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Ex vivo drug response profiling for 
response and outcome prediction in 
hematologic malignancies: the prospective 
non-interventional SMARTrial

Nora Liebers1,2,3,4,5,18, Peter-Martin Bruch    1,2,4,5,18, Tobias Terzer6, 

Miguel Hernandez-Hernandez2, Nagarajan Paramasivam7, 

Donnacha Fitzgerald2,4,8, Heidi Altmann9, Tobias Roider    2, Carolin Kolb2, 

Mareike Knoll2, Angela Lenze2, Uwe Platzbecker10, Christoph Röllig9, 

Claudia Baldus    11, Hubert Serve    12, Martin Bornhäuser9, 

Daniel Hübschmann    7,13,14, Carsten Müller-Tidow    2,3,4, Friedrich Stölzel    11, 

Wolfgang Huber    4,8, Axel Benner6, Thorsten Zenz    15,16, Junyan Lu4,8,17  

& Sascha Dietrich    1,2,3,4,5,8,17 

Ex vivo drug response profiling is a powerful tool to study genotype–drug 

response associations and is being explored as a tool set for precision 

medicine in cancer. Here we conducted a prospective non-interventional 

trial to investigate feasibility of ex vivo drug response profiling for treatment 

guidance in hematologic malignancies (SMARTrial, NCT03488641). The 

primary endpoint to provide drug response profiling reports within 7 d was 

met in 91% of all study participants (N = 80). Secondary endpoint analysis 

revealed that ex vivo resistance t o c he motherapeutic drugs predicted 

chemotherapy treatment failure in vivo. We confirmed the predictive value 

of ex vivo response to chemotherapy in a validation cohort of 95 individuals 

with acute myeloid leukemia treated with daunorubicin and cytarabine.  

Ex vivo drug response profiles improved ELN-22 risk stratification in 

individuals with adverse risk. We conclude that ex vivo drug response 

profiling is clinically feasible and has the potential to predict chemotherapy 

response in individuals with hematologic malignancies beyond clinically 

established genetic markers.

Responses to anticancer treatments are often heterogeneous, and 

our understanding of factors that predict drug response is still unsat-

isfying. Advances have been made by using molecular phenotypes to 

predict drug response. In many hematologic malignancies, includ-

ing acute myeloid leukemia (AML), acute lymphoblastic leukemia 

(ALL), chronic lymphocytic leukemia (CLL) and multiple myeloma, 

tailored mutation analysis and gene panel diagnostics have already 

become a routine procedure to subclassify risk groups and assign 

therapeutic strategies1–5. Furthermore, recent clinical studies sug-

gested that precise genotype-informed treatment strategies can 

result in substantial survival benefits in individuals with AML or other 

rare types of cancer6,7. However, genomic profiling often does not 

reveal targetable mutations8,9. In addition, genome sequencing does 

not sufficiently explain the variance of drug response in all instances.  
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(9/80, 11%; Fig. 2b). The majority of participants were treatment naive 

(54/80, 68%), but individual participants were heavily pretreated with 

three or more prior lines of therapy before study entry (6/80, 8%). The 

median follow-up time of the study cohort was 2.1 years. Median time 

from diagnosis or determination of treatment indication to treat-

ment initiation ranged from 2 d in T-PLL to 32 d in follicular lymphoma  

(FL; Supplementary Table 2).

Human-derived primary tumor cells were obtained from periph-

eral blood (59/80, 74%), bone marrow aspirates (12/80, 15%) and lymph 

node biopsies (9/80, 11%). The median tumor purity of all 80 samples 

was 84.5% (range, 52–99%) and was assessed by immunophenotyping, 

peripheral blood smears or bone marrow cytology.

Components of almost all in vivo therapies (95%) recommended by 

the treating physician were included in our diagnostic ex vivo drug test. 

Sixty-four percent of participants (51/80) were scheduled for chemo-

therapy at study entry, either alone or in combination with immuno-

therapies and small-molecule inhibitors (Supplementary Table 3).  

Chemotherapy-free treatments, such as ibrutinib or venetoclax, were 

intended in 36% of participants (29/80). In total, three participants 

did not start the scheduled treatment due to fulminant progressive 

disease (PD), infection leading to death and refusal of the therapy by 

the participant after study inclusion.

Feasibility of ex vivo DRP for clinical decision-making
The primary objective of the non-interventional SMARTrial was to 

evaluate the feasibility of a short-term ex vivo DRP assay for pri-

mary human-derived cancer cells in the clinical routine. Therefore,  

we evaluated the rate of successfully completed drug response  

assays within 7 d as the primary endpoint. The primary endpoint 

was met in 91.3% (95% confidence interval (95% CI) of 82.8–96.4%) of 

all eligible participants (Fig. 2c). The median time until the release 

of the final drug response report was 3 d (interquartile range (IQR) 

of 2–6 d, range of 2–17 d). The DRP was reported in the ‘SMARTrial 

explorer’, an interactive web application (http://mozi.embl.de/pub-

lic/SMARTrial/), which could be accessed by the treating physicians. 

Reasons for delayed reporting in individual participants included 

suboptimal sample quality or study enrollment of participants before 

public holidays.

Quality assessment
We performed several steps of data quality assessment before the  

ex vivo DRP data were used for further exploratory analyses. First, we 

estimated the technical variability by calculating the standard deviation 

(s.d.) of 16 evenly distributed dimethyl sulfoxide (DMSO) controls for 

each drug plate per participant (Extended Data Fig. 1a). In general, the 

median s.d. was low (median s.d.: 0.08; range: 0.03–0.6), and we found 

no significant difference between the samples derived from differ-

ent tumor sample origins (peripheral blood, bone marrow and lymph 

node; P = 0.86, one-way analysis of variance). Four myeloid and three 

lymphoma plates belonging to a total of four participants (S047, S050, 

S056 and S062) showed relatively high technical noise (s.d. of negative 

controls > 0.3). For two participants (S047 and S062), no additional 

tumor material was available for retesting, and these samples were 

therefore excluded.

In addition, we assessed the validity of our ex vivo DRP pipeline by 

analyzing if expected drug–drug correlations and known gene–drug 

associations are recapitulated. Drugs with similar modes of action (for 

example, BTK inhibitors, BCL-2 inhibitors and vinca alkaloids) strongly 

correlated with each other (Extended Data Figs. 1b and 2), and par-

ticipant samples clustered by diagnosis (Extended Data Figs. 3 and 4).  

Clinically well-established therapeutics recapitulated known vulner-

abilities conferred by mutations, such as in FLT3 and IDH1, in AML 

cells. For example, tumor cells with mutations in the FLT3 tyrosine 

kinase domain (FLT3-TKD) were sensitive to the type I FLT3 inhibitors 

crenolanib, gilteritinib and midostaurin, which bind the FLT3 receptor 

For example, in CLL, other molecular omics layers, such as gene 

expression and DNA methylation, and their combination explained 

the variance of drug response to selected drugs noticeably better 

than genomic alterations alone10. Ex vivo drug response profiling 

(DRP) could integrate across this complex interplay of different 

molecular layers and could thereby serve as a complementary tool 

to genomic profiling for precision medicine.

Recently, the EXALT trial (ClinicalTrials.gov NCT03096821) 

demonstrated that ex vivo DRP can improve treatment guidance in 

individuals with advanced aggressive hematologic malignancies for 

whom standard therapies are not available11. In this study, ex vivo drug 

sensitivity was profiled in 143 human samples using a microscopy-based 

readout. Fifty-six individuals (39%) were treated according to the results 

of this assay, and 30 individuals (56%) benefited from this tailored treat-

ment with a progression-free survival at least 30% longer than after 

the previous treatment. This proof-of-concept trial demonstrated the 

great potential of functional profiling for precision medicine. A second 

study measured ex vivo drug response profiles for 37 individuals with 

relapsed and refractory AML using an ATP-based assay with the aim to 

predict in vivo drug sensitivities. Again, this study demonstrated that 

individuals could benefit from such a functional precision medicine 

approach12. Both studies integrated their functional test results into 

a complex tumor board decision process, which supported the selec-

tion of a suitable personalized treatment for individuals with highly 

refractory disease courses who had failed standard treatments. These 

studies highlight the potential of functional precision medicine to 

guide treatment in individuals with highly refractory blood cancer. A 

systematic comparison of in vivo and ex vivo drug effects for standard 

treatment protocols across multiple hematologic disease entities was 

not performed in these studies.

Our prospective clinical non-interventional Systematic and 

Mechanism-Based Approach to Rational Treatment Trial of Blood 

Cancer (SMARTrial; ClinicalTrials.gov NCT03488641) complements 

recently published studies11,12 by demonstrating the feasibility of  

ex vivo DRP as a clinical routine test and by directly relating ex vivo 

and in vivo drug effects for standard treatment protocols and across 

multiple hematologic disease entities. In an independent and homo-

geneously treated validation cohort of 95 treatment-naive individuals 

with AML, we demonstrate that ex vivo DRP can improve genetic risk 

stratification.

Results
SMARTrial participants
Between April 2018 and July 2020, 91 individuals with hematologic 

malignancies were screened for eligibility in the SMARTrial (Fig. 1).  

Eighty individuals (88%) fulfilled the eligibility criteria and were 

enrolled (Fig. 2a). The primary endpoint, ‘successful completion of 

the ex vivo drug response assay within 7 d’, could be assessed in all 80 

individuals. For the secondary endpoint analysis, to systematically 

correlate ex vivo and in vivo drug responses, we assigned participants 

to two major subcohorts. Cohort 1 included individuals treated with 

chemotherapy (n = 46), and cohort 2 included individuals treated with 

venetoclax or ibrutinib (n = 18). Sixteen individuals were excluded 

from the secondary endpoint analysis because in vivo response to the 

prescribed treatment could not be assessed according to the study 

protocol (n = 9), ex vivo response profiles did not pass quality control 

(n = 2), or participants could not be assigned to either of the two sub-

cohorts due to their prescribed therapies (n = 5).

Demographics and disease characteristics for all 80 eligible partic-

ipants are shown in Table 1 and Supplementary Table 1. The median age 

was 68.5 years (range of 20–91 years). Participants with the following 

hematologic malignancies were included: AML (34/80, 42%), ALL (2/80, 

2%), CLL (25/80, 31%), aggressive T cell leukemia (T cell prolymphocytic 

leukemia (T-PLL) 4/80, 5%), aggressive B cell lymphoma (5/80, 6%), 

aggressive T cell lymphoma (1/80, 1%) and indolent B cell lymphoma 
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in the active conformation and are known to be active in AML cells 

with mutations in the FLT3 internal tandem duplication (FLT3-ITD) 

and FLT3-TKD. By contrast, these tumor cells were insensitive to the 

type II FLT3 inhibitors quizartinib and sorafenib, which are known to 

be inactive in FLT3-TKD-mutated AML cells13 (Extended Data Fig. 5a,b).  

IDH1-mutated AML cells were specifically sensitive to venetoclax, 

which confirmed the known dependency of IDH-mutated AML on 

BCL-2 (ref. 14; Extended Data Fig. 5c). TP53-mutated tumor cells showed 

a decreased sensitivity to Nutlin-3a compared to wild-type tumor 

cells10,15,16 (Extended Data Fig. 5d). Drug responses can be explored in the 

interactive web application (http://mozi.embl.de/public/SMARTrial/).

Association between ex vivo and in vivo responses
An important question of our study was to understand if ex vivo drug 

responses and in vivo responses correlate with each other. Considering 

the ongoing relevance of chemotherapy for hematologic tumors but 

also the increasing importance of chemotherapy-free targeted treat-

ments in blood cancer, we focused on two subgroups: participants 

treated with chemotherapy (n = 46) and participants with CLL treated 

with venetoclax or ibrutinib (n = 18).

Among the 46 participants in the chemotherapy cohort, 29 were 

diagnosed with AML, 2 were diagnosed with ALL, and the remaining 

15 were diagnosed with B or T cell lymphoma. All participants were 
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treated with standard cytotoxic chemotherapy regimens combined 

with a targeted therapy (monoclonal antibodies or small-molecule 

inhibitors) in 46% of treatments.

Our ex vivo drug screen covered a broad library of compounds with 

different modes of action. To determine which ex vivo drug response 

profiles were most suitable for predicting chemosensitivity in vivo, we 

chose an unbiased approach and associated all ex vivo drug response 

profiles with in vivo response categories (PD, stable disease (SD) and 

response (R)). Because direct comparisons between drugs were not 

feasible due to small numbers of uniformly treated participants and 

combination therapies in vivo, we grouped drugs according to their 

mode of action and associated the averaged ex vivo responses across 

all drugs within these classes with the in vivo response groups (R versus 

PD; Extended Data Fig. 5e). Ex vivo responses between chemosen-

sitive and chemorefractory individuals differed most significantly 

for the following five drug classes: heat shock protein inhibitors 

(stress response), cyclin-dependent kinase inhibitors, proteasome 

inhibitors, chemotherapeutics and inhibitors involved in the DNA 

damage response signaling pathway. In a second step, we associated 

ex vivo drug response profiles of each individual drug with in vivo 

response (R versus PD; Extended Data Fig. 5f). Multiple drugs of the 

above-mentioned drug classes showed similar activity, suggesting that 

our data represent on-target effects as the primary mode of action of 

these drugs. Additional drugs with significantly different ex vivo drug 
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sensitivities between responders and participants with PD were found 

among the groups of mTOR inhibitors, proteasome inhibitors and 

compounds that are involved in histone modifications. Representa-

tive examples of dose–response curves and averaged drug viabilities 

between individuals who were chemosensitive and chemorefractory 

are shown in Fig. 3a.

Individual ex vivo drug responses might not predict overall che-

mosensitivity. Therefore, we investigated how the combination of 

multiple ex vivo drug responses could be used to predict chemosen-

sitivity. Because the majority of relevant drugs with significant differ-

ences were found among the chemotherapeutics (the treatment most 

individuals received in vivo), we focused on the group of chemothera-

peutics to avoid overfitting. For variable selection, we built an elastic 

net logistic regression model and regressed ex vivo drug response 

profiles of individual chemotherapeutic agents to in vivo response (R 

versus PD; Fig. 3b and Supplementary Table 4). In total, we fitted 1,000 

models based on different randomly selected folds. In more than 80% 

of all models, both vinca alkaloids, vincristine and vindesine, the two 

anthracyclines idarubicin and mitoxantrone and the purine analog 

cladribine were selected as prognostic features. Our models includ-

ing the five above-mentioned chemotherapeutics reached a median 

cross-validation area under the receiver operating characteristic curve 

(AUROC) of 0.84 to 0.85, highlighting the discriminative ability of 

these models.

To elucidate the predictive power of features selected by the elastic 

net regression model on the durability of achieved clinical responses, 

we regressed event-free survival (EFS) on these drug response profiles. 

An event was defined as PD, change of treatment or death. We found 

that stronger ex vivo responses to both vinca alkaloids were associated 

with extended EFS in the chemotherapy cohort (Fig. 3c,d). Together, 

these data suggest that ex vivo drug response phenotyping is useful 

in predicting important clinical endpoints in individuals treated with 

chemotherapy across hematologic malignancies.

We further investigated if the tumor cell infiltration across the 

chemotherapy cohort, which ranged from 54 to 97%, had an impact on 

the observed ex vivo response to chemotherapeutic agents and may 

have confounded the ex vivo–in vivo drug response association. We 

observed a weak correlation between tumor cell infiltration and ex vivo 

response to chemotherapeutic agents (r = −0.33, P = 0.02; Extended 

Data Fig. 6a) but no correlation between tumor cell infiltration and 

in vivo response (Extended Data Fig. 6b). Furthermore, we used tumor 

infiltration as a blocking factor that did not affect the significance 

of most ex vivo–in vivo drug response associations (Extended Data  

Fig. 6c). We conclude that ex vivo–in vivo drug response associations 

for chemotherapeutic agents are not confounded by tumor infiltration 

rate in our study.

Although this study was a non-interventional study and individu-

als were treated according to the treatment that was scheduled by the 

treating physician before study entry, one participant (S005) received 

ex vivo drug response-informed treatment after failure of all standard 

chemotherapies. This participant suffered from refractory Burkitt 

lymphoma (BL). Lymphoma cells were insensitive to almost all drugs in 

the drug screen (Extended Data Fig. 7a). However, in the drug ranking, 

we identified a strong ex vivo sensitivity to pralatrexate. This suggested 

that the participant might benefit from treatment with a folate antago-

nist. The participant agreed to this individual ex vivo-guided treat-

ment approach, and after three cycles of high-dose methotrexate, the 

participant achieved a partial response. Subsequently, the participant 

underwent a consolidating allogeneic stem cell transplantation, which 

resulted in complete remission (Extended Data Fig. 7b). This example 

illustrates how ex vivo DRP can reveal unexpected effective anticancer 

drugs and support treatment decisions, especially in individuals for 

whom standard treatments are no longer available.

We further investigated the association between ex vivo and in vivo 

responses of targeted therapies using the example of individuals with 

CLL. Our study cohort included eight individuals who were treated 

with venetoclax and ten individuals who were treated with ibrutinib. 

Venetoclax was combined with an anti-CD20 treatment in the majority 

of participants (seven of eight). Concordant with the in vivo response, 

the primary tumor cells of all participants who were treated with vene-

toclax showed ex vivo sensitivity to venetoclax (Extended Data Fig. 7c).  

Ibrutinib exhibited smaller effect sizes than venetoclax in our 

short-term ex vivo assay, which is in line with clinical response dynam-

ics and previous studies10. Cells from the only participant who showed 

insufficient in vivo efficacy of ibrutinib exhibited the weakest ex vivo 

response to ibrutinib (S069; Extended Data Fig. 7d). This participant 

had received ibrutinib before, which was discontinued due to atrial 

fibrillation. A genetic profiling of this participant’s tumor cells was 

Table 1 | SMARTrial participant characteristics

Characteristics Total (N = 80)

Sex

 Male 48 (60%)

 Female 32 (40%)

Age (years)

 Median [minimum, maximum] 68.5 [20.0, 91.0]

Diagnosis

 AML 34 (42%)

 ALL 2 (2%)

 DLBCL 4 (5%)

 BL 1 (1%)

 FL 3 (4%)

 MCL 5 (6%)

 CLL 25 (31%)

 B-PLL 1 (1%)

 T-PLL 4 (5%)

 T cell lymphoma, NOS 1 (1%)

Time from initial diagnosis (months)

 ≤12 49 (61%)

 >12 31 (39%)

Prior lines of treatment

 ≥3 6 (8%)

 0 54 (68%)

 1 11 (14%)

 2 9 (11%)

Tumor sample origin

 Peripheral blood 59 (74%)

 Bone marrow 12 (15%)

 Lymph node 9 (11%)

Tumor infiltration of sample

 Median [minimum, maximum] 84.5 [52.0, 99.0]

Prescribed treatment at study entry

 Chemotherapy 28 (35%)

 Chemotherapy + small-molecule inhibitors 7 (9%)

 Immunochemotherapy 16 (20%)

 Immunotherapy 2 (2%)

 Small-molecule inhibitors 27 (34%)

Data are number of participants (%) or median [range]. Percentages may not total 100 

because of rounding. NOS, not otherwise specified.
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performed, but no mutation known to confer ibrutinib resistance was 

found, demonstrating the potential to improve response prediction 

beyond known genetic risk markers.

Validation of ex vivo and in vivo response association
We further aimed to investigate if ex vivo DRP may improve clinical 

standard genetic risk profiling. Therefore, we focused on first-line 

treatment of AML, where genetic risk profiling is considered clini-

cal standard. We assembled a validation cohort of 95 clinically 

well-annotated AML biosamples from the AML biobank of the  

German Study Alliance for Acute Myeloid Leukemia (SAL). All biosam-

ples were obtained from treatment-naive participants with AML who 

were scheduled to receive induction therapy with daunorubicin and 

cytarabine. The cohort was compiled to contain 47 responders and 

48 non-responders to induction therapy from all ELN-22 risk groups 

(Fig. 4a, Table 2 and Supplementary Table 5).

As a first step, we compared ex vivo drug response in the validation 

cohort between clinical responders and non-responders indepen-

dently of genetic risk profiles. Ex vivo drug response profiles differed 

significantly between in vivo responders and non-responders (Benja-

mini–Hochberg-adjusted17 P value of <0.1). Interestingly, clinical in vivo 

response to induction therapy with daunorubicin and cytarabine was 

significantly associated with ex vivo response to the combination treat-

ment with daunorubicin and cytarabine but not with ex vivo response 

to either drug alone. Vincristine, vindesine and cladribine, which were 

among the strongest predictors of in vivo response in the elastic net 
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Fig. 3 | Association between ex vivo drug response and in vivo response 

or clinical outcome. a, Ex vivo sensitivity by clinical response group. Dose–

response curves built by fitting a five-parameter logistic model using ex vivo 

viability measurements. Individual participant observations are displayed by 

circles in both plots. Blue and red represent groups of participants with clinical 

response (R) versus participants with PD, respectively (R: n = 33; PD: n = 5).  

Error bars represent mean and 95% CI. Centers, hinges and whiskers of the  

box plots signify medians, quartiles and 1.5× IQR, respectively. b, Elastic net 

logistic regression model of ex vivo drug viability (AUC) to chemotherapeutic 

agents with binary endpoint R versus PD (R: n = 33; PD: n = 5). The median odds 

ratio (OR) presented here relates to a change in ex vivo drug viability of 10%. 

Covariates are shown ordered by selection proportion (>0.5 shown here).  

The results of all covariates included in the model are shown in Supplementary 

Table 2. c, Association of ex vivo drug responses and EFS assessed by univariate 

Cox regressions (R: n = 33; SD: n = 5; PD: n = 5). Estimated hazard ratios with 

corresponding 95% CIs are shown. Ex vivo drug viability (AUC) was calculated per 

drug and scaled such that a unit change of the regressor corresponds to a 10% 

change in cell viability. P values are from two-sided Wald tests on Cox regression 

models. d, Kaplan–Meier plots for EFS stratified by ex vivo drug response to 

vincristine and vindesine (R: n = 33; SD: n = 5; PD: n = 5). Participant groups of ex 

vivo responders and weak responders were defined by ex vivo drug responses 

dichotomized using maximally selected log-rank statistics to visualize effects. 

Fourteen of 43 participants were classified as vincristine weak responders,  

and 15 of 43 participants were classified as vindesine weak responders.
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Fig. 4 | Validation of the association between ex vivo and in vivo drug 

responses in a cohort of individuals with AML. a, Overview of the validation 

cohort. The inner circle represents ELN-22 risk groups in total numbers, and the 

outer circle represents the distribution of in vivo responders and non-responders 

in ELN-22 risk groups. b, Ex vivo treatments with significantly different responses 

in in vivo responders (n = 47) and non-responders (n = 48). Negative log10  

(P value) of Student’s t-tests is shown on the y axis, and mean difference between 

responders and non-responders is on the x axis. The dashed line represents 

the 10% false discovery rate cutoff (Benjamini–Hochberg procedure); NS, not 

significant. c, Viability (AUC) after ex vivo treatment with vincristine (top) and 

viability (volume under the curve (VUC)) after treatment with daunorubicin and 

cytarabine (bottom) separated by ELN-22 risk groups (ELN-22 adverse risk: non-

responder: n = 28, responder: n = 8; ELN-22 intermediate risk: non-responder: 

n = 14, responder: n = 29; ELN-22 favorable risk: non-responder: n = 6, responder: 

n = 10). P values are derived from two-sided Student’s t-tests. Centers, hinges and 

whiskers of the box plots signify medians, quartiles and 1.5× IQR, respectively.  

d, Kaplan–Meier plots for EFS stratified by ex vivo drug response to vincristine and 

daunorubicin + cytarabine. For visualization purposes, participant groups of ex 

vivo responders and weak responders were defined by ex vivo drug responses 

dichotomized using maximally selected log-rank statistics to visualize effects. 

Sixty-four of 95 participants were classified as vincristine weak responders. 

Sixty of 95 participants were classified as daunorubicin + cytarabine weak 

responders. P values are from two-sided Wald tests on Cox regression models 

using drug responses as continuous variables. e, Forest plot of hazard ratios 

in multivariate Cox proportional hazards models for EFS including ELN-22 

risk groups and viability after ex vivo treatment with vincristine (top) and 

daunorubicin + cytarabine (bottom). The ex vivo responses (AUC values) were 

centered by mean and scaled by 2 s.d. to bring them to a similar scale as the 

categorical ELN-22 risk group variables.
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logistic regression model in the SMARTrial cohort, again showed the 

strongest association between in vivo and ex vivo response in the 

validation cohort (Fig. 4b and Extended Data Fig. 8).

As a next step, we investigated whether ex vivo DRP could further 

improve clinical in vivo response prediction and compared drug 

response profiles within each ELN-22 risk group, a well-established 

and very recently updated AML risk stratification tool4. Ex vivo 

response profiles significantly distinguished in vivo responders to 

daunorubicin and cytarabine from non-responders in the genetic 

adverse risk group defined as per ELN-22 recommendations4 (Fig. 4c 

and Extended Data Fig. 9).

In addition, we regressed ex vivo drug response profiles on EFS 

to assess the ability of ex vivo drug response to predict durability of 

achieved responses. Indeed, poor ex vivo drug response to vincristine 

as well as daunorubicin and cytarabine was associated with adverse EFS 

in participants with AML after induction therapy with daunorubicin and 

cytarabine (Fig. 4d). Ex vivo DRP further improved outcome prediction 

especially in participants with adverse risk as determined by ELN-22 

(Fig. 4e and Extended Data Fig. 10). These results suggest that ex vivo 

DRP may improve in vivo response prediction beyond established 

genetic risk stratification tools in AML.

Discussion
Although precision cancer medicine was almost synonymous with 

genome-informed cancer treatment for many years, functional profil-

ing is now gaining importance and is transforming our understanding 

of precision cancer medicine8.

Genome-informed precision medicine relies on previously iden-

tified and well-characterized genotype–drug response associations 

and the identification of actionable mutations. Therefore, treatment 

recommendations can only be derived in a fraction of individuals 

with cancer7–9. By contrast, functional profiling can provide informa-

tion about presumably effective treatments even in the absence of 

known targetable genetic lesions11,12. In addition, functional profil-

ing can also reveal drug resistance in the absence of known genetic 

resistance markers.

Two recently published key studies have shown that functional 

profiling can successfully guide treatment recommendations in 

individuals with hematologic malignancies refractory to standard 

treatments11,12. These studies incorporated functional profiling in a 

tumor board decision process and produced treatment recommenda-

tions beyond established treatment options. In the aforementioned 

EXALT trial, 54% of the participants treated according to the func-

tional precision medicine results achieved a progression-free survival 

at least 30% longer than the duration of that from prior therapy11. 

Although a direct comparison to a control arm was not planned, 

this response was improved compared to the participants treated 

according to physicians’ choices. These results highlight the potential 

of functional profiling to guide treatment in individuals with highly 

refractory disease.

Our prospective non-interventional SMARTrial was designed 

to explore the feasibility of ex vivo DRP and its value as a potential 

predictive tool in standard treatment settings. We demonstrated that 

functional profiling by high-throughput ex vivo drug testing is clinically 

feasible in individuals with blood cancers. The median turnaround time 

of 3 d makes it particularly useful for aggressive and rapidly progress-

ing hematologic malignancies such as AML or aggressive lymphomas. 

A combination of five chemotherapeutic agents with different modes 

of action was able to read out the in vivo response to chemotherapy. In 

particular, ex vivo responses to vincristine and vindesine were signifi-

cantly associated with EFS in individuals treated with chemotherapy.

The direct association of ex vivo and in vivo drug response was lim-

ited by the number of participants who received homogeneous in vivo 

treatments in the SMARTrial. We validated the predictive value of ex 

vivo chemotherapy drug response profiles in an independent cohort 

of individuals with AML who homogeneously received first-line treat-

ment with daunorubicin and cytarabine. In both cohorts, we observed 

that ex vivo response to vindesine, vincristine and cladribine separated 

in vivo responders from non-responders, suggesting that these drugs 

are very suitable to read out in vivo chemotherapy resistance. Further-

more, in the homogeneously treated AML cohort, the in vivo response 

to daunorubicin and cytarabine correlated with ex vivo response to 

the same drugs, highlighting the direct association between in vivo 

and ex vivo response.

The strongest association between in vivo and ex vivo response 

was observed in individuals with AML with adverse risk according to the 

ELN-22 classification. A possible explanation for this observation might 

be that the ex vivo DRP assay reads out tumor cell-intrinsic mechanisms 

of resistance and sensitivity mediated by non-genetic risk factors or 

rare genetic events not considered in the ELN-22 risk classification. 

These results suggest that functional tests could serve as a surrogate 

for multiple resistance mechanisms mediated by different omics layers.

However, there was no significant difference in ex vivo response 

profiles between clinical responders and non-responders in the favora-

ble ELN-22 risk group, although 6 of 16 participants in the low-risk group 

did not respond to treatment in vivo. This could be a result of insuf-

ficient statistical power and needs to be investigated in future studies.

Viable tumor cells are required to perform an ex vivo drug response 

assay. In our study, the availability of 5 × 107 viable tumor cells was an 

inclusion criterion. In the EXALT trial, 20 of 143 tested participants were 

excluded due to insufficient tumor material11. This limits the applica-

bility in the clinical context because not all individuals can be profiled 

ex vivo. Further, a potential bias can be introduced if the inability to 

obtain sufficient tumor material is linked to biological phenotypes, 

such as more aggressive disease courses (that is, higher content of 

leukemic cells in peripheral blood) or the infiltration of tumor tissue by 

stromal cells. Lastly, hematologic diseases, such as hairy cell leukemia 

or multiple myeloma, with typically low amounts of obtainable tumor 

cells are difficult to investigate using functional studies. Miniaturized 

profiling approaches, which require much smaller amounts of tumor 

cells18,19, have the potential to alleviate this limitation.

Table 2 | Validation cohort participant characteristics

Characteristics Total (N = 95)

Sex

Female 47 (49%)

Male 48 (51%)

Age (years)

Median [minimum, maximum] 59.0 [18.0, 84.0]

Diagnosis

AML 95 (100%)

Tumor cell infiltration

Median [minimum, maximum] 76.0 [50.0, 99.0]

Prescribed treatment

Cytarabine + daunorubicin 95 (100%)

In vivo response group

Non-responder 48 (51%)

Responder 47 (49%)

ELN-22 risk group

Adverse 36 (38%)

Favorable 16 (17%)

Intermediate 43 (45%)

Data are number of participants (%) or median [range]. Percentages may not total 100 

because of rounding.
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Additional limitations of our short-term ex vivo DRP assay are 

the inability to profile small subpopulations of therapy-resistant 

AML cells, which could give rise to relapse in vivo after being clonally 

selected, and the inability to consider microenvironmental factors, 

which may have an influence on in vivo drug response. Test assay 

modifications that address these limitations might be necessary to 

improve prediction accuracy.

In conclusion, our study demonstrates that ex vivo DRP is clini-

cally feasible and can be used to predict in vivo response to standard 

treatment beyond known genetic risk factors. Further studies that 

reduce technical hurdles and establish reliable prognostic models for 

anticancer treatments are warranted and have the potential to improve 

therapy response and reduce side effects by ineffective treatments.

Methods
Study design
The SMARTrial was a single-center, prospective non-interventional 

study of ex vivo drug screening in hematologic malignancies. The 

study complied with all relevant ethical regulations and was approved 

by the ethics committee of the University of Heidelberg (S-683/2016) 

and conducted in accordance with the Declaration of Helsinki. All 

participants provided written informed consent. Participants were 

enrolled between April 2018 and July 2020. The last end-of-study visit 

was in July 2021.

Adult participants with a diagnosis of a hematologic malignancy 

in need of treatment and willing to donate sufficient tumor material 

were eligible. Additional eligibility criteria included measurable disease 

burden for response assessment and the availability of at least 5 × 107 

cells from peripheral blood draws, bone marrow aspirates or lymph 

node biopsies. Systemic cancer treatment other than cytoreductive 

pretreatment within 7 d before enrollment was an exclusion criterion. 

Complete inclusion and exclusion criteria are available in the study pro-

tocol (Supplementary Information). The primary endpoint was defined 

as the rate of successfully completed assessments of drug response 

within 7 d. The secondary endpoints included the accuracy of partici-

pant drug response prediction by ex vivo DRP and the prediction of 

clinical outcome parameters. Demographic and clinical data were col-

lected at study entry. During the treatment and post-treatment phases, 

participants were regularly assessed (at weeks 1–4 and at months 3, 

6 and 12 after treatment cessation or change) for at least 1 year after 

study entry. Clinical data were recorded in an electronic case report 

form using Onkostar (IT-Choice Software).

Because this study was a non-interventional study, participants 

were treated according to the treatment that was scheduled by the 

treating physician before study entry. However, one participant 

(S005) failed to respond to all standard chemotherapies (including 

the scheduled treatment before study entry). The ex vivo drug screen-

ing of this participant’s tumor cells revealed a sensitivity of the tumor 

cells to a chemotherapy that is approved for the participant’s type of 

cancer. The according treatment was recommended as an individual 

treatment protocol, and the participant provided informed consent 

before treatment.

For the validation cohort, we investigated the drug responses 

of 95 AML samples obtained from the AML biobank of the SAL (EK 

98032010). All participants consented to biobanking and sample use 

for research projects.

Ex vivo DRP
Samples. Tumor samples from different origins, including peripheral 

blood, bone marrow and lymph nodes, were included in the SMART-

rial. Mononuclear cells were isolated from peripheral blood and bone 

marrow samples using a Ficoll gradient (GE Healthcare) and either used 

fresh or cryopreserved until further processing. Lymph node samples 

from participants were processed as previously described20. The sam-

ples within the validation cohort were taken from participants with 

AML at initial diagnosis, isolated from bone marrow aspirates using a 

Ficoll gradient (GE Healthcare) and cryopreserved.

Compounds and drug plates. Ex vivo responses to 106 drugs were 

measured (Supplementary Table 6) in the SMARTrial. Compounds 

were obtained from Selleck Chemicals, Sigma-Aldrich, Merck, BioCat 

and Biomol, were dissolved in DMSO (Serva) at 1–205 mM (mainly 

10–25 mM) and stored at –20 °C. We preplated compounds in 384-well 

plates (Greiner Bio-One, 781904), which were sealed with silver foil 

(Greiner Bio-One, 676090). These plates were stored as ‘ready-to-use 

plates’ at –20 °C until needed. Due to the large number of compounds, 

we had two sets of plates containing drug panels for lymphoid or mye-

loid diseases. If the final cell count of a sample was only sufficient for 

one drug panel, we selected the appropriate panel based on the disease 

entity. On each plate, we used one well per drug and concentration. 

Each plate contained 63 compounds with five concentrations per 

compound based on previous experiments10. Twenty compounds 

were considered important for both lymphoid and myeloid samples 

and were plated on both plates. Sixty-four DMSO solvent controls were 

evenly distributed over the full plate.

Drug response assay. For the drug response assays, we used RPMI-

1640 (Gibco, 21875-034) supplemented with 1% penicillin/strepto-

mycin (Gibco, 15140-122), 1% l-glutamine (Gibco, 25030-024) and 

heat-inactivated human serum (Sigma, H6914-100ml). For frozen 

samples, samples were thawed as previously reported21, DMSO was 

removed, and the cells were incubated in cell culture medium at room 

temperature for 3 h on a roll mixer. Fresh samples were directly pro-

cessed after isolation of mononuclear cells. The final cell number was 

4 × 104 cells per well. The ATP-based CellTiter Glo assay (Promega) 

was used to determine cell viability after an incubation period of 48 h 

at 37 °C and 5% CO2. After 20 min of incubation with the CellTiter Glo 

reagent, luminescence was measured with an EnSight Multimode plate 

reader (PerkinElmer). The integration time was 0.1 s per well. Due to ex 

vivo inefficacy of cyclophosphamide and incompatibility of cisplatin 

with DMSO, both drugs were excluded from further downstream analy-

ses. The drug response assay for the validation cohort was performed 

as detailed above with the following changes. In total, 24 drugs were 

screened at five concentrations each (Supplementary Table 7). Dau-

norubicin and cytarabine as well as venetoclax and azacytidine were 

screened both as single drugs and in combination in the validation 

cohort. Each participant sample in the validation cohort was screened 

in 192 wells of a 384-well plate (Greiner Bio-One, 781904). For each sam-

ple in the validation cohort, 26 DMSO solvent controls were measured.

In vivo response assessment
SMARTrial. At study entry, a main disease-specific response parameter 

was defined for each participant for response evaluation during study 

follow-up. These disease-specific response parameters were (1) blood 

counts, (2) immunophenotyping of malignant cells in the periph-

eral blood or bone marrow, (3) malignant cell count in bone marrow 

aspirates, peripheral blood smear or trephine biopsy, (4) a clinically 

established biomarker and (5) organ or tumor manifestation (defined 

by any imaging modality, for example, computed tomography (CT) 

scan or ultrasound). In vivo response to treatment that was initialized 

at study entry was classified as response, SD or PD according to the 

response criteria defined in the study protocol. One participant with 

CLL (S039) and primary lymph node involvement was not consistently 

followed up with CT scans. However, physical examination revealed 

the complete disappearance of the initial nodal manifestation and 

was considered a response. Individual participants with AML (S002, 

S012 and S037) or lymphoma (S049) were not followed up with bone 

marrow diagnostics or CT scans because they had a rapidly progres-

sive course leading to death. In these participants, the response was 

considered PD.
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Validation cohort. Response assessment was extracted from the SAL 

registry database. Briefly, participants were considered responders if 

they had less than 10% blasts in post-treatment bone marrow aspirates 

or a complete response with regeneration of white blood cells above 1 

× 1012 m−3 and platelets above 1 × 1014 m−3. Participants were considered 

non-responders if the number of blasts in the bone marrow dropped 

by less than 50% or if they had disease progression. Overall survival 

and EFS were also obtained from the SAL registry database. For EFS, 

death, relapse and primary refractory disease were considered events.

Genetic annotation of the validation cohort
Samples from the validation cohort were sequenced using the Twist 

Human Core Exome capture kit and a NovaSeq 6000 (Illumina). 

Raw reads from each read group were aligned against the GRCh37 

genome (version hs37d5) using BWA mem (version 0.7.15) with option 

‘-T 0’. The resulting BAM files were merged, and duplicates were 

marked using SamBamba markdup (version 0.6.5) with options 

‘-t 1 -l 0–hash-table-size=2000000–overflow-list-size=1000000–

io-buffer-size=64’. These alignments were generated using the Roddy 

alignment workflow plugin22 (version 1.2.73-204) in DKFZ OTP23. 

For small variant calling, a no-control strategy was used, which 

involved calling variants from the samples and removing common 

single-nucleotide polymorphisms and recurrent artifacts using 

variant frequency information from public and local control sample 

pools. The remaining variants, which contained somatic and rare ger-

mline variants, were used for downstream analysis. BCFtools mpileup 

(version 1.9) with options ‘-EI -q 30 -O u–ignore-RG–ff UNMAP,SECO

NDARY,QCFAIL,DUP,SUPPLEMENTARY -d 9999 -a AD -x’ was used to 

call the single-nucleotide variants, and Platypus (version 0.8.1.1) with 

options ‘–genIndels 1–genSNPs 1–bufferSize 100000–maxReads 

5000000–minFlank 0’ was used to call the insertions/deletions from 

the merged BAM files. Furthermore, the variants were annotated with 

gencode v19 using ANNOVAR. Genomic region-based annotations 

and variant frequency information from 1,000 genomes, gnomAD 

(version 2.1) and local control databases were added using custom 

scripts. A confidence score was also added based on the region-based 

annotation, as previously described24. The local control contained 

variant frequency data from 4,879 whole-genome sequencing (WGS) 

and 1,198 whole-exome sequencing (WES) samples analyzed with 

the same workflows. Variants with a confidence score less than 8, 

a minor allele frequency above 0.01 in 1,000 genomes or 0.001 in 

gnomAD (WGS or WES) or with a frequency above 0.01 in the local 

control (WGS or WES) were annotated as common single-nucleotide 

polymorphisms or artifacts and removed from the downstream 

analysis. The no-control option of the Roddy SNVCallingWorkflow 

plugin25 (version 2.1.1) and Roddy IndelCallingWorkflow plugin25 

(version 3.1.1) was used for the calling, annotation and filtering 

described above. FiLT3r (version b44c21f) was used to call the ITD in 

the FLT3 gene with default parameters, except the reference sequence 

was updated to exon 14 and 15 regions in the GRCh37 coordinates 

(13:28607897-28608566)26.

ELN-2022 risk classification
Risk categories were assigned based on the genetic information 

obtained by WES as well as karyotype and gene fusion annotation 

obtained from the SAL registry database4.

Statistics and reproducibility
The primary endpoint of this study was the rate of successfully com-

pleted ex vivo DRPs within 7 d. The time between a participant’s inclu-

sion in the study and the availability of the ex vivo drug profiling results 

was calculated. As secondary endpoints, we analyzed (1) the association 

between ex vivo and in vivo drug response testing and (2) the predic-

tion of treatment failure by ex vivo drug response testing calculated 

as described in detail below.

Clinical baseline variables and outcome variables were summa-

rized descriptively. To quantify the ex vivo response of acquired tumor 

cells to a specific drug at a given concentration, we used the viability 

relative to the median of 16 solvent controls (DMSO), excluding those 

on the outer boundaries of the plates. Technical replicates of the same 

drug and concentration per participant sample were averaged. The 

area under the curve (AUC) based on the trapezoidal rule was used to 

summarize the ex vivo drug effect across five drug concentrations. 

Dose–response curve visualizations for exemplary drugs were built by 

fitting a five-parameter logistic model using the drm function from the 

drc package for R27. To compare means between two or more groups, a 

standard unpaired t-test or analysis of variance was used, respectively. 

Correlations were measured as Pearson correlation coefficients or Ken-

dall rank correlation coefficients, as indicated in the text and figures.

To evaluate the association between in vivo and ex vivo response 

(secondary endpoint 1), we assessed the ex vivo sensitivity in different 

in vivo response groups for both individual drugs and pathway groups. 

To compare means between the in vivo response and PD groups accord-

ing to their ex vivo sensitivity to individual drugs, standard two-sample 

t-tests were performed. Additionally, in vivo response groups were 

compared for differential sensitivity at the pathway level by averag-

ing the AUC values for the drugs belonging to the same pathway per 

participant sample.

To perform a covariate selection in the cohort of participants who 

received chemotherapy, we fitted an elastic net regularized logistic 

regression model with binary endpoint R versus PD (glmnet R package). 

Included covariates were ex vivo sensitivity (AUC) to all chemothera-

peutics considered in the ex vivo drug testing. Only participants for 

whom both drug panels (myeloid and lymphoid) were available were 

considered in this model. The elastic net mixing parameter α (=0.3) was 

chosen to minimize overfitting while maintaining variable selection. 

To account for the small sample size, model selection was performed 

using only threefold cross-validation. AUROC was used as the model 

selection criterion. In total, we trained 1,000 models to check for the 

stability of results. For each covariate, median overall estimated coef-

ficients (log (OR)) were computed. Median AUROC for each covariate 

was computed based on cross-validation AUROC of all models with a 

corresponding OR ≠ 1.

To predict treatment failure by ex vivo DRP in the SMARTrial cohort 

(secondary endpoint 2), we calculated the EFS and considered disease 

progression, change of treatment or death as treatment failure (event). 

EFS is defined as time from start of the scheduled treatment to PD, 

change of treatment or death. Participants without an event were 

censored at the date of last response and treatment assessment. To 

assess the value of ex vivo responses to individual drugs as predictors 

of EFS, univariate Cox proportional hazard regression modeling was 

performed using the R package ‘survival’. For visualization purposes, 

optimal cut points of drug responses were calculated using maximally 

selected log-rank statistics (maxstat R package). These cut points were 

used to split participants into two subcohorts and to plot their EFS 

with the Kaplan–Meier method. The median observation time from 

study inclusion was calculated by the reverse Kaplan–Meier estimate.

Because of the exploratory nature of the analyses in the SMARTrial 

cohort, P values here are reported without adjustment for multiple test-

ing, and a P value of <0.05 was considered significant. For the validation 

cohort, P values were adjusted by the Benjamini–Hochberg method, 

and associations that passed a 10% false discovery rate cutoff (adjusted 

P value of <0.1) were reported as significant associations. All statistical 

analyses were performed in R version 4.1.3 (R Foundation for Statistical 

Computing). The same data-processing steps and statistical tests were 

performed for both the SMARTrial and the validation cohorts. For the 

SMARTrial, sample size was based on the approach described in Li and 

Fine for testing sensitivity28, and details are described in Supplemen-

tary Information. Data distribution was assumed to be normal, but this 

was not formally tested. Participants and samples were not distributed 
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into groups, and randomization was therefore not performed. Data 

collection and analysis were not performed blind to the conditions of 

the experiments. Further information on research design is available 

in the Nature Research Reporting Summary linked to this article.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
All data reported in this paper are publicly available at https://github.

com/PeterBruch/SMARTrial. Additionally, the SMARTrial data can 

be explored through our interactive web application at http://mozi.

embl.de/public/SMARTrial/. WES data obtained for the AML valida-

tion cohort are available at the European Genome–Phenome Archive 

under accession number EGAS00001007223. Source data are provided 

with this paper.

Code availability
The computational code, in the form of Rmarkdown documents, for 

reproducing all major figures and results reported in this article is 

provided at GitHub (https://github.com/PeterBruch/SMARTrial) under 

GNU General Public License v.3.0.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality assessment of SMARTrial cohort. (a) To  

estimate the technical variability of the performed assay, we calculated the 

standard deviation (SD) of all 16 inner DMSO controls for each individual drug 

plate per patient. Plates with a relatively high technical noise (SD of negative 

DMSO controls >0.3) were excluded from further analyses (excluded myeloid 

plates: S047, S050, S056, S062; excluded lymphoid plates: S047, S050, S062). 

For two patients (S047, S062), no additional tumor material was available for 

retesting and they were completely excluded from the subsequent analyses.  

(b) The heatmap shows the drug-drug correlations for all pairs of drugs.  

All patients with an evaluable drug response profiling were included (n = 78, 

exclusion of two patients with samples with relatively high technical noise). 

Pearson correlation coefficients were calculated from all ex vivo drug responses, 

measured as AUC of all concentrations per drug. Drug pairs with high correlation 

and anti-correlation are represented by red and blue squares, respectively.  

Drugs with similar mechanism strongly correlate with each other, for example 

BTK inhibitors: ibrutinib, tirabrutinib (ONO-4059), and acalabrutinib.
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Extended Data Fig. 2 | Drug-drug correlations of ex vivo drug responses – 

Validation cohort. The heatmap shows the drug-drug correlations for all pairs 

of drugs in all samples of the validation cohort (n = 95). Pearson correlation 

coefficients were calculated from all ex vivo drug responses, measured as 

AUC of all concentrations per drug. Drug pairs with high correlation and anti-

correlation are represented by red and blue squares, respectively. Drugs with 

similar mechanism strongly correlate with each other, for example, navitoclax 

+ venetoclax, vindesine + vincristine. The combination of daunorubicin and 

cytarabine correlates more strongly with daunorubicin than with cytarabine, 

indicating that the overall effect is more strongly driven by the toxicity caused  

by daunorubicin.
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Extended Data Fig. 3 | Drug response heatmap – SMARTrial. Heatmap showing 

ex vivo viability measurements after drug treatment for the SMARTrial cohort. 

The data are shown on a robust z-score scale, that is, the logarithm of the relative 

viability measurements was scaled by the median absolute deviation within each 

row. Red indicates increased viability, and blue indicates decreased viability. 

Samples are annotated for diagnosis, in vivo response, pre-treatment status, 

material type and TP53 mutation. n = 78.
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Extended Data Fig. 4 | Drug response heatmap – validation cohort. Heatmap 

showing ex vivo viability measurements after drug treatment for the AML 

validation cohort. The data are shown on a robust z-score scale, that is, the 

logarithm of the relative viability measurements was scaled by the median 

absolute deviation within each row. Red indicates increased viability, and blue 

indicates decreased viability. Samples are annotated for ELN-22 risk groups and 

in vivo response. n = 95.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Association of ex vivo drug response phenotypes with 

genotype and clinical response groups. (a) Ex vivo drug responses to FLT3 

inhibitors in AML samples (n = 27, excluding AML with FLT3 TKD mutation or 

missing FLT3 status). Kendall’s Tau for the correlation of ex vivo drug response 

and FLT3-ITD ratio shown. Ex vivo response calculated as averaged normalized 

viability across the 2 lowest concentrations. (b) Ex vivo response to FLT3 

inhibitors in AML by FLT3-TKD mutation status (n = 24, excluding AML with 

missing FLT3 status or a FLT3-ITD mutation). Ex vivo response calculated as 

averaged normalized viability across the 2 lowest concentrations. (c) Ex vivo drug 

response to venetoclax in AML samples by IDH mutation status (n = 28, excluding 

AML with missing IDH status). Ex vivo response calculated as viability (AUC) 

across 5 concentrations. (d) Ex vivo drug response to nutlin-3a by TP53 mutation 

status (n = 42, SMARTrial samples from all entities, excluding samples with a 

missing TP53 status). (C + D) Each dot represents one patient sample, the boxes 

show mean +/− standard deviation. P value from two-sided Student’s t-test. Ex 

vivo response calculated as viability (AUC) across all 5 concentrations. (e) Ex vivo 

viability (AUC) per patient averaged by pathway and mean viabilities per pathway 

compared between chemosensitive patients (Clinical response (R): n = 34) and 

chemorefractory patients (Progressive disease (PD): n = 7) shown. Bars indicate 

mean viability difference between response groups. Red and blue indicates 

reduced and increased viability in chemosensitive samples, respectively. The 

bars are arranged by effect size and direction. (f) Significance in individual drug 

effect size between the clinical response groups. Student’s two sample t-tests 

were performed using ex vivo drug viability (AUC) between chemosensitive 

patients (Clinical response (R): n = 34) and chemorefractory patients 

(Progressive disease (PD): n = 7). The y axis shows the negative logarithm of the 

P values. Drugs are grouped by pathway and averaged effect size of the pathway 

group. P values smaller than the significance threshold (α = 0.05) are labeled.
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Extended Data Fig. 6 | Tumor cell infiltration. (a) Association between tumor 

cell infiltration and ex vivo drug response to chemotherapeutic agents in patients 

treated with chemotherapy. Ex vivo drug response per patient was averaged 

within the group of chemotherapeutic agents. Pearson correlation coefficient 

and respective P value from two-sided Pearson correlation shown in the plot. (b) 

Tumor cell infiltration stratified by in vivo response groups. Each dot represents 

one patient sample, the boxes show mean +/− standard deviation. P value from 

two-sided Student’s t-test. (Clinical response (R): n = 34, Progressive disease (PD): 

n = 7). (c) Significance in individual drug effect size between the clinical response 

groups as shown in Fig. 3b. P values from two-sided Student’s t-test with (y-axis) 

and without (x-axis) taking tumor infiltration into account.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Clinical translation of ex vivo drug response profiling 

in a patient with highly aggressive refractory Burkitt lymphoma. (a) 

Normalized ex vivo effect size scores (ESS) of all chemotherapeutics for S005. 

The effect size (1- viability AUC) of each drug was subtracted from the median 

effect sizes of the same drug of the complete SMARTrial study cohort. A 

negative and positive ESS indicate a higher or lower effect size in this specific 

patient sample, respectively. S005 was less responsive to the majority of 

chemotherapeutics than the cohort median ex vivo. The ex vivo effect of 

pralatrexate was higher than the median effect across all SMARTrial samples. 

(b) PET-CT scans of participant S005. Left: PET-CT scan showing a progressive 

disease (PD) in the liver after previous treatment with R-DHAP (rituximab, high 

dose cytarabine, cisplatin, dexamethasone). Right: PET-CT scan after treatment 

with 3 cycles of methotrexate (MTX) and consolidating allogeneic hematopoietic 

cell transplantation (alloHCT). The patient achieved a partial response after 

treatment with MTX which enabled him to undergo alloHCT and eventually 

resulted in complete remission. (C + D) Association of in vivo and ex vivo 

response in CLL patients treated with venetoclax +/- anti- CD20 treatment (c) and 

ibrutinib (d). The ex vivo drug effect size is defined as 1-viability(AUC). Each bar 

represents one patient. The color of the bar represents in vivo response.
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Extended Data Fig. 8 | Significantly different ex vivo drug responses between 

responders and non-responders. (a) Boxplots showing viability (AUC in 

single-drug conditions and VUC in daunorubicin + cytarabine combination) 

after ex vivo drug treatment for drugs with significantly different responses 

in responders and non-responders. P-values from two-sided Students t-tests. 

Responder: n = 47, Non-responder: n = 48. Center, hinges and whiskers of the 

boxplots signify median, quartiles and 1.5x IQR, respectively. (b) Dose response 

curves for corresponding single drug conditions. Dose-response curves were 

built by fitting a 5-parameter logistic model for each clinical response group 

using ex vivo viability measurements across five drug concentrations. Individual 

patient observations are displayed by circles. Error bars represent mean and 95% 

CI. Responder: n = 47, Non-responder: n = 48.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Significantly different ex vivo drug responses between 

responders and non-responders in ELN-22 risk groups. (a) Heatmap of 

p-values from two-sided Student’s t-tests between ex vivo drug response and 

in vivo therapy response. BH-adjusted p-values below 0.1 are marked with an 

asterisk. (b) Boxplots showing viability (AUC) after ex vivo drug treatment for 

drugs with significantly different responses in responders and non-responders 

in ELN-22 risk subgroups. Corresponding to Fig. 4c. P-values from two-sided 

Students t-tests. Responder: n = 47, Non-responder: n = 48. Center, hinges and 

whiskers of the boxplots signify median, quartiles and 1.5x IQR, respectively.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Significant associations of ex vivo drug responses and 

event free survival in ELN-22 risk groups. Kaplan-Meier plots for event-free 

survival stratified by ex vivo drug response to cladribine, fludarabine, vincristine 

and daunorubicin + cytarabine and faceted by ELN-22 risk groups. Patient 

groups of ex vivo responders and weak responders were defined by ex vivo drug 

responses dichotomized using maximally selected log rank statistics to visualize 

effects. Absolute numbers per groups are shown in tables below the plots. 

P-values are from two-sided Wald tests on Cox regression models using drug 

responses as continuous variables.

http://www.nature.com/natcancer
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Clinical data were recorded in an electronic case report form (eCRF) using Onkostar (IT-Choice Software AG, Version 2.8.0). Ex vivo drug 

response data was measured with an EnSight Multimode Plate Reader (Perkin Elmer). 

Data analysis All statistical analyses were performed in R version 4.1.3 (R Foundation for Statistical Computing, Vienna, Austria). The exact analysis packages 

used and the respective version information is listed in the the analysis markdown file (https://github.com/PeterBruch/SMARTrial/blob/main/

inst/doc/SMARTrial_Analysis.html)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

In vivo and ex vivo response data as well as patient annotations are available at https://github.com/PeterBruch/SMARTrial. The data can also be interactively 
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explored through our web application at https://www.dietrichlab.de/SMARTrial/.  

Source data for all main and Extended Data Figures is supplied with the submission. Whole-Exome-Sequencing data obtained for the AML validation cohort is 

available at the European Genome-Phenome Archive under accession number EGAS00001007223.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Sex and Gender were not part of the inclusion or exclusion criteria. Self-reported sex was documented at study inclusion and 

is listed for all patients in Supplementary Table S1. Patient characteristics, including sex, are shown in Table 1. 

Population characteristics Patient characteristics are shown in Table 1 in an aggregated form and in Supplementary Table S1 in a disaggregated form.  

 

SMARTrial patient cohort: 

 

Sex : Male 48 (60 %), Female 32 (40 %) 

 

Age (years): Median [Min, Max] 68.5 [20.0, 91.0] 

 

Diagnosis: 

AML 34 (42 %) 

ALL 2 (2 %) 

DLBCL 4 (5 %) 

Burkitt lymphoma 1 (1 %) 

Follicular lymphoma 3 (4 %) 

Mantle cell lymphoma 5 (6 %) 

CLL 25 (31 %) 

B-PLL 1 (1 %) 

T-PLL 4 (5 %) 

T-cell lymphoma, NOS 1 (1 %) 

 

 

AML Validation cohort:  

Sex: Female 47 (49 %), Male 48 (51 %) 

Age (years): Median [Min, Max] 59.0 [18.0, 84.0] 

Recruitment Adult patients with a diagnosis of a hematologic malignancy in need of treatment and willing to donate sufficient tumor 

material were eligible. Additional eligibility criteria included measurable disease burden for response assessment and the 

availability of at least 5x107 cells from peripheral blood draws, bone marrow aspirations or lymph node biopsies. Systemic 

cancer treatment other than cytoreductive pretreatment within 7 days before enrollment was an exclusion criterion. 

Complete inclusion and exclusion criteria are available in the study protocol (see Appendix). 

 

For the validation cohort, we investigated the drug response of 95 AML samples obtained from the AML-biobank of the Study 

Alliance Leukemia (EK 98032010). All patients consented to biobanking and sample use for research projects. 

Ethics oversight The study was approved by the ethics committee of the University of Heidelberg, Heidelberg, Germany (S-683/2016) and 

conducted in accordance with the Declaration of Helsinki. All patients provided written informed consent. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Initial Sample size calculation as per study protocol:  

 

Sample size calculation is based on the approach described in Li & Fine for testing sensitivity. A total sample size of n=80 patients achieves 

80% power to detect a change in sensitivity from 0.5 to 0.8 using a one-sided test with significance level α=0.05. Furthermore, a sample size of 

n=80 would allow to test the one-sided null hypothesis that the correlation between ex vivo drug response and in vivo treatment response is 

not larger than 0.5 using significance level α=0.05 with more than 80% power when the sample correlation is at least 0.7. We consider a high 
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sensitivity and an ex vivo / in vivo correlation larger than 0.5 to be a necessary condition for considering a subsequent clinical trial. 

In total n=80 patients will be considered for the trial assuming that 20% of them will not be eligible.

Data exclusions All 80 patients included in the study were evaluated for the primary endpoint. For the secondary endpoint analyses 16 patients were excluded 

due to :  

• Reduced quality of ex vivo screen (n= 2) 

• In vivo response not evaluable (n=9) 

• Other (n=5) 

Details are shown in Figure 2.

Replication Ex vivo screening data was reproducible using technical replicates of viably frozen tumor cells. For two patient samples, viably frozen cells 

were thawed after completion of the initial assay and investigated as technical replicates. These samples showed high reproducibility (R>0.9). 

These replicates were not used for the downstream data analysis. 

Randomization No randomization was performed. Covariates, most importantly disease entity, was considered for secondary endpoint analyses by 

performing subgroup analyses. 

Blinding Group allocation was based on disease entity and treatment assigned by the treating physician. Physicians were not blinded as treatment was 

based on physicians choice. Results of ex vivo drug response profiling used for treatment stratification only in an individual case of treatment 

failure to initial treatment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT03488641

Study protocol The study protocol is available in the Supplementary material. 

Data collection Demographic and clinical data were collected at study entry. During treatment and the post-treatment phase, patients were regularly 

followed up (at weeks 1-4 and at months 3, 6 and 12, after treatment cessation or change) for at least 1 year after study entry. 

Clinical data were recorded in an electronic case report form (eCRF) using Onkostar (IT-Choice Software AG). 

 

Clinical data was obtained during treatment appointments at the University Hospital Heidelberg. 

Outcomes Clinical response characteristics have been predefined. See study protocol page 14&15.  

 

Primary endpoint: 

a) Rate of successfully completed assessments of drug response to drugs/inhibitors within 7 days (non-interventional) 

 

Key secondary endpoints: 

a) Accuracy of patients response prediction by ex-vivo drug response testing. 

b) Prediction of time to next treatment within one year by ex-vivo drug response testing.

Dual use research of concern

Policy information about dual use research of concern

Hazards
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Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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