostly to set the additional notation we need.

In this chapter, we mainly focus on correlators of identical scalars of scaling dimension
∆φ, even if in the end we consider other cases too. We restrict our analysis to four-point
functions only, which we write in the usual factorized form, stripping off a prefactor such
that the reduced correlator depends only on the cross-ratio:

〈φ(τ1)φ(τ2)φ(τ3)φ(τ4)〉 = 1
(τ12 τ34)2∆φ

A(χ) , (10.1)

where χ is defined as in (4.17). We can also write the correlation function in terms of an
alternative cross-ratio:

η = χ

1− χ = τ12 τ34
τ14 τ23

> 0 , 〈φ(τ1)φ(τ2)φ(τ3)φ(τ4)〉 = 1
(τ12 τ34)2∆φ

A(η) . (10.2)

It is more convenient to use this variable in the following since normally the Mellin transform
is defined between zero and infinity, while χ ∈ (0, 1). Indeed, we recall that in 1d the order of
the operators in the correlation function matters. Considering the ordering τ1< τ2< τ3< τ4,
one can use conformal symmetry to fix τ1 = 0, τ3 = 1, τ4 =∞, finding that τ2 ≡ χ ∈ (0, 1).
Different orderings would generate different ranges for χ. Unlike the higher-dimensional
case, correlators obtained by exchanging τ1 ↔ τ2 and τ1 ↔ τ4 are not related to (10.1) by
crossing. For this reason, we keep the ordering of the operators fixed, so that our main
focus is the function A(χ), but keep an eye on its analytic continuation to complex values
too. It may seem unphysical to think about line correlators in these terms, but from the

2In the literature these operators are also known as double-twist operators or double-trace operators.
Since here there is no trace and no twist we opted for the label “two-particle” operators. To avoid any
confusion, they are unambiguously defined as the conformal primary operators that are exchanged in the
GFF correlator. Their scaling dimensions and OPE coefficients are corrected by the perturbation we are
considering.
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perspective of the diagonal limit of higher-dimensional correlators, it would correspond to
Lorentzian regimes for which χ̄ 6= χ∗, but χ = χ̄. Further comments on this can be found
in [1].
To understand the analytical structure of the function A(χ), we can consider the s-channel
conformal block expansion3 in Table 10.1, written both in terms of the cross-ratio χ and in
terms of the alternative cross-ratio (10.2).

χ cross-ratio η cross-ratio
OPE A(χ) =

∑
∆k

c2
∆φ∆φ∆k

g∆k
(χ) A(η) =

∑
∆k

c2
∆φ∆φ∆k

g∆k
(η)

Blocks g∆k
(χ) = χ∆k 2F1(∆k,∆k; 2∆k;χ) g∆k

(η) = η∆k 2F1(∆k,∆k; 2∆k;−η)
Crossing sym (1− χ)2∆φ A(χ) = (χ)2∆φ A(1− χ) A(η) = η2∆φ A

(
1
η

)
Table 10.1: Properties of A.

In Table 10.1 we identify ∆k with the dimension of the primary operators exchanged
in the φ× φ OPE and c∆φ∆φ∆k

are the corresponding OPE coefficients. g∆k
are standard

sl(2) blocks resumming the contribution of conformal descendants [63], as introduced in
Section 2.3.3. This expansion, accordingly to physical expectations, shows the presence
of three branch points at χ = 0, 1,∞. Furthermore, it can be shown that the OPE valid
around χ = 0 converges everywhere but on the branch cuts (−∞, 0] and [1,∞) [126–128].
The t-channel OPE expansion4 for A(χ) can be conveniently obtained from the crossing
relation in Table 10.1, derived from the symmetry of the correlator under the exchange
τ1 ↔ τ3, corresponding to χ → 1 − χ or η → 1/η 5. For some applications, it is useful to
introduce the crossing symmetric function Ã, whose properties are summarized in Table
10.2.

χ cross-ratio η cross-ratio
Function Ã(χ) = χ−2∆φA(χ) Ã(η) = A

(
η

1+η

)
Crossing symmetry Ã(χ) = Ã(1− χ) Ã(η) = Ã( 1

η )

Table 10.2: Properties of Ã.

There is another interesting limit we consider in the following, i.e. the χ → 1
2 + i∞

limit6. This limit can be understood in terms of the higher-dimensional correlator in the
diagonal limit, where it corresponds to the u-channel Regge limit7. In particular, in a
unitary CFT four-point functions are bounded in the Regge limit [129, 130] and we have
[131] ∣∣∣Ã (1

2 + iT
)∣∣∣ is bounded as T →∞. (10.3)

Translating into the η cross-ratio (10.2), the line parametrized by χ = 1
2 + i ξ is mapped

into the unit circle η = eiθ for θ ∈ (−π, π) and the Regge limit occurs when θ → π. The
3This corresponds to taking the OPE as illustrated in the LHS of (2.25).
4This OPE corresponds to the RHS of (2.25).
5Unlike the τ1 ↔ τ2 and τ1 ↔ τ4 exchanges, the τ1 ↔ τ3 is an actual symmetry of the correlator as one

can easily see by picturing the four points on a circle. Consistently, this exchange maps the interval (0, 1)
for χ to itself.

6We could take this limit along any direction excluding the real line to avoid the branch cuts, but for
definiteness, we take it along the imaginary axis.

7In 1d there is no u-channel OPE expansion as it is impossible to bring τ1 close to τ3 without τ2 in
between. However, one can resort to the higher-dimensional picture to understand that while the u-channel
OPE would correspond to χ→ i∞ and χ̄→ −i∞, the u-channel Regge limit is χ, χ̄→ i∞.
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Regge boundedness condition (10.3) for the function A(η) in (10.2) then reads

A(eiθ) = O
(
(π − θ)−2∆φ

)
θ → π. (10.4)

Further details on the implication of the Regge boundedness condition on the Mellin am-
plitude can be found in Section 10.2.3.

10.2 Defining and Characterizing the Mellin Transform
Our goal is to find a well-defined Mellin transform for 1d conformal correlators. Since
they depend on a single cross-ratio, the first natural step is to look at the textbook Mellin
transform for a function F (η) defined on the positive real axis

M[F ](s) =
ˆ ∞

0
dη F (η) η−1−s , (10.5)

where it is natural to use η in (10.2) to define the cross-ratio since it spans the correct
range. Furthermore, more importantly, one has to choose which function of the cross-ratio
should be identified with F .

As we described in Section 10.1 different choices of the prefactor in (10.1) lead to
different functions of the cross-ratio, related to each other by powers of η and (1 + η). In
contrast to the higher-dimensional case, where a rescaling by powers of the cross-ratios has
the effect of shifting the corresponding Mellin variables, in 1d a rescaling by powers of η
leads to a shift in s in (10.5), whereas a rescaling by powers of (1 + η) leads to different
Mellin amplitudes. That is why the first issue to address is which criterion one should use
to define the Mellin amplitude.

Up to shifts in the s variable, we define a one-parameter family of Mellin amplitudes:

Ma(s) =
ˆ ∞

0
dηA(η)

( η

1 + η

)a
η−1−s , (10.6)

where the function A(η) is given in (10.2). Using the crossing relation in Table 10.1, one
immediately finds the functional relation for the Mellin amplitude

Ma(s) =Ma(2∆φ + a− s) , (10.7)

which is reminiscent of the crossing for S-matrix elements in two dimensions8. However,
the precise relation between s and the ordinary flat space Mandelstam variable s requires
a careful analysis of the flat space limit, which we do not address here9.

Up to shifts in the s variable, the definition (10.6) allows for different choices of prefactors
in the correlator (10.2). For instance, the choice a = 0 clearly corresponds to taking the
Mellin transform of A(η), while the choice a = −2∆φ effectively corresponds to taking the
Mellin transform of the function Ã(η) in Table 10.2. In [1], we mostly study the case of
a = 0, which emerges naturally when considering the s-channel conformal block expansion.
Though, we also introduce a possible alternative, with a = −2∆φ + 1, that leads to simple

8Conservation of energy and momentum for the 2→ 2 scattering process in 2d leads to the Mandelstam
variables s = (p1 + p2)2 , t = (p2 − p3)2 = 4m2−s, u = (p3 − p1)2 = 0, and the crossing symmetry is written
as S(s) = S

(
4m2 − s

)
.

9Here we just notice that the large s regime is the relevant one for the flat space limit considered in [42],
where AdS scattering reduces to the scattering of massless excitations for large AdS radius. In that case,
one would have the flat space relation Ma(s) = Ma(−s) for any finite value of a. This relation would be
consistent with 2d massless scattering, where s = −t. There is however more than one approach to the flat
space limit, see [132].
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results in a perturbative expansion around GFF.

10.2.1 A Non-Perturbative Definition

To discuss the properties of the Mellin transform, we then focus onM0(s) defined in (10.6),
which we multiply by an overall factor for future convenience

M(s) = 1
Γ(s)Γ(2∆φ − s)

ˆ ∞
0

dηA(η) η−1−s . (10.8)

In this case, the crossing relation (10.7) reads

M(s) = M(2∆φ − s) . (10.9)

We now want to infer the analytic properties of the Mellin amplitude M(s) from the
physical requirements on the correlator A(η). First of all, in [1], following [111], we remind
a general theorem for the one-dimensional Mellin transform (10.8) about the exponential
suppression of the Mellin when |Im(s)| → ∞. The physical 1d correlator though violates
the hypothesis of this theorem, but this problem can be overcome by carefully studying the
Regge limit of A(η) and by relating it with the large s asymptotics of M(s). Indeed, in [1]
we find a bound on the large s behaviour of the Mellin amplitude M(s) using the Regge
behaviour of the function A(η), i.e. the limit η → eiπ described in (10.4):

M(c+ iρ) = O(|ρ|0) |η| → ∞ . (10.10)

To obtain this result, we have considered the inverse Mellin transform

A(η) =
ˆ
C

ds

2πi Γ(s)Γ(2∆φ − s)M(s) ηs , (10.11)

where the contour C is a straight line parametrized by s = c+iρ for some constant 2∆−∆̃0 <
c < ∆̃0 and ρ ∈ R.
Assuming that no Stokes phenomenon occurs for physical correlators this behavior can be
extended for any arg(s) such that

M(s) = O(|s|0) |s| → ∞ . (10.12)

The result (10.12) is valid for the full non-perturbative Mellin amplitude (10.8). The
factorization of the product of the Γ-functions in (10.8) is crucial to obtain this result
because it precisely accounts for the exponential behavior of the Mellin predicted by the
theorem. We come back to this remarkable fact in Section 10.2.3.

10.2.2 Convergence and Subtractions

Another crucial property that we need to address is the convergence of the Mellin. Let
A(η) be well-behaved for η ∈ R+, i.e. with no divergences in η other than at η = 0 and
η → ∞. This behavior coincides with that of the CFT1 correlators we are interested in.
If we consider the behavior of A(η) close to η = 0, we find that the leading power is
A(η) ∼ η∆0 with ∆0 the dimension of the lightest exchanged operator. Analogously, using
the crossing symmetry relation in Table 10.1, we find that the large η behaviour of A(η) is
A(η) ∼ η2∆φ−∆0 . Therefore the integral converges in the strip

2∆φ −∆0 < Re(s) < ∆0 , (10.13)
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which is a well-defined interval only for ∆0 > ∆φ. In order to give a non-perturbative
definition of the Mellin transform, which allows for lighter operators to be exchanged, in
[1] we perform some subtractions along the lines of [111]. One obvious example is the GFF
case, where the identity operator is exchanged. We consider it explicitly in Section 3.1.3 of
[1].

For the moment, we focus on the Mellin transform of the connected part of the correlator.
Let us consider the following subtractions

A0(η) = Aconn(η)−
∑

∆0≤∆k≤∆φ

[∆φ−∆k]∑
j=0

c∆k

(−1)j

j!
Γ(∆k + j)2Γ(2∆k)
Γ(∆k)2Γ(2∆k + j)η

∆k+j , (10.14a)

A∞(η) = Aconn(η)−
∑

∆0≤∆k≤∆φ

[∆φ−∆k]∑
j=0

c∆k

(−1)j

j!
Γ(∆k + j)2Γ(2∆k)
Γ(∆k)2Γ(2∆k + j)η

2∆φ−∆k−j , (10.14b)

where, for convenience, we write c2
∆φ∆φ∆k

≡ c∆k
. What we are doing is subtracting from

A0(η) the s-channel contribution of all the operators (primaries and descendants) with
scaling dimension below the threshold ∆k = ∆φ, making use of the series expansion of the
hypergeometric function in the OPE appearing in Table 10.1. This improves the behavior
of the function at η = 0. On the other hand, to improve the behavior at η = ∞ we
subtract from A∞(η) all the s-channel operators below threshold. The idea is to split the
integral (10.8) into two parts, which are defined on (possibly non-overlapping) semi-infinite
regions of the complex s plane

ψ0(s) =
ˆ 1

0
dtAconn(η) η−1−s Re(s) < ∆0 , (10.15a)

ψ∞(s) =
ˆ ∞

1
dtAconn(η) η−1−s Re(s) > 2∆φ −∆0. (10.15b)

When the two regions do not overlap, we analytically continue ψ0(s) and ψ∞(s) by con-
sidering the integrals of the functions (10.14a) and (10.14b) and adding a finite number of
poles

ψ0(s) =
ˆ 1

0
dtA0(η) η−1−s +

∑
∆0≤∆k≤∆φ

[∆φ−∆k]∑
j=0

c∆k

(−1)j
j!

Γ(∆k+j)2Γ(2∆k)
Γ(∆k)2Γ(2∆k+j)

1
s−∆k−j , Re(s) < ∆̃0 ,

(10.16a)

ψ∞(s) =
ˆ ∞

1
dtA∞(η) η−1−s +

∑
∆0≤∆≤∆φ

[∆φ−∆k]∑
j=0

c∆k

(−1)j
j!

Γ(∆k+j)2Γ(2∆k)
Γ(∆k)2Γ(2∆k+j)

1
s−2∆φ+∆k+j ,Re(s) > 2∆φ − ∆̃0 ,

(10.16b)

where ∆̃0 > ∆φ is the lightest exchanged operator above the threshold (notice that this
operator could be either a primary or a descendant). Both these functions are now well
defined on the non-vanishing strip 2∆φ − ∆̃0 < Re(s) < ∆̃0 and therefore their sum yields
a well-defined Mellin transform

M(s) = ψ0(s) + ψ∞(s)
Γ(s)Γ(2∆φ − s)

, 2∆φ − ∆̃0 < Re(s) < ∆̃0 . (10.17)

The price to pay is a deformation of the integration contour in the inverse Mellin transform
(10.11).

To understand the form of the contour C, we need to discuss the analytic structure
of M(s). In order to do this, one can follow the strategy described above to extend the
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definition (10.17) to the whole complex s plane. To analytically continue ψ0(s) from the
region Re(s) < ∆0 to the region Re(s) < ∆̃0 we subtracted a few exchanged operators in
A(η) and added a finite number of poles in (10.16a). By adding more and more poles, we
can further extend the area of analyticity. We then conclude that the Mellin block expansion
defined by (10.17) with

ψ0(s) =
∑
∆k

∞∑
j=0

c∆k

(−1)j+1 Γ(∆k + j)2 Γ(2∆k)
j! Γ(∆k)2 Γ(2∆k + j)

1
s−∆k − j

, (10.18a)

ψ∞(s) =
∑
∆k

∞∑
j=0

c∆k

(−1)j Γ(∆k + j)2 Γ(2∆k)
j! Γ(∆k)2 Γ(2∆k + j)

1
s− 2∆φ + ∆k + j

(10.18b)

provides a representation of M(s) which is valid on the whole complex s plane, excluding
the point at infinity which we mention in Section 10.2.3.

We can also perform the sum over j in (10.17), resuming all the conformal descendants
in a crossing-symmetric Mellin block expansion

M(s) = 1
Γ(s)Γ(2∆φ − s)

∑
∆k

c∆k
[F∆k

(s) + F∆k
(2∆φ − s)] , (10.19a)

F∆k
(s) = 3F2(∆k,∆k,∆k − s; 2∆k, 1 + ∆k − s;−1)

∆k − s
. (10.19b)

Interestingly the representation (10.17) immediately allows us to read off the position of
the poles of M(s). For any exchanged primary operator of dimension ∆k there are two
infinite sequences of poles running to the right of s = ∆k and the left of s = 2∆φ − ∆k.
Following the common nomenclature, we denote them as

right poles : sR = ∆k + j , j = 0, 1, 2, . . . , (10.20a)
left poles : sL = 2∆φ −∆k − j , j = 0, 1, 2, . . . , (10.20b)

Res[M(s)]|sL ≡ −Res[M(s)]|sR = (−1)j Γ(2∆k) Γ(∆k + j)
j! Γ(∆k)2 Γ(2∆k + j) Γ(2∆φ −∆k − j)

. (10.20c)

Notice that the precise identification of the sum over j in (10.18a) with the sum over
descendants in the block expansion is a consequence of the choice a = 0 in (10.6). Different
choices of a in (10.6) would lead to a less transparent correspondence between poles and
conformal descendants.

With this structure of poles, we can now give a precise definition of the contour C in
(10.11). The contour C is chosen in such a way as to leave all the right poles of M(s) on
its right and all the left poles on its left. If the lightest exchanged operator has dimension
∆0 > ∆φ, no analytic continuation is required in (10.15a) and (10.15b) (in other words
the set of left and right poles do not overlap) and any contour within the interval (10.13)
suffices, see e.g. the straight one on the left in Figure 10.1. When lighter operators are
exchanged, the contour needs to be deformed because the set of right poles intersects with
the set of left poles. In Figure 10.1 we show an example with a single operator below
threshold. It is clear from the picture that a more complicated situation arises when a left
and a right pole coincide. This happens, for instance, for the GFF case, which we address in
Section 3.1.3 of [1]. More generally, this happens whenever there is an exchanged operator
with dimension ∆k = ∆φ + Z

2 . In a generic spectrum, we do not expect this to be the case.
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Figure 10.1: Left: The contour for the inverse Mellin transform when ∆0 > ∆φ. Left
poles are marked in magenta and right poles in pink. Right: When ∆0 < ∆φ left and
right poles intersect and the contour needs to be deformed.

10.2.3 Regge Limit and Mellin Boundedness

We now want to motivate the choice of the Γ prefactor in (10.11). We, therefore, take
(10.11), where the contour C is a straight line parametrized by s = c+ iρ for some constant
2∆− ∆̃0 < c < ∆̃0 (the additional poles that are included in (10.16a) and (10.16b) for the
analytic continuation does not affect this argument) and ρ ∈ R. We take η = eiθ and we
integrate over ρ

A(eiθ) = eicθ
ˆ ∞
−∞

dρΓ(c+ iρ)Γ(2∆φ − c− iρ)M(c+ iρ) e−θρ . (10.21)

We are interested in the behavior of the integrand for |ρ| → ∞. In this limit

Γ(c+ iρ)Γ(2∆φ − c− iρ) ∼ e−π|ρ| ρ2∆φ−1 |ρ| → ∞ . (10.22)

This means that the Γ-function prefactor accounts for the exponential behavior of M̂(s) for
|Im(s)| → ∞, which is predicted by the theorem in Section 3.1.1 of [1]. This essentially mo-
tivates our choice of prefactor in (10.8). In particular, the exponential in (10.22) combined
with that in (10.21) shows that the regime θ → ±π is controlled by the region ρ ∼ ∓∞.

We can make a more precise statement by defining

H(ρ) ≡ Γ(c+ iρ)Γ(2∆φ − c− iρ)M(c+ iρ) eπ|ρ| (10.23)

and using it to rewrite (10.21), to show that the Regge behaviour (10.4) is reproduced by
asking that

H(ρ) ∼ |ρ|2∆φ−1 |ρ| → ∞ . (10.24)

Combining this with (10.22) and (10.23), we conclude that

M(c+ iρ) = O(|ρ|0) |ρ| → ∞ . (10.25)

Assuming that no Stokes phenomenon occurs10 for physical correlators, we can extend this
10The absence of Stokes phenomenon is an assumption for which we do not have proof. This assumption

however is verified in all our examples and it was made also in the higher-dimensional case [111].
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behavior for any arg(s) such that

M(s) = O(|s|0) |s| → ∞ . (10.26)

We have, therefore, found a bound on the large s behavior of the Mellin amplitude M(s),
using the Regge behavior of the function A(ρ), i.e. the limit ρ → eiπ described in (10.4).
The full derivation can be found in Section 3.2 of [1]. In particular, notice that the function
M(s) has infinitely many poles that accumulate at s = ∞, where we would expect an
essential singularity. Nevertheless, our prefactor in (10.8) removes this singularity and
leaves us with a bounded function (10.26).

We conclude this section with an important remark about the perturbative regime.
The result (10.26) is valid for the full non-perturbative Mellin amplitude. If the correlator
contains a small parameter, it is often the case that order by order in the perturbative
expansion the Regge behavior is worse than in the full non-perturbative correlator11. In
Appendix B.1 of [1], this aspect is illustrated in detail in the context of the analytic sum
rules, which we discuss in the next section. Since these are subtleties, we decided not to
include this appendix in this thesis.

In view of this aspect, it is then useful to formulate our result in a more general form.
Let us consider a correlator A(χ) with a Regge behaviour

A(χ) = O(χ2∆φ+n) χ→ 1
2 + i∞ (10.27)

for some positive integer n, then the associated Mellin amplitude has a large s asymptotics

M(s) = O(|s|n) |s| → ∞ . (10.28)

10.3 Sum Rules
A common way to express the well-known fact that an arbitrary set of CFT data does not
necessarily lead to a consistent CFT is through a set of sum rules for the CFT data. In the
following, we start from our definition of Mellin amplitude and derive an infinite set of sum
rules. These sum rules though are not dispersive, according to the definition of [133]. This is
essentially related to the behavior at infinity obtained using our one-dimensional definition.
In Section 3.2 of [1] and briefly in Section 10.2.3 here, we described how the product of
Γ-functions in our definition (10.8) leads to a nice behavior for the Mellin amplitude M(s)
at s = ∞. However, the introduction of that prefactor leads also to the appearance of
spurious poles in the integral (10.11). In a generic CFT, it is not expected that operators
with the exact dimension s = 2∆φ + n are present in the spectrum. Thus, the poles of
the Γ-functions must be compensated by zeros in the Mellin amplitude. This strategy was
used in [111, 134] to derive dispersive sum rules for the higher-dimensional case, where the
Mellin amplitude needs to have double zeros. Here, we use the same idea to derive a new
set of sum rules, which are characterized by single zeros of the Mellin amplitude. This
makes these sum rules different and less powerful than the dispersive ones, but we believe
that their derivation and their validity on a set of known example provides an important
consistency check of our results.

One may be concerned because the presence of single or double zeroes for the Mellin
amplitude seems to be related to the choice of the prefactor in (10.8). This is actually not
the case. The choice to factor out a prefactor in (10.8) is related to having a nice polynomial
behavior for the function M(s) at s→∞.

11A typical example of this phenomenon is the function 1
1−gχ , which is regular for χ → ∞ but its

expansion at small g is more and more divergent.



108 Chapter 10. Mellin Amplitudes for 1d Correlators

Finally, let us emphasize some important differences compared to the higher-dimensional
strategy of the Mellin Polyakov bootstrap [123–125]. The derivation of the non-perturbative
Polyakov consistency conditions used in [111, 134] is quite subtle due to the presence of ac-
cumulation points in the twist spectrum of higher-dimensional CFTs. In our case, however,
the situation is simpler. The twist accumulation points are related to the presence of a spin
or, equivalently, to the need of introducing two Mandelstam variables. For us, there is no
spin and the only quantum number is the scaling dimension of the operators. Therefore, we
do not expect any accumulation point in the spectrum and we can impose the conditions
(10.30) without recurring to any analytic continuations.

10.3.1 Properties of M(s) and Derivation of the Sum Rules

We start by summarizing the main properties of the Mellin amplitude M(s) in (10.8):

• M is crossing symmetric

M(s) = M(2∆φ − s) . (10.29)

• M has poles at the location of the physical exchanged operators in the two channels,
i.e. s = ∆k + j and s = 2∆φ −∆k − j for j ∈ N .

• Generically, M has single zeros compensating the poles of the prefactor

M(2∆φ + j) = 0 and M(−j) = 0 for j ∈ N . (10.30)

If the spectrum contains protected operators, some of these zeros might be absent.

• M is bounded for |s| → ∞, see (10.26) .

• M admits a crossing-symmetric Mellin block expansion

M(s) =
∑
∆k

c∆k
M∆k

(s) , (10.31)

with M∆k
(s) given by the comparison with (10.19a).

The properties above allow us to define a set of sum rules along the lines of [111, 134].
Let ωp be the functional

ωpi =
˛

C|∞

ds

2πiM(s)Fpi(s) , (10.32)

where the contour here is a very large circle around infinity. When Fpi(s) is a sufficiently
suppressed function at s→∞, we can take the limit of infinite radius for the circle and we
get

ωpi [M ] = 0 . (10.33)

For a non-perturbative Mellin amplitude characterized by the asymptotic behaviour (10.26)
it is sufficient to ask that Fpi(s) ∼ s−1−ε for ε > 0 as |s| → ∞.

The strategy to derive the sum rules simply consists in deforming the integration contour
in (10.32) to include all the poles of the integrand such that

ωpi =
∑
s∗

Ress=s∗ [M(s)]Fpi(s∗) +
∑
s∗∗

M(s∗∗)Ress=s∗∗ [Fpi(s)] = 0 . (10.34)
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This equation already looks like a sum rule, but it depends on the value M(s∗∗) of the
Mellin amplitude at the poles of Fpi(s). To avoid this issue one can simply choose Fpi(s)
to have simple poles at the position of the zeros of M(s). Therefore, we need a function
Fpi(s) with poles at s = −j or at s = 2∆φ + j. Furthermore, the function Fpi(s) must not
be crossing symmetric. Indeed, using the position of the poles in (10.20a) and (10.20b) and
crossing symmetry for the residues (10.20c) we get

ωpi =
∑
sR

Ress=sR(M(s))(Fpi(sR)− Fpi(2∆φ − sR)) , (10.35)

so that any crossing symmetric function F would lead to a trivial vanishing of ωpi . Using
the explicit expression for the residues (10.20c) we find the set of sum rules

∑
∆k,j

c∆k

(−1)j+1Γ(2∆k)Γ(∆k + j)
Γ(∆k)2Γ(2∆k + j)Γ(2∆φ −∆k − j)Γ(j + 1)(Fpi(∆k + j)− Fpi(2∆φ −∆k − j)) = 0 .

(10.36)

A natural choice for the function F is

Fp1,p2(s) = 1
(s+ p1)(s+ p2) , p1, p2 ∈ N . (10.37)

Notice that, despite the function Fp1,p2(s) ∼ 1
s2 for s → ∞, thanks to (10.35) only the

crossing antisymmetric part of it matters, i.e. Fp1,p2(s)−Fp1,p2(2∆− s) and one can easily
check that this combination decays as 1

s3 for s→∞. Using this function we can derive the
non-perturbative sum rules∑
∆k,j

c∆k

(−1)j+1Γ(2∆k)Γ(∆k+j)
Γ(∆k)2Γ(2∆k+j)Γ(2∆φ−∆k−j)Γ(j+1)

2(∆k+j−∆φ)(p1+p2+2∆φ)
(∆k+j+p1)(∆k+j+p2)(2∆φ−∆k−j+p1)(2∆φ−∆k−j+p2) = 0 .

(10.38)

Performing the sum over j one obtains sum rules of the form∑
∆k

c∆k
α∆k

= 0 , (10.39)

with

α∆k = Γ(∆k)
Γ(2∆k)Γ(2∆φ −∆k)

(
Fp1,p2(∆k) + F−2∆φ−p1,−2∆k−p2(∆)

)
, (10.40a)

Fp1,p2(∆k) = 1
p1−p2

(
3F2(∆k,p1+∆k,1+∆k−2∆φ;2∆k,1+p1+∆k;1)

(p1+∆k) − 3F2(∆k,p2+∆k,1+∆k−2∆φ;2∆k,1+p2+∆k;1)
(p2+∆k)

)
.

(10.40b)

The absence of the positivity property we mentioned before makes these sum rules less
powerful and harder to use with the standard method of the modern conformal bootstrap.
That is why testing the sum rules (10.38) or (10.36) on a fully non-perturbative spectrum is
a task that is momentarily out of reach. For this reason, we restrict our test to some known
examples (we apply them to the GFF case in Section 4.2.1 of [1]) and to the perturbative
setting.

10.3.2 Perturbative Sum Rules

We invite the reader to find more details about the GFF case in [1], while we focus here
on the perturbations around GFF, constructed by introducing an effective field theory in
AdS2 background and considering the 1d boundary conformal field theory through the
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usual holographic dictionary. These quartic interactions with derivatives are classified in
e.g. [131], where the authors find there is a one-parameter family labeled by L, where 4L
is the number of derivatives in the schematic interaction (∂LΦ)4.
Let us consider a perturbed correlator

A(η) = AGFF(η) + gLA(1)
L (η) +O(g2

L) , (10.41)

where L labels the maximum number of derivatives in the quartic interaction (i.e. the
interaction term may involve a combination of terms with ` ≤ L derivatives) and gL is the
associated coupling. The Regge behavior of this correlator is determined by the term with
the maximum number of derivatives and it reads [131]

A(1)
L (χ) ∼ χ2∆+2L−1 χ→ 1

2 + i∞ . (10.42)

According to our discussion in Section 10.3.1, the associated Mellin amplitude behaves as

M
(1)
L (s) ∼ |s|2L−1 |s| → ∞ , (10.43)

and we need to choose a function Fp(s) which vanishes at infinity faster than |s|−2L.
The strategy we implement is the following. We use equation (10.36) to write down non-
perturbative sum rules with a specific function Fp(s) which is chosen to decay sufficiently
fast at |s| → ∞ at a given value of L. We then expand the CFT data as

∆k = 2∆φ + 2n+ gLγ
(1)
L,n +O(g2

L) , (10.44a)

c∆k
= c(0)

n + gLc
(1)
L,n +O(g2

L) , (10.44b)

and derive perturbative sum rules for γ(1)
L,n and c(1)

L,n. We then check that these sum rules
are satisfied by the L = 0, 1 results obtained in [131], which read

γ
(1)
0,n =

(
1
2

)
n

((∆φ)n) 2
(
2∆φ − 1

2

)
n

(1)n (2∆φ)n
((

∆φ + 1
2

)
n

)
2
, (10.45a)

γ
(1)
1,n = A−1

∆φ
γ

(1)
0,n

2n(4∆φ + 2n− 1)
(∆φ + n− 1)(2∆φ + 2n+ 1)(16∆5

φ − 13∆3
φ − 3∆2

φ + 16∆φn
4 + 8n4 + 64∆2

φn
3

+ 16∆φn
3 − 8n3 + 96∆3

φn
2 + 8∆2

φn
2 − 24∆φn

2 − 2n2 + 64∆4
φn− 28∆2

φn− 2∆φn+ 2n) ,
(10.45b)

where the result for γ(1)
1,n differs from [131] by an overall factor

A∆φ
≡ ∆φ(∆φ + 1)(∆φ + 2)(4∆φ − 1)(4∆φ + 1)2(4∆φ + 3)

(2∆φ + 1)2(2∆φ + 3) , (10.46)

which we introduced to normalize the anomalous dimension as γ(1)
1,1 = 1. Notice that

γ
(1)
1,0 = 0. This is equivalent to a choice of basis for the set of independent interactions that

can be built with up to one derivative. We discuss this issue in detail in Section 10.4. The
OPE coefficients c(1)

n are given by the relation

c
(1)
L,n = ∂n(γ(1)

L,nc
(0)
n ) . (10.47)

In [1] we explicitly checked the case of L = 0 and L = 1.
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10.4 Perturbative Results
In this section, we consider deformations from generalized free field theory produced by
effective interactions in a bulk AdS2 field theory. In this holographic AdS2/CFT1 setup the
background AdS2 metric is not dynamical, corresponding to the absence of a stress tensor
in the boundary CFT1. According to the usual dictionary, a massive free scalar field Φ in
AdS2 is dual to a boundary 1d generalized free field φ. We deform this theory by quartic
self-interactions with an arbitrary number L of derivatives

S =
ˆ
dxdz

√
g
[
gµν ∂µΦ ∂νΦ +m2

∆φ
Φ2 + gL (∂LΦ)4 ] , L = 0, 1, . . . , (10.48)

where we use the AdS2 metric in Poincaré coordinates ds2 = 1
z2 (dx2 + dz2). The mass

m2
∆φ

= ∆φ(∆φ − 1) is fixed in units of the AdS radius so that ∆φ is the dimension,
independent of gL, of the field Φ evaluated at the boundary, φ(x)12. We limit our analysis
to leading order correlators and thus consider only contact diagrams, which we have already
introduced in Section 5.4 and whose building blocks are the D-functions [60, 135, 136]
defined for the general case of AdSd+1 as

D∆1∆2∆3∆4 (x′1, x′2, x′3, x′4) =
ˆ
dzddx

zd+1 K̃∆1 (z, x;x′1) K̃∆2 (z, x;x′2) K̃∆3 (z, x;x′3) K̃∆4 (z, x;x′4) ,
(10.49)

via the bulk-to-boundary propagator in d dimensions

K∆(z, x;x′) = C∆
[ z

z2 + (x− x′)2

]∆
≡ C∆ K̃∆(z, x;x′) , C∆φ

= Γ (∆φ)
2
√
π Γ

(
∆φ + 1

2

) .
(10.50)

The writing (∂LΦ)4 in (10.48) is symbolic, denoting a complete and independent set of
quartic vertices with four fields and up to 4L derivatives13. In the following, we present
a particularly convenient basis for these interactions, which allow us to derive a closed-
form expression for the leading order correlator in Mellin space. Consider the interaction
Lagrangian

LL = gL

L−1∏
j=0

(
1
2∂µ∂

µ − (∆φ + j)(2(∆φ + j)− 1)
)

Φ2

2

. (10.51)

This looks like a very complicated term, but it contains four fields Φ and 4L derivatives, so
by the argument above it must be effectively a linear combination of operators like (∂`Φ)4

for ` ≤ L. The advantage of this interaction is that the corresponding correlator computed
via Witten diagrams reads14:

A(1)
L (χ) =

4L−1π−
3
2 Γ(2∆φ − 1

2 + 2L)
Γ(∆φ + 1

2)4 χ2∆φ (1+χ2L+(1−χ)2L)D̄∆φ+L,∆φ+L,∆φ+L,∆φ+L(χ) ,

(10.52)
12When we introduce an interaction, such as (10.48), there are Witten diagrams contributing to the mass

renormalization of Φ. We can always choose the bare mass in such a way that the dictionary is preserved
and ∆φ is not modified.

13The fact that a complete and independent basis of vertices is labeled by 1/4 the number of derivatives
can be seen using integration by parts and the equations of motion, or noticing that the counting of physically
distinct four-point interactions is equivalent to the counting of crossing-symmetric polynomial S-matrices
in 2D Minkowski space, see discussion in [122, 131].

14In [1] we showed how the interaction (10.51) leads to the correlator (10.52) through explicit Witten
diagrammatics. Moreover, for the cases L = 0, 1, 2, we indicate how other interaction terms lead to results
that can be rearranged as linear combinations of the eigenfunctions (10.52).
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with the D̄-functions [60] defined as (Σ ≡ 1
2
∑
i ∆i)

D∆1∆2∆3∆4 =
π
d
2 Γ
(
Σ− d

2

)
2 Γ (∆1) Γ (∆2) Γ (∆3) Γ (∆4)

τ
2(Σ−∆1−∆4)
14 τ

2(Σ−∆3−∆4)
34

τ
2(Σ−∆4)
13 τ2∆2

24
D̄∆1∆2∆3∆4(u, v) ,

(10.53)
and depending only on the cross-ratios defined in (2.11). Their explicit expression in terms
of a Feynman parameter integral reads in the general case

D̄∆1∆2∆3∆4(u, v) =
ˆ
dαdβdγ δ(α+β+γ−1) α∆1−1β∆2−1γ∆3−1 Γ (Σ−∆4) Γ (∆4)(

αγ + αβ u+ βγ v
)Σ−∆4

.

(10.54)
More details on the D-functions can be found in Appendix G.1.

If one then starts with some specific 4L-derivative interaction, such as (∂LΦ)4, the
explicit computation through Witten diagrams shows the appearance of several other com-
binations of D-functions with different weights. Nevertheless, by the argument above these
results cannot be independent of those obtained using LL and therefore the result must
be expressible as a linear combination

∑
` a`A

(1)
` (χ). This requires a series of non-trivial

identities among D̄ functions, some of which have been derived in [1]. Using (10.52) as a
basis for 4L-derivative results, we can take its Mellin transform.

The first step is to compute the Mellin transform of the function D̄∆φ∆φ∆φ∆φ
(η). In

this section, we consider the reduced Mellin amplitude M̂(s) ≡ M(s)Γ(s)Γ(2∆φ − s) and
we need to compute

M̂∆φ
(s) =

ˆ ∞
0

dη D̄∆φ∆φ∆φ∆φ
(η)

( η

1 + η

)2∆φ

η−1−s . (10.55)

A closed-form expression for the D̄ functions is not available and dealing with integral
representations is quite hard. Therefore, we considered the case of integer ∆φ, where
simple explicit expressions for the D̄ functions are known and we inferred the general form

M̂∆φ
(s) = π csc(πs)

(
π cot(πs)P∆φ

(s)−
2∆φ−1∑
j=1

P∆φ
(j)

s− j

)
, (10.56a)

P∆φ
(s) = 2

∆φ−1∑
n=0

(−1)n Γ(2n+ 1)Γ4(∆φ)Γ(∆φ + n)
Γ4(n+ 1)Γ(∆φ − n)Γ(2(∆φ + n))(2∆φ − s)n(s)n . (10.56b)

The functions P∆φ
(s) are effectively just polynomials of order 2∆φ − 2. Defining

Q∆φ
(s(s− 2∆φ)) ≡ P∆φ

(s) , (10.57)

we have, for the first few cases

∆φ Q∆φ
(x)

1 2
2 1

15(5 + x)
3 1

315(84 + 17x+ x2)
4 1

30030(15444 + 2889x+ 206x2 + 5x3)
5 1

765765(1400256 + 239640x+ 17387x2 + 570x3 + 7x4)

(10.58)
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The functions P∆φ
(s) can also be rewritten as

P∆φ
(s) = 2 Γ(∆φ)4

Γ(2∆φ)4F3({1
2 , s, 1−∆φ, 2∆φ − s}; {1, 1,∆φ + 1

2}; 1) . (10.59a)

We remark on the important fact that in cross-ratio space a closed-form expression for
the D̄ functions is not known, while in Mellin space it looks reasonably simple, at least
for integer ∆φ. This is similar to what happens in the higher-dimensional case, where this
occurrence is even more striking as the reduced Mellin transform of the D̄ functions is
simply a product of Γ-functions (see Section 5.4). In the one-dimensional case, we could
not find such a simple representation for the contact interactions, but the fact we could
write the result in a closed form is already a notable improvement compared to cross-ratio
space and as we will see, it allows us to successfully extract new CFT data. Furthermore,
in Section 10.5 we present an alternative definition of the Mellin transform which leads to
simpler results for the contact interaction.

Knowing the Mellin transform for the D̄ functions, it is simple to compute the Mellin
transform of (10.52)

M̂
(1)
L (s) =

ˆ ∞
0

dtA(1)
L (η)

( η

1 + η

)2∆φ

η−1−s =
2L∑
j=0

cj,L M̂∆φ+L(s+ j) , (10.60)

2cj,L = Γ(2L+ 1)
Γ(j + 1)Γ(2L− j + 1) + δj,0 + δj,2L . (10.61)

Notice that the presence of double poles for integer values of s in (10.56a) is not in contradic-
tion with the general single-pole structure of the non-perturbative Mellin amplitude (10.17)-
(10.18), but just a consequence of the perturbative expansion of those single poles at this
first order of perturbation theory. Moreover, the structure of (10.56a) is such that both
single and double poles cancel (as they should) within the region of convergence (10.13) of
the integral, which in this case (∆0 = 2∆φ) is 0 < Re(s) < 2∆φ.

We stress that equation (10.60) is a closed-form expression for the first-order pertur-
bation around GFF generated by a quartic interaction with any number of derivatives.
Under the assumption that the deformation from GFF described by these interactions only
modifies two-particle data, one can extract these data.

10.4.1 CFT Data

In this section, we briefly sketch how to extract the anomalous dimension of two-particle
operators, following the line of Section 5.2 of [1]. Given the closed-form expression (10.60)
for the perturbative Mellin amplitude, we can use it to extract the CFT data

∆ ≡ ∆n,L = 2∆φ + 2n+ gL γ̂
(1)
L,n(∆φ) + . . . , (10.62a)

c∆ ≡ cn,L = c(0)
n (∆φ) + gL c

(1)
L,n(∆φ) + . . . , (10.62b)

where n ∈ N and
c(0)
n = 2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)

Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) . (10.63)

In (10.62a)-(10.62b) we are assuming that the AdS interaction only modifies the CFT data
of the two-particle operators exchanged in GFF. If we insert (10.62a)-(10.62b) in the general
Mellin OPE expansion (10.17), at first order in gL one obtains double and single poles at
s = 2∆φ + p, p ∈ N. One can then compare the corresponding residues with the ones in
the tree-level Mellin amplitude (10.60), which amounts to solving the equations formally
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written as∑
n

c(0)
n (∆φ)γ̂(1)

L,n(∆φ) (−1)pΓ(4∆φ+4n)Γ(2∆φ+p)2

Γ(2∆φ+2n)2Γ(4∆φ+2n+p)Γ(p−2n+1) = lim
s→2∆φ+p

(s− 2∆φ − p)2M̂
(1)
L (s) ,

(10.64a)∑
n

(c(1)
L,n(∆φ)+ c(0)

n (∆φ)γ̂(1)
L,n(∆φ)∂n) (−1)pΓ(4∆φ+4n)Γ(2∆φ+p)2

Γ(2∆φ+2n)2Γ(4∆φ+2n+p)Γ(p−2n+1) = Ress=2∆φ+pM̂
(1)
L (s) ,

(10.64b)

for the leading-order corrections γ̂(1)
L,n(∆φ) and c

(1)
L,n(∆φ). Since the function M̂

(1)
L (s) is

known explicitly, it is possible to write down a linear system for the anomalous dimensions
γ̂

(1)
L,n(∆φ), which we find to be:

γ̂
(1)
L,n(∆φ) = Γ(L+ ∆φ)4

Γ(2L+ 2∆φ)

2n∑
p=0

2L∑
j=2L−p

j+p−2L∑
l=0

(−1)jcj,L× (10.65)

(4∆φ + 2n− 1)p(−2n)p(2L− j − p)l(1−∆φ − L)l(2∆φ + j + p)l(1
2)l

(l!)3(2∆φ)p(1
2 + ∆ + L)l

.

In order to compare these results with those computed with bootstrap methods in [122, 131]
for L = 0, 1, 2, 3, we have to change the basis in the space of couplings. Since the bootstrap
approach is blind to the specific values of the couplings gL in (10.62), one needs to establish
a criterion to organize the set of independent data. The criterion that is used in [122, 131]
consists in setting

γL,n(∆φ) = 0 , n < L . (10.66)

In our approach, this is implemented by taking a linear combination

γL,n =
L∑
`=0

a`γ̂`,n (10.67)

and fixing the L + 1 a` coefficients in (10.67), using the L conditions (10.66) and the
normalization γL,L(∆φ) = 1. Following this strategy in Section 5.2 of [1], we reproduce the
known results for L ≤ 3 and present new results for L ≤ 8. We stress however that equation
(10.65) is valid for any L, so, up to the algorithmic procedure of fixing the a` coefficients,
one can easily extract the result for any given L.
In particular, it turns out that expression (10.65) can be rewritten as

γ
(1)
L,n(∆φ) = GL,n(∆φ)PL,n(∆φ) , (10.68)

where

GL,n(∆φ) =
4−L

(
L+ 1

2

)
∆φ

(L+ ∆φ)∆φ
(−L+ n+ 1)∆φ−1

(
L+ n+ ∆φ + 1

2

)
∆φ−1

Γ (∆φ) (∆φ)3L

(
2L+ ∆φ + 1

2

)
∆φ−1

(
L+ 2∆φ − 1

2

)
2L

(
n+ 1

2

)
∆φ

(n+ ∆φ)∆φ

,

(10.69)

while PL,n(∆φ) is a polynomial of degree 4L in n and 5L in ∆φ. The explicit polynomials
for the first few values of L are detailed in Appendix G.2 and, up to L = 3, they perfectly
agree with the result of [122]. The Mathematica notebook attached to [1] has values of
L ranging from L = 0 to L = 8 as well as a function FindBootstrapPolynomial[L,∆,n]
to compute PL,n(∆φ) for arbitrary L.
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10.5 Alternative Formulation of the Mellin Transform
We conclude this chapter by pointing out that there is another noteworthy definition of
Mellin transform, identified by taking a = −2∆φ + 1 in equation (10.6):

M−2∆φ+1(s) ≡ M̃∆φ
(s) =

ˆ ∞
0

dηA(η)
(

η

1 + η

)−2∆φ+1
η−1−s. (10.70)

The interesting feature of this particular choice is to provide the simplest representation
for Mellin amplitudes of D̄-functions. We can motivate this claim by looking at the more
general expression (10.6), where a is a free parameter. We rewrite this in terms of the
D̄-functions using the identity in Table 10.2 between A(η) and Ã(η):

Ma(s) =
ˆ ∞

0
dη D̄∆φ∆φ∆φ∆φ

(η)
(

η

1 + η

)2∆φ
(

η

1 + η

)a
η−1−s. (10.71)

In particular, if we consider for example D̄1111, we obtain

Ma(s) = 2Γ(s−1)Γ(a+2∆φ−s)(ψ(s−1)−ψ(a+2∆φ−s))
Γ(a+2∆φ−1) + 2Γ(s−1)Γ(a+2∆φ−s−1)(ψ(a+2∆φ−2)−ψ(s−1))

Γ(a+2∆φ−2) .

(10.72)
This expression simplifies for an integer value of the parameter a below a certain threshold,
namely a ≤ −2∆φ + 1. Considering the region of convergence of (10.71), we need

∆0 > ∆φ −
a

2 , (10.73)

and given that ∆0 = 2∆φ, the only simple convergent integral has a = 2∆φ + 1, yielding
(10.70) and the simple Mellin amplitude for D̄1111

M̃1(s) = 2 Γ(−s)Γ(s− 1). (10.74)

See equations (10.56a) and (10.79) to appreciate the difference between the two represen-
tations of the D̄-functions, obtained respectively with (10.55) and (10.70).
Apart from this property, (10.70) satisfies (10.7), which reads

M̃(s) = M̃(1− s) . (10.75)

Using the properties listed in Table 10.1, we can then derive the strip of convergence of this
Mellin definition

2∆φ −∆0 < Re(s) < 1 + ∆0 − 2∆φ , (10.76)

which translates, perturbatively (∆0 = 2∆φ), in

0 < Re(s) < 1 . (10.77)

The inverse Mellin transform reads

A(η) =
ˆ c+i∞

c−i∞

ds

2πi M̃(s)
(

η

1 + η

)2∆φ−1
ηs , (10.78)

where the range of the real constant c is the same of Re(s) in (10.76), and therefore in
perturbation theory the contour of the integral in the complex s-plane is any straight line
within the interval (10.77).
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We can finally report a general structure for the Mellin transform of the D̄-functions

M̃∆φ
(s) = P∆φ

(s) Γ(−s− 2∆φ + 2)Γ(s− 2∆φ + 1) , (10.79)

where

P∆φ
(s) = 2 Γ(2∆φ − 1)4F3 ({−s− 2∆φ + 2, s− 2∆φ + 1, 1−∆φ, 1−∆φ}; {2− 2∆φ, 2− 2∆φ, 2− 2∆φ}; 1).

(10.80)
Note that P∆φ

is a polynomial for integer ∆φ, that we now tabulate for the first few cases,
using a more convenient rewriting, Q∆φ

(s(s− 1)) = P∆φ
(s):

∆φ Q∆φ
(x)

1 2
2 2 (2 + x)
3 32 (24 + 22x+ x2)
4 2592 (720 + 876x+ 100x2 + x3)
5 663552 (40320 + 58416x+ 10508x2 + 300x3 + x4)

(10.81)

We report then an alternative closed-form expression valid for integer values of ∆φ

M̃∆φ
(s) =

∆φ−1∑
n=0

2 (−1)n Γ(∆φ)2Γ(2∆φ − 1− n)3

Γ(n+ 1)Γ(∆φ − n)2 Γ(−s− 2∆φ + 2 + n) Γ(s− 2∆φ + 1 + n) ,

(10.82)
which is a linear combination of squared Γ-functions.
Despite this nice representation of the D̄-functions, the correspondence between the poles
and the physical exchanged operators is more obscure, in contrast with (10.20a) and
(10.20b) for the Mellin transform (10.8). We, therefore, reckoned that the Mellin trans-
form defined in (10.8) is the most suitable for the applications we presented in the previous
sections, which have as a main goal the extraction of CFT data.

10.5.1 Extension to Non-Identical Operators

We conclude this chapter with some unpublished results. In particular, we extend this
Mellin representation to D̄-functions of non-identical operators.

For D̄-functions of the form D̄∆1∆2∆1∆2 which are invariant under crossing symmetry
(1↔ 3, 2↔ 4) we can easily extend (10.82) to

M̃∆1∆2∆1∆2 = 2
∆1−1∑
n=0

(−1)nΓ(∆1)Γ(∆2)
Γ(∆1 − n)Γ(∆2 − n)Γ(n+ 1)Γ(∆1 + ∆2 − 1− n)3

Γ(s− (∆1 + ∆2 − 1− n))Γ(1− s− (∆1 + ∆2 − 1− n)) .
(10.83)

There are however other types of crossing-invariant D̄-functions, e.g. D̄2123 and D̄2321.
These cases are more complex as for the first type we get a Mellin of the form that we
encountered in (10.56a), while in the second case, something similar to the non-crossing-
invariant case, which we are exploring in the following, happens.

Generalizing this Mellin representation to generic D̄-functions is still out of reach but
we manage to write down a closed-form expression for non-crossing-invariant functions
obtained by setting ∆1 = ∆4,∆2 = ∆3 and ∆1 = ∆2,∆3 = ∆4, which are connected by
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the relation
D̄∆1∆2∆2∆1

(
η

1 + η

)
= D̄∆2∆2∆1∆1

( 1
1 + η

)
. (10.84)

However, it is not immediate to get their Mellin representation since the integral does not
converge. Therefore we first need to regularize it by isolating the “singular” terms. We
start by looking at the series expansion near the extremes of the integral. We consider e.g.
D̄1221 and D̄2211:

D̄1221(η) η→0∼ 1
2 − log

(
η

η + 1

)
,

D̄1221(η) η→∞∼ (1 + η)2 + (1 + η) + 1
18

(
13 + 6 log

( 1
1 + η

))
,

D̄2211(η) η→0∼
(1 + η

η

)2
+
(1 + η

η

)
+ 1

18

(
13 + 6 log

(
η

η + 1

))
,

D̄2211(η) η→∞∼ 1
2 − log

( 1
1 + η

)
.

(10.85)

We see that the behavior of D̄1221(0) is related by crossing to the behavior of D̄2211(∞)
and vice versa, as expected. Moreover, the terms

(1 + η)2 + (1 + η) ,
(1 + η

η

)2
+
(1 + η

η

)
(10.86)

are precisely the “singular” terms of D̄1221 and D̄2211 respectively. Of course, we can-
not compute the Mellin transform of these terms because it diverges. We, therefore, use
the technique introduced in [111] and described in Section 10.2.2, which is based on the
deformation of the integration contour. We then split the integral

M̃(s) =
ˆ 1

0
dηA(η) η

s−1

1 + η
, M̃(s) =

ˆ ∞
1

dηA(η) η
s−1

1 + η
, (10.87)

such that these two integrals converge separately and give us precisely the Mellin transform
of the divergent terms we are looking for. We can then find a formula for these singular
contributions in cross-ratios and Mellin space terms:

ST (η) = 2Γ(∆1)3Γ(∆3)
Γ(∆1 + ∆3) (1 + η) (∆3(1 + η)−∆1 η) , (10.88a)

ST (s) = 2 Γ(∆1)3 Γ(∆3)
Γ(∆1 + ∆3)

(∆1 − s∆1 − 3∆3 + 2s∆3)
(2− 3s+ s2) . (10.88b)

Thus we can add ST (η) to the A(η) that we want to Mellin transform to obtain a convergent
Mellin amplitude. Vice versa we can add ST (s) to M̃(s) to reproduce the correct A(η).
Recall that this analysis is only restricted to the non-crossing-invariant D̄-functions of the
form considered in (10.84).

Now that we know how to obtain a convergent Mellin transform, let’s find the closed-
form expression for this type of non-crossing-invariant D̄-functions. Below we list some of
the Mellin we compute using (10.70):
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∆1∆2∆3∆4 Polynomial part Γs
1 2 2 1 2 (1 - 3 s) Γ(s− 3)Γ(−s− 1)
2 2 1 1 2 (-2 + 3 s) Γ(s− 2)Γ(−s− 2)
2 3 3 2 8(24 + s(−55 + (12− 5s)s)) Γ(s− 5)Γ(−s− 3)
3 3 2 2 8(−24 + s(46 + (−3 + 5s)s)) Γ(s− 4)Γ(−s− 4)
4 3 3 4 288(1080 + s(−2454 + s(1121 + s(−491 + s(31− 7s))))) Γ(s− 7)Γ(−s− 5)
4 4 3 3 288(−720 + s(1596 + s(−236 + s(437 + s(−4 + 7s))))) Γ(s− 6)Γ(−s− 6)

Finding a closed form becomes more complicated. However, we can always use the
property sΓ(s) = Γ(s + 1) to change the Γ part of the Mellin and consequently the poly-
nomial in front. It turns out that, if we play a bit, we find a nice representation of this
D̄-functions. To illustrate it, let us take a specific example:

M̃1221(s) = −16Γ(s− 3)Γ(−s− 1)− 6Γ(s− 2)Γ(−s− 1) ,
M̃2211(s) = −16Γ(s− 2)Γ(−s− 2)− 6Γ(s− 2)Γ(−s− 1)

(10.89)

for D̄1221 and D̄2211.
These Mellin representations consist of two terms: the second ones are identical and

crossing invariant, while the first ones display the crossing-relation that connects the re-
spective D̄-functions:

16Γ(s− 3)Γ(−s− 1) s→1−s= 16Γ(s− 2)Γ(−s− 2) . (10.90)

We can then rewrite all the other D̄-functions of the type (10.84) with this criterion, which
makes finding a pattern relatively easy:

M̃∆1∆2∆3∆4 =
∆1−∆3∑
m=0

∆3−1∑
n=0

(−1)(∆1−∆3)−n21+(∆1−∆3)−m 1
Γ(n+ 1)

Γ(∆3)Γ(∆4)
Γ(∆3 − n)Γ(∆4 − n)

Γ(∆1 + ∆2 + ∆3 + ∆4 − 2− 2n)
Γ(∆1 + ∆2 + ∆3 + ∆4 − 2− 2n−m)

Γ(∆3 + ∆4 − 1− n)Γ(∆1 + ∆2 − 1− n−m)2

Γ(s− (∆2 + ∆3 − 1− n))Γ(−s− (∆1 + ∆2 − 2− n−m)).

(10.91)



CHAPTER 11

Summary and Outlook

This thesis is an exploration of the realm of 1d CFTs, which we believe are and are going to
be of extreme importance in the developments of the various non-perturbative techniques
central in higher-dimensional CFTs. Our focus has been particularly on the Wilson line
defect CFT. We wandered particularly in the world of multipoint correlators of operators
inserted on this defect, but we also investigated alternative ways of representing correlators
through the Mellin formalism. A lot of exciting directions stream from this work. In this
chapter, some of these prospects are discussed after a summary of the main results.

11.1 Main Results
In this section, we dedicate our attention to a summary of the main results obtained in this
work. Particularly, we opened Part II with a detailed discussion of an efficient algorithm
for computing multipoint correlation functions of scalar fields inserted on the N = 4 SYM
Wilson line defect. This algorithm consists of recursion relations that encode the possible
interactions between protected and unprotected operators of elementary scalars up to next-
to-leading order at weak coupling.

The outcome of the application of these recursive formulae has been shown in Chap-
ters 7,8, and 9. In Chapter 7, we computed two-point functions of fundamental scalars,
which are necessary in order to normalize higher-point correlators properly. Moreover, we
calculated two-point functions of composite operators of length two. This was an important
consistency check for the recursion relations, but it also allowed us to access the anomalous
dimensions of these operators. Lastly, we explored three-point functions. These are rele-
vant because they give us access to some OPE coefficients, whose knowledge is fundamental
to performing other consistency checks using the expansion of the correlators in terms of
conformal blocks.

In Chapter 8, we moved then to four-point functions. Our first focus was on the simplest
four-point function of scalar operators of protected dimension ∆ = 1 〈φ1φ1φ1φ1 〉, which we
computed up to next-to-next-to-leading order thanks to the constraining power of the Ward
identities. We also computed another four-point function made of unprotected operators
only. Then, we extracted the bosonic CFT data from both these correlators.

Chapter 9 finally focused on the investigation of multipoint correlators. The recursion
relations allowed us to gather a huge pool of perturbative results. In particular, in this
thesis, we focused on five- and six-point functions, which we analyze in detail, also by
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extracting some bosonic CFT data. All these new perturbative results are interesting in
their own right. However, they remarkably gave us access to non-perturbative constraints,
which we conjectured to be an extension of the Ward identities satisfied by four-point
functions. Multipoint Ward identities constituted a fundamental piece of the puzzle in the
bootstrap of a multipoint correlator at strong coupling, which has been scrutinized at the
end of this chapter.

Finally, in Chapter 10, we explored another tool to represent and study 1d correlators.
We developed an inherently one-dimensional Mellin transform, which can be defined at the
non-perturbative level with appropriate subtractions and analytical continuations. This
definition allowed us to derive an infinite set of non-perturbative sum rules whose charac-
teristics have been discussed in detail and applications sketched. The efficiency of this 1d
Mellin formalism is manifest at the perturbative level. We found a closed-form expression
for the Mellin transform of D̄-functions, which has been used to extract CFT data.

11.2 The Way Forward
The research presented in this thesis is situated at the intersection of two ambitious pro-
grams: the study of conformal defects and analytic bootstrap. The numerous connections
between CFTs and physical phenomena grant these fields wide applications [67]. In the
following, however, we sketch only the future directions streaming directly from the results
we have just summarized. Some possible outlooks have already been mentioned along the
way.

More General Recursion Relations?

A first natural question is whether extending the recursion relations beyond scalar fields,
considering then fields transforming non-trivially under transverse rotations, is possible.
An example would be fermionic fields. At first and quick thought, there do not seem to
be conceptual walls preventing this extension. Of course, one needs to be careful with
the ordering of the operators, which plays a non-trivial role. It is also possible that the
inclusion of these extra fields could be technically challenging. Nevertheless, we have already
approached a computation of a fermionic loop diagram computing the next-to-next-to-
leading order of 〈φ1φ1φ1φ1 〉 in Section 8.3.1. There, the integral associated with this
diagram turned out to be solvable analytically in the conformal frame and using the star-
triangle relation (C.16). Therefore, we are hopeful that setting up a recursion relation,
including fermionic fields, is possible.

An alternative idea for developing a recursive algorithm including both scalars and
fermions would be to promote the scalar fields to superfields. These would require an
upgrade of the Feynman rules we introduced in Section 3.2.5 to Feynman rules in terms of
superfields, and of course, the same would have to be done for the defect Feynman rules
outlined in Section 4.5. It might be helpful then to consider the superfield formulation of
the supersymmetric Wilson line presented in [137].

Push the Recursion Relations to the Next Order?

A second natural research direction could be to push the recursion relations to NNLO. Par-
ticularly, we mostly refer to the recursive algorithm for protected scalars since the inclusion
of the unprotected scalar φ6 already greatly increases the complexity of the recursion. In
Section 6, we discussed that the input for the recursion relation at leading order (6.3) is
the two-point function, while for the next-to-leading order (6.6) the starting value is the
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four-point function at NLO. In the case of the NNLO, we would have to input the six-point
function 〈φ1φ1φ1φ1φ1φ1 〉 at that order.

In Section 8.3, we showed how to compute a four-point function at NNLO. The compu-
tations of the associated Feynman diagrams proved doable only thanks to the constraining
power of the Ward identity, reducing the unknowns from three independent functions to
a single one. Nevertheless, we had to integrate numerically the integrals representing the
boundary diagrams since we have not find a way to solve them analytically yet. A similar
challenge would for sure arise when computing the building blocks of the six-point functions,
which are what we really need in order to set up the NNLO recursive formula.

Other Four-Point Functions at NNLO?

After having computed the simplest four-point function of protected operators at NNLO
in Section 8.3, it seems natural to compute other four-point functions. In particular, one
may start by generalizing the dimension of the last two operators, therefore computing
〈φ1φ1φkφk 〉. Having operators of higher length means, in principle, an increase in the
complexity of the Feynman diagrams we have to compute. However, we are only looking at
the simplest R-symmetry channel where, in practice, we do not expect to obtain new types
of diagrams. Of course, in any case, a careful analysis is required. In Figure 11.1, we draw
some examples of diagrams that will appear in the computation.

Figure 11.1: Example of NNLO order diagrams of 〈φ1φ1φ2φ2 〉. It should be rela-
tively straightforward to compute these diagrams from the calculations already done for
〈φ1φ1φ1φ1 〉. Moreover, it should be quite easy to generalize to 〈φ1φ1φkφk 〉.

Proof of the Conjectured Ward Identities?

Of course, it would be very interesting to prove the multipoint Ward identities we conjec-
tured with the usual superspace techniques, where a careful analysis of possible nilpotent
invariants is also necessary. Some relevant techniques were developed recently in [121] for
N = 4 without defects, and they could possibly be adapted to a one-dimensional setup.
This analysis would be fundamental also to retrieving the full set of superconformal Ward
identities. As Section 9.3 points out, our analysis of protected operators only focuses on
the highest-weight component, ignoring possible fermionic descendants. While this is not
a problem for the four-point function, since the full superconformal correlator can be re-
constructed from the highest weight, for higher-point functions the Ward identities should
be a collection of partial PDEs relating bosonic and fermionic components. Therefore it is
unexpected to find this set of superconformal Ward identities only acting on the highest
weight. A superspace analysis could shed some light on why this happens and indicate if
this is a feature we expect only in 1d theories or if it is also valid in higher d.

More Ward identities?

Multipoint superconformal Ward identities are, in general, an underexplored subject. In
principle, one could try to repeat the strategy presented here in more general setups, starting
perhaps with the parent theory of the Wilson line defect CFT: 4d N = 4 SYM. For this
theory, a recursion relation has already been worked out for n-point functions of half-BPS
operators at next-to-leading order [33]. Therefore we would already have some samples on
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which to base our conjecture. However, in the 4d case, there are more spacetime cross-
ratios, n(n − 3)/2 in particular, the same number as the R-symmetry cross-ratios. This
would possibly lead to a slightly more complicated ansatz to test. In any case, with the
current results, it should be possible to derive the WI.

It is fascinating to think that these conjectured Ward identities could also open the
door to other setups. Particularly it was noted in [99] that the superconformal Ward
identity for four-point functions, that we introduced in Section 8.2, can be analytically
continued between two-point functions of bulk half-BPS operators in the presence of a half-
BPS line and four-point functions of defect half-BPS operators along the same line. An
analogous observation can also be made for the superconformal blocks appearing in the
OPE associated with this setup. Similarly, the Ward identities for four-point functions also
capture the superconformal symmetry of two-point functions of half-BPS operators in the
presence of a half-BPS boundary, as well as four-point functions of half-BPS operators on
the boundary, which can be interpreted as a 3d N = 4 gauge theory. Moving from one
setup to the other is possible with the appropriate analytic continuations. Therefore, we
wonder if the same can be done with the Ward identities. We leave this intriguing question
to further exploration.

Bootstrap of a Six-Point Function?

A clear follow-up of the bootstrap of the five-point function discussed in Section 9.4 is
the bootstrap of the six-point function 〈φ1φ1φ1φ1φ1φ1 〉. This correlator presents fifteen
independent R-symmetry channels. Of course, we expect the Ward identity to reduce this
number, but we wonder if they would be constraining enough to succeed in determining
the full correlator. Possibly the fact that this correlator is more symmetric compared to
the five-point will provide sufficiently many additional constraints.

Transfer to Other Setups?

The analysis developed in this thesis revolving around a recursive algorithm to compute
correlators could also be applied to other setups. One example could be the ε−expansion
applied to a localized magnetic field line defect, for which a perturbative analysis was
initiated recently [138]. There has been some exciting development also on scalar-fermion
models, such as the Gross-Neveu-Yukawa model, which admits natural 1d defects given by
the exponential of a scalar field integrated along a straight line [139]. Finally, models such
as the fermionic Wilson line defect in ABJM [140] would be an interesting target both from
a perturbative side and a bootstrap perspective.

A Bridge Between Multipoint Correlators and the Mellin Formalism?

It would be ideal to establish a direct contact between the work on multipoint correlators
and the inherently one-dimensional Mellin transform for four-point functions. Since Mellin
space offers an alternative, sometimes simpler, formulation for correlation functions, it
would be interesting to generalize this 1d Mellin representation to higher-point correlators.
The first step in this direction would be a generalization to non-identical scalars. Some
attempts have been presented in Section 10.5. Finding this representation for higher-point
could allow us to get a closed-form expression for them and hopefully discover some hidden
features of these functions.

Moreover, given the progress in understanding the analytic structure in cross-ratio
space [22, 122, 141], it would be interesting to map this knowledge into Mellin space and
see whether, as in the higher-dimensional counterpart, implementing the bootstrap directly
in Mellin space leads to significant simplifications.
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What About the Flat-Space Limit?

It would be worth analyzing the connections of our Mellin formalism with the ambitious
program of the S-matrix bootstrap [132] by carefully studying a proper flat space limit.
In this context, it is interesting to notice that, unlike higher-dimensional examples, accu-
mulation points of poles do not seem to appear in this picture. It is, therefore, important
to understand how the singularities of 2d S-matrices appear in the flat space limit of our
Mellin amplitude.

Can We Expose Integrability?

To conclude, the 1d CFT defined by the supersymmetric Wilson line in N = 4 SYM is
also the most important application motivating our work on a 1d Mellin formalism. In this
case, the holographic dual is described through an effective string worldsheet theory in AdS2.
Little is known about integrability in curved spaces, and how the power of integrability can
be exploited in this setting is still an open question. This could be done by identifying, in
Mellin space, the analog of the S-matrix factorization, the latter being one of the highlights
of integrability in flat space.
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APPENDIX A

Four-Dimensional Superconformal Algebra

This appendix is dedicated to the four-dimensional superconformal algebra su(2, 2|N ),
where for physical theories N = 1, . . . , 4. We have already introduced in detail the su-
perconformal algebra in Section 3.2.2. We give here the rich list of (anti)commutation
relations, which we did not include in the main text.

We do not use vector indices, since it is more natural to write P,K and L with spinor
indices, such that the conformal algebra reads

[D,Pαα̇] = Pαα̇ ,[
D,Kα̇α

]
= −Kα̇α ,[

Kα̇α, Pββ̇

]
= δα̇β̇Lβ

α + δαβL̄β̇
α̇ + δβ

αδα̇β̇D ,[
Lα

β , Lγ
δ
]

= δγ
βLα

δ − δαδLγβ ,[
L̄α̇β̇ , L̄

γ̇
δ̇

]
= −δγ̇ β̇L̄

α̇
δ̇ + δα̇δ̇L

γ̇
β̇ ,[

Lα
β , Pγγ̇

]
= δγ

βPαγ̇ −
1
2δα

βPγγ̇ ,[
L̄α̇β̇ , Pγγ̇

]
= δα̇γ̇Pγβ̇ −

1
2δ

α̇
β̇Pγγ̇ ,[

Lα
β ,K γ̇γ

]
= −δαγK γ̇β + 1

2δα
βK γ̇γ ,[

L̄α̇β̇ ,K
γ̇γ
]

= −δγ̇ β̇K
α̇γ + 1

2δ
α̇
β̇K

γ̇γ .

(A.1)

The bosonic subgroup also includes an SU(N ) R-symmetry[
Rij , R

k
l

]
= δkjR

i
l − δilRkj , (A.2)

and the U(1)R charge R. There are 4N Poincaré supercharges QAα and Q̄Bα, with the
indices running over A,B = 1, . . . ,N and α, α̇ = 1, 2.

Under the bosonic subalgebra, these Poincaré and superconformal supercharges trans-
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form as

[D,Sαi ] = −1
2S

α
i ,[

D, S̄iα̇
]

= −1
2 S̄

iα̇ ,

[R,Sαi ] = +Sαi ,[
R, S̄iα̇

]
= −Siα ,[

Pαα, S
β
i

]
= −δβαQ̄iα ,[

Pαα, S̄
iβ
]

= −δβαQiα ,[
Lβα, S

γ
i

]
= −δγαS

β
i + 1

2δ
β
αS

γ
i ,[

~Lαβ , ~S
iγ̂
]

= −δψβ S̄
iα̇ + 1

2δ
α̇
βS̄

iγ̇ ,[
Ri, Qka

]
= δkjQ

i
α −

1
N
δijQ

k
a ,[

Rij , S
α
k

]
= −δikSjα + 1

N
δijS

α
k ,[

Rij , Q̄kα̇
]

= −δikQ̄jα̇ + 1
N
δijQ̄kα̇ ,

[D,Sαi ] = −1
2S

α
i ,[

D, S̄iα̇
]

= −1
2 S̄

iα̇ ,

[R,Sαi ] = +Sαi ,[
R, S̄iα̇

]
= −S̄iα̇ ,[

Pαα̇, S
β
i

]
= −δβαQ̄iα̇ ,[

Pαα̇, S̄
iβ̇
]

= −δβ̇ α̇Qiα ,[
Lα

β , Sγi

]
= −δαγSβi + 1

2δα
βSγi ,[

L̄α̇β̇ , S̄
iγ̇
]

= −δγ̇ β̇S̄
iα̇ + 1

2δ
α̇
β̇S̄

iγ̇ ,[
Rij , S

α
k

]
= −δikSjα + 1

N
δijS

α
k ,[

Rij , S̄
kα̇
]

= δkjS̄
iα̇ − 1

N
δijS̄

kα̇ .

(A.3)

Finally, the supercharges anticommute as follows:{
QAα , Q̄Bα̇

}
= δABPαα̇,{

SαA, S̄
Bα̇
}

= δBAK
α̇α ,{

QAα , S
β
B

}
= δB

Aδα
β
(
D

2 +R
4−N

4N

)
+ δABLα

β − δαβRAB,{
S̄Aα̇, Q̄Bβ̇

}
= δABδ

α̇
β̇

(
D

2 −R
4−N

4N

)
+ δABL̄

α̇
β̇ + δα̇β̇R

A
B .

(A.4)

For N = 4, the U(1)R charge can be quotiented out from the algebra, leading to the
psu(2, 2 | 4) superalgebra. Under Hermitian conjugation in radial quantization, the gener-
ators transform as

D† = D , P †αα̇ = Kα̇α ,
(
RAB

)†
= RBA , R† = R ,(

Lα
β
)†

= Lβ
α ,

(
L̄α̇β̇

)†
= L̄β̇ α̇ ,

(
QAα

)†
= SαA ,

(
Q̄α̇A

)†
= S̄α̇A .

(A.5)



APPENDIX B

Conventions and u(N) Identities

In this appendix, we fix some conventions and state some identities that are useful to
compute Feynman diagrams in N = 4 SYM and consequently in the Wilson line defect
CFT.

In particular, we recall that we consider SU(N) as the gauge group of the Yang-Mills
theory, while SO(6)R is the R-symmetry group. However, there is little difference between
SU(N) and U(N) in the large N limit we are interested in. In any case, the unitary group
is defined as the group of unitary complex N ×N matrices:

U †U = 1 , (B.1)

and it has dimension dimU(N) = N2. The special unitary group SU(N) is defined by the
matrices U ∈ U(N) that also satisfy the requirement det U = +1. This implies that the
SU(N) group has one degree of freedom less than the U(N) group, and thus its dimension
is dimSU(N) = N2 − 1

Both U(N) and SU(N) are connected to the identity and hence are Lie groups. Their
elements can be expressed infinitesimally as:

U = 1 + iαaT
a +O(α2) , (B.2)

with T a the generators of the groups and α an infinitesimal real parameter. As a conse-
quence, the generators must satisfy:

T a
!= (T a)† . (B.3)

U(N) and SU(N) can be formulated such that they share N2 − 1 traceless generators, i.e.
U(N) has an extra generator, which we define to be T 0 and which is not traceless.

We can now have a look at the Lie algebras u(N) and su(N). We normalize the gener-
ators such that:

tr T aT b = δab

2 , (B.4)

while the commutator takes the form[
T a, T b

]
= i fabc T

c . (B.5)

We now collect a bunch of identities for both traces and structure constants. We start
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with trace identities. First, it is useful to derive the following completeness relation:

T aijTa,lk = 1
2δikδjl , (B.6)

which allows us to obtain the two following useful identities:

tr T aA tr TaB = T aijTa,lkA
jiBkl = 1

2tr AB , (B.7a)

tr T aATaB = T aijTa,lkA
jlBik = 1

2tr A tr B . (B.7b)

It is straightforward to find the expression for the trace of one generator. The trace of T a
is non-zero only for a = 0, and we have:

(tr T a)2 = tr T a1 tr Ta1 = N

2 . (B.8)

Thus we find:

tr T a =

√
N

2 δ
a0. (B.9)

Note that, as mentioned before, the generators of the su(N) algebra are traceless and hence
are zero for all a.

The trace of two generators has been defined by the normalization condition (B.4).
When the indices are contracted, we have then the following equality:

tr T aTa = N2

2 . (B.10)

For the trace of four generators, we have the following:

T aT bT cT d = 1
4
([
T a, T b

]
+
{
T a, T b

})([
T c, T d

]
+
{
T c, T d

})
. (B.11)

Moving now to structure constants, we start by noting that:

tr
[
T a, T b

]
= tr T aT b − tr T bT a = 0 != ifabctr T c ∝ fab0 , (B.12)

and thus:
fab0 = 0 . (B.13)

The product of two structure constants with two indices free out of six can be obtained as
follows:

facdf bcd = −4tr ([T a, T c]T d)tr ([T b, Tc]Td)
= −2tr ([T a, T c][T b, Tc])
= −2tr T atr T b + 2Ntr T aT b ,

(B.14)

where in the second line we have used (B.7a), and in the third line equation (B.7b). The
remaining traces give:

facdf bcd = N
(
δab − δa0δb0

)
= Nδãb̃ , (B.15)

where ã, b̃ ≡ 1, . . . , N are su(N) indices (one generator less). By abuse of notation, we
often drop the tilde in this thesis. This is harmless in the large N limit. From the previous
result, we immediately obtain the case in which all indices are contracted:

fabcfabc = N
(
N2 − 1

)
∼ N3 , (B.16)
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where the last equality holds in the large N limit.
We conclude with an important identity which relates the generators and the structure

constants:
fabc = −2i tr ([T a, T b]T c) . (B.17)
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APPENDIX C

Correlators on the Wilson Line

C.1 Integrals and Regularization
In this appendix, we compute the bulk and boundary integrals we encounter in this work.
We add interesting limits and identities of these integrals whenever they are known or we
find ones.

C.1.1 Bulk Integrals

First, we focus on the bulk integrals defined in Section 3.2.5, starting from the Y -integrals.
The Y -integral can be easily obtained from this expression by taking the following limit:

Y123 = lim
x4→∞

(2π)2x2
4 X1234

= I12
8π2

(
τ12
τ23

log |τ13|+
τ12
τ31

log |τ23|+
τ2

12
τ23τ31

log |τ12|
)
. (C.1)

In 1d the X-integral is given by

X1234
I13I24

= − 1
8π2

`(χ, 1)
χ(1− χ) , χ2 := τ2

12τ
2
34

τ2
13τ

2
24
, (C.2)

with `(χ1, χ2) defined in (8.14).
The H-integral seems to have no known closed form so far, but F12,34 can, fortunately,

be reduced to a sum of Y - and X-integrals in the following way [83]:

F12,34 = X1234
I13I24

− X1234
I14I23

+
( 1
I14
− 1
I24

)
Y124 +

( 1
I23
− 1
I24

)
Y234

+
( 1
I23
− 1
I13

)
Y123 +

( 1
I14
− 1
I13

)
Y134 . (C.3)

The integrals above appear in their respective pinching limits, i.e. when two external
points are brought close to each other. The integrals simplify greatly in this limit, but they
exhibit a logarithmic divergence that is tamed using point-splitting regularization. For the
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Y -integral, we define

Y122 := lim
x3→x2

Y123 , lim
x3→x2

I23 := 1
(2π)2ε2

.

Inserting this in (C.1) and expanding up to order O(log ε2), we obtain

:= Y112 = Y122 = − I12
16π2

(
log I12

I11
− 2

)
. (C.4)

This result coincides with the expression in e.g. [33].
For completion, we also give the pinching limit of the X- and F -integrals. The first one

reads
:= X1123 = −I12I13

16π2

(
log I12I13

I11I23
− 2

)
, (C.5)

which is again the same as in [33].
The pinching limit τ2 → τ1 of the F -integral gives

F13,14 = F14,13 = −F13,41

= −X1134
I13I14

+ Y113
I13

+ Y114
I14

+
( 1
I13

+ 1
I14
− 2
I34

)
Y134 . (C.6)

Moving to the integrals appearing for the first time at NNLO, the Kij has been defined
in (3.28a), and in particular, the integrals K12 and K23 can be calculated analytically by
taking the τ4 →∞ limit of the well-known two-loop kite integral [85]:

K13,24 : = 1
I13

ˆ
d4x5 I15I25I35X1345

= I13I24
128π4χ(1− χ)

(
5(H0,0,1 +H0,1,0 + 2H0,1,1)

+ 2(H1,0,0 + 2H1,1,0) + 7H1,0,1 + 6H1,1,1
)
, (C.7)

whose evaluation we give compactly in terms of HPL’s. This integral can be represented
diagrammatically as

2 4

1

3

.

In this case, the conformal limit can be considered as cutting one leg from the diagram.
Indeed for K12 and K23 we have

Kij = k

i

j

, (C.8)

with k 6= i, j, 4. We can also easily compute the integral Ki4 in the limit τ4 → ∞, which
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can be reduced to Y -integrals

Ki4 = j 4

i

k

= I24
32π2

(
log I12I13

I2
34

+ 4
)
Y123 +O

( 1
τ3

4

)
, (C.9)

where i, j, k 6= 4. Finally a special case of Kij is K44 which reads

K44 :=
ˆ
d4x5 Y445 I15I25I35

= − I24
16π2

(
log ε2 − log τ2

4 + 2
)
Y123 +O

( 1
τ3

4

)
. (C.10)

If we restrict to the full conformal frame,i.e. (τ1, τ2, τ3, τ4) → (0, χ, 1,∞), we can also
find interesting identities relating the some K-integrals to some H-integrals:

K12
I12

= H13,23 ,
K23
I23

= H12,23 , (C.11)

which, however, is only valid in the conformal frame.
We can derive similar identities also for the A-integrals and the Y -integrals, if, again,

we restrict to the conformal frame:

A1 +A2 +A3 = (log x2
12 + log x2

23)Y123 . (C.12)

In the conformal frame, there is also a beautiful identity relating the H-integrals to-
gether:

χH12,13 + (1− χ)H13,23 − χ(1− χ)H12,23 = 3 ζ3
512π6 . (C.13)

We finally collect some identities that allow us to solve the sixteen-dimensional integral
of the spider diagram: first, some identities between Γ-functions

tr ΓiγµΓjγνΓkγρΓlγσ = (δijδkl + δilδjk − δikδjl)tr γµγνγργσ , (C.14)

and recalling that the γ-matrices are sixteen-dimensional, we have

tr /x1/x2/x3/x4 = 16 [(x1 · x2)(x3 · x4) + (x1 · x4)(x2 · x3)− (x1 · x3)(x2 · x4)] . (C.15)

We can now write down the fermionic star-triangle identity
ˆ
ddx4/∂4I14I24/∂4I34 = −π2/x12/x23I12I13I23 , (C.16)

and, to conclude, a useful algebraic identity

x12 · x34 = − 1
8π2

( 1
I13

+ 1
I24
− 1
I23
− 1
I14

)
. (C.17)

C.1.2 Boundary Integrals

In the computations, we deal with two types of boundary integrals: the T - and U -integrals.
In the following two sections, we gather their explicit expressions and interesting properties.
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T -Integrals

Before entering into details about the various integrals, we should define a function that
keeps track of the change of sign in all the boundary diagrams, characterized by a gluon
coupling to the Wilson line, e.g in Section 8.3.2:

ε(τi τj τk) = sign(τi − τj)sign(τj − τk)sign(τi − τk) , (C.18)

with τi < τj < τk.
Moving to the T -integrals, the following identity can be used in order to “swap” the

limits of integration:
Tjk;il|i<j<k<l = −Ijk12 − Tjk;li , (C.19)

where the integration range (li) on the right-hand side has to be understood as the union
of segments (l,+∞) ∪ (−∞, i).

There also exists another relevant combination for the computations at one loop relating
the T - and Y -integrals:

IikTjk;ki + IjkTik;jk = −IikIjk12 + IikIjk

(
1
Iik

+ 1
Ijk
− 2
Iij

)
Yijk . (C.20)

In general, the integrals can be performed explicitly for the different possible orderings
of the τ ’s, and here we give the results assuming τ1 < τ2 < τ3 < τ4:

T12;34 = 1
32π4τ2

12

(
4LR

(
τ12
τ14

)
− 4LR

(
τ12
τ13

)
− C123 + C124

)
, (C.21a)

T34;12 = 1
32π4τ2

34

(
4LR

(
τ34
τ14

)
− 4LR

(
τ34
τ24

)
− C341 + C342

)
, (C.21b)

T14;23 = 1
32π4τ2

14

(
4LR

(
τ24
τ14

)
− 4LR

(
τ34
τ14

)
− C412 − C143

)
, (C.21c)

T23;41 = 1
32π4τ2

23

(
−4LR

(
τ23
τ13

)
− 4LR

(
τ23
τ24

)
− C234 − C123

)
, (C.21d)

where we have defined the following help function:

Cijk := −32π4τij(τik + τjk)Yijk , (C.22)

and where the Rogers dilogarithm LR(x) is defined in (8.12).
It is easy to take pinching limits of the integrals given above. For example, we can have

T12;23 = 1
32π4τ2

12

(
4LR

(
τ12
τ13

)
− 2π2

3 + C123

)
+ Y112 , (C.23)

using the fact that LR(1) = π2

6 . All the other pinching limits can be performed in the same
way.

U-Integrals

The integrals Ua;ij introduced in Section 4.5.2 can be explicitly performed and here is the
expression:

Ua;ij = 1
4π2

(
1

τi − τa
+ 1
τa − τj

)
, (C.24)
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which is valid both when τa < τi < τj and τi < τj < τa. Though, variations of this
U -integral appear in the recursion, for example, when τa = τi. In these cases, we just
take the appropriate limit, regularizing the divergences in the integral with point-splitting
regularization as for the integrals of the previous sections. If i, j = ±∞, we again take the
limit of the expression above.

We move now to the second type of U -integrals: U (2)
ab;ij . The explicit expressions for the

three different configurations are

n m ba i j

= 1
16π4

(
τij

τaiτajτjb
+ 1
τ2
abτaiτaj

(
(τ2
a + τiτj) log τaiτbj

τbiτaj

+τa(τi + τj) log τbiτaj
τaiτbj

+ τbaτij

))
, (C.25a)

n a bm ji

= 1
16π4

(
τji

τaiτibτaj
+ 1
τ2
abτaiτaj

(
(τ2
a + τiτj) log τbiτaj

τaiτbj

+τa(τi + τj) log τaiτbj
τbiτaj

+ τabτij

))
, (C.25b)

na b m ji

= 1
16π4

(
τij

τbiτbjτja
+ 1
τ2
abτbiτbj

(
(τ2
b + τiτj) log τbiτaj

τaiτbj

+τb(τi + τj) log τaiτbj
τbiτaj

+ τabτij

))
, (C.25c)

with τij := τi − τj and assuming τ1 < τ2 < τ3 < τ4.

C.2 NNLO Recursion Relation for Even φ6

In this appendix, we give the formal expression for the recursion relation given in equation
(6.25) in a diagrammatic way. A close look at (6.25) reveals that there are two types of
U -integrals that one can encounter. These two types are represented in Figure 4.6, and cor-
respond to whether the integration limits are “connected” or not. This distinction is made
clear in the definitions of the integrals, which can be found in the appendix Section C.1.2.
Equation (6.25) contains both types of integrals, and in order to write an effectively usable
formula, we must extract the U (2) contributions. It is easy to check visually which terms
contain a U (2):

t t t t t

j k l m

m=l+2
⊃ t t t t

j k l

t t t t t

l m j k

m=l+2
⊃ t t t t

l j k

t t t t t

j l m k

m=l+2
⊃ t t t t

j l k

.

Hence we only have to change the summation range for these three terms and add them
by hand with an explicit mention of U (2). This gives the following expression:

(6.25) =λ2

4

n−1∑
j=1

n∑
k=j+1

δIj6δIk6
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×
(
n−2∑
l=k

n∑
m=l+4

Uj;m(m+1)Uk;l(l+1)A
I1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Il
LO A

Il+1...Im
LO A

Im+1...In
LO

+
n∑
l=k

k−1∑
m=j

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1
LO A

Ij+1...Im
LO A

Im+1...kl
LO A

Ik+1...Il
LO A

Il+1...In
LO

+
j−3∑
l=0

j−1∑
m=l+4

Uj;m(m+1)Uk;l(l+1)A
I1...Il
LO A

Il+1...Im
LO A

Im+1...jl
LO A

Ij+1...Ik−1
LO A

Ik+1...In
LO

+
k−1∑
l=j

j−1∑
m=0

Uj;l(l+1)Uk;m(m+1)A
I1...Im
LO A

Im+1...Ij−1
LO A

Ij+1...Il
LO A

Il+1...Ik−1
LO A

Ik+1...In
LO

+
k−1∑
l=j

n∑
m=k

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1
LO A

Ij+1...Il
LO A

Il+1...kl
LO A

Ik+1...Im
LO A

Im+1...In
LO

+
k−3∑
l=j

k−1∑
m=l+4

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1
LO A

Ij+1...Il
LO A

Il+1...m
LO A

Im+1...Ik−1
LO A

Ik+1...In
LO

+
j−1∑
l=0

n∑
m=k

Uj;l(l+1)Uk;m(m+1)A
I1...Il
LO A

Il+1...Ij−1
LO A

Ij+1...kl
LO A

Ik+1...Im
LO A

Im+1...In
LO

+
j−1∑
l=0

k−1∑
m=j

Uj;l(l+1)Uk;m(m+1)A
I1...Il
LO A

Il+1...Ij−1
LO A

Ij+1...Im
LO A

Im+1...Ik−1
LO A

Ik+1...In
LO

)

+ λ2

4

n−3∑
j=1

n−1∑
k=j+2

δIjIkIjk

×
(

n∑
l=k+1

n∑
m=l

δIl6Ul;m(m+1)A
I1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...Im
LO A

Im+1...In
LO

+
n∑

l=k+1

l−1∑
m=k

δIl6Ul;m(m+1)A
I1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Im
LO A

Im+1...Il−1
LO A

Il+1...In
LO

)

+ λ2

4

n−2∑
j=2

n∑
k=j+2

δIjIkIjk

×
(j−1∑
l=1

j−1∑
m=l

δIl6Ul;m(m+1)A
I1...Il−1
LO A

Il+1...Im
LO A

Im+1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...In
LO

+
j−1∑
l=1

l−1∑
m=0

δIl6Ul;m(m+1)A
I1...Im
LO A

Im+1...Il−1
LO A

Il+1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...In
LO

)

+ λ2

4

n−3∑
j=1

n−1∑
k=j+2

n∑
l=k+1

j−1∑
m=0

δIjIkδIl6

× IjkUl;m(m+1)A
I1...Im
LO A

Im+1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...In
LO

+ λ2

4

n−2∑
j=3

n∑
k=j+2

j−1∑
l=1

n∑
m=k

δIjIkδIl6

× IjkUl;m(m+1)A
I1...Il−1
LO A

Il+1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Im
LO A

Im+1...In
LO

+ λ2

4

n−5∑
j=1

n−3∑
k=j+2

n−2∑
l=k+1

n∑
m=l+2

δIjIkδIlIm
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× IjkIlmA
I1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...Im−1
LO A

Im+1...In
LO

+ λ2

4

n−1∑
j=1

n∑
k=j+1

δIj6δIk6

×
(

n∑
l=k

U
(2)
j;k;l(l+1)A

I1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...Il
LO A

Il+1...In
LO

+
k−1∑
l=j

U
(2)
j;k;l(l+1)A

I1...Ij−1
LO A

Ij+1...Il
LO A

Il+1...Ik−1
LO A

Ik+1...In
LO

+
j−1∑
l=0

U
(2)
j;k;l(l+1)A

I1...Il
LO A

Il+1...Ij−1
LO A

Ij+1...Ik−1
LO A

Ik+1...In
LO

)
, (C.26)

where the U (2)-integrals are contained in the three last terms.
This formula is the one that was effectively implemented in the ancillary Mathematica

notebook of [3], and that has been used for producing the results of Sections 7, 8 and 9.
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APPENDIX D

Harmonic Polylogarithms

Harmonic polylogarithms (HPL’s) are special functions of weight w and argument x iden-
tified by a set of w indices, grouped into a w-dimensional vector ~mw. There are indicated
by H( ~Mw;x). In particular, for the case w = 1, there are three HPL’s:

H(0;x) = lnx , (D.1a)

H(1;x) =
ˆ x

0

dx′

1− x′ = −ln(1− x) , (D.1b)

H(−1;x) =
ˆ x

0

dx′

1 + x′
= ln(1 + x) . (D.1c)

Taking their derivatives, one has

d

dx
H(a;x) = f(a;x) , (D.2)

where the index a takes three values 0,+1,−1 and the three rational functions f(a;x) are
given by

f(0;x) = 1
x
,

f(1;x) = 1
1− x ,

f(−1;x) = 1
1 + x

.

(D.3)

For w > 1, we write more in general

~mw = (a, ~mw−1) , (D.4)

where a = mw is the leftmost index, and ~mw−1 is a vector of the remaining w−1 components.
Moreover, ~0w is the vector whose w components are all equal to the index 0. The harmonic
polylogarithms of weight w are then defined as follows:

H
(
~0w;x

)
= 1
w! lnw x , (D.5)

and similarly for ~1w, (−~1)w, which are the vectors whose components are all equal to 1 or

141



142 Chapter D. Harmonic Polylogarithms

-1. By applying recursively the definitions we obtain

H
(
~1w;x

)
= 1
w! (− ln(1− x))w , (D.6a)

H
(
( ~−1)w;x

)
= 1
w! lnw(1 + x) . (D.6b)

On the other hand, if ~mw 6= ~0w, one defines

H (~mw;x) =
ˆ x

0
dx′f

(
a;x′

)
H
(
~mw−1;x′

)
. (D.7)

The derivatives can be written in the compact form

d

dx
H (~mw;x) = f(a;x)H (~mw−1;x) . (D.8)

We can now look at the indices’ first few values. For w = 2 there are nine combinations

H(0, 0;x) = 1
2! ln2 x , (D.9a)

H(0, 1;x) =
ˆ x

0

dx′

x′
H
(
1;x′

)
= −

ˆ x

0

dx′

x′
ln
(
1− x′

)
, (D.9b)

H(0,−1;x) =
ˆ x

0

dx′

x′
H
(
−1;x′

)
=
ˆ x

0

dx′

x′
ln
(
1 + x′

)
, (D.9c)

H(1, 0;x) =
ˆ x

0

dx′

1− x′H
(
0;x′

)
=
ˆ x

0

dx′

1− x′ ln x
′, (D.9d)

H(1, 1;x) =
ˆ x

0

dx′

1− x′H
(
1;x′

)
= −

ˆ x

0

dx′

1− x′ ln
(
1− x′

)
, (D.9e)

H(1,−1;x) =
ˆ x

0

dx′

1− x′H
(
−1;x′

)
=
ˆ x

0

dx′

1− x′ ln
(
1 + x′

)
, (D.9f)

H(−1, 0;x) =
ˆ x

0

dx′

1 + x′
H
(
0;x′

)
=
ˆ x

0

dx′

1 + x′
ln x′, (D.9g)

H(−1, 1;x) =
ˆ x

0

dx′

1 + x′
H
(
1;x′

)
= −

ˆ x

0

dx′

1 + x′
ln
(
1− x′

)
, (D.9h)

H(−1,−1;x) =
ˆ x

0

dx′

1 + x′
H
(
−1;x′

)
=
ˆ x

0

dx

1 + x′
ln
(
1 + x′

)
, (D.9i)

which can all be expressed in terms of logarithmic and dilogarithmic functions; indeed, if

Li2(x) = −
ˆ x

0

dx′

x′
ln
(
1− x′

)
(D.10)

is the usual Euler’s dilogarithm, one finds

H(0, 1;x) = Li2(x) , (D.11a)
H(0,−1;x) = −Li2(−x) , (D.11b)

H(1, 0;x) = − ln x ln(1− x) + Li2(x) , (D.11c)

H(1, 1;x) = 1
2! ln2(1− x) , (D.11d)

H(1,−1;x) = Li2
(1− x

2

)
− ln 2 ln(1− x)− Li2

(1
2

)
, (D.11e)
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H(−1, 0;x) = ln x ln(1 + x) + Li2(−x) , (D.11f)

H(−1, 1;x) = Li2
(1 + x

2

)
− ln 2 ln(1 + x)− Li2

(1
2

)
, (D.11g)

H(−1,−1;x) = 1
2! ln2(1 + x) . (D.11h)

Something similar happens for polylogarithms of weight three, but it does not hold further.
Note that it is convenient to rewrite HPL’s using

H(w1, . . . , 0, . . . , 0︸ ︷︷ ︸
k times

, wi, . . . ;x) = H(w1, . . . , wi + k, . . . ;x) . (D.12)

To conclude, we highlight a useful identity for HPL’s:

H(a;x)H(wp . . . , w1;x) = H (a,wp · · · , w1;x)
+ H (wp, a, wp−1 · · · , w1;x)
+ H (wp, wp−1, a, wp−2 · · ·w1;x)
+ · · ·
+ H (wp, · · · , w1, a;x) .

(D.13)

For further details, we invite the reader to check out [142].
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APPENDIX E

Snowflake Casimir

This short appendix explains how we calculated the snowflake-channel conformal blocks,
which we introduce in Section 4.4.3. Explicit expressions for these blocks have already
appeared in the literature [107]; however here we use different cross-ratios that make the
blocks symmetric in all its arguments.

Defining

a1 = 1
2(∆2 −∆1) , a2 = 1

2(∆4 −∆3) , a3 = 1
2(∆6 −∆5), (E.1)

we can write the following Casimir1 operators:

C(12)
2 = −(z1 − 1)z2

1∂
2
z1 + (z2 − 1)z2z

2
1∂z1∂z2 + z2

1(−2a2z2 + 2a1 − 1)∂z1
− 2a1(z2 − 1)z2z1∂z2 − 2a1z3z1∂z3 + 4a1a2z2z1 + z3z

2
1∂z1∂z3 ,

(E.2a)

C(34)
2 = −(z2 − 1)z2

2∂
2
z2 + (z3 − 1)z3z

2
2∂z2∂z3 + z2

2(−2a3z3 + 2a2 − 1)∂z2
− 2a2(z3 − 1)z3z2∂z3 − 2a2z1z2∂z1 + 4a2a3z3z2 + z1z

2
2∂z2∂z1 ,

(E.2b)

C(56)
2 = −(z3 − 1)z2

3∂
2
z3 + (z1 − 1)z1z

2
3∂z3∂z1 + z2

3(−2a1z1 + 2a3 − 1)∂z3
− 2a3(z1 − 1)z1z3∂z1 − 2a3z2z3∂z2 + 4a3a1z1z3 + z2z

2
3∂z3∂z2 .

(E.2c)

The conformal blocks are then eigenfunctions of the following Casimir equations:

C(12)
2 g∆a,∆b,∆c(z1, z2, z3) = ∆a(∆a − 1)g∆a,∆b,∆c(z1, z2, z3) , (E.3a)

C(34)
2 g∆a,∆b,∆c(z1, z2, z3) = ∆b(∆b − 1)g∆a,∆b,∆c(z1, z2, z3) , (E.3b)

C(56)
2 g∆a,∆b,∆c(z1, z2, z3) = ∆c(∆c − 1)g∆a,∆b,∆c(z1, z2, z3) . (E.3c)

In order to solve these equations, we give the ansatz

g∆a,∆b,∆c (z1 , z2 , z3) = z∆a
1 z∆b

2 z∆c
3

∑
n1,n2,n3

c̄n1,n2,n3z
n1
1 zn2

2 zn3
3 , (E.4)

and since we are only interested in extracting low-lying CFT data, we content ourselves
1We introduced the notion of Casimir operator in Section 2.3.3.
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with a handful of low-lying coefficients:

c̄0,0,0 = 1 , (E.5)

c̄1,0,0 = (−2a1 + ∆a)(∆a + ∆b −∆c)
2∆a

, (E.6)

c̄0,1,0 = (−2a2 + ∆b)(∆b + ∆c −∆a)
2∆b

, (E.7)

c̄0,0,1 = (−2a3 + ∆c)(∆c + ∆a −∆b)
2∆c

, (E.8)

c̄1,1,0 = −(−2a1 + ∆a)(−2a2 + ∆b)(1 + ∆a −∆b −∆c)(∆a + ∆b −∆c)
4∆a∆b

, (E.9)

c̄0,1,1 = −(−2a2 + ∆b)(−2a3 + ∆c)(1 + ∆b −∆c −∆a)(∆b + ∆c −∆a)
4∆b∆c

, (E.10)

c̄1,0,1 = −(−2a3 + ∆c)(−2a1 + ∆a)(1 + ∆c −∆a −∆b)(∆c + ∆a −∆b)
4∆c∆a

. (E.11)

We refer the reader to [107] for a more detailed analysis of the snowflake channel and for a
closed-form expression for the c̄n1,n2,n3 coefficients (albeit in a different convention).



APPENDIX F

Superconformal Blocks for the Five-Point Function

In this appendix, we detail the derivation of the superconformal blocks for the asymmetric
OPE channel discussed in Section 9.4.1.

We consider the first block appearing in (9.70).

1,B1: the first superblock we want to determine is G1,B1 which is a trivial but still instruc-
tive case. Let us start by having a closer look at the multiplet B1:

[0, 1]∆=1
s=0 −→ [1, 0]∆= 3

2
s=1 −→ [0, 0]∆=2

s=2 , (F.1)

where the numbers [a, b] refer to the R-symmetry group Sp(4)R ∼ SO(5). Only scalars can
appear in the superblocks; hence the only relevant component is the head of the multiplet
[0, 1]10.

On the other hand, the identity is only composed of [0, 0]00. We must then identify
whether [0, 1] appears in the tensor product decomposition [0, 0] ⊗ [0, 1]. In fact, the con-
tribution B1 arises from the OPE between an external operator B1

1 and the identity 1. Of
course, here the case is trivial since [0, 0] is the identity, but in other cases, it is important.

The superblock then reads

G1,B1 = αh[0,0],[0,1]g0,1 , (F.2)

with

G1,B1 = r1s2
χ2

1(1− χ2)2 , (F.3)

where α is only an overall normalization constant which we fix after determining all the
blocks.

It is more useful to decompose (F.3) in terms of f i, analogously to the rewriting of the
correlator in (9.62):

f1
1,B1 = 1 , f1

1,B1 = 0 , f2
1,B1 = 0 , f3

1,B1 = − 1
(ν1ν2)2 , (F.4)

1The head of this multiplet is our scalar φI .
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with
ν1 := χ1 − χ2

1− χ2
, ν2 := 1− χ2 . (F.5)

B2,B1: We can now analyze a less trivial case. To derive the superblock GB2,B1 , we look
at the multiplet of B2. In general, any Bk multiplet reads

We see that only three components can contribute at maximum, the ones with s = 0:
[0, 2]20, [2, 0]30, [0, 0]40.

We must now do the tensor product decompositions [a, b] ⊗ [c, d] of SU(4) in order to
check whether those also appear as a result of the OPE B1 (the external operator) and B2
(the exchanged operator on the right). Using any Lie algebra package, we find

[0, 1]⊗ [0, 1]→ [0, 2] + [2, 0] + [0, 0] (F.6)

and thus, all the components are relevant for the superblock, which reads

GB2,B1 = α0 h[0,2],[0,1]g2,1 + α1 h[2,0],[0,1]g3,1 + α2 h[0,0],[0,1]g4,1 . (F.7)

The block in terms of f i reads

f0
B2,B1 = 1 , (F.8a)

f1
B2,B1 = 1

ν2

∑
k2

− 6(k2 − 2)νk2
1

(k2 + 2)(k2 + 3)(k2 + 4) , (F.8b)

f2
B2,B1 = 1

ν2

∑
k2

12(1 + k2)νk2
1

(k2 + 2)(k2 + 3)(k2 + 4) , (F.8c)

f3
B2,B1 = 1

ν2
2

∑
k2

12(k2 − 2)νk2
1

(k2 + 3)(k2 + 4)(k2 + 5) . (F.8d)

Note that the normalization has been chosen so that the OPE coefficient of the protected
operator c112 corresponds to the localization result.

L∆
0,[0,0],B1: We conclude with an example of a block including the long multiplet. The

logic remains the same, but the multiplet is richer:

where we have already kept only the contributions with s = 0.
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After performing the relevant tensor product decomposition, we obtain

GL∆
0,[0,0],B1

=α0 h[0,0],[0,1]g∆,1 + α1 h[2,0],[0,1]g∆+1,1 + α2 h[0,2],[0,1]g∆+2,1

+ α3 h[0,0],[0,1]g∆+2,1 + α4 h[2,0],[0,1]g∆+3,1 + α5 h[0,0],[0,1]g∆+4,1 . (F.9)

Note that here there is no real need to perform the tensor product decomposition since
cutting off the two rightmost external legs produces a four-point function, for which the
superblocks are known. We can, therefore, just read the relevant contributions from there
(and that is what we did).

The block, in this last case, reads

f0
L∆

0,[0,0],B1
= 0 , (F.10a)

f1
L∆

0,[0,0],B1
=
∑
k1

∆3 + ∆2(k1 + 1) + h2k1 − (k1 − 3)k1G
k1,k2
L∆

0,[0,0],B1
, (F.10b)

f2
L∆

0,[0,0],B1
=
∑
k1

−((∆ + ∆2 − 2k1)(∆ + k1))Gk1,k2
L∆

0,[0,0],B1
, (F.10c)

f3
L∆

0,[0,0],B1
=
∑
k1

−
(
∆2 + ∆− 2k1

)
(∆ + k1 − 1)

ν1ν2
Gk1,k2
L∆

0,[0,0],B1
, (F.10d)

where

Gk1,k2
L∆

0,[0,0],B1
= (−1)k1+1Γ(2∆ + 4)Γ(∆ + k1)Γ(∆ + k1 + 1)

(∆2 − 1) Γ(∆ + 1)2Γ(k1 + 1)Γ(2∆ + k1 + 4)(−ν1)∆+k1−1ν−1
2 . (F.11)

Remarkably in the most complicated case, namely, when these two long multiplets are
exchanged, GL∆1

0,[0,0],L
∆2
0,[0,1]

, there are fifty coefficients to fix and the Ward identity (9.48) for
the five-point function determines them all!

To conclude, in this appendix, we showed some examples of the derivation of the su-
perconformal blocks. The same algorithm can be applied to the remaining blocks in this
channel and the symmetric channel. We, therefore, leave the complete list of blocks to the
future paper [5].



150 Chapter F. Superconformal Blocks for the Five-Point Function



APPENDIX G

1d Mellin Transform

G.1 D-Functions
The quartic contact diagrams with external conformal dimensions ∆i are expressed in terms
of D-functions [60, 135, 136], defined for the general case of AdSd+1 as

D∆1∆2∆3∆4(x1, x2, x3, x4) =
ˆ
dzddx

zd+1 K̃∆1(z, x;x1)K̃∆2(z, x;x2)K̃∆3(z, x;x3)K̃∆4(z, x;x4) ,
(G.1)

via the bulk-to-boundary propagator in d dimensions:

K∆(z, x;x′) = C∆
[ z

z2 + (x− x′)2

]∆
≡ C∆ K̃∆(z, x;x′) , C∆φ

= Γ (∆φ)
2
√
π Γ

(
∆φ + 1

2

) .
(G.2)

For vertices with derivatives, the following identity is useful

gµν∂µK̃∆1(z, x;x1) ∂νK̃∆2(z, x;x2)

= ∆1∆2
[
K̃∆1(z, x;x1)K̃∆2(z, x;x2)− 2x2

12K̃∆1+1(z, x;x1)K̃∆2+1(z, x;x2)
]

, ,

(G.3)

where gµν = z2δµν and ∂µ = (∂z, ∂r), r = 0, 1, 2, ..., d− 1.
To make explicit the covariant form of the correlator, it is useful to consider the “re-

duced” functions D̄ that we introduced in (10.53). In d = 1 as usual they only depend on
the single variable χ (u = χ2, v = (1− χ)2):

D̄∆∆∆∆(z) = Γ(∆)4

Γ(2∆)(1− z)−2∆
ˆ +∞

−∞
dτ e−τ 2F1

(
∆,∆, 2∆,− 4z

(1−z2) cosh2 τ
2
)
. (G.4)

Some explicit expressions for D̄-functions read

D̄1111 = −2 log(1− z)
z

− 2 log(z)
1− z , (G.5a)

D̄2222 = −2
(
z2 − z + 1

)
15(1− z)2z2 +

(
2z2 − 5z + 5

)
log(z)

15(z − 1)3 −
(
2z2 + z + 2

)
log(1− z)

15z3 , (G.5b)
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D̄3333 =
(
8z4 − 36z3 + 64z2 − 56z + 28

)
log(z)

105(z − 1)5 +
(
−8z4 − 4z3 − 4z2 − 4z − 8

)
log(1− z)

105z5

+−24z6 + 72z5 − 74z4 + 28z3 − 74z2 + 72z − 24
315(z − 1)4z4 . (G.5c)

Other expressions can be found through the identities in [60]. Useful relations between
D̄-function of consequent weight are (Σ ≡ 1

2
∑
i ∆i)

∆ D̄∆∆∆∆ = D̄∆∆∆+1∆+1 + D̄∆∆+1∆∆+1 + D̄∆+1∆∆∆+1 , (G.6a)
(∆2 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1∆2+1∆3∆4+1 − D̄∆1+1∆2∆3+1∆4 , (G.6b)
(∆1 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1+1∆2∆3∆4+1 − (1− z)2D̄∆1∆2+1∆3+1∆4 , (G.6c)
(∆3 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 − z2D̄∆1+1∆2+1∆3∆4 , (G.6d)

D̄∆1∆2∆3∆4 = (1− z)2(∆1+∆4−Σ)D̄∆2∆1∆4∆3 (G.6e)
= D̄Σ−∆3Σ−∆4Σ−∆1Σ−∆2 (G.6f)
= z2(∆3+∆4−Σ)D̄∆4∆3∆2∆1 . (G.6g)

G.2 Anomalous Dimensions for Higher Derivative Interac-
tions

This section lists some results for the polynomial part of the anomalous dimension in
equation (10.68). The Mathematica notebook attached to [1] has values of L ranging
from L = 0 to L = 8 as well as a function FindBootstrapPolynomial[L,∆,n] to compute
PL,n(∆φ) for arbitrary L (the function gets slower and slower at higher L, but in principle
it works for any L).

P0,n(∆) = 1 , (G.7)

P1,n(∆) = 8(2∆ + 1)n4 + 8
(
8∆2 + 2∆− 1

)
n3 + 2(2∆− 1)(2∆ + 1)(12∆ + 1)n2

+
(
64∆4 − 28∆2 − 2∆ + 2

)
n+ ∆2

(
16∆3 − 13∆− 3

)
, (G.8)

P2,n(∆) = 64(2∆ + 3)(2∆ + 5)n8 + 128(2∆ + 3)(2∆ + 5)(4∆− 1)n7

+ 32(2∆ + 3)(2∆ + 5)
(
56∆2 − 22∆− 1

)
n6

+ 32(2∆ + 3)(2∆ + 5)(4∆− 1)(28∆2 − 5∆− 5)n5

+ 4(2∆ + 3)
(
2240∆5 + 4800∆4 − 2924∆3 − 2156∆2 + 246∆− 415

)
n4

+ 8(2∆ + 3)(4∆− 1)(224∆5 + 576∆4 − 158∆3 − 572∆2 − 243∆− 160)n3

+ 4(2∆− 1)(2∆ + 3)(448∆6 + 1392∆5 + 84∆4 − 2183∆3 − 2091∆2 − 1134∆− 105)n2

+ 4(2∆ + 3)(4∆− 1)(64∆7 + 208∆6 − 36∆5 − 605∆4 − 554∆3 − 30∆2 + 243∆ + 90)n

+ (∆− 2)(∆− 1)∆2(∆ + 1)2(4∆ + 3)(4∆ + 5)(4∆ + 7)(4∆ + 9) , (G.9)

P3,n(∆) = 512(2∆ + 5)(2∆ + 7)(2∆ + 9)n12

+ 1536(2∆ + 5)(2∆ + 7)(2∆ + 9)(4∆− 1)n11

+ 128(2∆ + 5)(2∆ + 7)(2∆ + 9)(264∆2 − 102∆ + 5)n10

+ 640(2∆ + 5)(2∆ + 7)(2∆ + 9)(4∆− 1)(44∆2 − 7∆− 3)n9

+ 96(2∆ + 5)(2∆ + 7)(5280∆5 + 22080∆4 − 8610∆3 − 4790∆2 − 798∆− 2931)n8

+ 96(2∆ + 5)(2∆ + 7)(4∆− 1)(2112∆5 + 9792∆4 + 268∆3 − 5448∆2 − 4628∆− 5493)n7

+ 8(2∆ + 5)(2∆ + 7)
(
118272∆7 + 556416∆6 − 8736∆5 − 656280∆4 − 661308∆3 − 560400∆2

+371392∆ + 17415)n6
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+ 24(2∆ + 5)(2∆ + 7)(4∆− 1)
(
8448∆7 + 45504∆6 + 22128∆5 − 79708∆4 − 143680∆3 − 114082∆2

+52985∆ + 27645)n5

+ 4(2∆ + 5)
(
253440∆10 + 2327040∆9 + 5816640∆8 − 1506240∆7 − 22985970∆6 − 33151830∆5

−9079800∆4 + 25792815∆3 + 10370477∆2 − 446534∆ + 2131794
)
n4

+ 8(2∆ + 5)(4∆− 1)
(
14080∆10 + 142080∆9 + 423840∆8 + 8160∆7 − 2172753∆6 − 4187481∆5

−1812050∆4 + 3606930∆3 + 3965596∆2 + 1661325∆ + 791091
)
n3

+ 6(2∆− 1)(2∆ + 5)
(
11264∆11 + 125184∆10 + 437120∆9 + 118880∆8 − 2771604∆7 − 6808095∆6

−4248981∆5 + 6860955∆4 + 13140919∆3 + 9496058∆2 + 4002384∆ + 360360
)
n2

+ 2(2∆ + 5)(4∆− 1)
(
3072∆12 + 36096∆11 + 132224∆10 − 3360∆9 − 1214676∆8 − 2926395∆7

−970776∆6 + 6196080∆5 + 10143424∆4 + 5128059∆3 − 1542528∆2 − 3028860∆− 907200
)
n

+ (∆− 3)(∆− 2)(∆− 1)∆2(∆ + 1)2(∆ + 2)2(4∆ + 5)(4∆ + 7)(4∆ + 9)(4∆ + 11)(4∆ + 13)(4∆ + 15) .
(G.10)
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