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HIDDEN MARKOV STRUCTURES
FOR DYNAMIC COPULAE
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Understanding the time series dynamics of a multi-dimensional dependency
structure is a challenging task. Multivariate covariance driven Gaussian or mixed
normal time varying models have only a limited ability to capture important fea-
tures of the data such as heavy tails, asymmetry, and nonlinear dependencies. The
present paper tackles this problem by proposing and analyzing a hidden Markov
model (HMM) for hierarchical Archimedean copulae (HAC). The HAC constitute a
wide class of models for multi-dimensional dependencies, and HMM is a statistical
technique for describing regime switching dynamics. HMM applied to HAC flexibly
models multivariate dimensional non-Gaussian time series.

We apply the expectation maximization (EM) algorithm for parameter estima-
tion. Consistency results for both parameters and HAC structures are established
in an HMM framework. The model is calibrated to exchange rate data with a VaR
application. This example is motivated by a local adaptive analysis that yields a
time varying HAC model. We compare its forecasting performance with that of
other classical dynamic models. In another, second, application, we model a rainfall
process. This task is of particular theoretical and practical interest because of the
specific structure and required untypical treatment of precipitation data.

1. INTRODUCTION

Modeling multi-dimensional time series is often an underestimated exercise
of routine econometrical and statistical work. This slightly pejorative attitude
towards day to day statistical analysis is unjustified since actually the calibration
of time series models in several dimensions for standard data sizes is not only
difficult on the numerical side but also on the mathematical side. Computation-
ally speaking, integrated models for multi-dimensional time series become more
involved when the parameter space is too large. Consequently the mathematical
and econometrical aspects become more difficult since the parameter space be-
comes too complex, especially when their time variation is allowed. An example
is the multivariate GARCH(1,1) BEKK model, which for even two dimensions
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has an associated parameter space of dimension 12. For moderate sample sizes,
the parameter space dimension might be in the range of the sample size or even
bigger. This data situation has evoked a new strand of the literature on dimension
reduction via penalty methods.

In this paper we take a different route, by calibrating an integrated dynamic
model with unknown dependency structure among the d-dimensional time series
variables. More precisely, the unknown dependency structure may vary within a
set of given dependencies. These dependency structures might have been selected
via a preliminary study, as described in, e.g., Härdle, Herwartz, and Spokoiny
(2003). The specific dependence at each time t is unknown to the data analyst,
and depends on the dependency pattern at time t − 1. Therefore, hidden Markov
models (HMM) naturally come into play. This leaves us with the task of specify-
ing the set of dependencies.

An approach based on assuming a multivariate Gaussian or mixed normals is
inappropriate in the presence of important types of data features such as heavy
tails, asymmetry, and nonlinear dependencies. Such a simplification is certainly
in practical questions concerning too restrictive tails and might lead to biased
results. The use of copulae is one possible approach to solving these prob-
lems. Moreover, copulae allow us to separate the marginal distributions and the
dependency model, see Sklar (1959). In recent decades, copula-based models
have gained popularity in various fields like finance, insurance, biology, hydrol-
ogy, etc. Nevertheless, many basic multivariate copulae are still too restrictive
and the extension to more parameters leads initially to a nonparametric den-
sity estimation problem that suffers of course from the curse of dimensionality.
A natural compromise is the class of hierarchical Archimedean copulae (HAC).
An HAC allows a rich copula structure with a finite number of parameters. Re-
cent research has demonstrated their flexibility (see McNeil and Nešlehová, 2009;
Okhrin, Okhrin, and Schmid, 2013; Whelan, 2004).

Insights into the dynamics of copulae have been offered by Chen and Fan
(2005), who assume an underlying Markovian structure, and a specific class
of copulae functions for the temporal dependence; Patton (2004) considers an
asset-allocation problem with a time-varying parameter of bivariate copulae; and
Rodriguez (2007) studies financial contagion using switching-parameter bivari-
ate copulae. Similarly, Okimoto (2008) provides strong empirical evidence that
a Markov switching multivariate normal model is not appropriate for the depen-
dence structures in international equity markets.

Moreover, an adaptive method isolating a time varying dependency structure
via a local change point method (LCP) has been proposed in Giacomini, Härdle,
and Spokoiny (2009) and Härdle, Okhrin, and Okhrin (2013). Figure 1 presents
an analysis of HAC for exchange rate data using LCP on a moving window,
where the window sizes are adaptively selected by the LCP algorithm. It plots the
changes of estimated structure (upper panel) and parameters (lower panel) in each
window over time. In particular, in the upper panel, the y-axis corresponds to the
dependency structures picked by estimation of three-dimensional copulae; in the
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FIGURE 1. LCP for exchange rates: structure (upper) and parameters (lower, θ1(gray) and
θ2(black)) for Gumbel HAC. m0 = 40 (starting value for the window size in the algorithm).

lower panel, the y-axis shows the two estimated dependency parameters (value
converted to Kendall’s τ ) corresponding to the estimated structure. In more detail,
we have three exchange rates series: P (GBP/EUR), Y(JPY/EUR), D(USD/EUR);
the label P(DY) means that the pair D and Y have a stronger dependency than
other possible pairs. For a more detailed introduction to HAC and their structures,
see Section 2.1. One observes that the structure very often remains the same for
a long time, the parameters only varying slowly over time. This indicates that the
dynamics of HAC functions is likely to be driven by a Markovian sequence seem-
ingly determining the structures and parameter values. This observation motivates
us to pursue a different path of modeling the dynamics. Instead of taking a local
point of view, we adopt a global dynamic model HMM for the change of both the
tree structure and the parameters of the HAC over time. In this situation, the not
directly observable underlying Markov process X determines the state of distri-
butions of Y .

HMM has been widely applied to speech recognition, see Rabiner (1989),
molecular biology, and digital communications over unknown channels. Markov
switching models were introduced to the economics literature by Hamilton
(1989), where the trend component of a univariate nonstationary time series
changes according to an underlying Markov chain. Later, it was extended and
combined with many different time series models, see, e.g., Pelletier (2006).
For estimation and inference issues in HMM, see Bickel, Ritov, and Rydén (1998)
and Fuh (2003), among others.

In this paper, we propose a new type of dynamic model, called HMM HAC,
which incorporates HAC into an HMM framework. The theoretical problems,
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such as parameter consistency and structure consistency, are solved. The expecta-
tion maximization (EM) algorithm is developed in this framework for parameter
estimation. See Section 2 for a description of the model, and Section 3 for the-
orems about its consistency and asymptotic normality. Issues as to the EM algo-
rithm and computation are in Section 4. Section 5 treats a simulation study, and
Section 6 is the applications. The technical details are put into the Appendix.

2. MODEL DESCRIPTION

In this section, we introduce our model and estimation method. Section 2.1 briefly
introduces the definition and properties of HAC, and Section 2.2 introduces the
HMM HAC. In the last subsection, we describe the estimation and algorithm
we use.

2.1. Copulae

Let Z1, . . . , Zd be r.v. with continuous cumulative distribution function (cdf) F(·).
The Sklar theorem guarantees the existence and uniqueness of copula functions:

THEOREM 2.1 (Sklar’s theorem). Let F be a multivariate distribution func-
tion with margins Fm1 , . . . , Fmd , then a copula C exists such that

F(z1, . . . , zd) = C{Fm1 (z1), . . . , Fmd (zd)}, z1, . . . , zd ∈ R.

If Fmi (·) are continuous for i = 1, . . . ,d then C(·) is unique. Otherwise C(·) is
uniquely determined on Fm1 (R)×·· ·× Fmd (R).

Conversely, if C(·) is a copula and Fm1 , . . . , Fmd are univariate distribution
functions, then the function F defined above is a multivariate distribution function
with margins Fm1 , . . . , Fmd .

The family of Archimedean copulae is very flexible: it captures tail dependency,
has an explicit form, and is simple to estimate,

C(u1, . . . ,ud) = φ{φ−1(u1)+·· ·+φ−1(ud)}, u1, . . . ,ud ∈ [0,1], (1)

where φ(·) is defined as the generator of the copula and depends on a parame-
ter θ , see Nelsen (2006). φ(·) is d monotone, and φ(·) ∈ L = {φ(·) : [0; ∞) →
(0,1] |φ(0) = 1, φ(∞) = 0; (−1) jφ( j) ≥ 0; j = 1, . . . ,d −2}. As an example, the
Gumbel generator is given by φ(x) = exp(−x1/θ ) for 0 ≤ x < ∞, 1 ≤ θ < ∞.

In the present paper we consider less restrictive compositions of simple
Archimedean copulae leading to a Hierarchical Archimedean Copula (HAC)
C(u1, . . . ,ud ; θθθ,s), where s = {(. . . (i1 . . . i j1) . . . (. . .) . . .)} denotes the structure of
HAC, with i� ∈ {1, . . . ,d} being a reordering of the indices of the variables and sj

the structure of the subcopulae with sd = s, and θθθ is the set of copula parameters.
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FIGURE 2. Fully and partially nested copulae of dimension d = 4 with structures s =
(((12)3)4) on the left and s = ((12)(34)) on the right.

For example, the fully nested HAC (see Figure 2, left) can be expressed by

C(u1, . . . ,ud ; θθθ,s = sd)

= C{u1, . . . ,ud ; (θ1, . . . ,θd−1)
�, ((sd−1)d)}

= φd−1,θd−1

(
φ−1

d−1,θd−1
◦C
{

u1, . . . ,ud−1; (θ1, . . . ,θd−2)
�, ((sd−2)(d −1))

}
+φ−1

d−1,θd−1
(ud)
)
,

where s = {(. . . (12)3) . . . )d)}. On the RHS of Figure 2 we have the partially
nested HAC with s = ((12)(34)) in dimension d = 4.

For more details about HAC, see Joe (1997), Whelan (2004), Savu and Trede
(2010), and Okhrin, Okhrin, and Schmid (2013).

It is worth noting that not all generator functions can be mixed within one
HAC. We therefore concentrate on one single generator family within one HAC.
This boils down to binary structures, i.e., at each level of the hierarchy only two
variables are joined together. In fact, this makes the architecture very flexible and
yet parsimonious.

Note that not only are the parameters unknown for each HMM HAC, but also
the structure has to be determined. We adopt the modified computational steps
of Okhrin et al. (2013) to estimate the HAC structure and parameters. One esti-
mates the marginal distributions either parametrically or nonparametrically. Then
(assuming that the marginal distributions are known) one selects the couple
of variables with the strongest fit and denotes the corresponding estimator of
the parameter at the first level by θ̂1 and the set of indices of the variables
by I1. The selected couple is joined together to define the pseudo-variables
z1 = C{(I1); θ̂1,φ1}. Next, one proceeds in the same way by considering the re-
maining variables and the new pseudovariable. At every level, the copula param-
eter is estimated by assuming that the margins as well as the copula parameters
at lower levels are known. This algorithm allows us to determine the estimated
structure of the copula recursively.
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2.2. Incorporating HAC into HMM

A hidden Markov model is a parameterized time series model with an underlying
Markov chain viewed as missing data, as in Leroux (1992), Bickel et al. (1998),
and Gao and Song (2011). More specifically, in the HMM HAC framework, let
{Xt , t ≥ 0} be a stationary Markov chain of order one on a finite state space
D = {1,2, . . . , M}, with transition probability matrix P = {pi j }i, j=1,...,M and ini-
tial distribution π = {πi }i=1,...,M .

P(X0 = i) = πi , (2)

P(Xt = j |Xt−1 = i) = pi j (3)

= P(Xt = j |Xt−1 = i, Xt−2 = xt−2, . . . , X1 = x1, X0 = x0),

i, j = 1, . . . , M

Let {Yt , t ≥ 0} be the associated observations, and they are adjoined with
{Xt , t ≥ 0} in such a way that given Xt = i, i = 1, . . . , M , the distribution of Yt is
fixed:

(Xt |X0:(t−1),Y0:(t−1))
L= (Xt |Xt−1), (4)

(Yt |Y0:(t−1), X(0:t))
L= (Yt |Xt ), (5)

where Y0:(t−1) stands for {Y0, . . . ,Yt−1}, t < T .
Let f j{·} be the conditional density of Yt given Xt = j with θθθ ∈ �,s ∈

S, j = 1, . . . , M being the unknown parameters. Here, {Xt , t ≥ 0} is the Markov
chain, and given X0, X1, . . . , XT , the Y0,Y1, . . . ,YT are independent. Note that
θθθ = (θθθ(1), . . . ,θθθ(M)) ∈ R(d−1)M are the unknown dependency parameters, s =
(s(1), . . . ,s(M)) are the unknown HAC structures. Denote their true values by θθθ∗
and s∗ respectively.

For the time series y1, . . . , yT ∈ Rd (yt = (y1t , y2t , y3t , . . . , ydt )
�) and the un-

observable (or missing) x1, . . . , xT from the given hidden Markov model, define
πx0 as the πi for x0 = i, i = 1, . . . , M , and pxt−1xt = pji for xt−1 = j and xt = i .
The full likelihood for {xt , yt }T

t=1 is then:

pT (y0:T ; x0:T ) = πx0 fx0(y0)

T∏
t=1

pxt−1xt fxt (yt ), (6)

and the likelihood for the observations {yt }T
t=1, only is calculated by marginaliza-

tion:

pT (y0:T ) =
M∑

x0=1

· · ·
M∑

xT =1

πx0 fx0(y0)

T∏
t=1

pxt−1xt fxt (yt ). (7)

The HAC is a parameterization of fxt (yt )(xt = i), which helps properly
understand the dynamics of a multivariate distribution. Up to now, typical param-
eterizations have been mixtures of log-concave or elliptical symmetric densities,
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such as those from Gamma or Poisson families, which are not flexible enough to
model multi-dimensional time series. The advantage of the copula is that it splits
the multivariate distribution into its margins and a pure dependency component.
In other words, it captures the dependency between variables, eliminating the im-
pact of the marginal distributions as introduced in the previous subsection.

Furthermore, we incorporate this procedure within an HMM framework.
We denote the underlying Markov variable Xt as a dependency type variable.
If xt = i , the parameters (θθθ(i),s(i)) determined by state i = 1, . . . , M take values
on �× S, where S is a set of discrete candidate states corresponding to different
dependency structures of the HAC, and � is a compact subset of Rd−1 in which
the HAC parameters take their values. Therefore,

fi (·) = c
{

Fm1 (y1), Fm2 (y2), . . . , Fmd (yd),θθθ(i),s(i)
}

f m1 (y1) f m2 (y2) · · · f md (yd),

(8)

with f mi (yi ) being the marginal densities, Fmi (yi ) the marginal cdf and c(·) the
copula density, which is defined in assumption A.4 in Section 3.

Let θθθ(i) = (θi1, . . . ,θi,d−1)
� be the dependency parameters of the copulae start-

ing from the lowest up to the highest level connected with a fixed state xt = i and
corresponding density fi (.). Refining the algorithm of Okhrin et al. (2013), the

multistage maximum likelihood estimator (θ̂θθ
(i)

, ŝ(i)) solves the system(
∂L1

∂θi1
, . . . ,

∂Ld−1

∂θid−1

)�
= 0, (9)

where

Lj =
T∑

t=1

wi t li j (Yt ), for j = 1, . . . ,d −1,

li j (Yt ) = log

⎛⎝c
[{F̂mm (ytm)}m∈{1,..., j}; {θi�}�=1,..., j−1,s(i)

m

] ∏
m∈{1,..., j}

f̂ mm (ytm)

⎞⎠
for t = 1, . . . ,T .

where j denotes the layers of the tree structure, and F̂mm (·) is an estimator (either
nonparametric with F̂mm (x) = (T +1)−1∑T

t=11(Ytm ≤ x) or parametric F̂mm (x) =
Fmm (x,α̂ααm)) of the marginal cdf Fmm (·), where α̂ααm stand for estimated parameters
of a marginal distribution. Note that a nonparametric estimation of the margins
would lead to our estimation’s having a semiparametric nature. The marginal den-
sities f̂ mm (·) are estimated parametrically or nonparametrically (kernel density es-
timation) corresponding to the estimation of the marginal distribution functions,
and wi t is the weight associated with state i and time t , see (14). Chen and Fan
(2006) and Okhrin et al. (2013) provide the asymptotic behavior of the estimates.
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2.3. Likelihood estimation

For the estimation of the HMM HAC model, we adopt the EM algorithm, see
Dempster, Laird, and Rubin (1977), also known as the Baum–Welch algorithm
in the context of HMM. Recall the full likelihood pT (y0:T ; x0:T ) in (6) and the
partial likelihood pT (y0:T ) in (7), and the log likelihood:

log{pT (y0:T )} = log

⎧⎨⎩
M∑

x0=1

· · ·
M∑

xn=1

πx0 fx0 (y0; θθθ(x0)
T∏

t=1

pxt−1xt fxt (yt ; θθθ(xt ),s(xt ))

⎫⎬⎭ . (10)

The EM algorithm suggests estimating a sequence of parameters g(r)
def=

(P(r),θθθ(r),s(r)) (for the r th iteration) by iterative maximization ofQ(g; g(r)) with

Q(g; g(r))
def= Eg(r){log pT (Y0:T ; X0:T )|Y0:T = y0:T }.

That is, one carries out the following two steps:

• (a) E-step: compute Q(g; g(r)),

• (b) M-step: choose the update parameters g(r+1) = arg maxgQ(g; g(r)).

The essence of the EM algorithm is that Q(g; g(r)) can be used as a substitute
for log pT (y0:T ; x0:T ; θ), see Cappé, Moulines, and Rydén (2005).

In our setting, we may write Q(g; g(r)) as:

Q(g; g(r)) =
M∑

i=1

Eg(r) [1{X0 = i} log{πi fi (y0)}|Y0:T = y0:T ] (11)

+
T∑

t=1

M∑
i=1

Eg(r)[1{Xt = i} log fi (yt )|Y0:T = y0:T ]

+
T∑

t=1

M∑
i=1

M∑
j=1

Eg(r)[1{Xt = j}1{Xt−1 = i} log{pi j }|Y0:T = y0:T ]

=
M∑

i=1

Pg(r) (X0 = i |Y0:T = y0:T ) log{πi fi (y0)}

+
T∑

t=1

M∑
i=1

Pg(r) (Xt = i |Y0:T = y0:T ) log fi (yt )

+
T∑

t=1

M∑
i=1

M∑
j=1

Pg(r) (Xt−1 = i, Xt = j |Y0:T = y0:T ) log{pi j }, (12)

where fi (·) is as in (8). The E-step, in which Pg(r) (Xt = i |Y0:T ),Pg(r) (Xt−1 =
i, Xt = j |Y0:T ) are evaluated, is carried out by the forward–backward algorithm
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and the M-step is explicit in the pi j s and the πi s. Adding constraints to (12) yields

L(g,λ; g′) =Q(g; g′)+
M∑

i=1

λi

⎛⎝1−
M∑

j=1

pi j

⎞⎠ . (13)

For the M-step, we need to take the first order partial derivatives, and plug into
(13). So the dependency parameters θθθ and the structure parameters s need to be
estimated iteratively, for θθθ(i) (θθθ(i) = {θi1, . . . ,θi(d−1)}):

∂L(g,λ; g′)
∂θi j

=
T∑

t=1

Pg′(Xt = i |Y0:T )∂ log fi (yt )/∂θi j . (14)

To simplify the procedure, we adopt the HAC estimation method (9) with

weights wi t
def= Pg′(Xt = i |Y0:T ). We also fix πi , i = 1, . . . , M , as this influences

only the first observation x0 which may be considered also as given and fixed.
Maximizing (12) w.r.t. πi would return the first derivative with one observation
y0. Also as the previous information for the distribution of x0 is not available,
our EM algorithm would not involve updating πi . The estimation of the transition
probabilities pi j follows:

∂L(g,λ; g′)
∂pi j

=
T∑

t=1

Pg′(Xt−1 = i, Xt = j |Y0:T )

pi j
−λi , (15)

∂L(g,λ; g′)
∂λi

= 1−
M∑

j=1

pi j . (16)

Equating (15) and (16) yields

p̂i j =
∑T

t=1 Pg′(Xt−1 = i, Xt = j |Y0:T )∑T
t=1
∑M

l=1 Pg′(Xt−1 = i, Xt = l|Y0:T )
. (17)

3. THEORETICAL RESULTS

In this section, we discuss the conditions needed to derive the consistency and
the asymptotic properties of our estimates. We then state our main theoretical
theorems. Throughout the theory we concentrate on the most interesting case: a
semi-parametric estimation with nonparametric margins.

Assumptions.
A.1 {Xt } is a stationary, strictly irreducible, and aperiodic Markov process of

order one with final discrete state, and {Yt }T
t=1 are conditionally independent

given {Xt }T
t=1 and generated from an HAC HMM model with parameters

{s∗(i),θ∗(i),π∗,{p∗
i j }i, j }, i, j = 1, . . . ,d.
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It is worth noting that A.1 is the basic assumption on the evolution of a hid-
den Markov chain. One key property is that given one realization of the path
of {Xt }, the conditional distributions of {Yt }T

t=1 are totally fixed. But {Yt } will be
dependent and will even have a finite mixture distribution from the given paramet-
ric family. The evolution of {Xt } will later be linked to the dependency parameters
of the state space distribution of {Yt }.

A.2 The family of mixtures of at most M elements { f (y; θθθ(i),s(i)) : θθθ(i) ∈
�(i),s(i) ∈ S} is identifiable w.r.t. the parameters and structures:

M∑
i=1

αi f
(

y; θθθ(i),s(i)
)

=
M∑

i=1

α′
i f
(

y; θθθ ′(i),s′(i)) a.e. (18)

then,

M∑
i=1

αjδθθθ(i),s(i) =
M∑

i=1

α′
iδθθθ ′(i),s′(i) , (19)

defining δθθθ(i),s(i) as the distribution function for a point mass in � associated with
the structure s(i), noting that θθθ(i) = θθθ ′(i) is only meaningful when s(i) = s′(i).

The property of identifiability is nothing else than the construction of a finite
mixture model, see McLachlan and Peel (2000). As a copula is a special form of
a multivariate distribution, similar techniques may be applied to get identifiability
also in the case of copulae. The family of copula mixtures has been thoroughly
investigated in Caia, Chen, Fan, and Wang (2006) while developing estimation
techniques. In that general case, one should be careful, as the general copula class
is very wide and its mixture identification may cause some problems because of
the different forms of the densities. The very construction of the HAC narrows
this class. Imposing the same generator functions on all levels of the HAC, we re-
strict the family to the vector of parameters and the tree structure, see also Okhrin
et al. (2013). Moreover, we restrict the classes to only binary trees with distinct
parameters to avoid identifiability issues induced by the case of the same param-
eter values on each layer of a tree. Our preliminary numerical analysis shows that
the HAC fulfills the identifiability property for all the structures and parameters
used in this study.

A.3 The true marginal distribution f mm (·) ∈ C2, and the derivatives up to a sec-
ond order are bounded for all m = 1, . . . ,d. Also

√
f m is absolute continuous.

In the case of a nonparametric estimation for f mi (·) ∈ C2, one needs also to en-
sure that the kernel function K (·) ∈ C2 subject to

∫
B K (u)du = 1, has support on

a compact set B, is symmetric, and has integrable first derivative.
We would like to focus on the dependency parameter, therefore in the following

setting, we simply assume that the marginal processes yt1, yt2, . . . , ytd are
identically distributed.

A.4 E{| log fi (y)|} < ∞, for i = 1, . . . , M , ∀s(i) ∈ S. Define the copu-

lae density function c(u1,u2, . . . ,ud ,θθθ(i),s(i))
def= ∂dC(u1,u2, . . . ,ud , ,θθθ(i),s(i))/

∂u1∂u2 · · ·∂ud , then logc(u1,u2, . . . ,ud ,θθθ(i),s(i)) as well as its first and second
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partial derivatives w.r.t. ui s and θθθ(i) are well defined for ((0,1)d × �(i)). Also,
their suprema in a compact set ((Ed)×�(i)) (Ed ∈ [0,1]d ) has finite moments
up to the order four.

A.5 For every θθθ(i) ∈ �, and any particular structure s ∈ S,

E

[
sup

‖θθθ ′(i)−θ(i)‖<δ

{ fi (Y1,θ
′(i),s)}+

]
< ∞,

for some δ > 0.
A.6 The true point θθθ∗ is an interior point of �.
A.7 There exists a constant δ0, such that P(sup‖θθθ ′(i)−θθθ(i)‖<δ0 maxi, j E

{ fi (Y1,θθθ
′,s)}

{ f j (Y1,θθθ ′,s)}
= ∞|X1 = i) < 1.

Denote by pT (y0:T ; v,ω) the density in (7) with parameters {v,ω} ∈ {V,
} as

described in the Appendix 7.2. Define θ̂θθ
(i)

, ŝ(i) as θ̂θθ
(i)

(v̂, ω̂), and ŝ(i)(v̂, ω̂) with
(v̂, ω̂) being the point where pT (y0:T ; v,ω) achieves its maximum value over the
parameter space {V,
}.

It is known that HMM is not itself identifiable, as a permutation of states would
yield the same value for pT (y0:T ; v,ω). We assume therefore θθθ∗( j)s and s∗( j)s to
be distinct in the sense that for any s∗(i) = s∗( j), i �= j we have θθθ∗(i) �= θθθ∗( j).

THEOREM 3.1. Under A.1–A.7, we find the corresponding structure:

lim
T →∞ min

i∈1,...,M
P(ŝ(i) = s∗(i)) = 1. (20)

Moreover,

THEOREM 3.2. Assume that A.1–A.7 hold then the parameter θ̂θθ
(i)

satisfies,
∀ε > 0:

lim
T →∞ max

i∈1,...,M
P
(
|θ̂θθ(i) −θθθ∗(i)| > ε|ŝ(i) = s∗(i)

)
= 0. (21)

In addition, we can also establish asymptotic normality results for parameters.

THEOREM 3.3. Assume that A.1–A.7 hold , and given that s∗(i) is correctly
estimated, which is an event with probability tending to 1, we have
√

T
{
θ̂θθ −θθθ

}
→ N(0,�∗), (22)

where �∗ is the asymptotic covariance function, defined as �∗ def= B−1Var(
√

T A)
B−1, where B, A are defined in the Appendix in (A.19).

The proofs are presented in the Appendix.

4. SIMULATION

The estimation performance of HMM HAC is evaluated in this section: subsec-
tion I aims to investigate whether the performance of the estimation is affected
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by 1) adopting a nonparametric or parametric margins; 2) introducing a GARCH
dependency in the marginal time series. Subsection II presents results for a five-
dimensional time series model. In subsection III we compare the DCC method
and our HMM HAC method. All the simulations show that our algorithm con-
verges after a few iterations with moderate estimation errors, and the results are
robust with respect to different estimation methods for the margins. Moreover our
method dominates the DCC one.

Regarding the selection of the orders, in both the simulations and the applica-
tions, we have started with a model with three states, which is suggested by the
initial moving window analysis described later. In the applications, the number of
states will even be degenerated to two or one for some windows. This suggests
that three states are sufficient for model estimations. However, one can consider
general BIC or AIC criteria for selecting the number of states.

4.1. Simulation I

In this subsection, a three-dimensional generating process has fixed marginal dis-
tributions: Yt1,Yt2,Yt3 ∼N(0,1). To study the effect of deGARCH step in our ap-
plication (DeGARCH is meant by prefitting marginal time series with a GARCH
model, and take the residuals for estimation in later steps.), we simulated also
according to a GARCH(1,1) model,

Yt j = μt j +σt jεt j with σ 2
t j = ωj +αjσ

2
t−1 j +βj (Yt−1 j −μt−1 j )

2, (23)

with parameters ωj = 10−6,αj = 0.8,βj = 0.1, with standard normal residuals
εt1,εt2,εt3 ∼ N(0,1). The dependence structure is modeled through HAC with
Gumbel generators. Let us consider now a Monte Carlo setup where the setting
employs realistic models. The three states with M = 3 are as follows:

C
{
u1,C(u2,u3; θ(1)

1 = 1.3); θ(1)
2 = 1.05

}
for i = 1,

C
{
u2,C(u3,u1; θ(2)

1 = 2.0); θ(2)
2 = 1.35

}
for i = 2,

C
{
u3,C(u1,u2; θ(3)

1 = 4.5); θ(3)
2 = 2.85

}
for i = 3,

where the dependency parameters correspond to Kendall’s τ s ranging between
0.05 and 0.78, which is typical for financial data. The transition matrix is chosen
as:

P =
⎛⎜⎝0.982 0.010 0.008

0.008 0.984 0.008

0.003 0.002 0.995

⎞⎟⎠ ,

with initial probabilities as π = (0.2,0.1,0.7) and sample size T = 2000.
Figure 3 presents the underlying states and a marginal plot of the generated
three-dimensional time series. No state switching patterns are evident from the
marginal plots. Figure 4, however, clearly displays the switching of dependency
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FIGURE 3. The underlying sequence xt (upper left panel), marginal plots of (yt1,
yt2, yt3)(t = 0, . . . ,1000).

FIGURE 4. Snapshots of pairwise scatter plots of dependency structures (t = 0, . . . ,1000),
the (yt1) vs. (yt2) (left), the (yt1) vs. (yt3) (middle), and the (yt2) vs. (yt3)(right).
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FIGURE 5. The averaged estimation errors for the transition matrix (left panel), parameters
(middle panel), and convergence of states (right panel). Estimation starts from near true
value (dashed); starts from values obtained by rolling window (solid). x-axis represents
iterations. Number of repetitions is 1000.

patterns. The circles, triangles, and crosses correspond to the observations from
states i = 1,2,3, respectively.

Generally, the iteration procedure stops after around ten steps. Figure 5 presents
the deviations from their true values of the estimated states, the transition ma-
trix, and the parameters for the first ten iterations of one sample. Since the start-
ing values may influence the results, a moving window estimation is proposed
to decide the initial parameters. The dashed black and solid black lines show,
respectively, how the estimators behave with the initial values close to the true
(dashed) and initial values obtained from the proposed rolling window algorithm

https://doi.org/10.1017/S0266466614000607 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000607


HIDDEN MARKOV STRUCTURES FOR DYNAMIC COPULAE 995

(solid). By “close to the true initial states”, we mean true structures with parame-
ters all shifted up by 0.5 from the true ones. For “rolling window algorithm” we
estimate HAC for overlapping windows of width 100, and then take the M most
frequent structures with averaged parameters as initial states. The left panel of
Figure 5 shows the (L1) difference (

∑d
i, j=1 | p̂i j − pi j |) of the true transition ma-

trix from the estimated ones at each iteration, we see that for the three particular
samples, the values all converge to around 0.4, which are moderately small; the
middle panel is the sum of the estimated parameter errors of the four states with
the correctly estimated states, we see that the accumulated errors are different
depending on the different starting values; the right panel presents the percent-
age of wrongly estimated states, in all cases the percentage of wrongly estimated
states is smaller than 8%. One can see that our choice of initial values can perform
as well as the true ones through showing small differences, and our results from
more iterations further confirm this.

Generally, the iteration procedure stops after around ten steps. Figure 5 presents
the deviations from their true values of the estimated states, the transition matrix,
and the parameters for the first ten iterations of one sample. Since the starting
values may influence the results, a moving window estimation is proposed to de-
cide the initial parameters. The dashed black and solid black lines show, respec-
tively, how the estimators behave with the initial values close to the true (dashed)
and initial values obtained from the proposed rolling window algorithm (solid).
By “close to the true initial states”, we mean true structures with parameters all
shifted up by 0.5 from the true ones. For “rolling window algorithm” we estimate
HAC for overlapping windows of width 100, and then take the M most frequent
structures with averaged parameters as initial states. The left panel of Figure 5
shows the (L1) difference (

∑d
i, j=1 | p̂i j − pi j |) of the true transition matrix from

the estimated ones at each iteration, we see that for the three particular samples,
the values all converge to around 0.4, which are moderately small; the middle
panel is the sum of the estimated parameter errors of the four states with the cor-
rectly estimated states, we see that the accumulated errors are different depending
on the different starting values; the right panel presents the percentage of wrongly
estimated states, in all cases the percentage of wrongly estimated states is smaller
than 8%. One can see that our choice of initial values can perform as well as the
true ones through showing small differences, and our results from more iterations
further confirm this.

Finally, we summarize our estimation results over 1000 repetitions. In Ta-
bles 1–2, we report the averaged estimation values with standard deviations
(in brackets) and MSE (in brackets) for the estimated states, the transition
matrix, and the parameters. Table 1 presents the results with the marginal
time series being generated as just identically distributed data, while Table 2
presents the results with the marginal DGPs being GARCH(1,1). For the im-
pact of estimating the copula model on estimated standardized residuals (after
GARCH fitting, for example), we have also included a comparison of the es-
timation on the deGARCHed residuals (nonparametrically estimated margins).
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TABLE 1. Simulation results for the marginal time series being generated as iden-
tically distributed data, sample size T = 2000, 1000 repetitions, standard devia-
tions and MSEs are provided in brackets

True Rol. Win. True Str.

N
on

pa
ra

m
et

ri
c

M
ar

gi
ns C1

θ
(1)
1 1.05 1.030 (0.046, 0.003) 1.057 (0.068, 0.005)

θ
(1)
2 1.30 1.313 (0.156, 0.025) 1.308 (0.083, 0.007)

C2
θ
(2)
1 1.35 1.366 (0.121, 0.015) 1.346 (0.182, 0.033)

θ
(2)
2 2.00 2.556 (1.052, 1.416) 3.212 (1.991, 5.433)

C3
θ
(3)
1 2.85 2.854 (0.073, 0.005) 2.854 (0.073, 0.005)

θ
(3)
2 4.50 4.497 (0.133, 0.018) 4.496 (0.130, 0.017)

rat. of correct states 0.958 (0.029) 0.933 (0.056)∑d
i, j=1 | p̂i j − pi j | 0.278 (0.230) 0.404 (0.307)

rat. of correct structures 0.949 0.918

Pa
ra

m
et

ri
c

M
ar

gi
ns

C1
θ
(1)
1 1.05 1.030 (0.041, 0.002) 1.056 (0.066, 0.004)

θ
(1)
2 1.30 1.310 (0.154, 0.024) 1.306 (0.087, 0.008)

C2
θ
(2)
1 1.35 1.365 (0.130, 0.017) 1.344 (0.173, 0.030)

θ
(2)
2 2.00 2.544 (0.962, 1.221) 3.157 (1.906, 4.971)

C3
θ
(3)
1 2.85 2.855 (0.074, 0.006) 2.854 (0.074, 0.005)

θ
(3)
2 4.50 4.513 (0.133, 0.018) 4.513 (0.132, 0.018)

rat. of correct states 0.959 (0.029) 0.934 (0.056)∑d
i, j=1 | p̂i j − pi j | 0.278 (0.232) 0.395 (0.297)

rat. of correct structures 0.955 0.921

de
G

A
R

C
H

in
g

C1
θ
(1)
1 1.05 1.030 (0.045, 0.002) 1.056 (0.067, 0.005)

θ
(1)
2 1.30 1.320 (0.264, 0.070) 1.307 (0.081, 0.007)

C2
θ
(2)
1 1.35 1.367 (0.123, 0.015) 1.345 (0.166, 0.028)

θ
(2)
2 2.00 2.577 (1.273, 1.953) 3.180 (1.976, 5.297)

C3
θ
(3)
1 2.85 2.852 (0.074, 0.005) 2.852 (0.074, 0.005)

θ
(3)
2 4.50 4.489 (0.133, 0.018) 4.488 (0.130, 0.017)

rat. of correct states 0.958 (0.029) 0.933 (0.056)∑d
i, j=1 | p̂i j − pi j | 0.280 (0.234) 0.399 (0.299)

rat. of correct structures 0.950 0.919

Also the estimation for different ways of deciding starting values are shown:
“close to the true initial states” (True str), rolling window algorithm (Rol. Win.).
Apparently, nonparametric or parametric estimation of the margins does not make
big differences; this is also true for the prewhitening step. Regarding the precision
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TABLE 2. Simulation results for the marginal DGPs (data generating processes)
being GARCH(1,1), sample size T = 2000, 1000 repetitions, standard deviations
and MSEs are provided in brackets

True Rol. Win. True Str.

N
on

pa
ra

m
et

ri
c

M
ar

gi
ns C1

θ
(1)
1 1.05 1.100 (0.888, 0.791) 1.138 (0.080, 0.014)

θ
(1)
2 1.30 1.407 (0.888, 0.800) 1.246 (0.080, 0.009)

C2
θ
(2)
1 1.35 1.403 (1.473, 2.173) 1.436 (2.608, 6.089)

θ
(2)
2 2.00 3.288 (1.473, 3.829) 5.106 (2.608, 16.449)

C3
θ
(3)
1 2.85 2.772 (0.936, 0.882) 2.790 (0.941, 0.889)

θ
(3)
2 4.50 4.570 (0.936, 0.881) 4.606 (0.941, 0.897)

rat. of correct states 0.853 (0.054) 0.813 (0.061)∑d
i, j=1 | p̂i j − pi j | 0.601 (0.217) 0.770 (0.242)

rat. of correct structures 0.853 0.757

Pa
ra

m
et

ri
c

M
ar

gi
ns

C1
θ
(1)
1 1.05 1.205 (1.261, 1.614) 1.107 (0.079, 0.009)

θ
(1)
2 1.30 1.843 (1.261, 1.885) 1.145 (0.079, 0.030)

C2
θ
(2)
1 1.35 1.577 (1.381, 1.959) 1.838(1.612, 2.837)

θ
(2)
2 2.00 3.150 (1.381, 3.230) 3.480 (2.270, 7.343)

C3
θ
(3)
1 2.85 3.879 (1.453, 3.170) 3.906 (1.523, 3.435)

θ
(3)
2 4.50 6.390 (1.453, 5.683) 6.592 (1.523, 6.696)

rat. of correct states 0.732 (0.080) 0.747 (0.053)∑d
i, j=1 | p̂i j − pi j | 0.761 (0.179) 0.760 (0.156)

rat. of correct structures 0.358 0.323

de
G

A
R

C
H

in
g

C1
θ
(1)
1 1.05 1.030 (0.736, 0.542) 1.067 (0.141, 0.020)

θ
(1)
2 1.30 1.333 (0.736, 0.543) 1.305 (0.141, 0.020)

C2
θ
(2)
1 1.35 1.356 (1.059, 1.122) 1.333 (1.755, 3.080)

θ
(2)
2 2.00 2.579 (1.059, 1.457) 3.351 (1.755, 4.905)

C3
θ
(3)
1 2.85 2.835 (0.816, 0.666) 2.833 (0.816, 0.666)

θ
(3)
2 4.50 4.452 (0.816, 0.668) 4.451 (0.816, 0.668)

rat. of correct states 0.958 (0.028) 0.925 (0.058)∑d
i, j=1 | p̂i j − pi j | 0.299 (0.235) 0.460 (0.325)

rat. of correct structures 0.938 0.916

of the estimation, one sees that when the true GDP is GARCH(1,1), the prewhiten-
ing step is necessary to guarantee the quality of estimation. Also we see that for
the parameter θ

(2)
2 the estimation errors are larger. The standard deviations of the

design matrix are also relatively high. This is due to our selected design matrix
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FIGURE 6. The averaged estimation errors for transition matrix (left panel), parameters
(middle panel), convergence of states (right panel). Estimation starts from near true value
(dashed); starts from values obtained by rolling window(solid). x-axis represents iterations.
Number of repetitions is 1000.

having very small off-diagonal values, so for some realizations we have too few
observations for state 2 to achieve accurate estimates. One sees in our simula-
tion II nicer results with a different transition matrix.

4.2. Simulation II

In this subsection, we consider a five-dimensional model. The marginal distri-
butions are taken as: Yt1,Yt2,Yt3,Yt4,Yt5 ∼ N(0,1). The dependence structure is
modeled through an HAC with Gumbel generators as well. We set also three states
(M = 3) :

C
(
u1,C[u2,C{u3,C(u5,u4; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 1,

C
(
u3,C[u5,C{u2,C(u1,u4; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 2,

C
(
u5,C[u4,C{u3,C(u1,u2; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 3,

the transition matrix is chosen as:

P =
⎛⎜⎝0.82 0.10 0.08

0.08 0.84 0.08

0.03 0.02 0.95

⎞⎟⎠ ,

and the initial probabilities are π = (0.2,0.1,0.7) and T = 2000. Figure 7 shows
the pairwise scatterplots of the observations generated from the above men-
tioned model. Similarly, Figure 6 and Table 3 present the estimation accuracy
for this model. Although the computation is more demanding when the dimen-
sion is higher, we still can achieve the same degree of accuracy as in the three-
dimensional case.
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TABLE 3. The summary of estimation accuracy in five dimensional model, stan-
dard deviations and MSEs are provided in brackets. The case of deGARCHing is
with nonparametrically estimated margins

True Param. Margins deGARCHing

C1

θ
(1)
1 1.05 1.019 (0.020, 0.001) 1.019 (0.020, 0.001)

θ
(1)
2 1.75 1.739 (0.077, 0.006) 1.741 (0.078, 0.006)

θ
(1)
3 2.45 2.584 (0.126, 0.034) 2.583 (0.126, 0.034)

θ
(1)
4 3.15 3.328 (0.194, 0.069) 3.318 (0.194, 0.066)

C2

θ
(2)
1 1.05 1.017 (0.021, 0.002) 1.017 (0.021, 0.002)

θ
(2)
2 1.75 1.795 (0.084, 0.009) 1.797 (0.084, 0.009)

θ
(2)
3 2.45 2.499 (0.120, 0.017) 2.499 (0.122, 0.017)

θ
(2)
4 3.15 3.381 (0.216, 0.100) 3.369 (0.215, 0.094)

C3

θ
(3)
1 1.05 1.044 (0.017, 0.000) 1.045 (0.018, 0.000)

θ
(3)
2 1.75 1.745 (0.041, 0.002) 1.747 (0.041, 0.002)

θ
(3)
3 2.45 2.492 (0.065, 0.006) 2.492 (0.065, 0.006)

θ
(3)
4 3.15 3.189 (0.094, 0.010) 3.185 (0.095, 0.010)

rat. of correct states 0.915 (0.011) 0.915 (0.011)∑d
i, j=1 | p̂i j − pi j | 0.133 (0.054) 0.133 (0.054)

rat. of correct structures 1 1

4.3. Simulation III

To compare the forecasting performances of the different models, we simulate
data from different true models: HMM GARCH, HMM id, and DCC, from which
we simulate three-dimensional time series with T − 1 observations. Then we fit
different models (HMM GARCH, HMM id, HAC GARCH, HAC id, and DCC)
with the T −1 observations at hand, and compare the one-step ahead distribution
forecasts for the true and the estimated models. More specifically, for the distri-
bution forecast comparison, we calculate the sum yT 1 + yT 2 + yT 3 (which may be
thought of as the returns of an equally weighted portfolio).

Simulation of 1000 observations yT 1 + yT 2 + yT 3 allows us to compare the
forecast distribution between the true model and the estimated models. Fur-
thermore, we calculate Kolmogorov–Smirnov (KS) test statistics to measure the
difference between the forecast distribution of observations from the true and
the estimated model. The comparison has been done with T = 250,500,1000
Table 4 reports the means and the standard deviations of the KS test statis-
tics for different models w.r.t. to the true one. We see obvious advantages of
our method over the DCC model in the sense that our HMM GARCH model
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FIGURE 7. Snapshots of pairwise scatter plots of dependency structures (t = 0, . . . ,
1000).

is in all cases closer on average to the forecast distribution of the true model
than is the DCC model. Especially when the data generating processes are
HMM GARCH or HMM ID. We use nonparametric estimated margins in this
subsection.
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TABLE 4. The estimated mean KS test statistics (standard deviation) of the fore-
cast distribution from the true model and the estimated model. Number of repeti-
tions is 1000

True\Estimated Sample size HMMGARCH HMM ID DCC

HMM GARCH
250

0.0899 (0.0353) 0.1243 (0.0571) 0.1949 (0.1112)
DCC 0.0607 (0.0241) 0.0723 (0.0320) 0.0782 (0.0309)
HMM ID 0.0908 (0.0359) 0.0867 (0.0345) 0.1424 (0.0271)

HMMGARCH
500

0.0889 (0.0338) 0.1203 (0.0556) 0.2117 (0.0782)
DCC 0.0541 (0.0194) 0.0672 (0.0325) 0.0774 (0.0254)
HMM ID 0.0936 (0.0331) 0.0924 (0.0326) 0.1515 (0.0239)

HMM GARCH
1000

0.0869 (0.0321) 0.1237 (0.0605) 0.3703 (0.1366)
DCC 0.0494 (0.0166) 0.0659 (0.0320) 0.0823 (0.0392)
HMM ID 0.0919 (0.0331) 0.0907 (0.0322) 0.1509 (0.0213)

5. APPLICATIONS

To see how HMM HAC performs on a real data set, applications to financial
and rainfall data are offered. A good model for the dynamics of exchange rates
gives insights into exogenous economic conditions, such as the business cycle.
It is also helpful for portfolio risk management and decisions on asset allocation.
We demonstrate the performance of our proposed technique by applying it to fore-
casting the VaR of a portfolio and compare it with multivariate GARCH models
(DCC, BEKK, etc.) The backtesting results show that the VaR calculated from
HMM HAC performs significantly better.

The second application is on modeling a rainfall process. HMM is a conven-
tional model for rainfall data, however, bringing HMM and HAC together for
modeling the multivariate rainfall process is an innovative modeling path.

5.1. Application I

5.1.1. Data. The data set consists of the daily values for the exchange
rates JPY/EUR, GBP/EUR, and USD/EUR. The covered period is [4.1.1999;
14.8.2009], resulting in 2771 observations.

To eliminate intertemporal conditional heteroscedasticity, we fit a univariate
GARCH(1,1) process to each marginal time series of log-returns

Yj,t = μj,t +σj,tεj,t with σ 2
j,t = ωj +αjσ

2
j,t−1 +βj (Yj,t−1 −μj,t−1)

2 (24)

and ω > 0, αj ≥ 0, βj ≥ 0, αj +βj < 1.
The residuals exhibit the typical behavior: they are not normally distributed,

which motivates nonparametric estimation of the margins. From the results of
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FIGURE 8. Rolling window estimators of Pearson’s (left) and Kendall’s (right) correlation
coefficients between the GARCH(1,1) residuals of exchange rates: JPY and USD (solid
line), JPY and GBP (dashed line), GBP and USD (dotted line). The width of the rolling
window is set to 250 observations.

the Box–Ljung test, whose p-values are 0.73,0.01, and 0.87 for JPY/EUR,
GBP/EUR, and USD/EUR, we conclude that the autocorrelation of the residu-
als is strongly significant only for the GBP/EUR rate. After this intertemporal
correction, we work only with the residuals.

The dependency variation is measured by Kendall’s and Pearson’s correla-
tion coefficients: Figure 8 shows the variation of both coefficients calculated in
a rolling window of width r = 250. Their dynamic behavior is similar, but not
identical. This motivates once more a time varying copula based model.

5.1.2. Fitting a HMM model. Figures 1, 9, and 10 summarize the analysis
using three methods: moving window, LCP, and HMM HAC. LCP uses moving
windows, with varying sizes. To be more specific, LCP is a scaling technique
which determines a local homogeneous window at each time point, see Härdle
et al. (2013). In contrast to LCP, HMM HAC is based on a global modeling con-
cept rather than a local one. One observes relatively smooth changes of the pa-
rameters, see Figures 1 and 9. HMM HAC is as flexible as LCP, as can be seen
from Figures 1, 9, and 10, since the estimated structure also takes three values
and is confirmed by the variations of structures estimated from LCP. Moreover,
the moving window analysis or LCP can serve as a guideline for choosing the ini-
tial values for our HMM HAC. Figure 11 displays the number of states for HMM
HAC for rolling windows with a length of 500 observations.

A VaR estimation example is undertaken to show the good performance of
HMM HAC. We generate N = 104 paths with T = 2219 observations, and |W | =
1000 combinations of different portfolios, where W = {(1/3,1/3,1/3)�

⋃
[w =

(w1,w2,w3)
�]}, with wi = w′

i/
∑3

i=1 w′
i , w′

i ∈ U (0,1). The Profit Loss (P&L)

function of a weighted portfolio based on assets ytd is Lt+1
def= ∑3

d=1 wi (yt+1d −
ytd), with weights w = (w1,w2,w3) ∈ W . The VaR of a particular portfolio at
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FIGURE 9. Rolling window for exchange rates: structure (upper) and dependency param-
eters (lower, θ1 (gray) and θ2 (black)) for Gumbel HAC. Rolling window size win = 250.

FIGURE 10. HMM for exchange rates: structure (upper) and dependency parameters
(lower, θ1 (gray) and θ2 (black)) for Gumbel HAC.
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FIGURE 11. Plot of estimated number of states for each window.

level 0 < α < 1 is defined as V a R(α)
def= F−1

L (α), where the α̂w is estimated as a
relative fraction of violations, see Table 5:

α̂w
def= T −1

T∑
t=1

I{Lt < V̂ a Rt (α)},

and the distance between α̂w and α is

ew
def= (α̂w −α)/α.

If the portfolio distribution is i.i.d., and a well calibrated model properly mimicks
the true underlying asset process, α̂w is close to its nominal level α. The perfor-
mance is measured by averaging αw over all |W | portfolios, see Table 5.

We consider four main models: HMM HAC for 500 observation windows for
Gumbel and rotated Gumbel; multiple rolling window with 250 observations win-
dows; LCP with m0 = 20 and m0 = 40 with Gumbel copulae (the LCP finds the
optimal length of window in the past by a sequence of tests on windows of in-
creasing sizes, m0 is a starting window size); and DCC, see Engle (2002), based

TABLE 5. VaR backtesting results, ¯̂α, where “Gum” denotes the Gumbel copula
and “RGum” the rotated survival Gumbel one

Window\α 0.1 0.05 0.01

HMM, RGum 500 0.0980 0.0507 0.0128
HMM, Gum 500 0.0981 0.0512 0.0135
Rolwin, RGum 250 0.1037 0.0529 0.0151
Rolwin, Gum 250 0.1043 0.0539 0.0162
LCP, m0 = 40 468 0.0973 0.0520 0.0146
LCP, m0 = 20 235 0.1034 0.0537 0.0169
DCC 500 0.0743 0.0393 0.0163
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TABLE 6. Robustness relative to AW (DW )

Window\α 0.1 0.05 0.01

HMM, RGum 500 −0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 −0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 −0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 −0.2573 (0.015) −0.2140 (0.015) 0.6346 (0.091)

on 500 observation windows. For each model we make an out of sample forecast.
To better evaluate the performance, we calculated the average and SD of eW :

AW = 1

|W |
∑
w∈W

ew, DW =
{

1

|W |
∑
w∈W

(ew − AW )2

}1/2

.

Tables 5 and 6 show the backtesting performance for the described models. One
concludes that HMM HAC performs better than the concurring moving window,
LCP, or DCC, as Aw and Dw are typically smaller in absolute value.

5.2. Application II

Rainfall models are used to forecast, simulate, and price weather derivatives. The
difficulty in precipitation data is the nonzero point mass at zero and spatial rela-
tionships, see Ailliot, Thompson, and Thomson (2009) for Gaussian dependency
among locations with HMM application.

In this application we extend it to a copula framework. Unlike application I, the
marginal distribution here vary over states. We propose two methods for modeling
the marginal distributions: one is to take ytk to be censored normal distributions,
with the following equation:

f mk {ytk} =
{

1− pxt
k ytk = 0,

pxt
k ϕ[{ytk −μxt (k)}/{σ xt (k)}]/σ xt (k) ytk > 0;

with k = 1, . . . ,d as the location, ϕ(·) as the standard normal density, pxt
k as the

rainfall occurrence probability for the location k and state xt , and μxt (k),σ xt (k)
the mean and standard deviation parameters at time t for location k.

A second proposal for the marginal distributions are the gamma distributions:

f mk {ytk} =
{

1− pxt
k ytk = 0,

pxt
k γ {ytk ; α(k)xt ,β(k)xt } ytk > 0;
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where again the α(k)xt ,β(k)xt are the shape and scale parameters for state xt and
location k. We take the joint distribution function to be a truncated version of a
continuous copula function, with the copula density cd(·) denoted by

cd(μ,θ) =
{

cc(μ,θ), ytk > 0,∀k,

∂Cc(μ,θ)/∂μk1 . . . ∂μkB , ki ∈ {ytki > 0}, i ∈ 1, . . . , E ; (25)

where E denotes the number of wet places among the d locations, the Cc are the
continuous copula functions, and cc are the continuous copula densities.

Assume that the daily rainfall observations from the same month are yearly
independent realizations of a common underlying hidden Markov model, whose
states represent different weather types. As an example, we take every June’s daily
rainfall.

log pT (y0:T , x0:T ; v ×ω)

=
M∑

i=1

1{x0 = i} log{πi fi (y0)}+
T∑

t=1

M∑
i=1

M∑
j=1

1{xt = j}1{xt−1 = i} log{pi j f j (yt )}

+
∑
t∈B

M∑
i=1

⎡⎣1{xt = i}{log(πi )}−
M∑

j=1

1{xt = i}1{xt−1 = j} log(pji )

⎤⎦ ,

with B is the set of days which are the first day of June for each year. We use here
50 years of rainfall data from three locations in China: Guangxi, Guangdong, and
Fujian (Figure 12). The graphical correlation can naturally be captured by the
fitting of different copulae state parameters.

Table 7 presents (with a truncated Gumbel) the estimated three states, the cor-
responding different marginal distributions and copula parameters, with estimated
initial probability: π̂Xt = (0.298,0.660,0.042) and estimated transition probabil-
ity matrix:

P̂ =
⎛⎝0.590 0.321 0.089

0.188 0.742 0.080
0.329 0.271 0.400

⎞⎠ .

In the case of our data, gamma distributions fit better as marginals. The states
filtered out represent different weather types. The third states are the most humid
states, with high rainfall occurrence probabilities, while the second states are drier,
and the first are the driest. From the parameters of the gamma distributions, one
sees that the variance increases from the first to the third states, which indicates a
higher chance for heavy rainfall for the humid states.

To validate our model, 1000 samples of artificial time series of 1500 obser-
vations were generated from the fitted model and compared with the original
data. Table 8 presents the true Pearson correlation compared with the estimated
ones from the generated time series. The 5% confidence intervals of the estima-
tors cover the true correlation, which implies that the simulated rainfall can de-
scribe the real correlation of the data quite well. Figure 13 shows a marginal plot
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FIGURE 12. Map of Guangxi, Guangdong, Fujian in China.

TABLE 7. Rainfall occurrence probability and shape, scale parameters estimated
from HMM (data 1957–2006)

Xt Shape Scale Occur Prob

1 (0.442, 0.429, 0.552) (139.33, 116.70, 169.66) (0.252, 0.256, 0.439)
2 (0.671, 0.618, 0.561) (273.83, 253.25, 427.46) (0.806, 0.786, 0.683)
3 (0.636, 1.125, 0.774) (381.09, 264.83, 514.08) (0.667, 1.000, 0.944)

TABLE 8. True correlations, simulated averaged correlations from 1000 samples
and their 5% confidence intervals. 1 Fujian, 2 Guangdong, 3 Guangxi

Location True Ĉorr(Yt,1,Yt,2)

1−−2 0.308 0.300 (0.235,0.373)
2−−3 0.261 0.411 (0.256,0.586)
1−−3 0.203 0.130 (0.058,0.215)

of the log survival function derived from the empirical cdf of the real data and
generated data. The log survival function is a transformation of the marginal cdf
Fmk (ytk):

log{1− Fmk (ytk)}. (26)
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FIGURE 13. Log-survivor-function (black solid) and 95% prediction intervals (gray dot-
ted) of the simulated distribution for the fitted model with sample log-survivor-function
superimposed (black dashed).

Again we see that the 95% confidence interval can cover the true curve fairly
well.

Table 8 contains the autocorrelations and cross-correlations of the real data
and the generated time series. Unfortunately, our generated time series does not
show a similar autocorrelation or cross-correlation. Since there is usually more
than one significant lag of autocorrelation or cross-correlation, the simulated time
series mostly only have one lag. This is an issue also observed in Ailliot et al.
(2009). The precipitation can be modeled first by a vector autoregressive (VAR)
type model, adjusted for zero observations. An alternative could be to impose an
additional dependency structure on {Yt }.

6. CONCLUSION

We propose a dynamic model for multivariate time series with non-Gaussian de-
pendency. Applying an HMM for general copulae leads to a rich clan of dynamic
dependency structures. The proposed methodology is helpful in studying finan-
cial contagion at an extreme level over time, and it can naturally help in deriving
conditional risk measures, such as CoVaR, see Adrian and Brunnermeier (2011).
We have shown that dynamic copula models fit financial markets well, and rainfall
patterns too.
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In the financial application, we performed deGARCHing to remove the second
order dependencies in the marginal time series. As this is a

√
n step, it will not

contaminate the final estimation, and our simulation study confirms this. In the
rainfall application, we extend our model to allow the marginal distribution’s pa-
rameters to also vary over states. Typically it will adapt to nonstationary marginal
time series with trend.
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Giacomini, E., W.K. Härdle, & V. Spokoiny (2009) Inhomogeneous dependence modeling with time-

varying copulae. Journal of Business and Economic Statistics 27(2), 224–234.
Hamilton, J. (1989) A new approach to the economic analysis of nonstationary time series and the

business cycle. Econometrica 57(2), 357–384.
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APPENDIX

A.1. Proof of Theorems 3.1 and 3.2

In the HMM HAC framework, let {Xt , t ≥ 0} with transition probability matrix Pv,ω =
[pv,ω

i j ]i, j=1,...,M and initial distribution πv,ω = {πv,ω
i }i=1,...,M , where {v,ω} ∈ {V,
}

denotes an element in the parameter space {V,
} which parametrizes this model, and q
is the number of continuous parameters (note that our parameter space is partly discrete
(V ) and partly continuous (
)). We introduce the event {v,ω} because 
 correspond to
events induced by continuous parameters θθθ,sj , pi j ,πi . Suppose that Bt, j is a real-valued

additive component equal to
∑t

k=0 Yk, j , j ∈ 1, . . . ,d, with Bt = (Bt,1, Bt,2, . . . , Bt,d )�
and with Yk = (Yk,1,Yk,2, . . . ,Yk,d )� a r.v. taking values on Rd . Suppose further that Bt, j

is adjoined to the chain in such a way that {(Xt , Bt ), t ≥ 0} is a Markov chain on D ×Rd

and

P{(Xt , Bt ) ∈ A × (B +b)|(Xt−1, Bt−1) = (i,b)} (A.1)

= P{(X1, B1) ∈ A × B|(X0, B0) = (i,0)}
= P(i, A × B) =

∑
j∈A

∫
b∈B

pv×ω
i j f j

{
b; θθθ( j)(v ×ω),s( j)(v ×ω)

}
μ(db),

where B,b ⊆ Rd , A ⊆ D, f j {b; θθθ( j)(v,ω), s( j)(v,ω)} is the conditional density of Yt

given Xt−1, Xt with respect to a σ -finite measure μ on Rd , and θθθ(v,ω) ∈ �,s(v,ω) ∈
S, j = 1, . . . , M are the unknown parameters. That is, {Xt , t ≥ 0} is a Markov chain,
given X0, X1, . . . , XT , with Y1, . . . ,YT being independent. In this situation, {Bt , t ≥ 0} is
called a hidden Markov model if there is a Markov chain {Xt , t ≥ 0} such that the process
{(Xt , Bt ), t ≥ 0} satisfies (A.1). Note that in (A.1), the usual parameterization θθθ( j)(v,ω) =
θθθ( j), and s( j)(v,ω) = s( j).

Recall the associated parameter space {V,
}, where V consists of a set of discrete finite
elements and 
 is associated with the parameters θθθ, [pi j ]i, j . Define s∗ and θθθ∗ associated
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with the point {v0,ω0} in the parameter space, as follows.

qT (Y0:T ; v0,ω0)
def= max

j∈0,...,M
pT (Y0:T |x1 = j ; v0,ω0) (A.2)

H(v0,ω0)
def= Ev0,ω0{− log p(Y0|Y−1,Y−2, . . . ; v0,ω0)}

Here, the Y−1, . . . ,Y−T are a finite number of past values of the process.

H(v0,ω0,v,ω)
def= Ev0,ω0{log pT (Y0:T ; v,ω)}

THEOREM A.1 (Leroux (1992)). Under A.1–A.5,

lim
T →∞ T −1Ev0,ω0{log pT (Y0:T ; v0,ω0)} = −H(v0,ω0)

lim
T →∞ T −1 log pT (Y0:T ; v0,ω0) = −H(v0,ω0),

with probability 1, under (v0,ω0), and

lim
T →∞ T −1Ev0,ω0{log pT (Y0:T ; v,ω)} = H(v0,ω0,v,ω)

lim
T →∞ T −1 log pT (Y0:T ; v,ω) = H(v0,ω0,v,ω),

with probability 1, under (v0,ω0).

LEMMA A.2. ∀vi ,uj , i, j ∈ 1, . . . , M as weights, the difference between M linear com-
bination of states leads to

M∑
i=1

vi f (y,θθθ s(i) ,s(i)) �=
M∑

j=1

μj f (y,θθθ s′( j) ,s′( j)). (A.3)

Proof. For each s(i), i ∈ 1, . . . , M associated with dependency parameter θθθ s(i) ∈ Rd+.
So

M∑
i=1

vi δs(i) �=
M∑

j=1

μj δs′( j) ,a.e. (A.4)

implies

M∑
i=1

vi δs(i) δθθθ s(i)
�=

M∑
j=1

μj δs′( j) δθθθ s′( j) ,a.e. (A.5)
n

Furthermore, if (A.4), then the corresponding point in the parameter space (v,ω)
leads to K(v0,ω0; v,ω), and (v,ω) would not be in the equivalent class of (v0,ω0) as
long as the points v and v0 are different as (A.4) (the equivalence class of v0 is de-
fined in Leroux (1992)), and the divergence between (v,ω) and (v0,ω0) is defined as
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K(v0,ω0; v,ω)
def= H(v0,ω0,v0,ω0) − H(v0,ω0,v,ω). This is connected with the log

likelihood ratio process, and one can prove that if either (A.4) or (A.5), and provided that
(A.2) holds, then (A.3) will hold, and so K(v0,ω0; v,ω) > 0. Namely, the divergence can
distinguish between points from different equivalent classes.

Next, we study whether plugging in nonparametric estimated margins would affect the
consistency results by analyzing the uniform convergence of f̂i (y).

Recall f̂i (y)
def= c{F̂m1 (y1), F̂m2 (y2), . . . , F̂md (yd ),θ̂θθ

(i), ŝ(i)} f̂m1 (y1) f̂m2 (y2) · · · f̂md (yd ).
We have, according to the uniform consistency of copulae density, for all t ∈ 1, . . . ,T,
i ∈ 1, . . . , M ,

max
s(i)

sup
yt1,...,ytd∈Bd ,θθθ(i)∈�

∣∣∣ĉ(F̂m1 (yt1), F̂m2 (yt2), . . . , F̂md (ytd ),θθθ(i),s(i))

− c(Fm1 (yt1), Fm2 (yt2), . . . , Fmd (ytd ),θθθ(i),s(i))
∣∣∣ (A.6)

≤
d∑

j=1

∣∣∣c(Fm1,η1
(yt1), Fm2,η2

(yt2), . . . , Fmd,ηd
(ytd )){F̂mj (yt j )− Fmj (yt j )}

∣∣∣, (A.7)

where Fmj,ηj
(·) def= Fmj (·) + ηj [F(·) − Fmj (·)], ηj = [0,1], and Fmj,ηj

(·) lies in the set of

admission functions for Fmj .
Bickel et al. (1998) states that as {Xt } is ergodic, then it follows that {Yt } is also ergodic.

It is known that any strictly irreducible and aperiodic Markov chain is β-mixing, Bradley
(1986). Then the marginal distribution of Ytm ,m = 1, . . . , M follows a process that is
β-mixing with an exponential decay rate, namely βt = O{t−b} for some constant a.
The temporal dependence of the marginal univariate time series Ytm is inherited sim-
ply from the underlying Markov chain as it is a measurable transformation of Xt . Since
{Yt } follows HMM HAC, then the marginal distribution of Ytm follows a process that is
β-mixing with decay rate βt =O(b−t ) for some constant b. Then it follows from the re-
sults of Liu and Wu (2010), under assumptions A1–A5, that the marginal kernel density
estimation has a Bickel and Rosenblatt (1973)-type of uniform consistency.

sup
y∈B

∣∣ f̂mi (y)− fmi (y)
∣∣=Op(1) (A.8)

Also according to Chen and Fan (2005),
√

T sup
y∈B

∣∣F̂mm (y)− Fmm (y)
∣∣=Op(1). (A.9)

Finally, we have

max
s

sup
y1,...,yd∈Bd ,θθθ∈E

∣∣∣ĉ(F̂m1 (y1), F̂m2 (y2), . . . , F̂md (yd ),θθθ(i),s(i))

− c(Fm1 (y1), Fm2 (y2), . . . , Fmd (yd ),θθθ(i),s(i))
∣∣∣=Op(1).

Therefore, the multivariate distribution at each state satisfies

sup
y∈Bd

∣∣ f̂ j (y)− f j (y)
∣∣=Op(1),
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where B, Bd are compact sets. So the plug in estimation does not contaminate the consis-
tency results.

To prove the consistency of our estimation of this parameter, we restate the theorems of
consistency in Leroux (1992) for our parameter space. One needs to show that for a discrete
subspace V c which does not contain any point of the equivalence class of v0, for v ∈ V c

and an arbitrary value of ω ∈ 
, that, with probability 1,

lim
T →∞

[
min
v∈V c

log sup
ω∈


pT (Y0:T ; v,ω)− log pT
(
Y0:T ; v0,ω0)]→ −∞. (A.10)

This follows directly from Lemma A.2 (the identifiability of the state parameters) and its
consequence K(v0,ω0; v,ω) > 0. Theorem 3.1 is proved.

To prove Theorem 3.2, note that limT →∞ maxi∈1,...,M P(|θ̂θθ(i) −θθθ∗(i)| > ε|ŝ(i) = s∗(i))

is conditioned on the event {ŝ(i) = s∗(i)} which asymptotically holds with probability 1.
Therefore it suffices to prove, for any ŝ(i) = s(i)

lim
T →∞ min

i∈1,...,M
P
(
|θ̂θθ(i) −θθθ∗(i)| > ε

)
= 0. (A.11)

To show (A.11), one needs to show that for a (V c,
c) which does not contain any point
of the equivalence class of (v0,ω0), we have, with probability 1,

lim
T →∞

{
log sup

ω∈
c
pT (Y0:T ; v0,ω)− log pT

(
Y0:T ; v0,ω0)}→ −∞, (A.12)

which is implied from the following statement: for any closed subset C of 
c, there exists
a sequence of open subsets of Oωh with h = 1, . . . , H with C ⊆ ∪H

h=1Oωh , such that

lim
T →∞

⎧⎨⎩max
h

log sup
ω∈Oωh

pT (Y0:T ; v0,ω)− log pT (Y0:T ; v0,ω0)

⎫⎬⎭→ −∞. (A.13)

To prove (A.13), we have the modified definition:

H(v0,ω0,v0,ω;Oωh )
def= lim

T
log sup

ω′∈ω0
qT (Y0:T ,v0,ω′)/T . (A.14)

It can be derived that

H(v0,ω0,v0,ω) < H(v0,ω0,v0,ω0), (A.15)

when (v0,ω) and (v0,ω0) do not lie in the same equivalence class. Then (A.15) is a con-
sequence of the identifiability condition A.2, and this leads to: ∃ε > 0, Tε and Oω such
that

E log sup
ω′∈Oω

qTε (v
0,ω′)

/
Tε < E logqTε (v

0,ω)/Tε + ε < H(v0,ω0,v0,ω0)− ε.

Also because logsupω′∈Oω
pT (Y0:T ,v0,ω′)/T and logsupω′∈Oω

qT (Y0:T ,v0,ω′)/T
have the same limit value, there exists a constant ε > 0,

lim
T →∞ log sup

ω′∈Oωh

pT (y0:T ,v0,ω′)
/

T = H(v0,ω0,v0,ω;Oωh ) ≤ H(v0,ω0,v0,ω0)− ε.

Now (A.13) follows.
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A.2. Proof of Theorem 3.3

Recall from the last subsection, under A.3,

sup
y∈B

∣∣ f̂mi (y)− fmi (y)
∣∣=Op(1) (A.16)

√
T sup

y∈B

∣∣F̂mm (y)− Fmm (y)
∣∣=Op(1). (A.17)

Let Utm
def= Fmm (Ytm), Ũtm

def= F̂mm (Ytm), and Ut
def= (Ut1, . . . ,Utd ). Define the log

likelihood LT (θθθ) = LT (θθθ,U0:T )
def= log pT (y0:T ); in our case, we will work with

LT (θθθ, Ũ0:T ). Relying on the LAN property proved in Bickel et al. (1998), under A.1–A.7,
we have

LT (θθθ∗ + T −1/2θθθ,U0:T )− LT (θθθ∗,U0:T )

= T −1/2θθθ�∂LT (θθθ∗)+ T −1θθθ�∂2LT (θθθ∗)θθθ/2+ RT (θθθ), (A.18)

where RT (θθθ) tends to zero in probability, uniformly on compact subsets of the parameter
space of θθθ .

Next we need to prove that, uniformly over θθθ ,

LT (θθθ∗ + T −1/2θθθ,U0:T )− LT (θθθ∗,U0:T )− LT (θθθ∗ +n−1/2θθθ, Ũ0:T )+ LT (θθθ∗, Ũ0:T )

− T −1/2θθθ�∑
t

∑
m

Wm(Utm) =Op{RT (θθθ)},

where

Wm(Utm)
def=
∫
v1,...,vd

{1(Utm ≤ vm)− vm}(E∂ ãt b̃m/∂θθθ |θθθ=θθθ∗)

×c
(
v1, . . . ,vd ,θθθ∗(m),s∗(m)

)
dv1 · · ·dvd .

ãt (·) and b̃m(·) are functions defined later in the proof.
Similarly, we have

LT (θθθ∗, Ũ0:T )− LT (θθθ∗,U0:T )

= log

(∑M
x0=1 · · ·∑M

xT =1 πx0 f̃x0(y0)
∏T

t=1 pxt−1xt f̃xt (yt )∑M
x0=1 · · ·∑M

xT =1 πx0 fx0(y0)
∏T

t=1 pxt−1xt fxt (yt )

)

=
∑M

x0=1 · · ·∑M
xT =1 πx0 f̃x0(y0)

∏T
t=1 pxt−1xt f̃xt (yt )∑M

x0=1 · · ·∑M
xT =1 πx0

∏T
t=1 pxt−1xt fxt (yt )

−
∑M

x0=1 · · ·∑M
xT =1 πx0 fx0(y0)

∏T
t=1 pxt−1xt fxt (yt )∑M

x0=1 · · ·∑M
xT =1 πx0

∏T
t=1 pxt−1xt fxt (yt )

+Op(1)

def=
∑

t

M∑
x0=1

· · ·
M∑

xT =1

ãt (θθθ
∗){ f̃xt (yt )− fxt (yt )}+Op(1),

where ãt0(θθθ
∗) = πx0 f̃x0 (y0)

∏t0
t=1 pxt−1xt f̃xt (yt )

∏T
t=t0+1 pxt−1xt fxt (yt )∑M

x0=1···
∑M

xT =1 πx0 fx0 (y0)
∏T

t=1 pxt−1xt fxt (yt )
.
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As

f̃xt (yt )− fxt (yt ) = c
(

Ũ0:T ,θθθ∗(xt ),s∗(xt )
) d∏

m=1

fmm − c
(

U0:T ,θθθ∗(xt ),s∗(xt )
) d∏

j=1

fmj

=
∑
m

cum

{
Fm1 (y1t ), Fm2 (y2t ), . . . , Fmd (ydt ),θθθ

∗(xt ),s∗(xt )
}

×
{

F̂mm (ymt )− Fmm (ymt )
} d∏

j=1

fmj +Op(1)

def=
∑
m

b̃m(θθθ(xt ))
{

F̂mm (ymt )− Fmm (ymt )
}

+Op(1),

where b̃m(θθθ(xt ))
def= cum {Fm(y1t ), Fm(y2t ), . . . , Fm(ydt ),θθθ

(xt ),s(xt )}∏d
j=1 fmj , and

cum denotes the partial derivative of the copulae density w.r.t. um .
Then it follows that

LT (θθθ∗ + T −1/2θθθ,U1:T )− LT (θθθ∗,U1:T )− LT (θθθ∗ + T −1/2θθθ, Ũ1:T )+ LT (θθθ∗, Ũ1:T )

= T −1/2θθθ�
M∑

x0=1

· · ·
M∑

xT =1

∑
t

[∑
m

∂ ãt b̃m/∂θθθ{F̂m(ymt )− Fm(ymt )}
]

+Op(T −1/2)

= T −1/2θθθ�∑
t

∑
m

Wm(Utm)+Op(T −1/2)

So, let

B
def= E{∂2LT (θθθ∗,U1:T )}

A
def=
{

∂LT (θθθ∗,U1:T )+
∑

t

∑
m

Wm(Utm)

}
, (A.19)

Finally, we have that the estimated θ̂θθ can be represented by θ̂θθ − θθθ∗ = B−1 A +
Op(T −1/2) coming from Bickel et al. (1998).
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