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Pinch point singularities, associated with flat band magnetic excitations, are tell-tale signatures of Coulomb

spin liquids. While their properties in the presence of quantum fluctuations have been widely studied, the fate

of the complementary nonanalytic features—shaped as half moons and stars—arising from adjacent shallow

dispersive bands has remained unexplored. Here, we address this question for the spin S = 1/2 Heisenberg

antiferromagnet on the kagome lattice with second and third neighbor couplings, which allows one to tune the

classical ground state characterized by flat bands to one that is governed by shallow dispersive bands for inter-

mediate coupling strengths. Employing the complementary strengths of variational Monte Carlo, pseudofermion

functional renormalization group, and density-matrix renormalization group, we establish the quantum phase

diagram of the model. The U (1) Dirac spin liquid ground state of the nearest-neighbor antiferromagnet remains

remarkably robust till intermediate coupling strengths when it transitions into a pinwheel valence bond crystal

displaying signatures of half moons in its structure factor. Our Letter thus identifies a microscopic setting that

realizes one of the proximate orders of the Dirac spin liquid identified in a recent work [Song, Wang, Vishwanath,

and He, Nat. Commun. 10, 4254 (2019)]. For larger couplings, we obtain a collinear magnetically ordered ground

state characterized by starlike patterns.

DOI: 10.1103/PhysRevResearch.5.L012025

Classical spin models which admit a completion of squares

belong to the distinct genre of “maximally frustrated” Hamil-

tonians which feature an exponentially large degenerate

ground-state manifold [1,2]. In two spatial dimensions, a cel-

ebrated example is the classical nearest-neighbor Heisenberg

antiferromagnet (NNHAF) on the kagome lattice:

H = J1

∑

〈i j〉

Si · S j =
J1

2

∑

�
,
�

(S1 + S2 + S3)2 − J1N, (1)

with |Si| = 1 and N the total number of spins. By virtue of

the right-hand side of Eq. (1), any spin configuration which

satisfies (S1 + S2 + S3) = 0 on each triangle qualifies as a

classical ground state.

*These authors contributed equally to this work.
†yiqbal@physics.iitm.ac.in

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

This local constraint leads to the formation of a Coulomb

spin liquid [3], with algebraically decaying spin-spin correla-

tions in real space giving some structure to the exponentially

large manifold of degenerate classical ground states. In

Fourier space, these correlations most strikingly manifest

themselves in the presence of nonanalytic features in the struc-

ture factor called pinch points [4,5]. Remarkably, this classical

Coulomb phase remains stable [6,7] even in the presence

of additional couplings along a fine-tuned line when second

neighbor (J2) and third neighbor along the bonds (J3a) [see

Fig. 1(a)] of equal strength are concurrent, i.e., J2 = J3a (≡ J

henceforth). This can be readily understood when diagonal-

izing the spin exchange Hamiltonian in momentum space,

H(k) [8–10], which reveals that the characteristic flat band of

the NNHAF persists [6] up to J/J1 = 1/5. For J/J1 > 1/5,

a shallow dispersive band starts to cut below the flat band

in parts of the Brillouin zone, which in turn gives rise to

pairs of half moons [11,12], i.e., crescent shaped arcs in the

static structure factor [6], with the flat band remaining close

by with a multitude of low-energy excitations [13]. At a

deeper level, the formation of half moons in the static structure

factor results from a nonanalyticity in the dispersive-band

eigenvectors as a function of wave vector which, given the

2643-1564/2023/5(1)/L012025(8) L012025-1 Published by the American Physical Society
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FIG. 1. The kagome skymap. (a) Illustration of first (J1), second (J2), and third neighbor interactions along edges (J3a) of the kagome lattice

for the model (1). (b) The S = 1/2 quantum phase diagram with (top panel) representative real space spin-spin correlation profiles, with red

(blue) bonds denoting antiferromagnetic (ferromagnetic) correlations, and (lower panel) spin structure factors of the different phases evaluated

at J/J1 = 0.1 (DSL), J/J1 = 0.4 (pinwheel VBC), and J/J1 = 0.9 (collinear order) from pf-FRG. (c) Estimates of the phase boundaries (g1

and g2) obtained from the various approaches employed in this Letter. While we see good agreement within error bars for g1 for all approaches,

the pf-FRG result for g2 (marked by an asterisk) shows a notable deviation whose origin is discussed in the Supplemental Material [59].

required completeness of the eigenvector basis, can be viewed

as necessarily arising in order to complement the singularity

in the wave vector dependence of the flat band eigenvectors

[6,14]. With increasing J/J1, the radius of the half moon

continuously grows and, at J/J1 = 1, the half moons from

different Brillouin zones coalesce, giving rise to a star pattern

in the static structure factor [6]. While in the case of Ising

spins, which show a similar sequence of reciprocal space

signatures as a function of J/J1, the nature of the half moons

and star phases has a well-understood real space picture in

terms of magnetic clustering of topological charges [15–17],

for continuous (Heisenberg) spins, the nature of the real space

clustering and its freedom to continuously evolve with J/J1 is

far more involved and not yet completely understood [6].

Much of the interest in the quantum kagome antiferromag-

net as a potential host to highly entangled quantum states owes

its origin to the realization that its classical ground state is

governed by flat bands—an opportunity for otherwise resid-

ual quantum effects to dictate the macroscopic ground state.

Thence, tuning the pairwise exchange along the maximally

frustrated axis (J2 = J3a ≡ J ) which, classically, is tuned to

have a flat band over an extended region in parameter space,

should provide a fertile playground to potentially realize novel

states of matter also in the quantum model. For one, the U (1)

Dirac spin liquid (DSL) [18–20] ground state of the NNHAF

[21–24] is indeed known to be fragile to magnetic order when

perturbed by longer-range Heisenberg couplings [25,26] or

Dzyaloshinskii-Moriya interactions [27,28], as expected for

algebraic spin liquids, but its fate along the maximally frus-

trated direction of interest here is unknown. In particular, this

parameter axis may afford a higher degree of stability to the

U (1) DSL against long-range order, and one may wonder

whether the DSL naturally gives way to other exotic quantum

phases as one marches along this direction. At a conceptual

level, instabilities of the DSL have recently been rigorously

classified in a field theoretical work [20]. However, it remains

an open challenge to identify realistic microscopic settings in

which these instabilities manifest themselves and what tell-

tale signatures they display and which might be accessible in

experimental studies.

In this Letter, we take an important step in this direc-

tion by establishing the quantum counterpart to the classical

half-moon phase as a pinwheel valence bond crystal state

which the DSL transitions into only for a nonzero critical

J/J1 coupling strength. We do so by employing a variety of

complementary numerical quantum many-body approaches to

build a detailed picture of the S = 1/2 quantum phase diagram

along the maximally frustrated axis for J/J1 > 0, resolving

the characteristic real space and Fourier space signatures of all

quantum phases. The numerical approaches include fermionic

variational Monte Carlo (VMC) with versatile Gutzwiller

projected Jastrow wave functions [29], many-variable varia-

tional Monte Carlo (mVMC) with unconstrained optimization

of the Bardeen-Cooper-Schrieffer (BCS) pairing function

(supplemented with symmetry projectors) [30–38], one-loop

pseudofermion functional renormalization group (pf-FRG)

[39–48], and density-matrix renormalization group (DMRG)

[49,50]. The resulting quantum phase diagram is shown in

Fig. 1, where cumulative and complementary evidence from

all employed approaches shows that the ground state remains

nonmagnetic over an appreciably wide span of parameter

space [see Fig. 1(b)], notably extending far beyond the

L012025-2
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FIG. 2. Transition into half-moon phase. (a) From VMC, the

evolution with J/J1 of the energy per site of the DSL and VBC

states (3 × 12 × 12 lattice). DMRG energies are also shown for

comparison. (b) From pf-FRG, the variation of the spectral measure

�χk (see text below) with J/J1 evaluated at the lowest simulated RG

cutoff �/Z = 0.01 where Z =
√

J2
1 + 2J2.

classical domain (0 � J/J1 � 0.2) where flat bands are low-

est in energy. This nonmagnetic region is composed of two

phases: (i) the U (1) DSL for 0 � J/J1 � g1, where g1 ≈

0.26–0.32 (see the table in Fig. 1), as characterized by soft

maxima at the pinch points in its spin structure factor χ (k)

[51], and (ii) a 12-site unit cell, C6 symmetric pinwheel va-

lence bond crystal (VBC) for g1 � J/J1 � g2 (g2 ≈ 0.51),

displaying signatures of half moons in χ (k) [see Fig. 1(b)].

Our analysis indicates the DSL-VBC transition to be first

order as ascertained on finite systems from a sudden change in

the spin-spin correlation profile and a crossing of the energies.

For J/J1 � g2, the VBC gives way, via a first-order transition,

to collinear long-range magnetic order [52,53] with signatures

of a starlike pattern in χ (k). The resemblance of the structure

factors of the three quantum phases to the ones of the classical

model represents an instance of classical-quantum correspon-

dence previously explored in Refs. [54–57]. A Schwinger

boson treatment of this model agrees reasonably well on the

location of the phase boundaries but comes to different con-

clusions regarding the nature of the quantum phases [58].

I. RESULTS

We set the stage by observing that across our four numeri-

cal approaches, we find that the ground-state energy increases

with J/J1. This behavior is a reflection of an enhanced de-

gree of frustration in this extended kagome antiferromagnet

model, which is at variance with the conventional expectation

that the NNHAF represents the point of maximal frustra-

tion that is relieved upon inclusion of long-range couplings.

The occurrence of a pronounced kink in the evolution of

the ground-state energy indicates a phase transition [see Fig.

2(a)], and which we estimate to be at g1 = 0.27(1) via an

analysis of its derivative (from our DMRG calculations). This

value is also corroborated by the behavior of the von Neu-

mann entanglement entropy which starts decreasing sharply

at g1 (Fig. S13 in Supplemental Material [59]) indicating

the formation of a less entangled state. To probe the na-

ture of the ensuing states, we start by discussing the results

from our fermionic VMC approach with versatile Gutzwiller-

projected wave functions, which are constructed such as to

allow for an accurate investigation of the competition between

nonmagnetic quantum spin liquid (QSL) and VBC phases,

together with magnetically ordered states. Such a unified

framework has been successfully used for a wide range of

frustrated spin models [25,26,60–62]. Our calculations are

performed on 3 × L × L clusters respecting the full symme-

try of the kagome lattice. For the S = 1/2 NNHAF, there

is growing consensus that its ground state is a U (1) DSL

[20,21,24,63–66] as it yields the lowest variational energy

[21,63]; nonetheless, some recent studies have proposed al-

ternative scenarios of chiral [27,67], gapped Z2 [68–70], and

gapless Z2 [71] quantum spin liquids. Upon including concur-

rent J2 = J3a couplings of identical strength J , we assess the

potential instability of the U (1) DSL against symmetric Z2

[72], chiral U (1) [73], chiral Z2 [74], and lattice nematic Z2

[75] QSLs. We also probe for possible dimerization tenden-

cies into VBCs with various unit cell sizes up to 36 sites and

different symmetries [18,19,76–78]. Our analysis finds a re-

markable robustness of the U (1) DSL to the above-mentioned

potential instabilities over a wide range along the maximally

frustrated axis extending up till g1 = 0.26(1), which we note

is beyond the range J/J1 = 1/5 for the classical model where

the flat band excitation is the lowest in energy [6].

At J/J1 = 0.26(1), we detect a dimer instability of the DSL

towards a VBC ground state in our VMC calculations. This

VBC state is found to be characterized by a 2 × 2 enlarged

unit cell with a C6 invariant pinwheel structure of spin-spin

correlations in real space which breaks reflection symmetries

[see Fig. 1(b)] [59]. The formation of such a VBC state

is further corroborated by an enhanced dimer response (see

Fig. S4 in Supplemental Material [59]). Interestingly, such a

pattern of strong/weak bonds has previously been identified

as descending from confinement transitions of Z2 spin liquids

[79] (left panel of Fig. 1 therein), and recently proposed in

Ref. [20] [Fig. 3(c) therein] as a potential instability of the

U (1) DSL resulting from a condensation of a C6 invariant

mass and the associated monopole terms. Our finding of a C6

symmetric VBC, as opposed to other less symmetric patterns

[Fig. 2(c) in Ref. [70]], is likely connected to the fact that an

expectation value of the monopole operator which is imagi-

nary leads to reflection (Ry) symmetry breaking pattern which

extremizes the Landau potential [80]. It is worth pointing

out that our VBC pattern is distinct from the 2 × 2 enlarged

VBC patterns previously proposed in Fig. 4 of Ref. [18] and

Fig. 5 of Ref. [19] which do not break reflections. Although a

monopole which condenses to a real expectation value leading

to a reflection symmetric pattern also extremizes the Landau

potential, as noted in Ref. [20], our microscopic lattice cal-

culations find that a reflection symmetry-breaking pattern is

the one selected. While, the DSL to VBC transition is allowed

to be continuous, our microscopic calculations find it to be

first order as inferred from a level crossing of the energies of

the two states [see Fig. 2(a)] together with the observation of

an abrupt change in the nearest-neighbor spin-spin correlation

profile. We show that the energy gain of the VBC with respect

to the U (1) DSL is nonzero for J/J1 > 0.26(1) and remains so

on all finite-size systems we simulated, indicating size consis-

tency of the VBC state and its stability in the thermodynamic

limit.

Further support for the pinwheel VBC state comes from

mVMC calculations at J/J1 = 0.4, for which we measure the

L012025-3
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real space dimer-dimer correlation pattern (see Fig. S6 in

Supplemental Material [59]) where the development of the

C6 symmetric pinwheel VBC is also manifest. We also con-

struct a symmetry-breaking dimer operator with nonvanishing

susceptibility extrapolated to the thermodynamic limit (see

Fig. S7 in Supplemental Material [59]). An analysis of the

latter suggests a triply degenerate C3-related order parameter,

with the three momenta M points setting the spatial depen-

dence, which signals a VBC behavior with the spontaneous

C3-symmetry breaking. However, the equal-weight sum of

these three basis functions of the dominant irreducible rep-

resentations results in an effective C6 symmetric pinwheel

pattern as obtained within VMC [see Fig. 1(b)], which we

illustrate in the inset of Fig. S7 in Supplemental Material

[59]. The corresponding susceptibility decreases rapidly as

J/J1 → 0, substantiating a transition to a quantum spin liquid

phase from the VBC.

To probe the aforementioned VBC order within DMRG,

we start by imposing the pinwheel VBC pattern (via small

pinning conjugate fields) in a trial wave function that is then

used as initial state [see Fig. S14(a) in Supplemental Material

[59]] for subsequent DMRG calculations performed with the

original unperturbed Hamiltonian deep within the three J/J1

regions of interest where DSL, VBC, and magnetic order

were identified above, namely, at J/J1 = 0.2, 0.4, and 0.65.

This procedure allows us to probe the stability of the initially

seeded pinwheel VBC state against these three phases or,

alternatively, observe its melting into different quantum states.

We see that for J/J1 = 0.4 [see Fig. S14(c) in Supplemental

Material [59]], the removal of the bias hardly affects the initial

state, thus providing strong support for the pinwheel VBC as

true ground state in this regime. This is further corroborated

by the fact that at J/J1 = 0.2 and 0.65, the VBC pattern is

progressively washed out [see Fig. S14(b) and Fig. S14(d) in

Supplemental Material [59]]. Together, these results provide

further compelling evidence for the pinwheel VBC state in

the range J ∈ (g1, g2) [see Fig. 1(c)].

In Fourier space, the hallmark of the onset of the VBC

order, as obtained within pf-FRG, is the splitting of the pinch

points (M points of the extended Brillouin zone), where the

maxima of χ (k) are located for the projected DSL (see

Fig. S8 of Supplemental Material [59]), into two symmetric

half moons. This results in the intensity maxima now located

at generic (0, ky) (and symmetry related) incommensurate

points, as captured in an earlier pf-FRG study of the same

model [81]. Given that, the DSL and VBC phases can also

be distinguished by comparing χ (k) along two cuts in mo-

mentum space, i.e., Ŵ-K and Ŵ-M segments. More precisely,

we define a “spectral measure” �χk as the difference be-

tween the maxima along these two cuts, i.e., �χk = χmax(k ∈

Ŵ-K ) − χmax(k ∈ Ŵ-M ). The splitting of the pinch point into

half moons corresponds to a downturn in the value of �χ

(occurring at J/J1 = 0.28) while the zero crossing of �χ (oc-

curring at J/J1 = 0.32) indicates that the half moons become

the dominant feature in χ (k). Based on these two signatures,

we estimate the onset of VBC from pf-FRG at J/J1 = 0.30(2)

[see Fig. 2(b) and Fig. S1 in Supplemental Material [59]], in

good agreement with the other computational methods used.

The evolution of the radius of the half moon as a function

of J/J1 obtained from pf-FRG is shown in Fig. 3 where, for

FIG. 3. Half-moon radii. From pf-FRG, we show for different

values of spin S [43] the evolution with J/J1 of the radius of the

half moons characterizing the pinwheel VBC. The large-S (classical)

result is from Ref. [6].

the present S = 1/2 model (1), one observes an appreciable

deviation from the reported large-S result [6]. For increasing

values of S, the known large-S behavior [6] is progressively

recovered. Within the VMC calculation, the splitting of the

pinch point maxima into half moons is observed deep in-

side the VBC phase, as shown in Fig. S9 of Supplemental

Material [59]. Similarly, deep inside the VBC phase, the

χ (k) obtained from mVMC shows maxima at incommen-

surate (0, ky) points, as shown in Fig. S5 of Supplemental

Material [59].

Finally, we turn to the transition into the star phase. To

this end, we show in Fig. 4 the evolution of the square of

the sublattice magnetization m2 with J/J1, as obtained from

mVMC, VMC, and DMRG. This quantity can be computed

FIG. 4. Transition into the star phase. The behavior of the square

of the sublattice magnetization m2 with J/J1 near the transition from

the pinwheel VBC into collinear magnetic order (illustrated in the

inset, with blue and red spins pointing in opposite directions). The

results from VMC and mVMC are for a 3 × 8 × 8 site cluster (see

Fig. S11 in Supplemental Material [59] for finite-size scaling results

of m2 from VMC to the thermodynamic limit), while those from

DMRG are obtained on a YC8-8 cylinder (see Supplemental Material

[59] for further details). In all the three cases, m2 is estimated by

computing the isotropic equal-time spin-spin correlation between

lattice sites separated by eight nearest-neighbor distances.

L012025-4
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by evaluating the equal-time spin-spin correlations at the

maximum distance on the finite-size lattice considered in

the numerical calculation. One observes a sudden jump to

a finite value of m2 for J/J1 > 0.51(1), indicating the onset

of long-range collinear spin order with a 12-site magnetic

unit cell (see inset of Fig. 4) [52]. While the estimate of the

phase boundary from these three approaches shows excellent

agreement, the comparatively smaller values of m2 inside the

ordered phase obtained in DMRG can be ascribed to the quasi-

one-dimensional character of the cylindrical geometries. The

abrupt nature of the jump in the value of m2 observed in

mVMC and VMC, together with the crossing of the ener-

gies of the disordered VBC and magnetically ordered states

across the transition point (see inset of Fig. 4), lends evidence

in favor of a first-order character of the transition. Similar

conclusions are drawn from VMC via finite-size scaling of

m2 for different values of J/J1 (see Fig. S11 in Supplemental

Material [59]), wherein one observes a jump in the value of

m2 in the thermodynamic limit. The collinear magnetically or-

dered state displays a starlike pattern of intensity distribution

in χ (k) [see Fig. 1(b)] with maxima at the location expected

for the octahedral regular magnetic order [53]. It is worth

noting that for S = 1/2 the phase boundary between the half-

moon and star phases considerably shifts to a smaller value of

g2 = 0.51(1), compared to the classical boundary at J/J1 = 1

[6], reflecting the fact that quantum fluctuations shift the helix

pitch vector towards commensurate values [48,82,83].

II. DISCUSSION

Characterizing the evolution of the ground state of the

kagome antiferromagnet along the maximally frustrated J2 =

J3a line is a challenging endeavor. As such, it is rather

satisfying to uncover a remarkable agreement between our

complementary numerical approaches, these yielding a con-

sistent understanding of the momentum and real space

signatures of the ground-state phases and their respective

boundaries, a feat that would not have been imaginable only

a few years ago. One would expect the U (1) DSL, half-

moon, and star phases will display a window of stability

away from the maximally frustrated J2 = J3a axis. It would

thus be of interest to search and identify materials promis-

ing to realize the Dirac spin liquid phase and which lie

within this region of stability. The recently studied mate-

rial YCu3(OH)6Br2[Brx(OH)1−x] [84], wherein signatures of

DSL behavior have been suggested, could serve as a potential

material candidate warranting further investigation. Another

interesting candidate material might be the distorted kagome

compound Rb2Cu3SnF12 where indications for a pinwheel

VBC have been reported [85]. In similar spirit, it might prove

interesting to explore the corresponding quantum phase dia-

gram on the pyrochlore lattice, which similarly at the classical

level is host to persistent flat bands, as well as half-moon

and star phases [6,16]. Finally, the quantum-classical corre-

spondence in the obtained structure factors hints at a deeper

connection which would constitute an exciting direction of

future study.
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