
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2023

Evaluation of deep learning training strategies for the classification of bone marrow
cell images

Glüge, Stefan ; Balabanov, Stefan ; Koelzer, Viktor Hendrik ; Ott, Thomas

Abstract: BACKGROUND AND OBJECTIVEThe classification of bone marrow (BM) cells by light microscopy is
an important cornerstone of hematological diagnosis, performed thousands of times a day by highly trained spe-
cialists in laboratories worldwide. As the manual evaluation of blood or BM smears is very time-consuming and
prone to inter-observer variation, new reliable automated systems are needed. METHODS We aim to improve
the automatic classification performance of hematological cell types. Therefore, we evaluate four state-of-the-art
Convolutional Neural Network (CNN) architectures on a dataset of 171,374 microscopic cytological single-cell
images obtained from BM smears from 945 patients diagnosed with a variety of hematological diseases. We fur-
ther evaluate the effect of an in-domain vs. out-of-domain pre-training, and assess whether class activation maps
provide human-interpretable explanations for themodels’ predictions. RESULTSThe best performing pre-trained
model (Regnet_y32gf)yieldsameanprecision, recall, andF1scoresof0.787ś0.060, 0.755ś0.061, and0.762ś0.050, respectively.T
50)thatweretrainedfromscratch.Theout−of−domainpre−trainingapparentlyyieldsgeneralfeatureextractors/filtersthatappl
assistedbloodandbonemarrowcellidentification.Italsohighlightstheneedformorespecifictrainingdata, i.e.imagesofdiff
to − classifyclasses, includingcellslabeledwithdiseaseinformation.

DOI: https://doi.org/10.1016/j.cmpb.2023.107924

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-239012
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Glüge, Stefan; Balabanov, Stefan; Koelzer, Viktor Hendrik; Ott, Thomas (2023). Evaluation of deep learning train-
ing strategies for the classification of bonemarrow cell images. ComputerMethods and Programs in Biomedicine,
243:107924.
DOI: https://doi.org/10.1016/j.cmpb.2023.107924



Computer Methods and Programs in Biomedicine 243 (2024) 107924

Available online 13 November 2023
0169-2607/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Evaluation of deep learning training strategies for the classification of bone 

marrow cell images

Stefan Glüge a,∗, Stefan Balabanov b, Viktor Hendrik Koelzer c, Thomas Ott a

a Institute of Computational Life Sciences, Zurich University of Applied Sciences, Schloss 1, 8820 Wädenswil, Switzerland
b Department of Medical Oncology and Haematology, University Hospital Zurich and University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
c Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland

A R T I C L E I N F O A B S T R A C T

MSC:
68T45
68T05
68U10

Keywords:
Hematopoiesis
In-domain pre-training
Deep learning
Hematopathology

Background and Objective: The classification of bone marrow (BM) cells by light microscopy is an important 
cornerstone of hematological diagnosis, performed thousands of times a day by highly trained specialists in 
laboratories worldwide. As the manual evaluation of blood or BM smears is very time-consuming and prone to 
inter-observer variation, new reliable automated systems are needed.
Methods: We aim to improve the automatic classification performance of hematological cell types. Therefore, 
we evaluate four state-of-the-art Convolutional Neural Network (CNN) architectures on a dataset of 171, 374
microscopic cytological single-cell images obtained from BM smears from 945 patients diagnosed with a variety 
of hematological diseases. We further evaluate the effect of an in-domain vs. out-of-domain pre-training, and 
assess whether class activation maps provide human-interpretable explanations for the models’ predictions.
Results: The best performing pre-trained model (Regnet_y_32gf) yields a mean precision, recall, and F1 scores 
of 0.787 ± 0.060, 0.755 ± 0.061, and 0.762 ± 0.050, respectively. This is a 53.5% improvement in precision and 
7.3% improvement in recall over previous results with CNNs (ResNeXt-50) that were trained from scratch. The 
out-of-domain pre-training apparently yields general feature extractors/filters that apply very well to the BM 
cell classification use case. The class activation maps on cell types with characteristic morphological features 
were found to be consistent with the explanations of a human domain expert. For example, the Auer rods in the 
cytoplasm were the predictive cellular feature for correctly classified images of faggot cells.
Conclusions: Our study provides data that can help hematology laboratories to choose the optimal training 
strategy for blood cell classification deep learning models to improve computer-assisted blood and bone marrow 
cell identification. It also highlights the need for more specific training data, i.e. images of difficult-to-classify 
classes, including cells labeled with disease information.

1. Introduction

The examination of cell morphology in BM and peripheral blood
(PB) is the basis for the diagnosis of malignant and non-malignant 
hematologic diseases [30,25]. Due to its technical feasibility and es-
tablished clinical value for disease classification, BM and PB cytology is 
an essential part of the diagnosis of hematological diseases [46]. Tra-
ditionally, classification of cell morphology is performed manually by 
human experts using light microscopy. In addition to being tedious and 
time-consuming, manual inspection and classification of cells suffers 
from subjectivity and low sensitivity [13].

* Corresponding author.
E-mail address: stefan.gluege@zhaw.ch (S. Glüge).

The use of digital microscopy and machine learning to classify cells 
in PB and BM has great potential to achieve more accurate and stable re-
sults, while minimizing the need for human intervention (time savings) 
and has great potential to reduce classification errors by providing an 
unbiased second opinion.

A large dataset with ground truth labels is the fundamental require-
ment for a successful application of deep and complex CNN architec-
tures. Therefore, machine learning is usually applied in domains where 
such data are available, such as magnetic resonance imaging [29]. One 
way to use these models in domains with limited amounts of data is 
transfer learning [45,42], which has also been successfully applied to 
related tasks, such as digital holography [11,6].
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While the fields of histopathology and cytopathology are related, the 
single-cell nature of BM datasets introduces a relevant domain shift that 
does not allow for easy methodological transfer.

The main contributions of the current manuscript are as follows:

• The evaluation of four common CNN architectures on the BM cell 
classification problem, which achieved the best top 1/top 5 accu-
racy on ImageNet [40].

• Establish a benchmark for the BM cell classification problem, since 
both the models and the data [31] are openly available.

• Investigate the effect of different pre-training strategies, i.e., in-
domain vs. out-of-domain, providing a systematic approach to 
achieve state-of-the-art performance across a wide range of cell 
types.

• Evaluate whether class activation maps of model predictions pro-
vide interpretable explanations to domain experts.

1.1. Related work

The first attempts to classify BM cells were based on the extraction 
of handcrafted single-cell features and the application of standard clas-
sifiers, such as support vector machines, random forests [22], and hi-
erarchical decision trees [23]. Later, deep learning approaches, namely 
deep CNNs, were investigated, but only on small sample sizes or disease 
classes [1,3].

Matek et al. [32] presented two CNN-based classifiers for single-
cell images of BM leukocytes. The best results were obtained with 
a ResNeXt-50 model [51] trained from scratch. Along with their ap-
proach, and perhaps more importantly, they published a large dataset 
of expert-annotated single-cell images [31] (cf. Sec. 2.1.1). This great 
resource can now be used by the community to advance the field.

Mori et al. [33] introduced the use of a pre-trained ResNet-152 in the 
classification of bone marrow dysplasia. Their system was evaluated on 
a rather small dataset (1, 797 images labeled by 4 degrees of dysplasia). 
The reported sensitivity, specificity, and accuracy were 85.2%, 98.9%, 
and 98.2%, respectively.

Dehaene et al. [10] showed the positive effect of an in-domain 
pre-training in the weakly supervised learning scenario of WSIs classifi-
cation in histopathology: An in-domain feature extractor pre-trained on 
histology images outperformed a frozen feature extractor pre-trained on 
ImageNet [40]. Furthermore, the learned embedding space was shown 
to exhibit biologically meaningful separation of tissue structures.

Boldú et al. [7] created a dataset from blood smears contain-
ing 16, 450 single-cell images from 100 healthy patients, 191 patients 
with viral infections, and 148 patients with acute leukemia. VGG16, 
ResNet101, DenseNet121 and SENet154 were evaluated on the problem 
of acute leukemia classification. All CNNs were pre-trained on ImageNet 
and fine-tuned to cell images. They report an accuracy of 86.9% ± 0.68

for VGG16 on the 6-class cell classification task.
Some research has specifically addressed the problem of large class 

imbalance in cell datasets. Guo et al. [17] present a class balance clas-
sification method for classifying 15 types of BM cells on a dataset of 
7484 images with an imbalance ratio of 31 ∶ 1 (3097 lymphocytes, 98
platelets). They achieved precision, sensitivity, and specificity values of 
84.53%, 84.44% and 99.29%, respectively. Hazra et al. [18] addressed the 
problem of underrepresented classes by using a Generative Adversarial 
Network (GAN) to generate synthetic data and balance their dataset. Af-
ter this data augmentation, their classification CNN achieved accuracy, 
specificity, and sensitivity greater than 95%.

Recently, Wang et al. [49] constructed a remarkable large dataset 
of 131, 300 expert-annotated single cell images. They report an overall 
accuracy on the cell classification task of 89.53%. Furthermore, they ap-
plied their Multi-Level Feature Learning Network (MLFL-Net) model to 
the prediction of leukemia types of hematological diseases. It produced 
the same diagnostic prediction as the experts for 74 out of the cohort of 
80 patients (92.5%).

Table 1
Overview of the dataset used in our study. Given that the BM cell images are 
the target domain, a pre-training on cervical cells or WSI patches is considered 
to be in-domain, whereas a pre-training on ImageNet is considered to be out-of-
domain.

Dataset #Images #Classes Resolution Domain

Bone marrow cells [32] 171,374 21 250 × 250 single cell
Comparison Detector [28] 48,587 11 variable single cell
PatchCamelyon [47] 262,144 2 96 × 96 WSI patch
ImageNet [40] 1,281,167 1,000 variable natural 

scene/object

Table 2
Color channel: Mean and standard deviation for each dataset.

Dataset Red Green Blue

Bone marrow cells 0.5630 ± 0.2421 0.4959 ± 0.2835 0.7353 ± 0.1767

Comparison Detector 0.7255 ± 0.2705 0.7826 ± 0.2380 0.8270 ± 0.1834

PatchCamelyon 0.7008 ± 0.2350 0.5384 ± 0.2774 0.6916 ± 0.2129

ImageNet 0.485 ± 0.229 0.456 ± 0.224 0.406 ± 0.225

2. Methods

2.1. Datasets

In this section, we present the datasets used in our study. The BM 
cell dataset is our target domain, while different datasets were used to 
initialize the models. Table 1 gives an overview of the number of images 
and classes for each dataset. We also show the original image resolution 
and domain of the images. All datasets provide the images in standard 
RGB format.

Additionally, we show the mean and standard deviation of the color 
channels for each dataset in Table 2. These values were used to normal-
ize the images during model training (cf. Sec. 2.3).

2.1.1. Bone marrow cell dataset
Matek et al. [32] published a dataset of 171, 374 expert-annotated 

single BM cell images from 945 patients diagnosed with a variety of 
hematologic diseases [31].

Diagnostically relevant cell images (250 × 250-pixel) were annotated 
into 21 classes. Fig. 1 shows four randomly selected samples from the 
dataset. The number of images per class varies widely from 8 up to 
≈ 30, 000 and is listed in Table 5, column #Images.

2.1.2. Comparison detector (CD) dataset
Liang et al. [28] established a dataset consisting of 7, 410 cervical 

microscopical images cropped from WSIs.1 A total of 48, 587 object in-
stance bounding boxes were labeled by experienced pathologists. Each 
instance belongs to one of 11 categories. As for the BM cell dataset, the 
number of images per class varies widely between 123 up to ≈ 26, 000. 
Fig. 2 shows four randomly selected samples from the dataset.

2.1.3. PatchCamelyon (PCam) dataset
Veeling et al. [47] presented the PatchCamelyon dataset. It consists 

of 327, 680 color images (96 ×96 pixels) extracted from histopathological 
scans of lymph node sections. Each image is annotated with a binary 
label indicating the presence or absence of metastatic carcinoma. In 
total, the dataset consists of 262, 144 images for training, and 32.768 for 
validation and testing. Fig. 32 shows some randomly selected examples 
from the dataset.

1 The dataset is available at https://github .com /kuku -sichuan /
ComparisonDetector.
2 Bas Veeling, example images from PCam, MIT License, available from 
https://github .com /basveeling /pcam (accessed August 31, 2022).
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Fig. 1. Example of four images from the bone marrow cell dataset with their 
corresponding class label.

Fig. 2. Example of four images of cervical cells from the comparison detector 
dataset with their corresponding class label.

2.1.4. ImageNet
Since 2010, the ImageNet dataset has been used in the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) [40]. The classi-
fication part of the dataset contains 1, 000 categories of 1.2 million 
images (aka. ImageNet-1K). For image classification, ImageNet has pro-

Table 3
CNN models used in our study. We show the top 1 and 
top 5 accuracy on ImageNet (Acc@1/Acc@5) and the 
number of trainable parameters (#Params).

Model Acc@1 Acc@5 #Params

VGG-19 BN [43] 74.218 91.842 143,678,248

ResNet-152 [19] 82.284 96.002 60,192,808

Regnet_y_32gf [36] 83.368 96.498 145,046,770

ViT_l_32 [12] 76.972 93.07 306,535,400

vided a solid foundation for benchmarking advances in computer vision 
research. It serves as the primary dataset for pre-training for computer-
vision transfer learning models. In addition, improving performance on 
ImageNet is often considered as a litmus test for general applicability to 
downstream tasks [38].

2.2. Models and model training

We tested the following model architectures for image classifica-
tion: VGG [43] with batch normalization (BN), ResNet [19], RegNet 
[36] and VisionTransformer (ViT) [12]. The models are provided in Py-
Torch [34].3 We chose the model configurations that gave the best top 
1/top 5 accuracy on ImageNet [40]. Table 3 provides an overview of the 
model configurations used in our study. A more detailed introduction 
to the different architectures is further provided in the Supplementary 
Material, Sec. 1.2 Model architectures.

To adapt the models for the BM cell classification task, we removed 
the last fully connected layer and used 21 linear units. Model training 
was performed for 75 epochs with a batch size of 32. PyTorch’s im-
plementation of stochastic gradient descent optimization [8] was used 
with a fixed momentum of 0.9. We also applied a learning rate decay 
by a factor of 0.1 if the validation loss did not improve within the last 
3 epochs of training. The models were evaluated on the validation set 
after each epoch, and the models with the highest validation accuracy 
were evaluated on the held-out test data.

To find the most promising initial learning rate for each model, we 
used the PyTorch implementation of the learning rate range test4 de-
tailed in [44]. We did not optimize other hyperparameters, such as 
batch size and optimizer, because we are mainly interested in compar-
ing model architectures and different pre-training strategies.

2.3. Data preparation and augmentation

For the network training, we used a stratified 5-fold train-validation-
test split. In each split, we trained a network using 80% and 20% of the 
available images for each class for training and testing, respectively. 
Repeating the stratified split five times ensures that each image was in 
the test set once in each experiment. Within the training set, 20% of the 
samples were used as a validation set during training.

The images were resized to 224 ×224 pixels and normalized to mean 
± standard deviation of the channels of the full dataset (cf. Table 2). 
In addition, the following augmentation functions were used during 
fine-tuning on the BM cell classification task and during in-domain pre-
training:

• Random cropping of the image with a random size between 0.08
and 1 of the original image size, and a random aspect ratio of the 
crop between 0.75 and 1.33.5

• Random rotation of the image between 0◦ and 180◦.
• Random horizontal flipping of the image with probability 0.5
• Random vertical flipping of the image with probability 0.5

3 https://pytorch .org /vision /stable /models .html version: 0.13.
4 https://pypi .org /project /torch -lr -finder/.
5 not used during in-domain pre-training cf. Sec. 2.4.2.



Computer Methods and Programs in Biomedicine 243 (2024) 107924

4

S. Glüge, S. Balabanov, V.H. Koelzer et al.

Fig. 3. Example images from PCam. Green boxes indicate tumor tissue in the center region, corresponding to a positive label.

To compensate for the strong class imbalance, we used a weighted 
random sampler during training, which ensures that the network sees 
the same number of (augmented) samples for all classes.

For the out-of-domain pre-training, we used pre-trained models 
available in the torchvision library. Additional steps for data prepara-
tion and augmentation were not performed (cf. Sec. 2.4.1).

2.4. Pre-training

Pre-training has long been used to improve performance in visual 
tasks [16]. The features learned by a CNN trained on a large dataset 
such as ImageNet tend to transfer well to other domains.

We hypothesize that a domain-specific pre-training might help in 
the development of features that facilitate separability between cell 
classes, rather than using out-of-domain examples such as provided by 
ImageNet. Therefore, we set up several experiments with different pre-
training strategies, namely

1. no pre-training / random initialization,
2. out-of-domain pre-training,
3. in-domain pre-training,
4. out-of-domain + in-domain pre-training.

2.4.1. Out-of-domain pre-training
Pre-training on ImageNet is considered out-of-domain for the BM 

cell classification task. Ridnik et al. [38] Therefore, we used the pre-
trained models that are available through torchvision. We refer to 
the torchvision page https://pytorch .org /vision /0 .12 /models .html for 
more details.

2.4.2. In-domain pre-training
We consider the CD (cf. Sec. 2.1.2) and PCam (cf. Sec. 2.1.3) datasets 

to be in the same domain as the BM cell images. The pre-training was 
performed on the randomly initialized models with the same training 
parameters as the later fine-tuning (cf. Sec. 2.2). Data preparation was 
performed as in the fine-tuning phase (cf. Sec. 2.3) with the following 
adjustments: normalization to the dataset-specific color channel values 
(cf. Table 2) and without random image cropping.

2.4.3. Out-of-domain + in-domain pre-training
In this scenario, we combined out-of-domain pre-training on Ima-

geNet followed by an in-domain pre-training on CD and PCam, respec-
tively.

2.5. Gradient-weighted class activation mapping

To build confidence in the classification results of deep CNNs, it 
is essential to provide some human interpretable explanations for the 
models’ predictions.

We used the PyTorch implementation [15] of Gradient-weighted 
Class Activation Mapping (Grad-CAM) [41] to address this problem. 

This technique uses the gradients of any target concept, such as ‘faggot 
cell’, that flow into the final convolutional layer to produce a coarse lo-
calization map (heatmap) that highlights the important regions in the 
image for predicting the concept. For a more detailed explanation see 
Sec. 1.5 Gradient-weighted Class Activation Mapping in the Supplemen-
tary Material.

While these visualizations are often referred to as ‘visual expla-
nation’, expert interpretation remains critical to actually explain the 
decision, or at least to judge whether the decision is reasonable. This 
is what makes post hoc explanations problematic, as argued, for exam-
ple by Rudin [39].

3. Results

Table 4 shows the mean precision, recall and F1 scores that were 
obtained in the 5-fold cross-validation of the different models under dif-
ferent pre-training conditions. We chose these specific scores to ensure 
the comparability of our results with the numbers reported in Matek 
et al. [32]. A more detailed definition of the scores and the individual 
steps on how we computed the numbers in Table 4 are given in the 
Supplementary Material Sec. 1.1 Evaluation metrics.

Table 5 shows the class-wise scores for the Regnet_y_32gf pre-trained 
on ImageNet + CD side by side with the scores reported in Matek 
et al. [32]. Note that we calculated the F1 score for the ResNeXt-50
from the published precision and recall means without the correspond-
ing standard deviations.

To provide some insight into which cell types are more difficult to 
differentiate by the trained models, we show the confusion matrix of the 
Regnet_y_32gf pre-trained on ImageNet + CD on the test data (mean of 
5-fold cross-validation) in Fig. 4. The lowest class-wise accuracy (0.3
- 0.6) is observed for Abnormal Eosinophils (ABE, 8 samples), Imma-
ture Lymphocytes (LYI, 65 samples), Faggot Cells (FGC, 47 samples), 
Basophils (BAS, 441) and Metamyelocytes (MMZ, 3, 055 samples).

To understand the network decision-making process for cell classi-
fication, we performed a Grad-CAM analysis. Examples of correct and 
incorrect classifications and the corresponding heatmaps of selected cell 
classes are shown in Fig. 5 a-h and Fig. 6 a-l. We chose to use im-
ages from of cell types with characteristic morphological features. FGCs 
with multiple bundles of Auer rods in the cytoplasm are a characteristic 
example for correct classification (e.g., Fig. 5a). According to the activa-
tion maps, these Auer rods were the most predictive cellular feature in 
correctly classified images for this particular cell type (Fig. 5a-d). This 
was particularly true, when the cells had a wide and bright cytoplasm, 
allowing for clear recognition of the Auer rods (Fig. 5a-c). In misclas-
sified images, the activation maps highlighted areas in the cytoplasm 
(Fig. 5e-f) or in the nucleus (Fig. 5g-h), which showed the artifactual 
formation of rod-like textures.

The most prominent morphologic feature of BAS is the purple gran-
ules in the cytoplasm (e.g., Fig. 6a-d), which allows differentiation from 
other granulocyte populations. For the BAS test set (𝑛 = 88), 48 im-
ages were classified correctly and 40 images were misclassified by the 
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Table 4
Mean ± standard deviation of Precision/Recall/F1 scores obtained in 
the 5-fold cross-validation of the different models on the BM classi-
fication task for different pre-training strategies. The best scores are 
highlighted. For comparison, we also show the results published in 
[32]. The pre-training strategies are denoted as follows: random – no 
pre-training, the models are initialized with random weights, Ima-
geNet – out-of-domain pre-training, the models are initialized with a 
pre-training on ImageNet, PCam / CD – in-domain pre-training, the 
models are initialized with a pre-training on PCam/CD dataset, Im-
ageNet + PCam/CD – out-of-domain + in-domain pre-training, the 
models are initialized with a pre-training on ImageNet followed by a 
pre-training on PCam/CD dataset.

Model & pre-training Precision Recall F1 Score

VGG-19 BN
Random 0.667 ± 0.039 0.744 ± 0.058 0.695 ± 0.038

ImageNet 0.705 ± 0.037 0.748 ± 0.038 0.720 ± 0.028

PCam 0.682 ± 0.052 0.763 ± 0.056 0.712 ± 0.047

CD 0.648 ± 0.045 0.782 ± 0.065 0.691 ± 0.045

ImageNet+ PCam 0.722 ± 0.057 0.772 ± 0.054 0.742 ± 0.049

ImageNet+ CD 0.701 ± 0.062 0.751 ± 0.061 0.720 ± 0.054

ResNet-152
Random 0.670 ± 0.050 0.731 ± 0.060 0.689 ± 0.044

ImageNet 0.732 ± 0.039 0.745 ± 0.049 0.733 ± 0.034

PCam 0.656 ± 0.069 0.738 ± 0.075 0.683 ± 0.065

CD 0.672 ± 0.048 0.735 ± 0.062 0.695 ± 0.046

ImageNet+ PCam 0.739 ± 0.061 0.757 ± 0.046 0.744 ± 0.044

ImageNet+ CD 0.734 ± 0.036 0.740 ± 0.023 0.730 ± 0.022

Regnet_y_32gf
Random 0.709 ± 0.040 0.698 ± 0.038 0.695 ± 0.025

ImageNet 0.770 ± 0.030 0.731 ± 0.040 0.740 ± 0.030

PCam 0.712 ± 0.053 0.709 ± 0.058 0.705 ± 0.049

CD 0.707 ± 0.038 0.698 ± 0.032 0.697 ± 0.028

ImageNet+ PCam 0.784 ± 0.063 0.735 ± 0.062 0.748 ± 0.053

ImageNet+ CD 0.787 ± 0.060 0.755 ± 0.061 0.762 ± 0.050

ViT_l_32
Random 0.538 ± 0.028 0.576 ± 0.037 0.547 ± 0.024

ImageNet 0.769 ± 0.056 0.687 ± 0.058 0.712 ± 0.049

PCam 0.539 ± 0.039 0.584 ± 0.055 0.550 ± 0.038

CD 0.552 ± 0.049 0.588 ± 0.059 0.561 ± 0.045

ImageNet+ PCam 0.743 ± 0.069 0.734 ± 0.058 0.732 ± 0.050

ImageNet+ CD 0.762 ± 0.061 0.701 ± 0.053 0.722 ± 0.048

ResNeXt-50 [32]
Random 0.510 ± 0.048 0.689 ± 0.087 0.545

Regnet_y_32gf pre-trained on ImageNet + CD. In the case of correct clas-
sification, manual evaluation of the Grad-CAM action maps showed that 
the model indeed focused on the characteristic cytoplasmic granules of 
BAS (Fig. 6a-d). The model misclassified images when the focus was 
on the nucleus or when the granules were less prominent, as shown in 
Fig. 6e-h. This suggests that the granular chromatin structures may have 
been mistaken for cellular granules. Furthermore, manual inspection of 
the misclassified BAS images revealed an incorrect ground truth as the 
reason for misclassification in some cases (Fig. 6i-l). Interestingly, our 
model classified the images shown in Fig. 6i-l to the correct cell type, 
compensating for this error in the ground truth of the dataset.

4. Discussion

In this study, we evaluated different deep learning training strategies 
for the classification of BM cell images. First, we compared different 
model architectures that achieve state-of-the-art performance on Ima-
geNet. Overall, depending on the evaluation score, different models can 
be considered as the best performs.

Without any pre-training, the VGG-19 BN, ResNet-152 and Reg-
net_y_32gf outperform the previously published results of the Res-
NeXt-50, while the ViT_l_32 architecture does not (cf. Table 4 rows 
“random”). ViT structurally lacks locality inductive bias and requires 
a large amount of training data to obtain an acceptable visual represen-

tation. Therefore, learning on a small dataset requires pre-training on a 
large dataset, which may limit its applicability to our current use case 
[26]. However, larger models in particular could benefit from an out-
of-domain pre-training on the larger ImageNet-21K dataset, as shown 
in [38].

For precision, a good measure when the cost of false positives is 
high, the Regnet_y_32gf pre-trained on ImageNet + CD performed best. 
In terms of recall, typically used when the cost of false negatives is 
high, the VGG-19 BN pre-trained on CD performed best. All pre-trained 
models tested outperformed their randomly initialized counterparts.

In general, we observed an advantage for out-of-domain pre-
training, i.e., ImageNet vs. PCam and CD, respectively. These results 
suggest that pre-training on a large out-of-domain dataset yields bet-
ter features to separate BM cell images compared to pre-training on a 
smaller, but domain-specific, dataset (cf. Table 4). This could be due 
to the specific properties of the ImageNet training examples, includ-
ing many center-clipped objects, which show some similarity to the 
task of classifying single cells, rather than patch-based histopathology 
domain-specific features, which represent a more limited representation 
of textures. Notably, the combination of ImageNet + CD/PCam tended 
to yield a slight improvement over ImageNet pre-training alone. How-
ever, the performance differences are within the range of the standard 
deviation of the 5-fold cross-validation. This suggests that the features 
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Table 5
Classwise precision, recall and F1 score obtained in the 5-fold cross-validation for the Regnet_y_32gf pretrained on ImageNet + CD 
compared to the published results of a ResNeXt-50 architecture [32]. Additionally, we show the number of samples (#Images) for 
each class in the data set.

ResNeXt50 random [32] Regnet_y_32gf ImageNet+ CD

Class Precision Recall F1 Score Precision Recall F1 Score #Images

Band neutrophils (NGB) 0.540 ± 0.030 0.650 ± 0.040 0.590 0.717 ± 0.012 0.790 ± 0.008 0.752 ± 0.008 9,968

Segmented neutrophils (NGS) 0.920 ± 0.020 0.710 ± 0.050 0.801 0.938 ± 0.003 0.897 ± 0.010 0.917 ± 0.004 29,424

Lymphocytes (LYT) 0.900 ± 0.030 0.700 ± 0.030 0.788 0.922 ± 0.004 0.909 ± 0.008 0.915 ± 0.005 26,242

Monocytes (MON) 0.570 ± 0.050 0.700 ± 0.030 0.628 0.731 ± 0.015 0.790 ± 0.024 0.759 ± 0.013

Eosinophils (EOS) 0.850 ± 0.050 0.910 ± 0.030 0.879 0.958 ± 0.007 0.974 ± 0.007 0.966 ± 0.006 5,883

Basophils (BAS) 0.140 ± 0.050 0.640 ± 0.070 0.230 0.763 ± 0.067 0.618 ± 0.041 0.682 ± 0.044 441

Metamyelocytes (MMZ) 0.300 ± 0.050 0.640 ± 0.080 0.409 0.551 ± 0.013 0.579 ± 0.036 0.564 ± 0.015 3,055

Myelocytes (MYB) 0.520 ± 0.050 0.590 ± 0.060 0.553 0.703 ± 0.013 0.757 ± 0.012 0.729 ± 0.008 6557

Promyelocytes (PMO) 0.760 ± 0.050 0.720 ± 0.080 0.739 0.873 ± 0.012 0.814 ± 0.010 0.842 ± 0.009 11,994

Blasts (BLA) 0.750 ± 0.030 0.650 ± 0.030 0.696 0.843 ± 0.010 0.872 ± 0.008 0.857 ± 0.008 11,973

Plasma cells (PLM) 0.810 ± 0.060 0.840 ± 0.040 0.825 0.918 ± 0.015 0.936 ± 0.008 0.927 ± 0.006 7,629

Smudge cells (KSC) 0.280 ± 0.090 0.900 ± 0.100 0.427 0.893 ± 0.106 0.875 ± 0.125 0.874 ± 0.044 42

Other cells (OTH) 0.220 ± 0.060 0.840 ± 0.060 0.349 0.946 ± 0.017 0.827 ± 0.030 0.882 ± 0.023 294

Artefacts (ART) 0.820 ± 0.050 0.740 ± 0.060 0.778 0.902 ± 0.006 0.897 ± 0.007 0.900 ± 0.003 19,630

Not identifiable (NIF) 0.270 ± 0.040 0.630 ± 0.040 0.378 0.628 ± 0.019 0.662 ± 0.019 0.644 ± 0.014 3,538

Proerythroblasts (PEB) 0.570 ± 0.090 0.630 ± 0.130 0.599 0.707 ± 0.025 0.825 ± 0.040 0.761 ± 0.010 2,740

Erythroblasts (EBO) 0.880 ± 0.010 0.820 ± 0.010 0.849 0.957 ± 0.004 0.936 ± 0.004 0.946 ± 0.001 27,395

Hairy cells (HAC) 0.350 ± 0.080 0.800 ± 0.060 0.487 0.804 ± 0.034 0.783 ± 0.081 0.790 ± 0.033 409

Abnormal eosinophils (ABE) 0.020 ± 0.030 0.200 ± 0.400 0.036 0.400 ± 0.548 0.400 ± 0.548 0.400 ± 0.548 8

Immature lymphocytes (LYI) 0.080 ± 0.030 0.530 ± 0.150 0.139 0.710 ± 0.228 0.292 ± 0.167 0.383 ± 0.185 65

Faggot cells (FGC) 0.170 ± 0.050 0.630 ± 0.270 0.268 0.655 ± 0.112 0.422 ± 0.093 0.503 ± 0.061 47

mean 0.510 ± 0.048 0.689 ± 0.087 0.545 0.787 ± 0.060 0.755 ± 0.061 0.762 ± 0.050

Fig. 4. Confusion matrix on the test set of the Regnet_y_32gf pre-trained on ImageNet + CD. Shown are classwise accuracies as the mean of the 5-fold cross-validation 
normalized by row to account for class imbalance. The number of single-cell images included in each category is indicated in the logarithmic plot on the right.

learned from ImageNet are sufficiently general for the BM cell classi-
fication task. Further fine-tuning on more, domain-specific microscopy 
images did not lead to better features for the final task.

Compared to the ResNeXt-50 trained from scratch, we obtained a 
54.3% improvement in precision (Regnet_y_32gf (ImageNet + CD): 0.787

vs. ResNeXt-50: 0.51) and 9.6% improvement in recall (Regnet_y_32gf 
(ImageNet + CD): 0.755 vs. ResNeXt-50: 0.689).

Domain expert interpretation provides an explanation for these find-
ings, as these cell types share relevant morphological similarities that 
can be difficult for human experts to resolve. In the future, cross-
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Fig. 5. Grad-CAM activation maps generated from the Faggot cells using the Regnet_y_32gf pre-trained on ImageNet + CD. Example images with corresponding 
activation maps for correct classified images (a-d) and misclassified images (e-h). Regions showing high activation (in red) provide a strong contribution to the 
classification result.

modality explanation maps may help to generate even better explana-
tions that are potentially more understandable to human experts [5].

More expert-annotated training data is needed to improve this 
challenging classification task. Since different cell types are char-
acterized by specific cytoplasmic or nuclear features, feature pres-
election by cell segmentation in the cytoplasm and nucleus could 
be another suitable approach to increase correct cell classification 
[2,35]. In particular, this could be an approach for the correct de-
tection of FGCs, which are characterized by cytoplasmic Auer rods. 
Correct classification of FGCs is of clinical importance and misclas-
sification, especially false negative classification, has direct negative 
clinical consequences. FGCs are a morphological hallmark of a very 
rare subtype of acute leukemia (acute promyelocytic leukemia (APL)), 
which can be cured in most patients after correct diagnosis [9]. 
However, APL is associated with severe bleeding complications and 
early death due to bleeding events if diagnosis and treatment are 
delayed [37]. In this context, a combination of digital microscopy 

and automated blood cell detection could lead to earlier diagno-
sis of APL patients and a reduction in early mortality in these pa-
tients.

Current commercially available systems for digital microscopy and 
computer-assisted cell detection can already provide sufficient accu-
racy for some blood cell types (e.g., segmented neutrophils, mono-
cytes), especially in healthy individuals [21,24]. However, for other 
blood cells (e.g., lymphocyte subtypes), the correct detection rate is 
rather low, and data for disease classification with sufficient accu-
racy based on blood smear evaluation with these systems are lack-
ing.

In this context, our study indicates the need for more training data, 
especially samples for difficult-to-classify classes, including cells labeled 
with disease information. Since collecting images of blood cells labeled 
by experts is time-consuming, especially for rare cell types data aug-
mentation using generative models has the potential to provide more 
images for model training [4,18]. In addition, removal of experimen-
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Fig. 6. Grad-CAM activation maps generated from the Basophils using the Regnet_y_32gf pre-trained on ImageNet + CD. Example images with corresponding 
activation maps for correct classified images (a-d), misclassified images with correct ground truth (e-h) and images not classified as Basophils due to incorrect 
ground truth (i-l). Regions showing high activation (in red) provide a strong contribution to the classification result.

tal noise in microscopy is often essential, especially for accurate cell 
classification, as highlighted for example in [14].

We see many promising and exciting results in the field of the au-
tomated evaluation of BM cell morphology that have the potential to 
improve patient outcomes. Besides the work of [32], the work of Wang 
et al. [49] is probably most comparable to our work, as they used a 
large dataset of 131, 300 expert-annotated cell images.

However, most of the work in this area has been done on datasets 
with small sample sizes or datasets that are not publicly available (cf. 
Sec. 1.1). Like Wagner et al. [48], we argue for the need for open 
datasets to enable reproducibility and reusability. Establishing bench-
marks for model development will rapidly and sustainably advance 
computational pathology.

Last but not least, we emphasize the importance of AI-assisted de-
cision tools adhering to the recommendations of professional societies 
and bodies [20,50,27].
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