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Hyperbolic matter in electrical circuits with
tunable complex phases

Anffany Chen 1,2, Hauke Brand 3, Tobias Helbig 4, Tobias Hofmann 4,

Stefan Imhof3, Alexander Fritzsche4,5, Tobias Kießling3, Alexander Stegmaier4,

Lavi K. Upreti 4, Titus Neupert 6, Tomáš Bzdušek 6,7, Martin Greiter 4,

Ronny Thomale 4 & Igor Boettcher 1,2

Curved spaces play a fundamental role inmany areas of modern physics, from

cosmological length scales to subatomic structures related to quantum

information and quantum gravity. In tabletop experiments, negatively curved

spaces can be simulated with hyperbolic lattices. Here we introduce and

experimentally realize hyperbolic matter as a paradigm for topological states

through topolectrical circuit networks relying on a complex-phase circuit

element. The experiment is based on hyperbolic band theory that we confirm

here in an unprecedented numerical survey of finite hyperbolic lattices. We

implement hyperbolic graphene as an example of topologically nontrivial

hyperbolic matter. Our work sets the stage to realize more complex forms of

hyperbolic matter to challenge our established theories of physics in curved

space, while the tunable complex-phase element developed here can be a key

ingredient for future experimental simulation of various Hamiltonians with

topological ground states.

Experimental Hamiltonian engineering and quantumsimulation have

becomeessential pillars of physics research, realizing artificialworlds

in the laboratory with full control over tunable parameters and far-

reaching applications from quantum many-body systems to high-

energy physics and cosmology. Fundamental insights into the inter-

play of matter and curvature, for instance close to black hole event

horizons or due to interparticle interactions1–3, have been gained

from the creation of synthetic curved spaces using photonic

metamaterials4,5. The recent ground-breaking experimental imple-

mentation of hyperbolic lattices6–8 in circuit quantum

electrodynamics9–11 and topolectrical circuits12–15 constitutes another

milestone in emulating curved space, separating the spatial manifold

underlying the Hamiltonian entirely from its matter content to

engineer broad classes of uncharted systems16–19. Conceptually,

recent mathematical insights into hyperbolic lattices from algebraic

geometry promise to inspire a fresh quantitative perspective onto

curved space physics in general20–22.

Hyperbolic lattices emulate particle dynamics that are equivalent

to those in negatively curved space. They are two-dimensional lattices

made from regular p-gons such that q lines meet at each vertex,

denoted {p, q} for short, with (p − 2)(q − 2) > 46. Such tessellations can

only exist in thehyperbolic plane. In contrast, the Euclidean square and

honeycomb lattices, {4, 4} and {6, 3}, are characterized by (p − 2)

(q − 2) = 4. Particle propagation on any of these lattices is described by

the tight-binding Hamiltonian H= � J
P

hi,jiðc
y

i cj + c
y

j ciÞ, with cyi the

creationoperator of particles at site i, J the hopping amplitude, and the

sum extending over all nearest neighbors.

In all previous experiments6–8, hyperbolic lattices have been rea-

lized as finite planar graphs, or flakes, consisting of bulk sites with

coordination number q surrounded by boundary sites with
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coordination number < q. The ratio of bulk over boundary sites, as a

fundamental property of hyperbolic space, is of order unity no matter

how large the graph. Thus a large bulk system with negligible bound-

ary, in contrast to the Euclidean case, can never be realized in a flake

geometry. Instead, bulk observables on flakes always receive sub-

stantial contributions from excitations localized on the boundary. The

isolation of bulk physics is thus crucial for understanding the unique

properties of hyperbolic lattices.

In this work, we overcome the obstacle of the boundary and

create a tabletop experiment that emulates genuinehyperbolicmatter,

which we define as particles propagating on an imagined infinite

hyperbolic lattice, using topolectrical circuits with tunable complex-

phase elements. This original method creates an effectively infinite

hyperbolic space without the typical extensive holographic boundary

—our system consists of pure bulkmatter instead. The setup builds on

hyperbolic band theory, which implies that momentum space of two-

dimensional hyperbolic matter is four-, six- or higher-dimensional, as

we confirm here numerically for finite hyperbolic lattices with both

open and periodic boundary conditions. We introduce and implement

hyperbolic graphene and discuss its topological properties and Flo-

quet physics. Our work paves the way for theoretical studies of more

complex hyperbolic matter systems and their experimental

realization.

Results
Infinite hyperbolic lattices as unit-cell circuits
The key to simulating infinite lattices is to focus on the wave functions

of particles on the lattice. In Euclidean space, Bloch’s theorem states

that under the action of the two translations generating the Bravais

lattice, denoted T1 and T2, a wave function ψk(zi) transforms as

ψkðT
�1
μ ziÞ= e

ikμψkðziÞ: ð1Þ

Here zi is any site on the lattice, k = (k1, k2) is the crystal momen-

tum with μ = 1, 2, and eikμ is the complex Bloch phase factor. In

crystallography, we split the lattice into its Bravais lattice and a refer-

ence unit cell of N sites with coordinates zn, n∈ {1,…,N}. The full

wave function is obtained from the values in the unit cell by

successive application of Eq. (1). Furthermore, the energy bands

on the lattice in the tight-binding limit, εn(k), are the eigenvalues of

the N ×N Bloch-wave Hamiltonian matrix H(k). In the latter, the

matrix entry at position ðn,n0Þ is the sum of all Bloch phases for

hopping between neighboring sites zn and zn0 after endowing the

unit cell with periodic boundaries. (See Methods for an explicit con-

struction algorithmofH(k).) The approach is visualized in Fig. 1a and b

for the {6, 3} honeycomb lattice with N = 2 unit cell sites. The

associated 2 × 2 Bloch-wave Hamiltonian is

Hf6,3gðkÞ= � J
0 1 + eik1 + eik2

1 + e�ik1 + e�ik2 0

 !

, ð2Þ

with eigenvalues ε± ðkÞ= ± J∣1 + eik1 + eik2 ∣. This models the band struc-

ture of graphene in the non-interacting limit23,24.

Recent theoretical insights into hyperbolic band theory (HBT) and

non-Euclidean crystallography revealed that this construction also

applies to hyperbolic lattices, as many of them split into Bravais lattices

and unit cells20,25. There are two crucial differences between two-

dimensional Euclidean and hyperbolic lattices. First, the number of

hyperbolic translation generators is larger than two, denoted T1,… ,T2g,

with integer g> 1. Second, hyperbolic translations do not commute,

TμTμ0≠Tμ0Tμ. Nonetheless, Blochwaves transforming as in Eq. (1) can be

eigenfunctions of the Hamiltonian H on the infinite lattice. These

solutions are labelled by 2g momentum components k= (k1,… ,k2g)

from a higher-dimensional momentum space. The dimension of

momentum space is defined as the number of generators of the Bravais

lattice. The associated energy bands εn(k) are computed from the Bloch-

wave Hamiltonian H(k) in the same manner as described above.

We are lead to the important conclusion that Bloch-wave

Hamiltonians H(k) of both Euclidean and hyperbolic {p, q} lattices

are equivalent to unit-cell circuits with N vertices of coordination

number q. Bloch phases eiϕ(k) are imprinted along certain edges in one

direction and e−iϕ(k) in the opposite direction, see Fig. 1d. Examples

are visualized in Fig. 1c, e, f. The infinite extent of space is imple-

mented through distinct momenta k. Due to the non-commutative

nature of hyperbolic translations, other eigenfunctions of H in

higher-dimensional representations exist besides Bloch waves. They

are labelled by an abstract k, whereψk in Eq. (1) has d > 1 components

and Bloch phases eiϕ(k) are d × d unitary matrices. Presently very little

is known about these states21,22, but we demonstrate in this work that

ordinary Bloch waves capture large parts of the spectrum on

hyperbolic lattices.

Tunable complex phases in electrical networks
Topolectrical circuit networks are an auspicious experimental plat-

form for implementing unit-cell circuits. In topolectrics, tight-binding

Hamiltonians defined on finite lattices are realized by the graph

Laplacian of electrical networks12–14. Wave functions and their corre-

sponding energies can be measured efficiently at every lattice site.

While the real-valued edges in unit-cell circuits can be implemented

using existing technology14, we had to develop a tunable complex-

phase element to imprint the non-vanishing Bloch phases eiϕ(k).

Importantly, while circuit elements existed before that realize a fixed

Fig. 1 | Unit-cell circuits. a Euclidean {6, 3} honeycomb lattice with two sites in the

unit cell (full orange circles). Each site has 3 neighbors, some of them in adjacent

unit cells (empty orange circles).bThewave function of particles hopping between

unit cells picks up a complex Bloch phase, see Eq. (1). c The associated unit-cell

circuit diagram encodes the Bloch-wave Hamiltonian H(k), Eq. (2), and the energy

bands. Momentum k = (k1, k2) is an external parameter. d In topolectrical circuits, a

complex-phase element imprints tunable Bloch phases along edges connecting

neighboring sites. The circuit element is directed, with eiϕ imprinted in one direc-

tion, and e−iϕ in the other. This leads toHermitianmatricesH(k).Unit-cell circuits for

the {8, 4} (e) and {8, 3} (f) hyperbolic lattices. The Bravais lattice is the {8, 8} lattice in

either case, with 4 and 16 sites in the unit cell, respectively. In these lattices, Bloch

waves carry a four-dimensional momentum k = (k1, k2, k3, k4).
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complex phase eiϕ along an edge8,26, changing the value of eiϕ required

to dismantle the circuit andmodify the element. In contrast, the phase

eiϕ of the element constructed here can be tuned by varying external

voltages applied to the circuit. In the future, this highly versatile circuit

element can be applied inmultifold physical settings beyond realizing

hyperbolic matter, including synthetic dimensions and synthetic

magnetic flux threading.

The schematic structure of the circuit element is shown in Fig. 2.

It contains four analog multipliers, the impedance of which is chosen

to be either resistive (for the bottom two multipliers) or inductive

(for the top two multipliers). As detailed in Methods, their outputs

are connected in such a way that the circuit Laplacian of the element

reads

I1

I2

� �

=
1

iωL

1 + i e�iϕ

eiϕ 1 + i

 !

V 1

V 2

� �

, ð3Þ

where I1 and I2 are the currents flowing into the circuit from the points

at potentialsV1 and V2, respectively. The diagonal entriesmerely result

in a constant shift of the admittance spectrum. Theoff-diagonal entries

are controlled by external voltages Va andVb according to Vb/Va=tanϕ,

so ϕ is tunable, with resolution limited only by the resolution of the

sources that provide those voltages. Equation (3) therefore realizes a

Bloch-wave term with ϕ =ϕ(k).

Validity of Bloch-wave assumption
Unit-cell circuits of hyperbolic lattices only capture the Bloch-wave

eigenstates of the hyperbolic translation group. To test how well this

approximates the full energy spectrum on infinite lattices resulting

from both Bloch waves and higher-dimensional representations, we

compare the predictions of HBT for the density of states (DOS) to

results obtained from exact diagonalization on finite {p, q} lattices with

up to several thousand vertices and either open boundary conditions

(flakes) or periodic boundary conditions (regular maps). In the case of

flake geometries6,18, the boundary effect on the DOS can be partly

eliminated by considering the bulk-DOS17,27,28, defined as the sum of

local DOS over all bulk sites (see Methods). To implement periodic

boundary conditions, we utilize finite graphs known as regular

maps29–32, which are {p, q} tessellations of closed hyperbolic surfaces

with constant coordination number q that preserve all local point-

group symmetries of the lattice.

For the comparison, we consider lattices of type {7, 3}, {8, 3}, {8, 4},

{10, 3}, and {10, 5}. This selection is motivated by the possibility to split

these lattices into unit cells and Bravais lattices, and hence to construct

the Bloch-wave Hamiltonian H{p, q}(k)
25. Our extensive numerical analy-

sis, presented in Supplementary Info. Secs. I–III, shows that both bulk-

DOS on large flakes and DOS on large regular maps converge to uni-

versal functions determined by p and q. We find that HBT yields accu-

rate predictions of theDOS for lattices {7, 3}, {8, 3}, and {10, 3}, see Fig. 3.

Fig. 2 | Tunable complex-phase element. a Hermitian hopping term a ± i b which

is to be implemented between two nodes 1 and 2 in an electric circuit. b Symbol for

the circuit element corresponding to the hopping term with eiϕ∝ a + ib. The

impedance representation is given by Eq. (3) with a= cosðϕÞ=ðiωLÞ and

b= sinðϕÞ=ðiωLÞ. c Implementation of the circuit element using four analog

multipliers (represented by the circles with a cross symbol). We choose R =ωL. The

voltages Va and Vb tune the phase ϕ= arctanVb/Va. This circuit implements the

complex coupling fromnode 1 to 2with phase eiϕ aswell as the back-direction from

2 to 1 with phase e−iϕ.
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Generally, the agreement between HBT and regular maps is better than

for flake geometries, likely since no subtraction of boundary states is

needed. For some regular maps, called Abelian clusters21, HBT is exact

and all single-particle energies on the graph read εn(ki) with certain

quantized momenta ki. We explore their connection to higher-

dimensional Euclidean lattices in Supplementary Info. Sec. S III.

For the {8, 4} and {10, 5} lattices, we find that the bulk-DOS on

hyperbolic flakes deviates more significantly from the predictions of

HBT. This may originate from (i) the omission of higher-dimensional

representations or (ii) enhanced residual boundary contributions to

the approximate bulk-DOS. The latter is due to the larger boundary

ratio for {8, 4} and {10, 5} lattices (see Supplementary Info. Table S2).

Despite the deviation, studyingBlochwaves on these lattices, and their

contribution to band structure or response functions, is an integral

part of understanding transport in these hyperbolic lattices. Investi-

gating the extent to which higher-dimensional representations mix

with Bloch waves (selection rules) will shed light on their role inmany-

body or interacting hyperbolic matter in the future.

Note that the unit-cell circuits can be adapted to simulate non-

Abelian Bloch states. One such option is to use a specific irreducible

representation as an ansatz for constructing the corresponding non-

Abelian eigenstates22,33. If the representation is d-dimensional, then the

non-Abelian Bloch Hamiltonian can be emulated by building a circuit

with d degrees of freedom on each node, giving a total of Nd nodes in

the unit cell circuit.

Hyperbolic graphene
We define hyperbolic graphene as the collection of Bloch waves on

the {10, 5} lattice, realized by its unit-cell circuit depicted in Fig. 4a.

The {10, 5} lattice has two sites in its unit cell and four independent

translation generators, resulting in the Bloch-wave Hamiltonian

Hf10,5gðkÞ= � J
0 hðkÞ

hðkÞ
*

0

 !

, ð4Þ

hðkÞ= 1 + eik1 + eik2 + eik3 + eik4 , ð5Þ

with crystal momentum k = (k1, k2, k3, k4) (see Supplementary Info.

Sec. S I for explicit construction). The two energy bands read

ε±(k) = ± J∣h(k)∣. Hyperbolic graphene mirrors many of the enticing

properties of graphene on the {6, 3} lattice (henceforth assumed non-

interacting with only nearest-neighbor hopping). Both systems belong

to a larger family of {2(2g + 1), 2g + 1} Bravais lattices with two-site unit

cells and 2g translation generators25. Restricting the sum in Eq. (5) to

two complex phases, we obtain Eq. (2). In fact, hyperbolic graphene

contains infinitelymany copies of graphene through setting k3 = k4 +π

in h(k).

Themost striking resemblance between hyperbolic graphene and

its Euclidean counterpart is the emergence of Dirac particles at the

band crossing points. These form a nodal surface S in momentum

space, determined by the condition h(k) = 0. This is a complex equa-

tion and thus results in a manifold of real co-dimension two. Whereas

this implies isolated Dirac points in graphene, the nodal surface of

Dirac excitations in hyperbolic graphene is two-dimensional because

momentum space is four-dimensional, see Fig. 4b. The associated

Dirac Hamiltonian is derived in Supplementary Info. Sec. S IV. At each

Dirac point k0 2 S, momentum space splits into a tangential and
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Fig. 3 | Density of states. Integrated DOS computed from finite {p, 3} lattices vs.

predictions from hyperbolic band theory (HBT) realized in unit-cell circuits. a DOS

of a {10, 3} flake with 2880 sites. b Bulk-DOS of the same lattice as in a. With the

boundary contribution removed, it agreeswellwith band theory. cBulk-DOSof a {7,

3} flake with 847 sites vs. band theory. d The averaged DOS of five {8, 3} regular

maps (each with ~2000 sites) reveals excellent agreement with band theory.
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normal plane.Within the latter, aπBerryphase canbe computed along

a loop enclosing the Dirac point, protected by the product of time-

reversal and inversion symmetries34,35. Therefore, hyperbolic graphene

is a synthetic topological semimetal and a platform to study topolo-

gical states of matter. Its momentum-space topology is the natural

four-dimensional analogue of two-dimensional graphene and three-

dimensional nodal-line semimetals36.

We experimentally realized the unit-cell circuit for hyperbolic

graphene in topolectrics with four tunable complex-phase elements.

The circuit represents theHamiltonianH{10, 5}(k) at any desired point in

the four-dimensional Brillouin zone. We measured the band structure

in the two-dimensional plane defined by k = (k1, k2, 2π/3, 0) for varying

k1, k2, which contains exactly two Dirac points, see Fig. 4c. We

also obtained the accompanying eigenstates. In Fig. 4d, we measured

the band structure along lines connecting representative points in

the Brillouin zone. This further highlights both the tunability of the

experimental setup and the extended band-touching region of the

model in momentum space, in contrast to the isolated nodal points in

Euclidean graphene.

To visualize the nontrivial topology of hyperbolic graphene, we

write the eigenstates as ∣ψ±
k

�

= ð1, ± eiαk Þ. The phase αk changes by 2π

upon encircling a Dirac node in the normal plane, creating a

momentum-space vortex, and ∣ψ±
k

�

picks up a Berry phase of π (see

Methods). We numerically compute the lower-energy eigenstates ∣ψ�
k

�

in the two-dimensional plane defined by k = (k1, k2, 0, π) and observe a

vortex-antivortex pair, see Fig. 4e. While the nontrivial Berry phase in

graphene implies zero-energy boundary modes, the bulk-boundary

correspondence in hyperbolic graphene is complicated by the mis-

match of position- and momentum-space dimensions, see Supple-

mentary Info. Sec. S V.

By periodic tuning of the complex-phase elements, it is also pos-

sible to imitate the effect of irradiation of charged carriers in hyper-

bolic lattices. In this context, recall that graphene irradiated by

circularly polarized light, modelled by electric field E(t) = ∂a(t)/∂t and

vector potential aðtÞ=a0ðsinðωtÞ, cosðωtÞÞ, whereω is the frequency of

light, realizes a Floquet system with topologically nontrivial band

gaps37,38. In the unit-cell picture, this canbe simulatedby a fast periodic

driving of the external momentum on time scales much shorter than

the measurement time, parametrized as kμðtÞ= kμ � A sinðωt +φμÞ,

with driving amplitude A = ea0 and phase shift φμ. We theoretically

demonstrate that hyperbolic graphene with such kμ(t) exhibits char-

acteristic gap opening in the Floquet regime, though the gap size

varies over the nodal region in contrast to graphene (see Fig. 4f).

Notably, part of the nodal region remains approximately gapless

within the energy resolution of the experiment (seeMethods), bearing

potential to study exotic transport phenomena far from equilibrium.

Discussion
This work paves the way for several highly exciting future research

directions in both experimental and theoretical condensed matter

physics. Experimentally, the tunable complex-phase element devel-

oped here can be utilized in topolectrical networks to simulate

Hamiltonians with topological ground states, such as the recently

discovered hyperbolic topological band insulators28,39 or hyperbolic

Hofstadter butterfly models17,32. In particular, local probes in electric

circuits provide access to the complete characterization of the Bloch

eigenstates, giving the necessary input to compute any topological

invariant. We have shown how synthetic extra dimensions can be

emulated efficiently through tunable complex phase elements, which

may be used in conjunction with ordinary one- or two-dimensional

Fig. 4 | Hyperbolic graphene.This collection of Blochwaves on thehyperbolic {10,

5} lattice features many properties of its Euclidean counterpart, but with a hyper-

bolic twist. It is a topological semimetal with four-dimensional momentum space

and crystalmomentumk = (k1, k2, k3, k4).aTwo sites in the unit cellwithfive nearest

neighbors comprise the unit-cell circuit that we realize experimentally with topo-

lectrics. b Two-dimensional nodal surface S of gapless Dirac excitations with

energy ∣h(k)∣ =0, projected onto the (k1, k2, k3)-hyperplane. c Experimentally

measured Dirac cones in the plane k = (k1, k2, 2π/3, 0) as a function of k1 and k2.

d Experimentally measured spectrum along path through k-space. The labels Γ, A,

B, C, D correspond to the Brillouin zone points (0, 0, 0, 0), (2π/3,−2π/3, 0, π),

(−2π/3, 0, 2π/3, π), (2π/3, 0, −2π/3, π), (π, π, π, π), respectively. Experimental errors

in c) andd) are smaller thanplotteddatapoints. Theoverall energy scale ismatched

to the theoretical model by a rescaling of the circuit Laplacian. e In themomentum

plane k = (k1, k2, 0, π), the Berry phase computed along a closed loop surrounding

each node is π. This can be seen from the vortex-antivortex-pair formed by the

phase αk of the eigenstates. f Periodically driven hyperbolic graphene in the high-

frequency, low-amplitude regime features non-uniformgapopening over the nodal

region. We show theoretical predictions for the quasi-energy spectrum driven

according to kμðtÞ= k
ð0Þ
μ +0:8 sinð6t +μπ=2Þ in the momentum plane k(0) = (k1, k2,

2π/3, −π/3).
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lattices to create effectively higher-dimensional Euclidean or hyper-

bolic models. Electric circuits also admit measurements of the time-

resolved evolution of states, thus giving access to various non-

equilibrium phenomena beyond the Floquet experiment discussed in

the text. Additionally, togetherwith nonlinear, non-Hermitianor active

circuit elements40–42, interaction effects beyond the single-particle

picture can be captured in these models, allowing for experimental

engineering of a wide range of Hamiltonians.

Theoretically, hyperbolic matter constitutes a paradigm for

topological states of matter with many surprising and unique physical

features, which are hinted at by the original energetic and topological

properties of hyperbolic graphene with Dirac particles in four-

dimensional momentum space. By joining multiple unit-cell circuits,

multi-layer settings can be emulated: for instance, using two real-

valued connections to join the same sublattice sites of hyperbolic

graphene realizes AA-stacked bilayer hyperbolic graphene. Such stu-

dies will shed more light on the subtle interplay between lattice

structure and energy bands, a topic that recently came into the focus

of many researchers with the fabrication of moiré materials43. The

mismatch of position- and momentum-space dimensions requires to

re-evaluate many properties of Dirac particles in the context of

hyperbolic graphene such as the bulk-boundary correspondence dis-

cussed earlier, or Klein tunneling and Zitterbewegung, which have

been observed in one-dimensional Euclidean condensed matter

systems44–46 and discussed for graphene23,47.

Methods
Bloch-wave Hamiltonian matrix
One can construct the Bloch-wave Hamiltonian matrix H(k) of a {p, q}

hyperbolic lattice if it can be decomposed into a {pB, qB} Bravais lattice

with a unit cell ofN sites, denoted fzngn= 1,...,N . Thematrix is constructed

as follows. (i) Initially set all entries of the matrix H(k) to zero. (ii) For

each unit cell site zn, determine the q neighboring sites zi. (iii) For each

neighbor zi, determine the translation T(i) such that zi = T(i)zm for some

zm in the unit cell. (iv) IfT(i) = 1, add 1 toHnm(k), otherwise add the Bloch

phase eiϕ(k) that is picked up when going from zn to zi. (v) Multiply the

matrix by − J. The detailed procedure for the lattices considered in this

work is documented in Supplementary Info Sec. S I. A list of known

hyperbolic lattices with their corresponding Bravais lattices and unit

cells is given in ref. 25.

Hamiltonian of real-space hyperbolic lattices
The Hamiltonians of hyperbolic lattices with open boundary condi-

tions (flakes)were generated by the shell-constructionmethod used in

refs. 6,25. One obtains the Poincaré coordinates of the lattice sites and

the adjacency matrix A, where Aij is 1 if sites i and j are nearest

neighbours and 0 otherwise. The tight-binding Hamiltonian in first-

quantized form is then H= � JA, where J is the hopping amplitude.

The adjacency matrices of hyperbolic lattices with periodic boundary

condition (regular maps) were identified from mathematical

literature30 and are listed in Supplementary Info Table S3. A larger set

of hyperbolic regular maps has been identified in ref. 32.

Bulk-DOS of hyperbolic flakes
To effectively remove the boundary contribution to the total DOS of a

hyperbolic flake, we define the bulk-DOS as the sum of the local DOS

over all bulk sites through

ρbulkðϵÞ=
X

z2Λbulk

X

n2N ϵ

∣ψnðzÞ∣
2

0

@

1

A: ð6Þ

Here, Λbulk is the set of lattice sites with coordination number

equal to q andN ϵ is the set of eigenstates with energies between ϵ and

ϵ + δϵ. In the DOS comparison, we use the normalized integrated DOS

(or spectral staircase function)

PbulkðEÞ=

R E
�q dϵ ρbulkðϵÞ
R q
�q dϵ ρbulkðϵÞ

: ð7Þ

This quantity is approximately independent of system size

(number of shells), see Supplementary Info. Fig. S2. Note that the

energy spectrum of a {p, q} lattice is in the range [ − q, q].

Dirac nodal region of hyperbolic graphene
The Bloch-wave Hamiltonian of hyperbolic graphene can be written as

Hf10,5gðkÞ=dxðkÞσx +dyðkÞσy, ð8Þ

where dxðkÞ= � 1�
P4

μ= 1 cosðkμÞ and dyðkÞ= �
P4

μ= 1 sinðkμÞ with

hopping amplitude J set to 1. The energy bands are

ε± ðkÞ= ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dxðkÞ
2
+dyðkÞ

2
q

, so the band-touching region is determined

by the two equations dx(k) = 0 and dy(k) = 0. With four k-components,

these two equations define the two-dimensional nodal surface S

visualized in Fig. 4(b). Near every node Q 2 S, H{10, 5}(k) is approxi-

mated by the Dirac Hamiltonian

h
Q
effðqÞ= σxq � uðQÞ � σyq � vðQÞ+Oðq2Þ, ð9Þ

where uðQÞ=
P4

μ= 1 sinðQμÞeμ andvðQÞ=
P4

μ= 1 cosðQμÞeμ. Here eμ is

the unit vector in the direction of kμ. For the detailed derivation, see

Supplementary Info. Sec. S IV.

Berry phase in hyperbolic graphene
We write Eq. (8) as

Hf10,5gðkÞ=
0 rke

�iαk

rke
iαk 0

 !

ð10Þ

with rk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dxðkÞ
2
+dyðkÞ

2
q

and αk = arctanðdyðkÞ=dxðkÞÞ. The eigen-

states are ∣ψ ±
k

�

= ð1, ± eiαk Þ. The relative phase αk undergoes a 2π

rotation around any given node Q 2 S, implying a π Berry phase.

One can verify this numerically by taking a chain of momenta

{k1, k2,…, kn} on the closed loop kðsÞ=Q +uðQÞ cosðsÞ+vðQÞ sinðsÞ,

s∈ [0, 2π], and then using the lower-energy state to compute the

Berry phase, given by γ = Im ln ðhψ�
k1
∣ψ�

k2
ihψ�

k2
∣ψ�

k3
i � � � hψ�

kn
∣ψ�

k1
iÞ in

the discrete formulation48.

Floquet band gaps in hyperbolic graphene
With tunable complex-phase elements, it is possible to drive individual

momentum components of hyperbolic graphene periodically, realiz-

ing the time-dependent Hamiltonian

Hf10,5gðk,tÞ= � J
0 1+

P

4

μ= 1

eiðkμ�A sinðωt +φμÞÞ

c.c. 0

0

B

@

1

C

A
, ð11Þ

whereA is the driving amplitude,ω is the frequency, andφμ are offsets

in the periodic drive. Applying Floquet theory49 and degenerate per-

turbation theory50 near a Dirac node k 2 S, we determine the effective

Hamiltonian in the limit A≪ 1 and ω≫ J, to order OðA4Þ, to be

HeffðkÞ= � J
0 1 +J 0ðAÞ

P

4

μ = 1

eikμ

c.c. 0

0

B

@

1

C

A
+ΔðkÞσz : ð12Þ
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Here J 0ðAÞ is the zeroth Bessel function of the first kind and

ΔðkÞ=
J2A2

2ω

X

μ= 1

X

ν = 1ν≠μ

sinðkμ � k
ν
Þ sinðφμ � φ

ν
Þ: ð13Þ

The factor of J 0ðAÞ in the first term of Eq. (12) slightly shifts the

location of the node while the second term opens up a k-dependent

gap Δ(k). Clearly, if the phases φμ are identical, Δ(k) is trivial. For a

generic set of phases φμ, however, there exists a one-dimensional

subspace of S where Δ(k) = 0, implying that the nodes remain gapless

up to OðA4Þ. See Supplementary Info. Sec. VI for a more detailed deri-

vation and discussion of the Floquet equations relevant for this work.

Tunable complex-phase element
In the following we specify the components used in the circuit shown

in Fig. 2 and derive Eq. (3). More technical details together with more

detailed illustrations are given in Supplementary Info. Secs. VII andVIII.

The complex-phase element as shown in Fig. 2 features four

AD633 analogmultipliers by Analog Devices Inc. The transfer function

of these multipliers is given by W = ðX 1�X2Þ�ðY 1�Y 2Þ

10 V
+ Z , where W is the

output, X1, X2, Y1, Y2 are the inputs (with X2 and Y2 inverted), and Z is an

additional input. Note that 10 V is the reference voltage for the analog

multipliers. The other components include the SRR7045-471M induc-

tors,with a nominal inductanceof 470 μHat 1kHz, whichwere selected

to minimize variance in the inductance. To achieve tunability of the

resistance value, the resistors connected to the bottommultipliers are

the 50Ω PTF6550R000BYBF resistor and the 50Ω Bourns 3296W500

potentiometer in series.

To derive the circuit Laplacian of the complex-phase element as

defined in Eq. (3), we consider the voltage drops over individual

inductors and resistors in Fig. 2. First let us consider thepair on the left.

The voltage drops are determined by the output voltages of the left

multipliers and therefore equal to Va V 1

10 V
� V 2 and Vb V 1

10 V
� V 2 for the

inductor and resistor respectively. The current I2 is then the negated

sum of these voltage drops, each multiplied by the respective admit-

tance: I2 = � 1
iωL

Va V 1

10 V
� V 2

� �

+ 1
R

Vb V 1

10 V
� V 2

� �� �

. The relationship

between the current I1 and the applied voltages can be derived in the

same fashion, yielding I1 = � 1
iωL

Va V2

10 V
� V 1

� �

+ 1
R

�Vb V2

10 V
� V 1

� �� �

. One

then obtains Eq. (3) by further choosing R =ωL and applying voltage

signals of 10 V sinðϕÞ and 10 V cosðϕÞ to Va and Vb respectively.

Data availability
All the data (both experimental data and data obtained numerically)

used to arrive at the conclusions presented in this work are publicly

available in the following data repository: https://doi.org/10.5683/SP3/

EG9931.

Code availability
All the Wolfram Language code used to generate and/or analyze the

data and arrive at the conclusions presented in this work is publicly

available in the form of annotated Mathematica notebooks in the fol-

lowing data repository: https://doi.org/10.5683/SP3/EG9931.
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