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The Stokes formula for the resistance force exerted on a sphere moving with constant
velocity in a fluid is extended to the case of micropolar fluids. A non-homogeneous
boundary condition for the micro-rotation vector is used: the micro-rotation on the
boundary of the sphere is assumed proportional to the rotation rate of the velocity
field on the boundary.

1. Introduction
The hydrodynamics of classical fluids is based on the assumption that the fluid

particles do not have any internal structure. This results in the well-known Navier–
Stokes equations which describe many hydrodynamical phenomena. Nevertheless,
fluid particles may exhibit some microscopical effects such as rotation, shrinking
etc. for some fluids such as polymeric suspensions, animal blood etc. Therefore, the
internal structure should be taken into account for fluids whose particles have complex
shapes. Moreover, the internal structure plays a role even for ordinary fluids such as
water in models with small scales (see e.g. Papautsky et al. 1999). A well-accepted
theory which accounts for internal structures of fluids is micropolar fluid theory by
Eringen (see Eringen 1964, 1966; Stokes 1984; Straughan 2004). Here, individual
particles can rotate independently from the rotation and movement of the fluid as
whole. Therefore, new variables which represent angular velocities of fluid particles
and new equations governing this variables should be added to the conventional
model.

The aim of this paper is to calculate the resistant force exerted on a sphere moving
with a constant velocity in a micropolar fluid and to compare the result with the
conventional Stokes force derived from classical hydrodynamics (see e.g. Landau &
Lifshitz 1995) and with similar results from authors who have obtained such a
formula in the case of homogeneous boundary conditions for the micro-rotation (cf.
Lakshmana Rao & Bhujanga Rao 1970; Erdogan 1972; Ramkissoon & Majumdar
1976; Ramkissoon 1985; Hayakawa 2000). This allows us to estimate the influence
of the micro-rotation on the motion of rigid bodies in micropolar fluids for various
boundary conditions posed on the variables describing micro-rotations.

The paper is structured as follows. First, a mathematical model of micropolar fluids
is discussed and its most important features are outlined. Then, a formula for the
resistant force is derived. Finally, the comparison with the conventional Stokes force
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is given for water and blood. Comparisons with results of other authors are given in
the conclusion.

2. Micropolar field equation
The most important feature of micropolar fluid theory is the use of a non-symmetric

stress tensor so that the conservation of angular momentum results in new equations
describing rotation of fluid particles on the micro-scale. Such a stress tensor is given
as follows (see e.g. Lukaszewicz 1999):

Tij = (−p + ζ vk,k)δij + ν(vi,j + vj,i) + νR(vj,i − vi,j ) − 2νRεmijωm. (2.1)

In some papers, micropolar fluids are defined as being governed by such a tensor. Here,
commas followed by indices denote differentiation with respect to the corresponding
coordinates, δij and εmij are the Christoffel and Levi–Civita symbols, respectively, and
the summation over repeating indices is assumed. The meaning of the other variables
and constants is explained below.

In the most general form, the micropolar field equations for incompressible and
viscous fluids are (see Lukaszewicz 1999):

∂ρ

∂t
+ v · ∇ρ = 0, (2.2a)

ρ

(
∂v

∂t
+ (v · ∇) v

)
= (ν + νr )� v − ∇p + 2νrcurlω + ρ f , (2.2b)

ρI

(
∂ω

∂t
+ (v · ∇) ω

)
= (ca + cd)�ω + (c0 + cd − ca)∇ div ω

+2νr (curl v − 2ω) + ρg, (2.2c)

div v = 0, (2.2d)

where ρ is the density, v the velocity field, ω the micro-rotation field, I the micro-
inertia coefficient, f body forces per unit mass, g micro-rotation driving forces per
unit mass, p the hydrostatical pressure, ν the classical viscosity coefficient, νr the
vortex viscosity coefficient, ca, cd, c0 are spin gradient viscosity coefficients.

Equation (2.2a) represents the conservation of mass, (2.2b) and (2.2c) describe
the conservation of impulse and angular momentum, respectively. Equation (2.2d)
accounts for the incompressibility of the fluid. If νr = 0, the conservation of impulse
becomes independent of the micro-rotation. The system reduces to the classical
Navier–Stokes equation, if νr, c0, ca, cd and g vanish. Note that the choice of boundary
conditions for micropolar fluids is not obvious. The boundary condition for the
velocity field is the same as in the classical case. As for the micro-rotation, there is
no general agreement in the literature (see § 1.5(3) of Lukaszewicz (1999) and papers
cited therein). The Dirichlet boundary condition ω =0 is often used. Some authors
propose the following dynamic boundary condition: ω = (α/2) curl v with 0 � α � 1
(see Lukaszewicz 1999). This boundary condition for the micro-rotation and the
no-slip boundary condition for the velocity field will be used here.

3. Calculation of the resistance force
Assume equivalently that a sphere of radius R is immovable, whereas the

fluid exhibits a steady-state flow with velocity u at infinity. The velocities and
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micro-rotations are assumed to be small so that the field equations become linear:

−(ν + νr )� v + ∇p = 2νrcurlω, (3.1)

−(ca + cd)�ω − (c0 + cd − ca)∇ div ω + 4νrω = 2νrcurl v, (3.2)

div v = 0, (3.3)

Conditions at infinity are:

v = u, (3.4)

ω = 0. (3.5)

The boundary conditions for the sphere are:

v = 0, (3.6)

ω =
α

2
curl v with 0 � α � 1 at |x| =R. (3.7)

The calculation of the resistance force is based on the explicit analytical representation
of solutions to (3.1)–(3.3).

3.1. Calculation of the velocity, micro-rotation and pressure

Equation (3.3) implies that div (v − u) = 0. Hence, v can be expressed as follows:

v = u + curl A,

where A is a vector field such that curl A vanishes at infinity. Analogously to
Landau & Lifshitz (1995), observe that A is a polar vector and take into account
the symmetry of the sphere to conclude that A = f ′(r)n × u, where f is a function of
r = (x2 + y2 + z2)1/2. Therefore, the velocity v is of the form:

v = u + curl(∇f × u) = u + curl curlf u. (3.8)

Taking the curl of v yields:

curl v = curl curl curlf u = (∇ div − �)curlf u = −�curlf u. (3.9)

Applying the curl operator to (3.2) and using the well-known formula
curl curl= ∇div − � gives:

−(ca + cd)�curlω + 4νrcurlω = 2νrcurl curl v. (3.10)

Combining (3.1) and (3.10) results in:

(ca + cd)(ν + νr )

2νr

�2v − (ca + cd)

2νr

�∇p + 2(−(ν + νr )� v + ∇p) = 2νrcurl curl v.

Applying now the curl operator to the last equation yields:

(ca + cd)(ν + νr )

2νr

�2curl v − 2(ν + νr )�curl v = 2νrcurl curl curl v.

Using again the formula curl curl= ∇div − � results in:

(ca + cd)(ν + νr )

2νr

�2curl v − 2ν�curl v = 0.

Introducing the notation c1 = (ca + cd)(ν + νr )/2νr , c2 = 2ν and combining the last
equations with (3.9) gives:

c1�
3curl f u − c2�

2curl f u = 0, (3.11)
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which can be rewritten as

(c1� − c2Id)�2(∇f × u) = 0,

or

(c1� − c2Id)�2∇f ≡ ∇(c1� − c2Id)�2f = λu,

where λ is a scalar function, Id denotes the identity operator. Considering spherical
reference system r, θ, ε whose polar axis has the direction of u, and taking into
account that the function ψ = (c1� − c2Id)�2f depends only on r , we conclude that
(∇ψ)θ =(∇ψ)ε = 0 at each point (r, θ, ε) in the local reference system formed by the
tangents to the coordinate lines. On the other hand, (λu)θ = − λ|u| sin θ in this local
reference system, which implies that λ≡ 0. Thus,

(c1� − c2Id)�2f = const. (3.12)

Equation (3.8) considered in the spherical reference system shows that only the second
derivatives of f in r describe v − u at infinity and vanish there because v − u → 0 as
r → ∞. Therefore, all higher derivatives of f are expected to vanish at infinity too.
Thus, the constant on the right-hand side may be assumed to be zero. Note that this
argumentation is not a strict proof, but some physically reasonable consideration. It
is shown below that this assumption leads to a unique solution of the problem.

Thus, (3.12) reduces to

c1�g − c2g = 0,

where g := �2f . Since �g = r−2(d/dr)(r2(d/dr)g) in spherical coordinates, the general
solution of the last equation is of the form:

g(r) =
Aekr + Be−kr

r
,

where k =
√

c2/c1. Choose A = 0 because g vanishes at infinity and integrate the
equation

�2f =
Be−kr

r
,

bearing in mind that the Laplace operator is considered in spherical coordinates. This
yields:

f =
1

k4

Be−kr

r
+ ar +

b

r
. (3.13)

Substitution of (3.13) into (3.8) yields:

v = u
(

1 − a

r
− b

r3
− Be−kr

(
1

k4r3
+

1

k3r2
+

1

k2r

))

+ n(un)

(
−a

r
+

3b

r3
+ Be−kr

(
3

k4r3
+

3

k3r2
+

1

k2r

))
. (3.14)

It is easily seen that the components of v in spherical coordinates (the polar axis has
the direction of u) are:

vr = u cos θ

(
1 − 2a

r
+

2b

r3
+ Be−kr

(
2

k4r3
+

2

k3r2

))
, (3.15)

vθ = −u sin θ

(
1 − a

r
− b

r3
− Be−kr

(
1

k4r3
+

1

k3r2
+

1

k2r

))
, (3.16)

vε = 0. (3.17)
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We can prove immediately (see also Landau & Lifshitz 1995) that only the ε-
component of curl v is different from zero. Applying the curl operator to (3.1) yields:

−(ν + νr )�curl v = 2νrcurl curlω, (3.18)

which implies that only the ε-component of curl curlω can be different from zero.
Because of the symmetry of the sphere, ω depends only on r and θ . Taking this into
account and performing calculations in polar coordinates on (3.2) shows that only
the ε-component of ω can be non-zero.

Setting now ω =((ν + νr )curl v − 2νrω, we obtain from (3.18):

curl curlω = 0.

The solution of such an equation under the condition that ω has just one non-
zero component (the ε-one) and depends only on r and θ , is well-known (see e.g.
Loitsyanskii 1996):

ωε =
A sin θ

r2
. (3.19)

Computing the ε-component of curl v in spherical coordinates, we obtain:

ωε = −A sin θ

2νrr2
− ν + νr

2νr

u sin θ(2ak2 + Be−kr (1 + kr))

k2r2
. (3.20)

Consider first the conditions on the boundary of the sphere to determine the unknown
constants.

v|r=R = 0, (3.21)

ω|r=R =
α

2
curl v|r=R with 0 � α � 1. (3.22)

Since n is arbitrary, (3.14) and (3.21) imply:

1 − a

R
− b

R3
− Be−kR

(
1

k4R3
+

1

k3R2
+

1

k2R

)
= 0, (3.23)

− a

R
+

3b

R3
+ Be−kR

(
3

k4R3
+

3

k3R2
+

1

k2R

)
= 0. (3.24)

Moreover, (3.20) and (3.22) yield:

−A sin θ

2νrR2
− ν + νr

2νr

u sin θ(2ak2 + Be−kR(1 + kR))

k2R2

=
α

2

u sin θ(2ak2 + Be−kR(1 + kR))

k2R2
. (3.25)

The system (3.23)–(3.25) defines a, b and A as functions of B as follows:

a = 3
4
R − Be−kR

2k2
,

b = 1
4
R3 − Be−kR

4k4
(2k2R2 + 4kR + 4),

A = −uR

2k
(3k + 2Be−kR)(ν + (1 − α)νr ).
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To determine B , we substitute these expressions into (3.15)–(3.17) and (3.20) and then
apply the result to (3.2). The value

B =
3k2Rνr (1 − α)

2e−kR[kR((α − 1)νr − ν) − ν]

satisfies the resulting relation independently of the variables r , θ and ε, which means
that the desired solution is constructed.

Compute now the pressure. Equations (3.1), the definition of ω, and the identity
curl curl= ∇div − � imply that

∇p = −curlω.

Considering the last relation in spherical coordinates and taking into account (3.19),
we obtain

p = p0 +
A

r2
cos θ. (3.26)

3.2. Calculation of the resistance force

The force is given by the formula (see Landau & Lifshitz 1995)

F =

∮
(−p cos θ + T ′

rr cos θ − T ′
rθ sin θ) df, (3.27)

where T ′ = T +pδij , and T is the tensor introduced in (2.1). Expressing the components
of this tensor through the calculated velocity and micro-rotation fields leads to the
formulae:

T ′
rr = 2ν

∂vr

∂r
, T ′

rθ = ν

(
1

r

∂vr

∂θ
+

∂vθ

∂r
− vθ

r

)
+ νr

(
∂vθ

∂r
+

vθ

r
− 1

r

∂vr

∂θ

)
− 2νrωε.

On the boundary of the sphere, we have:

T ′
rr = 0, T ′

rθ =
A

R2
sin θ, p = p0 +

A

R2
cos θ.

Therefore, the integral (3.27) reduces to

F = − A

R2

∮
df.

Finally, we obtain

F = −4πA = 6πνuR +
6πνuRνr (α − 1)

kR ((α − 1)νr − nu) − ν
. (3.28)

It is interesting to compare the calculated value with the classical Stokes force given
by FS = 6πνuR. We have

F = FS

(
1 +

(1 − α)νr

(1 − α)kRνr + (1 + kR)ν

)
. (3.29)

Remembering that k =
√

4νrν/(ν + νr )(ca + cd), we obtain:

F = FS

⎛
⎜⎜⎝1 +

(1 − α)(ca + cd)νr

(1 − α)

√
ννr(ca + cd)

ν + νr

νrR + ν

(
ca + cd + 2

√
ννr (ca + cd)

ν + νr

R

)
⎞
⎟⎟⎠ ,
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0

1

2

2 4 6 8 10

(×10–9)

(×10–8)

Figure 1. The modified force F (solid line), the Stokes force FS (dashed line), and the
difference F − FS (dotted line) versus R in the case of water.

which implies:
(i) F = Fs , if α = 1 (non-symmetric part of the stress tensor vanishes),
(ii) F = Fs , if νr −→ 0, whereas ca + cd remains bounded,
(iii) F = Fs , if ca + cd −→ 0, whereas νr remains bounded.

These results are in agreement with the expected behaviour of the force when varying
material parameters related to the micro-rotation.

4. Numerical results
The following examples present the calculation of the modified resistance force

for water and blood. The results are compared with the classical Stokes force.
Unfortunately, there is little information concerning the values of micropolar viscosity
coefficients and boundary constant α in the literature. We refer to Kolpashchikov,
Mingun & Prokhorenko (1983) where formulae for the calculation of material
constants for water on the base of experimental data are given. Unfortunately, results
for a simplified model (two-dimensional-Poiseuille flow), for which only two material
constants are required, are given. To calculate the other material constants, we guessed
that α = 0.5. In this way, the following values for the micropolar viscosity constants
were found: νr = 1.448275862 × 10−3, (ca + cd) = 4.828973844 × 10−19. Figure 1 shows
the dependence of the modified resistance force F (solid line), the Stokes force FS

(dashed line), and the difference F − FS (dotted line) on the radius R. Figure 2 shows
F/FS versus R. The velocity u =1ms−1 was used. The difference F − FS is very small
for macro- and mesoscopic values of R. The difference is observable for very small
radii only. This is not surprising because water is a classical Newtonian fluid so
that effects of the inner structure of its particles are important only on very small
scales.

As for blood, some values can be found in the literature (see e.g. Papautsky et al.
1999). The values ν =2.9 × 10−3, νr =2.32 × 10−4, (ca + cd) = 10−6 are declared there
for the Dirichlet boundary condition (α =0). Figures 3 and 4 show the same curves
for blood as in the case of water. As expected, a higher influence of the micro-rotation
is present.
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0 2 4 6 8 10(× 10–8)

Figure 2. The ratio F/FS versus R in the case of water.
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(× 10–5)

Figure 3. The modified force F (solid line), the Stokes force FS (dashed line), and the
difference F − FS (dotted line) versus R in the case of blood.
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Figure 4. The ratio F/FS versus R in the case of blood.
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5. Results of other authors
In this section, results obtained by Lakshmana Rao & Bhujanga Rao (1970),

Erdogan (1972), Ramkissoon & Majumdar (1976), Ramkissoon (1985) and
Hayakawa (2000) on the calculation of the drag force exerted on a sphere by a
moving micropolar fluid are compared with our results. The comparison can be
summarized as follows.

1. All off the above cited papers consider the same governing equations.
2. All papers except for the present one consider the homogeneous boundary

condition for the micro-rotation field (see (3.7)).
3. The results of Lakshmana Rao & Bhujanga Rao (1970), Erdogan (1972), and

Ramkissoon & Majumdar (1976) are identical to the present results, if α is equal to
zero in (3.7).

4. The computation of the velocity and micro-rotation fields in Ramkissoon (1985)
is not quite correct. This is discussed in Hayakawa (2000).

5. The velocity, pressure and micro-rotation fields are found correctly in Hayakawa
(2000). They are identical with our results for the case α = 0. Nevertheless, the formula
for the drag force is not derived correctly in Hayakawa (2000). It is quite different
from the formula obtained in Lakshmana Rao & Bhujanga Rao (1970), Erdogan
(1972), Ramkissoon & Majumdar (1976), and in this paper, although all of these
papers consider the same problem.

6. In the sequence of papers: Lakshmana Rao & Bhujanga Rao (1970), Erdogan
(1972), Ramkissoon & Majumdar (1976) and Hayakawa (2000), no paper cites any
preceding one.

5.1. Comparison with Lakshmana Rao & Bhujanga Rao (1970), Erdogan (1972)
and Ramkissoon & Majumdar (1976)

Remember that the drag force in this paper is given by (3.29), i.e.

F = 6πνRu

(
1 +

(1 − α)νr

(1 − α)kRνr + (1 + kR)ν

)
where k =

√
4νrν

(ν + νr )(ca + cd)
. (5.1)

The formulae for the drag force obtained in Lakshmana Rao & Bhujanga Rao
(1970) and Ramkissoon & Majumdar (1976) are identical. They use the same notation
and are:

FL&R =
6πau(2µ + κ)(µ + κ)(1 + aχ)

κ + 2µ + 2aχµ + 2aχκ
with χ =

√
κ(2µ + κ)

γ (µ + κ)
. (5.2)

It holds in the notation of our paper:

κ = 2νr γ = ca + cd, µ = ν − νr, a = R. (5.3)

The formula for the drag force obtained in Erdogan (1972) is:

FE = 6πνRu

[
1 − N

L

K1/2(NL)

K3/2(NL)

]−1

, (5.4)

where Kn+1/2, n=0, 1 are the modified spherical Bessel functions of the second kind.
Remember that

K1/2(x) =
√

π/2
e−x

√
x

, K3/2(x) =
√

π/2
e−x(1 + 1/x)√

x
.
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0 2 4 6 8 10
(× 10–3)

F

νr

α = 0

0.2
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Figure 5. The dependence of the drag force F on νr for ν =10−3, ca + cd = 10−6, u = 1 and
R = 1. Thereby, the parameter α assumes the values 0, 0.2, 0.6, 0.9 and 0.997. The curves are
computed using (5.1). The horizontal line represents the classical Stokes drag force that is, of
course, independent of νr . The circle markers are computed using (5.2) (or (5.4)) to emphasis
the identity of (5.1), (5.2) and (5.4) as α = 0. As expected, the drag force tends to the classical
Stokes one as α tends to 1.
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30

35
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(× 10–3)

(× 10–5)

R

F

Fs

Figure 6. The marked curve shows the dependence of the drag force F on R for
ν = 10−3, νr = 3 × 10−3, ca + cd = 10−6, u = 1 and α =0. The circle markers are computed using
(5.2) (or (5.4)) to emphasis the identity of (5.1), (5.2) and (5.4) as α = 0. The straight line
represents the classical Stokes force that is, of course, linear in R.

The quantities N and L are defined as follows:

N =

(
νr

ν + νr

)1/2

, L = R

(
ca + cd

4ν

)−1/2

.

Setting α = 0 in (5.1) and comparing (5.1) with (5.2) and (5.4) under notation (5.3)
shows the identity of F , FL&R and FE . The comparison is done using the MAPLE
software package for symbolic calculations. Figures 5 and 6 illustrate the dependence
of the drag force on some parameters.
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Figure 7. The dependence of the function FH on νr for ν = 10−3, ca + cd = 10−6, u = 1 and
R = 1. The horizontal line represents the classical Stokes force that is of course independent
on νr . The graph of the correct drag force F (see also figure 5) is given for comparison.

5.2. Comparison with Hayakawa (2000)

The result obtained in Hayakawa (2000) is:

FH =
2π(η + ηr )au(1 + ξ )(2 − µr )(3 − µr )

2(1 + ξ ) − µrξ
where ξ =

√
µB

2 − µr

. (5.5)

In our notation, the parameters are:

η = ν, ηr = νr, µr =
2νr

ν + νr

, µB =
ca + cd

2νr

, a = R. (5.6)

Under (5.6), the formulae obtained in Hayakawa (2000) and in this paper (with
α = 0) for the velocity, pressure and micro-rotation fields are identical, which is
verified using MAPLE. Nevertheless, final formula (5.5) seems not to be true. First of
all, the dependence on the radius R (i.e. on a) is linear, which contradicts the results of
Lakshmana Rao & Bhujanga Rao (1970), Erdogan (1972), Ramkissoon & Majumdar
(1976) and this paper. The linearity means in particular that (FH − FS)/FS , where FS

is the Stokes drag force, does not depend on R. This is not correct because the relative
effect of the micro-rotation must decrease as R → ∞. Thus, it would be expected
that (FH − FS)/FS → 0 as R → ∞. Such a behaviour holds for the dependence given
by (5.1), (5.2) and (5.4). Moreover, figure 7 shows a strange behaviour of FH when
varying the parameter νr : FH decreases as νr increases.

6. Conclusion
This paper can be considered as the extension of the result of Lakshmana Rao &

Bhujanga Rao (1970), Erdogan (1972), and Ramkissoon & Majumdar (1976) to the
case of nonhomogeneous boundary conditions for the micro-rotation field. Examples
show that sufficient deviations from classical results are being observed for very small
radii only when considering classical Newtonian fluids such as water. This should be
expected because the effects of the inner structure of their molecules are important
on very small scales only. In the case of fluids with large molecules (e.g. blood), the
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modified formula shows results that differ from the classical case even for macroscopic
radii.
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