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Abstract

The puzzling lightness of the Higgs boson, when one considers the Standard
Model as an effective field theory to be completed, has driven much of the
particle physics research over the last decades. Two paradigms have emerged
as solutions to this puzzle: supersymmetry and compositeness. The absence
of signals at the LHC pushes these solutions into regions of evermore fine-
tuning. We present three novel approaches aimed at explaining the absence
of these signatures. The first one, exploiting the large contribution of the top
Yukawa to the Higgs mass, proposes a non-symmetry-based solution in which
the top Yukawa only obtains its sizeable value in the IR and we discuss its
new phenomenological signatures. Secondly, we present a minimal model of 5D
warped gauge-Higgs grand unification, study its compelling flavor structure and
analyse the resulting constraints. Although these constraints push the model
to high scales, additional scalars that reside below the Kaluza-Klein states may
provide accessible experimental signatures. Finally, we provide a novel model
of composite Higgs generating the Higgs potential at subleading order using a
remarkable property of group representations. The model is analysed and can
evade existing bounds with little tuning. New light particles are predicted with
unusual decays in which naturalness at the LHC may be hidden.

Zusammenfassung

Die rätselhafte Leichtigkeit des Higgs-Bosons, wenn man das Standardmo-
dell als eine zu vervollständigende effektive Feldtheorie betrachtet, hat einen
Großteil der Teilchenphysikforschung in den letzten Jahrzehnten angetrieben.
Zwei Paradigmen haben sich als Lösungen für dieses Rätsel etabliert: Super-
symmetrie und Kompositivität. Das Fehlen von Signalen am LHC drängt diese
Lösungen in Regionen mit immer mehr Tuning. Wir stellen drei neue Ansätze
vor, die das Fehlen dieser Signaturen erklären sollen. Der erste Ansatz, der den
großen Beitrag des Top-Yukawa zur Higgs-Masse ausnutzt, schlägt eine nicht-
symmetrische Lösung vor, bei der das Top-Yukawa seinen großen Wert nur
im IR erhält, und wir diskutieren seine neuen phänomenologischen Signaturen.
Zweitens stellen wir ein minimales Modell der 5D Warped Gauge-Higgs Grand
Unification vor, untersuchen dessen überzeugende Flavor-Struktur und analy-
sieren die sich daraus ergebenden Einschränkungen. Diese zwingen das Modell
auf hohe Skalen, dennoch können zusätzliche Skalare, die sich unterhalb der
Kaluza-Klein-Teilchen befinden, zugängliche experimentelle Signaturen liefern.
Schließlich stellen wir ein neuartiges Modell für ein Komposit-Higgs vor, das das
Higgs-Potential bei untergeordneter Ordnung erzeugt, wobei eine bemerkens-
werte Eigenschaft von Gruppendarstellungen genutzt wird. Das Modell wird
analysiert und kann bestehende Grenzen mit geringem Tuning ausweichen. Es
werden neue leichte Teilchen mit ungewöhnlichen Zerfällen vorhergesagt, in de-
nen die Natürlichkeit des Higgs-Bosons am LHC verborgen sein könnte.
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Chapter 1

Introduction

1.1 The Standard Model

The discovery of the positron [9], with the associated notion of pair-production
and particle non-conservation, steadfastly marked the replacement of parti-
cle wave-functions with fields in relativistic quantum mechanics. With fields
spanning space-time as the fundamental objects, particles are considered as
excitations of the fields and are created at will provided energy-momentum is
conserved. The application of this formalism to the theory of Quantum Electro-
dynamics (QED) took twenty years to be fully understood with the calculation
of the electron anomalous magnetic moment [10] as its culmination. As new
forces and particles were discovered, this led to a systematic construction of
Quantum Field Theories (QFT) which are built by specifying the gauge sym-
metry of the underlying theory, the matter sector consisting of fermions, and a
scalar sector whose ground state may spontaneously break (or more accurately,
hide in a non-linear fashion) some of the gauge symmetries. The most general
Lagrangian of the QFT is then constructed by combining all fields respecting
space-time and gauge symmetries into a renormalizable theory.

The Standard Model (SM) of particle physics is no exception and contains
all three of these elements. The gauge symmetries of the SM consists of the
non-abelian color charge, SU(3)c, the left-handed charge, SU(2)L, and the
abelian hypercharge, U(1)Y . These internal symmetries give rise to the forces
colloquially known as the strong force, the weak force and electromagnetism.
Next, the matter content is specified consisting of five fermion fields in three
generations: the left-handed quark doublet QL, two right-handed quark singlets
uR and dR, the lepton doublet LL and the right-handed electron singlet eR.
These fields transform under representations of the gauge symmetries shown in
Table 1.1.

Importantly this charge assignment is chiral, meaning that the left- and
right-handed components of a single massive Dirac field are charged differently.
It poses the basic question of how one can combine left- and right-handed fields

1



2 1. Introduction

SU(3)c SU(2)L U(1)Y
QL 3 2 1/6
uR 3 1 2/3
dR 3 1 -1/3
LL 1 2 -1/2
eR 1 1 -1

Table 1.1: The fermion content of the SM and their charges.

into a gauge invariant mass term. This is where the third sector of the SM
comes into play: a charged SU(2)L scalar, H, the Higgs. Such a scalar allows
us to write down gauge-invariant Yukawa terms combining the left- and right-
handed fields:

Lyuk = −yuQ̄LHuR − ydQ̄LH̃dR − yeL̄LH̃eR + h.c. . (1.1)

If the scalar has a potential with a non-zero Vacuum Expectation Value (VEV),
it would lead to masses for the SM fermions. The simplest parametrization of
such a potential involves a mass term −µ2 and a quartic λ:

−LH ⊃ −µ2H†H + λ(H†H)2 . (1.2)

This Mexican hat potential, although completely SU(2)L symmetric from far
away, exhibits the feature that from the ground state, or minimum, of the
potential, things are not so clearly SU(2) symmetric anymore. A potential,
exhibiting the spontaneous breakdown of continuous symmetries, was realized
to give rise to massless spinless particles [11–13]. These particles are called
Nambu-Goldstone (NG) bosons.

When the said continuous symmetries are gauged, as in the case of SU(2)L,
the spontaneous breaking does not lead to massless spinless bosons in the spec-
trum. Instead the gauge bosons related to the broken symmetries acquire a
mass (or in other words the Nambu-Goldstone boson associated to the broken
generator provides the longitudinal component of the now massive spin 1 parti-
cle). This mechanism, known as the Brout–Englert–Higgs mechanism, worked
out in the 1960’s [14–16] features prominently in the SM as the source for the
mass of the W and Z boson, and of all the SM fermions as described in [17,18].

The elucidation of the zoo of particles called hadrons in terms of quarks and
non-abelian Yang-Mills theory occurred a few years later with the discovery of
asymptotic freedom [19, 20], the flip side of which is confinement and remains
not understood, and largely completed the understanding of the SM as we
know it. Experimentally the SM was completed in 2012 with the discovery
of the Higgs boson [21, 22]. Despite extraordinary confirmation of the SM in
a wide variety of experiments going from the low-energy realm to the high-
energy frontier, the model must be completed in order to account for some of
the deepest mysteries of nature.
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1.2 Shortcomings and Unification

Most of the shortcomings of the SM become clear from looking at cosmology.
The evolution of the Universe since the big bang is nowadays very well de-
scribed by the Standard Model of cosmology (ΛCDM) whose parameters are
very well measured by the Planck telescope [23]. There are however great mys-
teries behind the vast success of this model: the vast majority of our current
energy budget is made up of unknown quantities which were dubbed dark en-
ergy and dark matter. We can measure the impact of these forms of energy on
the cosmological evolution of our Universe since they interact gravitationally
as any type of energy does. Dark matter is believed to be a particle however
no suitable candidate exists in the SM [24]. Moreover the SM would predict
an empty Universe as matter annihilates with anti-matter. At a minimum, the
SM needs to be extended to provide a dark matter candidate and a mecha-
nism to account for the observed baryons. These experimental facts are hard
mismatches between theory and observation. It is therefore now well accepted
that the SM is merely an Effective Field Theory (EFT) that needs completion
at some unknown UV scale ΛUV.

These experimental challenges lead us to think about what kind of possible
theories could UV complete the SM and whether such theories can explain
these experimental challenges. Moreover we are led to the question whether
such UV completions could unify different phenomena of the SM and provide
more insight into its structure. After all, the history of physics is one long tale
of unification and the SM, with its 19 different parameters, could certainly use
some unification.

A beautiful example of such a UV theory which unifies the structure of the
SM is a Grand Unified Theory (GUT). It was remarked that the three gauge
groups of the SM can fit neatly into a simple Lie group such as SU(5) and
SO(10) [25–27] while the fermion representations fit equally neatly in larger
fermion representations of the unified group. Fitting the three different gauge
couplings into a single gauge coupling is impossible at the classical level. How-
ever, with the advent of quantum loops and the techniques of renormalization,
it was realized that all parameters of the Lagrangian, including the gauge cou-
plings, receive contributions from all scales and thus run according to the scale.
In the case of gauge couplings, they scale logarithmically and the value of the
gauge couplings seem to unify quite well at the high scale of MGUT = 1016 GeV
indicating that the unification of the SM into a GUT may very well happen.

The example of GUTs provides us with a good lesson: UV completions of
the SM may very well only happen at very high scales and a good understanding
of the evolution of the SM parameters may give us hints about these scales.
This automatically brings us to the next section which asks about the natural
values of these parameters.



4 1. Introduction

1.3 Naturalness and the Hierarchy Problem
Dirac was the first to posit about the origin of numbers in physics and the
associated notion of Dirac Naturalness [28] is named after him. In an EFT for-
mulation this notion becomes particularly transparent in which the coefficient
of every operator must be O(1) up to appropriate powers of the scale of the
theory. This is not merely a statement of dimensional analysis, but it is also
in fact supported by the nature of quantum corrections. If not, that operator
generically receives large loop contributions and it begs the question why that
operator appears so small at long distances.

As ’t Hooft remarked, this notion is too general if the operator in question
breaks a symmetry [29]. In that case, radiative corrections to the operator, as
the UV theory is evolved down to long distances, are proportional to the value
of the operator. Therefore technically natural coefficients, once set small in the
UV, remain radiatively stable and small in the IR. Its smallness is therefore not
necessarily a mystery and could be explained in the UV theory. An illustrat-
ing example of which are the fermion masses. Fermion masses are technically
natural as they break chiral symmetry. Once set in the UV, they remain set
over many energy scales. This does not eliminate the mystery surrounding their
small value. Indeed, one of the most intriguing question is how the fermion mass
hierarchies, spanning over twelve orders of magnitude from the neutrinos to the
top quark, arise. However the UV theory could provide an explanation to how
these small values arise from Dirac natural ones. In contrast, if the operator
in question is not technically natural, the question surrounding its smallness
in the IR cannot be postponed to the UV theory as radiative correction would
spoil any UV resolution.

This brings us to the hierarchy problem which comes from applying the
above principles to the SM. In the SM there is one such dimensionful parameter
which does not obey technical naturalness: the Higgs mass −µ2(H†H) from the
Higgs potential Eq. (1.2). Unlike fermion masses protected by chiral symmetry
and gauge masses protected by gauge symmetry, no symmetry gets restored
in the limit of µ → 0. If we do not wish to embed the SM in a UV theory,
its smallness is of no concern since there is no associated cutoff – it is simply
an input. But as we now know, the SM is an EFT and we eventually expect
the Higgs mass to be an output of the UV theory. Let us understand this a
bit more quantitatively. We will follow the approach from [30]. Suppose such
a fundamental theory predicts a Higgs mass of −µ2

UV in the UV. At scales
below ΛUV, the SM degrees of freedom will induce radiative corrections to the
Higgs mass, the most important of which are the top, gauge and Higgs self-
coupling diagrams from Fig. 1.1. The Higgs mass we measure in the IR theory
is therefore perfectly predictable and consists of the sum of these two types of
contributions:

−(88GeV)2 = −µ2
UV + Λ2

UV
16π2

(
− 6y2

t + 9
4g

2 + 3
4g

′2 + 6λ
)
. (1.3)
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Figure 1.1: Quadratically sensitive radiative contributions from the top quark, the
electroweak gauge bosons and the Higgs to the Higgs mass in the SM effective field
theory.

Now we can start to see the nature of what is called the hierarchy problem.
If the cutoff of the SM is high, the SM radiative corrections will be equally
high and must cancel with an unrelated UV term to obtain a light Higgs.
Instead, if the Higgs mass was a technically natural quantity we may have
expected the radiative corrections to be proportional to the Higgs mass itself
with a logarithmic sensitivity to ΛUV. In that case one could still expect that
in the UV a small natural value for the Higgs mass is predicted (we know
of mechanisms that predict small ratios such as dimensional transmutation or
axion-type mechanisms). Although this would get rid of the hierarchy problem,
it would also eliminate any reason to expect the UV completion of the SM to
be close to the electroweak scale. Indeed if we require the SM UV completion
to be natural, or in other words not fine-tuned, it puts a stringent constraint on
the maximum ΛUV scale. Requiring a maximum of 10% fine-tuning for the UV
completion and only taking the top radiative contribution which is the largest,
we find the following constraint1

∆ ≡
− 3

8π2 y
2
tΛ2

UV
(−88GeV)2 . 10 =⇒ ΛUV . 1500 GeV, (1.4)

implying a UV completion of the SM should be right around the corner at the
TeV scale! Moreover such a UV completion cannot just be any UV completion,
it must be very special as we know there are higher scales in nature that also
require a UV completion. If we want these higher scales to not spoil the natu-
ralness of the Higgs, our TeV UV completion should be of particular structure.
It should make sure that any potential higher scale of nature does not induce
new contributions to the Higgs. An example of a higher scale in nature that
is expected to give large corrections to the Higgs mass is the Planck scale at
which quantum effects of gravity become important. And even omitting grav-
ity, something, such as for example a GUT, must happen before the Landau
pole of hypercharge, the ultimate cutoff of the SM at 1041 GeV, is reached.

1The following is an underestimate, as there could also be tuning within µ2
UV , which would

imply the UV completion to appear at an even lower scale.
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1.4 Supersymmetry and Compositeness
There are two traditional frameworks that stabilise the Higgs mass: supersym-
metry (SUSY) and composite Higgs. Unsurprisingly from the discussion of
technical naturalness both frameworks involve the appearance of a new sym-
metry. Before moving to the latter framework, to which a large part of this
thesis will be devoted, we start with SUSY.

SUSY exploits a loophole in the Coleman-Mandula theorem by also consid-
ering anti-commutating fermionic generators as part of the symmetry group of
the Lagrangian [31]. These fermionic generators Q turn a boson into a fermion
and vice-versa. Therefore the basic particle fields are not of a definite spin
anymore but become superfields which includes at least one fermion and one
boson. Since the fermionic operator commutes with PµP

µ and the internal
symmetries, the fermion and boson of the superfield must have equal masses
and charges. Of course, this is not phenomenologically viable and SUSY must
be softly broken [32]. The minimal viable extension of the SM to include SUSY
is the Minimal Supersymmetric Standard Model (MSSM). Together with the
remarkable unification of gauge couplings [33,34], SUSY fits extremely well into
the GUT paradigm. To understand how radiative corrections to the Higgs mass
are tamed in SUSY, we have to consider the new particle content. There will
now be a counterpart to each SM degree of freedom with its own contribution
to the Higgs mass. Consider for example the top superpartner, more commonly
known as the stop, t̃, which will contribute to the Higgs mass with the Feynman
diagram of Fig. 1.2.

Figure 1.2: The main stop loop contribution to the Higgs mass.

Since SUSY enforces the quartic coupling from Fig. 1.2 above to be equal
to y2

t and the degrees of freedom of the stops to be also equal to the degrees
of freedom of the top, namely Nc = 3, the addition of this loop, with opposite
sign, will tame the quadratic sensitivity of the top loop:

∆m2
H |top + ∆m2

H |stop ∼ −
3

8π2

(
m2
t̃ ln

(Λ2
UV
m2
t̃

)
+ ...

)
. (1.5)

Indeed, the remaining sensitivity is merely logarithmic. The same cancel-
lation holds for the other SM superpartners running in the loop. We see that
SUSY is powerful enough to render the radiative corrections to the Higgs mass
merely logarithmically sensitive to the UV scale. The only condition is that
the stop masses must not be too much removed from the electroweak scale, in
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other words SUSY must not be broken at too high scales and the degeneracy
between partner and superpartners must be under control.

The second framework in which to address the hierarchy problem is that of
composite Higgs. As the name suggests the Higgs is no longer an elementary
scalar but a composite particle and the hierarchy problem only exists for ele-
mentary scalars. Indeed we know plenty of scalars in nature, more particularly
in QCD, and we do not seem to worry about their mass generation. That is
because a composite scalar has a finite localization l ∼ m∗. Quantum cor-
rections, such as those from Fig. 1.1, probe two different regimes. At smaller
scales E < m∗, the finite extent of the composite scalar is not probed and
these corrections will be quadratically sensitive. At higher scales E > m∗, the
virtual quanta start probing the structure of the composite particle through
form factors and the corrections quickly converge. In such a scenario it be-
comes important that the generation of the scale m∗ itself does not generate
another hierarchy problem. We know, thanks to QCD, that such a mechanism
exists: dimensional transmutation. A small dimensionful quantity is generated
through a dimensionless quantity. In QCD, the coupling constant, gs, after
including quantum effects, has a logarithmic dependency on the energy scale
through the beta function:

∂gs
∂ logµ = β(gs). (1.6)

In non-Abelian Yang-Mills theories, β can be negative due to the anti-screening
of the force carriers, and as such the coupling can become divergent in a per-
turbative calculation at a scale ΛQCD which can be exponentially smaller with
respect to higher scales such as the Planck scale. The divergence is just an
indication of our lack of understanding and the breakdown of perturbation the-
ory, but the coupling becomes large and forms bound colorless states of mass
around ΛQCD, a process known as confinement.

Both of these very elegant frameworks, which protect the Higgs mass from
higher scales, come with many associated signatures (superpartners for SUSY
and composite particles for composite Higgs scenarios). This led to high antici-
pation for the Large Hadron Collider (LHC) to discover not only the Higgs but
a plethora of other particles. Although the Higgs mass was discovered in 2012,
there has been no trace of any other particle. This has led to these theories
becoming evermore fine-tuned in order to escape detection at the LHC.

Actually the null results of the LHC (of course, the Higgs discovery itself is
a fantastic scientific success for mankind) is not such an unfamiliar situation.
Already after the Large Electron-Positron collider (LEP) there were those who
saw the writing on the wall [35]: a light Higgs in combination with a high
cutoff for some higher dimensional operators that LEP very well constrained,
meant traditional solutions were already generally fine-tuned. But after more
than a decade after turning on the LHC the situation looks significantly worse.
This has lead to speculations that, just as the naturalness principle seem to fail
for the Cosmological Constant and can be explained by anthropic principles in-
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stead [36], a similar situation could be at play for the weak scale. Or new ideas,
such as a dynamical cosmological evolution in the early Universe that drives
the Higgs mass to a value much smaller than the cutoff [37], have emerged.

While these ideas are very exciting and need to be taken seriously, their
phenomenological signatures are generically out of reach of TeV colliders and
21st century humans. Since observational signatures within the author’s life-
time is a sincerely held bias of the author, this thesis focuses on exploring if
the absence of signatures at the LHC could still be compatible with a natural
Higgs and proposing new signatures which could be looked at.

1.5 Outline
In Chapter 2 we propose a new solution to the absence of top partners at the
LHC. Instead of opting for a symmetry-based solution such as models of twin
Higgs, where the quadratic sensitivity of the top loop is cancelled by uncolored
top-partners, we investigate the possibility that the large top Yukawa only
acquires its large value in the IR while at the multi-TeV scale it could be much
smaller due to quantum effects or even completely vanish. In this case the
expected scale at which the hierarchy problem should be addressed can be
postponed to higher scales. However such strong changes in the top Yukawa
would imply non-traditional phenomenological signatures which we study.

In Chapter 3 we present a minimal model of gauge-Higgs grand unification
in a warped background. Using the power of the fifth dimension, we provide
a compelling model of grand unification and of flavor. We study the stringent
bounds from the flavor sector which, without imposing additional flavor sym-
metries, push the model into larger scales. Nevertheless, additional scalars due
to the large unified structure may be accessible at colliders. We study the mass
generation of these scalars.

We end in Chapter 4 with a novel model of composite Higgs which features
little tuning. It shows how a natural model of composite Higgs could still be
operating at the TeV scale while escaping detection. The mechanism relies
on the cancellation of the top contribution to the composite Higgs potential
with the introduction of mirror fermions that cancel the top contribution. In
contrast to models of twin Higgs, it does not rely on a SM twin sector with
an extra Z2 symmetry. Instead it relies on a curious property of certain group
representations. We discuss the very unique phenomenological signatures of
the model.



Chapter 2

A Radiative Top Yukawa

As we discussed in the introduction, traditional solutions to the instability of
the Higgs potential such as supersymmetry or compositeness do not suffice
anymore to have a natural Higgs, that is to say a Higgs potential without any
fine-tuning. The basic problems can be simply phrased as follows: if supersym-
metry or compositeness indeed protects the Higgs potential from quadratically
divergent corrections, these ideas should be realized at the electroweak scale.
Herein lies the problem: after more than a decade of LHC, one has started
to probe and understand scales up to the TeV quite well. In the case of su-
persymmetry, one should start to probe the supersymmetry and produce the
superpartners of the SM such as the stops, while for compositeness one should
start to probe the composite nature of the Higgs bosons and observe the com-
posite partner of the top for instance. The higher the scale of supersymmetry or
Higgs compositeness, ΛUV, the more residual fine tuning is required to explain
the hierarchy:

∆ ∼ Λ2
UV
m2
H

. (2.1)

Although there are specific solutions to reduce the residual fine tuning in both
the SUSY or compositeness scenario (the last chapter of this thesis is devoted
to such a solution for composite Higgs scenarios), the increasing bounds on
the stops and the top partners have become worrisome for the naturalness
paradigm. Indeed one can naively estimate the state of naturalness by consid-
ering how general top partners, with mass MT , cancel the quadratic sensitivity
of the Higgs mass to larger scales

∆m2
H |top + ∆m2

H |top partner ∼ −
3

8π2 y
2
tM

2
T log

(
Λ2

UV
M2
T

)
, (2.2)

where the logarithm and its dependence on the UV scale ΛUV, indicates that
a full calculation of the Higgs mass requires to specify the UV completion.
Nevertheless, requiring radiative corrections from the top and its partner to be

9



10 2. A Radiative Top Yukawa

comparable to the observed Higgs mass, we find

∆m2
H ∼

−3
8π2 y

2
tM

2
T = −(88GeV)2

( MT

450GeV

)2
. (2.3)

Therefore MT = 450 GeV is the scale we expect for natural top partners.
Years of searches by the ATLAS and CMS collaboration have pushed the
bounds on colored top partners around 1500 GeV for both scalar partners
[38, 39] and fermionic partners [40–44]. This naively implies a fine-tuning of
∆FT = ∆m2

H/m
2
H ∼ 10%. Although it must be noted that this estimate only

accounts for the radiative top/stop corrections and in concrete computations
within the MSSM, where a Higgs potential is already present at tree-level, the
tuning is generally well below the percent-level (see for example [45]) while in
composite Higgs frameworks (see Chapter 4 for example) it is at the few percent
level.

Rather than completely abandoning naturalness (although this has become
an interesting field alas without necessarily TeV scale signals), a new frame-
work has emerged which has resulted in new and exciting ideas. Rather than
stabilising the weak scale, composite Higgs or SUSY might only kick in at a
larger scale ΛUV ∼ 10 TeV, explaining the absence of SUSY or composite states
and deviations in EWPTs. Instead of simply accepting the residual tuning, an-
other mechanism, producing different signatures, harder to observe, might be
responsible for the residual hierarchy - a framework called the little hierarchy.

In this chapter we discuss such a mechanism, which stresses the importance
of the large top Yukawa to the hierarchy problem. Indeed, if the top Yukawa
would be smaller at larger scales due to large running effects, its general contri-
bution to the Higgs mass would be reduced as the prefactor y2

t would become
smaller at higher energies. Before presenting a general discussion of such a
solution to the little hierarchy problem in Sec. 2.2, we briefly review a very
popular, symmetry-based, solution to the little hierarchy problem in Sec 2.1.
We then discuss two incarnations of our approach to the little hierarchy problem
in Sec. 2.3 which relies on large Yukawa running and Sec. 2.4 which entirely
generates the top Yukawa at the loop level. In Sec. 2.5 we discuss different
signatures of the mechanism.

2.1 Twin Higgs

Twin Higgs [46] provides a model example of how the weak scale can be sta-
bilised yet lack traditional naturalness signatures. The basic idea is based on
a global SU(4) symmetry that is linearly realized. The Higgs HA is embedded
with a twin Higgs HB into a fundamental scalar of SU(4), H = (HA,HB)T .
The SU(4)-invariant potential is then

V = −m2(H†H) + λ(H†H)2, (2.4)
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whose negative quadratic will give a VEV to 〈H〉 = (m/
√

2λ) ≡ f and trigger
the spontaneous breaking of SU(4) to SU(3) resulting in 7 Nambu-Goldstone
bosons. The global group is explicitly broken by gauging the SU(2)A×SU(2)B,
with HA/B transforming respectively as a doublet under SU(2)A/B and SU(2)A
identified with the SM weak charge SU(2)L. Due to the gauging of the global
symmetry, therefore introducing explicit breaking, the massless Nambu - Gold-
stone bosons become pseudo-Nambu-Goldstone bosons and pick up a mass.
The leading gauge boson loop contribution to the potential goes as

∆V = 9g2
AΛ2

64π2 (H†
AHA) + 9g2

BΛ2

64π2 (H†
BHB) + ..., (2.5)

and we unsurprisingly obtain the usual quadratically sensitive contribution to
the potential from gauge boson loops. Twin Higgs works by imposing an addi-
tional Z2 symmetry, dubbed twin parity, which interchanges the A-states with
those of the B-sector. Since this symmetry forces the gauge couplings of both
sectors to be equal gA = gB ≡ g, we now find that the quadratically sensitive
gauge contribution goes as

∆V = 9g2Λ2

64π2 (H†
AHA +H†

BHB) + ... = 9g2Λ2

64π2 (H†H) + ..., (2.6)

and is SU(4) invariant therefore not contributing to the potential for the scalars.
Although the quadratic sensitivity is cancelled, there will still be a logarithmic
contribution sensitive to the eventual UV completion at ΛUV that is not SU(4)
symmetric of the form

∆V ∼ 3g4

16π2 log(ΛUV/gf))(|HA|4 + |HB|4) + ... (2.7)

Importantly the Higgs sector can be made custodially symmetric by changing
the global symmetry to O(8). The twin parity symmetry and by construction
this mechanism can be extended for all the other SM particles. In particular the
quadratic nature of the top quark loop, which is the largest SM contribution,
can be cancelled by including the color group SU(3)A and its twin SU(3)B
into SU(6). The total global symmetry of the model is therefore SU(6) ×
SU(4) × U(1)2 with the SM gauge group and its twin sector being gauged.
The top Yukawa interaction can be modeled respecting the global symmetry
by introducing two chiral fermions under SU(6)×SU(4) that decompose under
the SM gauge group and its twin as respectively

QL = (6,4)
= (3,2; 1,1) + (1,1; 3,2) + (3,1; 1,2) + (1,2; 3,1)
≡ qA + qB + q̃A + q̃B

TR = (6,1)
= (3,1; 1,1) + (1,1; 3,1)
≡ tA + tB. (2.8)
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An invariant Yukawa coupling can then be obtained as yHQLTR + h.c.. No-
tice that the chiral exotic fermions q̃A, q̃B are massless but are made heavy
by the introduction of vector-like masses and right-handed partners for them
M(q̃cAq̃A+q̃cB q̃B). Although this mass respects the twin parity symmetry, it only
softly breaks SU(4) and is the only source of its breaking in the fermion sector.
The contribution to the potential from this term will therefore be finite. To
obtain a phenomenologically viable potential it is also important to introduce a
Z2-breaking term µ2H†

AHA. Six of the Goldstones are eaten by the two SU(2)
groups and the remaining scalar is identified with the Higgs boson. In order
to be SM-like it should be dominantly composed of hA = (Re(H0

A) − vA)/
√

2.
The twin Higgs is protected from radiative corrections above the scale f . How-
ever the scale f , which impacts directly the Higgs mass when substituting
|HB|2 ≈ f2− h2 into Eq. (2.7), is itself is not stabilised. Indeed the fundamen-
tal scalar of SU(4) from Eq. (2.4) will itself give rise to a hierarchy problem but
can be further addressed by SUSY or compositeness. For example, twin Higgs
can be embedded into a composite Higgs scenario and is known as composite
Twin Higgs [47–49], while a UV completion of Twin Higgs can also be realised
in a supersymmetric extra-dimensional model on an orbifold and is known as
folded supersymmetry [50].

The main takeaway from this model is that the Higgs can be stabilized
without the presence of new light particles charged under the SM gauge group,
instead in twin Higgs setup the new particles are charged under the twin gauge
groups that are neutral under the SM. The color factor Nc = 3 in Eq. 2.2,
necessary to cancel the quadratic sensitivity of the Higgs mass to new scales, is
just a counting factor and can come from any gauge group. Only a Z2 symmetry
is necessary to relate the Yukawa couplings of both sectors. In these scenarios,
the collider constraints are very mild and challenge the conventional searches
for naturalness at colliders. This more general paradigm of cancelling the top
loop contribution to the Higgs by uncolored partners, now known as neutral
naturalness, has grown into a rich literature over the last decades with various
dark matter candidates, connections to cosmology, astrophysics, neutrinos and
flavor (see [51] for a recent review).

2.2 Mitigating the Top Loop

We now proceed with our novel proposal to address the little hierarchy problem.
As we have now repeatedly remarked, solving the (little) hierarchy problem
usually involves cancelling the quadratic sensitivity of the Higgs boson mass to
the cutoff scale by introducing a partner particle for each SM particle (be it a
superpartner for SUSY, a composite resonance in the case of composite Higgs
or even a neutral partner in neutral naturalness) whose quadratic sensitivity to
the cutoff cancels the one from the SM particle. All these solutions heavily rely
on a symmetry between a SM particle and its partner. Here we propose a more
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Figure 2.1: The various contributions to the Higgs mass squared for ΛNP = 10 TeV.

bottom-up solution to the little hierarchy problem. Although all the massive
SM particles talk to the Higgs and thus contribute to the hierarchy problem,
the top quark due to its large mass, stands out. Indeed, let us assume the
SM is embedded in a UV completion at a scale ΛNP, the four largest radiative
contributions from the new physics at that scale come from the top-, W-, Z-,
and Higgs sectors (with B = T,W,Z,H respectively)

(∆m2
H)B = 3

2g
2
B

Λ2
NP

16π2 , (2.9)

with g2
T = 4y2

t , g2
W = g2, g2

Z = (g2 + g′2)/2, g2
H = 4λ. In Fig. 2.1 these

contributions are normalised to the Higgs mass and expressed as a measure of
fine-tuning ∆FT = ∆m2

H/m
2
H , it becomes clear that the tuning due to the top

is an order of magnitude worse than the next contribution coming from the W
boson and is the driving force behind the little hierarchy problem. Requiring
an acceptable fine-tuning of 5% leads to a generic bound on the new physics
scale of ΛNP ∼ 2.5 TeV.

For a very large ΛNP, all these loops become problematic giving large cor-
rections to the Higgs mass, illustrating the necessity of a solution to the full
hierarchy problem. However, when considering the little hierarchy problem, we
are only considering a relatively low scale NP scale of ΛNP = 10 TeV where only
the top quark contribution becomes problematic. Therefore the issue of the lit-
tle hierarchy problem is mainly one of the top-loop. A solution to the little
hierarchy problem could therefore be exclusively secluded to the top-sector. In
contrast to twin Higgs, which can be applied to all the SM particles contribut-
ing to the Higgs mass, the solution discussed further below only addresses the
quadratic sensitivity of the top quark.

The idea is to make the top Yukawa coupling strongly dependent on the en-
ergy scale, yt = yt(µ2), or even directly on the momentum running through the
vertex, yt = yt(k2). Indeed, a careful calculation of the radiative contribution
to the Higgs mass reveals that it is sensitive to all the energy scales until the
ΛNP, and in particular the top Yukawa coupling is probed at all these different
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scales
∆m2

H |top = −2iNc

∫ ΛNP

mt

d4k

(2π)4 y
2
t (k2) k2 +m2

t

(k2 −m2
t )2 , (2.10)

which after a Wick rotation will probe the top Yukawa coupling at space-like
momenta yt(−Q2). Notice that even in the SM, at first order in perturbation
theory, the top Yukawa is not a constant, but is a scale dependent quantity,
mostly due to the gluon correction to the top Yukawa vertex. This is the same
effect that makes the top mass run at the one-loop level, although it is not
nearly enough in the SM to significantly impact the radiative correction of the
Higgs mass.

In case the top Yukawa has a significant scale dependence due to new
physics, the integral above gets tamed at high momenta due to the smaller ver-
tex and the naive estimate becomes invalid. In the more exotic case in which
non-trivial dynamics generate the top Yukawa at the loop level, the above in-
tegral can actually become finite and the fine-tuning associated to the top-loop
can become bounded. Indeed, if the top Yukawa drops off around k2 ∼ Λ2

T , the
integration of Eq. (2.10) becomes finite

∆m2
H |top ∼ −

3
8π2 y

2
tΛ2

T , (2.11)

and the contribution of the top quark to the fine tuning of the Higgs mass is
bounded. The corresponding Feynman diagram is shown in Fig. 2.2 where the
blob represents the scale dependence of the top Yukawa.

Such a behavior would imply a nontrivial origin for the large top Yukawa in
the IR due to new degrees of freedom (but not top partners) significantly below
the new physics scale where a SUSY or composite Higgs type model provides a
UV completion for the full hierarchy problem. In the following we will discuss
how these degrees of freedom should look like.

yt(k2) yt(k2)

k

k

Figure 2.2: The top-loop contribution to the Higgs mass for a non-trivial top Yukawa
yt(k2).

Interestingly this mechanism relies on the fact that we have not measured
the top Yukawa at high energies. While a strong reduction of the top Yukawa
at electroweak scales would be in tension with Higgs (production and decay)
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Figure 2.3: Various contributions to the Higgs mass squared for ΛNP = 10 TeV in
case yt(Λ2

NP) . 0.2 or equivalently ΛT . 1/5 ΛNP.

measurements at the LHC [52–54], at high scales, ΛNP � MEW, a large re-
duction remains phenomenologically viable [55–58]. In the UV, the top quark
would behave rather as the other quarks and only obtain its large coupling to
the Higgs in the IR, i.e. yt(M2

EW) ≈ ySM
t (M2

EW), but yt(Λ2
NP) � ySM

t (Λ2
NP).

Such a mechanism would also impact the running of the top mass which is espe-
cially made relevant by the fact that CMS has provided the first measurement
of the running top mass up to the TeV scale [59]. Such measurements open up
additional handles for testing the idea and we will confront model predictions
with the corresponding limits.

Before going to specific implementations of the idea, let us see how the situ-
ation of Fig. 2.1 can change in the presence of either a strongly scale dependent
top Yukawa, yt(Λ2

NP) . 0.2 � yt(M2
EW) or due to cutting off the top loop at

ΛT . 1/5 ΛNP.
In Fig. 2.3 we see a new picture emerging, there is no dominant top Yukawa

contribution to the fine-tuning of the Higgs anymore, rather now the W boson
loop is the dominant force in the little hierarchy problem with the fine-tuning
reduced by an order of magnitude. This reduction translates into a threefold
increase of the naive scale where we expect, due to the naturalness criterion, a
solution to the full hierarchy problem.

Still, taming or even cutting off completely the top loop contribution is not
enough and at the latest around ΛNP = 10 TeV, a full UV completion - can-
celling the contributions from the bosonic loops - should kick in. The scenario
discussed here is therefore playing an assistant role, relieving the strong bounds
on naturalness coming from the top partner searches. It is especially helpful in
composite Higgs completions where an O(1) Yukawa coupling providing a large
breaking of the Goldstone shift symmetry is problematic. The biggest tension
of these models with LHC data, being the absence of light top partners [60–66],
is in fact caused by this large Yukawa coupling.

In the rest of this chapter we will scrutinize such a scenario and hypothesize
about the possible microscopic origin of the top Yukawa and its impact on the
little hierarchy problem, potentially changing the vanilla picture. After all,
the LHC is only probing energy scales just above the weak and it is crucial to
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ponder whether an acceptable tuning of 5% implies ΛNP ∼ 2.5 TeV or could
allow ΛNP ∼ 10 TeV. Besides unique signatures of new physics associated to
the top Yukawa, the ultimate test of naturalness would then be postponed to
a 100 TeV collider. While such a collider could explore in detail the potential
origins of the top Yukawa, null findings would drive the new physics scales
high enough such that the tuning associated to the gauge bosons and the Higgs
becomes unnaturally large.

In Sec. 2.3 we will study scenarios in which a reduction of tuning is achieved
by a modified renormalization group evolution (RGE) of the top Yukawa, pro-
viding possible realizations that could drive yt significantly to lower values.
Afterwards, in Sec. 2.4 we consider a strongly coupled model where the top
Yukawa is fully generated at one loop. We discuss the phenomenological as-
pects of the model in Sec. 2.5.

2.3 Running Top Yukawa
In fact, it comes as no surprise that at the one-loop level, the top Yukawa is
already evolving with the energy scale t = lnµ in the SM according to

dyt
dt

= yt
16π2 ( 9/2 y2

t − 8 g2
3 − 9/4 g2

2 − 17/12 g2
Y ) , (2.12)

with gY,2,3 being the U(1)Y , SU(2)L, SU(3)c gauge couplings. Since all SM
gauge groups tend to screen the top Yukawa at higher scales, we expect that
additional gauge interactions could lead to a further decrease of the top Yukawa
increasing the modest decrease of the SM [67,68]. More precisely, adding a new
abelian or non-abelian force to the SM with coupling strength g̃N 1 under which
the left- and right-handed quarks are charged respectively with charges YL and
YR for the abelian case, results in the following RGE [69–71] for the yt

dyt(t)
dt

= yt(t)
16π2 ( 9/2 y2

t (t)−B(N) g̃2
N ) , (2.13)

with B(1) ≡ 3(Y 2
L + Y 2

R) for the abelian case and B(N) ≡ 3(N2 − 1)/N for
N > 1.

As a benchmark for the potential effect of such an extra gauge group, we
focus on an U(1) extension and take YL = YR = 2, g̃1 = 2.5 for a new gauge
boson of mass M = 2.5 TeV. The modified RGE of the top Yukawa is depicted
in Fig. 2.4 and we observe that yt(µ=10 TeV) ≈ 0.2 while yt(µ=20 TeV) ≈ 0.1.
Such a drastic running allows for significant mitigation of the hierarchy problem
due to new physics coupled to the top quark. One can now recalculate the fine-
tuning in the Higgs mass with this extra force due to generic new physics at
the scale ΛNP = 10 TeV. This situation is the one of Fig. 2.3 with the top

1We assume in our analysis that the running of the gauge coupling itself is negligible in
the region of interest.
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Figure 2.4: Running of the top Yukawa coupling in the simple U(1) extension with
YL = YR = 2, g̃1 = 2.5, and a mass of the new gauge boson of M = 2.5 TeV.

contributions becoming subdominant and the fine tuning being driven by weak
gauge bosons. Now requiring less than 5% tuning allows for a generic higher
scale of

ΛNP = 7.5 TeV, (2.14)

a three-fold increase in comparison to no change in the top Yukawa and beyond
generic LHC reach.

2.3.1 Simple Perturbative Extensions

We now discuss a few realistic setups that can impact the running of the top
Yukawa. The underlying assumption is that the new particles could be light,
impacting the RGE running while not contributing large thresholds to the Higgs
mass. A full solution to the hierarchy problem (like SUSY or composite Higgs
scenarios) could appear at larger scales without creating a residual little hier-
archy problem.

U(1) extensions of the SM are constrained by the stringent requirement of
anomaly cancellation [72]. Requiring flavor diagonal charge assignments or,
less constraining, one set of charge assignments for some of the generations,
one is left with the well-known SM hypercharge symmetry or that symmetry
restricted to one or two generations. Extending the SM minimally with right-
handed neutrinos, νR, B − L is also anomaly free. For each of the scenarios
below, we will consider a gauge boson mass of 2.5 TeV.

(B −L)3 Scenario Gauging only the third generation of (B −L) [73] avoids
stringent constraints on a universal B−L boson coming from LEP data which
constrains the mass over coupling ratio to MX/gX > 18 TeV [74]. The vector
boson Xµ couples in a vector like fashion to the third generation:

L ⊃ gXXµ

(
t̄γµt+ d̄γµd− 3τ̄ γµτ − 3ν̄τγµντ

)
. (2.15)
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To have maximum impact on the running, we wish to take the gauge coupling
as large as possible, only bounded by the requirement of perturbativity. We
will take the perturbative limit to be Γ(X)/MX . 50%. Due to the three
times larger coupling of the gauge boson to leptons in comparison to quarks,
the width is

Γ(X)
MX

= 2
π
g2
X , (2.16)

imposing a limit of gX < 0.89 on the coupling. The top Yukawa is only reduced
to a very modest 0.74 at 10 TeV for such a gauge boson versus 0.77 in the SM.
This immediately shows the limitations of an anomaly free U(1) extension for
our goal.2

Purely Top-philic Setup The situation above could be addressed by avoid-
ing unnecessary large couplings to leptons, by employing a purely top-philic
boson:

L ⊃ gXXµ(t̄γµt) . (2.17)

The anomaly cancelling UV completion would be more baroque but the width
of the vector boson is reduced

Γ(X)
MX

= 2
8πg

2
X , (2.18)

making couplings of strength gX . 2.5 possible. Such a gauge boson would
allow for a reduction of the top Yukawa to yt = 0.55 at 10 TeV, still only a
modest reduction in total fine-tuning.

Third Generation non-Abelian Models We now turn to non-abelian sce-
narios which only couple to the third generation. A non-universal left-right
model [75] in which only the third generation of right-handed fermions is
charged under the new SU(2)R gauge group provides a first example. The
Lagrangian for the Z ′

µ reads:

L ⊃ gR/2Z ′
µ(b̄RγµbR − t̄RγµtR + τ̄Rγ

µτR − ν̄RγµνR) . (2.19)

There is also a W ′
µ, although its production at the LHC is less problematic [75].

The corresponding width for both gauge bosons is given by

Γ(Z ′)
MZ′

= Γ(W ′)
MW ′

= 1
12πg

2
R , (2.20)

which implies gR < 4.3. The impact of such a model on the running of the top
Yukawa can be studied by substituting B(N)g̃2

N → 9
4g

2
R in Eq. (2.13), where the

additional factor 1/2 takes into account the fact that only the right-handed top
2Gauging multiple (B − L)3 symmetries cannot improve the situation due to perturbative

unitarity bounds on scattering cross sections that would be enhanced by multiplicity factors.
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couples to the new force. The decay of the Z ′ into tau pairs, drives the minimal
mass to mZ′ > 2.5 TeV. The maximal reduction in the top Yukawa running
at 10 TeV is merely yt = 0.52. A desired running to yt = 0.2 would imply
a coupling as large as gR ∼ 8.2, well outside of the validity of perturbation
theory.

A last perturbative example comes from a broken SU(3) gauge symmetry,
known as Topcolor [76], only affecting the third generation quarks with the
following Lagrangian:

L = g′
3G

′A
µ (q̄LγµTAqL + t̄Rγ

µTAtR + b̄Rγ
µTAbR) . (2.21)

To achieve the desired top Yukawa of yt ∼ 0.2 at 10 TeV, the coupling should
be g′

3 ∼ 4.5, while the perturbative limit on the width of the heavy gauge
boson, otherwise known as the coloron, is g′

3 < 4.3 which could borderline be
fulfilled. Therefore such a scenario could bring the corresponding contribution
of the top quark to the fine tuning down to that of the electroweak and Higgs
bosons. It is thus conceivable that the hierarchy problem is fully relieved within
a perturbative region, although in the corners of parameter space. For a more
stable solution, we have to enter the non-perturbative regime.

2.3.2 Beyond the Perturbative Bound

As we have seen in the last section, if we wish drastic changes to the top
Yukawa running, the gauge coupling should be large, entering the domain of
non-perturbative physics. A ubiquitous consequence of non-perturbative dy-
namics is the formation of bound states. We restrict our analysis to the minimal
setup in which only qL and tR participate in the strong dynamics. The result-
ing bound state is a scalar field with the quantum numbers identical to that of
the Higgs, known as top-Higgs Ht [77, 78]. The properties of this bound state
can be elegantly described by the Nambu-Jona-Lasinio (NJL) model [79, 80].
This model was originally considered, before the advent of QCD and even the
notion of quarks, to model the nucleons. It provides a physical picture of chiral
symmetry breaking, or how the nucleons achieve their large dynamical mass,
even though the tree-level Lagrangian respects chiral symmetry. The model
consists of a fermion ψ, possibly transforming under some flavor symmetry,
SU(2) isospin in the case of the original NJL model, with the following chiral-
symmetric Lagrangian

LNJL =ψ̄(i/∂ −m)ψ +G/4
(
(ψ̄ψ)2 − (ψ̄γ5ψ)2

)
=ψ̄(i/∂ −m)ψ + (G)(ψ̄LψR)(ψ̄RψL), (2.22)

with G = g2
X/M

2
X a dimensionful constant. In the second line we clearly see

that the four-fermion interaction is chiral-symmetric with the exception of a
possible small bare mass m. Interestingly this interaction is contained, after a
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Fierz rearrangement, in the exchange potential of a massive gluon with mass
MX . The above equation can thus be viewed as a rough approximation of
QCD close to the QCD scale and indeed it provides a picture of spontaneous
chiral symmetry breaking and the generation of a large dynamical mass for the
fermion (either for ψ representing a nucleon or later, with the advent of QCD,
ψ representing a quark). The theory is then solved at low energies by summing
up fermion loops [81], i.e. the fermion bubble approximation. A convenient
alternative is to rewrite the above with an auxiliary scalar field H (which will
represent a bound scalar developing a possible VEV)

LNJL = ψ̄(i/∂ −m)ψ + (gX ψ̄LψRH + h.c.)−M2
XH

†H, (2.23)

evolving the above to lower scales µ < MX , we find the following effective
Lagrangian for H (see [82])

LNJL,µ = |∂H|2 − M̃2|H|2 − λ̃|H|4 − ỹtψ̄LψRH + h.c., (2.24)

with coefficients depending on the scale µ as

M̃(µ)2 =
( 4π√

NC

MX

gX

)2
(

1− g2
X

g2
c

+ g2
X µ

2

g2
cM

2
X

)
,

λ̃(µ) = 16π2

NC
, ỹt(µ) = 4π√

NC
, (2.25)

with N is the number of colors of the new gauge symmetry and C ≡ ln(M2
X/µ

2).
The Yukawa ỹt represents the interaction between the scalar bound state and its
constituents. We observe that the low energy theory has an unbroken or broken
phase characterised by a condensate of the bound state 〈H〉 6= 0, depending on
the size of the gauge coupling g being larger or lower than the critical coupling
gc ≡

√
8π2/N .

In our case, we will be interested in changing the nature of the top Yukawa
running and thus at the very least qL and tR will participate in the new in-
teraction with the scalar bound state Ht ∼ (q̄LtR) having Higgs-like quantum
numbers.

The Unbroken Phase For a coupling g smaller than the critical coupling gc
we enter the non-perturbative regime but no condensate forms for the bound
state Ht. Its mass will be MX on the order of the other heavy bound states as
we find:

MHt = M̃(µ) ∼ 4π√
NC

MX

gX
. (2.26)

Furthermore since MHt � mH mixing with the SM Higgs through the top is
small as the top-Higgs decouples.

What is the effect on the running of the top Yukawa that we can achieve
with such a setup? In the (non)-abelian case, taking N = 1(3), we find a critical
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coupling of gc = 9(5). The benchmark values calculated above gX = 5(g′
3 = 4.5)

belong to this scenario, meaning an optimal reduction to O(0.2) at 10 TeV
due to running is indeed achievable. The desired amount of running is thus
inherently part of a non-perturbative gauge theory in the unbroken phase. In
this case, the top loop contribution to the hierarchy problem is thus relieved at
the price of new composite and broad resonances, including the gauge boson
Xµ and the top-Higgs Ht.

The Broken Phase For a larger coupling gX > gc, we enter the broken phase
and the setup changes drastically. Not only is EWSB triggered due to a non-
zero vev 〈Ht〉 6= 0, but a large top mass is also simultaneously generated (fully
analogous to how in the NJL model a large chiral symmetry breaking mass is
generated for the quarks). This setup is known as top quark condensation [81,
83, 84]. This model aimed to explain, using fully the VEV of Ht, electroweak
symmetry breaking but has since then been ruled out due to a too large top
mass mt ∼ 600 GeV. Instead, here we would like the SM Higgs to be fully
responsible for EWSB and the top mass and therefore we require a small VEV
for Ht. Using the predictions of the NJL model we then find

〈Ht〉 ≡ vt =

√
−M̃2

2λ̃
∼ MX

gX

√
g2
X

g2
c

− 1 . (2.27)

The generic VEV vt will thus be much too large and we need to tune gX against
gc to obtain a sufficiently small vt. Moreover the VEV will contribute to the
top quark mass with the following contribution

m̃t = 1√
2
ỹtvt . (2.28)

If this mass is greater than that from the SM Higgs, the top is mostly generated
from the dynamical symmetry breaking triggered by its own condensate. Such
a scenario is known as Topcolor-Assisted Technicolor [85] and we will therefore
focus on the small vt case.

A crucial element of the broken phase scenario is that we expect the top-
Higgs doublet Ht to decompose into a CP even neutral scalar ht and top-pions.
The latter are massless (fully analogous to the almost massless pions in QCD)
and the former has according to the NJL model a mass of:

Mht =
√

2λ̃0 vt = 2m̃t < 350 GeV . (2.29)

A realistic model requires additional breaking terms to lift the massless top-
pions. Nonetheless, these light states with strong coupling to the top quark are
severely constrained and the broken phase scenario is thus disfavored.
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Figure 2.5: Two types of loop diagrams which can generate the top Yukawa coupling.
The solid lines represent a fermion and the wavy line could be either a vector boson
or a scalar boson.

Strong running from an extra dimension Lastly let us briefly comment
on another possible source for large running: an extra dimension. It is well
known that flat extra dimensions turn the usual logarithmic running into a
power law running due to the Kaluza-Klein tower [86, 87]. Indeed the beta
function for a Yukawa coupling, in an extra dimension of length R, obtains
contributions from each kinematically accessible Kaluza-Klein (KK) mode be-
low the energy scale E

βUED
y (NKK) = βSM

y + (NKK − 1)β(KK)
y , (2.30)

with NKK = ER and β(KK)
y being the (universal) contribution from a KK mode.

For a benchmark value of R′ ≈ 1 TeV, a top Yukawa of 0.2 can be achieved at 20
TeV [88], with even stronger running achievable with more extra dimensions.
The experimental extraction of the running top Yukawa at high scales as a
probe of such power-law running would be very relevant for extra dimensions
and has been discussed in [55].

2.4 A Radiative Top Yukawa

Having discussed scenarios in which the top Yukawa exists at high energy but
with considerable running when moving to lower energies, we will now present
a second option, where the top Yukawa is fully generated from quantum effects.
Having an external elementary Higgs and external top quarks, there are two
possibilities to have a loop diagram as shown in Fig. 2.5. We have already
discussed extensively the left diagram which is the typical top Yukawa running
due to a new force, but which presupposes the existence of a tree-level Yukawa
term in the UV. The right diagram is a new scenario in which the top Yukawa
is generated from a loop diagram. The two wavy lines can represent either both
vector bosons or scalar bosons, and the solid line is a new vector-like fermion.
The loop is UV convergent and has a 1/M2 suppression. We will take the dia-
gram with scalar bosons as an example. Restoring the electroweak symmetry in
Fig. 2.6, the 1/M2 suppression coming from the momentum integration should
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Figure 2.6: The loop diagram that can generate the top Yukawa coupling from
a dimension-6 operator. The solid lines represent a fermion and the dashed lines
correspond to scalar bosons.

be compensated by two mass scales. One comes from the mass of the vector-like
fermion MF , required to flip chirality, and one from the trilinear coupling, V .

The expected size of the resulting top Yukawa coupling can then be esti-
mated as

yt ∼
1

16π2 yLyR
V MF

M2 ∼ 1 , (2.31)

with M the mass of the heaviest particle in the loop. It becomes clear that
to fully generate the large top Yukawa at the loop level, the couplings need
to be large itself. This might seem borderline, especially in a perturbative
calculation, however one should imagine that the vertices originate from a new
strongly coupled UV theory. In a strongly coupled theory the expected top
Yukawa is actually ∼ 4π and one needs additional suppression to bring it down
to the measured 1. We will leave possible UV origins for Appendix A, focusing
here on a simplified model.

2.4.1 A Simplified Scalar Model

To complete the loop from Fig. 2.6, three new couplings are required

Lint = −V SRS†
LH − yLq̄LSLFR − yRt̄RSRFL + h.c. , (2.32)

with SL a scalar doublet and SR a scalar singlet and the vector-like singlet
fermion F . The hypercharge of the new particles is not determined by the loop
due to an accidental U(1) symmetry. The hypercharge is allowed to be

Q(F ) = QF , Q(SL) = 1
6 −QF , Q(SR) = 2

3 −QF , (2.33)

but in the following analysis we will take QF = 2/3, meaning the vector-like
fermion and the right-handed top quark carry the same charge. SL has then
the same quantum numbers as the Higgs doublet while SR is a singlet under
the SM. As we will discuss in Sec. 2.4.6, this will make it possible to extend



24 2. A Radiative Top Yukawa

the model into a custodially protected model, necessary to evade electroweak
precision constraints. In addition, we add masses for the new particles:

Lmass = −M2
L|SL|2 −M2

R|SR|2 −MF F̄LFR + h.c. . (2.34)

In order to understand the mechanism behind the generation of the top Yukawa,
we focus on the neutral scalars and rotate to the mass eigenstates. The La-
grangian reads

Lneutral = |∂SL|2 + |∂SR|2 −M2
L|SL|2 −M2

R|SR|2

− V SRS†
LH + h.c. (2.35)

= |∂sL|2 + |∂sR|2 −M2
L|sL|2 −M2

R|sR|2

−M2
LR(s∗

LsR + s∗
RsL), (2.36)

with sL and sR the (complex) neutral components of SL and SR. The coefficient
of the mass mixing term is M2

LR ≡ V 〈H〉 = V v/
√

2. Therefore the trilinear
coupling leads to mass mixing between sL and sR which upon rotation leads to
the mass eigenstates sh and sl denoting respectively the heavy and light mass
eigenstates (

sL
sR

)
=
(
cβ −sβ
sβ cβ

)(
sh
s`

)
, (2.37)

and with cβ ≡ cos β, sβ ≡ sin β. The angle satisfies

sβcβ = M2
LR/

√
4M4

LR +
(
M2
L −M2

R

)2
. (2.38)

The free Lagrangian in the mass basis basis reads

Lneutral = |∂sh|2 + |∂s`|2 −M2
s |sh|2 −m2

s|s`|2 , (2.39)

with Ms(ms) the mass of the heavy (light) neutral scalar. Their values are
given by:

M2
s (m2

s) = 1
2
(
M2
L +M2

R

)
±
√
M4
LR + 1

4
(
M2
L −M2

R

)2
. (2.40)

The interaction terms between the scalars and the Higgs boson becomes

Ltrilinear =−
√

2V cβsβ h|sh|2 +
√

2V cβsβ h|s`|2

−
V (c2

β − s2
β)

√
2

hs∗
hs` + h.c., (2.41)

while the interaction terms with the vector-like fermion read:

Lfermion =−
(
yLcβ t̄LshFR + yRsβ t̄RshFL

)
−
(
−yLsβ t̄Ls`FR + yRcβ t̄Rs`FL

)
+ h.c. . (2.42)
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Figure 2.7: The four loop diagrams which contribute to the top Yukawa coupling:
Loop 1 (upper left) with two light scalars, Loop 2 (upper right) and Loop 3 (lower left)
with both heavy and light scalars, and Loop 4 (lower right) with only heavy scalars.

We will need these interaction terms at hand to calculate the top Yukawa
and related quantities. These new interactions can also produce additional
corrections to the Higgs at one-loop, namely the scalar loop will give a generic
contribution of:

∆m2
H |scalar ∼

1
16π2V

2 ln
(

Λ2
NP
M2

)
. (2.43)

The loop is not quadratically sensitive to ΛNP and no additional hierarchy
problem is reintroduced. However, as we will see for concrete benchmarks, V
can be quite large in realistic models, and it will be important to consider this
contribution.

2.4.2 Top Yukawa Coupling from a Loop

With the minimal new physics described in the last section, it is possible to
dynamically generate the top Yukawa by integrating out the new heavy degrees
of freedom. Below these heavy degrees of freedom, one will not only generate
the top Yukawa but a whole series of higher dimensional operators reading

Ltop = c6 (q̄LHtR) + c6+4n
(
H†H

)n
(q̄LHtR) . (2.44)

The first term in the expansion with coefficient c6 corresponds to the SM-like
top Yukawa, while the higher dimensional operators will result in deviations
of the top and Higgs properties from the SM which we will study. By moving
towards higher scales, the coefficients of the EFT will change, replacing the
EFT description by form-factor couplings. It is this form factor behavior that
will make the top Yukawa non-trivial and result in a finite contribution to the
Higgs mass at the loop level.

To determine the form factors, a loop calculation is necessary. In the mass
basis the two neutral scalars sl and sh contribute in four diagrams as shown in
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Fig. 2.7 to the top Yukawa . The contributions coming from the four loop have
the following form

Loop 1: 2V yLyR c2
βs

2
β

∫
[s`, s`, F ] (2.45)

Loop 2: V yLyR(c2
β − s2

β)(−s2
β)
∫

[s`, sh, F ] (2.46)

Loop 3: V yLyR(c2
β − s2

β)c2
β

∫
[sh, s`, F ] (2.47)

Loop 4: 2V yLyR c2
βs

2
β

∫
[sh, sh, F ] , (2.48)

where the square bracket is a symbolic representation of the triangle-loop inte-
gration with the various fields. Summing these contributions we find overall:

yt =V yLyR
(

(c2
β − s2

β)2
∫

[s`, sh, F ]

+ 2 c2
βs

2
β

∫
[s`, s`, F ] + 2 c2

βs
2
β

∫
[sh, sh, F ]

)
. (2.49)

If M denotes the heaviest particle in the loop, we have roughly

yt ∼ V yLyR
1

16π2
MF

M2 , (2.50)

which corresponds to the estimate in Eq. (2.31). In Sec. 2.4.4 we will provide
the exact expressions.

2.4.3 Radiative Top Mass Generation

The most direct consequence of the model is that now also the top quark mass
is generated at the loop level through radiative effects. The generated top
mass can be calculated from the two diagrams as shown in Fig. 2.8 and their
contribution reads:

Loop 1: −yLyRcβsβ
∫

[s`, F ] (2.51)

Loop 2: yLyRcβsβ
∫

[sh, F ] . (2.52)

Summing up both diagrams we find the following radiative top mass:

mt = yLyRcβsβ

(∫
[s`, F ]−

∫
[sh, F ]

)
. (2.53)

With M again representing the heaviest particle in the loop, we roughly obtain

mt ∼ yLyRcβsβ
MF

16π2

(
M2
s −m2

s

M2

)
= yLyR

16π2
MFV

M2
v√
2
, (2.54)
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Figure 2.8: The two loop diagrams which contribute to the top mass. The first loop
features the light scalar while the second loop the heavy scalar.

which matches our estimation of the top Yukawa coupling in Eq. (2.50). These
were merely estimates and the Yukawa and mass will get contributions from
all the terms in Eq. (2.44) in a different fashion. A key signature of the model
will thus be a nontrivial κt ≡ yt/ySM

t due to the higher dimensional operators.
We now provide exact numerical calculations in order to obtain these crucial
deviations in the SM behavior.

2.4.4 Exact Expressions and QCD Effects

In this section we will compute more general expressions for arbitrary mass
hierarchies between sh, sl and F , which gives a momentum dependent mass:

mt(p) =yLyRcβsβ
16π2 MF

×
∫ 1

0
dx ln

( p2x2 − xp2 + xM2
F + (1− x)m2

s

p2x2 − xp2 + xM2
F + (1− x)M2

s

)
. (2.55)

Similarly, the top Yukawa triangle loop with the light scalar and vector-like
fermion for momenta p and p′ of the top quarks is UV finite and reads∫

[s`, s`, F ](p, p′) = MF

32π2

∫ 1

0
dx
∫ 1−x

0
dy

× 2
p2x(x− 1) + p′2y(y − 1) +M2

F (1− x− y) +m2
s(x+ y)

, (2.56)

to which one should add the fully analogous heavy scalar loop ms → Ms. In
the maximal mixing scenario, with sβ = cβ = 1/

√
2, to which we will restrict

our analysis, the mixed loops will vanish. It will be convenient to parameterise
these expression according to their approximate momentum dependence along
space-like momentum p2 = p′2 = −Q2

mt(Q2) ∼ mt(Q2 = 0)
(1 +Q2/Λ2

m)n , yt(Q2) ∼ yt(Q2 = 0)
(1 +Q2/Λ2

y)n
, (2.57)

where n = 1 shows the quadratic suppression with momentum and Λm ∼ Λy ∼
MF +Ms. We take additional one-loop QCD effects into account which results
in large corrections on the order of

mQCD(p = 0) = αs
π
CFmt(p = 0) ln

(
Λ2
m/m

2
t

)
, (2.58)
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which are on the order of 25% and similar for the QCD corrections to the top
Yukawa.

2.4.5 Analysis of the Fine-Tuning

In order to give a more detailed analysis of the resulting fine-tuning in this
simplified model, we stick to two benchmarks: one rather conservative (BM1)
and one with more striking effects (BM2)

MF = 1530 GeV,ms = 0.4MF ,Ms = 0.9MF (BM1)
MF = 865 GeV,ms = 0.5MF ,Ms = 1.5MF (BM2) . (2.59)

The effective scales of these benchmarks read:

Λm = 3230 GeV,Λy = 2980 GeV, (BM1)
Λm = 2220 GeV,Λy = 1840 GeV, (BM2) . (2.60)

A key difference between these benchmarks is the lower effective scale of BM2
which results in a larger deviation from the SM top Yukawa of κt = 1.32, while
BM1 features an experimentally safe deviation of κt = 1.1.

These two benchmarks necessitate large Yukawa couplings yL = yR = 7
(taking QCD loop effects into account), demanding a strongly coupled origin
which will be detailed in Appendix A. We now compute the level of fine-tuning
associated to the top Yukawa loop. The (usually) divergent Higgs mass con-
tribution coming from the top loop can be calculated from Eq. (2.10). Upon
rotation to Euclidean space, the top-Yukawa is probed along space-like mo-
mentum where Eq. (2.57) is valid, leading to a strictly UV finite contribution
of:

∆m2
H = −

3yt(p = 0)2Λ2
y

8π2(2n− 1)
[
1− (1 + (ΛNP/Λy)2)−(2n−1)

]
. (2.61)

If n > 1, the precise value of where the top-loop is cut off, ΛNP, has a negligible
impact on the expression in brackets and the fine-tuning is estimated as:

∆FT,n>1 =
3yt(p = 0)2Λ2

y

8π2(2n− 1)(88 GeV)2 . (2.62)

In contrast for n = 1, the value of ΛNP has a more considerable effect on the
amount of fine-tuning. At worst, when there is no new physics that cuts off the
top-loop (ΛNP →∞), the total mass contribution is still finite and given by the
above expression. When the top-loop is cut off at a lower scale of ΛNP ∼ Λy
the fine-tuning is halved

∆FT,n=1 =
3yt(p = 0)2Λ2

y

16π2(88 GeV)2 , (2.63)
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resulting in a fine-tuning of ∆FT,n=1 of ∼ 5% for both benchmarks. Although
BM2 is more aggressive, featuring a lower Λy, it gets compensated by a larger
top Yukawa at zero momentum yt(p = 0). In the more exotic case of the
top quark being a composite made up of n constituent preons, the formula
Eq. (2.57) for n > 1 would hold [89] and more extreme reductions in fine-tuning
are expected.

To conclude this section, let us check whether the newly introduced inter-
actions do not itself recreate large radiative contributions to the Higgs mass.
In both of our benchmarks, both heavy and light scalar loops introduce the
following mass corrections

∆m2
H = (V/

√
2)2

16π2 (ln
(Λ2

UV
m2
s

)
+ ln

(Λ2
UV
M2
s

)
) ∼ V 2

16π2 , (2.64)

with ΛUV the scale at which the scalar loop is cut off due to the emergence of
the strongly coupled UV theory. If we assume a low-scale UV completion, the
correction leads to an approximate ∼ 7% tuning for both benchmarks, which is
at the same order as the now reduced top quark tuning. The new interactions
therefore do not worsen the reduced fine-tuning of the setup.

2.4.6 Bottom Sector and Custodial Symmetry

Before discussing the key phenomenological signatures of the model, we pro-
vide a simple extension of the simplified model to generate a bottom Yukawa
coupling with

∆L = −M ′
F F̄

′
LF

′
R − y′

Lq̄LSLF
′
R − y′

Rb̄RSRF
′
L + h.c. , (2.65)

where the newly introduced vector-like fermion F ′ is uncharged under SU(2)L
and carries hypercharge Q(F ′) = QF − 1 = −1/3. We set M ′

F = MF and
y′
L = yL, while the y′

R coupling is taken much smaller than yR to account for
the smaller bottom quark mass.

With these additional interactions that provide the bottom mass, one can
show violation in custodial symmetry is sequestered to a single parameter. To
do so we rewrite the Lagrangian in terms of SU(2)L×SU(2)R representations.
Both the Higgs and the scalar doublet SL having identical quantum numbers
can be written in matrix form Ω and ΩL respectively as a (2, 2) representation.
An SU(2)R doublet qR can be formed from combining tR and bR, while the
two vector-like fermions F and F ′ can be similarly combined into a vector-like
SU(2)R doublet QL/R = (FL/R, F ′

L/R)T . The whole Lagrangian is now given
by

∆L =− V SRΩ†
LΩ− q̄LYLΩLQR − q̄RYRSRQL

−M2
L|ΩL|2 −M2

R|SR|2 −MF Q̄LQR + h.c. , (2.66)
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where YL = diag(yL, yL) and YR = diag(yR, y′
R) correspond to the 2 × 2 cou-

pling matrices. The mass splitting between bottom and top is generated by
the difference between the couplings yR and y′

R and is also the unique source of
custodial symmetry violation within the new physics sector. The related con-
straints coming from electroweak precision tests will be discussed in the next
section.

2.5 Phenomenology

The scenario of a modified top Yukawa impacts several aspects of top physics.
In this section we will both consider the running top scenario coming from a new
strong gauge interaction and the more drastic scenario of a fully loop generated
top Yukawa. Interestingly, for the latter scenario of a loop-level origin of the
top Yukawa, the best tests come from indirect measurements.

2.5.1 Running Top Mass

A large running in the top Yukawa will generically result in a running of the top
quark mass. Concerning the first scenario, the additional heavy gauge bosons
will induce a shift in the SM running at the mass threshold of the gauge bosons.
For the second scenario, the momentum dependence of the top mass originates
from the same loops in Fig. 2.8 that determine its mass. The prospect of a large
effect in the running of the top mass is made more relevant by the fact that the
first measurement of such a running has been made by the CMS collaboration
with run 2 data for an integrated luminosity of 35.9 fb−1 [59]. In Fig. 2.9 we
compare the results for both benchmarks with the CMS measurement. One
can see that BM2 is already slightly in tension with the measurement in the
highest bin, showing the relevancy of this indirect measurement for testing these
scenarios. The CMS measurement has been reinterpreted in [90], claiming the
measurement is only sensitive up to half of the original scales. The measurement
would then be only sensitive up to energy scales of 0.5 TeV. The bound on the
running of the top mass would in this case become weaker and even lighter new
physics with more drastic running would be allowed.

2.5.2 Top Yukawa Coupling Measurement

A second relevant constraint for these scenarios is the measurement of the top
Yukawa coupling. In the scenario of a running of the top Yukawa, its EW scale
value is not impacted as the idea only necessitates a running of the top Yukawa
at larger scales. In contrast, for the second scenario where the top Yukawa is
radiatively generated at leading order by the diagram of Fig. 2.6, a series of
higher order diagrams will inevitably contribute. These subleading diagrams
will shift κt ≡ yt/y

SM
t from its SM value of 1. These corrections are naively

suppressed by (V 2v2/M4)n (with M being the mass of the heaviest particle in
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Figure 2.9: The top mass running in the SM (red) versus the running in our conser-
vative BM1 (blue) and for BM2 (green) where the effects are larger, compared with
the data points from CMS [59].

the loop). One can see that to relieve the hierarchy problem as much as possible
– requiring the new degrees of freedom to be light – will impact κt significantly.
The bound on κt translates therefore directly into how much big of a reduction
in fine-tuning we can achieve.

At the LHC, κt is extracted by ATLAS and CMS from a combined analysis
of the different Higgs boson productions and decays. The former measures
0.80 < κt < 1.04 at 95% confidence [52] while the latter obtains 0.79 < κt <
1.23 featuring a higher central value and larger error bars [53]. It is important to
mention that both of these measurements are driven by gluon fusion which itself
probes the top Yukawa through the loop at different scales. We therefore expect
gluon fusion itself to be modified and in particular to be reduced in our model.
More direct measurements have been performed in top-associated final states
such as tt̄H and tH events. The resulting measurement reads 0.7 < κt < 1.1
at 95% confidence level [54]. However, we again expect off-shell top quarks to
reduce the bound.

We calculate κt from the ratio ytv/mt using the exact expressions from
Sec. 2.4.4 and taking into account the QCD effects. A large κt comes as a result
of the breaking of the degeneracy of the two scalars (or V 2/m2

S). BM1 has a
safe κt = 1.1 while BM2 has a more optimistic κt = 1.32. It is interesting to
observe that the model tends to drive up κt which itself worsens the amount of
fine-tuning due to a larger electroweak scale top Yukawa. Although BM2 seems
to be in conflict with experimental measurements, the top Yukawa is quickly
driven down above the electroweak scale which, we remind, impacts the effective
gluon fusion vertex. Assuming the form of Eq. (2.57), we expect a modification
of the gluon fusion operator by (1−2m2

t /Λ2
y ln

(
Λ2
y/m

2
t

)
) which would effectively

transform the experimentally unviable κt = 1.32 into a κt = 1.21, safely within
the CMS bound.
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Figure 2.10: The top Yukawa form factor running in the SM (red) versus the running
in our conservative BM1 (blue) and for BM2 (green) where the effects are larger.

2.5.3 Form Factors

Of course, the most direct way to test the idea would be to probe the top
Yukawa above the electroweak scale. For this we have to derive the top-Higgs
form factor, which describes the momentum dependence of yt [55–58]. Fig. 2.10
shows the top Yukawa form factor in our two benchmarks together with the
SM Yukawa running. The deviations are especially large when the off-shellness
of the top becomes comparable to Λy and could be observed in the high energy
tails of momentum distributions. For a process like tt̄h production, the top is
probed along time-like momentum - and therefore the pole structure - leading
to resonant enhancement of the cross section and especially again in differential
distributions [58]. More quantitative statements on this subject would require
a dedicated analysis which is outside the scope of this work.

2.5.4 Four Tops Cross Section

A common requirement for both scenarios in modifying the top Yukawa is
the introduction of new strong interactions among the top quarks. As we will
comment upon later, resonance searches are not very promising to look for
these new interactions due to the large width of the new states. However the
effect of these new interactions can be caught in a measurement of the four
top quark cross section. Due to its small rate in the SM, this process mimics a
precision test and large deviations would easily be discoverable. According to
SM calculations, the cross section is estimated to be [91]:

σSM
tt̄tt̄ = 12± 2.4 fb. (2.67)

On the experimental side, searches using different final states have been per-
formed by both the ATLAS [92, 93] and CMS [94, 95] collaboration using the
full LHC run 2 data. Very recently, CMS has improved its analysis techniques
to obtain enough significance to claim the observation of simultaneous four top
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quark cross section [96]. The ATLAS measured cross section reads

σATLAS
tt̄tt̄ = 24+7

−6 fb, (2.68)

with a central value of about twice the SM prediction. The measurement of
the CMS collaboration is more precise and closer to the SM prediction:

σCMS
tt̄tt̄ = 17+5

−5 fb. (2.69)

One can derive upper bounds on the cross section at the 95% level to constrain
BSM models with a modified top sector:

σtt̄tt̄ < 38 (27) fb from ATLAS (CMS). (2.70)

In recent years multiple analysis have been performed aimed at interpreting
these results in terms of either simplified models or effective field theories [97–
99]. Here we will follow the analysis of [97], constraining a top-philic vector
singlet boson with coupling gv and mass MV

gV
MV

< 2.1 (1.8) from ATLAS (CMS) , (2.71)

at the 95% confidence level. While a similar bound on a top-philic scalar singlet
boson with coupling gs and mass MS reads

gS
MS

< 3.0 (2.6) from ATLAS (CMS). (2.72)

The vector constraint is relevant for the case of a strongly coupled U(1) gauge
interaction giving rise to a top-philic vector boson Xµ in the running top
Yukawa scenario. Our considered benchmark from Sec. 2.3 is right around
the 95% confidence level bound reading gX/MX = 2. For the top-Higgs Ht sce-
nario described in section 2.3.2, the scalar bound will be important especially
in the broken phase where the top-pions are generically light. For a new strong
non-Abelian interaction such as heavy QCD, the top-philic vector boson - the
coloron G′ - is a color octet. For the benchmark case of a MG′ = 2.5, the bound
from pair production reads

g′
3

MG′
< 2.9 (2.5) from ATLAS (CMS), (2.73)

which means our benchmark with g′
3/MG′ ∼ 1.7 lies safely within the current

constraint.
Having considered the running top Yukawa scenarios, we can now move to

the loop-generated top Yukawa model. The situation is complicated by the fact
that multiple four-top operators are generated at the one-loop level both with
scalar-like and vector-like operators:

a(t̄t)(t̄t), b(t̄γµt)(t̄γµt), c(t̄γ5t)(t̄γ5t), d(t̄γµγ5t)(t̄γµγ5t). (2.74)
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For our considered benchmarks, the coefficients of these operators read respec-
tively

(a, b, c, d) = 1
M2
F

(1.81,−0.49,−1.40,−0.45),

(a, b, c, d) = 1
M2
F

(1.18,−0.37,−0.66,−0.31), (2.75)

where MF = 1530 GeV (and MF = 865 GeV) for BM1 (and BM2) respectively.
To compare these results with experimental constraints we sum and recast the
operators into a standard basis [97] as

(b+ d)O1
QQ + (b+ d)O1

tt + (c− a)/3O1
Qt + 2(c− a)O8

Qt, (2.76)

where we omitted the operators with coefficient (a + c) and (b − d) due to
an approximate cancellation. It turns out that in general (and in particular
for our benchmarks) the first three coefficients are approximately equal which
will allow us to combine them. Conveniently, the combination turns out to be
the same as the generated operators in a top-philic singlet vector V with the
following ratio

gV
MV

∼
√
−2(b+ d), (2.77)

which for the considered benchmarks translates into the safe predictions of
∼ 0.9 and ∼ 1.4 for BM1 and BM2 respectively. One should caution these
results with the remark that by modelling our simplified model with a top-philic
vector singlet, the O8

Qt operator is neglected while the O1
tt operator is slightly

underestimated. The former has a larger coefficient, however its contribution
in four top production is suppressed when compared to the other operators
as an EFT analysis has demonstrated [99]. Even with these caveats, the four
top quark final state can only give a rather weak constraint on models with a
loop-generated top Yukawa.

2.5.5 Flavor Constraints

The same four top quark operators that can modify the four top cross section
have also an effect on flavor physics through mixing, producing dangerous FC-
NCs. If we take the mixing angles for the left-handed bottom quarks θ23 � θ13,
inspired by the CKM matrix, then the strongest constraint is expected to come
from Bs − B̄s mixing. The following operator parameterises the mixing:

∆LBs = Csb(s̄LγµbL)(s̄LγµbL). (2.78)

Taking the calculation of [100] we can relate the operator to the deviation in
the mass difference ∆Ms of the two neutral mass eigenstates as:

∆Ms

∆MSM
s

≈ 1 +
(
22 304 TeV2

)
C2
sb . (2.79)
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Comparing the SM prediction [101] with the measurement of the mixing pa-
rameter [102] leads to the following bound at 95% CL:

|Csb| ≤
( 1

274 TeV

)2
. (2.80)

For the case of a singlet top-philic vector boson V , the coefficient reads

Csb ≈ −
1
2
g2
V

M2
V

θ2
sb =⇒ gV

MV
θsb ≤

1
194 TeV

, (2.81)

with θsb the rotation angle between the second and third generations of down-
type quarks in the mass basis. For the running top scenario with gX/MX = 2,
the angle should be smaller than 0.003 while for the radiative top Yukawa the
constraint is slightly weaker at θsb . 0.005.

2.5.6 Electroweak Precision Tests

As discussed in Sec. 2.4.6, our simplified model is symmetric under SU(2)L ×
SU(2)R with the exception of the coupling to the right-handed top and bottom
which is necessary to lift the degeneracy between top and bottom mass. This
coupling will therefore be the leading contribution of our model to the T pa-
rameter [103, 104] as measured in electroweak precision tests. Recently many
analysis have been performed on the oblique parameters [105–109] due to the
recent new measurement of the MW by the CDF collaboration [110] showing
a significant deviation from the SM prediction and implying a new source of
custodial symmetry violation. Following the analysis of [109] and omitting the
CDF measurement one obtains T . 0.25 at 95% CL while using only the CDF
measurement yields the 2σ region of 0.12 . T . 0.42. We therefore take as
a benchmark for the T parameter ∆T = 0.25 which serves as both the cen-
tral value of the CDF measurement and the upper bound without including
the CDF measurement. The T parameter is related to the coefficient of the
custodial symmetry breaking operator in the following way:

LT = cT
∣∣∣H†DµH

∣∣∣2 , where ∆T = − v
2

2αcT . (2.82)

The requirement of ∆T = 0.25 becomes:

|cT | = 1/(3.95 TeV)2 . (2.83)

In the case of the strongly running top Yukawa scenario, this operator is
induced by the top loop with additional strong interactions inside which is a
two loop diagram leading to

cT ∼ cN
( 1

16π2

)2
y4
t g

2
X

1
M2
X

, (2.84)
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where c1 = 3 and cN>1 = (N2 − 1)/2 for SU(N) vector bosons. The two-loop
nature suppresses the contribution well below the bound to |cT | ∼ 1/(45 TeV)2

for both the abelian and non-abelian case.
Concerning the loop-generated top Yukawa scenario including the custodi-

ally symmetric setup from Sec. 2.4.6, the first violating operator, coming from
a F − tR loop, only appears at the three-loop level and gives

cT ∼
( 1

16π2

)3
NcV

4y4
R

1
M6
S/F

, (2.85)

with Nc = 3 the color factor and MS/F corresponding to the mass of the heavi-
est particle in the loop. BM1 is well below the bound with |cT | ∼ 1/(17 TeV)2,
while the value for BM2 is right at the experimental constraint at |cT | ∼
1/(3.3 TeV)2.

2.5.7 Zbb Coupling

A complementary probe to the T parameter is the Zbb̄ coupling which was well
measured at LEP. Especially deviations in the left-handed coupling, δgbL

, are
constrained within 0.5% at 95% CL [111, 112] while the equivalent constraint
on the right-handed coupling, δgbR

, is only at 3%. If we take |δgbL
| ∼ |δgbR

|, a
negative δgbL

with |δgbL
| < 3× 10−3 is preferred. Transforming this value into

the coefficient of a higher-dimensional operator, we find

LZbb = cb
(
H†DµH

)
(q̄LγµqL) , where δgbL

= −v
2

2 cb , (2.86)

and the bound becomes

|cb| < 1/(3.17 TeV)2 , (2.87)

which is similar to the bound on the custodial violating parameter cT .
Concerning the first scenario of a running top Yukawa, this operator is first

generated at the loop level with the following naive size

cb ∼
cN

16π2 y
2
t g

2
X

1
M2
X

, (2.88)

with c1 = 1 and cN>1 = (N2 − 1)/2N . We find again that the contribution
is below experimental constraints, but larger than the cT constraint discussed
previously, at |cb| ∼ 1/(5.4 TeV)2 for both the case of a new abelian and non-
abelian gauge interaction.

In the second scenario in which the top Yukawa is generated at the loop
level, this operator is first generated at the three-loop level with the following
size:

cb ∼
( 1

16π2

)3
V 2y4

Ry
2
L

1
M4
S/F

. (2.89)

Both BM1 and BM2 are safely under the experimental constraint with respec-
tive values of |cb| ∼ 1/(12 TeV)2 and |cb| ∼ 1/(4 TeV)2.
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2.5.8 Direct Searches

We end the phenomenology with a discussion of direct searches for these new
degrees of freedom. Usually direct searches provide the most straightforward
way of testing models with TeV-scale new physics. However, due to the strongly
coupled nature of the models discussed here, direct searches are not that promis-
ing.

In the case of the running top Yukawa scenario due to an additional strong
(non)-abelian gauge interaction, the concerned gauge bosons have necessarily
large widths, & 50%, including possible additional bound states coming from
such a sector, which necessitates analysis that go beyond traditional narrow res-
onances searches. Furthermore, in the minimal case for which the gauge bosons
purely couple to top quarks, the final state of the pair-produced gauge boson
corresponds exactly to four top quarks, a signature which we have discussed in
section 2.5.4.

For the second scenario of a top Yukawa generated at the one-loop level,
we have to introduced new degrees of freedom: fermions and scalars running
inside of the loop. In principle the hypercharge of these new particles is not
fixed. If we wish to incorporate custodial symmetry in the new physics sector
as done in Sec. 2.4.6, then the residual freedom becomes fixed and the new
vector-like fermion must have the same hypercharge as the right-handed top
quark. In this case, the production of a FF̄ pair is expected to be the most
promising signal with each F (F̄ ) decaying to a t(t̄) and the light scalar sl.
One can distinguish two scenarios in which the light scalar is either stable or
unstable. In the first case the final state corresponds to tt̄ with missing energy.
Such a final state corresponds to searches for stop pair production in which
the stops decay into a top and a stable neutralino [113–118]. Current results
exclude stops up to masses of a 1200 GeV for a 600 GeV neutralino which is
still safe for BM1 with MF = 1530 GeV and ms = 612 GeV. In contrast, BM2,
with MF = 865 GeV and ms = 433 GeV, would be safely excluded. This bound
can be avoided in case the light scalar is unstable, coupling to gluons through a
new operator slGG. The final state then becomes tt̄ and jets which has a much
larger background. A similar search by CMS [119] can be reinterpreted to our
model which constrains MF > 670 GeV when ms = 100 GeV which would allow
BM2.

2.6 Summary

We have started this chapter with a summary of the little hierarchy problem: if
the instability of the Higgs mass is addressed by supersymmetry or composite
Higgs, where are its signs? In particular, the stops or the top partners, necessary
to tame the large quadratic sensitivity of the Higgs mass due to the top loop
contribution, should be light and accessible at the LHC in order to have a
natural Higgs. This question has driven theorists over the last decades and we
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have started this chapter with a discussion of a symmetry based solution: twin
Higgs.

In this chapter we entertained a different idea: what if the top Yukawa has a
strong scale dependency and becomes smaller at high scales? We have only just
started to probe this parameter and only at the electroweak scale. This could
have important implications for the current state of naturalness as the top-
loop contribution to the Higgs mass could be significantly reduced. The idea
is not even that far-fetched: we already know that in the SM the top Yukawa
becomes smaller at higher scales due to QCD effects. What if an additional
strongly coupled gauge force, broken in the low TeV scale, runs the top Yukawa
down significantly in the UV?

We investigated this running top Yukawa scenario at the hand of a few per-
turbative models. We found that to have any significant effect on the hierarchy
problem, the gauge coupling must be large, at the border of the perturbative
regime. For larger coupling, supposing only the left-handed doublet and the
right-handed top are charged under the new force, the bound state Ht = t̄RqL
forms, which we described using the NJL model. The required gauge coupling
falls within the unbroken phase where the bound state is heavy and decouples
from the low-energy physics.

In a second stage, we considered a more speculative idea which would be
to completely generate the top Yukawa at the loop level and therefore it would
cease to exist beyond the mass threshold of the new degrees of freedom. Be-
yond this scale, the top quark contribution to the Higgs mass would dissolve and
is strictly finite. We showed the promise of such a scenario using a simplified
model, which necessitates a strongly coupled UV completion (see Appendix A),
showing how the top-loop contribution to the Higgs mass tuning can be con-
trolled to be at the 5% level.

We studied the phenomenology of such a mechanism which suggests looking
at new observables in contrast to usual top partner scenarios. We found the
precision measurement of the four-top cross section to be a promising signal
of new top-philic interactions. In the case where the top Yukawa is generated
at the loop level, important deviations in the κt = yt/ySM are expected and
current measurements by CMS and LHC are already constraining the scenario.
Such a mechanism would also manifest itself in a running top mass which has
been recently measured by CMS.



Chapter 3

Minimal Gauge-Higgs Grand
Unification

A recurring theme of the preceding pages is the lack of a symmetry protecting
the mass of elementary scalars. Unlike fermions or gauge bosons, that have
chiral symmetry and gauge symmetry respectively ensuring that quantum cor-
rections to their mass are proportional to that mass, elementary scalars do not
posses such a symmetry. One can ask whether it is still possible to have such
a symmetry by relaxing the requirement of an elementary four-dimensional
scalar. Gauge-Higgs unification [120,121] is a fascinating and beautiful answer
to this question. It hypothesizes that the Higgs field is the fifth component of
a five-dimensional gauge field. Indeed, a five-dimensional gauge field, once the
fifth dimension is compactified in some way with length R, will split from the
point of view of the low-energy observer, not probing the fifth dimension, into
a four dimensional gauge field plus an extra scalar. In simple terms it is the
consequence of the following decomposition:

5 = 4⊕ 1. (3.1)

A crucial difference with respect to having just a four dimensional elementary
scalar is that now there is a symmetry protecting the mass of the scalar from
quantum corrections: the five-dimensional gauge symmetry. Indeed at high
scales, E � 1/R, the fifth dimension is on equal footing as the other dimensions
and one recovers full five-dimensional gauge symmetry protecting the scalar
from mass contributions. Interestingly, at low energies, E � 1/R, one starts to
probe the finite volume of the space and the five-dimensional gauge symmetry
is badly broken resulting in a mass for the scalar at the loop level: the Hosotani
Mechanism [122–124].

In Sec. 3.1, we introduce the basic concepts of gauge-Higgs unification. In
Sec. 3.2 we give a short overview of different types of extra dimension which
will lead us to the use of a warped extra dimension. In Sec. 3.3 we present
our model of gauge-Higgs unification based on a SU(6) bulk gauge group. The

39
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particularity of this model is the inclusion of the full SM in the bulk gauge
group, resulting in a model of gauge-Higgs grand unification. This model is
the first phenomenologically viable of its kind. We show how unification of
quarks and leptons leads to new insights into the flavor puzzle. In Sec. 3.4 we
give a brief overview over the different flavor constraints on the model, while
in Sec. 3.5 we analyse the scalar potential of the model.

3.1 Gauge-Higgs Unification

Before going into the details of gauge-Higgs unification we should begin with
a word on the topology of the extra dimension. Originally gauge-Higgs unifi-
cation was discussed in (compact) extra dimensions with no fixed points such
as a circle, S1. These models are phenomenologically not very appealing as
they cannot give chiral fermions. Instead orbifold constructions, originally dis-
cussed in a string theory context [125–127] are a more natural topological space
in which to discuss an extra dimension as it allows chiral fermions: a neces-
sary ingredient of any BSM theory. Orbifolds arise when points in an extra
dimension are identified with each other, or modded out, such that a fixed point
remains. A popular example is the S1/Z2 orbifold which comes from identifying
points related by y → −y (a reflection symmetry around y = 0), on a circle
(−πR, πR]. The fundamental domain is now reduced to a line segment with
boundaries which can give rise to chiral fermions.

Indeed, requiring the fields to obey the Z2-orbifold symmetry places restric-
tions on its values at the fixed point y = 0. This results in a set of possible
boundary conditions for fields. For fermion fields this leads to the introduc-
tion of chiral fermions while for gauge fields, it leads to the very interesting
possibility of reducing the gauge symmetry by these boundary conditions. The
application of this symmetry breaking to the breaking of a GUT theory was
analysed in [128–131] (see [132] for a review).

However it was soon realized that the boundary conditions obtained from
orbifolding are rather constraining. Indeed orbifolds cannot reduce the rank of
the bulk symmetry [133]. It is therefore more convenient, from a bottom-up
perspective, to work on a general interval of length L with two boundaries y =
0, L with a general bulk gauge group G in the interior. The gauge symmetry G
can be broken consistently on the boundaries with unitarity preserved as shown
in [134]. This realization itself has given rise to models in which electroweak
symmetry breaking is realized purely by boundary conditions without the need
for a Higgs, so-called Higgsless theories. Since the discovery of the Higgs, these
models have become out of fashion.

In this chapter we will follow the bottom-up approach of formulating our
extra dimensional theory on an interval of length L. Furthermore we place
two 3-branes at the end coordinates y = 0 and y = L at which additional
4D fields can be localized. We will not preoccupy ourselves about the origin
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of such a setup. We will merely mention that superstring theory, a leading
candidate of a theory of quantum gravity, is only consistently defined in ten
dimensions [135]. The compactification of the six extra superfluous dimensions
can result in a vast number of ways. We thus merely assume that a 5D theory
emerges somewhere between the string scale and the electroweak scale and
study its phenomenological consequences.

For now we neglect the influence of gravity and simply assume a flat extra
dimension

ds2 = GMNdxMxN = ηµνdxµxν − dy2, (3.2)
where ηµν is the 4D Minkowski metric and y is the coordinate parameterizing
the extra dimension between the two branes at y = 0 and y = L. As any
discussion of gauge-Higgs unification must include a higher dimensional gauge
field, we consider a general bulk gauge field G, with generators Tr(T aT b) =
δab/2, with the usual Yang-Mills action:

SYM =
∫ L

0
d4xdy

√
G
(
− 1

2G
MNGABTr(FMAFNB)

)
=
∫ L

0
d4xdy

(
− 1

4F
a
µνF

µν,a + 1
2F

a
µ5F

µ,a
5

)
. (3.3)

We will solve the above action at the quadratic level finding the free equations
of motion. The second term contains mixing terms between the Aµ and A5
which is eliminated by the following gauge-fixing term:

SGF =
∫ L

0
d4xdy

(
− 1

2ξ
(
∂µA

µ,a − ξ∂5A
a
5

)2
)
. (3.4)

One can now derive the equations of motions for the gauge-fixed action, SYM +
SGF, together with boundary terms resulting from integration by parts along
the extra dimension, from which we can derive the following boundary condi-
tions for the two boundaries:

(+) : A5|y=0,L = 0, ∂5Aµ|y=0,L = 0,
(−) : Aµ|y=0,L = 0, ∂5A5|y=0,L = 0, (3.5)

where we note that Aµ and A5 have opposite boundary conditions. We denote
symbolically by (+)/(−) Neumann/Dirichlet boundary condition for the vector
component of the gauge field Aµ. One can apply different boundary conditions
for each gauge/scalar field, Aaµ, Aa5, associated to a generator, T a, of the bulk
group G. In doing so, one can reduce the general gauge symmetry in the bulk
G, to smaller residual gauge symmetries on the bulk. We will provide later an
explicit example of this.

One can now solve the 5D equations of motions by a separation of variables
or a Kaluza-Klein (KK) decomposition for the gauge- and scalar fields

Aµ(x, y) =
∑
n

fn,A(y)Aµ,n(x), A5(x, y) =
∑
n

fn,5(y)A5,n(x), (3.6)
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where we find for the wavefunctions or bulk profiles of the KK modes the
following:

−m2
nfn,A = ∂2

5fn,A, −m2
5,nfn,5 = ξ∂2

5fn,5. (3.7)

From the first equation we find unsurprisingly that a massless gauge boson has
a flat constant profile, which implies (+,+) boundary conditions. This is unsur-
prising as Neumann boundary conditions leave the gauge symmetry unbroken
in contrast to Dirichlet boundary conditions. Concerning the second equation,
the dependence on the ξ parameter indicates that something conspicuous is
going on, after all physics cannot depend on the gauge fixing parameter. More-
over, we note that for a general massive gauge boson, mn > 0, with a profile
fn,A, with certain boundary conditions, we find automatically a solution for
a scalar mode with bulk profile f5

n = ∂5fn,5/mn and with correct boundary
conditions. Crucially the mass of the scalar mode depends on the gauge pa-
rameter, m5,m =

√
ξmn. This mass exactly corresponds to the usual relation

between a gauge field and its Goldstone that will provide the longitudinal po-
larization [136]. Therefore we can go to unitary gauge ξ →∞ and decouple all
unphysical scalar modes. What happens is that at the level of each KK level,
the gauge boson eats the corresponding scalar and becomes massive. There is
however one exception, namely a massless scalar can exist with a flat profile.
Indeed, the dependence on ξ in Eq. (3.7) vanishes for a massless scalar and
therefore is a physical scalar. Moreover the flat profile indicates it must have
Dirichlet boundary conditions for the corresponding gauge field Aµand thus
corresponds to a broken generator.

Therefore in general the resulting physical spectrum of a broken five dimen-
sional Yang-Mills theory will consist of, massless (for (+,+) boundary condi-
tions) gauge bosons, a tower of massive gauge bosons and a massless scalar (for
(−,−) boundary conditions). Models of gauge-Higgs unification exploit this
spectrum by embedding the Higgs within such a scalar mode. We will study
how a potential for this scalar mode can be generated (and how it impacts
the hierarchy problem), which can induce the formation of a VEV, triggering
the spontaneous breaking of additional symmetries under which the scalar is
charged:

〈A5,â(x)〉 = vâ. (3.8)

However at tree-level no potential for the scalar is generated. This is simply
a consequence of the absence of non-derivative terms involving A5 in the field
strength FMNF

MN and thus of 5D gauge invariance. This does not mean no
scalar potential can be generated at all, since even though at high scales the
5D gauge invariance may seem intact, it is broken by the finiteness of the fifth
dimension. Therefore we should expect in general the presence of a potential
at the loop level. Moreover a VEV for the scalar will certainly impact the
spectrum for the gauge bosons and other fields present. Indeed the gauge
bosons, depending on their quantum number, will get a bulk mass term from
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this VEV from the non-abelian interaction term

LYM ⊃ −
1
4g

2
5f

abef cdeAµ,aAcµ〈A5,b〉〈Ad5〉, (3.9)

while matter fields will talk to the scalar VEV via the 5D covariant derivative
in a representation R of G, DR

M which now includes the fifth component of the
gauge fields namely:

DR
M ⊃ ∂M − ig5A

a
MT

R,a. (3.10)

Indeed, these two interactions will be how the electroweak bosons and the SM
fermions communicate to the Higgs and how they gain a mass in models of
gauge-Higgs unification. However the above equations are difficult to solve in
the 5D bulk, but there is a trick we can perform to remove the VEV vâ from
the bulk. Indeed there is still residual gauge freedom in the gauge-fixing term
Eq. (3.4). One can choose the following gauge-transformation, Ω(x, y) of G
which acts on the gauge fields as [137,138]

AM → ΩAMΩ† − i

g5
Ω∂MΩ† , Ω(x, y) = exp

(
ig5

∫ y

0
dy′f5(y′)vâT â

)
,

(3.11)

with f5(y) the bulk profile of the scalar mode. This transformation leaves the
gauge-fields invariant while it removes the VEV from the bulk:

Aâ5(x, y)T â → Ω
(
Aâ5(x, y)T â − f5(y)vâ(x)T â

)
Ω†. (3.12)

Moreover this transformation does not impact the gauge-fixing term Eq. (3.4)
and is thus indeed a residual symmetry. As such, it would seem that a VEV is
unphysical as it can simply be gauged away. However the gauge transformation
has to be applied consistently, including on the two branes. On the UV brane,
the gauge transformation is trivial, Ω(y = 0) = 1, but on the IR brane it reads

Ω(y = L) = exp
(
i
√
Lg5v

âT â
)
. (3.13)

The IR boundary conditions have to be consistently applied to the gauge trans-
formed bulk fermion and gauge fields namely:

Aµ(y = L)→ Ω(y = L)Aµ(y = L)Ω(y = L)†

Ψ(y = L)→ Ω(y = L)Ψ(y = L) . (3.14)

Even though the VEV was removed from the bulk, the IR boundary conditions
will depend on the VEV vâ. The physical spectrum, determined by the IR
boundary conditions, will therefore be impacted by a non-zero VEV. We can
start to understand the generation of a physical VEV as a consequence of the
compactness of the extra dimension. Indeed for an infinite extra dimension,
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a VEV for Aâ5 can always simply be gauged-away and is therefore unphysi-
cal. On the contrary, in a compact space, the VEV cannot be eliminated and
is gauged onto the boundary conditions. The KK spectrum will encode this
dependency and one can compute the one-loop scalar potential through the
Coleman-Weinberg potential which explicit calculations show it to be finite.

The finiteness of the potential can also be seen to originate from the original
5D gauge invariance which forbids a potential in the bulk while the branes are
protected from the generation of a potential by the gauge symmetry acting on
the boundaries Aâ5 → Aâ5 + ∂5ξ

â with ξ the gauge parameters [139, 140]. This
means that the potential must be a non-local effect and thus finite since no
local counterterms could possibly cancel such divergences. Instead the non-
local origin of the Higgs potential can be understood to come from the Wilson
line along the extra dimensionW = P exp

(
i
∫
Aâ5T

â
)

which contains a potential
for the scalar. By combining two of such lines, stretching across and back the
extra dimension, one obtains a gauge-invariant quantity from which the non-
local origin of the scalar potential originates [141].

3.1.1 Electroweak Gauge-Higgs Unification

After this short introduction to the ideas of gauge-Higgs unification one can
now start with realistic model building and this has indeed been done over
the years (see [142] for a review). We turn to an illustrative example using a
bulk gauge group SU(3) [143], which is broken to SU(2)L × U(1)Y on both
branes and where we identify U(1)Y with the eight generator in SU(3), T8
that commutes with SU(2)L1. We will only be interested in the W 1,2

µ gauge
bosons as an example. Since the generators are unbroken on the UV brane,
their wavefunction is given by

fn,W (y) = Cn cos(mny), (3.15)

with Cn a normalization constant. We identify the Higgs degrees of freedom
with the four broken generators of SU(3)L. Applying the boundary condition
on the IR brane, after the gauge transformation from Eq. (3.13), we find that
the tower of KK masses for the W boson depends unsurprisingly on the Higgs
VEV

mn(v) = g5v

2
√
L

+ πn

L
, (3.16)

for n = 0, 1, 2, .. and where we identify the lightest mode with the SM gauge
boson. One can now, using the Coleman-Weinberg formula, calculate the full

1This will give the wrong Weinberg angle sin2 θW = 3/4, resulting in a Z boson mass twice
the W boson mass. This can be solved by either adding an extra U(1)X in the bulk and
identifying the hypercharge with a linear combination of T8 + TX or using brane localized
gauge kinetic terms [144].
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one-loop potential namely

VCW(v) = N

2
∑
n

∫ d4k

(2π)4 log
(
p2 +m2(v)

)
, (3.17)

where we sum over the whole KK tower and with N the number of degrees of
freedom. By not including the full tower of KK modes, one would obtain the
usual quadratically divergent potential characteristic of the hierarchy problem.
However including the full tower of KK modes we arrive instead at the following
finite potential [145–147]

V (α) = − 2× 3
32π2L4F(α), F(α) = 3

2

∞∑
n=1

cos(2παn)
n5 , (3.18)

with α = gvL
2π . One can observe that the W boson brings stability to the po-

tential and electroweak symmetry remains unbroken. The inclusion of fermions
can offset the positive contribution and as a result electroweak symmetry gets
broken. A tedious problem in these models is the generation of Yukawa cou-
plings. Since Yukawa couplings are contained in the covariant derivative and
its size is determined by the overlap between Higgs and fermions, it is a chal-
lenge to obtain a realistic mass spectrum and the naive size of the Yukawa
couplings is on the order of the gauge coupling y ∼ g. One can embed matter
into bulk fermions and use the bulk mass to distort the fermion localization
close to a brane [148] which exponentially reduces the Yukawa couplings. A
different approach is to introduce the SM matter on the orbifold fixed points.
Yukawa couplings are then generated by mixing the brane matter with bulk
fields [134, 143]. We will not go into details on these models as eventually we
will study gauge-Higgs unification in warped space where all these model build-
ing issues have elegant solutions. Nevertheless the main feature of gauge-Higgs
unification is already clear, we have a finite radiative Higgs potential that is
fully determined by the matter and gauge content of the model. Moreover, the
scale of the potential is set by the compactification scale ∼ L so if we wish to
avoid fine tuning the potential, the compactification scale should be set by the
weak scale. Therefore even though the quantum gauge problem is solved (the
radiative corrections to the Higgs are finite), the tree level problem of relating
this low compactification scale with a larger UV scale in nature, such as the
Planck scale, remains unsolved. Or formulated differently, it is unclear how to
reproduce gravity in such a setup without reintroducing a tree-level fine tuning.

3.2 Extra Dimensions

3.2.1 Flat Extra Dimensions

No discussion of extra dimensions can be complete without including gravity.
Indeed gravity is intrinsically linked to the space-time structure and we must
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therefore understand the impact of the extra dimension on the resulting force
of gravity. More precisely we have to make sure that we recover the usual
Einstein-Hilbert (EH) action

SEH = −2M2
pl

∫
d4x
√
gR, (3.19)

when integrating out the extra dimension. How do we embed gravity in a flat
extra dimension? The propagating degrees of freedom of gravity are encoded
in the fluctuations of the metric. For a single flat extra dimension of length L
that was discussed in the previous section, the metric has the following form

ds2 = (ηµν + hµν)dxµdxν − dy2, (3.20)

with ηµν = diag(1,−1,−1,−1) the mostly minus 4D Minkowski metric while
hµν encode the fluctuations of 4D gravity. The five dimensional gravitational
action is then simply given by the generalization of the Einstein-Hilbert action

S5D−EH = −2M3
5

∫
d4xdy√g5R5, (3.21)

with g5 the determinant of the five-dimensional metric tensor, R5 the five-
dimensional Ricci scalar and M5 the five-dimensional Planck scale. If we now
wish to understand how 4D gravity will appear to the low-energy observer
we have to integrate out the fifth dimension and relate the five-dimensional
quantities g5, R5 in terms of the analogous four-dimensional quantities g,R.
This results in the following:

S5D−EH = −2M3
5L

∫
d4x
√
gR. (3.22)

We then see that for gravity to appear with the usual Planck-scale strength
and obey Newton’s law of gravitation, the following equation has to be obeyed:

M2
pl = M3

5L. (3.23)

In order for the Higgs potential to be of its natural scale, one should have
L ∼ 1/103 GeV which implies that the five dimensional gravitation constant is
M5 ∼ 1011 GeV. Although such a setup correctly reproduces four-dimensional
gravity and contains an electroweak scale Higgs potential that is protected from
UV scales, it is not clear how such an extra dimensional setup can be stabilized
in a natural way. Indeed we have just traded the v/Mpl � 1 hierarchy for a new
hierarchy of M5L � 1. Indeed we would expect that the stabilization of the
brane at y = L occurs in a natural way only when M5L ∼ 1. Therefore gauge-
Higgs unification in a flat extra dimension is not a fully satisfactory solution.
We note that (3.23) suggests an alternative approach to the hierarchy problem:
the addition of an extra dimension in which gravity propagates has rendered
the fundamental scale of gravity lower than what it appears to be to the four
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dimensional observer. This suggests the possibility that gravity is so much
weaker than the other forces of nature simply because it is diluted in the other
dimensions [149–151]. Generalizing (3.24) to more than one extra dimension
n ≥ 1 we find

M2
pl = M2+nLn, (3.24)

where Ln represents the volume in which gravity is diluted. It is then tempting
to hypothesize that the fundamental scale of gravity is actually of the same
order as the electroweak scale, M ∼ v, which results in the following scale of
the extra dimensions

L ∼ 1030/n−17 cm. (3.25)

The case of n = 1 is excluded as it would imply modifications of Newtonian
gravity on the order of solar-system distances, but the option of n > 1 is still
experimentally allowed. For example the case of n = 2 implies sub-millimeter
scale extra dimension which is right at the edge of experimental constraints
that are looking for modifications of Newton’s law of gravitation. For example
using torsion pendulums [152] gravity is tested at the micrometer level and the
case n = 2 already pushes M > 4 TeV at 95% CL. Of course the other forces
of nature should be localized on a 3-brane since they are very well tested up to
the weak scale. Again, this model is not fully satisfactory as it doesn’t explain
the hierarchy between the now very large size of the extra dimensions L and
the scale of the higher dimensional gravity M .

3.2.2 A Warped Extra Dimension

We now discuss a particularly elegant model of extra dimensions by Randall
and Sundrum known as the RS model which can explain the hierarchy problem
without introducing any new hidden hierarchies: indeed it will turn out that the
hierarchy between the five-dimensional Planck scale and the compactification
or length scale of the extra dimension is mild and can be naturally obtained
by what is known as the Goldberger-Wise mechanism. This model of extra
dimension will provide the gravitational background in which we will embed
our model of gauge-Higgs unification.

The model is also known as a warped extra dimension, as the solution of
the metric is given by

ds2 = e−2krcφηµνdxµdxν − r2
cdφ2, (3.26)

with φ an angular coordinate φ ∈ [0, π] parameterizing the extra dimension
and rc the compactification scale. We note that length scales of the usual 4D
metric are rescaled exponentially as a function of the location along the extra
dimension. The model is compactified on an orbifold S1/Z2 with two orbifold
fixed points at φ = 0, π on which one places two 3-branes called respectively
the UV- and IR brane or equivalently the Planck and TeV brane. Randall and
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Sundrum showed [153, 154] that such a warped metric can be obtained from
the following five dimensional configuration

SRS =
∫

d4x

∫ π

0
dφ
√
G(−Λ− 2M3R5)+

∫
d4x
√
−gUV(−VUV)

+
∫

d4x
√
−gIR(−VIR), (3.27)

where GMN corresponds to the 5D metric tensor and gUV/IR,µν is the induced
metric on the UV respectively IR brane. Λ is a constant bulk cosmological con-
stant, while VUV/IR are vacuum energies on the UV and IR brane respectively
also known as brane tensions. As such, the RS model starts from nothing more
than the investigation of the consequences of non-trivial vacuum energies for
the branes and the bulk. Solving the Einstein’s equation for the above action
and inserting the ansatz metric (3.26) with exponential warp factor, e−2σ(φ), left
unspecified, the following non-trivial solution for σ(φ) is found for a negative
5D cosmological constant Λ < 0

σ(φ) = krφ,

k ≡

√
−Λ

24M3 , (3.28)

with k the curvature of the warped extra dimension. The above solution re-
quires a tuning amongst the brane tensions:

VUV = −VIR = −Λ. (3.29)

This relation ensures that the resulting effective 4D cosmological constant van-
ishes. The RS model therefore does not offer a solution to the cosmological
constant problem and instead it is recast into the tuning amongst the two
brane tensions. In total the RS model contains three free parameters M,k and
rc where we traded the bulk cosmological parameter, Λ, for the curvature, k.
The remaining question that needs to be investigated is if one can have all three
parameters with no large hierarchies amongst them while reproducing standard
4D gravity with the observed strength of Mpl. Moreover how does the hierar-
chy problem manifest itself in this warped background – is it possible to obtain
naturally smaller scales in such a warped background? First of all, in order to
understand the emergence of 4D gravity we have to consider the fluctuations
around the background metric of (3.26) in terms of the graviton fluctuations,
gµν :

ds2 = e−2kφT (x)gµνdxµdxν − T (x)2dφ2. (3.30)

We also replaced the seemingly free parameter rc, which determines the location
of the IR brane with respect to the UV brane with a scalar field T (x) whose
expectation value sets the compactification length 〈T (x)〉 = rc. Indeed, until
now the RS solution is valid for an arbitrary rc. This means that there will be a
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massless scalar field in the 4D effective theory corresponding to the fluctuations
of the IR brane around rc. Its masslessness is due to the arbitrariness of rc in the
original formulation of RS (indeed it can be seen as an integration constant)
and therefore it has no potential nor mass. Such fields that determine the
stabilization of extra dimensions are also known as modulus fields and need
to acquire a potential and mass. Most importantly in order not to violate the
equivalence principle [155] but also as we will see, the specific location of rc is
crucial in order to obtain a solution to the hierarchy problem.

Plugging in the above metric (3.30) with the massless modes gµν(x) and
T (x) into the 5D action (3.27) and integrating over the fifth dimension the
following effective 4D Lagrangian is obtained [156]

SRS-eff = 2M3

k

∫
d4x
√
−g
[(

1− (ϕ/h)2)R+ 1
2∂µϕ∂

µϕ
]
, (3.31)

where the radion was redefined as ϕ(x) ≡ h exp(−kπT (x)) with h ≡
√

24M3/k
and R is the 4D Ricci scalar constructed from the metric gµν . One can then
derive the effective four dimensional Planck scale as:

M2
pl = M3

k

(
1− e−2πkrc

)
. (3.32)

No hierarchies are necessary between M5 and k to account for the correct
weakness of gravity. Interestingly, the equation above continues to hold in
the limit of rc → ∞ challenging the conventional wisdom that Newton’s law
implies only four non-compact dimensions [154]. Note that implicit in the above
solution is the assumption that k < M such that the 5D curvature R5 = −20k2

is small compared to M5 and the bulk metric solution can indeed be trusted.
If not, higher order terms in the curvature would have to be considered in the
action.

Having studied how 4D gravity is obtained in the RS model one can now
investigate how the hierarchy problem or lack thereof manifests itself. We
consider a Higgs field with a potential localized on the IR brane [153]

SIR =
∫

d4x
√
−gIR

(
gµνIR (DµH)†DνH − λ(H†H − v2

0)2), (3.33)

with gIR,µν = e−2πkrcgµν the induced metric on the IR brane. After substituting
the induced metric one needs to canonically normalize the kinetic term with the
following substitution H → eπkrcH and one obtains the following Lagrangian:

SIR =
∫

d4x
√
−g
(
gµν(DµH)†DνH − λ(H†H − e−2πkrcv2

0)2). (3.34)

As RS noted, a remarkable thing has happened. The Lagrangian parameter
setting the VEV v0 of the Higgs potential with natural scale on the order of
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the M ∼ k UV scale, is effectively scaled down due to the warped metric and
instead appears with scale:

v ≡ e−πkrcv0. (3.35)

Furthermore this result is completely general and continues to hold for any
mass parameter on the IR brane. Therefore if e−πkrc is of order 10−15, requiring
only a mild hierarchy between the curvature and the compactification length of
krc ≈ 10, one can obtain TeV scale mass parameters from a Planck scale of 1019

GeV. Therefore the question of the stabilization of the IR brane at krc ≈ 10, or
the generation of a potential for the radion T (x), becomes crucial. Goldberger
and Wise showed two months later the existence of an elegant mechanism [157]
providing such a stabilization. The solution comes from considering a minimal
matter sector consisting of bulk scalar field Φ with the following bulk action:

SGW,bulk =
∫

d4xdφ
√
G(1

2G
MN∂MΦ∂NΦ− 1

2m
2Φ2). (3.36)

Furthermore brane potentials for the bulk field are added on both UV and IR
branes:

SGW,UV/IR = −
∫

d4x
√
−gUV/IRλUV/IR(Φ2 − v2

UV/IR)2. (3.37)

For large λUV/IR, the boundary conditions for the bulk field Φ are fixed to the
brane VEVs vUV/IR. In consequence, a non trivial bulk VEV will be developed
for the field

Φ(x, φ) = Φ(φ) +
∑
n

fn(φ)φn(x), (3.38)

where the first term is the bulk VEV while the second term is the tower of
massive KK modes. Inserting the bulk VEV solution Φ(φ) into the action of
Eq. (3.36) and integrating over the fifth dimension we obtain the following
stabilized 4D potential for the radion or size of the extra dimension [156]:

V (ϕ) = k3

144M6ϕ
4(vIR − vUV(ϕ/h)ε

)2
. (3.39)

The competing effects in the bulk between the derivative term preferring a flat
VEV and thus a large fifth dimension and the mass term preferring a small
extra dimension will yield the following size of the extra dimension:

krc = 4k2

πm2 log
(vUV
vIR

)
. (3.40)

A value of krc ≈ 11 motivated by the hierarchy problem can thus be perfectly
obtained with order one numbers and ε = m2/4k2 � 1 while the mass of the
radion is

m2
ϕ = ∂2V (ϕ)

∂ϕ2 = k2v2
IR

3M3 ε
2e−2πkrc , (3.41)
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which, due to the presence of the warped factor, appears as a TeV scale res-
onance. Note that due to the small ε suppression the radion will typically be
the lightest new particle in RS scenarios. Once the radion is stabilized, it was
shown that standard FRW cosmology is recovered at low temperatures [158].
In [159] the above results were improved taking into account the wavefunction
of the radion and the backreaction of the bulk scalar field on the metric.

The RS model also features a tower of massive KK gravitons due to its
compact nature with the lightest appearing at the scale of 3.83ke−πkrc [160].
In contrast to the massless graviton, these couple with TeV scale strength to
the energy-momentum tensor and can therefore be produced at colliders.

3.3 Minimal Gauge-Higgs Grand Unification

Having introduced both the idea of gauge-Higgs unification and a warped extra
dimensions, one can combine both ideas in models of gauge-Higgs unification in
a warped background. By combining them, that is to say, considering a Higgs
boson as the fifth component of a gauge field in a warped background, we not
only provide a solution to the quadratic sensitivity of the Higgs boson mass, it
is also possible to relate the large Planck scale to the electroweak scale.

We will work in a conformal coordinate system where the fifth coordinate,
φ, is parameterized by

z ≡ ekrcφ

k
, (3.42)

in which the resulting metric is given by

ds2 =
(R
z

)2
(ηµνdxµdxν − dz2), (3.43)

where we denote the location of the boundaries of the warped space with the
new parameters z = R ≡ 1/k, for the UV brane, and z = R′ ≡ ekrcπ/k, for the
IR brane.

For our study of gauge-Higgs unification in a warped background, we will
need to understand how such 5D bulk gauge fields behave [161,162]. Likewise,
it will be beneficial for phenomenological reason to introduce the SM fermion
into 5D bulk fermion fields [163, 164]. We refer to Appendix B for a review
on the KK decomposition of bulk fermion and gauge fields in a warped extra
dimension and provide the bulk wavefunctions.

Having an understanding of the behavior of fermion and gauge fields in 5D,
one can now explore concrete models of gauge-Higgs unification. The first choice
contains the gauge symmetry in the bulk, G. There are a few requirements on
G. First of all, the bulk gauge fields must still contain the SM gauge group,
GSM. One can take two options at this point, either the SU(3)c gauge group is
considered an external gauge group, such that the total bulk gauge field consists
of a product group G × SU(3)c. The option consists of the original models
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of electroweak gauge-Higgs unification (see [165] for the original warped gauge
Higgs model based on SU(3), while the later [166] is based on the custodial coset
SO(5)). Since the Higgs is not charged under SU(3)c, it is indeed sufficient to
embed only the electroweak gauge group within G.

In this chapter we will pursue a different option of including the whole
SM gauge group within a single simple Lie algebra, also known as models of
gauge-Higgs grand unification:

SU(3)c × SU(2)L × U(1)Y ⊂ G. (3.44)

This option, although it increases the complexity of the model-building due to
the inclusion of color, is motivated by the observed charge quantization of the
SM to which GUTs [25–27] are an elegant elucidation. It provides a unified
origin for the three different gauge groups and provides the SM fermions as
simple representations of the unified group. Moreover the unification of gauge
couplings has been studied in such setups and shown to improve with respect
to the SM [167].

A second requirement on the gauge group choice for a successful gauge-
Higgs unification, is that a Higgs doublet should be embedded within the bulk
gauge field. Since a gauge field always transforms according to the adjoint rep-
resentations, it places a strict requirement on the choice of the group G. As we
have seen, only the broken generators with a Dirichlet boundary condition, T â,
will give rise to a (massless) scalar degree of freedom. Therefore the resulting
unbroken gauge symmetries on the UV and IR brane, respectively H0,H1 ⊂ G,
will be crucial, and determine the scalar content:

AâT â = G/(H0 ∪H1). (3.45)

Models of gauge-Higgs grand unification that obey both of the conditions
in Eqs. (3.44), (3.45) are based on two main gauge groups: SU(6) and SO(11).
The latter gauge group has the additional benefit of featuring a custodial sym-
metry (see next Chapter 4.2 for a discussion on custodial symmetry) and was
studied in [168, 169] and later also in six dimensions [170, 171] to cure un-
wanted light exotics (see also [172–179]). We will study the gauge-Higgs grand
unification based on an SU(6) model, past studies include both supersym-
metric [148, 180, 181] and non-supersymmetry [182] context. The constraining
nature of the bulk gauge group, SU(6), leads to light exotic fermions and mass-
less down-type quarks and one is forced to localize the SM fermions on a brane
and include extra bulk fermions [183–185].

In the rest of this chapter, we will present a gauge-Higgs grand unified
SU(6) model which manages to correctly produce the full SM spectrum from a
minimal amount of 5D fields without putting matter on the brane. We will see
how the unique combination of a warped 5D model in combination with a GUT
gives a new perspective on the flavor hierarchies in nature. The constraints
coming from flavor observables will be studied in detail and we analyse the
mass generation of the extended scalar spectrum.
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3.3.1 The Model

We begin by outlining the gauge structure of SU(6). The bulk gauge symmetry,
SU(6), is broken to subgroups on the UV and IR via boundary conditions. The
remnant of the bulk symmetry on the UV, H0 and IR, H1 is given by:

H0 = SU(3)c × SU(2)L × U(1)Y , H1 = SU(5). (3.46)

The above can be visualized in terms of the boundary conditions for the different
SU(6) generators as:

AaµT
a =



(++) (++) (−+) (−+) (−+) (−−)
(++) (++) (−+) (−+) (−+) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−−) (−−) (−−) (−−) (−−) (−−)


, (3.47)

where a broken symmetry corresponds to a Dirichlet BC (−) for the corre-
sponding gauge field. We see the unbroken subgroups SU(2)L and SU(3)c in
the highlighted submatrices. The off-diagonal generators are both charged un-
der color and the electroweak group and have the quantum numbers equal to
the usual 4D X,Y gauge bosons, namely an SU(3)c triplet and SU(2)L doublet
(X4/3, Y 1/3) ∼ (3∗,2)5/6. As discussed in Appendix B, (−,+) boundary con-
ditions give rise to a tower of massive gauge bosons with the lightest excitation
at (−,+) ∼ 2.45/R′. Furthermore, we find (−,−) modes which will correspond
to the totally broken generators and give rise to massless scalars. The massless
scalars transform under the SM gauge group as :

G/(H0 ∪H1) = (1,2)1/2 ⊕ (3,1)−1/3 ⊕ (1,1)0. (3.48)

We therefore find an extended scalar spectrum with besides a Higgs doublet, a
scalar leptoquark and a scalar singlet.

Having discussed the gauge sector, we now turn to the matter sector in
which we discuss the fermion embedding. Since the Higgs field is a bulk field, it
is natural to also include the SM fermions as 5D bulk fermions. It is already well
known that bulk fermions in warped space can be very successful in address-
ing the flavor hierachies of the SM [163, 164, 186, 187]. Indeed, small Yukawa
couplings can be obtained by localizing the fermions appropriately along the
extra dimension such that the overlap with the bulk Higgs can result in vast
range of magnitudes (this mechanism predates the RS model [188]). However
if we wish SM fermions to be embedded within 5D bulk fermions, this implies
that the Yukawa couplings come from the five dimensional covariant derivative.
The minimal fermionic content that contains all the Yukawa couplings of the
SM are a 20 and a 15 of SU(6). Indeed the former contains an up-type quark
Yukawa coupling while the latter contains both the down-type quark Yukawa
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coupling and the charged lepton Yukawa coupling. In the following we will
also include a 6 of SU(6) which contains a Yukawa coupling for the neutrino.
However we will see that this scenario would lead to too heavy neutrinos. This
problem can be minimally solved by introducing an additional bulk singlet 1.

Another ingredient of the fermion sector is the introduction of mass mixing
terms on the branes. Without these mixing terms, it would imply the existence
of two distinct quark doublets, one embedded within the 20 for the up-type
quark Yukawa and one within the 15 for the down-type Yukawa. In a similar
fashion there would be two lepton doublets, one embedded within the 15 for the
charged lepton Yukawa and one within the 6 for the neutrino Yukawa. With
brane masses on the UV/IR boundaries the doublets mass mix and only one
physical doublet survives while the other becomes heavy and decouples.

Therefore the full matter content of the model consists of the following 5D
fermion fields where we show the decomposition into SU(5) and the SM gauge
group:

20→10 = q′(3,2)+,−
1/6 ⊕ ER(3∗,1)−,−

−2/3 ⊕ e
c′(1,1)+,−

1

10∗ = (3∗,2)+,−
−1/6 ⊕ u(3,1)−,−

2/3 ⊕ (1,1)+,−
−1 ,

15→10 = q(3,2)+,+
1/6 ⊕ EL(3∗,1)+,+

−2/3 ⊕ e
c(1,1)+,+

1

5 = d′(3,1)−,+
−1/3 ⊕ l

c′(1,2)−,+
1/2 ,

6→5 = d(3,1)−,−
−1/3 ⊕ l

c(1,2)−,−
1/2 ⊕ ν

c(1,1)+,+
0 ,

1→νc′(1,1)+,−
0 . (3.49)

The boundary conditions refer the ones of the left-handed fields (the right-
handed fields have thus opposite boundary conditions, see Appendix B). The
fashion in which the chiral SM fermions are embedded within the bulk fields are
indicated by their usual symbols: q, u, d, lc, ec, νc, while the vector-like fermions
with identical quantum numbers that mass mix with these chiral fermions after
including boundary terms are indicated by the primed symbols: q′, d′, lc′, ec′, νc′.
The fermions in the 20 and 15 without any symbols are additional fermions
that do not mix with SM fermions but are necessary to complete the bulk
representation into complete SU(6) representations. Although these exotics
are not relevant for the flavor structure and constraints of the model, they do
have an important role in the generation of the singlet scalar mass as we will
discuss. In particular, the exotics dubbed EL and ER with electric charge −2/3
will be crucial for the mass generation of the singlet which we will discuss in
the last section of this chapter. The brane masses on the IR consists of all the
allowed SU(5) invariant terms

SIR = −
∫

d4x
(R′

R

)4(
Mq/eΨ̄20

R,10Ψ15
L,10 +Md/lΨ̄6

R,5Ψ15
L,5 +MνΨ̄1

RΨ6
L,1
)
|z=R′ ,

(3.50)
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where we decompose a bulk field of representation R of SU(6) as ΨR =
(ΨR

L ,ΨR
R )T and denote subrepresentations with lower indices. These are the

only non-vanishing IR brane masses and will result in mass mixing of the dif-
ferent bulk fermions. On the UV brane there is only one non-vanishing brane
mass with connects up-type quarks from the bulk 20 and 15 in the exotic
sector:

SUV =−
∫

d4x
(
MũΨ̄20

R,(3∗,1)Ψ
15
L,(3∗,1) + h.c.

)
. (3.51)

Importantly we will not assume any particular form for these brane masses
and will therefore be general order one 3 × 3 matrices with anarchic entries.
Since these brane masses will be the source of flavor mixing in our model, it
corresponds to not imposing any flavor symmetry in our model.

3.3.2 Zero Mode Approximation

In order to understand the implications of the above model, we will work within
the zero mode approximation (ZMA). Concretely this approximation consists
in ignoring all the fermion KK modes with the exception of the zero modes
but including mixing. This will be an excellent model for understanding how
the model performs in explaining the flavor hierarchies, or for the calculation
of tree-level flavor constraints. For the calculation of loop-level constraints
where the exchange of fermion KK modes becomes important, one needs to go
beyond this approximation. As an illustration of the ZMA we take the up-type
quark. We see that there is a single right-handed up-type singlet within the
20. Following the results from the Appendix B, we find for this fermion the
following KK decomposition

ΨuR(z, x) =
( 1√

R′

( z
R

)2( z
R′

)c20
f(−c20)

)
uR,0(x) +

∑
n>0

fn(z)uR,n(x), (3.52)

where we single out the zero mode and the prefactors ensure the kinetic term
for uR,0(x) is canonically normalized and f(c) is known as the flavor function

f(c) =
√

1− 2c√
1− (R′/R)2c−1

, (3.53)

which features an exponential sensitivity to the bulk 5D mass c. This is a
straightforward example as the zero mode is entirely within the 20. The situ-
ation is more complicated for the left-handed quark doublet, qL, where due to
the IR boundary term of Eq (3.50) the qL within the 15 mass mixes with the
q′
L within the 20. The zero mode will thus be contained in both the 15 and
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20. We therefore write the following two KK decompositions

ΨqL(z, x) = C1
( 1√

R′

( z
R

)2( z
R′

)−c15
f(c15)

)
qL,0(x) +

∑
n>0

fn(z)qL,n(x)

Ψq′
L
(z, x) = C2

( 1√
R′

( z
R

)2( z
R′

)−c20
f(c20)

)
qL,0(x) +

∑
n>0

fn(z)qL,n(x), (3.54)

where we have used the general bulk solution for a zero mode with unknown
normalization constants C1 and C2. One can eliminate one of them using the
correct boundary condition that results from the IR mass mixing term (see for
example [134]):

Ψq′
L
(R′) = Mq/eΨqL(R′), (3.55)

which allows us to eliminate C2 in favor of C1. The profiles of the zero modes
are then

ΨqL(z, x) =C1
( 1√

R′

( z
R

)2( z
R′

)−c15
f(c15)

)
qL,0(x) + ...

Ψq′
L
(z, x) =C1

( 1√
R′

( z
R

)2( z
R′

)−c20
f(c15)

)
Mq/eqL,0(x) + ..., (3.56)

where the remaining C1 can be found by imposing canonically normalized ki-
netic terms for qL,0(x). Indeed plugging these profiles into the bulk fermion
Lagrangian and integrating out the fifth dimension we find the following ki-
netic term for qL,0(x):

Sbulk ⊃
∫

d4xC2
1

[
1 + f(c15)M∗

q/ef(c20)−2Mq/ef(c15)
]
q̄L,0γ

µ∂µqL,0

≡
∫

d4xC2
1Kq q̄L,0γ

µ∂µqL,0, (3.57)

where we have named the uncanonical term in brackets as Kq. Therefore the
inclusion of a brane mass has not only resulted in the left-handed doublet zero
mode to be localized within two bulk field, the kinetic terms have become
uncanonical. This can be fixed by the redefinition:

qL,0 → C−1
1 K−1/2

q qL,0. (3.58)

Now that we have derived the correct profiles for the zero modes qL,0 and
uR,0, one can determine the resulting mass by determining the overlap with
the Higgs. Remember that the 5D covariant derivative of the 20 contains the
up-type Yukawa coupling

Sbulk ⊃
∫

d4xdzΨ̄20γ5(∂5 − ig5A
â
5T

â)Ψ20

⊃ig5

∫
d4xdzΨ̄20

L (Aâ5T â)Ψ20
R + h.c.

⊃ig5

∫
d4xdzΨ̄q′

L
(Aâ5T â)ΨuR + h.c. (3.59)
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where we extract the interaction within the 20 between the q′
L and uR. Once

we identify the real component of the Higgs with a broken generator T â and
plug the zero mode profiles of ΨuR and Ψq′

L
(see Eqs. (3.52) and (3.56)) and

of the Higgs Aâ5 (see Appendix B), one can integrate over the extra dimension
and recover the following 4D mass for the up-type quark

q̄L,0MuuR,0 = q̄L,0
g∗v

2
√

2
f(c15)M∗

q/ef(−c20)uR,0, (3.60)

where we define the dimensionless component of the 5D bulk coupling g5 as g∗:

g∗ ≡ g5/
√
R. (3.61)

The bulk coupling g5 is determined by reproducing the correct SU(2)L gauge
coupling strength g.2 This expression for the up-type quark mass is before
canonical normalization and we therefore still need the transformation from
Eq. (3.58) to have canonical kinetic terms, although in general the effects will
be small.

The above expressions for the ZMA have straightforward generalization to
the three generation case. TheMq/e brane mass then becomes a 3×3 matrix and
is the source of generational mixing, while the corresponding flavor functions
becomes diagonal3 3× 3 matrices denoted by:

fc = diag(f(c1), f(c2), f(c3)). (3.62)

In Appendix B we provide the bulk profiles of all the SM zero modes, the
resulting mass matrices and the resulting uncanonical kinetic terms in the flavor
basis.

We end this section with the interpretation of the UV brane mass, see
Eq. (3.51). It will be a crucial ingredient in the mass generation of the scalar
singlet as we will discuss in Sec. 3.5. The UV brane mass connects the two chiral
exotic fermions within the 20 and 15 which we dub ER and EL. In the ZMA
we use the zero mode profiles for the ER and EL and compute the resulting
Dirac mass from these two zero modes. The profiles can be straightforwardly
found:

ΨER
(z, x) =

( 1√
R′

( z
R

)2( z
R′

)c20
f(−c20)

)
ER,0(x) +

∑
n>0

fn(z)ER,n(x),

ΨEL
(z, x) =

( 1√
R′

( z
R

)2( z
R′

)−c15
f(c15)

)
EL,0(x) +

∑
n>0

fn(z)EL,n(x). (3.63)

2In models of gauge-Higgs grand unification this creates the problem that the gluons and
hypercharge bosons couple with identical strength as the weak bosons, although this can be
easily solved by using brane-localized field strengths on the UV brane to lift the degeneracy.

3We work in a basis where the bulk is diagonal in flavor and the sole source of flavor mixing
are the brane masses, see [189].
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As appropriate for the zero mode approximation, we cut off the higher KK
tower and plug these profiles into the UV brane mass of Eq. (3.51) finding

SUV =−
∫

d4xMũΨ̄ER
(z = R)ΨEL

(z = R)

⊃−
∫

d4x
Mũ

R′ ( R
R′ )

c20−c15f(−c20)f(c15)ĒR,0EL,0

≡−
∫

d4xmEĒR,0EL,0, (3.64)

where we define the resulting 4D Dirac mass for the exotic as mE . Unsurpris-
ingly for both a UV localized ΨER

and ΨEL
(thus c20 < −0.5 and c15 > 0.5),

the overlap of the fermions with the UV brane is significant and thus the UV
brane mass is large and the 4D Dirac mass for the exotic fermion has a UV
brane value of 1/R and decouples from the low-energy phenomenology. In con-
trast, if both fermions are IR localized as in the case for the third generation
in order to reproduce the large top mass, one gets an exponential suppression
of the mass:

mE ∼
Mũ

R
, c15 > 0.5, c20 < −0.5

mE ∼
Mũ

R′ ( R
R′ )

c20−c15 , c15 < 0.5, c20 > −0.5, (3.65)

and Dirac mass significantly below the Planck scale are possible and in partic-
ular for c15 ∼ c20 one recovers IR scale masses.

3.3.3 The Flavor Puzzle

The flavor puzzle of the SM refers to the values observed in the Yukawa sector.
First of all, the fermion masses range from me ∼ 0.5 MeV for the electron to
the heavy mt ∼ 173 GeV for the top: a discrepancy of almost six orders of mag-
nitude in Yukawa couplings. The puzzle becomes even stranger when including
the neutrinos, whose masses are at least another six orders of magnitudes below
the electron mass. And although such very hierarchical Yukawa couplings are
technically natural, it is still worthwhile to ask if a UV completion of the SM
can shed light on these hierarchies.

Another part of the flavor puzzle comes when we consider flavor mixing in
the quark sector as parameterized by the CKM matrix and in the lepton sector
by the PMNS matrix. The absolute values of the entries of the CKM matrix
are namely highly hierarchical [190]

VCKM ∼

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ∼
 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (3.66)



3.3. Minimal Gauge-Higgs Grand Unification 59

with λ ≈ 0.23 the Wolfenstein parameter. In contrast the PMNS matrix does
not contain any remarkable hierarchies

VPMNS ∼

0.82 0.55 0.15
0.37 0.58 0.71
0.40 0.59 0.69

 , (3.67)

where we take the central values from [191].
It is well known that warped extra dimensions can shed a new light on the

hierarchical Yukawa couplings. Indeed, the masses are exponentially sensitive
to the localization of the fermions through the flavor function f(c). Wildly
different masses can thus be obtained by localizing the light generation in the
UV, while the heavier third generation can be localized more in the IR. It is
also known that a hierarchical CKM matrix can be accommodated in such a
setup. After applying these mechanisms to our model, we will also consider
whether the seemingly anarchic structure of the PMNS can be explained. This
is a non-trivial question, because after specifying the quark sector, the lepton
sector is almost fully determined, due to our unified model, and no more degrees
of freedom are available for generating the PMNS matrix.

We therefore begin with the quark sector for which we find the following
mass matrices in the ZMA:

Mu = g∗v

2
√

2
fc15M

†
q/ef−c20 ,

Md = g∗v

2
√

2
fc15M

†
d/lf−c6 . (3.68)

The generation of the CKM matrix comes from the mathematical observation
that the bi-unitary diagonalization of the above mass matrices will feature
rotation matrices with distinct hierarchies [186]. For the left-handed down
sector for instance, we find the following hierarchies

UL,d ∼


1 f(c15,1)

f(c15,2)
f(c15,1)
f(c15,3)

f(c15,1)
f(c15,2) 1 f(c15,2)

f(c15,3)
f(c15,1)
f(c15,3)

f(c15,2)
f(c15,3) 1

 , (3.69)

with the rotation matrices in the left-handed up sector being analogous. Thus,
by taking the bulk masses of the 15 such that the following conditions are
fulfilled

f(c15,1)/f(c15,2) ∼ λ, f(c15,2)/f(c15,3) ∼ λ2, f(c15,1)/f(c15,3) ∼ λ3, (3.70)

the left-handed rotation matrices in both the up and the down sector will feature
similar hierarchies as the CKM matrix (see also [61, 189]). The CKM matrix,
being the simple product of the left-handed rotation matrices VCKM = U †

L,uUL,d,
will then naturally take over these hierarchies.
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The generation of the SM mass hierarchies works by choosing different lo-
calizations, encoded in the 5D bulk masses, for the different bulk fermions. The
large top mass leads us to choose an IR localization for both the 15 hosting
the left-handed quark doublet of the third generation and the 20 hosting the
right-handed top quark. The 15’s hosting the lighter two generations will then
naturally be UV localized by virtue of the above CKM conditions Eq. (3.70).
The remaining localizations for the 20 and 6 are then fixed by matching the
mass matrices (3.68) to the measured SM quark masses resulting in the follow-
ing constraints on the localizations

mc

mt
∼ λ2 f(−c20,2)

f(−c20,3) ,
mu

mt
∼ λ3 f(−c20,1)

f(−c20,3)
mb

mt
∼ f(−c6,3)
f(−c20,3) ,

ms

mt
∼ λ2 f(−c6,2)

f(−c20,3) ,
md

mt
∼ λ3 f(−c6,1)

f(−c20,3) , (3.71)

We therefore see the attractiveness of warped 5D models in generating both
the CKM matrix and the mass hierarchies that are observed in nature using
5D bulk mass of order 1. We now study the impact on the lepton sector and
in particular the PMNS matrix. The mass matrix of the charged (conjugate)
leptons in the flavor basis is given by

Mec = g∗v

2
√

2
f−c6Md/lfc15 . (3.72)

We note a degeneracy between the charged lepton and down-type quark ma-
trices, identical to the usual SU(5) 4D GUTs. However, the gauge symmetry
on the UV brane is merely GSM and thus can be used to lift the degeneracy
by introducing SU(5)-breaking effects. A minimal solution is introducing ki-
netic terms on the UV brane for the 5D fermion lcR embedded in the 6 with
dimensionless coefficient κ:

Skin,UV =
∫

d4x iκR l̄cRσ̄
µ∂µl

c
R|z=R. (3.73)

The above boundary term will shift the normalization of the kinetic term into

KlcR
=1 + f−c6Md/lf

−2
−c15M

†
d/lf−c6

→1 + κRf2
lcR

(z = R) + f−c6Md/f
−2
−c15M

†
d/lf−c6

≈1 + (−2c−6 − 1)κ+ f−c6Md/lf
−2
−c15M

†
d/lf−c6 , (3.74)

where the approximation in the second line holds for UV-localized fermions
with c < −0.54. By the following choice for κ, it becomes possible to break
the degeneracy between the charged lepton and down-type quark and obtain

4For IR localized fermions, unsurprisingly, the effect of a UV kinetic term is negligible.
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correct masses for the charged leptons:

κ =


(md/me)2−1

−2c6,1−1 0 0
0 (ms/mµ)2−1

−2c6,2−1 0
0 0 (mb/mτ )2−1

−2c6,3−1

 . (3.75)

Before we can discuss the PMNS matrix, we need to comment on neutrino
masses whose mass matrix in the flavor basis is given by:

Mνc = g∗v

2
√

2
f−c6fc6 . (3.76)

Since the left-handed lepton doublet and right-handed neutrino singlet are both
embedded in the bulk 6, it is unsurprising that the masses are depending on
the localization of the 6. This creates the problem that the localization of the
6 already sets the masses of the down-type quarks and charged leptons, which
will result in too heavy neutrino masses. The introduction of a bulk singlet
1 that mixes with the 6 on the IR brane is therefore crucial, since for very
UV localized singlets, c1 > 0.5, the neutrino mass eigenstate will mostly reside
in the bulk singlet 1 with only a small admixture of the 6, resulting in the
following neutrino masses (see [II] and [III] for a complete derivation):

mνi

mνj

' f(−c6,i)f(c1,i)
f(−c6,j)f(c1,j)

. (3.77)

Due to the exponential sensitivity of the flavor function, f(c), to the localization
parameter, only minor differences in the localization of the singlets, c1,i, are
necessary to produce a realistic neutrino mass spectrum. One can now discuss
the PMNS matrix: it is equal to the product of the two left-handed lepton
rotation matrices VPMNS = U †

L,νUL,e. In a similar reasoning that lead to
Eq. (3.69), the left-handed rotation matrices are given by:

(UL,ν)ij ∼ (UL,e)ij ∼
f(−c6,i)
f(−c6,j)

, i ≤ j. (3.78)

It turns out these hierarchies (or lack thereof) are ideal to explain VPMNS.
Indeed the 6 localizations were chosen to be almost degenerate (which was
noted e.g. in [192] but with a different purpose of protecting the RH down
sector from FCNCs) in order to reproduce the SM mass hierarchies. This was
possible since there are no strong hierarchies remaining: the mass hierarchies
in the down-type and charged lepton sector are almost fully determined by the
localization of the bulk 15 (which itself was determined by the CKM matrix).
Extracting the numerical values from Eq (3.71), we indeed find mild hierarchies:

f(−c6,2)
f(−c6,1) ∼ 4, f(−c6,3)

f(−c6,2) ∼ 2. (3.79)
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These mild hierarchies will result in anarchic left-handed rotation matrices in
the lepton sector and thus the PMNS matrix will remain anarchic as is observed
in nature. We note that this result is not spoiled for different benchmarks
for the neutrino masses since the left-handed rotation matrices depend on the
6 hierarchies as shown in Eq (3.79) while the neutrino mass hierarchies are
dependent on the 1 hierarchies.

It is remarkable that three different observables in the flavor sector, namely
the anarchic features of the PMNS matrix, the hierarchic features of the CKM
matrix and the mass hierarchies, are in such a strict mathematical relation to
each other in warped GUT models without the use of hierarchies. Indeed take
any two combination of these three observables and the remaining observable
comes out.

3.4 Phenomenology

Having found a minimal model with elegant features to account for the PMNS
and CKM matrix, we now turn to the phenomenology of the model, in particular
constraints coming from the flavor sector. Since all the localizations of the
bulk fermions are essentially fixed by the requirement of reproducing the flavor
hierarchies, the resulting flavor constraints are mostly fixed. We divide our
observables in two broad categories: flavor violation in the quark sector due
to meson mixing and flavor violation in the lepton sector in charged lepton
violation. Typically, these observables provide very stringent constraints on the
masses of the KK gauge bosons, mediating these FCNCs processes, pushing the
IR scale, 1/R′, up. In the past [61, 189, 193–208], flavor has been well studied
in both the lepton and quark sector but usually independently from each other
and often for a IR brane Higgs as in the original RS model. In a gauge-Higgs
grand unification model, these effects can no longer be studied separately since
quark and leptons are unified.

In warped extra dimensions, flavor violation is suppressed for UV localized
fermions as their overlap with the KK gauge bosons is nearly universal, resulting
in only small flavor violation in the extra dimension, a mechanism known as
the RS-GIM mechanism [164,186,194,209,210] (which is analogous to the GIM
mechanism [211] at work in the SM in suppressing FCNCs). Without such
protection the bounds on the mass of the lightest KK gauge boson would be
on the level of ∼ 104 TeV. Nevertheless, the mechanism is not as effective as
in the SM and strong bounds from flavor violation are still expected. We will
see that these bounds push the IR scale, 1/R′, in the far TeV region making it
hard to obtain an un-tuned Higgs potential.

This ubiquitous feature of warped extra-dimensional models (and like-wise
for many other SM UV completions), has resulted in using flavor symmetries
to tame these bounds in the lepton sector [212–225] (see also [226, 227] for a
recent review) and in the quark sector [192,228–232]. We will not take a similar
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approach in the following. First of all because of the quark-lepton unification
inherent in our setup, none of the above flavor symmetries can be directly taken
over. Secondly, although it is possible to implement additional flavor protection
in our model and it would be an interesting question for follow-up work, we
want to investigate how stringent the flavor bounds are in a fully anarchic model
and what it implies for the amount of fine-tuning in the Higgs potential. This
approach is similar in spirit to [233], accepting tuning in the Higgs potential
but providing a compelling model of gauge-Higgs grand unification that evades
the flavor constraints and explains the observed flavor hierarchies. Moreover,
the extra new scalars provide potential experimental targets to test the model
in the future.

3.4.1 Meson Mixing

We first discuss FCNCs in ∆F = 2 flavor observables such as Bs− B̄s, Bd− B̄d,
D − D̄ and K − K̄ mixing, with the latter generally being the most constrain-
ing. The large SU(3)c gauge coupling, ensures that the dominant contribution
is from a tree-level exchange of the lightest KK gluon, although also the KK
photon and the electroweak gauge bosons and their KK modes contribute sub-
leadingly. The Lagrangian, with off-diagonal couplings to the first KK gluon in
the mass basis, is given by

L = (gijL,q q̄
α,i
L γµq

j
β,L + gijR,q q̄

α,i
R γµq

j
β,R)(T a)βαGa,1µ , (3.80)

where q = u, d are flavor indices and i, j are generation indices. We provide
here the full expressions for these couplings in the mass basis:

gL,u =gsU †
L,uK

− 1
2 †

qL

(
λ(+,+),c15 + fc15M

†
q/ef

−1
c20λ(+,+),c20f

−1
c20Mq/efc15

)
K

− 1
2

qL UL,u

gR,u =gsU †
R,uλ(+,+)c20UR,u

gL,d =gsU †
L,dK

− 1
2 †

qL

(
λ(+,+),c15 + fc15M

†
q/ef

−1
c20λ(+,+),c20f

−1
c20Mq/efc15

)
K

− 1
2

qL UL,d

gR,d =gsU †
R,dK

− 1
2 †

dR

(
λ(+,+),−c6

+ fc−6Md/lf
−1
−c15λ(+,+),−c15f

−1
−c15M

†
d/lf−c6

)
K

− 1
2

dR
UR,d. (3.81)

We denote with λ(+,+),c the generic coupling of a fermion zero mode with lo-
calization c to the first gauge boson KK mode of signature (+,+) for which we
refer to the more extensive paper [III]. We see in the above expression the effect
of the zero modes being localized in two bulk fermions (with the exception of
the uR), which is responsible for the second term and the canonical normal-
ization through the multiplication by the hermitian matrices Kψ. Integrating
out the lightest KK gluon with mass mG1 = 2.45/R′, the following effective 4D
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Hamiltonian (focusing on the down sector) is obtained

H =Cij1 (mG1)(d̄α,iL γµd
j
L,α)(d̄β,iL γµdjL,β) + C̃ij1 (mG1)(d̄α,iR γµd

j
R,α)(d̄β,iR γµdjR,β)

+Cij4 (mG1)(d̄α,iL djR,α)(d̄β,iR djL,β) + Cij5 (mG1)(d̄α,iL djR,β)(d̄β,iR djL,α), (3.82)

with

Cij1 (mG1) =
gijL,dg

ij
L,d

6m2
G1

, C̃ij1 (mG1) =
gijR,dg

ij
R,d

6m2
G1

,

Cij4 (mG1) = −
gijL,dg

ij
R,d

m2
G1

, Cij5 (mG1) =
gijL,dg

ij
R,d

3m2
G1

. (3.83)

We take the strong bounds on the coefficients of these operators from [234]. Es-
pecially in the kaon sector these bounds are particularly strong: the imaginary
component of C21

4 (Λ) requires a new physics scale of ∼ 104 TeV with order one
couplings. The coefficients depend considerably on the renormalization scale
and they should be translated to our new physics scale ∼ mG1 (see [61]). Since
the C21

4 (Λ) coefficient only receives contributions from the KK gluon exchange
(and not from photon or other electroweak gauge bosons), we are well motivated
into only taking gluon exchange into account.

3.4.2 Tree-level Lepton Flavor Violation

We now turn to observables in the lepton sector from tree-level processes,
namely µ+ → e+e−e+ decay and µ − e conversion in nuclei. The relevant
Lagrangian mediating these processes consists of the couplings of the leptons
to the Z boson (and its first KK mode):

L = g

cW

(
gijL ē

i
Lγµe

j
L + gijR ē

i
Rγµe

j
R

)
Z0,µ + g

cW

(
g′ij
L ē

i
Lγµe

j
L + g′ij

R ē
i
Rγµe

j
R

)
Z1,µ.

(3.84)
The coefficients in the mass basis read:

gL =(−1/2 + s2
W )
(
U †
L,ecK

†,−1/2
lcR

(
λZ0,−c6

+f−c6Md/lf
−1
c15 λZ0,−c15 f

−1
c15M

†
d/lf−c6

)
K

−1/2
lcR

UL,ec

)
gR =s2

W

(
U †
R,ecK

†,−1/2
ec

L

(
λZ0,−c6

+f−c6Md/lf
−1
c15 λZ0,−c15 f

−1
c15M

†
d/lf−c6

)
K

−1/2
ec

L
UR,ec

)
. (3.85)

λZ0,c denotes the coupling of a zero mode fermion with localization c to the Z
boson. The equivalent couplings to the first KK Z boson are obtained by the
substitution λZ0,c → λ(+,+),c. We refer to the more extensive paper for these
expressions [III].
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• µ+ → e+e−e+:

Flavor violation in µ → 3e can be parameterized with the following effective
Lagrangian [235,236]:

L =− 4GF√
2

(
g1(ēRµL)(ēReL) + g2(ēLµR)(ēLeR) + g3(ēRγµµR)(ēRγµeR)

+ g4(ēLγµµL)(ēLγµeL) + g5(ēRγµµR)(ēLγµeL) + g6(ēLγµµL)(ēRγµeR)

+mµARēRσ
µνµLFµν +mµALēLσ

µνµRFµν + h.c.
)
. (3.86)

We recognize in the above Lagrangian the loop-level dipole operators, which are
subdominant with respect to the tree-level contact interactions. However these
dipole operators do induce the striking µ → eγ decay which we will discuss in
the next section. Since the scalar contact interactions are absent (g1 = g2 = 0)
in the model at hand, we find the branching ratio [235,236]:

Br(µ→ 3e) = 2(g2
3 + g2

4) + g2
5 + g2

6 . (3.87)

Dating from 1988, the current experimental bound on µ→ 3e still reads [237]:

Br(µ→ 3e) < 10−12. (3.88)

The bound is expected to be improved by the upcoming Mu3e experiment: [238]

Br(µ→ 3e) < 10−16 . (3.89)

By integrating out the Z boson and its first KK mode, with mass mZ1 =
2.45/R′, we obtain the following couplings contributing to the µ→ 3e process:

g3 = 2
(
g12
R g

11
R + g′12

R g′11
R

( mZ

mZ1

)2)
,

g4 = 2
(
g12
L g

11
L + g′12

L g′11
L

( mZ

mZ1

)2)
,

g5 = 2
(
g12
R g

11
L + g′12

R g′11
L

( mZ

mZ1

)2)
,

g6 = 2
(
g12
L g

11
R + g′12

L g′11
R

( mZ

mZ1

)2)
. (3.90)

• µ− e conversion:

We now turn to µ − e conversion in nuclei for which we need the following
quark-lepton effective operators [235,236]:

L = −2GF√
2

(
ē(s− pγ5)µ

∑
q

q̄(sq − pqγ5)q

+ēγα(v − aγ5)µ
∑
q

q̄γα(vq − aqγ5)q + h.c.
)
. (3.91)
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We omit tensor couplings as they lead to non-coherent transitions and are
therefore suppressed by the number of nucleons: only the scalar and vector
couplings are relevant for coherent conversion. These have to be converted
from the quark level to the nucleon level, which then results in the conversion
rate [235,236]

Br(µ→ e)N =
G2
FF

2
pm

5
µα

3Z4
eff

2π2ZΓcapt
×
(
|4eALZ + (s− p)SN + (v − a)QN |2

+|4eARZ + (s+ p)SN + (v + a)QN |2
)
, (3.92)

where Γcapt denotes the total muon capture rate and QN , SN are defined by:

SN = su(2Z +N) + sd(2N + Z),
QN = vu(2Z +N) + vd(2N + Z). (3.93)

The parameters for 48
22Ti/27

13Al/197
79 Au nuclei are Fp ∼ 0.55/0.66/0.16, Zeff ∼

17.61/11.62/33.5, and Γcapt ∼ (2.6/0.71/13.07) × 106 sec−1 [239, 240]. The
strongest experimental constraint come from 48

22Ti and 197
79 Au and read [241,242]:

Br(µ→ e)Ti < 6.1× 10−13,

Br(µ→ e)Au < 9.1× 10−13. (3.94)

The bounded conversion rate for the titanium atom is slightly smaller and as
a result we will only show bounds for it. The upcoming experiments COMET
and Mu2e [243] are expected to probe µ − e conversion in aluminium with a
sensitivity of

Br(µ→ e)Al < 8× 10−17, (3.95)

at the 90% confidence level (CL). We will also use this upcoming experiment
in our analysis.

The contributions from the Z boson and its first KK mode are obtained
from Eq. (3.84) by integrating them out (and including the respective quark
couplings) which can then be matched to Eq. (3.91), giving us the values for v
and a:

v =
(
g12
L + g′12

L

( mZ

m(+,+)

)2)
+
(
g12
R + g′12

R

( mZ

m(+,+)

)2)
,

a =
(
g12
L + g′12

L

( mZ

m(+,+)

)2)
−
(
g12
R + g′12

R

( mZ

m(+,+)

)2)
. (3.96)

3.4.3 Loop-level Lepton Flavor Violation

We now turn to lepton flavor violation at the loop level, in the form of µ →
eγ, which is mediated by penguin diagrams with different gauge and scalar
mediators. These processes have been studied in a fully 5D framework in [203].
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Here we will favor working in a KK picture as it makes the calculation more
transparent, as was done in [201], where only the Higgs-mediated loop was
considered. In addition we will also take into consideration the Z-loop and W -
loop contribution and most relevant for our model of SU(6) gauge-Higgs grand
unification, the scalar leptoquark. These calculations necessitate the careful
treatment of KK fermions for which we refer to [III].

The amplitude for a general process µ(p)→ e(p′)γ(q) reads A = e ε∗µ(q)Mµ

[244]. Gauge invariance constrains that the amplitude remains invariant under
εµ → εµ + qµ, leading to the general form

Mµ = ūp′(CLΣµ
L + CRΣµ

R)up/mµ, (3.97)

with:

Σµ
L =(pµ + p′,µ)PL − γµ(mePL +mµPR),

Σµ
R =(pµ + p′,µ)PR − γµ(mePR +mµPL). (3.98)

CL/R are model dependent coefficients that are calculated in the appendix
of [III]. For on-shell processes the above expression simplifies due to q2 = 0 and
ε∗µq

µ = 0 resulting in:

Mµ = ūp′i
σµνqν
mµ

(CLPL + CRPR)up. (3.99)

From this amplitude the decay width for µ→ eγ is given by:

Γ(µ→ eγ) =
(m2

µ −m2
e)3(|CL|2 + |CR|2)
16πm5

µ

. (3.100)

After dividing by the dominating µ → eνν̄ decay width of Γ(µ → eνν̄) =
m5
µG

2
F /192π3, the branching ratio is:

Br(µ→ eγ) = 12π2(C2
L + C2

R)
(GFm2

µ)2 . (3.101)

The branching ratio has been best constrained by the MEG experiment [245],
reading

Br(µ→ eγ) < 4.2× 10−13, (3.102)
at 90% CL. An update from MEG II [246] is expected in the upcoming years
with a projected sensitivity of:

Br(µ→ eγ) < 6× 10−14. (3.103)

The same diagrams that induce µ → eγ also create an electric dipole mo-
ment (and an anomalous magnetic moment). Using the above formulas, the
dipole (and magnetic) moment are dl = (C lL − C lR)/2ml = Im(C lL)/ml (and
al = (C lL + C lR)/e = 2Re(C lL)/e) for the diagonal elements C l∗R = C lL ≡ (CL)ll.
In particular, the very stringent bound on an electron electric dipole moment
de/e < 0.11× 10−28cm at 90% will be used to constrain the model [247].
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Figure 3.1: The current bound on µ− e conversion in titanium (left) and the future
bound in aluminium (right), together with the results of our scan as a function of 1/R′.
The points in the red (blue) region are (expected to be) excluded.

3.4.4 Results

We now perform a scan of the model such that the SM mass hierarchies, the
CKM matrix and the PMNS matrix are reproduced to within 20% accuracy.
These datapoints are then used to evaluate the constraints from the flavor
observables discussed above.

In Fig. 3.1, we illustrate the constraints coming from µ − e conversion.
The current bound from titanium is rather weak for our model and can be
neglected for 1/R′ > 3 TeV. However upcoming experiments in aluminium will
exclude the model for scales of up to 1/R′ < 10 TeV. These results agree with
previous studies of µ − e conversion in extra dimensional models [201], see
also [226,227,248].

In Fig. 3.2 we display the current and upcoming bound on the µ→ 3e decay
and the constraints from K − K̄ meson mixing. The current bound on µ→ 3e
is very weak but the upcoming constraint should exclude the model up to the
6 TeV region. In the quark sector, the constraint from K − K̄ meson mixing
is rather weak too. The bounds from µ − e conversion in titanium therefore
provide the more reliable tree level constraint on the model. Our results agree
relatively well with previous studies of K − K̄ meson mixing [61,198].

Finally we display the current and upcoming bounds on the loop level decay
of µ → eγ on the left panel of Fig. 3.3. This process excludes IR scales 1/R′

lower than 20 TeV. It provides therefore the most stringent constraint on the
IR scale of the model from flavor. The future improvement will probe the
parameter space for 1/R′ < 30 TeV. On the right panel of Fig. 3.3, we display
the breakdown of the Br(µ→ eγ) branching ratio in terms of the different loop
contributions (under the assumption that only one mediator is present). The
leptoquark contribution gives the strongest, with the Higgs boson and W/Z
boson contributions being subleading. This allows us to understand the more
constraining nature of our results in comparison to the literature [201] since
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Figure 3.2: Current (red) and future (blue) constraints on the µ → 3e decay (left)
and on the (ImC4

K)−1/2 operator (right), together with the results of our scan as a
function of 1/R′.
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Figure 3.3: The current (red) and future (blue) constraints on the µ → eγ decay,
shown together with the results of our scan (left), and the relative size of the leptoquark
(blue), Higgs (red), Z boson (green), and W boson (black) contributions (right), as a
function of the IR scale 1/R′.

colored scalars are generally absent in non-GUT gauge-Higgs unification. The
results from the electron electric dipole moment are shown in Fig. 3.4 and are
of similar strength as the future bound on the µ → eγ measurement. Again,
the leptoquark contributes the most.

The above results are an example of a broader issue in models that address
the hierarchy problem. The flavor bounds for models that address the hier-
archy problem will often be much larger than naturalness in the Higgs sector
allows for. This has resulted in the use of flavor symmetries and the so-called
minimal flavor violation (MFV) approach [249] in order to keep these bounds
under control. When applying this approach to models with a warped extra
dimension [229], it leads to less stringent flavor bounds, but one loses the ability
to fully explain the SM mass and flavor hierarchies with order one parameters.
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Figure 3.4: The current constraints on the electron electric dipole moment, shown
together with the results of our scan (left), and relative size of the leptoquark (blue),
Higgs (red), Z boson (green), and W boson (black) contributions (right), as a function
of the IR scale 1/R′.

3.5 The Scalar Potential

We now proceed with the calculation of the scalar potential. As discussed there
are three scalars in the spectrum: the Higgs doublet, a leptoquark and a singlet.
The scalar potential will therefore consist of three directions in field space. As
seen in Sec. 3.1, in order to obtain a finite potential one needs to sum over the
whole KK tower and apply the Coleman-Weinberg formula. Using dimensional
regularization and techniques of complex analysis, this sum over KK modes can
be neatly rewritten as the following integral (see for example [137,250])

V (h, c, s) =
∑
r

Vr(h, c, s) =
∑
r

Nr

(4π)2

∫ ∞

0
dp p3 log

(
ρr(−p2, h, c, s)

)
, (3.104)

where Nr = 3 for gauge bosons, Nr = −4Nc for quarks, and ρr denotes the
corresponding spectral function, whose roots at −p2 = m2

n;r, n ∈ N encode
the physical spectrum of the KK tower associated to particle r. ρr simply
follows from solving the equations of motions in the presence of VEVs. In
the holographic gauge the dependence can be completely gauged onto the IR
boundary as discussed in Sec. 3.1 and the physical spectrum is encoded in
the IR boundary conditions. The holographic gauge transformation on the IR
brane for a warped extra dimension reads (see Eq (3.11)):

Ω(z = R′) = exp
(
ivâT â/f

)
, f ≡ 2

√
R

g5R′ . (3.105)

f is called the symmetry breaking scale and refers to the connection between
models of gauge-Higgs unification with models of composite Higgs, a connection
we will illustrate in Chapter 4. The largest contributions to the Higgs potential
comes from the particles that couple in largest fashion to the Higgs: the top
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Figure 3.5: Left panel: The Higgs mass as a function of the top mass. Points in red
feature Mũ > 0 and predict the wrong Higgs mass while the points in blue belong to
Mũ < 0 and are compatible with the correct Higgs mass. Right panel: The mass of
the leptoquark versus the top quark mass for the benchmark 1/R′ = 10 TeV. Points in
red (blue) feature Mũ > 0 (Mũ < 0).

quark and the W/Z boson. Interestingly, due to the incomplete filling of the
fermions into SU(6) representations there is also the exotic up-type quark that
is embedded in the same 20 as the top. Therefore it will couple with similar
strength as the top, being also localized heavily in the IR. In general the poten-
tial in Eq. (3.104) can be expanded in the Higgs VEV resulting in the following
functional form for the Higgs potential

V (h) ≈ α sin2(v/f) + β sin4(v/f), (3.106)

where α, β consists of a momentum integral depending on the top, exotic and
electroweak gauge bosons parameters. The resulting Higgs VEV from such a
potential and the resulting Higgs mass can be found from minimizing the above
potential:

sin(v/f)2 = −α2β , m2
h = 8β/f2 sin2(v/f). (3.107)

In order to evade the discussed flavor bounds, especially coming from µ→ eγ,
a high symmetry breaking scale of f ∼ 10 TeV is necessary. From the first
condition one can see this will imply a level of fine-tuning in the Higgs sector at
the promille level ∼ (v/f)2. However, once the Higgs potential is tuned to give
the correct VEV, the Higgs mass is a non-trivial result. The numerical analysis
from the author’s paper in [III] shows that no additional tuning is necessary
and one gets the correct Higgs mass after tuning for the correct Higgs VEV, as
shown in Fig. 3.5. We also note the importance of the exotic sector with the sign
of the UV brane mass, Mũ, resulting in two branches with different predictions
for the Higgs mass. Now that we have studied the Higgs potential, we turn to
the analysis of the other directions in field space, namely the leptoquark VEV,
c, and the singlet VEV, s.
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3.5.1 Generation of the Leptoquark Mass

Since we do not need to fine tune for a small VEV in the case of the leptoquark
or singlet (on the contrary we do not wish a leptoquark VEV, c, breaking color
and charge), one can employ a more robust and analytical (but approximate)
calculation that exploits the low-energy spectrum of the model. The result of
this calculation will show that the leptoquark does not acquire a VEV and
gets a mass of around mS = 0.3m∗, with m∗ ∼ 2/R′, the generic scale at
which the first KK states appear. This result follows from an analysis of the
contributions to the potential along a small but non-zero VEV c. Such a VEV,
implies the breaking of S(3)c×U(1)Y →SU(2)×U(1), giving rise to 5 Goldstone
scalars that will be absorbed partly by the gluons and partly by the hypercharge
boson. The spectrum thus consists of one massive gauge boson Zc which is a
mixture between the hypercharge boson and a gluon, and four massive Wc

gauge bosons corresponding to the massive gluons. The mass relations follow
straightforwardly

mZc = gsc

2 cos θW,c
,

mWc =gsc

2 , (3.108)

with cos2 θW,c = 9g2
s/(12g2

s + 4g′,2) the cosine of the color Weinberg angle
squared. These massive gauge bosons will stabilize the potential along the
color-broken direction in field space, preventing the formation of a VEV. One
should also analyse the fermion content which can be important. Usually the
top is the most important contribution to the Higgs potential, but in the color
broken Universe, the right-handed top will mix with the electron singlet, form-
ing the particle Tc. The Yukawa coupling of this particle to the leptoquark is
(due to SU(5) symmetry) equal to the usual top Yukawa, yt resulting in the
following mass:

mTc = ytc√
2
. (3.109)

Now that we understand the low-energy spectrum in the color-broken Universe,
one can estimate its contribution to the potential. For this we use an ansatz for
the spectral functions of these particles [250]. We will use knowledge about its
low-energy behavior, exhibiting a pole fr;1 → a/p2 as p→ 0 with a a constant
determined by its coupling to the leptoquark, and its high-energy behavior,
featuring exponential damping above the KK scale m∗, we then arrive at:

V (c) =4× 3
16π2

∫ ∞

0
dpp3 log

(
1 + (gsf/m∗)2 sin2(c/2f)

sinh2(p/m∗)

)
+ 3

16π2

∫ ∞

0
dpp3 log

(
1 + (gsf/m∗ cos θW,c)2 sin2(c/2f)

sinh2(p/m∗)

)
− 4

16π2

∫ ∞

0
dpp3 log

(
1 + (ytf/m∗)2 sin2(c/

√
2f)

sinh2(p/m∗)

)
. (3.110)
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Approximating for simplicity cos2 θW,c ≈ 1, we find the mass squared of the
leptoquark at the origin to be:

m2
S = ∂2V (c)

∂2c
|c=0 = 3ζ(3)(15g2

s − 8y2
t )

64π2 m2
∗ ≈ (0.3m∗)2. (3.111)

Interestingly, we find the mass squared to be positive and therefore color re-
mains unbroken. This is a general result and is due to the largeness of the
strong coupling with respect to the top Yukawa (and the many more gauge
boson degrees of freedom in comparison to fermionic degrees of freedom). This
scalar leptoquark can be an interesting target for LHC searches, with the cur-
rent bound being mS > 1.4 TeV [251], as it will decay almost exclusively into
tτ . This is since the Yukawa couplings of the leptoquark are highly hierarchi-
cal in generation space with the more IR localized fermions, such as the top
and tau, having large coupling. On the right panel of Fig. 3.5, we show the
exact numerical results of evaluating the leptoquark mass. We notice unsur-
prisingly that the exotic sector also contributes to the mass generation of the
leptoquark, an effect we neglected in the our estimation. Instead, the numerical
results point towards a lighter leptoquark of scale mS ≈ (0.15 − 0.2m∗). Nev-
ertheless, the leptoquark is unambiguously lighter than the other lightest KK
bosons appearing at m∗ and is thus the best collider target for these models.

3.5.2 Generation of the Singlet Mass

We now turn to the question of the singlet scalar s. The singlet scalar corre-
sponds to the following generator of SU(6)

TX = c× diag(1, 1, 1, 1, 1− 5), (3.112)

with c = 1/
√

15 a normalization factor. This generator acts on the different
SU(5) representation as follows, where we omit for clarity the normalization
factor:

6→ 51 ⊕ 1−5

15→ 102 ⊕ 5−4

20→ 10−3 ⊕ 10∗
3. (3.113)

To understand its impact we go to the holographic basis, and thus perform the
following gauge transformation

U = exp
(
iTXs/f

)
, (3.114)

which removes the singlet from the bulk but instead it acts on the IR brane.
Therefore the IR brane mass from Eq.(3.50) in this gauge becomes:

SIR = −
∫

d4x
(R′

R

)4(
Mq/ee

i5cs
f Ψ̄R,20,10ΨL,15,10 +Md/le

−i5cs
f Ψ̄R,6,5ΨL,15,5+

Mνe
− i5cs

f Ψ̄R,1,1ΨL,6,1 + h.c.
)
|z=R′ .
(3.115)
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However, one can remove the s dependence above by appropriate vector-like
transformation for the bulk fermions ΨL/R → eins/fΨL/R. These are vector-like
transformation under SU(6), however when restricted under the GSM these are
chiral and such transformation on the zero modes of a general ΨL/R do not
conserve the measure of the path integral which will induce the following terms

LWZW = + 1
32π2

1
f
s(g2

Y nBε
µναβBµνBαβ+g2nW ε

µναβTr(WµνWαβ)

+g2
snGε

µναβTr(GµνGαβ)), (3.116)

with the ni dependent on the specific incarnation of the model. The specific
numbers will not matter but very interestingly, QCD instantons field config-
uration [252], originally found to solve the U(1)A problem of QCD [253] will
then generate a potential for the singlet giving it a potential of the order of the
QCD scale:

m2
singletf

2 ∼ m2
πf

2
π . (3.117)

Our singlet scalar acts exactly as a bona fide axion with TX the generator of the
anomalous symmetry under QCD, solving the CP problem [254,255]. However
since the decay constant of the axion particle is tied to the electroweak scale
f , if we wish to conserve a semi-natural Higgs potential, such heavy axions
are ruled out. Current bounds require f > 108 GeV, resulting in a very light
axion. It is an interesting model building feature of SU(6) gauge-Higgs grand
unification that it features the possibility to have a QCD axion and does not
require any additional model building.

We will not pursue this option as it would imply a very large tuning in the
Higgs potential, keeping the scale at f ∼ 10 TeV instead, in line with flavor
bounds. However we should then still find a way to generate a large mass
for the singlet which would otherwise be too light. We omitted one crucial
ingredient, the UV brane mass of Eq. (3.51) which connects the exotic fermions.
Indeed the chiral rotations that removed s from the IR brane and the bulk, will
reintroduce the singlet dependence on the UV brane through this UV brane
mass. It becomes therefore impossible to remove the singlet from both branes
and a potential for the singlet will be generated due to loops involving this
exotic fermion. One can again estimate the size of the potential from an ansatz.
Similar to the leptoquark, the high-energy behavior is exponentially damped for
p > m∗, we will therefore use a cosh(p/m∗)2 for the KK damping behavior. In
contrast to the leptoquark calculation, the exotic has a vector-like fermion mass
mE (see Eq. (3.65) for its value in terms of 5D parameters) which means the
propagator will go like mE/(p2 +m2

E) (the overall potential is proportional the
chirality-flipping part of the fermion propagator). Adding some more factors to
recover a dimensionless expression and inserting an overall factor of yt as the
exotic couples to the KK modes with similar strength as the top quark, we find
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the following leading singlet potential

V (s) = −4× 3
16π2

∫ ∞

0
dpp3 log

(
1 + mEyt

p2 +m2
E

m∗
f2

m2
∗

sin2(s/
√

2f)
cosh2(p/m∗)

)
, (3.118)

which leads to the following singlet mass

m2
singlet = ∂2V (s)

∂2s
≈
{
−(0.3m∗)2(m∗/mE), m∗ � mE

−(0.3m∗)2(mE/m∗), mE � m∗
, (3.119)

where we approximate the singlet potential for two different regimes. We notice
that the sign of mE becomes physical and determines whether the singlet gets
a VEV. This is in agreement with the numerical results from our paper where
mE < 0 corresponded to a zero VEV for the singlet. We note that the exotics
of the first two generations have an unsuppressed brane mass of mE ∼ 1/R,
and thus these exotics contribute negligibly to the mass of the singlet scalar.
For the third-generation exotic, interestingly the vector-like mass can become
around the IR scale due to its IR localisation (see Eq. (3.65)). Both of the
limiting cases mE � m∗ and mE � m∗ would result in a too light scalar.
Interpolating the above results, we find a viable singlet scalar for mE ∼ m∗,
resulting in a singlet mass of around msinglet ≈ 0.3m∗. We note that it would
be, similar to the leptoquark, lighter than the other KK states and therefore
be a promising target for collider searches. Indeed due to a non-zero coupling
to the dual gluon field strength nG, it could be produced at hadron colliders
with subsequent decay into two photons.

3.6 Summary

We started this chapter with an introduction to the elegant mechanism of
gauge-Higgs unification which protects the Higgs from radiative corrections
due to the higher-dimensional gauge symmetry at small scales. After which
we investigated different flavors of extra dimensions: a flat and a warped extra
dimension. We saw that in order to have a model of gauge-Higgs unification
which can reproduce the correct four-dimensional gravity without fine-tuning,
a warped extra dimension is preferred.

We then constructed a model of gauge-Higgs grand unification based on
the bulk symmetry SU(6). Compared with models of electroweak gauge-Higgs
unification, these models are motivated by a wish to unify the SM gauge forces
and at the same time unify the SM fermions into simpler representation of
the large gauge group. We constructed a minimal model based on four bulk
representations of SU(6) and used the power of the fifth dimension to explain
the SM mass hierarchies, including neutrino masses, and the hierarchical CKM
matrix. Due to the quark-lepton unification, the resulting PMNS matrix is
anarchic which matches experimental observation. Nevertheless, since such a
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setup allows for more flavor-breaking couplings compared with the mere three
Yukawa matrices of the SM, and are necessary to explain the SM mass hierar-
chies, stringent constraints from flavor observables are expected. We evaluated
a wide range of these observables and found a tension with obtaining a natural
Higgs potential, implying a fine tuning at the promille level. Other signatures
of the model include a leptoquark and singlet scalar whose mass generation
we studied in detail and were shown to be below the rest of the KK states at
∼ 0.3m∗ which could be targets for collider searches.

This chapter presented a change in spirit to the approach of the previous
chapter (and the upcoming one) giving up on a fully natural Higgs potential
but providing instead a model of unification with a compelling flavor structure
from fully anarchic flavor mixings.



Chapter 4

A Natural Composite Higgs

In the previous chapter we entertained the idea that the Higgs is not a 4D
elementary scalar, instead it is the scalar component of a five-dimensional gauge
field. The five dimensional gauge symmetry is sufficient to forbid quadratically
sensitive quantum corrections to the Higgs. In this chapter we entertain the
closely related idea that the Higgs is a 4D composite scalar. The composite
nature of the Higgs means the quadratically sensitive quantum corrections are
naturally cut off at the scale of compositeness. Indeed the Higgs decomposes
into its more fundamental constituents above such a scale and ceases to exist.
However these models have come under pressure from null results at the LHC,
since a composite Higgs means a composite sector with a whole host of other
resonances. In particular, the SM fermions need to connect to the composite
sector in order to gain a mass from the composite Higgs. The top, being the
heaviest SM fermion, is in that regard the most promising candidate to look
for signs of compositeness as its composite resonances are predicted to be light
if one wishes to avoid excessive fine-tuning. These light top partners have been
the target of many collider searches over the last years, their lower bounds now
reaching 1500 GeV which means generic incarnations of the composite Higgs
have reached levels of fine-tuning of 2%. The situation is even worsened as most
composite Higgs models suffer from the awkward double-tuning problem: the
quartic of the Higgs potential is generated at a subleading order with respect
to the quadratic, worsening the naive tuning.

We end this thesis with a novel solution to the problem of double-tuning
in models of composite Higgs through the introduction of mirror fermions.
This mechanism goes beyond eliminating the problem of double fine-tuning by
reducing the naive estimate of fine-tuning by a factor of four, thereby showing
how a natural composite Higgs with tuning of 10% is still perfectly viable in
the third run of the LHC.

This chapter begins in Sec. 4.1 with a motivation and introduction to mod-
els of composite Higgs. The necessary tools for a composite Higgs model builder
are provided. We give a brief overview to the different incarnations of compos-
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ite Higgs which will bring us to the interesting connection between models of
composite Higgs and models of gauge-Higgs unification, which were the topic
of the last chapter, bringing a close to the theoretical underpinnings of this
thesis. In Sec. 4.2 we use the developed tools to give a brief introduction to the
minimal composite Higgs model which will serve as an example of the double-
tuning problem and the issue of the light top partners. Finally in Sec. 4.3 we
present our solution to the double-tuning problem of composite Higgs using
mirror fermions. We investigate the mechanism through a phenomenological
model and discuss the resulting drastic reduction in fine-tuning. We end with
a discussion of the unique experimental signatures of the mirror fermions.

4.1 Composite Higgs
The original models of composite Higgs [256–262] begin as an interpolation
between the SM in which the Higgs is a fundamental scalar and models of
technicolor [263, 264] (TC) which lack a scalar altogether. To understand the
motivation behind this interpolation and thus models of composite Higgs, one
has to understand the shortcomings of this latter theory first.

4.1.1 Technicolor

Technicolor is in essence a scaled up version of QCD in which electroweak
symmetry is broken dynamically by the strong interactions of a new force:
technicolor (see [82] for a review). Therefore those who wish to understand
technicolor, QCD is a beautiful template with the definite advantage that it
is realised in nature. QCD is a non-abelian gauge group based on SU(3)c
whose coupling becomes strongly coupled in the infrared, eventually producing
a whole host of composite particles/resonances with the curious property of
color confinement. Although confinement is not proven, using the tools of
anomaly matching [29] between the UV asymptotically free theory of quarks
and gluons and the IR confined theory of baryons and mesons, one can proof
that the flavor symmetry for the light quarks in the fermion sector of QCD,
namely chiral symmetry, is spontaneously broken to its vector subgroup:

SU(2)L × SU(2)R → SU(2)V . (4.1)

This (approximate) flavor symmetry is only valid for the up and down quark
(and to a lesser degree the strange quark) as the chiral symmetry is heavily
broken by the heavy quark masses for the other flavors, indeed a Dirac mass
constrains the left- and right-handed parts to transform equally. This pattern
of symmetry breaking is also experimentally observed as the spectrum of QCD
appears to be arranged by only one SU(2) symmetry, namely the unbroken
SU(2)V . In contrast the axial generators are spontaneously broken by the
following VEV

〈Ψ̄iΨj〉 = Λ3
QCDδij , (4.2)
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where i = 1, 2 is a flavor index for the up and down quark. Indeed we see
that a vector transformation preserves the vacuum while an axial transforma-
tion violates it. One can now describe the low-energy physics of the Gold-
stones purely on the basis of the above pattern of symmetry breaking, which
by Goldstone’s theorem produces three Goldstone bosons, the three QCD pi-
ons: π0, π±. However there is one element missing, namely that a part of the
above global flavor symmetry is gauged, namely the electroweak gauge group
which implies an interaction between the gauge bosons, W a

µ and the weak cur-
rent Jaµ,L = (q̄LγµτaqL)1, which is nothing but the usual covariant derivative.
Crucially, by Goldstone’s theorem, the pions πa are excited from the vacuum by
generators that are not conserved by the vacuum, namely the axial generator
JaA,µ = JaR,µ − JaL,µ

〈Ω|JaA,µ|πb(p)〉 = ipµfπδ
ab, (4.3)

with fπ setting the scale of chiral symmetry breaking. Such a matrix element
implies the following Lagrangian interaction JaA,µ∂

µπa, which results in pion
exchange in the W a boson 2-point function and a pole in the propagator of the
W a and leads to a mass for the W -boson. The resulting mass is however much
below the correct electroweak scale, set instead by the scale of chiral symmetry
breaking

mW = gfπ
2 ∼ 29 MeV, (4.4)

many order of magnitude below its true mass. Moreover electromagnetism
Q = T 3

L + Y remains intact as it is not broken by the vacuum (4.2). Therefore
we see that all the qualitative features of EWSB are satisfied, only the scale
is wrong. Moreover no fundamental scalar Higgs was necessary therefore no
hierarchy problem was introduced. Instead the scale was set by the formation
of a fermion condensate as in (4.2), triggered by the logarithmically growing
coupling constant as it flows from the UV to the IR. This mechanism of creating
large hierarchies in scales through a slowly running coupling constant is known
as dimensional transmutation and is the backbone of non-SUSY solutions to
the hierarchy problem.

Technicolor therefore comes out as a scaling up of QCD using a new strong
gauge group, dubbed technicolor, with a new set of technifermions charged
under the new force. A spontaneous breaking of a chiral symmetry amongst
the technifermions as in (4.1), due to presumable confinement of the new force,
will provide the necessary Goldstones that, after identifying parts of the chiral
symmetry with the electroweak gauge group and gauging it, will give a mass to
the electroweak gauge bosons. This time however the scale of chiral symmetry
breaking is set by:

fTC = 246 GeV. (4.5)

1For simplicity we omit the U(1)Y gauge group which gauges the linear combination Y =
T 3

R + B/2
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Although it furnishes a mass to the electroweak bosons, the SM fermions still
remain massless since they do not couple to the condensate. This was addressed
in models of Extended Technicolor (ETC) [265,266] where the technicolor gauge
interactions, GTC , are extended to a larger gauge group of extended technicolor,
GETC , broken at a higher scale ΛETC to GTC such that the SM fermions, ψL/R,
and technicolor fermions, QL/R, can interact through the exchange of the heavy
ETC bosons. Indeed such exchange will give rise to terms such as:

LETC ⊃ βab
Q̄LT

aQRψ̄RT
bψL

Λ2
ETC

. (4.6)

Once the technifermions form a condensate (4.2) we find masses for the SM
fermions on the order of:

mψ ∼ β
Λ3
TC

Λ2
ETC

. (4.7)

However the breaking of GETC will also induce other four fermions operators
than the ones from Eq. 4.6, including operators with only SM fermions

γab
ψ̄LT

aψRψ̄RT
bψL

Λ2
ETC

, (4.8)

which will induce FCNCs. It becomes especially difficult to reconcile the heavy
quarks while sufficiently suppressing FCNCs. We note that walking techni-
color [267], in which the technicolor theory is not asymptotically free but in-
stead exists at a conformal fixed point, meaning the coupling constant is ap-
proximately constant instead of going to zero like in QCD, these problems
can be alleviated. Indeed in such a theory the condensate 〈Q̄Q〉 is subject to
large power-law renormalization effects and one can generate sufficiently large
fermion masses despite a large ΛETC necessary to suppress FCNCs.

This ends our brief exploration of technicolor. Although a beautiful way to
achieve EWSB without the need for an elementary scalar, it does not seem to
be the way nature has chosen to break electroweak symmetry. Its final nail in
the coffin is the discovery of a scalar particle at the LHC with seemingly all
the properties of a Higgs particle. Nor in QCD nor in technicolor, is there a
particle that can qualify as a Higgs boson. Of course there are 0+ bosons in
the spectrum of QCD but these are very broad and do not have the special
relationship to the absorbed pion Goldstones that a Higgs would have, such as
couplings proportional to mass.

Now that the main ideas behind technicolor have been illustrated, one can
understand its progeny: composite Higgs models which do feature a light Higgs
in its spectrum.

4.1.2 Composite Higgs

Models of composite Higgs can be understood as a modification of the flavor
symmetry of a technicolor type theory, to include as a Goldstone not just a



4.1. Composite Higgs 81

triplet of pions but a full electroweak doublet that can function as a Higgs
doublet. In the subsequent discussion we will consider these models in general
terms: we consider a strongly coupled theory with a global flavor symmetry G.
Moreover, we assume the strongly coupled theory condenses, at a scale f , such
that the ground state of the theory doesn’t exhibit the full flavor symmetry
but instead a smaller subgroup H. In contrast to technicolor we do not want
electroweak symmetry to be broken by the condensate. A crucial modification
of the technicolor setup is therefore that one can embed the electroweak gauge
group in H:

SU(2)L × U(1)Y ⊂ H. (4.9)

Instead, composite Higgs models wish to break electroweak symmetry in a
second step by a Higgs doublet that is contained in the low-energy spectrum
of the composite sector. The symmetry breaking scale f is therefore separated
from the actual electroweak symmetry breaking scale, v, unlike in technicolor
as in Eq. (4.5). This feature allows for a separation in scales between v and f ,
decoupling the effects of the strongly coupled sector as we take v � f . Again,
using Goldstone’s theorem one can choose an appropriate global symmetry G
and the symmetry H of the ground state such that the Goldstones include an
SU(2) doublet:

G/H ⊃ (1, 2)1/2. (4.10)

Although the above characterisation might seem extremely vague, it is
sufficient to construct a unique phenomenological Lagrangian of the result-
ing Goldstone bosons based on the symmetry breaking pattern G → H. In-
deed, this is the famous CCWZ construction by Callan, Coleman, Wess and
Zumino [268, 269] who made the construction of such Lagrangians based on
symmetry considerations, into a simple recipe one can follow. The starting
point of the construction are the Goldstone fields, Πâ(x), that correspond to
arbitrary local fluctuations in G around the vacuum ~V of the theory:

~Φ(x) = exp
(
i
2
f

Πâ(x)T â
)
~V . (4.11)

Only the broken generators, T â, of the vacuum, namely T â~V 6= 0 correspond to
physical Goldstones. Unbroken generators, denoted by T a do not correspond
to Goldstone degrees of freedom since they become annihilated by the vacuum,
T a~V = 0. If G is an exact global symmetry, the Goldstones are exactly massless
and their VEVs are unobservable - indicating the absence of a potential for
them. Indeed any 〈Πâ〉 6= 0 can be removed by a redefinition of the Πâ fields
using the global symmetry G.

The situation changes and becomes more interesting once we introduce ex-
plicit G-breaking interactions. The Goldstones get a potential from these in-
teractions and are no longer massless: they become pseudo-Nambu-Goldstone
bosons (pNGBs). Moreover, its VEV, 〈Πâ〉 = vâ, becomes physical as we can-
not use the explicitly broken G symmetry to redefine it away. The exact value
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of v depends on the model and results from the minimization of the pNGB
potential but generically we expect v ∼ f . In that case electroweak symmetry
is maximally broken at the scale of condensation and the model is technically
no different from technicolor. The beauty of the composite Higgs models lies in
the possibility, in principle, of having the vacuum point closely in the symmetry
preserving direction ~V and thus achieving a scale separation between the con-
densation scale and the electroweak symmetry breaking scale. This condition
is expressed in the literature as the following ratio:

ξ ≡ v2

f2 � 1. (4.12)

In the limit of ξ → 0 the strong sector decouples from electroweak physics
and only the pNGB Higgs remains in the spectrum. Effectively we recover a
SM Higgs as all the non-standard effects due to the composite sector decouple.
However a small ξ as in Eq. (4.12) will usually only occur as a result of a lot of
fine-tuning in the pNGB potential, indeed since the potential is generated at
the scale f , a VEV of order v, will then require a fine-tuning of

∆CH = f2

v2 , (4.13)

and one recovers the same quadratic sensitivity of the Higgs potential to higher
scales as is well known from the SM. Therefore ideally the symmetry breaking
scale f is not too high and experimental signatures of these models from the
composite sector are expected. The absence of signals of new physics how-
ever, pushes composite Higgs models into fine-tuned areas. A solution to this
persistent problem will be presented in Sec. 4.3.

4.1.3 CCWZ-construction

We now continue the general construction of the Lagrangian for the Goldstones
following the CCWZ construction. We will largely follow the lecture notes
by Panico and Wulzer [30]. Since the construction of our Lagrangian is merely
constrained by symmetry requirements, it becomes of paramount importance to
understand how the Goldstones, Πâ(x), transform under the symmetry group
G. Instead of dealing directly with the Goldstones, it is more convenient to
consider them in their exponentiated form, the Goldstone matrix

U [Π] = exp
(
i
2
f

ΠâT â
)
, (4.14)

which has the following convenient transformation properties under a generic
element g ∈ G

U [Π]→ g · U [Π] · h−1[Π; g], (4.15)

with h[Π; g] ∈ H in the unbroken group and depending on the element g.
This transformation rule for the Goldstone matrix is comparatively easy (as
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opposed to the transformation properties of the Goldstones themselves) and
will serve to construct our effective Lagrangian for the Goldstone bosons. It is
nevertheless illuminating to consider the transformation rules on the Goldstone
bosons themselves. For a general transformation under the unbroken group
h = eiα

aTa , the Goldstones transform as

Πâ → (eiαaTa
π )b̂âΠb̂, (4.16)

with T âπ the generators corresponding to the representation, rπ of H under
which the adjoint of G, Ad(G), decomposes under H:

Ad(G) = Ad(H)⊕ rπ. (4.17)

Unsurprisingly, the Goldstones transform linearly under the unbroken group.
However, the full symmetry is G and the broken generators, g = eiα

âT â , also
correspond to symmetries of the theory, but their transformation rule can only
be worked out at the infinitesimal level:

Πâ → Πâ + f

2αâ +O(Π2). (4.18)

Therefore due to the complicated non-linear transformation properties of the
Goldstones, it becomes clear that the Goldstone matrix is a much more trans-
parent object in the construction of a G-symmetric Lagrangian. Notice also
that the above shift symmetry makes clear that our Lagrangian can only con-
tain derivative interactions for the Goldstones or in other words no potential is
allowed: the Goldstones are massless.

One can now start the construction of invariants which will serve as the basis
for our Lagrangian. In order to respect the shift symmetry and to avoid trivial
invariants such as U †[Π]U [Π] = 1, we have to include at least one derivative.
The simplest example of which is the Maurer-Cartan form

iU [Π]−1∂µU [Π] = dµ,â[Π]T â + eµ,a[Π]T a ≡ dµ + eµ, (4.19)

which we decompose along the broken and unbroken generators. Through the
transformation rule of the Goldstone matrix (4.15), one can deduce the follow-
ing transformation properties of the d and e symbols:

dµ[Π]→ h[Π, g] · dµ[Π] · h[Π, g]−1,

eµ[Π]→ h[Π, g] · (eµ[Π] + i∂µ) · h[Π, g]−1. (4.20)

Thus we see that d transforms linearly under the representation rπ just as the
Goldstones. This is a simple consequence of the following expansion:

dµ,â = −
√

2
f
∂µΠâ +O(Π2). (4.21)
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However importantly, d keeps transforming under the full symmetry group G
which is why it is the relevant object to construct invariants. The e symbol
transforms as a gauge field associated with local H invariance. Therefore it
can be used to construct covariant derivatives and field-strengths. The CCWZ
prescription is now to construct invariants with the d and e symbols. The
transformation rules of these symbols, although transforming under the full
symmetry G, can be expressed concisely by elements h ∈ H. Therefore it suf-
fices to construct H-invariant symbols, G-invariance will follow automatically.
The leading term is the 2-derivative Lagrangian:

L∂2 = f2

4 d
â
µd

µ,â = 1
2∂µΠâ∂µΠâ +O

(
(∂Π)2(Π/f)2). (4.22)

It contains the kinetic terms for the Goldstones with an infinite set of 2-
derivative interactions uniquely determined by the symmetry pattern of the
Lagrangian G→ H and the scale f . Any concrete model, such as for example
a linear sigma model or a multi-site model as we will discuss later, based on
that pattern of symmetry breaking will reproduce the exact same Lagrangian
at the two-derivative level.

The CCWZ construction is easily generalized to the case when (parts of)
the symmetries of G are gauged. The Lagrangian now has to be invariant under
local transformations which means coupling the currents of the strong sector
to the gauge fields:

L → L+Aµ,AJ
µ,A. (4.23)

Therefore the partial derivative in the construction of the Maurer-Cartan form
in Eq.(4.19) has to be promoted to the covariant derivative

iU [Π]−1(Aµ + ∂µ)U [Π] = dµ,â[Π, A]T â + eµ,a[Π, A]T a ≡ dµ + eµ, (4.24)

with the d and e symbols now depending on the gauge fields A. The transfor-
mation properties are fully analogous except that they now transform under
local transformations. The leading 2-derivative Lagrangian now also includes
interactions with the gauge fields.

Although the 2-derivative Lagrangian is unique, fully determined by the
symmetry breaking scale, higher order operators are not fixed. A complete UV
description of the strong sector would allow the determination of the coeffi-
cients of these higher order operators. Later we will consider two possible UV
completions of the composite sector namely, extra dimensions and multi-site
models. For now, we want to develop a power counting rule to estimate these
operators. Since higher order operators are the result of integrating out the
resonances of the composite sector, we need to specify the typical mass m∗
and the couplings g∗ of the bosonic, σ and fermionic, Ψ resonances. Theories
that can be fully specified with two such parameters are called One Scale One
Coupling (1S1C) models. Using Naive Dimensional Analysis (NDA) [270,271],
the derived power counting rule is given by the following Lagrangian
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LEFT = m4
∗

g2
∗
Ltree

[ ∂
m∗

,
g∗Π
m∗

,
g∗σ

m∗
,
g∗Ψ
m

3/2
∗

,
gAµ
m∗

,
λψ

m
3/2
∗

]
, (4.25)

where the last two entries represent higher dimensional operators involving
elementary fermion fields, ψ, and gauge fields, Aµ, that communicate to the
strong sector with coupling λ and g respectively. We introduce these couplings
in the next section. It might occur that an operator cannot be generated at tree
level and then becomes suppressed by additional loop factors (1/16π2)n. The
requirement of the 2-derivative Lagrangian that insertions of the Goldstones
are suppressed by f , results in the following relation between the two scales in
the model:

m∗ = g∗f. (4.26)

This relation illustrates that indeed, by taking 1 < g∗ < 4π, one can separate
the Goldstones, interacting with scale f , from the other composite resonances
of scale m∗. Indeed to take QCD as an example, a genuine strongly coupled
theory in which g∗ ≈ 4π, the pion decay constant, fπ ∼ 100 MeV is an order of
magnitude below the first genuine composite resonance such as the proton and
neutron at ∼ 1 GeV.

4.1.4 Generating the pNGB Potential

Until now, the Goldstones were massless as the G symmetry was kept intact.
In this section we will develop the consequences of breaking the G symmetry
explicitly which will mean a potential for the Goldstones, now pseudo-Nambu-
Goldstone bosons (pNGBs), is generated at the loop-level. This potential will
eventually lead to electroweak symmetry breaking if the Higgs pNGB gets a
VEV.

There are two types of G-symmetry breaking interactions we consider. The
first comes from gauging the currents of the strong sector, Jµ, that correspond
to the electroweak symmetries:

Lgauge
int = gAµJ

µ. (4.27)

The gauging naturally breaks the global symmetry G since we only gauge the
SU(2)L × U(1)Y ⊂ H subset of the full G currents. The second source of
G-symmetry breaking comes from the need to couple the SM fermions to the
source of EWSB, which is the strong sector. A very elegant way of achieving
this connection is through the hypothesis of partial compositeness [272] (PC)
in which we couple the SM fermions, ψ, to fermionic operators of the strong
sector OR transforming in a certain representation R of G:

LPC
int = λψ̄OR + h.c. . (4.28)

Such couplings also break the global symmetry G as the SM fermions (usually)
do not transform in full representations of G. The fermionic operator OR is
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expected to produce at least one resonance with a typical mass m∗ once the
strong sector condenses. The name partial compositeness refers to the fact that
the SM fermions will mass mix with these composite resonances called partners
thus gaining a mass. In the mass basis the SM fermions will therefore be
partly composite. The heavier SM fermions will have to mass mix with greater
strength and thus feature a larger coefficient λ in the equation above (4.28). In
consequence, the heavy SM fermions will exhibit more composite-like behavior
making them ideal targets for experimental signatures. We note that in 5D
warped holographic UV completions, the PC hypothesis corresponds to the
elegant embedding of SM fermions within a bulk 5D fermion of representation
R [165]. Whereas in fermionic UV completions of composite Higgs, it is a tough
task to generate the necessary mixings [273–278].

To determine the consequences of these two G-breaking interactions, we
denote both of these type of couplings as

L/G = gEΦSR, (4.29)

with Φ = ψ̄, Aµ denoting either a SM fermion or gauge field while SR denotes
a composite operator in a generic representation R, representing either the
conserved currents or fermionic operators. gE parametrizes the strength of
the coupling between the strong and elementary sector gE = g, g′, gs, λL, λR.
Furthermore we will promote the SM field Φ to a G representation, using the
spurion method, thereby restoring (temporarily) G-invariance namely

L/G = gEΦαΛαI (SR)I , (4.30)

where I represents an index in the representation R of the strong sector while
α represents an index of a representation of the elementary sector, such as a
weak or color index. At the end of the calculation, we set the spurions, Λ, back
to their true G-breaking background value.

Now that the spurions transform in G representations, one can dress them
by acting with the Goldstone matrix in the appropriate representation, UR,
such that they transform under the full symmetry G merely with h ∈ H ele-
ments:

ΛD = UR,†Λ. (4.31)

The dressed spurion ΛD will then decompose into H representations. One can
then proceed with the construction, as the CCWZ prescribes, of H-invariant
operators while G invariance will follow automatically. One can now construct
the leading invariants that represent the one-particle-irreducible loops with zero
external momentum, or in other words the effective potential. In order to
obtain a sensible expansion, one expands the effective potential in insertions of
spurions, or equivalently in powers of gE . When the spurions are set to their G-
breaking background values, we obtain the leading and subleading potentials
for the pNGB, V2[Π/f ] and V4[Π/f ] for two, respectively four insertions of
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gE . The prefactors for the potential can be estimated using again dimensional
analysis to be of the following order

L = Nm4
∗

64π2

[(gE
g∗

)2
V2[H/f ] +

(gE
g∗

)4
V4[H/f ] + ...

]
, (4.32)

with N the degrees of freedom of the particle circulating in the loop. In order
for the expansion in elementary couplings to make sense, one requires these
couplings to be smaller than the composite couplings:

gE < g∗. (4.33)

In other words, the elementary sector should merely be a weak perturbation of
the composite sector and G remains approximately a good symmetry.

4.1.5 UV Completions of Composite Higgs

The above formalism is very useful to parameterize the low-energy physics of a
pNGB Higgs based on a general coset G/H, but by no means have we provided
a realistic model of nature. We have discussed the composite Higgs in terms
of its symmetries without asking the question of what is it made of? Although
for most purposes such a symmetry based parametrization is enough, it is still
worthwhile to ask what a possible UV completion could look like. It would be
like investigating the theory of pions without asking what these pions could be
made up of. It is the answering of this question that lead to the discovery of
QCD, it is thus definitely a question worth asking.

The easiest possible answer for what the microscopic theory could be behind
a general coset G/H, is simply a fundamental scalar transforming in some
representation of G with a potential that gets a VEV resulting in a reduced
symmetry H of the vacuum. This is not a satisfactory answer as it replaces one
fundamental Higgs doublet with merely a new scalar, therefore reintroducing
the hierarchy problem.

Since scalars shouldn’t be used, one is naturally lead to using fermions to
achieve the pattern of symmetry breaking G → H. Taking inspiration from
QCD/Technicolor, it is known that fermion bilinears that condense, can trig-
ger the spontaneous breaking of a flavor symmetry without the use of scalars.
However the possible patterns of symmetry breaking is limited. Indeed one can
only have SU(N)2/SU(N), SU(N)/SO(N) or SU(2N)/Sp(2N) depending on
whether the representations of the fermions charged under the new strong gauge
group are complex, real or pseudo-real [279]. Notably even the minimal com-
posite Higgs based on the coset SO(5)/SO(4), which will be the subject of
our next section, has no fermionic UV completion. It would be therefore very
interesting whether different realizations of a composite Higgs exist that can
accommodate more exotic cosets.

The answer to the above came as a result of trying to find phenomenological
models of composite Higgs that allowed the Higgs potential to be calculated
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and not merely estimated using NDA. Indeed, the Higgs potential of Eq. (4.32)
simply arises as a quadratically divergent loop diagram that is simply cutoff
at the scale, Λ = m∗ = g∗f , where the physics becomes strongly coupled. If
one can reduce the degree of divergence of such loops to the extent that it
becomes logarithmically sensitive to the cutoff scale or even finite, the model
becomes much more predictive. Furthermore, the role of the resonances of the
strong sector remains unclear. It turns out the solution to both problems are
intrinsically linked. Inspired by models of dimensional deconstruction [280,281],
a mechanism called collective symmetry breaking [282, 283] was found to lower
to degree of divergence of the Higgs potential. It consists in enlarging the
global symmetry, for example by simply extending the global symmetry G
to G × G which is spontaneously broken to H × H, while the full diagonal
subgroup of G×G is gauged. Although such an extension doubles the amount of
Goldstones, the additional Goldstones are absorbed by the additional gauging of
the diagonal subgroup of G×G. It turns out now that the leading contribution
to the potential occurs from terms involving both sets of pNGBs lowering the
quadratic divergence into a logarithmic divergence. Indeed the gauging of the
diagonal subgroup of G × G implies also the existence of a global symmetry
which requires the pNGBs to transform collectively. In terms of Feynman
diagrams, what is happening is that the additional heavy gauge bosons due to
the enlarging of the global symmetry are cancelling the quadratic sensitivity of
the electroweak gauge bosons loop diagrams to the Higgs. Similar constructions
exist for reducing the quadratic sensitivity of the fermion loops to the Higgs
potential. An illustrative example of such a little Higgs comes from [284]. It
is also possible to construct models exhibiting collective symmetry breaking
not from a product group such as in the littlest Higgs [285] based on the coset
SU(5)/SO(5). Interestingly the latter also features a λ ∼ O(1) which naturally
achieves v2/f2 � 1. This distinct feature from collective symmetry breaking is
due to a tree level exchange of an additional triplet pNGB. The generation of
such a large quartic is called collective quartic. These models are out of fashion
due to their prediction of a, ironically, large Higgs mass.

However the lessons from collective symmetry breaking are certainly useful
and have developed in a systematic method to obtain a fully finite and calculable
Lagrangian based on an arbitrary symmetry breaking pattern by using multi-
site models [286,287]. It is important to remember that these multi-site models
are not meant to represent UV completions of a composite Higgs, merely to
provide a simple phenomenological model providing a full calculable model
through its use of the collective symmetry breaking mechanism.

Instead, it was realized that models of gauge-Higgs unification in a warped
extra dimension provides a setting in which to realize a pNGB Higgs with
collective symmetry breaking [165, 210]. The inspiration behind this model is
the celebrated AdS/CFT correspondence [288–290] which is a duality between a
weakly coupled theory in the bulk of AdS5 and a strongly coupled 4D conformal
field theory. A heuristic argument illustrating why there should be such a
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correspondence, comes from considering the metric of an AdS5 space in an
extra dimension:

ds2 =
(R
z

)2
(ηµνdxµdxν − dz2). (4.34)

We note that a transformation of the fifth dimension coordinate, z → eαz,
can be undone with a rescaling of the four-dimensional coordinates, x → eαx.
Therefore motion along the z axis is equivalent to increasing 4D length scale,
which leads to the holographic interpretation in which motion along z corre-
sponds to RG flow. Originally discovered as a correspondence between a string
theory and a supersymmetric Yang-Mills theory, the implications of the cor-
respondence to the 5D warped extra dimensional Randall-Sundrum model has
been studied in [291, 292]. Indeed already in the conclusion of the original RS
paper [153] the following was observed:

This is a potential resolution to the hierarchy problem akin in
spirit to ideas of strongly coupled gauge theories which generate
the low scale through an exponential times a fundamental high
energy scale.

However in the original RS model, the Higgs corresponds to an ad hoc
potential on the IR brane corresponding to the Higgs as a general bound state
of the 4D CFT.

The eventual realization that a pNGB Higgs in a 4D CFT corresponds to
the fifth component of a five dimensional bulk gauge field in a warped extra
dimension, occurred in [165]. Later in [210], its application to the minimal
composite Higgs came, based on the SO(5)/SO(4) coset which we briefly review
in the next section. The realization of partial compositeness with operators of
certain scaling dimension also has an elegant realization in 5D as 5D bulk
fermions with different localization along the extra dimension corresponding to
different bulk mass [293].

The holographic realization of a pNGB Higgs is an exciting and realistic
model of nature. We note that our topic of Chapter 3 could be interpreted as
such a holographic realization of a Higgs pNGB (with an additional leptoquark
and singlet) based on the coset SU(6)/SU(5). We now turn to an analysis of
the most cited composite Higgs model which will allow us to understand the
issue of double-tuning and light top partners.

4.2 The Minimal Composite Higgs
The minimal composite Higgs model [210](MCHM), inspired by [165], is the
minimal coset that provides a Higgs doublet and includes a custodial symmetry.
In BSM model building, the inclusion of a custodial symmetry [294] to the new
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physics sector has been an important ingredient since the advent of electroweak
precision tests (EWPT) in the LEP area and parameterized by the S, T and
U parameters [103, 104]. Especially the T parameter has become notorious in
model building which measures deviations from the experimentally very well
observed SM tree level relation:

ρ ≡ M2
W

M2
Z cos2 θW

≈ 1. (4.35)

Indeed the SM Higgs sector contains such a custodial symmetry that remains
conserved even after the Higgs gets a VEV, namely SU(2)L × SU(2)R =
SO(4) → SO(3) = SU(2)V . This symmetry guarantees that the absorbed
Goldstones transform as a triplet and, since the Goldstones provide a mass to
the W/Z bosons through the Higgs mechanism, the relation in Eq. (4.35) can
be proven to come out for such custodially endowed Higgs sectors. The Yukawa
sector of the SM breaks this custodial symmetry since the RH top and bottom
are not contained within a SU(2)R doublet and provides a small loop correction
to Eq. (4.35).

More relevant to our discussion, large violations at tree-level of Eq. (4.35)
are expected whenever considering a new Higgs sector unless it comes with a
custodial symmetry as in the SM. In general the deviations from NP effects to
ρ can be written in terms of the following dimension 6 operator OT

Ld=6 ⊃
cT
2f2 (H†←→D µH)2, (4.36)

which gives a contribution to ρ of T̂

∆ρ = T̂ = cT
v2

f2 , (4.37)

with T̂ = αT related to the original definition of T . One can now immediately
see that cosets without custodial protection must have a rather large symmetry
breaking scale. For example for the coset SU(6)/SU(5), the T operator is
generated without any loop suppression: cT = 2/5. From [295,296] we get the
95% CL constraint T < 0.25 translating into

f >
√
cT 5.5 TeV, (4.38)

or f > 3.5 TeV in the case of SU(6)/SU(5). If one wishes to obtain an un-
tuned composite Higgs, one is therefore quickly lead to custodial cosets that
contain a SO(4) in the unbroken group. The minimal option endowed with
such a protection is the one that is now known as the minimal composite Higgs
SO(5)/SO(4) which has cT = 0 at tree level. Indeed, applying the CCWZ
formula and writing the 2-derivative Lagrangian (4.22) one finds no OT oper-
ator. One does find other dimension six operators that provide a deviation in
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V = W,Z couplings to the Higgs namely:

kV ≡
gCHhV V
gSMhV V

=
√

1− ξ, gCHhhV V
gSMhhV V

= 1− 2ξ. (4.39)

In fact these deviations from SM couplings provide the so-called IR contri-
butions [297] to the electroweak parameters, S and T , on top of tree-level
contributions from the strong sector vector resonances in the case of S (due
to custodial symmetry there is no tree level contribution to T). Finally one
also has radiative corrections from the strong sector fermionic resonances. A
general analysis [298, 299] of all these contributions in the minimal composite
Higgs sector points to

f & 800 GeV, (4.40)
at the 95% CL (see [300] for an overview of the experimental constraints).

We now consider the fermionic sector in the minimal composite Higgs. Until
now the discussion was common for all SO(5)/SO(4)-type models. The fermion
sector depends on the partial compositeness hypothesis:

LPC = λRt̄RO
R
L + λLq̄LO

R′
R + h.c. . (4.41)

The model dependence comes from the choice of representations R and R′ un-
der which the fermionic operators transform. The original MCHM used the
spinorial 4 representation and is hence referred to as the MCHM4, but was
disregarded due to large correction to the Zbb̄ vertex. Instead the choice of
a fundamental 5 from [60] was more advantageous, but other representations
such as the MCHM10 and MCHM14 have also been considered, see [66]. These
distinct fermionic incarnations will lead to different deviation in Yukawa cou-
plings from the SM prediction and can be used to constrain the breaking scale
f . Global analysis [301] in Higgs physics is starting to become competitive with
the ones from EWPT of f & 800 GeV.

As an application of the introduced formalism in Sec. 4.1.4 we now esti-
mate the Higgs potential for the MCHM5. The SO(5) breaking couplings from
Eq. (4.41) can be made SO(5)-invariant by the following spurion fields trans-
forming as a 5 of SO(5)

∆R = (0, 0, 0, 0, 1), ∆L = 1√
2

(
0 0 −i 1 0
i 1 0 0 0

)
, (4.42)

where we used the fact that a fundamental of SO(5) decomposes into a bi-
doublet and a singlet. After dressing both spurions with the Goldstone matrix,
U5, we find objects transforming only under SO(4) indices:

(∆D,4
R ,∆D,1

R ) ≡ U5,†∆R, (∆D,4
L ,∆D,1

L ) ≡ U5,†∆L. (4.43)

There are now two independent SO(4) invariants that can be formed that
correspond to the two Feynman diagrams of Fig. 4.1 with respectively a tR and
a doublet qL in the loop.
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Figure 4.1: The leading contribution to the Higgs potential in the MCHM5.

Using NDA from Eq. (4.32) for the prefactors, the leading potential is given
by

V2(h) = 3m4
∗

16π2g2
∗

(cL2 λ
2
L − cRλ2

R) sin2(h/f), (4.44)

with cL/R ∼ 1. This potential does not lead to a viable phenomenology as
the only options for the minimum are v = 0, f π2 whereas instead we want the
option of v < f . The culprit is the absence of a quartic term in sin4(h/f) at
leading order in O(λ2

L/R). Instead one has to expand the potential up to quartic
order O(λ4

L/R) in order to recover a viable functional form for the potential.
Taking the contributions with four insertions of λL/R into account we find
approximately the following form for the potential

V (h) ≈ 3m4
∗

16π2g2
∗

[
aλ2

t sin2(h/f) + b
λ4
t

g2
∗

sin4(h/f)
]
, (4.45)

with λt = max[λL, λR] and a, b ∼ 1.
We are now in a position to understand the double-tuning problem. A

viable VEV for the Higgs can now be generated from the above potential.
Indeed minimization leads to the following VEV 〈h〉 = v:

sin2(v/f) =
( a

2b
)(g∗
λt

)2
. (4.46)

In order to achieve v � f , there is unavoidable tuning between a, b known as
minimal tuning, leading to tuning of the order of (f/v)2 but there is a (g∗/λt)2

enhancement of the minimal tuning due to the fact that the sin4(h/f) term is
only generated at subleading order. This tuning is known as double-tuning:

∆5 ∼
(f
v

)2(g∗
λt

)2
. (4.47)

A different fermionic embedding such as the MCHM14 solves this problem by
generating the sin4(h/f) term at leading order. Such a solution will eliminate
the double tuning:

∆14 ∼
(f
v

)2
. (4.48)
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The resulting Higgs mass however will be too large due to the large quartic.
Therefore a more appealing solution would be to generate the whole potential
at subleading order. We will present such a solution in our next section.

We end our theoretical review on composite Higgs with the phenomenolog-
ical problem of the light top partners. It comes from considering the resulting
Higgs mass of the potential from Eq. (4.45):

m2
h,5 = 3

2π2λ
4
t v

2. (4.49)

The problem of the light top partners comes from the fact that the λL/R cou-
plings generate the top mass and also control the mass of the lightest top
resonance, the so-called top partner via the following relation (see for exam-
ple [66]):

mt ∼
λLλRf√
2mpartner

v. (4.50)

One can substitute the λt dependence into Eq. (4.49), assuming λL ∼ λR and
obtain the relation [63]:

mh,5 ∼
√

3
π

mpartner
f

mt. (4.51)

We see that a light Higgs boson requires light top partners to be found at
the LHC. This connection was first noted in [60] and subsequently studied
in [61–63,65,66,302–305]. This should not come as a surprise as the top partner
mass determines the strength with which the Higgs couples to the top through
Eq.(4.50) and thus the size of the top loop contribution to the Higgs mass.

4.3 A Natural Composite Higgs

After this review on composite Higgs, we now come to a novel solution to the
double-tuning problem. As we have seen, traditional incarnations of composite
Higgs usually suffer from the issue of double-tuning meaning the quadratic
contribution is generated at leading order, while the quartic of the Higgs is
generated at subleading order. Symbolically one can write this using NDA as

V (h) ∼ λ2h2 + λ2(λ2/g∗)2h4, (4.52)

with g∗ the typical coupling of the strong sector and λ denotes here a generic
G-breaking coupling between the elementary and strong sector. Since λ < g∗,
we find the quadratic term to be much larger than the quartic, resulting in a
badly tuned potential.
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4.3.1 Mirror Fermions

Here we will investigate a solution to generate both the quadratic and quartic
at subleading order O(λ4). This can be done by using mirror fermions. The
mechanism relies on the following property of some particular cosets G/H and
particular representations R of G

Mirror Fermions: The quadratic contribution of a chiral fermion,
ψ, to the pNGB potential of a coset G/H can be cancelled, at the
price of a new massless conjugate fermion which we call the mirror
fermion, ψ′, if the fermion ψ talks to a composite operator trans-
forming under a representation R of the group G

L = λψ̄OR + h.c. (4.53)

such that it decomposes in subrepresentations of H in the following
way

R = C⊕C, (4.54)

with C a representation of H and C its complex conjugate. The can-
cellation occurs whenever the conjugate mirror fermion ψ′ connects
to the same fermionic operator OR

L = λψ̄′OR + h.c. (4.55)

As the statement suggests, the cancellation is only exact when the mirror
fermion becomes massless. In concrete models one will have to make the chiral
mirror fermion massive by introducing its opposite chirality and giving a Dirac
mass to the mirror fermion. Also note that the above Eq. (4.54) implies that
R is a real representation of G. The most minimal example of a representation
satisfying the above is for the non-custodial coset SU(6)/SU(5) and the fermion
representation 20. Indeed the latter decomposes as

20→ 10⊕ 10, (4.56)

under SU(5). More interestingly, the statement also applies to the custodi-
ally symmetry coset SO(11)/SO(10) and the fermion representation 32 which
decomposes as:

32→ 16⊕ 16. (4.57)

Before delving into the consequences of the statement, we prove it in full
generality. We consider a strongly coupled sector with a spontaneously broken
symmetry based on the coset G/H and a chiral fermion ψ, in a representa-
tion or subrepresentation of H, that talks to an strong sector operator OR,
transforming under a representation R of G

LPC ⊃ λψ∆OR + h.c., (4.58)
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Figure 4.2: Cancellation mechanism of the leading contribution to the pNGB poten-
tial in terms of Feynman diagrams.

where we wrote the above in terms of a spurion ∆:

∆i =
{

∆{α} = 1,
∆i\{α} = 0,

(4.59)

where we indicate with i an index transforming according to the representation
R in G while α/α̇ indicates an index transforming according to the rep C/C̄ in
H and {α} indicates the indices corresponding to the representation or subrep-
resentation in which ψ is embedded. In all cases we will consider ψ is strictly
embedded within C and thus {α} ⊂ α. The leading contribution in terms of a
Feynman diagram can be read of on the left Fig. 4.2. Let us now see how we can
cancel it by introducing a chiral exotic fermion ψ′ of opposite quantum numbers
within the complex conjugate representation of C̄ of H which we couple to the
same operator OR. We thus extend the partial compositeness Lagrangian of
Eq. (4.58) to the following:

LPC = λψ∆OR + λ′ψ
′∆′OR + h.c.. (4.60)

We will assume that one can use the global symmetry G to impose λ = λ′. We
now have a second spurion for the exotic reading

∆′i =
{

∆′i\{α̇} = 0,
∆′{α̇} = 1,

(4.61)

which will contribute to quadratic order in terms of the right Feynman diagram
of Fig. 4.2.

We note that both fermions, ψ and ψ′ couple to the exact same operator on
the composite side, namely OR. However due to the particular embedding of
ψ and ψ′ within the representation respectively C and C̄ of H they come with
exact opposite sign and the quadratic contribution exactly cancels as shown
diagramatically in Fig. 4.2. In order to prove the statement we calculate the
contributions to the potential. For this we need to act on the spurions, ∆(′),
with the inverse Goldstone matrix, here for convenience denoted with UR,
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transforming in the suitable representation R of G. The dressed spurions, ∆(′)
D ,

split into representations of H, in our case C and C̄:

(∆C
D,∆C̄

D) ≡ (UR)∆,

(∆′C
D ,∆′C̄

D ) ≡ (UR)∆′. (4.62)

We first calculate the contribution that flows through the C component of the
OR composite operator (the C̄ case is fully analogous):

VI = (∆C
D)†∆C

D + (∆′C
D )†∆′C

D . (4.63)

One can simplify the above expression reverting back to indices. The above
then becomes

VI = λ2ψj(UR,−1)jα(UR)αi ψi + λ′2ψ′
j(UR,−1)jα(UR)αi ψ′i, (4.64)

exploiting the G symmetry λ = λ′, one finds:

VI = λ2(ψj(UR,−1)jα(UR)αi ψi + ψ′
j(UR,−1)jα(UR)αi ψ′i). (4.65)

Together, both expression span a larger set of indices. Indeed one arrives at
the following

VI = λ2(Ψj(UR,−1)jα(UR)αi Ψi), (4.66)

where Ψ is non-zero for both {α} and {α̇}:

Ψi =
{
ψ{α} = 1,
ψ{α̇} = 1.

(4.67)

Consider now the closely related expression VII with dotted α:

VII = λ2(Ψj(UR,−1)jα̇(UR)α̇i Ψi). (4.68)

If we sum both expressions we can get rid of the Goldstone dependence finding

VI + VII = λ2(Ψj(UR,−1)jk(U
R)ki Ψi) = λ2(Ψjδ

j
iΨ

i) = λ2(2N), (4.69)

with N ≡ #{α}, the dimensionality of the representation of ψ/ψ′. Moreover
VI = VII , since the upper α̇ indices in VII can be exchange for lower undotted
α indices (remember that α denote indices in the C representation while α̇ are
indices in its conjugate representation C̄):

VII = λ2(Ψj(UR,−1)jα̇(UR)α̇i Ψi) =λ2(Ψj(UR,−1)j,α(UR)α,iΨi)
=λ2(Ψj(UR,−1)jα(UR)αi Ψi)
=VI . (4.70)
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Figure 4.3: Cancellation mechanism of the leading pNGB potential in terms of Feyn-
man diagrams in the presence of a Dirac mass for the exotic.

We therefore come to the conclusion that VI is independent of the Goldstone
and that its contribution consists only of the vacuum energy proportional to
the number of fermionic degrees of freedom:

VI = λ2N. (4.71)

This ends to proof of the statement. Moreover the proof provides the recipe
to generically cancel the quadratic contribution of any chiral fermion at the
price of introducing a new exotic chiral fermion. Since this will in general
introduce an unwanted massless fermion in the spectrum, an essential feature
of this mechanism is the introduction of a chiral partner for the exotic and a
Dirac mass, mE :

Lmass = mEψ̄
′ψ′. (4.72)

In our envisaged setup the chiral partner of the exotic does not talk to the
composite sector as it would spoil the mechanism2 and the cancellation is on
the order of O

(
(mE/m∗)2). In terms of Feynman diagrams the cancellation of

Fig. 4.2 is modified in realistic models into Fig. 4.3.
If one wishes to implement the above described cancellation mechanism in a

realistic model one is directly lead to models in which the whole SM is part of a
single simple group G, including color. This departs from usual composite Higgs
model building where color is considered an external gauge group such as the
minimal composite Higgs. Indeed, including color is not necessary as the coset
G/H should minimally only include a Higgs pNGB and no other colored pNGB.
Including color will result in additional (colored) pNGB besides the Higgs and
is the area of composite GUT [306]. The smallest group of composite Higgs
in which color is included is based on the coset G/H = SU(6)/SU(5). Indeed
as is well known and exploited by 4D grand unified theories, GSM ⊂ SU(5).

2If the chiral partner does talk to the composite sector there will be a new type of Feynman
diagram connecting LH to RH spurions since the vector-like mass can provide a flipping of
chirality whose overall contributions goes as mE/m∗ which could still be quite suppressed.
However, there will be new quadratic contributions from the chiral partner of the exotic that
remain uncancelled, defeating the whole mechanism.
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Conveniently the 20, a pseudo-real representation of SU(6), decomposes into
the following under SU(5):

20 = 10⊕ 1̄0. (4.73)

Moving to a custodially symmetric case, we can choose the minimal coset
G/H = SO(11)/SO(10) for which the pseudo-real representation 32 decom-
poses into the following under SO(10):

32 = 16⊕ 1̄6. (4.74)

Also crucially, both of these cases permit the embedding of the right-handed
top and the left-handed quark doublet which due to the large top mass are the
most important contribution to the Higgs potential. Indeed, the 10 of SU(5)
decomposes under GSM as follows

10 = (3,2)1/6 ⊕ (3∗,1)−2/3 ⊕ (1,1)1, (4.75)

and the 16 contains a 10. In what follows, we will have in mind the custodial
coset SO(11)/SO(10) as it allows the model to have a low breaking scale f while
still be allowed by EWPT. Moreover due to the identical fermion embedding
in both of these cases, entirely dictated by the property of R = C ⊕ C̄, the
numerical results we will discuss in multi-site models are identical. The gauge
sector will differ but its contribution to the Higgs potential is subleading and
we will therefore not include it in our analysis.

Since we are considering extended cosets, there are other pNGBs included in
the spectrum. Both SU(6)/SU(5) and SO(11)/SO(10) contain nearly identical
pNGBs that decompose under GSM as

G/H = (3,1)−1/3 ⊕ (1,2)1/2, (4.76)

with the SU(6)/SU(5) containing an additional singlet which remains massless
since its generator corresponds to an unbroken global symmetry3. The scalar
leptoquark, S, will get a large positive mass4 from the gauge sector estimated
as

V (S) = m4
∗
3× 5
64π2

g2
s

g2
∗

sin2(S/f), (4.77)

where we include the 3 × 5 degrees of freedom coming from the 5 gluons that
become heavy once the leptoquark gets a VEV, breaking color and charge to
SU(3)c × U(1)Y → SU(2) × U(1). The resulting mass for the leptoquark is
then mS = (15αs/8π)1/2m∗ ≈ 0.25m∗. The fermion sector contribution to the
leptoquark pNGB potential will be cancelled in exactly the same way due to
the mirror fermion mechanism.

3The mass of the singlet for the non-custodial coset SU(6)/SU(5) can be easily lifted by
breaking this symmetry for example with a Majorana neutrino sector.

4Gauge bosons always tend to stabilize the potential [307].
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4.3.2 A Model

We now come to the description of a model that implements the above mir-
ror fermion cancellation mechanism. We will only be interested in cancelling
the quadratic contributions to the Higgs potential from the qL and the tR as
they are the largest due to the large top mass. The mirror fermion mecha-
nism requires the introductions of mirror fermions which we call θL and ωR.
We note that these mirror fermions will end up mass mixing after EWSB. For
the phenomenology of the model, we will be mainly interested in the lightest
mass eigenstate mirror fermion, which we will call the exotic. In the following,
we will use both the term mirror fermion and the term exotic, with the for-
mer emphasizing the cancellation mechanism and the latter emphasizing the
phenomenology. Applying the results of the previous section we come to the
following partial compositeness Lagrangian

LPC = λL(q̄L + θ̄L)OR
R + λR(t̄R + ω̄R)OR

L + h.c. +mθθ̄θ +mωω̄ω, (4.78)

where OR
L/R is a left-/right-handed operator from the composite sector in the

representation R. As the cancellation between qL and θL occurs separately
from the cancellation between tR and ωR, it is not a requirement that the chiral
operators OR

L/R come form a Dirac operator (although we will later assume so).
Since qL and θL couple to the same operator OR

R , it is natural for the coefficients
of these interactions, λL, to be identical, controlled by the scaling dimension
dR of the operator OR

R . Indeed we expect these coefficients in the IR to be

λL ∼ λL(ΛUV)
( ΛIR

ΛUV

)dR−5/2
, (4.79)

with λL(ΛUV) their value in the UV which is assumed to be equal by the global
G symmetry. Fully analogously, the λR coefficient is determined by the scaling
dimension dL of the operator OR

L and is therefore identical for tR and ωR.
Up to now the discussion was fully general and would apply to any model

implementing the mirror fermion mechanism. One can make an extra assump-
tion on the strong sector of parity symmetry. In that case the two operators
OR
L/R do not have to be independent but can come from the same Dirac operator

which would make the two scaling dimensions equal implying furthermore that
λL = λR. In that case, all four partial compositeness interactions of Eq. (4.78)
are determined by a single parameter λ.

In order to fully specify the third generation quark sector 5, we will also
describe the connection of the right-handed bottom quark bR to a representation
R′ of G. In case of the SU(6)/SU(5) the natural choice for R′ is the 15 of

5The first and second generation can be modelled in a similar fashion, however due to their
small interaction strength with the composite sector, their contribution to the potential is less
problematic.
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SU(6) as it includes a bR, while for the SO(11)/SO(10) coset the natural choice
for R′ is a 32 of SO(11):

LPC,bR
= λbb̄RO

R′
L + h.c.. (4.80)

Once G is spontaneously broken to H, the operator OR′
L mixes with OR

R and
the bottom acquires a mass. This statement relies on the fact that the repre-
sentation R′ to which bR talks decomposes under H as follows

R′ = C⊕ ..., (4.81)

and therefore the C subrepresentation of OR′
L and OR

R can indeed connect.
This is the case for both of our considered scenarios since 15 = 10 ⊕ 5 and
32 = 16⊕ 1̄6.

Having specified the partial compositeness hypothesis of the quarks, one can
now analyse the model in a three-site model as described in [286] (see also [287]).
Three sites is the minimal amount of sites in order for the Higgs potential to
be fully calculable. These models are inspired by dimensional deconstruction
of the fifth dimension in which the fifth dimension is discretized on different
points [280, 281]. We provide in Appendix C the full three-site Lagrangian
and the resulting mass matrix for the top MT (h) and exotic ME(h) and its
associated strong sector resonances. Employing the CW formula [308] one can
compute the resulting radiative potential

Vi(h) = − 4Nc

16π2

∫ ∞

0
dpp3 log

(
det[M †

i (h)Mi(h) + p2]
)
, (4.82)

with i = T,E. It is convenient to express the determinant as follows

det[M †
i (h)Mi(h) + p2] = 1 + ai(p2) sin2(h/f) + bi(p2) sin4(h/f), (4.83)

where ai(p2), bi(p2) depend on all the parameters of the model. Expanding the
logarithm, one finds

Vi(h) ≈ αi sin2(h/f) + βi sin4(h/f), (4.84)

with

αi = − 4Nc

16π2

∫ ∞

0
dpp3ai(p2)

βi = − 4Nc

16π2

∫ ∞

0
dpp3

(
bi(p2)− a2

i (p2)/2
)
. (4.85)

Summing up the contributions from the top and exotic sector as α = αT + αE
and β = βT + βE , the resulting VEV 〈h〉 = v and Higgs mass mh then follows:

sin(v/f)2 = −α2β , m2
h = 8β/f2 sin2(v/f). (4.86)
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One can explicitly check that the mirror fermion mechanism is at work in the
three-site model. Indeed, α is now generated at fourth order in λL/R in the
limit of small exotic Dirac masses

∂2α

∂2λL/R
|mω ,mθ→0 = ∂2αE

∂2λL/R
|mω ,mθ→0 + ∂2αT

∂2λL/R
= 0, (4.87)

as one has an exact cancellation between the leading contribution to the Higgs
potential of top and the exotic for both λL and λR.

4.3.3 Naive Dimensional Analysis

Before giving quantitative results from the three-site model, we give a naive
dimensional analysis [270,271] (NDA) of the model. By modeling the composite
sector with a single fermionic mass scale m∗ = g∗f with a strong coupling
1 < g∗ < 4π one gets the following estimate for both α, β, using the results
from Sec. 4.1.4:

α, β ∼ Nc

16π2λ
4
L/Rf

4. (4.88)

Since both are generated at the same order we find a minimal tuning of:

∆mirror = 1
ξ
. (4.89)

The resulting Higgs mass estimate reads

m2
h,mirror ∼

Nc

2π2λ
4
L/Rv

2 ∼ Nc

2π2 g
2
∗v

2 ∼
(
(500

(
g∗/5

)
GeV

)2
, (4.90)

where in the second step we use that (λLλR)/g∗ ∼ yt in order to obtain the
correct top mass. We now compare this to the other known minimally tuned
model, the MCHM14 where both the quadratic and quartic of the Higgs po-
tential are generated at the quadratic level. The prediction for the Higgs mass
is [303]

m2
h,14+14 ∼

Nc

2π2λ
2
L/Rg

2
∗v

2 ∼ Nc

2π2 g
3
∗v

2 ∼
(
1000

(
g∗/5

)3/2 GeV
)2
, (4.91)

where we use the same approximation in the second step. The resulting Higgs
mass in the mirror fermion scenario is much more advantageous since the po-
tential is fully generated at the subleading level. This results in the Higgs mass
being only linearly sensitive to the strong coupling g∗ in contrast to the g3/2

∗ in
the case of the MCHM14. Furthermore, the Higgs mass is also predicted to be
lighter in (4.90). There is a caveat though, which is that for the MCHM14 one
can make the RH top completely composite λR ∼ g∗ meaning it is part of the
strong sector and doesn’t contribute to the Higgs potential. In that case one
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can take in the above equation λL/R = λL ∼ yt and the resulting Higgs mass
estimate becomes identical to the mirror fermion case:

m2
h,14+1 = m2

h,mirror. (4.92)

Therefore, even though the potential is generated at the subleading order, the
resulting Higgs mass prediction is of same order as the in the MCHM14+1 with
a composite tR.

From the above analysis in the mirror fermion model, one expects indeed a
model with minimal tuning. Furthermore, a light Higgs mh = 125 GeV gener-
ally requires a small g∗ which also implies the presence of light top partners.
Lastly, for the cancellation of the quadratic to occur, one expects mθ,ω to be
small and therefore light exotics. We will now investigate whether these naive
estimates are in agreement with the results of the three-site model.

4.3.4 Numerical Results

For the numerical results we scan all the mass parameters in the three-site
model (see Appendix C) over m ∈ [−5f,+5f ] for a symmetry breaking scale
f = 1600 GeV. Moreover we take λ ≡ λL = λR under the assumption of a
parity symmetric strong sector. The results for a general λL 6= λR are similar.
We fix the partial compositeness λ to reproduce the correct top mass mt and
filter out the points that do not give a correct electroweak scale of v = 246
GeV.

The spectrum of resonances in the model is shown in Fig. 4.4 where the
mass of the lightest top partner, mmin

T , and the lightest exotic, mmin
E , as a

function of the Higgs mass is shown. From various LHC searches [40–44], the
bound on the top partners has reached an impressive & 1500 GeV which we
denote by the red coloring. While a generous region for the correct Higgs mass,
90 GeV < mh < 130 GeV, is shaded blue. Unsurprisingly, the issue of the light
top partners is therefore not solved in this setup. Indeed we take f = 1600
GeV in order to have the top partner sufficiently heavy for a light Higgs mass.
As we discuss in the next section, due to the unconventional decay signature of
the exotic, we do not place a bound on its mass.

Having studied the spectrum of the resonances as a function of the Higgs
mass, we now select the points with the correct Higgs mass and turn to the
study of the tuning. We use the Barbieri-Guidice measure [309, 310], ∆BG(O)
which measures the dependence of an observable O(pi), with respect to the
parameters, pi of the theory:

∆BG(O) = max|∂ logO(pi)
∂ log pi

|. (4.93)

The study of tuning in the Higgs potential usually uses the Z-boson mass, or
equivalently, the Higgs VEV as an observable which is a combination of the
quadratic and the quartic of the potential. In order to have a conservative
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Figure 4.4: The mass of the lightest top partner (left) and the mass of the lightest
exotic (right) as a function of the Higgs mass, mh in the three-site model for f = 1600
GeV. The approximate bound on top partners is indicated in red m > 1500 GeV, while
the correct Higgs mass is indicated in blue 90 GeV < mh < 130 GeV.

estimate of the tuning, we will also study the tuning in the quadratic alone, or
equivalently the Higgs mass, and take the maximum of both tunings:

∆BG = max(∆BG(v2),∆BG(m2
H). (4.94)

As discussed, in models of composite Higgs the naive minimal fine-tuning,
assuming no double-fine tuning is present, is expected to be ∆ ∼ 1/ξ. For
our benchmark of f = 1600 GeV we expect therefore ∆ ∼ 42. The results are
shown in Fig. 4.5. On the left side we plot the lightest top partner as a function
of the tuning ∆ and we note that the tuning is independent of the top partner
spectrum. However most points are clustered decidedly under the minimal
tuning around ∆BG ∼ 20 and some points even lower around ∆BG ∼ 10.
Therefore not only is there no issue of double-fine tuning, the cancellation of
the quadratic due to the mirror fermions has softened the tuning seemingly
more and one finds viable points with heavy top partners and a correct Higgs
for very little tuning of ∆BG ∼ 10 while having a large symmetry breaking
scale of f = 1600 GeV. The cost of this drastic reduction is of course the
additional exotic that is quite light. On the right side of Fig. 4.5 we plot the
correlation between the top partner and the exotic and we observe that the
following bound, colored in red, is obeyed:

mmin
E . mmin

T . (4.95)

Therefore the exotics become a very attractive target for collider searches as
they are quite a bit lighter than the top partners. However no current searches
exist for resonances with these decay channels as we discuss in the next section.

4.3.5 Phenomenology of the Exotic

We now come to a discussion of the exotic, a crucial aspect in the cancellation
mechanism. Indeed, the obtained drastic reduction in fine-tuning comes at the
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Figure 4.5: Top partner mass as a function of the fine-tuning (left) and as a function
of the exotic mass (right). The minimal expected tuning, ∆ ∼ 1/ξ ∼ 42 is indicated
on the left panel by the red line.

price of these light mirror fermions or exotics. It becomes important to deter-
mine possible bounds on their mass. In both considered incarnations of the
model, the coset SO(11)/SO(10) and the coset SU(6)/SU(5), there is a global
symmetry that corresponds to baryon number for the SM fermions, while the
exotic fermions get unconventional baryon numbers charge of B = 2/3 (see [2,3]
for example for the SU(6)/SU(5)) case). It is a very convenient feature of
composite GUTs (and equally of models of gauge-Higgs grand unification) that
they have a global baryon number and therefore the proton, being the lightest
charged particle under baryon number, remains absolutely stable.6 The pres-
ence of a conserved baryon number in these composite GUT type models is a
consequence of the imperfect unification of SM fermions in complete GUT rep-
resentations. Indeed, the incomplete filling of SM fermions into representations
of G of the strong sector, is what allows baryon number to be conserved. In con-
trast in 4D GUTs, a generation of fermions fits perfectly into a 16(10⊕5⊕1) of
SO(10)(SU(5)) which is too constraining for defining a global baryon number.

In order to discuss the decay channel of the exotic, one should also discuss
the other pNGB besides the Higgs, which is the leptoquark with quantum
numbers (3,1)−1/3 with baryon number 1/3. Since the bounds on such a
leptoquark, with decays into tτ , are quite high at mmin

E > 1.4 TeV [251] it
is safe to assume for this analysis that mexotic < mS . The allowed decay
of the exotic therefore proceeds through on off-shell S namely, E → Sb or
through an off-shell X−4/3/Y −1/3 vector resonance of the composite sector,
E → X−4/3t, Y −1/3b. While the decays of X−4/3 and Y −1/3 proceed through
third generation quarks and leptons, namely X−4/3 → bτ and Y −1/3 → tτ/bν.
In total this results in two different final states for the exotic fermion namely
E → tbτ and E → bbν. The latter decay is suppressed by the bottom mass
with respect to the first decay. QCD double production of the exotic will

6However such a global baryon number is not protected from higher dimensional operators
suppressed by merely the compositeness scale m∗. It therefore becomes necessary to gauge
the baryon number, see [166,311].
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therefore result in the following spectacular final state EĒ → tbτ t̄b̄τ̄ which has
no dedicated search at the LHC. However due to the very unique signatures,
we expect the bounds on such exotics to be very strong when such an analysis
is done.

4.3.6 The Holographic 5D Dual

The possible UV completions we envisage are necessarily holographic as the
cosets SU(6)/SU(5) and SO(11)/SO(10) are not realizable as fermion flavor
symmetries that are spontaneously broken by the formation of a fermion con-
densate. As we discussed in section 4.1.5, the holographic dual of models of
composite Higgs is formulated on a slice of a five-dimensional warped space
with a UV brane at z = R, presumably at the Planck scale, and an IR brane
at z = R′ around the scale of symmetry breaking f . The warped metric corre-
sponds to the following ansatz:

ds2 =
(R
z

)2
(ηµνdxµdxν − dz2). (4.96)

The pNGB Higgs corresponds to the fifth component of the higher dimensional
bulk gauge field of G, which is broken by boundary conditions on the IR brane
to the group H. As also discussed, the partial compositeness hypothesis corre-
sponds to embedding the SM fermions into 5D bulk fermions of representation
R with a certain 5D mass.

In the case that λL 6= λR and thus the couplings represent two different
parameters, the corresponding holographic implementations would be to embed
qL, θL and tR, ωR in two different 5D bulk fermions of representation R with
different 5D masses representing the different scalings and thus resulting in
different λL, λR. In the case that λL = λR, one would ideally want to embed
all fermions into the same 5D bulk fermion with a unique 5D mass. This is
however not possible since one cannot embed all four chiral fermions within a
single bulk fermion of representation R as the necessary boundary conditions
would break the H symmetry on the IR brane. Instead one would still have
to use two bulk fermions with presumably a discrete symmetry between them
such that they have the same bulk mass.

Another intriguing aspect of the holographic dual concerns the Dirac masses
mθ,ω necessary to give a mass to the otherwise massless exotics. In the 4D
formulation, the origin of these Dirac masses remains unclear. Indeed, one
wishes to have mθ,ω . m∗ in order for the cancellation of the quadratic to
occur, but since these Dirac mass are in the elementary sector and thus not
connected to the composite sector, there is no reason for this inequality to
be obeyed. Although such a small Dirac mass does not introduce a hierarchy
problem as a small Higgs mass does 7, it does introduce a so-called coincidence

7Radiative corrections to Dirac masses are proportional to its tree level value due to chiral
symmetry and thus technically natural.
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problem. In the holographic dual these light Dirac mass have a very elegant
origin. Indeed in the holographic dual, the Dirac mass, mω, (the mθ case is
analogous) corresponds to a brane mass on the UV brane that mixes the bulk
5D fermion containing the ωR(x, z) and its chiral partner ωL(x) that is localized
on the UV brane

LUV =
∫

d4x
MUV√
R
ω̄L(x)ωR(x, z = R) + h.c., (4.97)

with MUV ∼ O(1). This provides indeed the required 4D mass, mω, but to
estimate its size we require the value of ωR(x, z = R) on the UV brane which
depends on the 5D mass of the bulk fermion, m ≡ c/R, where we use the
dimensionless c. There are two regimes depending on whether the ωR(x, z) is
UV (c > 0.5) or IR localized (c < 0.5):

mω ∼
{
MUV/R (c > 0.5)
MUV/

√
RR′ (R′/R)c (−c+ 1) (c < 0.5)

. (4.98)

Unsurprisingly, for a UV localized fermion the Dirac mass is naturally of the
order of the UV scale, but for a IR localized fermion its mass is exponentially
suppressed and can become easily at or below the composite scale. Furthermore,
since these exotics have equal localizations as the top (indeed the cancellation
mechanism requires this), they will be naturally IR localized just as the top.

4.4 Summary
After an overview of the different aspects involved in composite Higgs model
building in Sec. 4.1, we provided an illustration of these aspects by working
out the minimal composite Higgs based on the coset SO(5)/SO(4) in Sec. 4.2.
Although an extremely appealing and minimal model, null results from searches
at the LHC for the light top partners have driven these models into more fine-
tuned regions. The problem of double-tuning that these models suffer from
worsens the required fine-tuning.

In Sec. 4.3 we have proposed a novel solution to these problems by can-
celling the leading contribution to the Higgs potential in the fermion sector
with the use of mirror fermions. Although such a cancellation seems similar
to the mechanism of twin Higgs, and also its application to composite Higgs
(see [47–49]), no discrete symmetry is required or doubling of the whole SM
content. Instead, the mechanism relies on the particular properties of some
real representations R that decompose into a complex representation C and its
complex conjugate C̄ according to

R = C⊕ C̄. (4.99)

The leading order contribution of the mirror fermion to the potential comes
with exactly opposite sign and the total leading order potential is therefore
cancelled.
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We then studied possible incarnations of this mechanism based on the cosets
SU(6)/SU(5) and SO(11)/SO(10). Especially the latter is a promising coset
as it contains a custodial symmetry which allows the symmetry breaking scale
to be low and still agree with EWPT. We then analysed the model in a three-
site model studying the spectrum, the Higgs mass and the resulting tuning.
The results are quite remarkable, for a large symmetry breaking scale f = 1600
GeV, we achieve to have a correct Higgs mass with minimal tuning ∆ ∼ 10−20
and sufficiently heavy top partners, whereas generic composite Higgs models
predict ∆ > 40.

Our model is to be compared with other recent proposals aimed at address-
ing the mentioned ubiquitous problems of composite Higgs. For example the
idea of breaking the Goldstone symmetry softly [312] (see [313] for the holo-
graphic 5D implementation) works by augmenting the elementary fermions into
complete representations of the group G, such that partial compositeness in-
teractions do not violate the G-symmetry. Instead the explicit breaking of
G comes from the Dirac masses necessary to make the additional elementary
fermions heavy. Such sequestering of the breaking of the Goldstone symmetry
has the exciting consequence of making the top partners heavier in comparison
to standard composite Higgs scenarios although the issue of double fine-tuning
remains unsolved. Another proposal is the idea of maximal symmetry break-
ing [314,315] which supposes an accidental symmetry in the mass spectrum of
the fermion composite sector larger than H. Such a symmetry also forbids the
generation of the leading order potential in the fermion sector. Instead the full
potential is generated at subleading order, although it predicts the penomeno-
logically unviable ξ = v2/f2 = 0.5. Most interestingly, the combination of
these two ideas can result in drastic reductions in fine-tuning of composite
Higgs models as shown in [316].

Our proposed mechanism of cancellation with the introduction of mirror
fermions is thus more alike to the maximal symmetry breaking case since the
potential is fully generated at subleading order in both cases, although the
mechanisms are completely different. The mirror fermion mechanism does not
impose the constraint of v2/f2 = 1/2. Furthermore, the mirror fermion mech-
anism has strikingly different signatures, predicting light exotic fermions with
spectacular decays that have no current LHC searches.
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Chapter 5

Conclusion

The completion of the Standard Model with the discovery of the Higgs boson in
2012 represented a milestone for the scientific understanding of mankind and
a testament to the tremendous predictive power of quantum field theory. It
represented a century long journey of combining the theory of special relativity
with quantum mechanics along with ingenious experiments increasing our un-
derstanding of the smallest scales. However particle physics has not played its
role just yet and our increased understanding of the cosmological evolution of
our Universe has highlighted deep shortcomings in our understanding of funda-
mental physics: the nature of dark matter and dark energy remain mysterious
while the generation of a baryon asymmetry is lacking within the SM. Together
with the internal inconsistency of the appearance of a Landau pole and the
search to find a quantum theory of gravity, these puzzles have strengthened the
belief that the SM is only an EFT valid at least up to the TeV scale.

It is however when embedding the SM into a more UV complete theory
that could address some of these problems that we encounter the hierarchy
problem: a sensitivity of four-dimensional fundamental scalars to the highest
scale in the theory, leaving a light Higgs seemingly as a huge accident of nature.
There are two viable approaches to this conundrum. The first is to do nothing,
and instead tackle directly the other open problems of nature. Indeed, the
hierarchy problem is not an inconsistency and could simply be due to anthropic
principles, physics that cannot be captured by EFT considerations or sheer
coincidence. The other approach is to take this puzzle as a hint and look
for theories in which this sensitivity of the Higgs to higher scales vanishes.
This means departing from the Higgs as a four-dimensional fundamental scalar.
These frameworks involve either the addition of a new symmetry such as SUSY
or going to composite Higgs models. By looking for the open problems of the
SM from within these frameworks, the innumerable ways in which to address
these open problems gets narrowed down and signatures at the TeV scale are
expected.

However, the absence of such signals at the LHC has put the latter approach
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under pressure and has increased the generic fine-tuning of these models. Ironi-
cally this is exactly what these models were supposed to avoid. Although there
is still a large difference between a 1% level tuning necessary to hide signa-
tures of compositeness or SUSY at the LHC or the intangible 10−32% level
tuning for a Planck scale UV completion, it still remains an awkward feature
of these models. Much of this thesis has been preoccupied with this question.
In particular, we have attempted to ask whether the absence of signals at the
LHC could still be reconciled with minimally tuned models. This question is
definitely positive as twin Higgs models already suggested a long time ago, but
in this thesis we have expanded on that question and suggested new surprising
observables to look for naturalness at the LHC.

In Chapter 2 we tackled the question of the large top Yukawa. Due to its
largeness, it is by far the main contributor in the SM EFT to the radiative
mass of the Higgs, increasing the generic fine-tuning within a SUSY and com-
positeness framework. We asked whether the actual top Yukawa contribution
to the Higgs mass could be smaller than what the IR point of view seems to
imply. Indeed the uncertainties on top Yukawa are at the 20% level and are
only measured at the electroweak scale. It still remains very plausible that the
top Yukawa behaves fundamentally different at the TeV scale. We identified
two scenarios. The first consists of a strong running of the top Yukawa due
to a new force which decreases the top Yukawa in the UV. While the second
scenario consists in generating the top Yukawa at the loop level. Both of these
scenarios radically change the nature of the top Yukawa in the UV and in par-
ticular its contribution to the Higgs mass can be dramatically reduced. If such
a mechanism would be at play in nature, it could mean that our expectation for
the scale at which the SM EFT must be completed for a natural Higgs, might
be an underestimate and actually the W boson contribution may be the driving
force of the hierarchy problem. This would imply an increase by a factor three
of the scale at which the hierarchy problem should be addressed. The question
of naturalness may in that case be only addressed at a more powerful collider
such as a 100 TeV hadronic collider. However such large effects on the top
Yukawa require additional degrees of freedom with unique signatures already
at the TeV scale. At the hand of a simplified model we investigated the mecha-
nism and pointed out the novel signatures in which naturalness may be hiding
at the TeV scale such as a running top mass, deviations in 4-top measurements
and new broad resonances.

In Chapter 3 we departed from this paradigm of naturalness and instead
looked for a theory with a compelling flavor structure. We took the old idea
of gauge-Higgs unification, which solves the hierarchy problem by embedding
the Higgs within a five-dimensional gauge field and thus protected by a higher
dimensional gauge symmetry, and investigated it with a SU(6) bulk gauge
symmetry in a warped extra dimension. The SU(6) gauge symmetry is the
minimal gauge symmetry that unifies the SM gauge group in such a setup.
We identified a minimal model using four bulk fermions and illustrated the
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interesting connection that exists in such a model between the mass hierarchies,
the CKM and the PMNS matrix. The model also allowed us to show the flip
side of the hierarchy problem: flavor constraints already push the generic scale
of the SM EFT cutoff far beyond which can be considered natural. A UV
completion that provides a natural Higgs must therefore also have a peculiar
flavor structure in order to escape these bounds. One can use flavor symmetries
in order to engineer this protection, however a warped extra dimension provides
already a built-in protection. We investigated the flavor constraints in our
model without the use of additional flavor constraints and find that the bounds
from the electron electric dipole moment and the decay µ→ eγ push the model
to higher scales implying a certain tuning in the Higgs potential. Although
the Kaluza-Klein excitations are out of reach of the LHC, the extended scalar
spectrum provides an accessible window to the high-energy structure the model
with not only a Higgs, but also a scalar leptoquark and singlet whose mass
generation we studied in detail and could be accessible at TeV colliders.

Finally we ended this thesis in Chapter 4 with a novel model of composite
Higgs. Seeking to generate the composite Higgs potential fully at the sublead-
ing order in the fermion sector, we found a way to cancel the leading fermion
contributions to the Higgs potential with the use of mirror fermions. Instead
of imposing a Z2 symmetry which twin Higgs models rely upon, we identi-
fied a unique property of some fermion representations that allows for such
a cancellation naturally. We found models based on the cosets SU(6)/SU(5)
and SO(11)/SO(10) that contained such a representation and performed a nu-
merical analysis of the model. We found that such a mechanism featured a
considerable reduction in fine-tuning in models of composite Higgs and allows
for a fully natural Higgs with as little as 10% tuning with sufficiently heavy
top partners. Since the mentioned cosets do not allow for a four-dimensional
fermionic UV completion, we analysed the implications of the five-dimensional
holographic incarnation for such models. Moreover we identified the unique
decays of the mirror fermions which due to their exotic baryon charge may
have escaped detection so far. Only a dedicated collider search will provide the
answer and test whether naturalness at the LHC remains hidden in these light
exotics.





Mon dessin ne représentait pas un chapeau. Il représentait un serpent boa
qui digérait un éléphant.

J’ai alors dessiné l’intérieur du serpent boa, afin que les grandes personnes
puissent comprendre.

Le Petit Prince
Antoine de Saint-Exupéry
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Appendix A

A NJL UV completion

As discussed in Chapter 2, large couplings are required in the simplified scalar
model to generate the large top Yukawa which implies a strongly coupled UV-
completion. In this Appendix, we propose a possible UV theory for the simpli-
fied model, which provides a validation of the idea.

A.1 A New Global Symmetry

Before discussing the strongly coupled UV theory, let us explore the required
ingredients and in particular the symmetry structure of such a theory. In Eq.
(2.32), that the minimal couplings for generating the top Yukawa coupling is
given. Among them, the trilinear coupling

Ltrilinear = −V SRSL†H + h.c. , (A.1)

appears the most complicated. To generate it, we extend the SM with a
SU(3)L × SU(2)R global symmetry1. By introducing a scalar Φ under a rep-
resentation (3, 2) of the global symmetry, we it contains the scalars H, SL, SR
together with a singlet SV as

Φ = (3, 2) under SM−−−−−−→
(

10 1QF − 2
3

2 1
6 −QF

2− 1
2

)
=
(
S∗
V S∗

R

SL H

)
, (A.2)

where the hypercharge corresponds to the desired value from Eq. (2.33). This
origin of this assignment will be explained in the next section.

The global symmetry allows for the following SU(3)L×SU(2)R-symmetric
potential given by

V (Φ) = −µ2|Φ†Φ|+ λ|Φ†Φ|2 . (A.3)

1The same symmetry has been studied in the CHM with top seesaw mechanism [317,318]
for a different purpose.
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If the singlet SV gets a nontrivial VEV, 〈SV 〉 =
√
µ2/λ, one obtains the desired

trilinear coupling

V (Φ) ⊃ V
(
SRS

†
LH

)
+ h.c. , (A.4)

with as coefficient V = 2λ〈SV 〉. However this such a breaking of the global
symmetry will result in SL and SR as massless Nambu-Goldstone bosons. The
full potential should therefore include symmetry breaking terms, for example
the SM gauge interactions. By including such terms, the following two things
happen: First, the loop potential generated by the gauge interactions will pre-
serve 〈Φ〉 = 〈SV 〉 =

√
µ2/λ as SV is a SM singlet. Second, both SL and SR will

obtain a mass from the loop potential.2
Concerning the fermion sector, we extend the SM content by the following

vector-like fermions F , according to the following representations of the global
symmetry

QL =

FLtL
bL

 , QR =
(
FR
tR

)
, (A.5)

where QL is a triplet under SU(3)L and QR is a doublet under SU(2)R. One
can then write down a Yukawa coupling between Q and Φ as

LYukawa = −y Q̄L ΦQR

⊃ −yLq̄LSLFR − yRt̄RSRFL + h.c. , (A.6)

which indeed includes the two Yukawa couplings one needs for the simplified
model with relation y = yL = y∗

R. The Lagrangian also includes a Dirac mass
for the vector-like fermion y F̄RSV FL. However, there is an unwanted tree-level
Yukawa coupling y q̄LHtR. The value of y is unviable and we need to modify
the above setup to get a realistic model.

A.2 An NJL Model

In order to obtain a viable model, we separate the fields into two sectors,
a strong sector and a weak sector. The strong sector will feature the large
couplings and while the weak sector includes the SM matter. Starting with the
strong sector, we introduce the following fermions:

Q′
L =

F ′
L

t′L
b′
L

 , Q′
R =

(
F ′
R

t′R

)
. (A.7)

2If the charge QF = 2/3, then SR will become a singlet and the argument fails. However,
by assuming another U(1)′ gauge symmetry with the similar charge but QF 6= 2/3, a mass
will still be generated
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A non-perturbative origin is expected in order to get large couplings. We
consider a strong interaction among these fermions mediated by massive gauge
bosons with mass M ′, which arises from a gauge symmetry. At scales below M ′,
one integrates out the massive gauge bosons to arrive at the following effective
four-fermion vertex term

Leff = − g′2

M ′2

(
Q̄′

L,iγ
µT aijQ

′
L,j

) (
Q̄′

R,iγµT
a
ijQ

′
R,j

)
⊃ g′2

M ′2

(
Q̄′ i

LQ
′
R,i

) (
Q̄′ j

RQ
′
L,j

)
, (A.8)

with g′ is the coupling between the gauge bosons and Q′. For large enough
coupling, a fermion condensate will be formed and can be described by the
following bound state

Q̄′
RQ

′
L =

(
F̄ ′
R F

′
L t̄′R F

′
L

F̄ ′
R q

′
L t̄′R q

′
L

)
=
(
S∗
V S∗

R

SL SH

)
, (A.9)

which carries identical symmetries as the scalar field Φ from the previous sec-
tion. Indeed, the scalar field Φ is a bound state formed by Q′

L and Q′
R, which

is a natural origin for scalars in a strongly coupled theory.
With the help of the fermion bubble approximation, one obtains an effective

Lagrangian at a scale µ < M ′. The effective Lagrangian at the new scale µ is
then be given by

LΦ,µ = |∂Φ|2 − M̃(µ)2|Φ|2 − λ̃(µ)|Φ|4

− ỹ(µ) Q̄′
L ΦQ′

R + h.c. , (A.10)

where the coefficients read (defining ln
(
M ′2/µ2) = C):

M̃(µ)2 =
( 4π√

NC

M ′

g′

)2(
1− g′2

g2
c

+ g′2 µ2

g2
cM

′2

)
,

λ̃(µ) = 16π2

NC
, ỹ(µ) = 4π√

NC
. (A.11)

To get the desired potential, we need a condensate to be formed, i.e. g′ > gc.
In junction with the loop potential induced by the SM gauge interaction (or
some new U(1)′ gauge interaction), we get a VEV for SV

〈SV 〉 = 〈Φ〉 ∼

√
−M̃2

2λ̃
∼ f ′

√
g′2

g2
c

− 1 , (A.12)

with f ′ ≡ M ′/g′ the symmetry breaking scale of the strong sector. The cou-
plings in the strong sector now read

LΦ ⊃ 2 λ̃ 〈SV 〉 (SRS†
LSH)

− ỹ q̄′
LSLF

′
R − ỹ t̄′RSRF ′

L + h.c. , (A.13)
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which is identical to the desired terms we need for the simplified scalar model.
However the terms are generated from a bona fide strongly coupled theory,
where the couplings are naturally large. Moreover, the masses of the scalars
SL and SR are generated from a loop-induced potential, but they can be much
lighter in comparison to M ′ due to the nature of pNGBs.

A.3 Connecting Elementary with Strong Sector
Finally, one needs to connect the strong sector with the elementary sector
containing the fermions and the Higgs. Starting with the fermion sector, besides
SM fermions, one still need a vector-like fermion F with a mass MF as shown in
(A.5). To achieve the required couplings with the NJL model described in the
previous section, we need two new extended SU(2) gauge symmetries, SU(2)L′

for the left-handed top quark and SU(2)R′ for the right-handed top quark. The
gauge symmetries are broken at the scales fL/R. Introducing two new SU(2)L′

doublets (the SU(2)R′ case is analogous)

ψqL =
(
q′
L

qL

)
, ψFR

=
(
FR
F ′
R

)
, (A.14)

the SU(2)L′ gauge interaction will give rise to the following effective term

Leff = − 1
f2
L

(
ψ̄qLγ

µT aψqL

) (
ψ̄FR

γµT
aψFR

)
⊃ 1
f2
L

(
F̄ ′
Rq

′
L

)
(q̄LFR) → yLq̄LSLFR , (A.15)

where the desired Yukawa coupling from the simplified model is generated once
the fermions in the strong sector form the bound states. The generic estimation
for the size of the Yukawa coupling is

yL ∼
4π√
NC

f ′2 × 1
f2
L

= 4π√
NC

f ′2

f2
L

(A.16)

with f ′ is the VEV of the bound state. Switching to SU(2)R′ , we get

yR ∼
4π√
NC

f ′2 × 1
f2
R

= 4π√
NC

f ′2

f2
R

. (A.17)

For f ′ ∼ fL ∼ fR, then generically we obtain a large Yukawa coupling

yL ∼ yR ∼
4π√
NC

. (A.18)

As a consequence, even though the top quarks and the vector-like fermion F
are not part of the strong sector directly, we still get the desired large Yukawa
couplings.
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Concerning the Higgs sector, there is already a Higgs-like scalar bound state
SH in the strong sector and all we need is a mixing term between it and SM
Higgs H†SH . Due to its bound state nature SH = t̄′Rq

′
L, the mixing can be

obtained by a coupling between the SM Higgs and the constituent fermion
fields. As discussed in Chapter 2, the mechanism is used to assist a model like
SUSY or composite Higgs. We thus consider these two possibilities.

First, if the SM Higgs is elementary as in SUSY, the mixing can be obtained
by a Yukawa coupling between Higgs and the fermions in the strong sector as

L = −y′q̄′
LHt

′
R → y′f ′2H†SH . (A.19)

After integrating out the heavy SH , we obtain

Ltrilinear = V (SRS†
LH) + h.c. , (A.20)

with

V ∼ 2 λ̃ 〈SV 〉y′ f
′2

M2
H

, (A.21)

with MH the mass of SH . The trilinear coupling is controlled by the new
Yukawa coupling y′ which can be small and can therefore suppress the top
Yukawa coupling from a generic large coupling to the desired top Yukawa of
O(1).

In composite Higgs models, the SM Higgs is itself composite, composed of
ψL and ψR. Mixing it with the bound state SL, requires a similar construc-
tion as for the extended gauge symmetry such that the following four-fermion
interactions are produced

Leff = − 1
f2
E

(
ψ̄Lγ

µT aq′
L

) (
ψ̄RγµT

at′R

)
⊃ 1
f2
E

(
ψ̄RψL

) (
q̄′
Lt

′
R

)
→ f2f ′2

f2
E

H†SH , (A.22)

with fE the scale of the extended gauge symmetry while f is the breaking scale
of the composite Higgs model. Again, integrating out the heavy SH , we obtain
the trilinear coupling with coefficient

V ∼ 2 λ̃ 〈SV 〉
f2f ′2

f2
EM

2
H

. (A.23)

The overall construction of the top Yukawa vertex in the UV strongly coupled
theory is shown in Fig. A.1, with the scalars now replaced by the bound states
of fermions. The red line represents the gauge bosons of the extended gauge
symmetry and the blue point represents the mechanism to connect the Higgs
to the strong sector.
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Figure A.1: Feynman diagram of the loop-generated top Yukawa coupling from a
strongly coupled UV theory.



Appendix B

Warped Gauge and Fermion
Fields

B.1 Gauge Fields
The 5D Yang-Mills lagrangian for a generic gauge group is the starting point

SYM =
∫ R′

R
d4xdz

√
G
(
− 1

2G
MNGABTr(FMAFNB)

)
=
∫ R′

R
d4xdz

(R
z

)(
− 1

4F
a
ABF

AB,a
)
, (B.1)

where GMN denotes the 5D warped metric (3.43) and G its determinant. We
will only be interested in the solution of the free lagrangian and therefore neglect
the self-interactions contained in the above term that can be treated perturba-
tively. More problematic in the above action are the quadratic mixing terms
between Aµ and A5. However those can be cancelled by taking a convenient
form for the gauge-fixing term:

SGF =
∫

d4xdz
(R
z

)(
− 1

2ξ
(
∂µA

µ − ξ z
R
∂5
(R
z
A5
))2
)
. (B.2)

We now proceed to vary the action SYM +SGF under δAµ and δA5. Requiring,
by the action principle, that the action vanishes we obtain the equations of
motions [

ηµν∂2 − (1− 1
ξ

)∂µ∂ν
]
Aν − z∂5

(1
z
∂5A

µ
)

=0,

∂2A5 − ξ∂5
(
z∂5(1

z
A5)

)
=0. (B.3)

In contrast to 4D equations of motions where fields are taken to vanish at
infinity, integration by parts along the fifth dimension will lead to boundary
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conditions for the fields∫
d4x

[R
z

(
∂µA5 − ∂5Aµ

)
δAµ

]z=R′

z=R
= 0,∫

d4x
[R
z

(
∂µA

µ − ξz
(
∂5(1

z
A5)

))
δA5

]z=R′

z=R
= 0. (B.4)

In the following we will consider two possible boundary conditions that fulfill
the above, namely

(+) : A5|z=R,R′ = 0, ∂5Aµ|z=R,R′ = 0,

(−) : Aµ|z=R,R′ = 0, ∂5
(1
z
A5
)
|z=R,R′ = 0. (B.5)

where (+)/(−) refers to a Neumann/Dirichlet BC for the Aµ field which will
imply the opposite for the A5 field. Unsurprisingly for a zero mode gauge boson
to occur, one must choose (+,+) boundary conditions at both UV/IR brane,
while a zero mode scalar field, relevant for gauge-Higgs unification, will occur
for (−,−) boundary conditions. The mixed boundary conditions (+,−)/(−,+)
give rise to massive gauge fields.

One can now solve the above differential equations by a simple separation
of variables between the compact parameter, z, an the usual 4D space-time
variable xµ. In the context of extra dimensions this is called a Kaluza-Klein
(KK) decomposition

Aµ(x, z) =
∑
n

fn,A(z)Aµ,n(x), A5(x, z) =
∑
n

fn,5(z)A5,n(x), (B.6)

in which the 5D field is expanded in an infinite sum of 4D fields, Aµ/5,n(x) with
a specific localization, or wavefunction, along the extra dimension fn,A/5(z) and
a mass mn. The 4D fields obey the usual 4D equations of motions:[

ηµν∂2 − (1− 1
ξ

)∂µ∂ν
]
Aν,n +m2

nA
µ
n = 0, ∂2A5,n +m2

5,nA5,n = 0, (B.7)

which leads to the following equations for the bulk profiles:

−m2
nfn,A = z∂5

(1
z
∂5fn,A

)
, −m2

5,nfn,5 = ξ∂5
(
z∂5

(1
z
fn,5

))
. (B.8)

From the first equation one gets that a massless gauge boson has a constant bulk
profile implying indeed (+,+) boundary conditions for such a mode. The second
equation implies that a massless scalar has a linear bulk profile f0,5 ∼ z with in-
deed (-,-) boundary conditions. Interestingly for a general massive vector boson
mm > 0 with profile fn,A, one finds a scalar mode with profile fn,5 = 1

mn
∂5fn,A

with mass m5,n =
√
ξmn. The gauge dependence already indicates that the

corresponding scalar cannot be a physical spectrum. Instead, we are reminded
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of the same ξ dependence for Goldstone bosons that provide the longitudinal
component of a massive gauge boson (see for example [136]). Indeed, the whole
tower of scalar modes (with the possible exception of a physical massless scalar),
are Goldstones and absorbed by the massive gauge bosons.

The normalization of the gauge boson follows from requiring canonical ki-
netic terms in the lagrangian and leads to∫ R′

R
dzR

z
fn,Afm,A = δn,m. (B.9)

The profile of the zero mode gauge boson then follows

f0,A(z) =
√√√√ 1
R log

(
R′

R

) . (B.10)

The normalization of the Goldstones is automatically satisfied by virtue of the
equations of motions if the masssive gauge fields satisfy (B.9).

We now briefly discuss the different type of massive gauge bosons. The
profiles fn,(+,±)(z) of (+,±) are given in terms of the following Bessel functions

fn,(+,±)(z) = Nn,(+,±)z
(
J1(mn,(+,±)z)−

J0(mn,(+,±)R)Y1(mn,(+,±)z)
Y0(mn,(+,±)R)

)
, (B.11)

with Nn,(+,±) the normalization constants. The masses of the KK tower,
mn,(+,±), are determined by applying the IR boundary conditions. The (+,+)
boundary conditions will feature a zero mode with a flat profile while the first
KK mode is at m1,(+,+) ∼ 2.45/R′. (+,−) boundary conditions do not have a
zero mode as the gauge symmetry is broken on the IR but instead feature a a
rather light first KK mode at m1,(+,−) ∼ 0.25/R′.

The (−,±) gauge bosons feature a different UV boundary condition, their
profile is therefore a different linear combination of Bessel functions:

fn,(−,±)(z) = Nn,(−,±)z
(
J1(mn,(−,±)z)−

J1(mn,(−,±)R)Y1(mn,(−,±)z)
Y1(mn,(−,±)R)

)
. (B.12)

The lightest KK masses of these boundary conditions are m1,(−,+) ∼ 2.40/R′

and m1,(−,−) ∼ 3.83/R′.
Recall that for the (−,−) boundary condition there is a massless scalar in

the physical spectrum, Aâ5(x), with normalized bulk profile f5(z)

A5(x, z) ⊃ f5(z)Aâ5(x)T â =
√

2
R

z

R′A
â
5(x)T â, (B.13)

where we denote T â as the generators of the bulk gauge group with (−,−)
boundary conditions and thus a massless scalar. As discussed, gauge-Higgs
unification relies on embedding the Higgs field in such a zero mode. Moreover a
potential for Aâ5(x) is forbidden by 5D gauge symmetry, but due to finite-volume
effects a finite potential is generated at loop-level inducing a VEV 〈Aâ5(x)〉 = vâ

and inducing possibly spontaneous symmetry breaking.
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B.2 Fermion Fields
Having discussed 5D warped gauge fields, we now turn to the discussion of
fermionic fields, starting with its action:

SFermion =
∫

d4x

∫ R′

R
dz
√
G
( i

2(Ψ̄eMa γaDMΨ−DMΨeMa γaΨ)−mΨ̄Ψ
)
. (B.14)

The Dirac algebra now has to be generalized to 5D which implies the inclu-
sion of γ5 as the fifth gamma matrix in the Dirac algebra {γa, γb} = 2ηab,
making 5D fermions non-chiral. For warped space, the fünfbein eMa is given by
eMa = (R/z)δMa . In the absence of gauge interactions the covariant derivative in
warped space is given by DµΨ = (∂µ+γµγ5/(4z))Ψ, and D5Ψ = ∂5Ψ. Inserting
these terms into the above action and simplifying we find

SFermion =
∫

d4x

∫ R′

R
dz
(R
z

)4( i
2(Ψ̄γµ

←→
∂µΨ + Ψ̄γ5←→∂5 Ψ)− mR

z
Ψ̄Ψ

)
, (B.15)

with
←→
∂ =

−→
∂ −
←−
∂ . After integration by parts, which results in boundary terms

along the fifth compact dimension, we obtain

SFermion =
∫

d4x

∫ R′

R
dz
(R
z

)4
Ψ̄
(
iγµ∂µ + iγ5∂5 −

2i
z
γ5 −

c

z

)
Ψ

− i

2

∫
d4x

(R
z

)4[
Ψ̄γ5Ψ

]z=R′

z=R , (B.16)

where we define the dimensionless mass parameter c ≡ mR. Decomposing the
5D fermions into their chiral components, Ψ = (χ, ψ̄)T , we are lead to the
following bulk action with boundary terms

SFermion =
∫

d4x

∫ R′

R
dz
(R
z

)4(
iχ̄σ̄µ∂µχ+ iψσµ∂µψ̄ − ψ∂5χ+ χ̄∂5ψ̄

+ 2− c
z

ψχ− 2 + c

z
χ̄ψ̄
)

+ 1
2

∫
d4x

(R
z

)4[
ψχ− χ̄ψ̄

]z=R′

z=R . (B.17)

After varying the action for χ̄ and ψ, we obtain a set of coupled bulk equations
of motions

iσ̄µ∂µχ+ ∂5ψ̄ −
c+ 2
z

ψ̄ = 0, iσµ∂µψ̄ − ∂5χ+ 2− c
z

χ = 0 , (B.18)

as well as a boundary term

1
2

∫
d4x

[(R
z

)4
(ψδχ+ δψχ− χ̄δψ̄ − δχ̄ψ̄)

]z=R′

z=R
= 0. (B.19)

In the following we will denote with (+)/(−) a Dirichlet boundary condition
for the right handed/left handed field, implying a Neumann-like BC for the
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opposing chirality by virtue of the equations of motion, namely

Ψ(−) : χ(x, z) = 0 =⇒ ∂5ψ(x, z) = 2 + c

z
ψ(x, z),

Ψ(+) : ψ(x, z) = 0 =⇒ ∂5χ(x, z) = 2− c
z

χ(x, z). (B.20)

Once again the solutions are found by a seperation of variables, writing the
5D bulk fermion field as a sum over 4D fermion χn(x)/ψn(x) fields with a
wavefunction, fL/R(z)

χ(x, z) =
∑
n

fn,L(z)χn(x), ψ̄(x, z) =
∑
n

fn,R(z)ψ̄n(x), (B.21)

and each 4D spinor obeys the 4D Dirac equation with mass mn:

iσ̄µ∂µχn −mnψ̄n = 0, iσµ∂µψ̄n −mnχn = 0. (B.22)

After inserting the KK decomposition into the equations of motions we find a
first order differential equation for the bulk profiles

f ′
n,R +mnfn,L −

c+ 2
z

fn,R = 0, f ′
n,L −mnfn,R + c− 2

z
fn,L = 0. (B.23)

The profiles themselves are orthonormalized, such that the kinetic terms for the
4D fields are canonically normalized and do not mix, resulting in the conditions

∫ R′

R
dz
(R
z

)4
fn,L(z)fm,L(z) =

∫ R′

R
dz
(R
z

)4
fn,R(z)fm,R(z) = δn,m. (B.24)

In the case of a zero mode, mn = 0, the left and right handed profiles decouple
and we are left with

f0,L = 1√
R′

( z
R

)2( z
R′

)−c
f(c), f0,R = 1√

R′

( z
R

)2( z
R′

)c
f(−c), (B.25)

with the flavor function

f(c) =
√

1− 2c√
1− (R′/R)2c−1

, (B.26)

indicating the overlap of the fermion bulk profile with the IR brane which for
phenomenological studies is a very useful quantity. Such zero modes are a
feature of interval-like theories (such as an orbifold) in which one has localized
branes on which boundary conditions can be specified: (+,+)/(−,−) boundary
condition will give rise to a massless left/right handed fermion χ0(x)/ψ0(x).
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The more general case of a mn 6= 0 fermion can be solved by seperating
the coupled Eqs. (B.23) into two independent but second order differential
equations

f ′′
n,L −

4
z
f ′
n,L + (m2

n −
c2 + c− 6

z2 )fn,L = 0,

f ′′
n,R −

4
z
f ′
n,R + (m2

n −
c2 − c− 6

z2 )fn,R = 0, (B.27)

which is solved by Bessel functions. The warped sine and cosine functions [250]

S(z,m, c)= π

2mR
( z
R

)1/2+c(
J1/2+c(mR)Y1/2+c(mz)

−J1/2+c(mz)Y1/2+c(mR)
)
,

C(z,m, c)= πmR

2 cos(cπ)
( z
R

)1/2+c(
J−1/2+c(mR)J−1/2−c(mz)

+J1/2+c(mz)J1/2−c(mR)
)
, (B.28)

provide a useful parametrization of Bessel functions such that the general so-
lutions to Eq. (B.27) can be constructed as

fn,L(z) =
(R
z

)c−2
(bnS(z,mn, c)− anC(z,mn, c)),

fn,R(z) =
(R
z

)−c−2
(anS(z,mn,−c) + bnC(z,mn,−c)). (B.29)

with an, bn determined by the UV boundary conditions and the overall normal-
ization while mn follows from applying the IR boundary condition.

B.3 Zero Mode Approximation

In this appendix we provide the solutions of the SU(6) gauge-Higgs grand uni-
fication model from section 3.3 for the wave functions and mass matrices of the
fermions in the Zero Mode Approximation (ZMA) in which we do not take into
account fermion-mass mixing with the KK modes.

In the quark sector, we find the following profiles

fuR(z) = 1√
R′

( z
R

)2( z
R′

)c20
f−c20 ,

fdR
(z) = 1√

R′

( z
R

)2( z
R′

)c6
f−c6 ,

fd′
R

(z) = − 1√
R′

( z
R

)2( z
R′

)c15
M †
d/lf−c6 , (B.30)
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with the latter profile due to the IR brane mass term Md/l which implies the
IR BC fd′

R
(R′) = −M †

d/lfdR
(R′). For the quark doublet we find the following

profiles

fqL(z) = 1√
R′

( z
R

)2( z
R′

)−c15
fc15 ,

fq′
L
(z) = 1√

R′

( z
R

)2( z
R′

)−c20
Mq/efc15 , (B.31)

where the latter profile results from the IR brane mass term Mq/e which implies
the IR BC fq′

L
(R′) = Mq/efqL(R′). The above fermion profiles result in the

following non-canonical kinetic terms

KuR = 1,

KdR
= 1 + f−c6Md/lf

−2
−c15M

†
d/lf−c6 ,

KqL = 1 + fc15M
†
q/ef

−2
c20Mq/efc15 , (B.32)

which implies the need for an additional normalization of ψ → K−1/2ψ. The
overlap of the left and right handed modes with the Higgs boson, results in the
following mass matrices in the flavor basis:

Mu = g∗v

2
√

2
fc15M

†
q/ef−c20 ,

Md = − g∗v

2
√

2
fc15M

†
d/lf−c6 . (B.33)

We proceed similarly for the lepton sector, resulting in the following profiles for
the SM zero modes

flcR(z) = 1√
R′

( z
R

)2( z
R′

)c6
f−c6 ,

fl′cR(z) = − 1√
R′

( z
R

)2( z
R′

)c15
M †
d/lf−c6 ,

fec
L
(z) = 1√

R′

( z
R

)2( z
R′

)−c15
fc15 ,

fe′c
L

(z) = 1√
R′

( z
R

)2( z
R′

)−c20
Mq/efc15 ,

fνc
L
(z) = 1√

R′

( z
R

)2( z
R′

)−c6
fc6 ,

fν′c
L

(z) = 1√
R′

( z
R

)2( z
R′

)−c1
Mνfc6 , (B.34)

The lepton kinetic mixing matrices are given by

KlcR
= 1 + f−c6Md/lf

−2
−c15M

†
d/lf−c6 ,

Kec
L

= 1 + fc15M
†
q/ef

−2
c20Mq/efc15 ,

Kνc
L

= 1 + fc6M
†
νf

−2
c1 Mνfc6 , (B.35)
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and the mass matrices in the flavor basis are

Mec = − g∗v

2
√

2
f−c6Md/lfc15 ,

Mνc = g∗v

2
√

2
f−c6fc6 . (B.36)



Appendix C

A Three-Site Model

In this appendix we describe the three-site model that provides a phenomeno-
logical incarnation of the mirror fermion cancellation mechanism.

The first site is identified with the elementary sector in which all the SM
fermions and the mirror fermions (with their Dirac mass reside), while the
second and third site form the strongly coupled sector. The corresponding
Lagrangian describing the link between the elementary sector and the second
site, describing the partial compositeness of the quarks from Eq. (4.78), reads

LPC = λLf(Q̄L + Θ̄L)URψR + λRf(T̄R + Ω̄R)URψR + h.c. , (C.1)

where QL,ΘL, TR and ΩR describe the spurion embedding of the quark doublet
and top singlet and their mirror fermions into the representation R of G. ψR

is a strong sector fermion on the second site in the representation R, while UR

is the Goldstone matrix transforming in the representation R

UR = exp
(
2iΠα̂T

R
α̂ /f

)
, (C.2)

with TR
α̂ the broken generators of G/H in the representation R normalised

such that Tr(TiTj) = δij/2.
In order to make the chiral mirror fermions heavy, we introduce their op-

posite chirality and give them a Dirac mass on the first site as indicated by the
second line of Eq. (4.78):

LDirac = mωω̄ω +mθθ̄θ. (C.3)

We also include a partial compositeness hypothesis for the bR as illustrated by
Eq.(4.80):

LPC = λbfB̄RU
R′
ψR′ + h.c. . (C.4)

Although the impact of the bottom sector on the potential is negligible, some
of the strong sector resonances contained in ψR′ will mix with the top and
exotic resonances impacting the phenomenology. It is therefore important to
incorporate their effect.

131



132 C. A Three-Site Model

We now describe the second and third site, or the strong sector, omitting
the kinetic terms:

Lstrong =mRψ̄
RψR +mR′ψ̄R′

ψR′

+∆Rψ̄
Rψ̃R + ∆R′ψ̄R′

ψ̃R′ + h.c.

+m̃C
¯̃ψCψ̃C + m̃C̄

¯̃ψC̄ψ̃C̄ + m̃′
C

¯̃ψ′,Cψ̃′,C

+m̃L,C
¯̃ψCPLψ̃

′′C + m̃R,C
¯̃ψCPRψ̃

′′C + h.c., (C.5)

with ψ̃R = (ψ̃C, ψ̃C̄) and ψ̃R′ = (ψ̃′,C, ..) the strong sector fermions living on
the third site. The first line contains the Dirac mass for the two second site
fermions, ψR and ψR′ , while the second line connect the second site fermions to
the third site fermions, ψ̃R and ψ̃R′ . Notice that these masses respect the global
symmetry G. The breaking of G happens only on the third site where all the
masses consistent with the symmetry H are written down. These correspond
to the last two lines of Eq. (C.5) with the third line corresponding to the H
invariant masses of the second site fermions while the last line corresponds to
the H-invariant masses between the third site fermions ψ̃R and ψ̃R′ . The fact
that such H-invariant masses exist relies on embedding the bR in a R′ such
that it decomposes in H as

R′ = C⊕ ..., (C.6)

without which the right-handed bottom wouldn’t connect to the left-handed
bottom and remain massless (see main text for more details).

The above fully describes the fermion sector of the three-site model and
allows to extract the mass matrices MT (h) and ME(h) for the top and ex-
otic respectively and associated strong sector resonances which determines the
radiative Higgs potential of the model.
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