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Abstract

Human or time resources can sometimes fall short in medical image diagnostics, and analyzing images in full detail can be 

a challenging task. With recent advances in artificial intelligence, an increasing number of systems have been developed to 

assist clinicians in their work. In this study, the objective was to train a model that can distinguish between various fracture 

types on different levels of hierarchical taxonomy and detect them on 2D-image representations of volumetric postmortem 

computed tomography (PMCT) data. We used a deep learning model based on the ResNet50 architecture that was pretrained 

on ImageNet data, and we used transfer learning to fine-tune it to our specific task. We trained our model to distinguish 

between “displaced,” “nondisplaced,” “ad latus,” “ad longitudinem cum contractione,” and “ad longitudinem cum distrac-

tione” fractures. Radiographs with no fractures were correctly predicted in 95–99% of cases. Nondisplaced fractures were 

correctly predicted in 80–86% of cases. Displaced fractures of the “ad latus” type were correctly predicted in 17–18% of cases. 

The other two displaced types of fractures, “ad longitudinem cum contractione” and “ad longitudinem cum distractione,” 

were correctly predicted in 70–75% and 64–75% of cases, respectively. The model achieved the best performance when the 

level of hierarchical taxonomy was high, while it had more difficulties when the level of hierarchical taxonomy was lower. 

Overall, deep learning techniques constitute a reliable solution for forensic pathologists and medical practitioners seeking 

to reduce workload.
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Introduction

Rib fractures are a common type of injury. They can result 

from blunt trauma in an accident, chest compression dur-

ing cardiopulmonary resuscitation, or a pathological frac-

ture in malignant disease. They are often associated with 

other injuries, such as hemo- or pneumothorax and lung 

contusions [1]. Depending on the displacement, type, and 

extent, rib fractures can result in an unstable chest (flail 

chest) and—in combination with associated injuries—can 

significantly influence morbidity and mortality [1, 2]. 

Depending on trauma severity or case circumstances, con-

ventional radiography is the primary technique used to look 

for rib fractures because of its general availability, low radia-

tion dose, and affordable costs. However, the sensitivity of 

conventional radiographs for the detection of rib fractures 

(especially nondisplaced ones) is considered relatively low 

[3, 4]. In contrast, computed tomography (CT) shows much 

higher sensitivity in detecting rib fractures, providing more 

detailed two-dimensional images that might also be viewed 

in three dimensions [5]. However, CT scans might not be 

available everywhere. In addition, they are more expensive, 

and they expose the patient to a higher radiation dose than 

conventional radiography [6]. In forensic medicine, con-

cerns regarding radiation dose can obviously be ignored, 

and postmortem computed tomography (PMCT) has already 

gained great acceptance worldwide as a valuable adjunct and 
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sometimes even a replacement for conventional autopsies 

[7].

Several recent studies have employed deep learning and 

image processing to automate rib fracture detection, adding 

to previous literature in which different groups proposed 

solutions for automating the detection of rib fractures on 

CT scans and radiographs [8–12]. For example, one recent 

study focused on detecting rib fractures on CT scans and 

classifying them into six categories, including displaced 

versus nondisplaced, buckle, and segmental fractures [13]. 

The authors trained a U-Net-based network using the Rib-

Frac challenge dataset [14]. The model proposed by Choi 

et al. can also determine the position of a fracture. In another 

study by Wang and Wang, the authors developed a modi-

fied U-Net architecture, combined with an attention module 

and a modified dilated convolution, to detect and segment 

rib fractures on CT scans [15]. The authors relied on the 

same RibFrac challenge dataset to train their architecture. 

In a third study, Wu et al. utilized chest radiographs and 

employed a YOLOv3-based convolutional neural network 

(CNN) for rib fracture detection [16].

In our study, we developed a model to automatically 

detect rib fractures and classify whether they are displaced 

or nondisplaced using two-dimensional planar views of the 

rib cage reconstructed from PMCT volumetric data.

Materials and methods

Ethics

The data used in this retrospective cohort study are in 

accordance with Swiss laws and ethical standards. The ethics 

approval for this study was waived by the Ethics Committee 

of the Canton of Zurich (KEK ZH-No. 15–0686).

Case selection

A total of 340 consecutive autopsy cases were retrospec-

tively retrieved from July 2017 to April 2018 from the 

archives of the Institute of Forensic Medicine, University 

of Zurich, Switzerland. We excluded cases with signs of 

advanced decomposition (using the RA-index defined by 

Egger et al. [17]), corpses that had undergone organ explan-

tation, cases of severe trauma with extensive damage to the 

corpse (e.g., amputation or exenteration), cases without 

whole-body PMCT, cases where rib fractures were not vis-

ible in the rib unfolding tool or located in the cartilaginous 

part of the rib, and cases that were still under investiga-

tion during this period. After these exclusion criteria were 

applied, a total of 195 cases remained (55 females, median 

age 64 years; 140 males, median age 54 years). Of the 195 

cases, 85 showed acute rib fractures, 84 had no rib fractures, 

and 26 presented subacute and chronic fractures either in 

combination with acute fractures or independently. Both 

complete and incomplete rib fractures were included, inde-

pendent of their location. They were classified as either “dis-

placed,” “nondisplaced,” “ad latus” (sideways), “ad axim” 

(with angulation), “ad longitudinem cum contractione” (in 

long axis compressed fracture), and “ad longitudinem cum 

distractione” (in long axis with gap between the fragments) 

fractures.

Postmortem computed tomography data

Whole-body imaging was performed on a 128-slice dual 

source CT scanner (SOMATOM Flash Definition, Sie-

mens, Forchheim, Germany) using automated dose modu-

lation software (CARE Dose4D™, Siemens, Forchheim, 

Germany); the slice thickness was 1 mm, and the increment 

was 0.5 mm. The images were reconstructed with both soft 

and hard kernels. A complete overview of the technical 

parameters used to acquire the CT scans can be found in 

Flach et al. [18].

Image treatment prior to classification

The rib fracture images were reconstructed from volumetric 

CT data using Syngo.via rib unfolding tool CT Bone Read-

ing (Siemens Healthineers GmbH, Erlangen, Germany) with 

standard bone window setting (center 450, width 1500) (see 

Fig. 1 for more details). The tool used for this conversion 

was developed by Ringl et al. [19].

Data mining

To extract data containing fractures, we used 270 images 

of unfolded rib cages with fractures. Two readers, one who 

was a medical student under supervision and one who was 

a board-certified forensic pathologist and radiologist, clas-

sified each fracture type as either “displaced” or “nondis-

placed.” The “displaced” fractures were further divided 

into “ad latus” (sideways), “ad axim” (with angulation), 

“ad longitudinem cum contractione” (in long axis com-

pressed fracture), and “ad longitudinem cum distractione” 

(in long axis with gap between the fragments). Due to the 

very small number of “ad axim” fractures, we excluded 

them from further analysis. First, we cropped the images 

to 500 × 1000 pixels to eliminate the background and then 

upscaled the images to 300% of the original size with the 

INTER_AREA interpolation method from OpenCV, result-

ing in large images measuring 1500 × 3000. With this pre-

processing step, we wanted to achieve an optimal size for 

dividing the image into sufficient image patches but still 

capturing all fractures. All fractures were marked using their 

respective x- and y-coordinates on the large image. For each 
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large image containing one or more fractures, we applied 

data augmentation by shifting the sliding window from the 

centered x- and y-coordinates in all four cardinal directions 

(up, down, right, and left) in steps of 10 pixels. This resulted 

in a total of 16 additional samples next to the original sample 

(centered around the fracture). For each fracture, we then 

manually removed the sample images where the data aug-

mentation resulted in a loss of information (e.g., the fracture 

was no longer visible). The sample curation led to 11,759 

“displaced” (“ad latus” 1785, “longitudinem cum contrac-

tione” 6801, and “longitudinem cum distractione” 3173) 

and 18,462 “nondisplaced” samples, for a total of 30,251 

“fracture” images.

To extract samples with the label “no fracture,” we used 

231 images of unfolded rib cages without any fractures. As 

for the images with fractures, we applied the same preproc-

essing steps (cropping and resizing) to images without frac-

tures. Employing a sliding window of size 99 × 99 pixels and 

shifting it 25 pixels in each direction along both the x - and 

y-axes, we obtained 231,926 small images, each of which 

was 99 × 99 pixels in size. From these images, we randomly 

selected 30,251  “no fracture” images, resulting in a bal-

anced dataset of 60,472 samples in total.

Training, validation, and testing

For our study, we used a Windows workstation (Windows 

10, Nvidia GeForce GTX 1660 SUPER, 64  GB CPU 

RAM). We split our data into ~ 70% training and ~ 30% 

test data. Representations from the same fracture were 

kept together in each partition to prevent data leakage 

into the test set; thus, the partitions varied slightly in 

size. We then ran a 5-fold cross-validation on the training 

dataset with different hyperparameters. We selected the 

best hyperparameters (see Section “Model architecture 

and hyperparameters”) by assessing the epochs with the 

highest validation score (F1 score). Finally, we trained 

our model with the best selection of hyperparameters on 
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Fig. 1  Workflow of the automated rib fracture classification pipeline. 

Each volumetric PMCT scan of the rib cage was transformed into a 

corresponding 2D representation. If the representation did not display 

any fracture (“no fracture”), we collected a series of sample images 

(each measuring 99 × 99 pixels) using a sliding window. Then, we 

randomly drew from a subset of those samples. If the representation 

displayed rib fractures, we collected a sample at the exact position of 

the fracture with an additional set of 16 samples. The additional set 

was obtained using data augmentation by sliding the 99 × 99-pixel 

window in each of the four cardinal directions in 10-pixel steps. The 

samples from the four fracture types and the “no fracture” samples 

were fed into a ResNet50 architecture for training and testing. We 

validated the performance of our model on three levels of hierarchi-

cal taxonomy: (1) a high-level task where the model distinguished 

between “fracture” and “no fracture,” (2) a mid-level task to assess 

how well the model could classify “nondisplaced” and “displaced” 

fractures, and (3) a low-level task to validate the performance of the 

model in classifying the three different types of displaced fractures 

“ad latus” (sideways), “ad longitudinem cum contractione” (in long 

axis compressed fracture), or “ad longitudinem cum distractione” (in 

long axis with gap between the fragments)
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the full training dataset and validated the trained model 

on the test set. We assessed three levels of hierarchical 

taxonomy (see Fig. 1 for more details):

1. Performance of the model on the balanced binary task 

when classifying “no fracture” and “fracture” and 

reported with the accuracy score (high-level task).

2. Performance of the model on the imbalanced binary task 

when classifying “displaced” and “nondisplaced” with 

the F1, precision, and recall scores (mid-level task).

3. Performance of the model on the imbalanced multiclass 

task with the displaced classes “ad latus,” “ad longi-

tudinem cum contractione,” and “ad longitudinem cum 

distractione” with the F1, precision, and recall scores 

(low-level task).

Additionally, we defined two types of assessment:

1. Performance measurement on the fracture representa-

tions (referred to as “standard” assessment), as in simple 

image classification tasks.

2. Aggregation of the prediction values from multiple rep-

resentations of the same fracture into a single prediction 

value. The aggregation procedure starts by running a 

custom-made function Y  on the predicted values. The 

function Y  is defined as

where the variable ŷi stands for the label value predicted by 

the model for the representation i . The variable ŷi can take 

any integer value from 0 to c , where c represents the number 

of classes. Hence, the function Y = 0 if at least one of the 

representations i was classified into the class 0 (classified 

as “no fracture”). Otherwise, the function Y = 1 if at least 

one of the representations i was classified into a nonzero 

class (classified as “fracture”). Then, we used the maximum 

operator to determine the fracture type k when Y = 1:

where the logitc
i
 stands for the model output value for the 

class c before entering the Softmax function. In other words, 

the aggregated prediction value corresponding to a single 

fracture is the type of fracture (class) that has the highest 

weight over all its representations. This would ensure us that 

we have detected a fracture even with the weakest signal. We 

referred to this type of assessment as “aggregated.”

Y =

⎧
⎪⎨⎪⎩

0, if

n∑
i=1

ŷi = 0

1, otherwise

k = max
c

(
1

n

n
∑

i=1

logitc
i
)

Model architecture and hyperparameters

We used the ResNet50 architecture [20] pretrained on the 

ImageNet database combined with two additional dense lay-

ers, each with 198 neurons, and with a dropout layer whose 

dropout rate was 0.5. Additionally, we included the Ear-

lyStopping function to stop the training when the value of 

the validation loss function was minimal (patience = 15). We 

also used the ReduceLROnPlateau function to downscale the 

learning rate when the validation loss value was not improving 

(patience = 2) [21]. The batch size was set to 16, and we used 

the categorical cross-entropy loss function with the Adam 

optimizer. We first froze the layers of the pretrained network 

and trained on our data for several epochs (max = 100 epochs, 

depending on early stopping) with a learning rate of 0.0001. 

Then, we unfroze the layers and fine-tuned the network for 

another few epochs (max = 100 epochs, depending on early 

stopping) with a learning rate of 8e − 05.

Results

 We assessed the performance of our model in two different 

ways. First, we showed the metrics for the predictions on 

all representations in the test set (“standard” assessment). 

Second, we aggregated the predictions of all representations 

on the test set to the fracture level and reported the metrics 

(“aggregated” assessment). Figure 2 shows the confusion 

matrices for all classes in terms of absolute and relative val-

ues and for each of the assessments. Most of the confusions 

occurred within the fracture classes, while fewer occurred in 

the class “no fracture.” While “nondisplaced” was correctly 

predicted in 80–86% of cases (depending on the assessment), 

“ad latus” (sideways) was correctly predicted in only 17–18%  

of cases. The other two “displaced” subclasses, “ad longi-

tudinem cum contractione” (in long axis compressed frac-

ture) and “ad longitudinem cum distractione,” (in long axis

with gap between the fragments) were correctly predicted in  

70–75% and 64–75% of cases, respectively.

Table 1 gives an overview of the performance of our 

model. In the balanced binary classification task with the 

classes “no fracture” and “fracture,” our model achieved 

an accuracy score of 0.945 (0 worst score, 1 best score) 

on the “standard” assessment and an accuracy score of 

0.993 on the “aggregated” assessment. When evaluating 

the models’ performance on the imbalanced binary task 

with the classes “displaced” and “nondisplaced,” we found 

an F1 score of 0.845, a precision score of 0.845, and a 

recall score of 0.846. When data were aggregated at the 

fracture level, the model achieved an F1 score of 0.856, 

a precision score of 0.857, and a recall score of 0.855. 
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The third task was an imbalanced multiclass task of the 

different “displaced” classes “ad latus” (sideways), “ad 

longitudinem cum contractione” (in long axis compressed 

fracture), and “ad longitudinem cum distractione” (in long 

axis with gap between the fragments). There, we found an 

F1 score of 0.661, a precision score of 0.736, and a recall 

score of 0.603 for the “standard” assessment and an F1 

score of 0.707, a precision score of 0.769, and a recall 

score of 0.662 for the “aggregated” assessment.

Discussion

The aim of this study was to train a deep learning model 

able to detect and classify different types of rib fractures 

using a two-dimensional representation of the rib cage 

reconstructed from three-dimensional PMCT images. 

By applying our model, we investigated two types of 

assessment (“standard” and “aggregated”) on three dif-

ferent hierarchical taxonomy levels (“fracture” versus “no 

Fig. 2  Confusion matrices. Top row: absolute values; bottom row: 

relative values. Blue, high-level task. Orange, mid-level task. Green, 

low-level task. a Confusion matrices for standard assessment (all data 

points) and b confusion matrices for aggregated assessment (aggre-

gated to fractures as data points)

Table 1  Performance assessment overview. We assessed three differ-

ent hierarchical taxonomy levels: (1) “fracture” vs. no “fracture,” (2) 

fractures separated into “displaced” and “nondisplaced,” and (3) dis-

placed fractures separated into three subclasses. The three levels are 

assessed in two ways; “standard” (all images) and “aggregated” (e.g., 

all representations of a fracture aggregated into a single datapoint). 

For each case, we calculated the F1, precision, recall, and accuracy 

score, depending on whether the dataset is balanced (accuracy) or 

imbalanced (F1, recall, and precision)

Standard Aggregated

F1 Precision Recall Accuracy F1 Precision Recall Accuracy

“Fracture” or “no fracture” - - - 0.945 - - - 0.993

“Displaced” or “nondisplaced” 0.845 0.845 0.846 - 0.856 0.857 0.855 -

Displaced subclasses 0.661 0.736 0.603 - 0.707 0.769 0.662 -
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fracture,” “displaced” versus “nondisplaced,” and “dis-

placed subclasses”) with different scores. Our results show 

that the trained model can distinguish between “fracture” 

and “no fracture” samples to a large extent and with a 

high accuracy (94.5%). When data were aggregated at the 

fracture level, only three out of 591 fractures were classi-

fied as “no fracture.” The model also performed reliably 

in distinguishing “displaced” from “nondisplaced” frac-

tures, although to a slightly lesser extent. When classifying 

“displaced” from “nondisplaced” fractures, we noted that 

the trained model performed slightly better in classifying 

“nondisplaced” than “displaced” fractures. This could be 

due to either the smaller sample size or the possibility that 

the features of “displaced” fractures were more difficult 

for the model to capture. Finally, the most difficult task 

was distinguishing “displaced” subclasses. In particular, 

the model performed worst for the subclass “ad latus” 

(sideways), which was often confused with “ad longitudi-

nem cum contractione” (in long axis compressed fracture) 

or “nondisplaced.” The scores for the aggregated assess-

ment were generally higher than those for the standard 

assessment, which reflects our choice of metric design. We 

defined a single correct fracture prediction from all pos-

sible representations as sufficient to qualify as a “fracture” 

and be classified accordingly.

As we mentioned in the introduction, three recent studies 

used deep learning techniques to automatically detect rib 

fractures either on CT scans or radiographs. These studies 

used different datasets which makes it difficult to compare 

their performance with our model. However, we went one 

step further by identifying four different subclasses of “dis-

placed” fractures. We also developed a method to display the 

position of each fracture. If multiple fractures are present on 

the same CT scans, they are labeled separately (see Fig. 1).

Conclusion

The analysis of two-dimensional representations of the rib 

cage instead of volumetric data already enables clinicians to 

make a quick and easy assessment for potential rib fractures. 

Building upon our previous work [22], we have shown how 

deep learning techniques can be used as an automation step 

to reliably locate and classify relevant fracture types on such 

large two-dimensional PMCT images and thus further sim-

plify and support clinicians’ work.

Key points

1. Our model achieved an accuracy score of 0.945 on a 

balanced binary classification task with the classes “no 

fracture” and “fracture.”

2. The F1 score on the imbalanced binary task with the 

classes “displaced” and “nondisplaced” reached 0.845.

3. Classifying “displaced” subclasses remains challenging, 

especially the subclass “ad latus.”
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