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Abstract

Here I developed a novel method to investigate the growth of cell colonies in vitro. The
method is inspired by and augments the standard in vitro clonogenic assay (IVCA).
While the field of application is radiobiological research, the approach can be applied
to any domain where colony growth of adherent cells is of interest. The method utilizes
high numbers of time-resolved microscopy image series and hence requires largely
automated image data acquisition, image processing, quantitative data extraction
and single-colony growth characterization. I designed a multi-step analysis framework
to implement these steps. This contrasts with traditional approaches relying on
visual examination of cell culture containers and manual classification of cell colonies.
This new approach allows yet unattained insights into growth behaviors and growth
rates of large numbers of individual cell colonies.
In applying the new method to five different cell lines (H3122, H460, RENCA, SAT,
UTSCC-5) in different experimental settings, the following main results were found:
a) For some of the cell lines, the initial seeding density influences the growth dynamics
of the resulting colonies in densities commonly used in standard experiments.
b) Pre-experimental cell culture conditions influence the growth dynamics in two
tested cell lines (SAT, UTSCC-5) without irradiation.
c) Exponential growth rates of two tested cell lines (H3122, RENCA) are normally
distributed independent of irradiation dose, but the average growth rate decreases
linearly across commonly used doses.
d) Some colonies growing from photon-irradiated cells exhibit a distinct delayed
abortive growth behavior, as observed for the two analysed cell lines (H3122, RENCA).
The frequency of this behavior increases with increasing dose.
e) Survival rates, as traditionally determined via the standard IVCA, clearly depend
on experimental readout choices, namely the time of readout and the size threshold
used to score survival of colonies. My analysis indicates that this dependence emerges
from observations c) and d).
f) The observed influence of readout choices propagates into relative biological
effectiveness quantification for carbon irradiation for three examined cell lines (H460,
RENCA, UTSCC-5).
Hence, I demonstrate that the presented method can be used to inform experimental
design decisions in standard IVCA experiments, to perform robustness analyses on
these assays, and to find distinct types of growth behavior. Still, the application in its
current form is limited to adherently growing cell lines forming contiguous colonies.
In addition, due to the multi-step procedure,some underlying assumptions and
methodological decisions need to be made which potentially influence the resulting
findings. I discuss these aspects in a dedicated chapter.
In future work, potential extensions and combinations with quantitative single-cell
analysis methods such as FACS, fluorescent live-cell imaging or single cell omics
methods can make this method a cornerstone application to build on in order to
understand not only how, but also why colonies grow the way they do.
In conclusion, the presented method elucidates colony growth in unprecedented
detail. The presented results showcase the potential relevance of these details.
However, to establish this method as a standard tool for applied research, a unified



analysis framework is necessary to standardize the methodological aspects, from
image acquisition to colony growth type classification.

Zusammenfassung
In dieser Arbeit habe ich eine neue Methode entwickelt, um das Wachstum von Zell-
kolonien in vitro zu untersuchen. Die Methode ist inspiriert vom in vitro clonogenic
assay (IVCA) und erweitert diesen. Der Anwendungsbereich ist die radiobiologische
Forschung, doch der Ansatz kann in jedem Bereich angewandt werden, in dem das
Koloniewachstum von adhärenten Zellen von Interesse ist. Die Methode verwendet
eine große Anzahl von zeitaufgelösten Mikroskopie-Bildserien und erfordert daher
eine weitgehend automatisierte Bilddatenerfassung, Bildverarbeitung, quantitative
Datenextraktion und Charakterisierung des Einzelkoloniewachstums. Zur Umset-
zung dieser Schritte habe ich eine mehrschrittige Analyse entwickelt. Diese steht im
Gegensatz zum traditionellen Ansatz, der sich auf die visuelle Untersuchung von
Zellkulturbehältern und die manuelle Klassifizierung von Zellkolonien stützt. Dieser
neue Ansatz ermöglicht bisher unerreichte Einblicke in das Wachstumsverhalten und
die Wachstumsraten einer großen Anzahl einzelner Zellkolonien.
Bei der Anwendung der neuen Methode auf fünf verschiedene Zelllinien (H3122,
H460, RENCA, SAT, UTSCC-5) in unterschiedlichen Versuchsumgebungen wurden
die folgenden Ergebnisse festgestellt:
a) Bei einigen der Zelllinien beeinflusst die anfängliche Aussaatdichte die Wachs-
tumsdynamik der entstehenden Kolonien für Dichten, die in Standardexperimenten
üblicherweise verwendet werden.
b) Präexperimentelle Zellkulturbedingungen beeinflussen die Wachstumsdynamik in
zwei getesteten Zelllinien (SAT, UTSCC-5) ohne Bestrahlung.
c) Die exponentiellen Wachstumsraten von zwei getesteten Zelllinien (H3122, RENCA)
sind unabhängig von der Bestrahlungsdosis normalverteilt, wobei die durchschnittli-
che Wachstumsrate über üblicherweise verwendete Dosen linear abnimmt.
d) Einige Kolonien, die aus mit Photonen bestrahlten Zellen wachsen, zeigen ein aus-
geprägtes verzögertes abortives Wachstumsverhalten, was für die beiden untersuchten
Zelllinien H3122 und RENCA beobachtet wurde. Die Häufigkeit dieses Verhaltens
nimmt mit zunehmender Dosis zu.
e) Die Überlebensraten, wie sie traditionell durch de Standard-IVCA bestimmt
werden, hängen klar von der Wahl des experimentellen Auslesezeitpunkts und der für
die Bewertung des Überlebens der Kolonien verwendeten Größenschwelle ab. Meine
Analyse zeigt, dass sich diese Abhängigkeit aus den Beobachtungen c) und d) ergibt.
f) Der beobachtete Einfluss der Wahl der Ausleseparameter pflanzt sich in der Quan-
tifizierung der relativen biologischen Wirksamkeit der Kohlenstoffionenbestrahlung
für drei untersuchte Zelllinien (H460, RENCA, UTSCC-5) fort.
Folglich kann die vorgestellte Methode verwendet werden, um Entscheidungen über
die Versuchsplanung in Standard-IVCA-Experimenten zu treffen, Robustheitsanaly-
sen für diese Experimente durchzuführen und verschiedene Arten des Wachstums-
verhaltens zu finden. Dennoch ist die Anwendung in ihrer derzeitigen Form auf
adhärent wachsende Zelllinien beschränkt, die zusammenhängende Kolonien bilden.
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Darüber hinaus müssen aufgrund des mehrstufigen Verfahrens einige zugrunde lie-
gende Annahmen und methodische Entscheidungen getroffen werden, die die daraus
resultierenden Ergebnisse potenziell beeinflussen können. Auf diese Aspekte gehe ich
in einem eigenen Kapitel ein.
Potenzielle Erweiterungen und Kombinationen mit quantitativen Einzelzell- Analy-
semethoden wie FACS, Fluoreszenz-Lebendzell-Mikroskopie oder Einzelzell-omics-
Methoden können diesen Ansatz in Zukunft zu einer Grundlagenmethode zu machen.
Mit ihrer Hilfe kann man so nicht nur verstehen wie, sondern auch warum Kolonien
so wachsen, wie sie es tun.
Zusammenfassend lässt sich sagen, dass die vorgestellte Methode das Wachstum von
Kolonien in noch nie erreichter Detailliertheit aufzeigt. Die vorgestellten Ergebnisse
zeigen die potenzielle Relevanz dieser Details. Um diese Methode als Standard-
werkzeug für die angewandte Forschung zu etablieren, ist jedoch ein einheitliches
Analysesystem erforderlich um die methodischen Aspekte von der Bildaufnahme bis
zur Klassifizierung des Koloniewachstumstyps zu standardisieren.
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1Radiobiology reveals and
explains radiation effects

Radiobiological research aims at quantifying, understanding and predicting the
influence of radiation on biological systems, from cells and organs to organisms
and populations. This knowledge is essential for reasonable risk management in
industries concerned with radiation, such as space travel, the nuclear power industry
and medicine [1].
Especially in the medical industries, many different types of radiation are relevant in
diagnostic as well as therapeutic applications. The pivotal goals of minimizing risks
to the patient and maximizing therapeutic effects can only be accomplished based on
sufficiently accurate models which capture the effects of the applied radiation type on
the tissue in question. Several different strategies aim at creating and informing these
models, ranging from empirical, descriptive approaches [2] to mechanistic approaches
[3]. This spectrum mostly coincides with the scale of the investigated system: For
populations, patients, and multicellular systems such as organs, organoids and
spheroids descriptive models prevail, while mechanistic, causal models are restricted
to cellular and subcellular systems due to the high complexity of larger systems
[4]. Considering the stochastic nature of radiation, these mechanistic models are
usually stochastic in nature and use track structures and spatial energy deposition
distributions as modeled by Monte Carlo Simulations [5].
The concept of informing radiation effect models based on patient data faces several
obstacles: Practical limitations include a lack of observability of processes within
patients, the presence of many unknown, potentially confounding variables, which in
turn can lead to large inter-patient variability with the resulting statistical challenges
in the analysis of such data. In addition, ethical considerations about patient risks
rightfully prohibit exploratory experiments. Hence, as common in basic biological
research, foundational knowledge needs to be acquired in simplified biological model
systems. This requirement is reason and justification for the development of colony
formation assays [6, 7]. In the following I will describe the idea, the underlying
assumptions and notable outcomes of such assays.
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2The importance of colony
formation assays

A main interest of radiobiological research is the determination of dose-response
relationships. Responses of interest range from intracellular aspects like types and
severity of DNA damage [8], the extent and details of DNA repair processes [9],
changes in transcription or translation [10, 11] or shifts in metabolic processes [12] to
cell population characteristics like loss of organ function [13] or tissue regeneration
[14].
Since the pivotal goal of radiotherapy in cancer treatment is to stop proliferation of
a certain type of malicious cells, the response of interest is the fraction of cancerous
cells losing their viability, i.e. their capacity to proliferate. Therefore, assays that
allow the quantification of loss of proliferative capacity (or inversely, preservation of
proliferative capacity) are main tools used in this field.
It is important to note that in the context of colony formation assays, the preservation
of proliferative capacity is often referred to as clonogenicity or simply survival. This
reflects the implicit assumption that radiation has a binary outcome on single cells:
either a single cell keeps its proliferative capacity = stays clonogenic = survives, or
it looses its proliferative capacity = looses clonogenicity = dies.
In addition, colony formation assays rely on the assumption that this binary outcome
can be determined based on the size of colonies which grew from irradiated single cells.
Through irradiation of a known number of single cells and counting of sufficiently
large colonies grown from those cells after a certain incubation time, the level of
survival can be determined. Note that sufficiently large and the incubation time are
aspects of the readout which need to be chosen by the executing scientist based on
their experience or established protocols, introducing a certain level of arbitrariness.
Yet, performing the same readout for multiple samples at different doses yields
dose-survival curves describing how clonogenicity changes as a function of dose.
This allows to address multiple different questions:

• Performing this under different environmental conditions (O2 concentration, tem-
perature...) allows to gauge the influence of these conditions on the dose-response
relationship.

• Applying this concept to different cell lines or cell types under identical conditions
allows to compare radioresistance/radiosensitivity between different cell types.

• Administering identical doses using different radiation modalities (photon irradia-
tion at different energies, protons, different heavy ion species) allows to compare
the relative biological effectiveness (RBE) of these modalities.

Hence, after Puck and Marcus established a method to culture single eukaryotic
cells in vitro [6], radiobiologists applied this method to their respective fields of
work, resulting in large numbers of dose-survival curves being published. A detailed
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description on how these curves are calculated is given in section 4.1.4.
It is important to note that aggregate studies show that the resulting dose-survival
relationships vary substantially between different studies for many cell lines, even
for results from the same research groups [15, 16, 17]. Several factors responsible
for this variability were identified in the literature, including seeding densities [18],
seeding times [16], cell culture conditions [19] and human error [20, 21].
Differences in readout procedure, namely the choice of abovementioned definitions of
sufficiently large colonies and the incubation time were not covered in these studies.
However, results acquired in our group before and during my Master Thesis project
indicate that these choices indeed have an influence on the resulting dose-survival
relationships. This motivated the idea to develop a time-resolved version of the
in vitro clonogenic assay (IVCA) to inspect how and why these readout choices
influence the resulting survival curves and whether they introduce systematic errors
in viability quantification.
Earlier time-resolved studies on cell colony growth provide additional rationale to
develop the method used in this project. Rather than quantifying the growth char-
acteristics of whole populations of single cells, they focus on the demonstration of
specific cell death modes [22, 23, 24] and specific morphologies [25], or are limited
by manual analysis of a few distinct colonies [26, 27] as technologies for automated
analysis of large data were not available yet.
In the following chapter, the general idea, underlying assumptions as well as note-
worthy aspects of our new method are presented.

6 Chapter 2 The importance of colony formation assays



3A new concept: studying cell
colony growth in vitro

Here I will conceptualize an idealized experiment to examine cell colony growth in
vitro. Idealized here means that independent of the actual implementation of this
concept, we can expect certain types of results that are inherent to this kind of
experiment. As we will see, these results motivate and justify the application of this
concept.
I will outline the general procedure and the foundational assumptions of this experi-
ment. In addition, I will describe the types of analyses available for the resulting
data. The different types of resulting data will be highlighted in bold font and the
necessary analyses are subdivided into quantitative, categorical and parametric types.
I will outline their necessary assumptions as well as expected insights.
Based on this theoretical description, I will derive crucial aspects of pre-experimental
procedure, of experimental design and execution as well as aspects of data processing
and data analysis. These aspects need to be considered to make the application of
this concept possible and useful.
Finally, I’ll expand on the potential research questions that can be addressed with
this new approach.

Procedure, assumptions and expected insight of the idealized experiment
In essence, we want to observe how single cells grow into colonies (or not) dependent
on their condition. Here, condition can represent any aspect of the cells’ internal
states (cell cycle status, genetic attributes, etc.), surroundings (temperature, chemical
concentrations etc.), or treatment (different substances, concentration of substances,
irradiation doses and modalities etc.).
Since cell colony growth is a dynamic process, the experimental procedure demands
time-course observations to capture these dynamics. The fundamental quantity to
record here is colony size at any given point during the observation duration. Here
we must rely on the assumption that our method can truthfully measure across a
range of sizes and allows us to observe colony growth without disturbing it. If this is
established, the method yields colony size distributions across the duration of the
observation period for all conditions of interest. This result alone is already highly
informative, since, in contrast to the standard IVCA, it allows us to extract
• the size development of the whole cell colony population through time, enabling

qualitative, visual comparisons between different conditions.
• descriptive aspects of the single distributions themselves:

– shape of the size distributions (unimodal, multimodal...),
– mean, median and extreme sizes,
– variance of colony sizes within a condition.
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Based on the quantitative result of colony sizes, further analyses can be performed.
If we attribute the size of each colony at each time to their original single cell
(progenitor), we obtain single colony growth tracks, which are single data series,
one per colony, represented by size values over time. We refer to this process as
colony tracking. A necessary assumption here is that the underlying data allows
sufficiently accurate assignment of colony size measurements to their respective
progenitor. The resulting tracks open up two additional types of analysis with their
respective resulting data:
• A parametric description of growth in terms of growth rates
• A categorical description of growth in terms of growth types
To gain growth rates from the growth tracks, we need to assume a model of growth
where the growth rate represents an informative parametrization of growth. Assuming
an unlimited proliferation of cells in a colony, exponential growth

S(t) = S(0)eγt, (3.1)

with S(t) as size at time t and γ as the growth rate, represents the most obvious
description, with γ directly corresponding to the speed at which cells replicate within
the colony. Independent of the chosen growth model, retrieval of growth rate values
requires a curve fitting method which finds the best estimate of the parameter given
the time series size data.
For the definition and detection of growth types, we must assume that we can find
distinct, qualitatively different growth behaviors, represented by different models of
growth. Naively, there seems to emerge a conflict between the two types of analysis:
If colonies follow different growth models, these colonies cannot be directly compared
in terms of a quantitative parameters. Hence, either only colonies exhibiting the same
type of growth behavior can be compared, or parametric models of growth need to
be chosen that preserve intercomparability despite different underlying descriptions.
To summarize: In contrast to the standard IVCA, a time-resolved approach to colony
formation analysis yields abundant results. These results are useful to:

1. perform quantitative analyses via colony size distributions to observe growth
dynamics of colony populations

2. perform parametric analyses via growth rates to quantify growth speed of
single colonies and of colony populations

3. perform categorical analyses via distinct growth types and quantify their
prevalence as a function of condition/treatment

When translating this concept into a practical application, we must ensure the
validity of the assumptions made as described above. In addition, technical aspects
and limitations need to be considered to ensure robustness of the approach and
therefore comparability of results within and between experiments. In the following
paragraphs, I will highlight important aspects to consider when employing this type
of analysis.

8 Chapter 3 A new concept: studying cell colony growth in vitro



Important aspects of practical implementation

The recording and analysis of cell colony growth as described above is a multi-step
process requiring various decisions in terms of preparation, execution and analysis of
the experiment. These decisions are made based on available resources, feasibility
of handling and the research focus at hand. Following the chronology above, I will
discuss the aspects where decisions are necessary. Where applicable, I will suggest
reasonable choices for these aspects. In addition, I will classify their influence on the
result as either obvious, critical or unclear.
Obvious aspects have a clear influence on biological processes and therefore the
experimental results. These parameters need to be controlled strictly.
Critical aspects most likely influence the experimental results either through biologi-
cal processes or by introducing bias in the analysis. These should be controlled but
require careful experiment design and planning to control.
Unclear aspects might have an influence through either biological or technical pro-
cesses, but the significance and extent of these influences was not yet examined.

Pre-experimental aspects:
Choice of cell line: This choice should reflect the research question at hand and is
an obvious aspect. Different tissue types react differently to different treatments
[17] and show differences in morphology and growth. Hence, the choice of cell line
is an obvious parameter, not least because some cell lines do not grow into distinct
colonies. Suspension cells or highly motile cell types which do not form colonies can
not be analyzed regarding their cell colony growth. This is true for the standard
IVCA as well [7].
Pre-experimental culture conditions: These are critical aspects, since nutrient
and space availability influence growth behavior in the absence of any interfering
treatment. Therefore, cells should be harvested, seeded and treated in comparable
conditions which reflect the "normal" state of the cell population. In the case of
immortalized cancer cell lines, this is the exponential growth phase where neither
nutrient nor space limitations restrict growth.
Cell line passage: The passage number is an unclear aspect whose influence depends
on the genetic stability of the cell line at hand as well as the difference in cell
line age. For genetically stable cell lines which do not suffer from selection bias
during passaging, potential differences in experimental results might arise from large
differences in passage number. Cell lines which are genetically unstable and/or suffer
from selection biases during passaging potentially show changes in experimental
results after only a few passages. This needs to be considered and possibly tested for
each cell line before drawing conclusions on interexperimental differences.
Number of seeded cells / seeding density: These are critical aspects. Since irradia-
tion effects on single cells are stochastic , sufficient numbers of single cells need to be
recorded to capture the population behavior without losing infrequent behaviors and
without compromising on statistical power. This demands for a lower bound on the
number of seeded cells. However, assuming a constant available space for growth,
increasing the number of seeded cells translates to increased seeding density. This can
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introduce problems such as colony fusions, where neighbouring colonies merge and
are subsequently indistinguishable, or density-dependent growth inhibition. These
effects will vary between conditions where the level of growth varies, introducing
condition-dependent biases in the analysis. Alternatively, the number of seeded cells
can be increased at constant seeding density by increasing the available space for
growth. This translates to bigger or more cell culture containers, longer imaging
cycles, more image data per experiment and more cell culture resources used. This
creates an upper limit to the number of seeded cells which depends on available
equipment and resources.

Experimental aspects:
Type of acquisition: This is an obvious aspect. As the observables of interest are
colony size and potentially morphology, imaging is a plausible choice of recording
colony growth. Still, different imaging modalities (brightfield, phase contrast, fluo-
rescence) and different resolutions could potentially be used. Different subprocesses
such as focus finding and sample alignment routines add to the potentially used
variations of measurements. However, these choices influence the results in several
ways:

1. Not all cell lines grow robustly under the stress of repeated imaging rounds.
Especially frequent application of high-energy fluorescent microscopy over long
periods of time might influence the viability and growth behavior of colonies.
This should be tested.

2. Different imaging modalities and resolutions yield data with different charac-
teristics, which in turn require different image analysis methods to robustly
extract information from the images.

Therefore, full comparability between different datasets can only be achieved if
identical measurement procedures are adhered to.
Number of measurements per time / per experiment: This is a critical aspect, since
it influences the quality of subsequent growth analysis. Ideally, we would be able to
record the size of every single colony at any given point during the experiment. This
would require instantaneous recording of the full sample, which to my knowledge is
not physically possible with any imaging system available. Additionally, this level
of acquisition rates would result in an infinitely large record of data. In reality,
the frequency of measurements is limited by the duration of an imaging cycle and
potentially technical limitations of the imaging equipment such as overheating of the
sample due to excessive acquision frequencies, data processing speed or data storage
space. It is generally true that more time points help to capture characteristics of
growth curves more clearly and hence improve classifiability with regards to growth
behaviors. This needs to be weighed against the fact that depending on the imaging
modality and equipment, every imaging cycle represents a physical perturbation of
the observed biological systems by introduction of radiation and heat by illumination
or potential movements of the microscopy stage. These perturbations might alter
the cells’ viability and growth behaviors. Fortunately, cell colony growth is a slow

10 Chapter 3 A new concept: studying cell colony growth in vitro



process in relation to the acquisition process, which suggest that we should be able
to capture the characteristic aspects of growth dynamics at reasonable, minimally
perturbing acquisition rates.
Duration of observation: This is a critical aspect. The shorter the duration, the
more likely it is to miss out on dynamics that would have occurred after the ex-
periment already ended. The longer the duration, the more likely it is that the
samples experience changes in environmental parameters caused by overcrowded cell
culture containers, nutrient depletion or prolonged physical stress due to imaging.
For different conditions, the magnitude of these changes might differ, potentially
leading to condition-dependent biases.
Environmental conditions during incubation: These are obvious aspects, since it
is known that biological activity and hence cell colony growth strongly depends
on temperature, nutrient availability and the concentration of CO2 and O2. For
comparability of experiments, these conditions must be identical.

Post-experimental aspects:
Image quantification method: This is a critical aspect. The successful extraction
of colony sizes from image data requires a method that is validated to work ro-
bustly on the type of image data used. This requires that colony sizes are correctly
recorded independently of colony size, colony age and potential differential treat-
ments/conditions.
Colony tracking method: This is a critical aspect. While successful tracking depends
on the choice of a suitable cell line, sufficiently sparse seeding and sufficiently high
frequency of imaging, the method itself naturally influences the quality of resulting
growth curves.
Growth rate quantification: This is a critical aspect. Firstly, in order for the
extracted growth rates to meaningfully describe colony growth, the chosen growth
model (see e.g. Eq. 3.1) must reflect the actual growth process. Secondly, especially
in non-linear curve fitting problems, where a normal distribution of error in the data
can not be assumed, an optimal choice for cost functions and optimization algorithms
is not given. Hence, depending on the data, different choices in these aspects can
lead to markedly different values as well as confidence intervals for the estimator.
Growth behavior classification: This is a critical aspect. Above all, the observed
colonies must actually show different distinct growth behaviors which can be clearly
categorized by a human observer. Only then it makes sense to attempt an automated
classification of colonies into these distinct behaviors.
Similar to the other aspects of post-experimental analysis, the chosen method depends
on choices made for the pre-experimental and experimental aspects. The method
needs to be validated for the type of data at hand i.e. the resulting classifications
should strongly agree with the classifications made by an experimental observer.

Potential applications of the time-resolved growth analysis
I identify the following three main potential benefits of the presented method:
Testing the robustness of standard IVCAs:
As indicated above, some results of the standard IVCA might be biased depending
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on the readout choices, namely the threshold colony size which qualifies colonies to
be scored as viable and the readout time at which the experiment is stopped and
scoring is performed on the dead and stained colonies present. Since the time-course
acquisition yields all colony sizes at multiple timepoints, it allows us to perform this
scoring using different size thresholds at these timepoints. This way, experimental
designs can be tested for their robustness in relation to the readout procedure.
Establishing whether certain cell lines and experimental setups are robust against
readout related bias allows experimentalists to gauge whether they can trust results
gathered using the standard readout. If this robustness can not be established, the
researcher has a quantitative foundation to choose alternative methods of quantifying
viability, for example by evaluating growth behavior as an indicator for viability, as
follows.
Using growth behavior as indicator of viability: Instead of trusting that the size
of a colony at a given time truthfully reflects their viability, one can classify a cell
colony’s viability based on its growth track representing the full growth history. For
cell lines and conditions where the assumption sufficiently large colony = viable
colony is not clearly established, the additional information contained in the growth
history of a cell colony should allow more confident viability scoring as compared to
the standard IVCA scoring.
Functional investigations regarding growth characteristics: Observing the influence
of radiation or other treatments on growth behaviors and growth characteristics
of cell colonies introduces questions about how these influences translate into func-
tional changes within cells or cell populations. Are there driving regulatory factors
determining the cells’ reaction to treatments in term of growth? What are the
influences of and interactions between cell cycle status, DNA damage repair or
inter-cellular communication pathways on cell colony growth? Such questions were
already tackled in relation to cell survival, often employing standard IVCAs [28, 29,
30] but access to colony growth dynamics opens new venues of research regarding
intracellular regulation of growth and how it is influenced by different treatments.
Combining image-driven colony growth analysis with fluorescence-based molecular
imaging, fluorescence assisted cell sorting (FACS) analyses or proteomic analyses
could reveal functional connections to help understand in detail how cells integrate
radiation-induced changes in their regulatory processes.
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4Technical background

In this chapter, general technical concepts are introduced which are necessary to
understand the presented work. Generally, these concepts are divided into aspects of
irradiation, image processing and the analysis of time series data.

4.1 Irradiation and biological effects
In the context of radiotherapy, irradiation refers to the transfer of energy to a target
tissue using ionizing radiation. The ionizing part is an important distinction from
other types of radiation that add energy to a body without ionizing the receiving
molecules. While conventional radiation employs high-energy electromagnetic waves
such as X-rays, newer approaches also involve charged particles like protons, helium-
or carbon-ions [31].
Independent of the type of irradiation, the biological impact results from the ionization
of molecules within the irradiated tissue. These molecules either disintegrate or react
with other molecules, potentially interfering with their functions. In an otherwise
healthy cell, this activates repair mechanisms which try to revert these changes [1].
Here, damage to the DNA is shown to be a key contributor to the adverse effects of
irradiation. Nevertheless, mechanisms unrelated to DNA have also been found to
contribute, encompassing processes activated through membrane-associated signaling
pathways or effects on unirradiated bystander cells close to irradiated cells, indicating
intercellular communication [32].

4.1.1 Irradiation doses
In radiobiology, the term dose usually refers to the amount of ionizing energy E that
is deposited per mass M of irradiated tissue:

D = E

M
, (4.1)

where D is the dose.
This can be thought of as a mass "concentration" of energy that the process of
irradiation adds to the irradiated body. The SI unit to quantify doses is a Gray (Gy),
where 1 Gy = 1 J/kg. This definition is independent of the type of irradiation, may
it be electromagnetic waves or particle-based. Nevertheless, the small-scale spatial
distribution of this energy deposition varies substantially depending on the employed
irradiation modality. Hence, the properties of irradiation processes can be further
characterized using the following definitions.

4.1.2 Linear energy transfer (LET)
The LET quantifies how much energy is deposited in the receiving material per
distance traversed by an ionizing particle. It is commonly quantified in units of
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keV/µm. Several studies have shown that the biological effectiveness of irradiation
depends on this characteristic, owing to the differences in the spatial distribution
of molecular alterations evoked by the incident irradiation [33, 34]. The energy
deposition patterns of electromagnetic and particular irradiation modalities differ
strongly, causing different patterns of damage to the receiving biological structures
[35], which in turn is thought to results in different magnitudes of biological effects at
identical doses. In addition to differences in penetration depth and energy deposition
profiles along the direction of irradiation, this gives a theoretical justification of using
particular modalities in patient treatment [1].

4.1.3 RBE
The abovementioned differences in biological effects between different irradiation
modalities and LET characteristics are generally quantified by comparing physical
dose of two modalities that cause the same biological effect. As exemplified in Figure
??, this biological effect is often measured in terms of cellular survival as described
by dose-dependent survival curves. In this particular case, the RBE is calculated as

RBEX = DR,E

DC,E

, (4.2)

where DR,E is the dose needed to cause the effect E using the reference modality and
DC,E is the dose needed to cause the effect E using the comparing modality.
Historically, photon irradiation was and still is used as the main modality in radio-
therapy and hence in biomedical irradiation research. Therefore, the quantification
of RBE values usually uses photon irradiation as a reference modality. Studies have
shown that RBE values depend on the comparing modality, but also on the type
of biological effect and the magnitude of this effect [36], the examined biological
specimen [34], experiment conditions such as oxygen levels [37] and cell cycle status
[29].

4.1.4 Survival curves and the linear-quadratic model (LQM)
In the classical IVCA experiment, dose-dependent cell survival is obtained as follows:
single cells are seeded in vitro and irradiated at different doses. After an incubation
time t which is chosen by the experimentalist to allow the cells to grow into colonies,
all cell culture containers are stained, usually with crystal violet. Then, the number
of cells in each colony is counted and the colonies are scored as either clonogenic or
not clonogenic based on a threshold size of n cells. From the numbers of colonies
scored as clonogenic at dose D, cell survival is calculated as follows:

SD,t,n = RD,t,n

R0,t,n

=
ND,t,n

ND,0,1
N0,t,n

N0,0,1

, (4.3)

where RD,t,n represents the quotient between the number of colonies ND,t,n that
contain at least n cells after irradiation with dose D and all initially seeded cells
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ND,0,1 for that dose. To normalize for imperfect survival even without irradiation,
survival SD,t,n is determined by division with R0,t,n, which represents the fraction of
sufficiently large colonies formed after mock irradiation (D = 0).
A plot of these dose-dependent survival values on a semi-log plot (see Figure 4.1)
results in a characteristic survival curve that can be modeled by different mathematical
functions. The most commonly used form is the two-parameter LQM

S(D) = e−αD−βD2
. (4.4)

Here, the parameters α and β represent a linear and a quadratic contribution to
loss of clonogenicity, respectively. This relatively simple description fits most dose-
dependent survival data remarkably well. Nevertheless, biological counterparts
in terms of distinct processes or target structures could not be ascribed to these
parameters [38].
Independent of a lack of functional correlate to these parameters, they are frequently
used in characterizing radiosensitivity of different cell types and tissues and the
quotient α

β
is successfully applied in radiotherapy treatment planning [39]. On one

hand, this indicates that the determination of these values through the standard
IVCA is an important step in allowing informed and hence safe radiotherapeutic
treatments. On the other hand, considering the large variability of IVCAs outlined
in chapter 2, scrutinizing the underlying method and potentially improving on the
robustness of cell viability quantification is a worthwhile endeavour to further improve
radiotherapy.
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Figure 4.1: Example of a standard LQM fitted to survival ratios. The line
represents curve fit to data (points). α and β as the fitted parameters as
well as their quotient α/β traditionally characterize the radiosensitivity
of cells.
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4.2 Image processing
Quantitative analysis of objects encoded in image data requires standardized pro-
cessing to extract these objects and measure their characteristics of interest. This
encompasses object segmentation to detect these images and quantitative description
of the identified objects.
In case of time-series image data, when location information is of essence, it is often
necessary to preprocess the images so that spatial relationships between objects in
different images can be represented in the same reference coordinates. In other words,
a point present in multiple images needs to be described by the same coordinate
values independent of the image it is found in. This process is called registration
and generally includes a spatial transformation of one or multiple images to match a
reference image.

4.2.1 Segmentation
Generally, segmentation procedures take an image (or a 3D image) and attribute
a label from a finite set of labels to each pixel (or voxel) of this image. While the
human brain is naturally capable of distinguishing different objects in a visual scene,
a computational approach solves this task by making a labeling decision for each
pixel based on
• properties of the pixel,
• properties of the pixel neighborhood,
• properties of the transformed and preprocessed pixel,
or a combination of the above. This can be implemented either through pre-defined
rules or through rules that a supervised learning algorithm can deduce based on train-
ing data. For the latter, training data is created by experts who create segmentation
maps for a set of images by correctly labeling them by hand. Feeding these pairs of
images plus their segmentation maps to a learning algorithm, the algorithm should
ideally be able to infer rules that allow to create segmentation maps for unseen data.
User-defined rule-based procedures are often relatively simple and hence work well
for data where the classes of interest show distinct features that allow to distinguish
them from each other. The simplest example would be obvious differences in intensity
or color values between the regions of interest. Other distinguishing features can be
regular patterns or other structures such as edges of an object. Multiple dedicated
morphological filters exist in the field of image processing which can detect and
extract such structural features [40]. In most implementations, the last step of these
procedures is to decide on the label for a pixel in a processed image or a combination
of processed images based on threshold values chosen based on visual examination of
the result.
However, in many applications such procedures do not sufficiently generalize across
the data at hand. This can be due to global variations of intensity between images
or local variations of intensity within an image. Another obstacle can be a high
variability among the features of objects belonging to the same class. These chal-
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lenges can be overcome by approaches that are able to generalize over such varying
characteristics.
To allow this, instead of relying on expert knowledge to define pixel classification
rules, they learn those rules based on expert-labeled training data. Two concepts
help in achieving strong generalization: First, the use of training data that already
covers the high variability of characteristics present in the image data. Second, data
augmentation steps which artificially introduce multiple types of variability into
the training data, including spatial transformations (stretching, flipping, rotation
of images), intensity distribution changes (brightness, contrast) or the introduction
of different types of noise (gaussian noise, salt and pepper). This allows the rule
inference algorithm to generalize over these variations even if they are not present in
the original training data, reducing the necessary effort in creating representative
training data.
The supervised segmentation approach used in this project is a neural-net based
pixel classification.
Neural-net based classifiers are among the most successful tools in terms of image
segmentation tasks [41]. The approach adapts concepts from biological visual pro-
cessing and works by combining multiple neurons in a network of connections. Each
neuron represents a function that takes some input and calculates an output. Input
as well as output values can be multidimensional. The input can stem from multiple
other neurons and the output can be input for multiple other neurons. The exact
architecture of connections between neurons and the functions that are encoded in
the neurons are design choices made by humans, while the strength of connections
(i.e. weights) between the neurons are attributes of the network that are learned
by optimization. This optimization usually involves multiple rounds of feeding the
training data into the network and calculating an error metric by means of a loss
function. In the case of image segmentation problems, this loss function quantifies
the difference between the predicted output segmentation masks and the correct
segmentation label masks (ground truth). A key feature of these networks is that the
gradient of the loss function with respect to each individual weight in the network can
be calculated by a process called backpropagation, allowing a subsequent adjustment
of the weights along the gradient. This way, the error decreases with each round of
updates.
Many network architectures build on, extend and adjust this general concept to
tackle issues such as computational costs, class imbalances or requirements for large
training data sets, leading to a plethora of published models [42]. One approach
that very successfully applied a neural network for medical image segmentation is
the U-Net [43], which implements a relatively parsimonious architecture that uses
multi-level spatial context information but does not compromise on exact localization
of labels. Due to comprehensive data augmentation, this model achieves high-quality
segmentation with relatively few training data. A practicable implementation of
this architecture was published by the Division of Medical Image Computing at
Deutsches Krebsforschungszentrum (DKFZ), with a focus on automated model pre-
configuration based on properties of the datasets in question [44].
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4.2.2 Registration
In image processing tasks, it is often necessary to align identical structures within two
or more images so that they can be referenced or measured in the same coordinate
system. This process is called registration and can involve multi-modality approaches
working on images which are acquired using different techniques, or single-modality
approaches for images acquired by the same type of technique. Independent of the
input data, registration tasks are generally defined as optimization problems where
the objective function defines some metric of similarity calculated on the region
of overlap between the input images. The optimization goal is to maximize this
objective function by spatially transforming one of the input images (the moving
image) in relation to the other image (the reference image). Depending on the types
of spatial transformations allowed on the moving image, registration approaches can
be distinguished as
translational registrations, where the only transformations allowed include shifts of
the moving image in the image plane. In the context of 2D images, this implies two
degrees of freedom, namely horizontal and vertical shifts.
rigid registrations, where in addition to translational shifts, rotation of the moving
image about the image plane is also possible. This translates to three possible degrees
of freedom, adding a rotation angle.
affine registrations, where in addition to translational and rotational transformations,
scaling and shearing of the moving image is allowed. This corresponds to six possible
degrees of freedom.
deformable registrations, where each point of the moving image can be translated to
any other point independently. In theory this approach has 2 ∗ N degrees of freedom,
with N representing the number of points (pixels, control points) chosen for the
image. Since this process is not well-defined, control terms need to be defined that
penalize unreasonable transformations. In medical image registration, this is an area
of active research [45].
An objective function often used to assess similarity for single-modality images in
translational registration problems is the cross-correlation between reference and
moving image. The global maximum of this function is found at the translational
shift values which lead to a maximum overlap of structures between the two images.

4.3 Analysis of time series
Time series data analysis comes with a large set of methods to detect underlying
trends, general shapes, seasonal changes and change points. In the course of this
project, I applied two methods, one to estimate growth rates from fitting growth
curves to the data and another to detect change points within the time series.
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4.3.1 Curve fitting
Curve fitting problems assume that there is a mathematical model which describes
the underlying process creating a series of data points as a function of some input
variable. Some objective function can then be defined to assess the difference between
the series of data points and the functional values resulting from evaluation of the
mathematical model at the values of the input variable found at the data points,
given a certain parametrization of the model. In the case of growth models, the input
variable is commonly the time or duration of a process and the dependent variable
describes the size, mass, volume, concentration or count of the growing quantity over
that time.
Depending on the type of relation between independent and dependent variable as
well as the assumptions that can be made about the process, different objective
functions and optimization algorithms should be used to determine robust estimators
of the model parameters. For example, linear relationships between independent
and dependent variables with independent, normally distributed error terms allow
for linear least-squares regression procedures with sum of squared errors (SSE)
as objective function and R2 as a valid goodness-of-fit measure. For non-linear
relationships, these methods are not valid [46] and parameter estimation needs be
performed by either non-linear curve fitting or by transforming the input data (e.g
through log-transform) to allow the application of linear curve fitting methods.

4.3.2 Change points
Change points define values of the independent variable at which the relationship
between independent and dependent variables changes. This can represent a change
in the underlying type of relationship, or a change in the parametrization of the
relationship while the type of relationship stays the same. Examples would be a
switch from oscillating to constant behaviour or a switch from a strong oscillation to
a weak oscillation, respectively.
Usually these change points are detected by splitting a time series at all data points
and comparing statistical properties (mean, variance, root mean square, slope) of
the split segments. Points that lead to a high difference in these properties between
the split segments are then flagged as change points.
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5Cell Culture

In the course of this project, five different cell lines were used. Their origin and
culturing specifics are listed in Table 5.1.

Table 5.1: Cell lines used.

cell line organism tissue pathology

H460 human lung large cell lung carcinoma
H3122 human lung adenocarcinoma
SAT human oral cavity squamous cell carcinoma

UT-SCC 5 human tongue squamous cell carcinoma
RENCA mouse kidney renal adenocarcinoma

Independent of cell line and experimental setup, all cells were cultured as adherent
cells in T25 cell culture flasks at 37 ◦C and 5% CO2 concentration in RPMI1640
medium with 10 % FCS and 100 U/mL PenStrep added. Regular passaging was
performed at 60-80% confluence with dilution ratios of 1:10 to 1:100, depending on
the growth speed of the cell line at hand. This procedure was adjusted in preparation
of time-course experiments, as described in the following chapter.
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6Irradiation Treatment

For the old Incucyte data which I was given permission to work on by Dr. Ivana
Dokic and Dr. Quanxiang Wei, no dedicated pre-treatment experimental procedures
were recorded. For the data that I acquired myself, the same pre-treatment practice
was used: In the last passaging before treatment, identical numbers (~103) of cells
were plated in T12.5 cell culture flasks. This sparse seeding allowed for a long growth
period before singularizing and seeding single cells for treatment. This way, potential
synchronization effects at irradiation time could be minimized.
Independent of the type of irradiation, treatments were performed according to the
“plating after treatment” protocol detailed by Franken et al. [7].

6.1 Photon irradiation
Photon irradiation was applied with a Faxitron Multirad 225 (Faxitron Bioptics,
Tucson, Arizona, USA), using 200 kV X-rays, a 0.5 mm Cu filter, resulting in a dose
rate of roughly 1.0 Gy/min. Unirradiated samples were mock treated by putting
them into the irradiation chamber without using the machine.

6.2 Carbon Ion irradiation
Carbon ion irradiation was performed at the experimental beamline at Heidelberg
Ion Beam Therapy Center (HIT). The dose-averaged LET was 100keV/µm. Due
tu the scanning beam approach employed at HIT, the dose rate was not stable over
time, but the energy was deposited in 2-5 "bursts", depending on the total dose.
Nevertheless, aggregating over the whole irradiation time, an average dose rate of
roughly 2.0 Gy/min can be determined.
In contrast to the photon irradiation, the incident beam line at HIT is horizontal,
which required the irradiated flasks to be positioned upright for homogeneous en-
ergy deposit across the growth area. In addition, to avoid interface effects during
irradiation, the flasks were completely filled with medium shortly before irradiation.
Subsequently, the superfluous medium was evacuated by pipette.
Analogously to the photon irradiation procedure, unirradiated samples were mock
treated.
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7Imaging

In general, two different imaging procedures were performed to create the data used
in this work. One relies on manual imaging of cell culture flasks in an inverted light
microscope (Zeiss Axio CellObserver). The other one relies on the IncuCyte incubated
imaging system, which automatically takes images of different types of cell culture
containers at user-defined imaging intervals. From the IncuCyte acquisition we
received old datasets that were acquired on 96-well-plate, with each well representing
a technical replicate. For newer data that I acquired on the IncuCyte, I used 6-well-
plates to minimize well rim effects as well as to provide sufficient space to grow for
the colonies. Figure 7.1 shows example images for all three modalities.

7.1 IncuCyte
Imaging using the Incucyte aims at making the process convenient for the experi-
mentalist, requiring no user input or activity during the imaging duration, except
for medium changes or for the introduction of planned perturbations.
New experiments are registered and customized in the beginning. This includes the
choice of imaging modality (phase contrast and/or fluorescence channels) as well as
image resolution and imaging schedules. After this setup, the software handles the
whole process, including focus finding, stitching, postprocessing and file naming.
Imaging frequency is limited by the number of concurrently imaged containers, the
types of containers, as well as the resolution chosen for these images. For the data
examined in this project, imaging intervals of 3 h (old IncuCyte data) or 6 h (new
IncuCyte data) were possible.

7.2 Zeiss Axio CellObserver
Semi-auto imaging as performed on the CellObserver microscope required more
manual work, since the following steps need to be taken for each image of a given
container:

1. transfer the container from the incubator into the imaging stage
2. find the focus at four support points within the imaged area
3. start the imaging process and wait (4 min)
4. remove the container and put it back into the incubator

For a standard dataset of 30 flasks, this requires roughly 2.5 h and hence could be
performed once a day, resulting in imaging intervals of 24 h.
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(a) Relative sizes of cell culture containers (b) T25

(c) 6well (d) 96well

Figure 7.1: Cell culture containers. (a) The types of containers used, illustrating their
relative sizes. Growth areas: T25 - 25 cm2; 6well - 9.6 cm2; 96well - 0.32 cm2. (b)-(d)
example sections of the cell culture containers, each representing a 1x1 mm area.
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8Image Analysis

To retrieve quantitative results from the images, a multi-step analysis framework is
necessary which include the following main tasks:

• stitching of subimages (only for CellObserver data, since the image output is
unstitched)

• registration of images within a time series
• segmentation of cell/colony objects in all images
• quantification of the segmented objects

8.1 Stitching
When imaging large areas of e.g. a cell culture flask, imaging systems need to scan
over the whole area and capture subimages which are later merged into a large
image that contains the whole area. The most common procedure here is to acquire
subimages on a regular, evenly spaced grid, with a regular overlap between the
images that allow subsequent fusion of these subimages into a complete image. Since
the IncuCyte system does this internally and returns already stitched full images,
this procedure is not necessary for IncuCyte image data.
In contrast, stitching is necessary for the Axio CellObserver data. There is an
option to return stitched images within the ZEN Blue software available for the Axio
CellObserver. However, this was of no use for me, as the overlap between subimages
that could be chosen in the software did not agree with the actual overlap in the
resulting images. Since the software uses the overlap value of choice in the stitching
procedure, the resulting stitched images were not properly aligned. Therefore, I
extracted the unstitched .czi-files and used an ImageJ macro to implement this
procedure correctly. The macro script uses the MIST stitching algorithm [47]. Since
the subimages were taken on a regular grid, no optimization routine was needed to
align and fuse them into the final image; instead the stitching was performed based
on fixed overlaps.
In addition to the stitching work, the script also sorts and names the resulting files
in accordance with the subsequent analysis steps. Further, preprocessing of the
subimages can be performed before stitching commences, which is not an option
within the ZEN Blue software. While this procedure is tailored to data coming from
this specific imaging setup and the returning file/folder structure is tailored for the
subsequent analysis pipeline, it can in principle be adjusted to other datasets and
subsequent usages.
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8.2 Registration

Successful tracking of cell colonies depends on accurate location information. Mechan-
ical inaccuracies of imaging systems, namely the relative positioning of microscope
objective and imaged sample, can introduce shifts and rotations over time. This
causes misalignments of cell culture containers and therefore misalignments between
the colony objects. To correct these errors, all images representing the same cell
culture container need to be aligned using registration methods.
Again, I used multiple different approaches in consideration of the specific properties
of different image data types:
For the old Incucyte data (96 well plate), rotational displacements were not present,
allowing for an approach that corrects only translational displacements. The most
efficient and effective method finds the optimal transformations by locating the
maximum of cross-correlation between the two images to be registered. For compu-
tational efficiency, the cross correlation is calculated after Fourier transforming the
input images. The underlying algorithm is presented in [48] and implemented in the
MATLAB function dftregistration1.
The Axio CellObserver images needed a different registration approach, since repeated
manual positioning of the container in the imaging platform introduced translational
shifts as well as rotational differences between the images. Correcting for those, this
data requires an approach that, in contrast to dftregistration, can compensate for
rotation as well. In addition, as apparent in Figure 7.1, uneven illumination of subim-
ages creates a regular grid-like pattern. This structure represents a strong attractor
for the tried registration optimization procedures that outweighs the structures of
interest (cell colonies). The location of this grid is independent of the positioning of
the flask and therefore always at exactly the same position on the stitched images,
even if the underlying flask position is shifted. Therefore, I registered the Axio
CellObserver using the elastix toolbox, allowing rigid transformations as well as
optimization based on specific regions of an image.
The newer Incucyte data (6well plate) could not be registered with the same approach,
since for this data the algorithm tends to align the edges of the circular structures
which represent artificially cut out regions created by the Incucyte software, not
actual physical structures. Hence, instead of registration of the original image data,
the necessary transformations were calculated based on already segmented images.
The segmentation step extracts the relevant structures (cell colonies) within the
images while leaving out the artificial circular structure. The original images as
well as the segmentation masks were then registered by performing the determined
transformations on all pairs of original images and their segmentation masks.

1https://de.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-
registration-by-cross-correlation
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8.3 Segmentation
Throughout the project I used two different approaches to segment single colonies
from the image data:

1. morphological filters and subsequent intensity threshold based segmentation
2. neural net based pixel classification using the nnUNet toolbox

In the following, I describe the different approaches and their area of application.

8.3.1 intensity thresholding
The initial method was described in detail in [49] and was used for the old Incucyte
data (96well format). The approach relies on distinct structural differences between
the contrast-rich cell colony regions and the uniform, low-contrast background. I
used tophat and bottomhat filters to enhance the bright, outer regions of colonies as
well as their dark, inner regions. The resulting images were merged by calculating
pixel-wise maxima between the two images for each pixel. This resulting image was
then binarized using an intensity threshold to segment cell colonies. As the image
data is encoded in the unsigned 8-bit data format, the range of possible values is
[0, 255]. Binarization is performed as follows:

M(x, y) =
{

0 | I(x, y) < t

1 | I(x, y) ≥ t,
(8.1)

with x, y representing the pixel coordinates in the image and t = 38 a global intensity
threshold.
Additional morphological operations on this binary image were used to remove small
regions that represent specks of dust (morphological opening) and to fill false-negative
holes in the colony regions (morphological closing). A visual outline of this procedure
is shown in Figure 8.1.

I validated the segmentation quality by determining the proportion of objects
with substantial (>10%) error on the determined areas by eye. To avoid potential
systematic biases throughout the data, I repeated this procedure on 100 images
across all doses and multiple time points to test for potential biases within the data
set.

8.3.2 neural net in nnUNet
As the intensity-based segmentation turned out to fail for the less homogeneous
Axio Cell Observer data, I employed a neural-net based segmentation approach
implemented in the nnUNet toolbox [44]. Training data was chosen semi-randomly
and consisted of image sections including the full range of doses, different cell lines
(H460, UTSCC5 and RENCA), different doses (0 to 8 Gy) at both available irradiation
modalities (photon and carbon) and different incubation times. Semi-randomly here
means that inclusion of the full range of parameters mentioned before was enforced,
but the location within the image was chosen randomly. The variability in data
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(a) Original (b) Bottom-hat filtered (c) Top-hat filtered

(d) Bottom-hat/top-hat filtered,
combined from (b) and (c)

(e) Threshold-binarized mask
showing artifacts

(f) Open/close filtered

(g) Overlay

Figure 8.1: Workflow of intensity-based segmentation. The original image (a) is trans-
formed by bottom-hat ((b)) as well as top-hat filtering ((c)). The combined result ((d)) is
achieved by taking the maximum value of (b) and (c) at every pixel. The top-hat/bottom-
hat filtered image (d) is turned into a binary mask (e) by thresholding intensity values
using T=38. Morphological opening removes small false-positive spots in the background
and morphological closing removes holes in the foreground objects ((f)). Panel (g) shows
an overlay of the original image ((a)) with the outline of the segmentation mask ((f)).

sources was included to obtain a well-generalizing model. I performed the labeling
by manual "painting" of cell colonies within the interactive visualization framework
napari [50]. To this end, I contributed some functionality to the napari framework
by allowing more convenient adjustment of labeling "paint brush sizes" 2.

2https://github.com/napari/napari/pull/5086
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Training of the model within the nnUNet framework was performed using 5-fold
cross validation by default. The loss function optimized during training is the sum
of cross-entropy and Dice score. The Dice score (also known as F1 score) is defined
as follows for the binary segmentation as performed in this project:

SDice = 2TP

2TP + FP + FN
, (8.2)

where TP is the number of pixels labeled as foreground in the training data as well as
in the model prediction. FP represents the number of pixels labeled as foreground in
the model prediction, but not the training data, while FN represents the number of
pixels labeled as foreground in the training data, but not the model prediction. This
score is a metric for segmentation accuracy and can be deduced from a combination
of precision and recall.
The evaluation metric is also the Dice score. The final resulting model used for
inference is an ensemble model from all five folds, using majority votes to decide on
the label for each pixel.

8.4 Quantification
8.4.1 Extraction of colony objects and their properties from segmentation

masks
Independent of the data set at hand, all segmentation objects in all images of a were
saved into tables using MATLAB scripts employing the regionprops function from
the Image Processing Toolbox. This function works on binary images, which by
definition only contain the values 0 or 1, or label images, which by definition contain
only positive integers from a set of labels. The function finds every contiguous region
of a certain value, that is a set of neighboring pixels that all have the same value. For
these regions, many different characteristics can be determined and calculated, and
regions can be filtered depending on those characteristics. In my implementation,
the following attributes of regions outlined in Table 8.1 were extracted:
For the old 96well IncuCyte data, segmented using the intensity thresholding after
morphological filtering, a substantial number of false positive segmentation objects
were found. These structures include specks of dirt, scratches in the container surface
or cell debris. This intrinsic error could not be remedied by changes in the filtering
steps or adjustments of the threshold value, so I used additional filter ranges on
some of the region properties listed in Table 8.1 to filter out these objects. Threshold
values for this procedure were found by inspection of the image data by means of
a visualization function. I implemented this function to mark objects depending
on whether a given property is within a defined range of values. Table 8.2 lists
the ranges used and Figure 8.2 shows example objects filtered based on different
properties.
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Table 8.1: Colony object properties extracted from segmentation results.

Property Definition Type

Area Number of pixels defining the region scalar
Centroid Center of mass of region 2-element vector
Perimeter Distance along the boundary of the region scalar

Minor axis length Length of the minor axis of the ellipse having the same
normalized second central moments as the region scalar

Major axis length Length of the major axis of the ellipse having the same
normalized second central moments as the region scalar

Circularity 4π ∗ Area

(Perimeter + π)2 scalar

Aspect ratio MajorAxisLength

MinorAxisLength
scalar

Table 8.2: Region property ranges to filter
false positive segmentation objects. For each
property, a lower bound defines the minimum
value allowed and the upper bound defines
the maximum value allowed for an object to
be considered a colony.

Property lower bound upper bound

Area 55 Inf
Circularity 0.2 1

Aspect ratio 1 4

8.4.2 Mapping colony area to cell number
As the traditional IVCA uses the number of cells in a colony as a measure of
clonogenicity, I aimed to extract this quantity from the image data as well. However,
since the number of cells in a colony is often not discernible from the image data, I
instead used a mapping from the measureable area of colonies to their cell number
as an estimator. I achieved this by visualizing randomly chosen colonies and storing
the number of cells as well as the colony area for 300 colonies where cells were
clearly countable. Figure 8.3 shows examples of such colonies. Since the relationship
between colony area and cell count is approximately linear in the range of colony
sizes traditionally used to score clonogenicity, I extracted the mapping from a simple
linear regression, as depicted in Figure 8.4. I did this for each cell line and each
image acquisition modality independently, since cells differ in their physical sizes and
the different microscopes work on different resolutions.
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(a) Area (b) Circularity (c) Aspect ratio

Figure 8.2: Filtered objects based on different properties. In each panel, green shaded
objects surrounded by white boxes are accepted based on the property mentioned. Red
shaded objects surrounded by black boxes are rejected. (a) Small objects (dust particles
or dead cells) are filtered out. (b) Highly irregular shapes indicate cell debris or other
dirt, which is filtered out using the circularity property. (c) Cell or cell colony objects
show a certain regularity in terms of their aspect ratio. A high value in this property is
almost exclusively found in scratches or fibrous dirt particles.

Figure 8.3: Examples of colonies with countability indicated. Colonies
with a white rim are countable, colonies with a black rim are not.
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Figure 8.4: Mapping of colony area to cell count. Points indicate the area
in pixels for manually counted cell numbers. Cell line: H460; Modality:
Axio Cell Observer, T25 flasks
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9Postprocressing

9.1 Tracking
Tracking of colonies was performed using location-based information, attributing a
colony object Cf+1 in frame f + 1 to a colony object Cf in frame f if

1. their centroids have the mutually closest distance between each other,
2. the object Cf is already part of a track,
3. the distance between the objects does not exceed a user-defined threshold

distance Dt of 20 pixels.

The threshold Dt was chosen by examining the distribution of mutual distances
between all objects within a data set, as shown in Fig 9.1.
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(a) Distribution of all pairwise distances in two subsequent frames
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(b) Small distances as shown in (a)

Figure 9.1: Pairwise distances between all objects in two subse-
quent frames. This plot was used to find a robust displacement
threshold tD. Panel (a) shows all pairwise distances between
regions in two subsequent frames. Panel (b) is a zoom-in of (a)
focussing on small distances. Green bars represent distances
where conditions 1 and 3 above are met. Red bars also show
distancs where condition 1 is met, but condition 3 is violated.
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9.2 Growth rate quantification
The growth curves resulting from tracking of independent cell colonies were quantified
based on the assumption of exponential growth. The following procedure was only
applied to IncuCyte data, as the large time intervals of the Axio CellObserver data
did not allow robust fitting and growth type classification.
I used the Theil-Sen slope estimator [51, 52] on log-transformed size values of all
growth curves to robustly extract growth rates for each single colony. It is noteworthy
however, that not all cell colonies follow an exponential growth behavior throughout
the incubation time, as I have observed in the old 96well IncuCyte data. For this
reason, I applied a changepoint detection algorithm to find for each growth track the
time at which a change in behavior was most likely, using the MATLAB function
findchangepts. Subsequently, two growth rates were determined for the two parts
divided by the change point. After growth curve classification (see next section), the
growth rate for each track was defined as either the original Theil-Sen estimator if
it was classified as exponentially growing or initially abortive, or as the Theil-Sen
estimator for the first part, if the growth curve was classified as delayed abortive.

9.3 Growth curve classification
In each data set I found the following three distinct growth behaviors: exponentially
growing, delayed abortive and initially abortive. Due to differences in data properties,
the classification of growth curves into these behaviors differed between the IncuCyte
data and the Axio CellObserver data.
For the IncuCyte data where sufficiently dense growth tracks were available, I classified
the growth curves utilizing information gathered from change point detection and the
partwise Theil-Sen slope estimates, among other characteristics. Table 9.1 lists the
attributes for each growth curve that were used as predictors to inform the classifiers.

I trained classifiers for each individual cell line, owing to their different growth char-
acteristics. For each cell line, I scored 800 growth tracks into one of the three distinct
growth behaviors, employing a visualization and labeling function I implemented
in MATLAB. Using these labeled tracks, I used the MATLAB-based classification
learner app to find the best performing classifiers based on model accuracy. Robust
assessment of model performance was ensured by using a 5-fold cross validation
scheme. For all datasets, bagged-tree classifiers performed well and the trained
classifiers were used on the remaining data to predict their classes.

Since the Axio CellObserver data with 24 h intervals did not contain sufficient
datapoints to robustly determine either changepoints or Theil-Sen slope estimates,
classification of these growth curves needed a new approach. Here I restricted the
predictors to direct descriptors of the growth curves, namely the maximum size
of a colony and the time at which this maximum is reached. Here I labeled 250
growth tracks per dataset into the distinct behavior classes and used the classification
learner app to find the best performing classifiers. For these datasets, simple decision
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Table 9.1: Predictor variables used for classification of any growth curve G. After finding
the most probable changepoint tc, Theil-Sen estimates for both the whole growth curve
as well as for the parts on either side of the changepoint are determined. The following
predictors result from this procedure.

Predictor Description

Maximum size of growth curve max(G)
Relative position of maximum size Position of max(G) along G normalized to

interval [0,1]
Size at changepoint G(tc)
Growth rate estimate total fit Theil-Sen slope estimate using whole G
Growth rate estimate initial fit Theil-Sen slope estimate using G from start

to tc
Growth rate estimate end fit Theil-Sen slope estimate using G from tc to

end
Z-value initial vs end slopes Z-value of ranksum test comparing all pair-

wise slopes between points before tc with all
pairwise slopes between points after tc

Mean squared error of total fit 1
n

∑n
1 (G − Ĝ)2, where Ĝ is the growth curve

estimate based on the Theil-Sen estimate for
the whole curve

R2 of total fit 1 −
∑n

1 (G−Ĝ)2∑n

1 (G−Ḡ)2 , where Ĝ is the growth curve
estimate based on the Theil-Sen estimate for
the whole curve and Ḡ the naïve model using
the mean of G

trees showed the best performance and were trained analogously to the IncuCyte
classifiers. Prediction accuracies for the resulting classifiers were 95.6 ±]0.3 % for
H460, 96.1 ±0.7 % for RENCA, and 93.7±0.4 % for UTSCC-5. The accuracies values
are calculated as mean ± SD of 1000 cross-validation accuracies. Each accuracy was
obtained by performing 5-fold crossvalidation based on independent, random splits
of the training data. Again, the resulting classifiers were applied to all remaining
growth curves to determine their respective growth behaviors. This procedure is also
described in Koch,2023[53].
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9.4 Survival rate calculation and survival curve fitting
9.4.1 Survival rates based on colony size thresholds

As adapted from the standard IVCA readout [7], colony size-based survival rates are
acquired from object counts. In the following, the necessary calculations to arrive
at dose-dependent survival rates are detailed. All numbers N refer to numbers of
colony objects. In the special case of initially seeded cells, the numbers Nseeded still
refers to numbers of detected colony objects, even though each colony object only
contains a single cell. It is important to mention, that in contrast to the standard
IVCA, we have access to single cell colony counts immediately after seeding, while
the standard approach estimates this number based on dilution protocols.
The absolute survival Sab,D,i at dose D in a single replicate i is calculated as the
fraction of initially seeded cells (Nseeded,D,i) in that replicate which grew into colonies
larger than the size threshold (Nlarge,D,i):

Sab,D,i = Nlarge,D,i

Nseeded,D,i

(9.1)

To get a baseline survival for unirradiated cells, also called plating efficiency (PE),
the same is done for replicates j at 0 Gy:

Sab,0,i = Nlarge,0,i

Nseeded,0,i

. (9.2)

The normalization factor PE is calculated as the mean absolute survival over all
replicates at 0 Gy:

PEmean = 1
n

n∑
j=1

Sab,0,j (9.3)

Relative survival, i.e. the survival rate for each replicate at a given dose D is then
calculated as the ratio between the absolute survival Sab,D,i and the PE:

SD,i = Sab,D,i

PEmean

=
(Nlarge,D,i

Nlarge,0,i
)

1
n

∑n
j=1 Sab,0,j

(9.4)

Finally, the scalar survival rate SD at a given dose D is calculated as the mean
relative survival over all replicates:

SD = 1
n

∑
i = 1nSD,i (9.5)
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9.4.2 Survival rates based on colony growth behavior
A new, alternative approach to score dose-dependent colony survival is based on
colony growth behaviors. As described in Koch, 2023 [53], absolute dose-dependent
survival rates are calculated as

Fg,D,i = Nc,D,i

Nt,D,i

, (9.6)

where Nc,D,i is the number of growth curves classified as clonogenic at dose D in
replicate i, while Nt,D,i is the of the total number of growth curves tracked at dose
D in replicate i.
Analogously to the size threshold-based quantification, a PE can be calculated by
applying Equation 9.6 to non-irradiated samples and calculating the mean value over
all samples j:

PEg,mean = 1
n

n∑
j=1

Fg,0,j (9.7)

The relative survival Sg,D,i at dose D in replicate i is then calculated by normalizing
to the mean PE:

Sg,D,i = Fg,D,i

PEg,mean

, (9.8)

Finally, the scalar growth behavior-based survival rate Sg,D at dose D can be
calculated by averaging over all relative survival values at that dose:

Sg,D = 1
n

∑
i = 1nSg,D,i. (9.9)

9.4.3 LQM-based survival curves
For both colony size-based survival rates and growth behavior-based survival rates,
survival curves, representing fits of the LQM to survival rates, were acquired from
fits to replicate survival rates SD,i or Sg,D,i, respectively. LQ parameters were fit by
robust linear fitting after log-transformation of survival ratios using the fit function
implemented in Matlab, minimizing the sum of absolute residuals as defined by the
robust least absolute residuals routine.

9.5 RBE calculation
RBE values were calculated as a function of the reference radiation dose DR as

RBE(DR) = −2βCDR

αC −
√

α2
C − 4βC ∗ (−αRDR − βRD2

R)
(9.10)
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with αR and βR as LQ parameters of the reference curve and αC and βC as LQ
parameters of the comparison curve. For the data used in our studies, the comparison
modality is carbon ion irradiation with an LET of 100 keV/µm. Equation 9.10 can
be derived from the standard definition of RBE as described in section 4.1.3.
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10Registration

For the old 96well-based IncuCyte data, I checked registration success by visual
inspection of the resulting image stacks. For all three available datasets, all time-
course stacks were loaded in ImageJ and examined for systematic shifts. No such
shifts were found after registration, even though replacements of up to 200 px were
present before. Figure 10.1 shows an example of a shift correction by comparing two
subsequent frames.

(a) before registration (b) after registration

Figure 10.1: Registration of subsequent frames. The left panel shows a false color
overlay of a section of two subsequent frames. The left panel shows the same
sections after registration, with the same objects now overlapping optimally.

As described in section 8.2 and shown in Figure 7.1(b), the Axio Cell Observer data
shows a distinct artificial grid introduced by non-homogeneous lighting. In addition,
the shifts between images of the same flask include rotational transformations,
motivating me to allow rigid transformations for registration of this data.
The elastix optimizer is able to only take dedicated regions of the image into account.
By defining a binary map representing the rim regions of the cell culture flasks as
allowed input for the optimizer, successful registration could be achieved without
interference by the grid-like artificial structure. Again, success of registration was
established by visual inspection of the complete image time courses for every data
set.
Visual inspection of 6well IncuCyte data registered by the two approaches mentioned
above (dftregistration and rigid registration using elastix and a mask defining
the image areas to take into account) shows that both approaches do not work
robustly, especially at early time points when the images contain only a few single
cells or small cell colonies. Here, switching the order of registration and segmentation
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yields robust results: Segmentation of unregistered images, followed by elastix-based
registration applied to segmentation masks shows robust and correct segmentation.
Analogously to the other approaches, visual inspection of complete data sets was
used to validate registration success across all time course image series.
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11Segmentation

Segmentation quality for the intensity threshold-based approach on IncuCyte datasets
was assessed by visual inspection of randomly chosen individual cell colonies. For
each dataset, 2500 objects were examined using a custom visualization function
implemented in MATLAB. For each individual object, segmentation quality was
scored based on the agreement of the segmentation mask with the actual colony
object. Objects were classified as either overestimated, if the area of the segmentation
mask exceeded the actual colony by more than 10 %, as underestimated if the area
of the segmentation mask was more than 10 % smaller than the actual object, or as
correct, if segmented area and actual area agreed within a 10 % range. Table 11.1
shows the aggregate results for the three 96well-based IncuCyte datasets.

Table 11.1: Segmentation results for 96well-based IncuCyte
datasets. For each dataset, 2500 individual colony objects
were visually assessed. Entries represent absolute values and
relative frequencies of segmentation qualities in brackets
for each dataset. Adapted from Koch,2021[49].

Dataset Correct Overestimated Underestimated

H3122 A
2440

[97.6%]
23

[0.9%]
37

[1.5%]

H3122 B
2453

[98.1%]
24

[1%]
23

[0.9%]

RENCA
2436

[97.4%]
30

[1.2%]
34

[1.4%]

Segmentation quality for the nnUNet-based approach was assessed through perfor-
mance metrics of the model on the training data as well as visual inspection of
overlays of segmentation masks with the original data. Figure 11.1 shows how the
loss improves during training. Figure 11.2 show non-trivial segmentation tasks and
how the trained model successfully handles these cases. Since I labeled training
data from multiple cell lines, I trained the final model on all data together and the
resulting model generalizes well over all cell lines, colony sizes and morphologies. In
Figure 11.3, edge cases are presented where the model fails. The Dice score evaluated
on the whole training data was 0.913 for the final model.
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Figure 11.1: Development of loss function and evaluation metric during nnUNet segmen-
tation model training. The blue curve represents the progress of the training loss (sum
of cross-entropy and Dice score) through the training epochs, the red curve shows the
validation loss (as measured on the hold-out fold making up 1/5 of the training data) and
the green curve shows the evaluation metric (Dice Score). This plot is created by the
nnUNet tool during training.
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(a) Across different brightness and gradient (b) Background noise (scratches)

(c) Different cell morphologies (d) Irregular colony shapes

Figure 11.2: Examples of hard segmentation tasks successfully solved by the
nnUNet model. Blue shaded areas represent the segmentation masks. The seg-
mentation works remarkably well in a multitude of challenging circumstances.
Brightness differences and gradients (a) which would lead to failed segmenta-
tions for intensity-based thresholding approaches, superposition of colonies with
background structures such as scratches (b), varying cell morphologies (c) and
irregular colony shapes (d) are all handled successfully.
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(a) Extremely dark rim areas (b) Overgrown, full growth container

Figure 11.3: Examples of hard segmentation tasks where the model fails. Blue
shaded areas represent the segmentation masks. Some areas in the rim region
of T25 flasks are too dark for the model to detect the colonies successfully
(a). Towards very late time points, the flasks are overcrowded which leads to
segmentation failures (b). Both of these cases are not present in the training data.
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12Tracking

To assess tracking quality, I implemented a visual inspection functionality that
randomly chooses a certain track and displays the corresponding image data to
the user. By using this feature, I looked at 300 randomly chosen tracks for each
dataset and scored those tracks as either correct if the track contains no errors, or as
prematurely terminated if a track ends despite the fact that the colony could still
be visually identified in later frames, or as fused, if the track contains any colony
object that originates from two or more initial cells. Figure 12.1 exemplifies this
quality analysis grouped by different doses for an old IncuCyte 96well plate dataset
of RENCA cells.

Figure 12.1: Relative fractions of track quality labels for a
RENCA dataset. A total of 300 tracks were investigated and
scored for their quality. Relative fractions are shown per dose.
Adapted from Koch,2021[49].

The implemented tracking method does only contain tracks that can be traced to an
initial mother cell. In addition, some tracks end before the end of the observation
duration. This leads to two consequences: First, for each time point there are more
objects present in a sample than there are tracked objects. Secondly, the number of
tracked objects per sample (well or flask) either decreases or stays the same. The
data analysis pipeline yields plots to monitor this procedure, allowing for quality
control and for exploration of the influence of changes in the data analysis. Figures
12.2 and 12.3 exemplify this and show the fractions of tracked objects from all present
objects as well as the number of tracked objects through time, respectively.
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Figure 12.2: Relative frequency of colony sizes, grouped by tracked and untracked
colonies. This data stems from an experiment to investigate the influence of
seeding densities on growth without irradiation. The tracked portion corresponds
to the distributions shown in 13.1. Cell line: H460.

200 cells

600 cells

1800 cells

Figure 12.3: The number of tracked objects over time for three different conditions.
As in Figure 12.2, this visualizes the number of tracked objects for three different
seeding densities. Cell line: H460.
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13Growth at different seeding
densities

As recently shown, seeding densities have an influence on the result of clonogenic
assays[18]. To evaluate whether this parameter has a distinct effect on the cell lines
used in this work, I compared unirradiated growth of cell colonies at three different
concentrations for the four cell lines H460, RENCA, SAT and UTSCC-5. Figures
13.1, 13.2, 13.3 and 13.4 show size distributions through time for these cell lines.
Comparing these overview plots, it is clear that the cell lines show very different
growth behaviors, even without irradiation treatment. H460 behaves according to the
assumptions of the standard IVCA, showing a relatively narrow distribution of cell
colony sizes at all time points, with a majority of colonies shifting towards larger sizes.
The minority of smaller colonies seems to be distinguishable from the growing colonies
at later time points, as the size distributions stretches into a relatively bimodal
distribution. RENCA shows a very comparable behavior, potentially including
more colonies which are "left behind" at smaller sizes. SAT and UTSCC-5 behave
differently, with broader size distributions especially towards later time points. In
some cases (UTSCC-5, 600 cells/flask, time points > 192 h and to lesser extent
UTSCC-5, 200cells/flask, time points > 192 h) the distribution seems to split into a
bimodal shape as well. For the highest concentration however, this is not the case.
For SAT, the distribution stays relatively broad and a bimodal shape can not be
discerned at any time point or concentration.
Absolute numbers of cells, as indicated within the panels, are always substantially
lower (around 40 % too low) than the targeted numbers, indicating that either there
was a systematic error in cell counting pre-seeding, or that a substantial fraction of the
seeded cells did not attach before the first imaging session. Comparing the number
of tracked objects in the last panel with the number of initially tracked objects in
the first panel, another trend emerges: For all cell lines, higher concentrations have a
lower fraction of initially tracked colonies that are still tracked at later points. Visual
inspection of the image data reveals that at higher concentrations, more neighbouring
colonies fuse, leading to track termination, as the resulting fused object can not be
associated with a single initial cell anymore.
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Figure 13.1: Colony sizes of tracked H460 cells at different seeding concentrations.
Relative frequencies of cell colony sizes are shown at different times. Absolute cell
numbers are given within each panel. The rows indicate the targeted number of
cells per flask.

Figure 13.2: Colony sizes of tracked RENCA cells at different seeding concen-
trations. Relative frequencies of cell colony sizes are shown at different times.
Absolute cell numbers are given within each panel. The rows indicate the targeted
number of cells per flask.
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Figure 13.3: Colony sizes of tracked SAT cells at different seeding concentrations.
Relative frequencies of cell colony sizes are shown at different times. Absolute cell
numbers are given within each panel. The rows indicate the targeted number of
cells per flask.

Figure 13.4: Colony sizes of tracked UTSCC-5 cells at different seeding concen-
trations. Relative frequencies of cell colony sizes are shown at different times.
Absolute cell numbers are given within each panel. The rows indicate the targeted
number of cells per flask.
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14Growth of different culture
passages

It is known that prolonged cultivation and the concomitant repeated passaging rounds
can change cell line characteristics, influencing metabolic processes [54] and DNA
damage repair responses [55]. Hence I examined the growth dynamics of SAT and
UTSCC-5 cell lines in a long-term experiment including eleven and nine consecutive
passages, respectively. Since the volume of concurrently cultivated and imaged flasks
was high, the number of time points was reduced to three: Directly after seeding,
after four days and after ten days. In contrast to the regularly imaged samples for
seeding density analysis (see section 13), tracking of colonies here was not reliable
due to the long intervals between image cycles. Hence, Figures 14.1 and 14.2 depict
the size distribution of all objects present in the flasks. For both cell lines, a global
trend is discernible: The size distribution spreads towards larger sizes after four
days, with slightly more objects present at that time point. After ten days however,
the number of objects has approximately doubled for almost all samples, with the
distribution showing a large peak at sizes corresponding to very small colonies of one
to ten cells. This indicates the emergence of secondary colonies, which form by cells
which detached from their original colony and settled at a different location. Visual
inspection of the image data confirmed this observation, as shown in Figure 14.3.
For both cell lines, the size distributions do not show a clear difference for different
passage numbers. The only clear exception is passage "P7(2020)" from the UTSCC-5
cell line, which was seeded from a culture flask that had not received fresh medium
for a period over two weeks. These cells clearly did not grow healthily. However, their
successor passage "P8(2020)" seemed to have fully recovered from this "treatment".
The SAT cells of passage "P9(2020)", sharing the same medium deprivation, did not
show a clear reduction in growth.
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Figure 14.1: Colony sizes of SAT cells from different passages. All passage
descriptions containing a "(2020)" string represent samples that are successors of
cells which had a two-week period without medium changes over the christmas
break.

Figure 14.2: Colony sizes of UTSCC-5 cells from different passages. All passage
descriptions containing a "(2020)" string represent samples that are successors of
cells which had a two-week period without medium changes over the christmas
break.
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Figure 14.3: Emergence of secondary colonies. The numbered panels represent the same
section of a culture flask at successive time points. Throughout the incubation time,
secondary colonies (marked by red circles) can emerge, some of which disappear while
others stay adherent and grow into colonies.
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15Photon irradiation influences
growth rates

Growth rate extraction as described in section 9.2 revealed interesting quantitative
results regarding the influence of photon irradiation on colony growth. These results
were previously published in Koch,2021[49]. As shown in panels a) and b) of Figure
15.1, growth rates for H3122 and RENCA are normally distributed, independent of
irradiation dose, across doses commonly used in clonogenic assays. In addition, the
variance σ2 of these distributions is large: The doubling rates corresponding to the
growth rate values at µ − σ and µ + σ are 27 h and 48 h for H3122 and 20 h and
27 h for RENCA, respectively. Here, µ corresponds to the mean parameter of the
Gaussian fits to the growth rate distributions as shown in Figure 15.1.
In addition, the growth rate distributions as well as Figure 16.3 show that with
increasing dose, the proportion of delayed abortive colonies increases. Interestingly,
these delayed abortive colonies show a similar distribution of growth rates with their
exponentially growing counterparts for identical doses. In addition, the mean µ of the
growth rate distributions for exponentially growing colonies decreases approximately
linearly, as shown in Figure 15.1(c).
Initially abortive colonies show growth rates slightly below zero, reflecting the
tendency of dead cells to shrink rather than stay at their original size.
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Figure 15.1: Distributions of growth rates at different doses. The depicted growth
rates are grouped by three distinct growth behaviors as indicated in the legends.
a) and b) show distributions for H3122 and RENCA cell lines, respectively, with
Gaussian distributions fit to each distribution of growth rates. c) shows the mean
values of the fitted distributions for exponential growth with error bars depicting
the 95 % confidence intervals. Adapted from Koch,2021[49].
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16Photon irradiation influences
growth behaviors

As already apparent from Figure 15.1, irradiation of H3122 or RENCA cells leads
to the occurrence of delayed abortive cell colonies. Such colonies start out growing
exponentially, but abruptly stop their growth after a certain time, after which they
tend to shrink. Increasing photon irradiation doses increase the fraction of delayed
abortive colonies, as depicted in Figure 16.2. While the level of this increase differs
between H3122 and RENCA, both cell lines show substantial shares of colonies with
this growth type. It is noteworthy that this behavior is present at relatively low
levels (approximately 10%) in unirradiated H3122 samples and is generally more
prevalent for this cell line at all comparable doses.
When matching tracked colonies with their growth behavior in size distribution plots
as depicted in Figure 16.3, the explicit influence of delayed abortive colonies on
traditional size based viability classification becomes apparent: At all doses and
all time points, the distributions of exponentially growing and delayed abortive
colonies overlap. Any attempt to distinguish non-viable, delayed abortive colonies
from viable, exponentially growing colonies by means of a fixed size threshold will
introduce a certain level of error. As the distributions differ between different doses,
this error will most likely not occur to the same extent for all doses, introducing a
dose-dependent bias in the resulting dose-depending survival curves. Figure 16.4
illustrates this by showing the level of falsely classified colonies depending on dose
and readout time. While the misclassification severity between doses converges
towards later timepoints, the effect is always there and always dose-dependent.
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Figure 16.1: Examples of growth behaviors discovered. Crosses indicate
colony sizes, lines represent fits to the exponential parts of the curves
as described in section 9.2. RENCA as well as H3122 cells show three
distinct growth behaviors: They either grow exponentially (left, green),
or grow exponentially for a while before aborting growth, in this work
called delayed abortive (middle, yellow), or they do not grow at all, in
this work called initial abortive (right, red). Note the different y-axes.
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Figure 16.2: Dose-dependent fractions of growth behaviors. With increasing doses,
the fraction of delayed abortive colonies increases, while the fraction of initially
abortive colonies stays approximately constant. This is true for both H3122 (a)
and RENCA (b) cell lines. Adapted from Koch,2021[49].
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correspond to false negatives (FN) and false positives (FP), respectively. The plots show
how these values change for different doses depending on the chosen readout time.
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17Readout choices influence
survival curves

As indicated in Figure 16.4, the readout time affects the number of colonies considered
viable. As depicted in Figures 17.1, 17.2 and 17.3, I calculated survival rates and
fitted corresponding LQM curves for data from three cell lines, each represented
two data sets, one of which was irradiated using photons, the other with carbon
ions. Varying readout times as well as colony size thresholds introduces substantial
variability in the resulting survival curves.
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Figure 17.1: Survival fractions and fitted LQM curves for H460. Different readout
times and cell colony size thresholds change the apparent dose-dependent survival
of cells after photon (a) and carbon ion (b) irradiation. Growth behavior-based
survival fractions and curves take into account the complete growth dynamics of
colonies throughout the incubation time. Error bars represent mean ± standard
deviation of all samples. Adapted from Koch,2023[53].
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(a) photon irradiation (b) carbon ion irradiation

Figure 17.2: Survival fractions and fitted LQM curves for RENCA. Different
readout times and cell colony size thresholds change the apparent dose-dependent
survival of cells after photon (a) and carbon ion (b) irradiation. Growth behavior-
based survival fractions and curves take into account the complete growth dynamics
of colonies throughout the incubation time. Error bars represent mean ± standard
deviation of all samples. Adapted from Koch,2023[53].
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Figure 17.3: Survival fractions and fitted LQM curves for UTSCC-5. Different
readout times and cell colony size thresholds change the apparent dose-dependent
survival of cells after photon (a) and carbon ion (b) irradiation. Growth behavior-
based survival fractions and curves take into account the complete growth dynamics
of colonies throughout the incubation time. Error bars represent mean ± standard
deviation of all samples. Adapted from Koch,2023[53].
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18Readout choices influence
RBE results

For the three cell lines discussed in the previous section, the characterization and
quantification of survival rates and corresponding survival curves allows an exami-
nation of the influences of readout choices on downstream RBE quantification. As
depicted in Figure 18.1, RBE values and their dependence on reference dose vary
substantially between different choices for readout parameters. Figure 18.2 shows
that in relation to the RBE curves acquired through the growth behavior-based
approach, threshold-based estimates can both under- or overestimate RBE values.
There is no clear trend discernible for all cell lines, but at the clinically relevant
2 Gy level a large variability can be found with values ranging from 2.8 to 3.6 for
H460, from 2.5 to 3.5 for RENCA and from 2.0 to 6.1 for UTSCC-5. The low
2.0 RBE value for UTSCC-5, based on the combination of readout time 7 d and
size threshold 50 cells is an outlier, with all other RBE dynamics behaving more
similarly and more like the growth-behavior-based results, as shown in Figure 18.1(c).

(a) H460 (b) RENCA (c) UTSCC-5

Figure 18.1: RBE of carbon ion irradiation as a function of reference dose for three cell
lines. RBE trends are calculated from survival curve fits shown in Figures 17.1, 17.2 and
17.3 using Equation 9.10. Adapted from Koch,2023[53].
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19New perspectives from the
time-resolved IVCA method

In my opinion, the greatest benefit of the presented method lies in the various new
visual means to scrutinize cell colony growth in vitro. This includes the explorative
inspection of single colonies throughout their complete growth history. This aspect
allowed me to identify distinct growth behaviors and to gain hands-on (and eyes-on)
insights into how these colonies behave. It allows researchers to browse through large
numbers of colonies and develop ideas and hypotheses on the processes playing out
in the cell culture dishes. In contrast to traditional seed-and-wait approaches, the
storage of image data in connection with segmentation and tracking information
allows this exploration retrospectively, calmly and repeatedly.
Naturally, visually observing growing colonies only helps so much in quantifying the
observations. Therefore, the variety of new types of plots help to make sense of the
bigger picture:
Colony size distribution plots (e.g Figure 13.1) represent an overview over complete
datasets, without stripping away essential details of the growth dynamics. The
representation of size distributions migrating from small, single cell colonies to larger
colony sizes over time is an intuitive depiction of how the whole colony population
behaves. Direct visual comparison between different conditions allows insights into
differential population behavior depending on external factors. The option to map
colony growth behaviors to these plots allowed me to understand why the presence
and frequency of delayed abortive colonies has such profound effects on traditional
IVCA readouts, potentially introducing dose-dependent biases.
Even though the initial motivation of this project was to scrutinize and find potential
flaws and systemic biases in the traditional IVCA approach, I was allowed multiple
additional findings which were only possible through detailed data extraction and
quantitative analysis of the processes during incubation: I could only discover the
significance of highly variable growth rates leading to large variability in resulting
colony sizes by gathering these growth rates systematically and visualizing their
distributions as presented in Figure 15.1. Again, direct comparison between different
conditions, in this case doses, unveiled a surprisingly clear and yet undiscovered
connection between irradiation dose and rates of growth.
Further visual representations such as Figures 12.2 and 14.1 allowed to detect an
additional process that can potentially strongly influence quantitative analyses of
cell culture flasks: Large numbers of secondary colonies forming after some days, as
discussed in section 21.1.
Depictions of the number of tracked cells throughout the experiment duration can
be used as a quality control tool for the experimental steps preceding the tracking:
Irregularities in imaging, image registration or colony segmentation will undoubtedly
show up as irregularities in the plot in the form of steep changes in the number of
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tracked objects, as exemplified in figure 19.1.

Figure 19.1: Example of quality control by examination of numbers of tracked
objects. A sharp drop in tracked objects across all conditions indicates a problem
in one of the preceding steps.

In this case, visual inspection of the image data revealed that at the time of the steep
change across all conditions, the IncuCyte did not find the focus plane for one of
three replicates for all conditions, leading to a complete dropout of these replicates.
This way, problems are detected that might otherwise go unnoticed. In an ideal
scenario, such quality control steps would happen "online", so that faulty samples
could be sorted out immediately or fixed. This would avoid the expense of additional
physical and computational resources needed to create and process ultimately useless
data.
Additional varieties of quantification and visualization not presented here could be
informative in some applications. These could be distributions of temporary growth
rates, relating the size of each tracked colony to their size in the previous and/or
following frame. Another option is the display of growth rate distributions or colony
size distributions grouped by track length or spatial position within wells. All of
these opportunities are feasible within this new analysis framework.
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20Implications of biological
results

20.1 Variability between cell lines
As apparent from sections 13 and 14, different cell lines show very different growth
behaviors, even without irradiation. This indicates that for each cell line that can
potentially be used in this time-resolved growth analysis or the standard IVCA,
a thorough inspection of growth behavior should be performed. To this end, the
presented method delivers a valuable toolbox to scrutinize cell colony growth as
described in section 19. It also shows that some cell lines, such as SAT or UTSCC-5
are potentially more prone to systematic bias in the traditional IVCA, since their
growth characteristics appear to be not as distinct as for example for H460 or RENCA.
While the two latter cell lines grow fast, with low variability and high PE. SAT and
UTSCC on the other hand seem to grow slower, with higher variability among the
individual growth rates and a lesser PE. Unfortunately, further studies of these cell
lines including irradiated samples were not performed, but it would be interesting to
see whether these trends seen for unirradiated samples are attenuated or potentially
amplified under irradiation treatment.

20.2 Seeding densities
The influence of seeding densities on growth characteristics as assessed via colony
size distributions in section 13 is negligible for the four tested cell lines. It needs
to be mentioned however, that only a range of around one order of magnitude was
covered in the presented experiments. Hence we cannot exclude the possibility that
influences become apparent at seeding densities outside of this range. One crucial
aspect to consider here is that in standard IVCAs, samples receiving high doses are
often seeded in densities some orders of magnitude higher than for the unirradiated
samples. This strategy aims at retaining sufficient numbers of surviving colonies
to score, even at doses that leave a large majority of cells non-clonogenic. When
applying such a strategy, one should be careful and assess the potential influences
of seeding densities on colony growth behavior beforehand. The presented method
qualifies as an appropriate tool to achieve that.
Another important aspect to consider is that the higher the seeding density, the more
like it is for colonies to fuse. Even in the relatively sparsely seeded culture flasks used
in the respective experiments, the number of fusions increased markedly at higher
densities, reducing the number of colonies where the full growth history is available.
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20.3 Passage numbers
The influence of passage numbers on growth characteristics of unirradiated cells as
outlined in 14 is negligible for the tested cell lines and the range of passage numbers.
Potential influences on irradiated cells or influences of larger differences between
the passage numbers can not be excluded, but the results suggest that experiments
based on immortalized cell lines can be compared, if the difference in age is not more
than two months.
A bycatch finding here is that for some cell lines (i.e. UTSCC-5), harsh environmental
stress as caused by prolonged deprivation from fresh medium can lead to transient
changes in growth behavior, in this case growth arrest. This is in line with literature
findings that point out the influence of cell culture conditions on cell viability
assessment [19].

20.4 Growth rates
I think the discovery of normally distributed growth rates exhibiting large variability
is one of the most impactful findings of this work. Given the large variance among
growth rates from the same cell type, complete classification of viable, growing cells
by means of their final colony size requires very long incubation times for even the
slowest growing colonies to reach this threshold. This is likely to introduce difficulties
in scoring of the fastest growing colonies: Due to their large size, they potentially
fuse with other colonies, biasing the subsequent colony count. To avoid this, only
sparse seeding helps, which in turn reduces the sample size and hence the statistical
power of the experimental results. Hence, the high variability in growth rates forces
the experimenter to find a compromise including incubation time, seeding density
and size threshold.
The observation that these growth rate distributions shift towards slower rates as a
function of irradiation dose only aggravates this situation. It effectively broadens
the range of growth rates present in any given experiment. In addition to above-
mentioned need to find a suitable compromise, the standard IVCA now also faces
the risk of dose-dependent bias in clonogenicity scoring, as depicted in Figure 16.4.
Nevertheless, the growth rate findings are limited to two cell lines (H3122 and
RENCA) and could only be observed in data from relatively densely seeded 96well
plates, with images acquired in the IncuCyte. Since other types of data acquired
in this project are not suited to extract growth rates in the same manner due to
insufficiently dense data acquisition (see sections 9.2 and 21.5) these results could
not be reproduced in other cell lines, for less dense seeding conditions or different cell
culture containers. However, as literature findings indicate, highly variable growth
rate distributions are found in other biological systems as well [56] and the increase
of generation times after irradiation was shown previously for small numbers of
manually inspected cell colonies [57, 58, 59]. Hence I expect these trends to be found
in other cell types and conditions as well, once the practical limitations are overcome.
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20.5 Growth behaviors
The observation of the delayed abortive growth type is another major outcome within
this projects. As opposed to the growth rate results, I could confirm this finding
in all five tested cell lines. The seminal IVCA paper by Puck and Marcus already
describes how HeLa cell colonies continue to grow for some time before they abort
growth [6]. In addition, Endlich et al. also describes the presence of cell colonies
that only stop growing after a couple of generations in three additional cell lines[23].
Both of those findings are qualitative descriptions based on examination of single
colonies. In my first publication, I quantified the frequency of this growth behavior
as a function of dose for the first time [49].
The presence of delayed abortive colonies and their dose-dependent prevalence adds
to the list of factors that complicate the standard readout procedure, as in my
investigations these colonies can grow large enough to be considered viable based on
their size.
Regarding the biological mechanisms inducing this behavior, a probable explanation
is the cell’s attempt to repair DNA damage inflicted by irradiation. A fascinating
observation is the concerted stop of proliferation among all cells within a colony. If we
assumed that the decision to switch from a state of repair and continued proliferation
to growth termination is based on stochastic regulatory processes within single cells,
I would expect the decision to stop to be spread across a certain time period for all
cells within a colony. Based on their common progenitor cell, this decision would
most likely be correlated, but would still result in a gradual reduction in proliferation
of a colony due to different cels aborting at different times. In contrast, we see
abrupt switches from exponentially growing colonies to stagnant colonies. This tight
temporal correlation of growth abort indicates that either the cells within a colony
share a communicating regulatory network that allows this switch-like behavior, or
that the decision is already predestined based on the internal state of the progenitor
cell after irradiation.
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21Potential, challenges &
limitations of the method

The presented method uncovers a lot of so far mostly unnoticed, but valuable in-
formation. This information can help us to understand technical limitations of the
well-established IVCA. It can also warn us about biases and lack of robustness
introduced by inappropriate readouts. However, in my opinion this is just the start:
Tapping into this information by time-resolved image analysis is a first methodological
step towards a more general line of thinking: We can appreciate single colonies as
individual entities that can make concerted decisions on their fate based on internal
regulation mechanisms as well as external influences. This empirical observation
uncovers a multitude of follow-up questions: How does a heap of cells decide on
whether they should abort growth or not? How does it decide on the time of abort?
What are the key influences on these decisions? How stochastic/determined is this
behavior? If highly determined, are there predictors that can be clearly associated
with growth abort? How early during growth can we identify these predictors? These
questions might be answered by combining the presented method with additional
techniques, as described in section 22.
Despite the demonstrated utility of this method and the potential extensions, the
approach itself encompasses a multi-step process, with many technical and experi-
mental design decisions that certainly influence its reliability and usability. In the
following sections I will touch upon some of the challenges and limitations that come
with this method.

21.1 Cell culture
Standardized cell culture procedures are a key factor to ensure robust experimental
results and comparability between experiments. Hence, the following aspects need
to be considered when attempting to use this method successfully. Most of those
aspects are shared with the traditional IVCA: Cell lines that can be used in this
approach are restricted to adherently growing types which form clear colonies.
Seeded cells need to be single cells. If a substantial number of duplets or cell clumps
containing more cells are seeded, the result is biased.
The number of cells seeded needs to strike a balance between sufficiently large sample
sizes and sufficient space per colony to grow without fusing with neighboring colonies.
An important additional factor to achieve this is to ensure even distribution of cells
after seeding. This can be optimized by avoiding medium convection within cell
culture containers, by special shaking methods and by avoiding seeding from high
viscosity media into low viscosity media.
I have observed the presence of secondary colonies after some days of incubation. In
the traditional assay, these colonies have the capacity to be scored as viable colonies,
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if they grow fast enough. Based on the high variability in growth rates, it is likely
that some of those colonies surpass the threshold and are indistinguishable from
slow growing, primary colonies. The influence of this process was not systematically
examined in this work and it is possible that the formation of secondary colonies is a
peculiar attribute of the presented setup, where repeated imaging and transport from
and to the incubator lead to detachment of single cells due to mechanical stress. The
presented tracking approach filters out those colonies by design, as it only considers
tracks starting from single cells present in the first image. However, the presence of
secondary colonies can still disturb the tracking of primary colonies if they fuse.

21.2 Imaging
Working with both the IncuCyte and the Axio CellObserver imaging systems, I had
the opportunity to experience benefits and shortcomings of both highly automated,
"convenience first" and manual, semi-automated, "customizability first" image acqui-
sition approaches. Hence I was able to learn a lot about focus finding procedures,
time management, and optimization of imaging procedures in terms of image quality
but also efficiency.
As the Axio CellObserver system was highly customizable, initial problems with
focus finding and incorrectly stitched images could be solved by switching to man-
ual focus finding proceduress and by implementing an ImageJ macro to outsource
the stitching task and allow consistent image quality. Nevertheless, this approach
required substantial amounts of time from the user, approximately 15 imaging hours
per standard data set encompassing five conditions imaged in 24 h intervals over ten
days.
In contrast, the same dataset in the IncuCyte required approximately 10 of setup
time, with no need for additional work from the experimenter, despite substantially
shorter imaging intervals (3 to 6 h). In this case however, there was no way to
adjust either the focus finding procedures or aspects of image processing, such as
stitching. While the stitching worked robustly, the the IncuCyte could not find the
focus for sparsely seeded cell samples. This prohibited the useful application of the
IncuCyte to the type of sparsely seeded, long-term imaging experiment I planned
for. In addition, free time slots for imaging were rarely available for the IncuCyte
system. In an ideal world, an imaging system combining the ease of use of the
IncuCyte with the customizability of the Axio CellObserver would bring together the
benefits of both. Until then, I would suggest focusing on automated imaging systems
such as the IncuCyte or the CellCyte system, as they allow dense imaging intervals,
which benefits the quality of all subsequent data processing and analysis steps, from
registration to tracking, change point detection and growth behavior classification.
A potential option to overcome the prohibitive lack of focus finding in the IncuCyte
could be the introduction of inert, high-contrast structures in the samples to attract
the focus finding procedure even at low seeding densities. Examples for this could
be marks on the growth surface or adherent metal beads. This was not tested in this
project, but could present a future option to allow robust and convenient imaging.
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Nevertheless, if these systems are not available or can not be used as intended,
manual semi-automated imaging at 24 h intervals is still a valid option to examine
cell colony growth in vitro.

21.3 Image analysis
As described above, the data in this project came from two different imaging systems,
using different imaging modalities, magnification factors and cell culture containers.
Therefore, I developed two highly independent postprocessing pipelines. To allow
consistent production of high quality data and focused development and extension
of the analysis framework, commitment towards one system is highly recommended.
This also facilitates comparability between different data sets, since differences due
to data acquisition and postprocessing characteristics can be avoided.
For new cell lines, the performance of the established segmentation model needs
to be thoroughly tested on this cell line, as the model might not have encountered
specific characteristics of this cell line in the former training data. If segmentation is
suboptimal, two solutions are possible: Either adapt the existing model by retraining
it on a combination of the old training data and newly created training data which
includes the specific characteristics of the new cell line. Alternatively, train a
completely new model based solely on training data for the new cell line. The first
approach favours generalizability of the model, but needs to be reevaluated on the
old data as well. The second approach will most likely perform better on the new
data, but lacks generalizability. When working with many cell lines, this approach
leads to a set of many small, specialized segmentation models.

21.4 Threshold-based survival rate and cell counts
If the time-resolved clonogenic assay should be used to examine results as if they were
produced by the standard IVCA, the mapping between colony sizes and numbers of
cells in a colony is accurate. Since different cell lines have different sizes, especially
when growing flatly on a surface, the mapping should be newly determined for every
new cell line. One should also be aware that the linear mapping between colony sizes
and cell numbers as postulated in this work does not necessarily work for all cell
lines. Investigation of larger colonies also indicates that at some point the cells start
to "heap" in a threedimensional mound. At this point the latest, the linear mapping
is not accurate anymore. Even though the linear mappings are quite accurate in
the size ranges considered, the regression data (e.g. 8.4) still shows considerable
variation for all sizes.
I would argue that the extent of this uncertainty is small in comparison to the
uncertainties introduced by delayed abortive colonies and slow growing exponential
colonies. Nevertheless, an imaging modality and segmentation procedure that would
allow to gain actual cell counts from the image data would increase the discriminative
power of the presented approach. In contrast to our estimated cell numbers, human
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observers working on stained colonies are most likely more accurate in their cell
count assessment.

21.5 Growth curve analysis
As I have experienced with the Axio CellObserver data, sparse sampling (every 24 h)
of colony growth dynamics still allows tracking as well as growth type classification
when using the methods established here. The general dynamics of growth are still
captured for the examined cell lines. Nevertheless, since the detection of change points
does not work robustly at this level of sample density, the extraction of meaningful
growth rates is not possible for this type of data. Therefore, I suggest that future
applications of this method employ sampling at least every 12 h or shorter.
Another point to consider for new cell lines is the fact that the assumption of
finding three distinct growth behaviors might not hold true. Therefore, explorative
inspection of individual cell colony image data in combination with their growth
curves is necessary to test whether these behaviors are indeed present for the new
cell line. In case the assumption holds true, analogously to the segmentation model,
the growth behavior classification needs to be adjusted to this cell line. Again, either
by combining new training data from the new cell line and old training data from
the old cell line to retrain a generalizing classifier, or by training a new, cell line
specific classifier on new training data. Based on the variability of growth rates and
abort time found in the data analysed so far, I assume that the second approach is
more promising.
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22Subsequent / additional
analyses

22.1 Examining the influence of cell cycle status at irradiation
Multiple sources have shown an influence of the cell cycle status at irradiation time
on cell survival[28, 60]. Since this difference might very well be mediated by a change
in growth behaviors after irradiation, the idea to apply the presented method to cells
irradiated at different cell cycle phases. Obtaining cells at different cell cycle states
can generally be achieved by two approaches. One way is to perform synchronization
of whole cell populations by chemical blocks, the other is sorting a population of cells
according to their current cell cycle status. Chemical synchronization techniques
arrest cells in a certain state, as they are hindered from progressing further through
the cell cycle [61]. However, some authors argue that this artificial block does not
really synchronize cells but rather align them according to a certain property that
does not reflect a "natural" cell cycle status [62]. The second approach requires a
method to determine the cell cycle status for single cells and sort them accordingly.
Usually this is done by FACS after staining cells for cell cycle state-specific markers.
However, these stains are usually lethal. Since my goal is to cultivate cells after
sorting, the method has to be as gentle as possible, ideally not impairing cell viability
at all. According to the literature, staining with Hoechst33342 for subsequent DNA
content analysis is the best option to retain viability in cells after staining [63].
Based on the stochiometric binding of the stain to DNA, the relative DNA content
of stained cells can be determined and used to distinguish G1, S and G2 phases as
depicted in Figure 22.1.
In some pilot experiments the staining as well as sorting worked well, but for cell

lines RENCA, SAT and UTSCC-5, the cells did not attach and grow afterwards.
This indicates that either the staining or the FACS procedure drastically decreased
their viability. For H460, the sorted cells grew, but the imaging procedure did not
work as the IncuCyte could not find the focus. Therefore, unfortunately no results
could be presented for this type of analysis.

22.2 Discovery of predictive proteomic profiles
Another potential extension of the presented method aims at elucidating candidate
proteins or proteomic profiles with predictive power towards the growth behavior
fate of a cell colony. The idea is to perform the time-resolved imaging method after
irradiation of single colonies as described in this work. The extension consist of single
cell extraction from small colonies (4-8 cells) by physical picking from the container
they grow in. The origin colony for each picked cell is recorded and imaging is
continued on the sample. The picked cell is immediately transferred into lysis buffer
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Figure 22.1: Histogram of Hoechst intensity in stained
H460 cells. The vertical lines represent thresholds split-
ting the population into three subgroups of G1, S and
G2/M phase. Based on these thresholds, single cells
can be sorted into different containers for subsequent
exeriments.

and analyzed for its proteomic profile. By correlating the resulting proteomic profile
with growth characteristics such as growth rate, growth behavior, time of delayed
abort in case of delayed abortive colonies or other attributes of the origin colony,
some predictive power for the colony fate might be found in the proteomic profile.
Such findings might be used to form hypotheses on which regulatory processes and
states are involved in the cell colony’s fate.
Pilot experiments for single cell picking were performed using the CellCelector Flex
(Sartorius, Göttingen, Germany) and single cells could indeed be picked while keeping
the origin colony intact.
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