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A B S T R A C T

Modelling techniques for stellar atmospheres are undergoing continuous improvement.
In this thesis, I showcase how these methods are used for spectroscopic analysis and
for modelling time-dependent molecular formation and dissociation. I first use CO5BOLD

model atmospheres with the LINFOR3D spectrum synthesis code to determine the pho-
tospheric solar silicon abundance of 7.57± 0.04. This work also revealed some issues
present in the cutting-edge methods, such as synthesised lines being overly broadened.
Next, I constructed a chemical reaction network in order to model the time-dependent
evolution of molecular species in (carbon-enhanced) metal-poor dwarf and red giant
atmospheres, again using CO5BOLD. This was to test if the assumption of chemical equi-
librium, widely assumed in spectroscopic studies, was still vaild in the photospheres
of metal-poor stars. Indeed, the mean deviations from chemical equilibrium are below
0.2 dex across the spectroscopically relevant regions of the atmosphere, though devia-
tions increase with height. Finally, I implemented machine learning methods in order to
remove noise and line blends from spectra, as well as to predict the equilibrium state of
a chemical reaction network. The methods used and developed in this thesis illustrate
the importance of both conventional and machine learning modelling techniques, and
merge them to further improve accuracy, precision, and efficiency.

Z U S A M M E N FA S S U N G

Die Modellierungstechniken für Sternatmosphären werden ständig verbessert. In dieser
Arbeit zeige ich, wie diese Methoden für die spektroskopische Analyse und zur Model-
lierung der zeitabhängigen Molekularformation und -dissoziation benutzt werden. Ich
habe zuerst CO5BOLD -Modellatmosphären mit dem LINFOR3D -Spektrumsynthesecode
verwendet, um die photosphärische solare Siliziumhäufigkeit von 7.57± 0.04zu bestim-
men. Diese Untersuchung wurden auch einige Probleme der modernsten Methoden
aufgedeckt, wie z. B. synthetische Linien übermäßig verbreitert werden. Als nächstes
habe ich ein chemisches Reaktionsnetzwerk konstruiert, um die zeitabhängige Entwick-
lung der molekularen Spezies in (kohlenstoffverstärkten) metallarmen Zwergen- und
Roten-Riesen-Atmosphären zu modellieren, wiederum unter Verwendung von CO5BOLD.
Diese sollte getestet werden, ob die Annahme eines chemischen Gleichgewichts, die in
spektroskopischen Studien angenommen wird, in den Photosphären metallarmer Ster-
ne noch gültig ist. In der Tat liegen die mittleren Abweichungen vom chemischen Gleich-
gewicht in den spektroskopisch relevanten Regionen der Atmosphäre unter 0, 2 dex in
den spektroskopisch relevanten Bereichen der Atmosphäre, obwohl die Abweichungen
mit der Höhe zunehmen. Schließlich habe ich Methoden des maschinellen Lernens ein-
gesetzt, um Rauschen und Linienmischungen aus den Spektren zu entfernen sowie
den Gleichgewichtszustand eines chemischen Reaktionsnetzwerks vorherzusagen. Die
in dieser Arbeit verwendeten und entwickelten Methoden illustrieren die Bedeutung
sowohl konventioneller als auch maschineller Lernverfahren für die Modellierungstech-
niken und führen sie zusammen, um die Genauigkeit, Präzision und Effizienz.
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Part I

B A C K G R O U N D





O U T L I N E

This thesis is divided into four parts. This first part, “Background”, lays the founda-
tion for the work. A concise summary of the analysis of stellar atmospheres is given in
Chap. 1, which is laid out similar to a review. Chaps. 2 and 3 are based on published
work (Deshmukh and Ludwig, 2023; Deshmukh et al., 2022). Chaps. 4,5, and 6 are based
on work I conducted during my PhD, and are not yet published. Chap. 7 is a review of
the work presented in this thesis.

The second part of the work focuses on using conventional techniques for modelling
stellar atmospheric properties. Chap. 2 presents an end-to-end analysis of the determi-
nation of the photospheric solar silicon abundance according to the stellar atmosphere
code CO5BOLD and the spectrum synthesis code LINFOR3D. It further explores the various
shortcomings of these kinds of codes in general, and presents investigations on poten-
tial improvements for future works. This chapter is based on the work appearing in
Deshmukh et al. (2022).

Chap. 3 shows the effects of the assumption of chemical equilibrium in the atmospheres
of metal-poor and carbon enhanced metal-poor dwarf stellar atmospheres by consid-
ering the interplay between chemical kinetics and hydrodynamics. It also introduces
a graph theoretical perspective to analyse chemical reaction networks. This chapter is
based on the work appearing in Deshmukh and Ludwig (2023).

Chap. 4 extends this methodology to the atmospheres of metal-poor giant stars and
explores a novel way to determine the state of chemical equilibrium in a given stellar
atmosphere. Chaps. 3 and 4 are directly linked in that the same kind of analysis is per-
formed in different astrophysical contexts, and the results can be directly compared.

The third part explores the use of machine learning techniques for modelling the proper-
ties of stellar atmospheres. Chap. 5 showcases the attempts to leverage machine learning
algorithms to improve the quality of spectroscopic data. Chap. 5 contains direct links to
Chap. 2 in terms of the observational material and the context.

Chap. 6 introduces a novel method of utilising neural networks to speed up chemical
kinetics calculations and demonstrates the advantages for the model atmospheres pre-
sented in Chaps. 3 and 4. The methodologies in terms of machine learning techniques
are similar to those encountered in Chap. 5.

Finally, the fourth part, containing Chap. 7, summarises the key takeaways of this work
and presents an outlook on promising future work.
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1S TA R S A N D T H E I R AT M O S P H E R E S

1.1 the study of stellar atmospheres

The atmosphere of a star is the region between its core and the interstellar medium
(ISM) (Hubeny and Mihalas, 2015). Energy is generated by nuclear fusion in the stellar
core, and this energy is transported via conduction, convection, radiation and neutri-
nos throughout the star, before it finally escapes into the ISM. This energy then prop-
agates through the Universe before being, for example, observed by a species on a
life-sustaining planet orbiting one of these luminous objects. What can we learn from
observing such an object?

Generally, we do not observe a star’s core, but its atmosphere. We would like to
know certain intrinsic properties of stars, such as their mass and chemical composition,
in order to better understand their evolution; in a broader sense, to understand the
evolution of our Universe. However, Mother Nature does not allow us to inspect these
properties directly. We must instead make do with observed properties such as the star’s
luminosity. Various techniques have been developed and refined over the years to better
probe these measurements, including photometry and spectroscopy.

1.1.1 Why model stellar atmospheres?

The aim of modelling stellar atmospheres comes from the motivation to understand
observations of stellar objects. The electrmagnetic (EM) spectrum of a star sheds light
on properties such as its temperature, surface gravity, and chemical composition (Gray,
2008). Quantitative spectroscopic analysis allows for greater understanding of the var-
ious physical processes that led to the formation of such a spectrum. It is imperative,
then, to construct accurate and precise stellar models that result in model spectra that
can be compared with observations. Since the scientist is in full control of the parame-
ters of the model, such as the elemental abundances that it is seeded with, the properties
of distant stars can be inferred through comparison to a range of astrophysical models.

The evolution of chemical elements in our Universe proceeds in the interiors of stars
through stellar nucleosynthesis. Fusion products are eventually brought up (through
various pathways) into the stellar atmosphere, and later deposited into the ISM. These
fingerprints of chemical evolution are readily present in the atmospheres of stars, and by
piecing together our other knowledge about the objects in question, large-scale trends
of Galactic chemical evolution can be studied. In short, then, the study of stellar at-
mospheres involves the quantitative study of stellar spectra, which yields a host of
information about the star’s properties. The focus in this study is on stellar chemical
compositions, developing and improving upon modelling techniques, understanding
the implications of various assumptions made in the modelling phase, such as assump-
tions relating to thermodynamic equilibrium.

1.1.2 Energy transport

In order to better understand systems out of thermodynamic equilibrium, we will first
detail the primary mechanisms of energy transport in stars. Generally, energy is trans-
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ferred through conduction, convection, radiation, or by neutrinos (Hansen, Kawaler,
and Trimble, 2004). In cool stellar atmospheres, conduction is relatively inefficient, neu-
trinos account for just a few percent of energy loss from nuclear reactions, and so energy
is transferred primarily via convection and radiation (Hubeny and Mihalas, 2015). Typ-
ically, convection is the primary mode of energy transport when the material is very
opaque or when large temperature gradients exist (see Sec. 1.2 for a more detailed look
at which transport mechanisms are dominant in various stars). We can follow a straight-
forward line of reasoning to determine where convection is possible.

Figure 1: Diagram of a parcel of gas undergoing basic convection.

Consider a parcel of gas in a stratified atmosphere that is displaced from a point with
density ρ1 and pressure P1 to a point with density ρ2 and pressure P2 (Fig. 1). Let the
conditions in the parcel after the displacement be its density ρ∗ and its pressure P∗. If
the parcel is sufficiently large and its displacement is significantly less than the local
sound speed, pressure changes equalise at the speed of sound, so P∗ = P2, and heat
flow is adiabatic inside of the parcel. We therefore need only compare the densities ρ∗
and ρ2 to determine the immediate future motion of the parcel. If ρ∗ < ρ2, the parcel
is unstable against convection and will continue to rise. If ρ∗ > ρ2, the parcel is stable
against convection and will sink back down. We can extend this logic to determine
which parts of an atmosphere will be unstable against convection.

For an adiabatic process,

dP

P
= −γ

dV

V
, (1)

where γ is the adiabatic index for an ideal gas 1 and V is the specific volume V = 1
ρ .

Therefore, dV = − 1
ρ2
dρ, leading to

dV

V
= −

dρ

ρ
. (2)

Substituting for the right-hand side of Eq. 1, we arrive at

dP

P
= γ

dρ

ρ
, (3)

1 More generally, the definition Γ1 =
(
∂ ln(P)
∂ ln(ρ)

)
s

is used, with s as the entropy, and is more general as the

definition γ = cP/cV is specific to ideal gases (where Γ1 = γ). In the model atmosphere code CO5BOLD , the
general definition of Γ1 is used, though the case of an ideal gas is considered in this example for simplicity.
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which directly rates the change in pressure to the change in density. As dxx = d ln(x),

d ln(P)
d ln(ρ)

= γ. (4)

We can now compare the the lograithmic gradients of pressure with respect to density
in the star

(
d ln(P)
d ln(ρ)

)
star

to the adiabatic case
(
d ln(P)
d ln(ρ)

)
ad

. Stability against convection is
achieved when the gradient in the star is less steep than in the adiabatic case, that is(

d ln(P)
d ln(ρ)

)
star

<

(
d ln(P)
d ln(ρ)

)
ad

. (5)

However, as we are dealing with stellar atmospheres, it will be useful to restate this in
terms of the temperature T . Stellar atmospheres are composed of ideal gases (Hubeny
and Mihalas, 2015; Maoz, 2016), whose equation of state is given by

P =
NAkB

µ
ρT , (6)

whereNA = 6.02214076×1023 mol−1 is Avogadro’s number, kB = 1.380649×10−23 J K−1

is the Boltzmann constant, and µ is the mean molecular weight. Differentiating Eq. 6

and dividing through by the original expression, we arrive at the relation

dP

P
=
dT

T
+
dρ

ρ
. (7)

Using Eq. 3 and rearranging, we arrive at

dT

T
=
dP

P

(
γ− 1

γ

)
, (8)

which leads to the expression for the adiabatic gradient

∇ad ≡
d ln(T)
d ln(P)

=
γ− 1

γ
. (9)

As in the case of Eq. 5, stablity against convection is achieved when(
d ln(T)
d ln(P)

)
star

<

(
d ln(T)
d ln(P)

)
ad

. (10)

In more convenient notation:

d ln(T)
d ln(P)

< ∇ad. (11)

If the gradient d ln(T)
d ln(P) ever exceeds γ−1γ (= 2

5 for an ideal monatomic gas), convection
will commence. Steep temperature gradients therefore cause the material to become
convectively unstable, and convection sets in to flatten the temperature gradient. In the
Sun, these are primarily seen in the atmosphere above the nuclear-burning core.

Nuclear reactions in the core, such as the proton-proton (p-p) chain and the CNO
cycle release energy as radiation and neutrinos. In the Sun, energy is primarily trans-
ported via radiation in the core, as the temperature gradient is not steep enough for
convection to occur (Kippenhahn, Weigert, and Weiss, 2012), and radiation transport be-
comes increasingly important in the higher, optically thin atmospheric layers (Hubeny
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Figure 2: Geometry of the basic radiative transfer problem (top) and the beam of intensity Iν
shining through a medium containing particles capable of absorption, scattering, and
emission (bottom).

and Mihalas, 2015). As we are primarily interested in stellar atmospheres, let us con-
sider the general transport of energy via radiation from a bright source shining through
a medium, as in Fig. 2.

Consider photons with frequencies in the range ν to ν+ dν flowing from dA to dA ′.
The energy flow is given by

dEν = Iν(Ω)dΩdtdνn̂ΩdA, (12)

where Iν(Ω) is the monochromatic specific intensity (W m−2 ster−1 Hz−1), n̂ is the
normal unit vector, Ω and Ω is the solid angle (see again Fig. 2 for a visual explanation).
We define the mean intensity

Jν =
1

4π

˛
Iν(Ω)dΩ. (13)

If the radiation field is isotropic, spherical symmetry ensures Jν = Iν. Consider the ma-
terial that the photons pass through to be capable of absorbing and scattering radiation
within the relevant energy window (Fig. 2). The cross-section presented to the photon
beam of unit area of material with a thickness ds is nσνds, where n is the number
density of absorbers and σν is their cross-section. This expression is equivalent to the
probability of absorption or scattering. We can now define the absorption coefficient
(cross-section per unit volume) as

αν = nσν (14)

and the specific opacity

κν =
nσν

ρ
=
αν

ρ
, (15)
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where ρ is the mass density. The photon mean free path is given by

λν =
1

αν
. (16)

Conventional distance is not a good measure for these kinds of events, as we require a
measure that characterises the extent to which a photon can travel freely, that is, without
being absorbed. We therefore define the optical depth τν:

τν =

ˆ s2
s1

ανds (17)

which leads to

dτν = ανds. (18)

The optical depth contains contributions from physical distance as well as the effect of
absorbers, thereby naturally representing the opacity. When τ >> 1, the material is said
to be optically thick, meaning that many absorption and scattering events occur, so pho-
tons do not travel freely through the medium. In contrast, when τ << 1, the material is
said to be optically thin, meaning it is extremely unlikely for a single photon to undergo
multiple scattering or absorption events, and hence photons can propagate more-or-less
freely through the medium. As a simple, terrestrial example, opaque clouds are opti-
cally thick, while translucent ones are optically thin. On a foggy day, if you can see
the silhouette of the Sun, the fog cannot be optically thick. The stellar photosphere is a
region of transition from the deeper, optically thick layers, to the higher, optically thin
ones; Secs. 1.4.2 and 1.4.2.1 go into further detail on why this complicates the treatment
of radiation transfer.

The loss in intensity as the beam travels through the medium due to absorption and
scattering events in terms of the optical depth is therefore

Iν(Ω)ανds = Iν(Ω)dτν. (19)

In stellar atmospheres, the material can also produce radiation that adds to the photon
beam. We define the volume emissivity jν (W m−3 ster−1 Hz−1) as the energy emitted
per unit time, volume, frequency and solid angle. Note that the exact properties of jν
and αν will depend on atomic physics (see Sec. 1.1.4.1) . The amount of radiation added
to the beam as it passes through a distance ds due to emission is simply jνds.

Overall, the radiation transport equation combines these processes of absorption, scat-
tering, and radiation as the photon beam passes through the medium of thickness ds:

dIν

ds
=

(
dIν

ds

)
absorption

+

(
dIν

ds

)
scattering

+

(
dIν

ds

)
emission

. (20)

Substituting the expressions for absorption and emission above leads to

dIν

dτν
= −ανIν + jν, (21)

and after rewriting in terms of the optical depth dτν = ανds, we arrive at the familiar
form

dIν

dτν
= −Iν +

jν

αν
. (22)
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The last term on the right-hand side is commonly referred to as the source function

Sν =
jν

αν
(23)

as it characterises the properties of the source material. Further details of the implemen-
tation of radiation transport in stellar atmosphere codes is presented in Sec. 1.4.2.

1.1.3 Atmospheric layers

The stellar atmosphere contains many layers: starting from the inside and moving out-
wards, the layers are the photosphere, the chromosphere, the transition region and the
corona. We will explore these layers from the perspective of the solar atmosphere, which
we can directly observe and which we understand much better compared to distant
stars.

The photosphere is the deepest and coolest region of the atmosphere that is still
transparent to many photons that travel outwards from the core. The bottom of the pho-
tosphere is defined to be where the plasma ceases to be opaque, allowing photons to
pass through it and other layers of the atmosphere. The photosphere is typically used
to define a star’s visual surface. While the temperature can vary by a few thousand
Kelvin throughout the photosphere, the effective temperature is used to characterise its
temperature with respect to a blackbody. The stellar photosphere contains many phe-
nomena that stem from the interplay between convection, magnetic fields and radiation
transfer. The most common phenomena are granules – convection cells with rising hot
plasma in their centre and falling cool plasma in the intergranular lanes. In the Sun, we
can actually observe the granulation pattern with state-of-the-art telsecopes (Bahng and
Schwarzschild, 1961). We generally observe spectral lines from absorption processes in
the photosphere (see Sec. 1.1.4).

Figure 3: A comparison of solar granulation pattern in emergent intensity observed with the
Swedish Solar Telescope (left) and the numerical simulation (right). Both images have
a scale of 6 Mm ×6 Mm. Original: Fig 1.2 from Magic (2014)

Other phenomena include supergranules, which carry magnetic field bundles to con-
vection cell edges, starspots, which are darker, cooler regions of concentrated magnetic
flux that inhibit convection, and faculae, which are brighter spots between granules
produced by concentrations of magnetic field lines.

Moving up to the chromosphere, the temperature first decreases slightly and then
increases drastically by a factor of ∼ 10 (Avrett, 2003; Washinoue, Shoda, and Suzuki,
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2022) as it reaches the transition region to the stellar corona. While the photosphere
contains many absorption features, the high temperatures of the chromosphere lend
itself to many emission features (Jess et al., 2015). In particular, the solar chromosphere
has a characteristic pinkish-red colour due to the H¸ emission line. The chromosphere is
much more difficult to observe, though we can see it and the corona more clearly during
a solar eclipse, when the photosphere is obscured. Coronographs on solar telescopes
block out the majority of photospheric light so that these higher layers can be observed
in further detail (Gray, 2008).

Figure 4: Composite image of the Sun taken with the Solar and Heliospheric Observatory at
304 Å (left, credit NASA SOHO) and a total solar eclipse where parts of the chromo-
sphere, corona, and the solar wind are visible (right, credit Jay Pasachoff (2013)).

Chromospheric phenomena are intimately connected to magnetic activity. These in-
cludes plages (regions bright in chromospheric emission (de Grijs and Kamath, 2021)),
hair-like spicules (Pereira, Pontieu, and Carlsson, 2012) (also known as fibrils, jets of
short-lived plasma that rise quickly and fade away), and chromospheric loops (concen-
tric arches that show intense variability in ultraviolet radiation and expansion (Foukal,
1976)). Of course, while we segment the atmosphere for understanding, no part of the
atmosphere is fully independent. The magnetic phenomena observed in the chromo-
sphere are directly related to magnetic concentrations in the photosphere and connect
to higher features in the corona.

Above the chromosphere we have the transition region, so named because it describes
the steep increase in temperature as well as a few other notable transitions in the atmo-
sphere. Note that the transition region is sometimes described as a component of the
chromosphere or corona, since it is difficult to associate it to a particular layer. Below it,
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gravity, gas pressure and fluid dynamics dominate the shapes of layers, but throughout
the transition region and above, dynamic features caused by magnetic phenomena are
dominant.

Finally, the stellar corona describes the outermost region of the atmosphere. It is the
final boundary between the star and the ISM, and also marks the beginning of the stellar
wind (McComas et al., 2003; de Ferrer, 1809). The temperature of the solar corona is over
1 MK, well above the effective photospheric temperature of 5772 K (Altrock, 2004; Prša
et al., 2016). The source of this heating is currently still a matter of debate, known as
the coronal heating problem (Aschwanden, 2006; Klimchuk, 2004). Two leading theories
include magnetohydrodynamic (MHD) wave heating (Cirtain et al., 2013; Kuperus, Ion-
son, and Spicer, 1981; Schatzman, 1949), , which suggests magneto-acoustic and Alfvén
waves (Alfvén and Lindblad, 1947) transport energy from the photosphere to the corona,
and magnetic reconnection (which occurs during events such as solar flares (Kumar and
Wang, 2019)), which suggests magnetic field lines induce electric currents in the corona
and then collapse, causing the field lines to “reconnect” to other magnetic poles, releas-
ing energy as heat and wave energy in the process (Li, Priest, and Guo, 2021). Currently,
the coronal heating problem remains unsolved.

Figure 5: Temperature distribution of the solar atmosphere as a function of height. Original:
Fig. 1.1 from Gray (2008).

We will primarily explore the phenomena in the stellar photosphere and the lower
chromosphere in our study of stellar abundances and chemical species in these lay-
ers, since these layers are spectroscopically relevant for the studies of metal-poor stars.
Specifically, we will investigate how stellar spectroscopy is used to study absorption
lines to determine abundances, the importance of these studies, and the effect of the as-
sumption of chemical equilibrium in these layers. We will consider the case of the Sun,
and metal-poor dwarf and giant stars in order to construct a picture of the evolution of
chemical elements. The sample of stars lets us probe some of the first stars that formed
after the Big Bang and compare them to a star we have studied extensively and know
very well, our own Sun.
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1.1.4 A brief history of spectroscopy

The modern science of spectroscopy is built upon foundational principles in optics.
The idea of using a prism to generate a rainbow of colours was known during Roman
times (Seneca and Clarke, 1910) and explaining the rainbow phenomenon seen on Earth
can be dated back to the the late 13th and early 14th centuries in the Islamic world
and medieval Europe (Bostock and Riley, 1898). The 1600s saw the beginnings of the
precise mathematical science of studying a spectrum of light in order to understand its
source. In the mid-1600s, multiple individuals studied the solar spectrum (Burgess and
Mielenz, 2012), though Sir Isaac Newton is generally regarded as the first to publish a
comprehensive review of his experiments and theoretical explanations of the dispersion
of light (Newton, 1704). Throughout the 1600s, Robert Hooke and Christiaan Huygens
further studied the nature of light (Hooke, 1665; Huygens, 1690), the latter of whom
developed the first wave theory of light. Netwon further demonstrated that white light
could be separated into a spectrum of colours using a prism, and that these colours
could be recombined once more into white light. Newton’s scientific setup involved a
small aperture from which white light entered, a lens to collimate the light, a glass prism
to disperse it, and a screen upon which the resulting spectrum was displayed; modern
optical spectrographs use similar methods to observe extremely distant astronomical
objects. The precise science of spectroscopy had begun.

Spectroscopy took off again in the 1800s. In 1802, William Wollaston built an improved
spectrometer that included an additional lens to focus the solar spectrum onto a screen
(Wollaston, 1802). He noticed that patches of colours were missing, and attributed this
to natural boundaries between colours. However, in 1815, Joseph von Fraunhofer re-
placed the prism with a diffraction grating, building off of theories of light interference
(BRAND, 1995). This experimental change resulted in a vast improvement in spectral
resolution R, defined as

R =
λ

∆λ
, (24)

where ∆λ is the smallest difference in wavelength that can be distinguished at wave-
length λ. This same core principle of using a diffraction grating to disperse light is used
in modern-day spectrographs such as the Space Telescope Imaging Spectrograph (STIS)
and the 4-metre Multi-Object Spectroscopic Telescope (4MOST). Fraunhofer’s change
allowed him to establish a quantitative wavelength scale. He observed the same dark
bands that Wollaston had, and mapped over 570 different spectral lines to their wave-
lengths. These lines are known today as the Fraunhofer lines (Wissenschaften, 1817) ,
and were the first spectral lines systematically observed in the solar spectrum.

In the 1820s, John Herschel and William Talbot burnt salts in flames and studied their
resulting spectra (Herschel, 1823; Talbot, 1826). This linked emergent spectra to mate-
rials. Charles Wheatstone noticed in 1835 that bright lines in emission spectra differed
between various metals, allowing him to distinguish metals via this new form of flame
spectroscopy (Wheatstone, 1836). In 1849, Jean Foucault unified the ideas of absorption
and emission features, showing that features appearing at the same wavelength are
attributed to the same material (Foucault, 1849). He identified the difference between
these two kinds of spectra as relating to the temperature of the source. Anders Jonas
Ångström independently postulated in 1852 that a gas could absorb and emit radiation
of the same wavelength (Ångström, 1852), and measured an emission spectrum of H.

The 1860s saw the work of Gustav Kirchhoff and Robert Bunsen, who matched the
Fraunhofer lines seen in the solar spectrum to laboratory measurements (Kirchhoff,
1861). They went on to link chemical compounds to specific spectra, identifying ele-
ments within these chemical compounds (Kirchhoff and Bunsen, 1860), and definitively
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linked absorption and emission features by attributing them to particular elements.
Kirchhoff later associated the wavelength-specific radiative emission and absorption to
a body in thermodynamic equilibrium in his law of thermal radiation (Kirchhoff, 1860).
Furthermore, he introduced the three laws of spectroscopy:

1. An incandescent solid, liquid or gas under high pressure produces a continuous
spectrum.

2. A hot gas under low pressure seen against a cool background emits an emission-
line spectrum.

3. A continuous spectrum viewed through a cool, low-density gas produces an ab-
sorption spectrum.

These three laws correctly define the three kinds of spectra we recognise today. The
1860s continued with William and Margaret Huggins determining that the same ele-
ments are found in the stars and the Earth (Huggins, 1868). This realisation was ar-
guably where the seeds of modern science of Galactic Archaeology would begin to form
– that we can study the chemical composition of stars to understand the chemodynam-
ical evolution of the Universe. Spectroscopy continued to develop as a refined science,
with many important discoveries and inventions (Beer, 1852; Larmor, 1897; Rowland,
1882; Thomas, 1991; Zeeman, 1896). Let us now discuss the formation and source of
spectra in greater detail.

Spectra are not isolated to stars; many fields in astronomy use spectra to better un-
derstand the object of interest. For example, emission spectra from active galactic nuclei
(AGN) are used to understand the structure of the accretion disc and jets (Fath, 1909).
Transmission spectra (formed when we observe an atmosphere backlit by a separate
source) are used in exoplanet studies to probe the content of the planetary atmosphere
(Mayorga et al., 2021; de Wit et al., 2016). The study of spectra is common outside of as-
tronomy, too, with techniques such as to identify molecules in chemical analysis (Chen
and Yip, 1974; Garcia Ruiz et al., 2020) and to better understand biological phenomena
(Hammes, 2005).

Figure 6: The three kinds of spectra as defined by Kirchhoff’s laws. Repurposed from Fix (2010).

So why are these phenomena so ubiquitous in our Universe? Generally, the electro-
magnetic spectrum is simply a mapping of the wavelength of EM radiation to intensity,
and we are fortunate that sources of EM radiation are quite abundant. Note that the
word “spectrum” has since been applied to many other kinds of waves, but we will con-
cern ourselves primarily with light here. There are three kinds of spectra, as described
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by Gustav Kirchhoff from his three laws of spectroscopy: a continuum spectrum is the
light of a hot source (acting as a blackbody radiator) observed directly; an emission
spectrum forms when we observe the electromagnetic radiation directly emitted by a
non-blackbody source; an absorption spectrum forms when light from a hotter back-
ground source is absorbed in a cooler medium, and we observe the resultant light with
the absorbed components missing. The transmission spectrum mentioned above is a
composite of the stellar and planetary spectra. Fig. 7 shows the conditions under which
absorption and emission lines will form.

Figure 7: Spectral lines from a homogenous object with a uniform source function. No lines
emerge when the object is optically thick (1). When it is optically thin, emission lines
emerge when it is not backlit (2) or when it is brighter than its surroundings (3). Ab-
sorption lines emerge when the object is backlit by a brighter source (4). Adapted
from Fig. 2.2 from https://robrutten.nl/rrweb/rjr-edu/coursenotes/rutten_rtsa_

notes_2003.pdf.

More specifically, when photons travel through an absorbing medium between the ob-
server and the source, the resultant absorption spectrum tells us which wavelengths of
light have been removed through absorption. This gives us information on which atoms
and molecules are present in the medium, given our knowledge of the background
source’s continuum spectrum. A classic example of this is the solar spectrum.

Here, we see sections of the light generated from the solar core being absorbed by the
solar atmosphere. The different wavelengths correspond to different absorbing species,
and so we can infer the presence and abundance of atoms and molecules present within
the solar atmosphere.
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Figure 8: Solar spectrum from a digital atlas observed with the Fourier Transform Spectrometer
at the National Solar Observatory at Kitt Peak, Arizona. Credit: N.A.Sharp, NOAO/N-
SO/Kitt Peak FTS/AURA/NSF.

Emission lines, in contrast, come from hot sources. The solar chromosphere’s distinct
colour comes from the emission of Hα lines.

1.1.4.1 The introduction of quantum mechanics

In the early 20th century, the foundation of quantum mechanics led to a better under-
standing of the physical processes that lead to the formation of a spectrum. Specifically,
one could now associate a spectral line to a given difference in energy levels, providing
a unique map of transitions visualised as a spectrum, since transitions are only allowed
in discrete steps between energy levels. An emission line is formed when an atom or
molecule experiences a transition from higher energy state E2 to a lower energy state
E1, releasing a photon, and an absorption line is formed in the opposite circumstance,
namely when an incident photon causes a transition from a lower energy state E1 to a
higher energy state E2. In both cases, the wavelength of the photon corresponds to the
energy difference E2 − E1, that is,

E‚ = E2 − E1 =
hc

λγ
. (25)

This was studied extensively for H, and many of the series have names associated with
their discoverers.

Einstein postulated in 1916 that the formation of an atomic spectral line is governed by
three processes: spontaneous emission, absorption, and stimulated emission (Einstein,
1916). These processes were assigned the coefficients A21, B12 and B21, respectively,
where the numerical subscript convention describes the transition from state x → y.
These coefficients are related to the intrinsic properties of the energy levels of the atom
or molecule in question.
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Figure 9: Hydrogen series and their transition wavelengths. Original: https://commons.
wikimedia.org/wiki/File:Hydrogen_transitions.svg

Spontaneous emission is the process by which an atom transitions from a higher
energy state E2 to a lower energy state E1 without external influence, releasing a photon
with energy Eγ = E2 − E1. With the energy levels E2 and E1 (E2 > E1), the change in
number density of atoms in state 2 (n2) per unit time is(

d(n2)

dt

)
spontaneous

= −A21n2, (26)

and the change in number density of atoms in state 1 (n1) per unit time is therefore(
d(n1)

dt

)
spontaneous

= A21n2. (27)

The Einstein coefficient A21 (s−1) describes the probability per unit time for this process,
and is specific to a particular atom. Note that the energy-time uncertainty principle
causes photons in a narrow range of frequencies around the central frequency to be
generated. This is the source of the “spectral linewidth”, or natural broadening (see
Sec. 1.1.4.2 below).

Absorption involves an external photon with energy Eγ = E2 − E1 being absorbed by
an atom, causing it to jump from state E1 to E2. The Einstein coefficient B12 (m3 J−1

s−2) is the probability per unit time per unit frequency per unit energy density (of the
radiation field) that a photon with the defined energy Eγ will be absorbed, causing the
state 1 → 2 transition. The change in number density of atoms in state 1 (n1) per unit
time is then(

dn1
dt

)
positive absorption

= −B12n1ρ(ν). (28)

where ρ(ν) is the spectral energy density of the isotropic radiation field at the frequency
of the transition ν = E2−E1

h .
Stimulated, or induced, emission involves an electronic transition caused by external

EM radiation near the energy of transition E2 − E1. This is equivalent to “negative
absorption”, that is, the inverse of the absorption process. The Einstein coefficient B21

17

https://commons.wikimedia.org/wiki/File:Hydrogen_transitions.svg
https://commons.wikimedia.org/wiki/File:Hydrogen_transitions.svg


(m3 J−1 s−2) describes the probability per unit time per unit frequency per unit energy
density (of the radiation field) that the presence of an external photon at energy E2−E1
causes a decay from state 2 → 1, resulting in an emission of a photon at energy Eγ =
E2 − E1. The change in number density of atoms in state 1 per unit time is then(

dn1
dt

)
negative absorption

= B12n2ρ(ν). (29)

Interestingly, Einstein’s formulation of stimulated emission was a theoretical discovery
at the time. It later helped form the foundation for the invention of the laser (Steen,
1998). In a curious twist of fate, lasers are commonly used in modern-day spectroscopy
to excite source material (Rinke-Kneapler and Sigman, 2014).

With these coefficients in hand, we can now consider the balance between these pro-
cesses at thermodynamic equilibrium. In a closed system, a simple balancing is held
such that the net change in the number of excited atoms is zero. That is, the losses and
gains between processes are balanced. This leads into the principle of detailed balance,
which states that at equilibrium, each elementary kinetic process is in equilibrium with
its reverse process (Boltzmann, 2003, 1872; Gorban, 2014). For the processes described
above, the fulfilled condition at equilibrium is

0 =

(
d(n1)

dt

)
spontaneous

+

(
dn1
dt

)
positive absorption

+

(
dn1
dt

)
negative absorption

, (30)

or equivalently,

0 = A21n2 −B12n1ρ(ν) +B21n2ρ(ν). (31)

We can combine the notion of these Einstein coefficients into a single quantity known
as the oscillator strength, a dimensionless quantity that expresses the probability of ab-
sorption or emission between two given energy levels E1 and E2 (with E2 > E1). It is
the ratio between the quantum mechanical transition rate and the classical absorption/e-
mission rate of a single-electron oscillator that has the same frequency as the transition
ν = E2−E1

h (Hilborn, 1982). In the context of spectroscopy, larger oscillator strengths re-
sult in stronger transitions. The oscillator strength of the transition between states 1↔ 2

is related to the cross-section for absorption σ by

f12 =
4ε0mec

e2
σ

ϕν
, (32)

where ε0 is the permittivity of free space, me is electron mass, c is the speed of light, e
is elementary charge and ϕν is the normalised distribution function in frequency. This
can also be expressed in terms of angular frequency, namely

f12 =
2ε0mec

πe2
σ

ϕω
(33)

with ϕω as the normalised distribution function in angular frequency. Including the
inter-coefficient relations from Eq.31, all three Einstein coefficients (for a given spectral
line) can be expressed using the oscillator strength and statistical weights of the levels:

A21 =
2πν2e2

ε0mec3
g1
g2
f12, (34)

B12 =
e2

4ε0mehν
f12, (35)

B21 =
e2

4ε0meh

g1
g2
f12. (36)

(37)
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The statistical weight and oscillator strength are further linked by the relation

g1f12 = −g2f21. (38)

The gf-value hence corresponds to a particular energetic transition (Robinson, 1996).
In spectroscopic contexts, the log(gf) value is an important factor that determines the
strength of a particular spectral line, with the other factors being the abundance of the
species and the excitation of the lower level. A change in log(gf) directly translates to an
opposite change in measured abundance, making it especially important in abundance
analyses to have tight constraints on loggf values. There have been advances in both
theoretical predictions and experimental measurements of these values in recent years
(Pehlivan Rhodin, 2018). This is yet another choice that the scientist must make when
conducting an abundance analysis, as multiple sources of loggf-values exist for a given
set of spectral lines. We will see the effect of this choice in practice for determining the
solar photospheric silicon abundance in Chap. 2.

1.1.4.2 Line broadening

Let us consider the formation of an absorption feature. In a perfect laboratory environ-
ment, a single atom can absorb a photon of a specific wavelength from a background
source. The resulting spectral line would be an ideal Dirac peak at the given wavelength.
However, the spectral lines we observe in the solar photosphere are never so precisely
defined. A few different physical processes lead to the broadening and shifting of spec-
tral lines. In the photosphere, we observe the continuous spectrum of radiation from the
solar core shine through a medium with various absorbers at various wavelengths. If we
consider just one of these, for example the Hα Fraunhofer C line (now better known as
the first line in the Balmer series) at 656.281 nm, the number of absorbers is the number
of singly-excited H atoms. The Hα line describes the electronic transition between the
n = 2 and n = 3 states in the H atom. Therefore, photons corresponding to the energy
(or wavelength) of 1.89 eV (the energy difference between the n = 2 and n = 3 levels
of neutral atomic H) would be absorbed. A variety of effects local to these absorbers
can alter the shape of the spectral line. These physical processes can broaden the line or
shift it, and the combination of all of the processes results in the line we finally observe.

The first source of broadening is known as lifetime (or natural) broadening and comes
from the uncertainty principle. The lifetime of the state is related to its energy due to
spontaneous emission, and so a collection of absorbers will decay at differing rates. This
introduces a Lorentzian profile to the spectral line shape due to the exponential decay
(Haken and Wolf, 1996). Natural broadening is a consequence of quantum mechanical
effects, though there are methods to suppress the decay rates to reduce natural broad-
ening (Gabrielse and Dehmelt, 1985).

The second major source of broadening is thermal or Doppler broadening. The ve-
locities of the particles in the gas follow a Maxwell-Boltzmann distribution, resulting in
absorbers being red- and blue-shifted from the line centre based on their velocity away
from or towards the observer, respectively. The different velocities result in different
Doppler shifts of the absorbed radiation, and the overall line shape is modified by a
Gaussian profile. Surprisingly, the Doppler broadening of a spectral line can be useful.
Even though it somewhat obscures the nature of the absorption feature, the amount of
broadening is dependent on the velocity, and hence the temperature of the gas. Higher
gas temperatures result in a higher spread of particle velocities and therefore a broader
spectral line shape.

The final source of broadening to consider here is pressure broadening. Absorbing
particles will collide with other particles in the gas, shortening the lifetime of the ab-
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sorption process. This has an effect similar to natural broadening, and introduces a
Lorentzian profile. When all broadening sources are taken into account, the spectral line
shape has a Voigt profile (a convolution of a Gaussian and Lorentzian). Fig. 10 shows
these three sources of broadening and where their presence is primarily observed.

Figure 10: Representative diagram showing how natural broadening, thermal broadening and
pressure broadening affect the shape of a spectral line, shifting it from a Dirac delta
peak to a Voigt profile.

All of these sources of broadening are present for emission lines as well; the focus
was on absorption lines because those are the primary lines we consider in the solar
photosphere. There are further sources of broadening, and further distinctions to be
made in the sources of broadening considered. These involve energy shifts due to elec-
tric fields (Epstein, 1916; Stark and Kirschbaum, 1914) and van der Waals forces (Monier
et al., 2010). However, the three sources mentioned above are the main sources of local
broadening we will consider for the atmospheric region we are interested in. The effects
of broadening on both observed and modelled spectral lines in the solar photosphere is
explored in Chap. 2.

1.2 a brief taxonomy of stars

A star is a luminous astronomical body held together by self-gravity that generates
energy through thermonuclear fusion, which gives support against gravity. These prop-
erties give constraints on a star’s mass, a property which also determines how it will
evolve. Observed stellar masses range from as low as 0.09 M� (Close et al., 2007) to
as high as 196 M� (Kalari et al., 2022). The theoretical lower limit of a star is ∼ 0.08
M� or 75 MJ, the minimum mass required for the conditions for H-burning to begin in
the core. Below this mass exist brown dwarfs, which fuse deuterium, but cannot ignite
hydrogen. The range of masses for brown dwarfs is roughly 13 − 75 MJ; below this,
the astronomical body is a gas giant planet. These astronomical bodies all form due
to cloud collapse, and the initial mass of this cloud is imperative in determining the
kind of body that eventually forms. Stars rarely form in isolation, but we will generally
consider single-star systems for simplicity.

Stellar evolution, that is, the physical changes a star experiences during its lifetime,
depends primarily on its mass and chemical composition. Mass affects almost every
aspect of a star’s structure and governs many physical processes such as nuclear fusion,
while chemical composition affects the amount of available nuclear fuel. In stellar at-
mospheres, the chemical composition (and more specifically, the metal-content) greatly
impacts the effectiveness of radiation transfer.
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The structure of a H-burning (main-sequence, MS) star depends on its mass, since this
informs the primary form of nuclear energy generation, and this subsequently dictates
how heat is efficiently transported outwards from the core. This in turn determines
the characteristic temperatures throughout the star, which affects properties such as the
ionisation state. The structure of MS stars can be divided into three regimes: very low
mass stars (M∗ < 0.3 M�), intermediate mass stars (0.3 6M∗ < 1.5 M�), and high mass
stars (1.5 M� 6 M∗) (Hansen, Kawaler, and Trimble, 2004). The proton-proton chain
(pp-chain) is the primary mode of energy generation in very low mass and intermediate
stars, and does not establish a steep temperature gradient. The energy generation rate of
the pp-chain scales as εpp ∼ T4, where T is the temperature (Maoz, 2016). In intermediate
mass stars, this leads to a radiative core and a convective envelope. In very-low mass
stars, though, the higher opacities due to lower core temperatures result in radiation
transfer being inefficient, and so they are fully convective. Table 1 presents the overall
p-p chain and its 3 common branches.

Table 1: Proton-proton (p-p) chain branches with reactions and released energy. The temperature
range at which the branch is dominant is shown in each subheading.

Reaction Energy Released

p+ p+ e− →21 D+ νe (net reaction) 1.44 MeV
2
1D+ p→32 He + γ 5.49 MeV

p-p I branch: 10− 18 MK
3
2He +32 He→42 He + 211H 12.86 MeV

p-p II branch: 18− 25 MK
3
2He +42 He→74 Be + γ 1.59 MeV
7
4Be + e− →73 Li + νe 0.861 MeV (90%) / 0.383 MeV (10%)
7
3Li +11 H→ 242He 17.35 MeV

p-p III branch: > 25 MK
3
2He +42 He→74 Be + γ 1.59 MeV
7
4Be +11 H→85 B + γ *
8
5B→84 Be + e+ + νe *
8
4Be→ 242He *
*The last three steps contribute a total energy of 18.21 MeV,
but much of it is lost to the neutrino

Overall Reaction
41H+ + 2e− →4 He2+ + 2νe 26.73 MeV

High mass stars signify the point where the carbon-nitrogen-oxygen (CNO) cycle
becomes the predominant form of nuclear energy generation, as the core temperature
exceeds ∼ 1.8× 107 K. The CNO cycle’s energy generation scales as εCNO = T17, sig-
nificantly higher than εpp. This establishes steep temperature gradients in the cores of
these stars, causing them to be convective. The outer envelopes have shallower temper-
ature gradients, but are hot enough so that H is nearly fully ionised. This makes them
transparent to UV photons (a large portion of the radiative flux). Additionally, the CNO
cycle is catalytic, unlike the p-p chain, with the C, N, O isotopes consumed at one point
in the cycle being re-generated in later ones. Table 2 shows the branches of the CNO cy-
cle characteristic in stars. Branches CNO-II and CNO-III are only significant in massive
stars. About 99 % of the Sun’s energy comes from the various p-p chains, with only 1 %
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Table 2: Carbon-Oxygen-Nitrogen (CNO) catalytic cycle with the four branches present in stars.
The CNO-III and CNO-IV branches are only significant in massive stars.

Reaction Energy Released

CNO-I branch:
12
6 C +11 H→137 N + γ 1.95 MeV
13
7 N→136 C + e+ + νe 1.20 MeV
13
6 C +11 H→147 N + γ 7.54 MeV
14
7 N +11 H→158 O + γ 7.35 MeV
15
8 O→157 N + e+ + νe 1.73 MeV
15
7 N +11 H→126 C +42 He 4.96 MeV

CNO-II branch:
15
7 N +11 H→168 O + γ 12.13 MeV
16
8 O +11 H→179 F + γ 0.60 MeV
17
9 F→178 O + e+ + νe 2.76 MeV
17
8 O +11 H→147 N +42 He 1.19 MeV
14
7 N +11 H→158 O + γ 7.35 MeV
15
8 O→157 N + e+ + νe 2.75 MeV

CNO-III branch:
17
8 O +11 H→189 F + γ 5.61 MeV
18
9 F→1 78O + e+ + νe 1.66 MeV
18
8 O +11 H→157 N +42 He 3.98 MeV
15
7 N +11 H→168 O + γ 12.13 MeV
16
8 O +11 H→179 F + γ 0.60 MeV
17
9 F→1 78O + e+ + νe 2.76 MeV

CNO-IV branch:
18
8 O +11 H→199 F + γ 7.99 MeV
19
9 F +11 H→168 O +42 He 8.11 MeV
16
8 O +11 H→179 F + γ 0.60 MeV
17
9 F→178 O + e+ + νe 2.76 MeV
17
8 O +11 H→189 F + γ 5.61 MeV
18
9 F→179 O + e+ + νe 1.66 MeV

Overall Reaction (net)
411H + 2e− →42 He2 + 2νe + 7γ 26.73 MeV

coming from the CNO cycle.

1.2.1 Stellar Classification

While these intrinsic properties of a star determine its lifetime and evolution, they are
not properties readily accessible observationally. We must instead make do with obser-
vational properties such as the star’s spectrum. The modern-day Morgan-Keenan (MK)
classification system is a two-dimensional scale in temperature and luminosity (Gray
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and Corbally, 2009), where the luminosity of a star L∗ is the total power emitted by
the star, which is related to the effective temperature of a blackbody radiating at the
temperature Teff:

L∗ = 4πR
2
∗σT

4
eff. (39)

The temperature classification comes from the older Harvard classification scheme re-
fined by Annie Jump Cannon in 1901 (Cannon and Pickering, 1901). By 1912, her system
essentially resembled its modern form (Cannon and Pickering, 1912). In 1925, Cecilia
Payne demonstrated that this classification system was in fact a sequence in effective
temperature (Payne, 1925). Table 3 shows our modern classification of spectral types
based on effective temperature, as well as the typical mass (M∗), radius (R∗) and bolo-
metric luminosity L∗ in solar units. The luminosity classification developed from the

Table 3: Modern-day Harvard spectral classification system for stars in order of their effective
temperature (Cannon and Pickering, 1912; Payne, 1925). The mass, radius, and bolomet-
ric luminosity typical of MS stars of the given spectral type is presented in terms of
solar units.

Spectral Class Teff [K] M∗(MS)/M� R∗(MS)/R� L∗(MS)/L�

O > 30, 000 > 16.00 6.60 > 30, 000
B 10, 000− 30, 000 2.10− 16.00 1.80− 6.60 25− 30, 000
A 7, 500− 10, 000 1.40− 2.10 1.40− 1.80 5− 25

F 6, 000− 7, 500 1.04− 1.40 1.15− 1.40 1.5− 5
G 5, 200− 6, 000 0.80− 1.04 0.96− 1.15 0.6− 1.5
K 3, 700− 5, 200 0.45− 0.8 0.70− 0.96 0.08− 0.6
M 2, 400− 3, 700 0.08− 0.45 6 0.70 6 0.08

Yerkes system (also called the MK system after its authors) (Morgan, Keenan, and Kell-
man, 1943), which is based on spectral lines sensitive to temperature and surface gravity.
Stars which are denser (higher surface gravity) have spectral lines that are more heavily
affected by pressure broadening than stars which have lower densities (lower densi-
ties). Given the mass, the observation of the spectrum therefore allows the classification
of whether a star is a dwarf (higher surface gravity) or a giant (lower surface grav-
ity). Table 4 depicts the various common luminosity classes in use today. Our Sun is
classified as a G2V star. Note that the MK system is the modern-day name for the two-
dimensional system for spectral classification using temperature and luminosity (Mor-
gan and Keenan, 1973). Stars are are often grouped as “early-” or “late-type”. These
are simply synonyms for “hotter” and “cooler” stars, with early-type stars referring to
the spectral classes O-A, and late-type to F-M (often synonymous with “cool stars”).
Other classification systems are also widely used, such as those based on color indices
and magnitudes (Johnson and Morgan, 1953). These frequently refer to the bands in the
EM spectrum, and different telescopes are fitted with different filters to observe specific
wavelengths. These “colours” can therefore form a photometric classification system.

1.2.1.1 Hertzsprung-Russell Diagram

The results of spectral classification can be plotted on a graph known as a Hertzsprung-
Russell diagram, named after Ejnar Hertzsprung and Henry Norris Russell who created
it independently in 1911 and 1913, respectively (Hertzsprung, 1909, 1911; Russell, 1914).
Typically, it is a diagram of Teff and luminosity, though the original diagram was an
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Table 4: Modern-day Yerkes luminosity classes used as part of the two-dimensional Morgan-
Keenan spectral classification system.

Luminosity Class Name

0 / Ia+ hypergiants
Ia luminous supergiants

Iab intermediate-size luminous supergiants
Ib less luminous supergiants
II bright giants
III giants
IV subgiants
V main-sequence / dwarfs

sd (prefix) / VI subdwarfs
D (prefix) / VII white dwarfs

Figure 11: Spectral sequence for OBAFGKM main-sequence stars from Gray and Corbally (2009)
showcasing that the sequence is a sequence in temperature.
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observational one, depicting spectral type and absolute visual magnitude. Modern ob-
servational versions of the H-R diagram plot colour index against magnitude, and are
referred to as Colour-Magnitude diagrams (CMDs). The theoretical H-R diagram plots
temperature against luminosity (generally with both in log-space). This theoretical dia-
gram is often produced from stellar evolution models, and compared with observations.
Transforming the theoretical diagram into the observational one (or vice versa) requires
some defined relationship between colour index and temperature, and it is therefore
useful to consider the two as separate. Fig. 12 shows a basic H-R diagram with labelled
components.

Figure 12: Theoretical H-R diagram illustrating the key components of a star’s life-
time. Copyright Encyclopaedia Britannica (https://www.britannica.com/science/
Hertzsprung-Russell-diagram).

The evolution of stars based on their mass can also be plotted on the H-R diagram.
Loosely, as protostars contract, their temperatures increase, causing them to move left-
wards on the H-R diagram. This movement continues until they reach the Zero-Age
Main-Sequence (ZAMS), at which point they are hot enough to fuse H to He in their
cores. A star spends the majority of its lifetime on the MS, and the various evolutionary
phases it goes through after this stage depends on its mass. We will primarily consider
the evolutionary stages of 1 M� stars, as they are the ones relevant in this work (see
Fig. 13). After the supply of H in the core has run dry, the star begins to fuse H in a thin
shell around the He core. During this time, it leaves the MS and becomes a subgiant.
Eventually, the core becomes degenerate, causing the H shell to increase in temperature
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Figure 13: Evolutionary track of a 1 M� star on the H-R diagram after it enters the main-
sequence. Original from https://en.wikipedia.org/wiki/Stellar_evolution.

and the star to expand, increasing its luminosity. It now enters the red giant branch
(RGB) with an inert, degenerate He core. The vast increase in core temperature due to
this process means the CNO cycle is the primary mode of energy generation in the H
shell.

As the star continues to fuse H into He, its core becomes more massive and the tem-
perature increases. This in turn results in more rapid H fusion, and the star expands
to become more luminous. On the H-R diagram, the star is seen to “ascend” the RGB.
Throughout this process, the convective envelope becomes deeper, and the first “dredge-
up” event carries the fusion products of the CNO cycle into the atmosphere. This pro-
cess of H-shell burning will continue until the inert He core becomes massive and hot
enough to begin He fusion through the triple-alpha process. He fusion causes an imme-
diate temperature increase, and the core quickly becomes non-degenerate, expanding
and producing a “helium flash”, where large quantities of He are quickly fused into
C during a runaway process. The star now enters the horizontal branch, and remains
there as it burns He in its core.

After the supply of He fusion fuel in the core is exhausted, He fusion continues in
a shell around the core consisting of C and O. H fusion continues in a second shell
outside the He core, which contributes a majority of the energy generation. The star is
now on the asymptotic giant branch (AGB). During the AGB phase, a convection zone
can form that brings C from the core into the atmosphere (second dredge-up). Some
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stars can experience a third dredge-up as well. These stars are “chemically peculiar”
carbon stars (see Sec. 1.2.3). AGB stars suffer increased mass loss through strong stellar
winds, and these winds carry enriched material from the star into the ISM. Additionally,
these stellar winds result in circumstellar envelopes (CSEs) forming around AGB stars,
which are host to many interesting and complex chemical reactions.

As the amount of H and He in the shells depletes, the star reaches the tip of the AGB.
Since these stars are not hot enough to fuse C to support their mass, the core contracts
and becomes hotter. Stellar winds deposit more products into the CSE, and as the star
continues to get hotter, the UV radiation it emits ionises the ejected atmosphere, and
the object shines as a planetary nebula. The ejected shell of ionised gas continues to
travel outwards. Eventually, the star starts to cool, and ceases to produce enough UV
radiation to ionise the nebula. The plasma recombines and becomes transparent due to
this process and no longer emits. The central stellar remnant cools as a white dwarf,
composed primarily of electron-degenerate C and O.

Throughout this entire process, the star has converted primordial H and He into heav-
ier elements through nucleosynthesis. These products are eventually deposited into the
ISM. Higher mass stars (above 8 M�) can fuse C and slightly heavier elements, includ-
ing O, Ne, and Si. The heaviest elements in our Universe are naturally synthesised in
explosive supernovae (SNe). Over time, the ISM has been continually enriched by pro-
cesses during stellar evolution, and these characteristics can be observed in the spectra
of stars that formed from this enrichment.

1.2.2 Stellar populations and abundances

It was a crucial discovery of astronomy in the 1900s that not all stars share the same
chemical composition. This led to the discovery of other concepts, such as the impor-
tance of chemical composition in stellar evolution (Kippenhahn, Weigert, and Weiss,
2012) and the link between atmospheric composition and birth environment, allowing
modern studies to study chemodynamical evolution of our Galaxy (Anders et al., 2014).
All stars observed so far have metals (elements heavier than H and He) in their atmo-
spheres. The abundance ε of an element A is defined logarithmically as a ratio of its
number density N to that of H

log10 ε(A) = log10(NA/NH) + 12, (40)

where log10 ε(H) is defined to be 12. Stellar abundances are usually presented in com-
parison to the solar metallicity using a bracket notation

[A/H] = log10 ε(A∗) − log10 ε(A�). (41)

The metal content, or metallicity, is usually defined as the ratio of Fe to H (Hinkel,
Young, and Wheeler, 2022)

nFe/H = log10(NFe/NH)∗ − log10(NFe/NH)�. (42)

A value of [Fe/H] = −3 therefore corresponds to an iron abundance of 1/1000 com-
pared to the solar iron abundance. It is useful to consider metallicities and abundances
in comparison to our Sun by means of Eq. 41. Table 5 highlights the common terminol-
ogy presented in Beers and Christlieb (2005). In doing so, it is important to understand
our ruler, that is, the solar abundances we use in comparison. These have changed
significantly throughout the years as observational and modelling techniques have im-
proved our understanding of the solar conditions. In Chapter 2, we will investigate the
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Table 5: Names given to metallicity ranges for stars of super- and sub-solar metallicity. See Beers
and Christlieb (2005) and Frebel (2010) for more details on the classification scheme. The
classifications highlighted in bold are those studied closely in this work, particularly in
Chaps. 3, 4 and 6.

Abbreviation Terminology Metallicity ([Fe/H])

SMR Super metal-rich > 0.5
Solar Solar ∼ 0.0
MP Metal-poor 6 −1.0
VMP Very metal-poor 6 −2.0
EMP Extremely metal-poor 6 −3.0
UMP Ultra metal-poor 6 −4.0
HMP Hyper metal-poor 6 −5.0
MMP Mega metal-poor 6 −6.0

solar Si abundance in greater detail and come to understand why discrepancies exist be-
tween various analyses. That being said, the solar abundances adopted today by various
groups differ only slightly due to the availability of high-precision data and significant
improvements in modelling techniques. In many works, the standard solar abundances
put forward by Asplund et al. (2009) were used. These were updated from the previous
standard solar abundances by Asplund, Grevesse, and Sauval (2005). Other solar abun-
dance sets, including the one used in this work, come from Anders and Grevesse (1989),
Caffau et al. (2011a), Grevesse et al. (2010), Grevesse and Sauval (1998), and Lodders
(2019).

In the beginning, the Universe was composed simply of H, He and trace amounts of Li
(Alpher, Bethe, and Gamow, 1948; Peebles, 1966; Steigman, 2007). Every heavier element
was nucleosynthesised in the cores of stars through fusion, or through various processes
during SNe. It stands to reason, then, that each new generation of stars further enriches
the ISM. Older stars would then generally be more metal-poor, while younger stars
would be more metal-rich. We can group similar stars together as populations, since
stars that share a birth environment are likely to have similar chemical compositions
and ages.

The concept of stellar populations was first introduced by Jan Oort in 1926 and fur-
ther developed into the modern categories by Walter Baade in 1944 (Baade, 1944). The
three categories, or populations, are: young, metal-rich Population I (Pop I) stars; older,
metal-poor Pop II stars; the hypothetical oldest Pop III stars, which would be the first
few generations of stars in our Universe. Only a few hundred million years after the Big
Bang, these first stars would from just H, He and trace amounts of Li. They would be
extremely massive and luminous, lighting up the Universe and helping to trigger the
phase of reionisation (Sokasian et al., 2004). While Pop III stars have not been directly
observed (yet!), their presence is inferred from our understanding of stellar evolution
and cosmology (Fosbury et al., 2003). However, as they would likely have masses up-
wards of several hundred solar masses, these stars would only survive for a few million
years (Ohkubo et al., 2009). It is possible that some of these massive Pop III stars were
also surrounded by lower mass stars (Krumholz et al., 2009). These stars would only be
able to survive into the modern-day Galaxy if they had been ejected from their birth
cluster before they exceeded ∼ 0.8 M� (Dutta et al., 2020). While none of these stars
have been observed to date, newer operations from state-of-the-art telescopes such as
James Webb Space Telescope (JWST) (Rydberg et al., 2013) and spectroscopic surveys
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such as SDSS-III 2 may provide us with the first observations of these ancient relics of
the primordial Universe.

Since metallicity is a proxy for the age of a star, we can study Pop I and II stars’
atmospheres to gain insights into their birth environments. For this, it is important to
consider low-mass stars with radiative cores and convective envelopes. In Chapter 3 we
will focus on metal-poor and carbon enhanced metal-poor (see Sec. 1.2.3) dwarf stars,
while in Chapter 4 we will investigate the atmospheres of giant stars. In both cases,
though, we consider stars around solar mass. It is primarily the convective envelope,
and specifically the photosphere, that we are interested in studying. Due to a chemical
potential µ-barrier, shear forces from differential rotation and magnetic field effects,
material from the core and envelope do not mix while a star remains on the main
sequence (Garaud, 2020). Giant stars experience dredge-up events where material from
the core is mixed into the envelope, though we can still use metals formed past the iron
peak to answer questions about their origin. All in all, the atmospheric content of a star
provides a wealth of information about its potential formation and age.

1.2.3 Chemically peculiar stars

In short, our reasons for studying the atmospheres of metal-poor stars is to understand
the conditions of the early Universe. Metal-poor stars provide fundamental limits on
various aspects of study within astrophysics. Some of these include the amount of Li
present just after the Big Bang (Beers and Christlieb, 2005), the nature of the first stars
in the Universe (Bromm and Larson, 2004), the distribution of masses associated with
star formation in the early Universe (Chabrier, Hennebelle, and Charlot, 2014; Salpeter,
1955), and the astrophysical sources of heavy elements associated with neutron-capture
prediction (Meyer, 1994). Some of these stars have interesting discrepancies in the metal
contents of their atmospheres; these are known as chemically peculiar stars. This term is
often used to describe hotter, MS stars generally of spectral type A or B (Preston, 1974).
However, since we are interested in cool stars, we will use this term to mean stars later
than type G (usually off of the MS). Some examples of these stars include carbon stars
(Keenan and Morgan, 1941), S-type stars (Keenan, 1954) and barium stars (Bidelman
and Keenan, 1951).

In the case of carbon and S-type stars, the peculiarities stem from a mixing of ele-
ments from the core to the surface (McClure, 1985). Carbon stars are typically luminous
AGB stars with more C than O in their atmospheres. In the atmosphere, these form
into the stable molecule CO. Since O is less abundant, only C remains in excess, and
it is these absorption features we primarily observe (Keenan, 1993; Keenan and Mor-
gan, 1941). S-type stars contain absorption features that are typical of elements from
the slow neutron capture process (s-process) (Keenan, 1954; MacConnell, 1979). These
stars have generally equal quantities of C and O. Barium stars and some S-type stars are
the result of mass transfer from a binary system (McClure, 1985). Both show enhance-
ments in s-process elements, though barium stars further show stronger CH, CN and
C2 absorption features.

Further interesting trends emerge when we consider increasingly metal-poor stars
and their potential chemical peculiarities. We observe larger-than-expected (from metal-
licity) carbon abundances as metallicity decreases, and in some cases, enhancements in
other heavy elements (Beers and Christlieb, 2005; Frebel and Norris, 2013). We will focus
on these carbon enhanced metal-poor (CEMP) stars in greater detail. Table 6 describes
the different subclasses of MP and CEMP stars. At lower metallicities, atomic spectral

2 https://www.sdss3.org/surveys/
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Table 6: Definitions for subclasses of metal-poor stars consolidated from Beers and Christlieb
(2005), Aoki et al. (2013) and Frebel and Norris (2013). These are operational definitions
useful in this work due to the nature of the chemical compositions studied in Chaps. 3,
4 and 6.

Neutron-capture-rich stars

r-I +0.3 6 [Eu/Fe] 6 +1.0 and [Ba/Eu] < 0
r-II [Eu/Fe] > +1.0 and [Ba/Eu] < 0
s [Ba/Fe] > +1.0 and [Ba/Eu] > +0.5
r/s 0.0 < [Ba/Eu] < +0.5

Carbon-enhanced metal-poor
(CEMP) stars

CEMP [C/Fe] > +0.7
CEMP-r [C/Fe] > +0.7 and [Eu/Fe] > +1.0
CEMP-s [C/Fe] > +0.7, [Ba/Fe] > +1.0 and [Ba/Eu] > +0.5
CEMP-r/s [C/Fe] > +0.7 and 0.0 < [Ba/Eu] < +0.5
CEMP-no [C/Fe] > +0.7 and [Ba/Fe] < 0.0

lines become fainter and most of the absorption features are in molecular lines. Fig. 14

shows this trend for similar MS dwarf stars at different metallicities. It is therefore im-
portant to consider the effects influencing the formation of molecular features. In this
work, particularly in Chaps. 3 and 4, the question of whether molecular species can form
into chemical equilibrium in the atmospheres of metal-poor cool stars is addressed.

Figure 14: Spectra of MS dwarf stars with varying metallicities. The top panel shows the Sun.
Note the reduction, and eventual absence of atomic spectral lines in the region as
metallicity decreases. Original: Fig. 1 from Frebel (2010).

Beers and Christlieb (2005) published the first comprehensive review that standard-
ised definitions of CEMP stars. They defined metallicity thresholds from [Fe/H] = 1.5
all the way down to [Fe/H] = −6.0. At the time of their writing, the abundance range of
discovered stars covered −5.4 6 [Fe/H] 6 0.5. Now, the lowest metallicity star we have
detected is SMSS J0313-6708, found by Keller et al. (2014). The exact metallicity is un-
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Figure 15: Histogram of stellar metallicity for the dwarf stars (left) and giant stars (right) from
Frebel (2010). Red dashed bars indicate C-rich objects. Note the trend of increasing
C-rich objects as metallicity decreases, despite the decreasing number of objects at
lower metallicity. Original: Frebel and Norris (2013).

known, since there is a complete lack of Fe in its absorption features, but the upper limit
is at [Fe/H] = −7.1. This star is also carbon enhanced, and adds an important point to
an interesting trend seen in the distribution of metallicity and carbon enhancement. We
will investigate the distribution of metallicty and stellar populations in the Milky Way
in Sec. 1.3.1. But first, it is important for us to understand the structure of our Galaxy.

1.3 stellar populations throughout the milky way

We are now equipped with the knowledge required to probe the origins of stars in
our Milky Way Galaxy. Let us first consider the structure of the modern Milky Way
(as we observe it today), and then work backwards to understand its formation. The
Milky Way is a barred spiral galaxy (Gerhard, 2002; Goodwin, Gribbin, and Hendry,
1998; de Vaucouleurs, 1964) of type Sbc in the Hubble classification. From inside out,
the Galaxy consists of the Centre, the bulge, the bar, the disk (made up of the thin and
thick disk and containing four spiral arms) and the halo. Stellar populations throughout
the Galaxy differ, and these differences give us insights into, for example, the presence
of star-forming regions (SFRs) and the sites of merger events (Balser et al., 2011; Shen
et al., 2010). Using information about radial velocities and chemical gradients allow
us to better understand the provenance of these populations and better constrain our
understanding of the Galaxy (Anders et al., 2014; Frebel and Norris, 2013; Gaia Collabo-
ration et al., 2022). This field of study is known as Galactic Archaeology – inferring the
formation, history and evolution of the Milky Way by understanding currently ongoing
processes.

1.3.1 Milky Way Structure and Galactic Archaeology

The first Pop III stars were extremely massive, forming from the pristine ISM material of
just H, He and trace amounts of Li left over from Big Bang nucleosynthesis (Alpher and
Herman, 1948). Their demise naturally led to the enrichment of the ISM with heavier
metals, and the population of stars that formed from this enriched gas were the metal-
poor Pop II stars. The cycle then continued, with the death of Pop II stars creating an
ever more metal-rich environment for the birth of Pop I stars. In the Milky Way, older
Pop II stars are primarily located in the bulge and the halo, while younger Pop I stars
are predominantly in the thin and thick disk. Studies into the bulge show that a vertical
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Figure 16: Artist’s impression of a top-down view of our Milky Way Galaxy with the position of
the Sun highlighted. Original: NASA/JPL-Caltech 2008 (author R. Hurt).

metallicty gradient is present, with metal-rich stars being in the Galactic plane and
metal-poor stars existing further from the plane (Ness and Freeman, 2016). Similarly,
the spiral arms are located primarily in the Galactic plane and contain more metal-rich
stars than the older stars that are part of the halo. This observation already informs us
of the change in star formation during the evolution of the Milky Way – in the present-
day, there is not enough cool gas present in the halo and the outer bulge to facilitate
effective star formation. HII regions, a tracer for recent star formation, are similarly
concentrated in the spiral arms (Balser et al., 2011). It stands to reason, then, that our
search for the oldest stars coincides with the search for the most metal-poor stars. Let
us take a moment to consider the strucutre of the Milky Way in order to understand
where these old stars are located.

The Galactic Centre contains the supermassive black hole (SMBH) Sagittarius A* (Sgr
A*) with an estimated mass of ∼ 4 × 106 M� (GRAVITY Collaboration et al., 2019).
Observations of the accretion rate of Sgr A* indicate it is an inactive galactic nucleus,
though it is still an intense radio source (Kraus, Ko, and Matt, 1954). The Center is also
the rotational centre of the Galaxy, with all of the Galaxy’s matter revolving around the
central SMBH.
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Figure 17: Representative image of the supermassive black hole Sgr A* from the Event Horizon
Telescope observations on April 7, 2017. Original: Fig. 3 from Collaboration et al.
(2022).

The Galactic bulge and bar describe the structure of stars within ∼ 3 kpc of the Cen-
tre. It is possible that multiple bars exist (Cabrera-Lavers et al., 2008; Nishiyama et al.,
2005). The bulge includes a concentration of old, Population II stars, among other stellar
populations (Ness and Freeman, 2016; Vanhollebeke, Groenewegen, and Girardi, 2009).
The lack of dust and gas means there is little active star formation in this region (Lian
et al., 2020). A 5 kpc ring may surround the bar and would contain the majority of
the molecular hydrogen and star formation activity of the Galaxy (Jackson et al., 2006;
Kolpak et al., 2002). Through the study of a particular globular cluster HP1, the bulge
appears to be approximately 12.8 Gyr old (Kerber et al., 2019).

Surrounding these features are the spiral arms contained within the disk of the Milky
Way that primarily host Population I stars. The two major spiral arms are the Perseus
Arm and the Scutum-Centaurus Arm (Benjamin, 2008). While there are more spiral
arms in the Galaxy, these two are considered as the major ones since they contain sig-
nificantly more older stars than the other arms. These other arms are the Near 3 kpc
arm, the Norma arm, the Outer arm (which contains a later-discovered extension), the
Carina-Sagittarius arm, and the Orion-Cygnus arm (which contains the Solar System we
call home) (Churchwell et al., 2009). The spiral arms contain greater concentrations of
dust and gas, HII regions, and molecular clouds, all key ingredients for star formation
(Dame, Hartmann, and Thaddeus, 2001; Russeil, 2003). The exact structure of these spi-
ral arms is not fully known, with various suggested pitch angles of the arms (Drimmel,
2000; Levine, Blitz, and Heiles, 2006) and suggestions that the Milky Way may contain
multiple spiral patterns (Mel’Nik, 2005; Mel’nik and Rautiainen, 2009).

We can also divide this disk containing the arms into the thick and thin disk based on
kinematics, stellar number densities and chemical compositions (Bensby and Feltzing,
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2010). The evolution (or co-evolution) of the disks is still an active field of research
(Gent et al., 2022a). Thick disks are found in many disk galaxies (Burstein, 1979), and it
was first considered to be a separate galactic structure in 1983 (Gilmore and Reid, 1983).
Stars in the thick disk are overall more metal-poor (Kordopatis et al., 2011). The origin of
the Milky Way’s thick disk is not entirely clear, though various formation scenarios have
been considered, including merger events and stellar migration (Kasparova et al., 2016;
Schönrich and Binney, 2009; Villalobos and Helmi, 2008). Thin disks are a property of
spiral and lenticular galaxies, and the stars here are generally younger and more metal-
rich (Sparke and Gallagher, 2000, 2007). More recently, the nature of the formation and
content of the disks has been studied. The Milky Way’s thick disk contains older, metal-
poor stars inside the solar radius (within 8 kpc), but younger, metal-rich stars outside of
it (Bensby et al., 2011; Martig et al., 2016). The Milky Way’s thin disk may have formed
from a collision with a small satellite galaxy approximately 8.8 Gyr ago (Peloso et al.,
2005; Sparke and Gallagher, 2007). The Milky Way disk contains a large amount of active
star formation, and about 85% of stars in the Galactic plane are located in the thin disk
(Allende Prieto, 2010).

Open clusters are similarly mainly located in the disk (Janes and Phelps, 1994). These
are clusters of stars that formed from the same giant molecular cloud, providing good
constraints on their ages and chemical compositions. They are loosely gravitationally
bound, and can be disrupted by encounters with other clusters and gas as they orbit
through the Milky Way, which can expel cluster members (Karttunen et al., 2017). Fur-
thermore, many are inherently unstable due to the relatively weak mutual gravitational
attraction between members, and they vanish on timescales of a few million to a few
hundred million years (Hills, 1980; de La Fuente Marcos, 1998). Open clusters are quite
useful for investigating stellar evolution since the various cluster members share im-
portant properties such as age, chemical composition, velocity and visual extinction,
meaning the variations between members can be isolated to their masses (Carroll and
Ostlie, 2014). Young open clusters that are still within their natal molecular cloud illu-
minate it with the radiation pressure from the newly-formed stars, creating a HII region
(Anderson et al., 2009). This is a key feature for tracking star formation throughout the
Galaxy, (Bok, 1948; Yun and Clemens, 1990).

The halo is the outermost region of the Milky Way and contains mostly older, Pop-
ulation II field stars and globular clusters (GCs). Most of these are within 30 kpc of
the Galactic Centre (Harris, 1996) and around 40% of the globular clusters move on ret-
rograde orbits (Dauphole et al., 1996). GCs are more gravitationally bound than open
clusters, as they contain hundreds of thousands of stars in higher densities than seen in
open clusters (Gratton et al., 2019). There is no active star formation in the Galactic halo,
as there is little cool gas that can result in cloud collapse (Sparke and Gallagher, 2007).
Interestingly, modern observations show that nearly all of these clusters have multiple
populations (Bastian and Lardo, 2018; Milone and Marino, 2022). In stellar clusters, we
assume that all stars are roughly the same age, since they would have formed from the
same giant molecular cloud. However, the multiple population suggests that stars in
GCs do not all come from the same single star-formation event. The GCs in our Galactic
Halo furthermore show differences in composition, and it is likely that these GCs came
from interactions and mergers between the Milky Way and the multiple dwarf galaxies
that surround it (Kravtsov, 2001). Concerning formation, metal-poor clusters are associ-
ated with the Galactic Halo, while metal-rich ones are associated with the Bulge (Harris,
1976).

The existence of many metal-poor GCs in the same plane in the halo supports the idea
that these clusters were not all made in-situ in the Milky Way, but were rather captured
from a satellite galaxy (Yoon and Lee, 2002). The study of the stars within these clusters
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therefore informs our understanding of the dynamics of the Milky Way and its satellite
galaxies, as well as the history of star formation within it. These old, metal-poor halo
stars are thus integral to understanding the formation and migration of stars in our
Galaxy.

Overall, then, the search for the oldest stars will take us to GCs in the Galactic Halo
and stars in the Bulge. GCs in the Galactic Halo contain some of the oldest stars in the
Galaxy (some so old that they help constrain the known age of the Universe (Bonifacio et
al., 2018; Caffau et al., 2011b; Cayrel et al., 2001; Cowan et al., 2002; Ishigaki et al., 2014)).
The analysis of the multiple populations of GCs with their kinematic data provides vital
information about merger events and interactions (Bekki and Freeman, 2003; Johnson
et al., 2020). H-R diagrams of GCs are useful for determining overall properties of the
cluster, such as its age. The H-R diagram of a single GC has the interesting property
that all stars have roughly the same age, and therefore the independent parameter is
the mass. As stellar evolution is governed by mass, with the highest mass stars evolving
into giants first, the point at which stars “turn off” of the MS to become giants (the
“main-sequence turnoff”) can be used to precisely determine a cluster’s age (Carroll
and Ostlie, 2014; Gontcharov et al., 2021). This lets up build up a picture of age vs
chemical composition (or metallicity).

Figure 18: Image of the globular cluster NGC 104 with its associated H-R diagram. Original from
OpenStax (2022), image credit NASA, ESA, and the Hubble Heritage (STScI/AURA)-
ESA/Hubble Collaboration.

1.3.2 Chemical Enrichment of the Milky Way

While the metal content of a star is generally referenced by the ratio of Fe to H, chemical
peculiarities in other elements yield insights into other internal and external processes.
For example, the presence of excess α-process elements in cool, MS stellar atmospheres
informs us that the ISM was previously enriched by them, since these stars would not
have sufficient core temperatures to initiate C fusion. α-elements consist of integer num-
ber of alpha particles, (hence an even number of protons), imprinting a characteristic
“odd-even” elemental abundance pattern. Notable examples are C, O, Mg, Ne, and Si.
The most reasonable sources for this enrichment are massive AGB stars, whose stellar
ejecta are carried by stellar winds and deposited into the ISM (Boulangier et al., 2019),
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and supernovae (Kobayashi, Karakas, and Lugaro, 2020; Truran, Cowan, and Cameron,
1978; Truran and Heger, 2003). α-enrichment is therefore a key indicator of external
historic enrichment of the ISM.

Figure 19: The origins of the elements coloured by nucleosynthetic sites. Original: Kobayashi,
Karakas, and Lugaro (2020).

Similar indicators are elements formed through the slow (s) and rapid (r) process. Ap-
proximately half the elements heavier than Fe are formed via the s-process, and another
half by the r-process. The s-process is known to occur primarily in AGB stars (Bur-
bidge et al., 1957; Kaeppeler et al., 1982). s-process elements in a cool star’s atmosphere
therefore suggest the ISM was enriched by the stellar wind of an AGB star. During
the s-process, α and β− decay results in the formation of specific elements, thereby
imprinting a unique signature whose astrophysical source can be ascertained to this
process. The same logic allows us to find elements produced by the r-process. This pro-
cess can only occur through heavy bombardment of neutrons without being interrupted
by radioactive decay. It can therefore only occur in regions with a high density of free
neutrons. The most prevalent sources are supernovae and neutron star mergers (Kasen
et al., 2017; Thielemann et al., 2011).

In summary, Big Bang nucleosynthesis formed H, He and trace amounts of Li. From
these, heavier elements were then primarily synthesised in stars (Alpher and Herman,
1948). During a star’s lifecycle, these heavier elements can be deposited into the ISM,
enriching the next generation of stars. There are three primary channels of metal enrich-
ment from stellar evolution (Burbidge et al., 1957):

1. Intermediate mass stars: Stars with a mass 0.5M� 6M <∼ 6M� produce mainly
C, O, other α-elements, and s-process elements that are brought to the surface and
lost in a stellar wind or planetary nebula when star enters AGB.

2. Massive stars: Stars with a massM > 6M� burn He ashes hydrostatically yielding
predominantly α-elements. These stars explode as core-collapse Type II SNe with
r-process and trans-Fe elements produced through nucleosynthesis.

3. Type Ia SNe: These SNe result in significant Fe yields and are plausibly the result
of mass transfer in binary star that pushes SN progenitor over Chandrasekhar
limit. Negligible amounts of α-elements are produced.

α-, s- and r-process elements therefore provide information of different astrophysical
events that occurred prior to the formation of the star under observation. It is particu-
larly important to study metal-poor stars here, since the enrichment by r- and s-process
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elements in these stars will come from just a handful (and perhaps only a single) nucle-
osynthetic event (Frebel and Ji, 2023), allowing for more precise estimates when search-
ing for the oldest stars in the Galaxy.

Another mystery is the increasing amount of carbon enhancement ([C/Fe]) towards
decreasing metallicity. The origin of carbon-enhanced metal-poor (CEMP) stars is a topic
still under investigation (Hansen et al., 2016; Rossi et al., 2023; Sharma et al., 2018;
Sivarani et al., 2006). Modelling techniques can help us understand the influence of
various formation and enrichment processes. Sharma et al. (2018), for example, explore
the effects of the three channels of metal enrichment using the EAGLE suite of simu-
lations (Planck Collaboration et al., 2014; Schaye et al., 2015). They find two pathways
to form CEMP stars, distinguished by the [C/O] ratio. The first comes from AGB stars,
which synthesise C more predominantly than O, resulting in [C/O] > 1. Stellar winds
deposit the enriched material into the ISM, which reflects the original pattern. As such,
it is possible that the stars are not necessarily C-rich, but rather O-poor. This is further
supported by Type II SNe which result in enrichment in both C and O. The enrichment
of a generation of stars assumes that the enriching materials have had sufficient time
to mix throughout the gas cloud. If however, there are times when star formation is
bursty and times when there is little to no star formation due to the lack of pristine gas,
there can be sufficient time for enriching material to mix with new accreting gas, and
the following generation of stars will reflect the history of enrichment.

The second pathway concerns stars with [C/O] < 1, but still having [C/Fe] > 1.
Massive stars can enrich the ISM with material that exhibits these properties. Over time,
lower mass Type II SNe will shift the pattern more towards the solar case. However, the
first, massive progenitors can enrich the ISM on timescales faster than required for the
first AGB events in the Galaxy. As such, a population of stars with [C/Fe] > 1 but [C/O]
< 1 emerges. The C/O ratio is a useful tracer of formation processes and also affects
processes during a star’s lifetime (Akerman et al., 2004; Nakajima and Sorahana, 2016),
and can even result in trends for planet formation (Nissen, 2013; Teske et al., 2014).
Understanding the relevance of various enrichment processes is therefore paramount in
piecing together a larger picture of our Galaxy. The search for pristine metal-poor stars
samples goes hand-in-hand with unraveling the mystery of the Galaxy’s formation.

In Chapters 3 and 4 we will investigate a different aspect of CEMP stars, namely the
effects of chemical composition on the photospheric chemistry. We will utilise state-of-
the-art stellar convection simulations to explore whether the observed effect of carbon
enhancement might result from an incorrect assumption of chemical equilibrium, and
see again how the C/O ratio plays a vital role.

1.4 modelling techniques for stellar atmospheres

Thus far we have built the groundwork for understanding the atmospheres of stars
and the importance of their study. We will now turn our attention to the problem of
modelling the complex processes that occur within, and shape, a stellar atmosphere.
Primarily, we will concern ourselves with the convection zone, photosphere and low
chromosphere. To properly model the phenomena that occur in these regions, such as
convection and spectral line formation, it is necessary to introduce concepts in (mag-
neto)hydrodynamics, radiation transfer, and thermodynamics. These are presented in
the context of the stellar atmosphere code CO5BOLD(Freytag et al., 2012), a finite-volume
magnetohydrodynamics solver which additionally models radiation transport and chem-
ical kinetics.

The modelling techniques introduced here are presented as background for the tech-
niques used in this work. Specific details are presented in: Chapter 2 for spectroscopic
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modelling; Chapter 3 for chemical kinetics and coupling to hydrodynamics; Chapter 5

for machine learning techniques in spectroscopy; Chapter 6 for neural network tech-
niques for solving systems of differential equations.

1.4.1 (Magneto)hydrodynamics

In the regions of interest, we would like to model the dynamics of a plasma. The equa-
tions of fluid dynamics and radiation transport will form the basis of modelling the
structure of the atmosphere. Here, we will consider the Newtonian (non-relativistic)
limit and introduce the equations in the context of the finite-volume solver CO5BOLD(Freytag
et al., 2012). From the general set of Navier-Stokes equations, the equations of Eulerian
hydrodynamics are often used to model most astrophysical fluid flows (Calder et al.,
2002).

For convenience, let the Cartesian coordinates (x,y, z) be represented as (x1, x2, x3) =
x. The velocity field v is then given by

v = (v1, v2, v3)T =

(
dx1
dt

,
dx2
dt

,
dx3
dt

)T

(43)

The 3D Euler equations of hydrodynamics can be expressed as conservation relations
(plus source terms) for the mass density (ρ), the momentum densities (ρv1, ρv2, ρv3),
and the total energy density etot. There are three primary equations that govern the
evolution of the fluid. These are (including source terms due to gravity) the equation of
mass conservation (Eq. 44), the momentum equation (Eq. 45) and the energy equation
(Eq. 46):

∂ρ

∂t
+∇ · (ρv) = 0 (44)

∂(ρv)
∂t

+∇ · (ρvv +∇P) = ρg (45)

∂(ρetot)

∂t
+∇ · (ρetotv + Pv) +∇Frad = 0 (46)

Other quantities introduced here are the gas pressure P, the gravitational acceleration
source term g = (g1,g2,g3), and the radiative energy flux Frad = (F1, F2, F3). The gas
pressure is calculated from an equation of state (EOS)

P = P(ρ, eint), (47)

where eint is the internal energy. CO5BOLD uses a tabulated EOS. The total energy of the
system is governed by

ρetot = ρeint + ρ
v21 + v

2
2 + v

2
3

2
+ ρΦ, (48)

where Φ is the gravitational potential; g = −∇Φ.
The equations of hydrodynamics can be coupled to Maxwell’s equations of electro-

dynamics and Ohm’s law to arrive at the equations of ideal magnetohydrodynamics
(MHD). Ideal MHD is a widely-used approximation for the modelling of astrophysical
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plasmas, as its implication of field lines frozen into the plasma is justified due to the ex-
tremely high conductivity of the fluids (Bartelmann, 2013). Essentially, the transport of
the magnetic field via advection is significantly more dominant than the magnetic-field
diffusion.

Maxwell’s equations group together Gauss’ Law

∇ · E =
ρc

ε0
(49)

the forbiddance of magnetic monopoles

∇ ·B = 0 (50)

Faraday’s law of induction

∇× E = −
∂B
∂t

(51)

and the Maxwell-Ampére circuital law

∇×B = µ0(J + ε0
∂E
∂t

) (52)

where E is the electric field, ρc is the charge density, ε0 is the permittivity of free space,
B is the magnetic field, µ0 is the permeability of free space, and J is the current density.
Additionally, Ohm’s law relates the movement of the charged particles to the induced
current density on those particles:

E + v×B = ηJ, (53)

where η in this context is the electrical resistivity. The ideal MHD equations ignore
resistivity due to the current density, and are mass conservation

∂ρ

∂t
+∇ · (ρv) = 0, (54)

the momentum equation

∂(ρv)
∂t

+∇ · (ρvv + (P+
B ·B
2

)I − BB) = ρg, (55)

the induction equation

∂B
∂t

+∇ · (vB − BvT) = 0, (56)

and the energy equation
ρetot

∂t
+∇ · ((ρetot + P+

B ·B
2

)v − (v ·B)B + Frad) = 0. (57)

Eq. 50 is a solenoidality constraint that must be fulfilled. Additionally, the advective
term in Eq. 56 (vB − BvT) is non-zero due to the ions and electrons in the plasma being
affected by the Lorentz force

F = q(E + v×B), (58)

where q is the elementary charge. The motion of the charged particles change the frozen-
in magnetic field lines, resulting in a non-stationary magnetic field. The term BvT is
the dyadic tensor product of the two vectors B, v resulting in the tensor C with ele-
ments cmn = Bmvn, and the n-th component of the divergence of C is (∇ · C)n =∑
n ∂cmn/∂xm. The total energy is now given by

ρetot = ρeint + ρ
v · v
2

+
B ·B
2

+ ρΦ (59)

CO5BOLD includes an MHD module that solves these equations (Freytag et al., 2012;
Schaffenberger et al., 2005).
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1.4.1.1 Finite-Volume Solvers

There are a few different common methods for solving (M)HD problems in astrophysics.
Three common, similar methods for solving the set of partial differential equations are
the finite-difference (FD), finite-element (FE), and finite-volume (FV) methods. In each
case, the goal is to discretise the equations on a grid of some kind so that a numerical
solution can be computed. For a review on these kinds of solvers, see, e.g., Ferziger,
Perić, and Street (2020). FV methods, such as the one implemented in CO5BOLD , utilise
the divergence theorem to change volume integrals with divergence terms into surface
integrals, that is:

˚
V

(∇ · F)dV =

‹
S

(F · n̂)dS. (60)

As such, they are inherently conservative, as the flux of the vector field F (right-hand
side of the equation) entering a volume is identical to that leaving the adjacent volume.
FV methods evaluate exact expressions given the average values of quantities across
a volume, and these are then combined to provide an overall approximate solution
(LeVeque, 2002).

Figure 20: Finite-volume discretisation with a piece-wise constant reconstruction scheme ap-
plied to the cell-centred quantities Ui. Adapted from lecture notes at Heidelberg
University (MVComp1).

Consider a 1D Cartesian grid with equidistant spacing. The value of a quantity is
calculated at the centre of each grid cell and represents the average across the cell vol-
ume. However, simply using these values would lead to discontinuity between adjacent
cells (see Fig. 20). FV methods use reconstruction methods to combine the cell-averaged
values in order to produce a smooth, continuous function of the quantity across the
domain. The order of the reconstruction scheme further determines the accuracy of the
approximation (LeVeque, 2002) Certain functions (aptly named slope limiters) are used
to limit the slopes computed on the state quantities (e.g. density and pressure) as these
can produce spurious oscillations in the vicinity of sharp features such as shock waves.

Hydrodynamical flows often result in converging and diverging flows. In such cases,
the densities, pressures and velocities are rapidly changing and introduce discontinu-
ities in numerical solvers. It is necessary to utilise so-called shock-capturing methods
(Toro, 2009) to model the characteristics correctly. In these methods, phenomena such as
shock waves and contact discontinuities can be modelled correctly through the Rankine-
Hugoniot jump conditions (Rankine, 1870; Toro, 2009).
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Figure 21: Characteristics of a typical Riemann problem. Adapted from lecture notes at Heidel-
berg University (MVComp1).

For the computation of a self-consistent stellar atmosphere, it is important to con-
sider the conservation of mass, momentum and energy between grid cells. CO5BOLD

employs a FV method with directional operator splitting to reduce a 3D problem into
a 1D one (Strang, 1968). From this, the approximate fluxes across each cell boundary
are calculated with an approximate 1D Riemann solver of Roe type (Roe, 1986), which
is modified to account for the realistic EOS, the non-equidistant grid (primarily in the
vertical direction) and the presence of source terms such as gravity. The partial waves
are reconstructed and advected with upwind-centred fluxes, and a slope limiter is ap-
plied to decrease the order of the scheme near discontinuities to ensure stability while
preserving accuracy (Colella and Woodward, 1984; LeVeque, 1992).

1.4.2 Radiation transport

Convection and radiation are two primary modes of energy transport in cool stellar at-
mospheres. Transport via radiation becomes increasingly important in optically thin
layers (above the convective zone). Radiation transport is hence an integral compo-
nent of stellar atmosphere codes. CO5BOLD can handle non-local radiation transport with
frequency-dependent opacities κν (Ludwig and Steffen, 2013). This is particularly im-
portant when creating an accurate 3D, time-dependent model for spectroscopic mod-
elling in order to capture the intricacies introduced by the large number of spectral
lines present. The basics of radiation transport were discussed in Sec. 1.1.2. Here, the
finer details regarding opacities and optical depth and their implementation in stellar
atmosphere codes is presented.

It is unfortunately infeasible to precisely model every spectral line present in a cool
stellar atmosphere. The Sun, for example, has over 106 absorption features, each of
which affect the overall intensity. To make the problem computationally tractable, it
is necessary to approximate the true opacities. There are a few methods to do this,
including multigroup methods (González et al., 2015), opacity distribution functions
(ODFs) (Leenaarts, 2020), and opacity binning methods (Ludwig and Steffen, 2013). The
latter is used in CO5BOLD. The opacities are group-averaged and are given as a function
of temperature T and pressure P

κν = κν(T ,P). (61)

CO5BOLDuses tabulated opacities and opacity binning with an ODF that sorts opacities
in a given frequency interval based on line strengths. A number of frequency bins and
ODF sub-intervals can then be defined to control the accuracy of the scheme. The lower
limit of frequency-independent opacity reverts to the grey approximation. More details
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on the implementation in CO5BOLD are presented in Freytag et al. (2012), Ludwig and
Steffen (2013), and Steffen (2017).

The average opacity is necessary for computing the solution to the transport equation
(Eq. 22). There are two methods of defining an average opacity, each of which are calcu-
lated using a certain weighting scheme. The Planck opacity uses the normalised Planck
distribution as the weighting function,

Bν(T) =
2hν3

c2
1

exp( hνkBT
) − 1

, (62)

and averages κν directly as

κPlanck =

´∞
0 κνBν(T)dν´∞
0 Bν(T)dν

, (63)

or equivalently,

κPlanck =
( π

σT4

)ˆ ∞
0

κνBν(T)dν (64)

where σ = 5.670374419×10−8 W m−2 K−4 is the Stefan-Boltzmann constant. In CO5BOLD,
the source function Sν is subject to normalisation by the frequency-integrated Planck
function B(T) such that∑

ν

Sν = B(T) =
σ

π
T4. (65)

The second method of defining an average opacity uses a temperature derivative of
the Planck distribution

u(ν, T) =
∂Bν(T)

∂T
(66)

and is the harmonic mean of the opacity κ−1, weighted by u(ν, T). This is the Rosseland
mean opacity, defined as

1

κRosseland
=

´∞
0 κ−1ν u(ν, T)dν´∞
0 u(ν, T)dν

. (67)

The Rosseland mean opacity comes from the diffusion approximation to the radiation
transport equation, and is valid in deep, collision-dominant, optically thick atmospheric
layers. The Planck mean opacity is preferred in higher, optically thin layers. The stellar
photosphere, though, is a transition zone from optically thick to thin regions. The mean
opacity to use then needs to combine both the Planck and Rosseland opacities as func-
tions of the optical depth. In CO5BOLD , the form of the overall mean opacity (at a given
frequency or band i) takes the form

κ̄ = 2

(
−

τi
τ1/2

)
κPlanck +

(
1− 2

(
−

τi
τ1/2

))
κRosseland, (68)

where τ1/2 is the optical depth point where both opacities contribute equally.
For coupling the radiation transfer to the (magneto)hydrodynamics, we will need

expressions for the radiative energy flux Frad and the change in energy. The radiative
energy flux is given by

Frad =

ˆ 2π
0

ˆ π
0

I cos θ sin θdθdφ (69)
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where the integral is over the polar and azimuthal angles. The change in energy is
computed from the flux divergence via

∂ (ρei)

∂t
+ v∇(ρe) = −∇ · Frad. (70)

1.4.2.1 Departures from Local Thermodynamic Equilibrium (LTE)

A common assumption made in the study of stellar atmospheres is that of local thermo-
dynamic equilibrium (LTE). At its core, the assumption is that there is thermodynamic
equilibrium between mass particles, but not necessarily between them and the radia-
tion (Maoz, 2016). This comes from the motivation to feasibly be able to model radia-
tion transfer, which is a complex problem due to the various intricacies and couplings
between the opacities, radiation field, and level populations, to name a few quantities.
The LTE assumption essentially uses the local temperature and density to determine
the distributions to use, rather than explicitly solving the complex system of coupled
equations. The particles have thermal distributions, while the photon distributions can
vary. The level populations of bound energy states for a single-species gas are given by
the Boltzmann distribution, while the populations of free (ionised) states is given by the
Saha ionisation equation. The particles follow Maxwell-Boltzmann statistics within the
“local” region of concern, and this results in a Planck intensity spectrum based on the
particle energies.

The Boltzmann distribution for the probability for the system to be in a given energy
state i is

pi =
1

Z
exp

(
−Ei
kBT

)
, (71)

where Ei is the energy of state i, kB is the Boltzmann constant, T is the local temperature,
and Z =

∑N
i exp(−EikBT

) is the canonical partition function. The Boltzmann factor relates
the ratio of probabilities of two states, or equivalently, the populations of those states,

nj

ni
=
gj

gi
exp

(
−
(Ej − Ei)

kBT

)
, (72)

where (nj,ni), (gj,gi), and (Ej,Ei) are the populations, statistical weights, and energies
of states j and i, respectively. The Saha ionisation equation for a gas comprised of a
single atomic species is commonly given as

ni+1ne

ni
=
2

λe

gi+1
gi

exp
(
−
(Ei+1 − Ei)

kBT

)
, (73)

where ne is the electron density, (Ei+1−Ei) is the energy required to remove the (i+1)th

electron, and λe is the thermal de Broglie wavelength given by

λe =

√
h2

2πmekBT
, (74)

where me = 9.109383715× 10−31 kg is the electron mass. The Maxwell-Boltzmann dis-
tribution for particle energies is

f(E) = 2

√
E

π(kBT)3
exp

(
−
E

kBT

)
, (75)
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where E is the kinetic energy of the particles.
The LTE assumption implies that the radiation field is in equilibrium with the local

temperature field of the matter, and that the material effectively radiates as a black-
body. The source function of the transport equation (Eq. 22) is the Planck function
Bν(T) (Eq. 62). LTE holds true in collision-dominated regions, when the mean free path
for collisions is small, resulting in Maxwellian velocities, and photons are essentially
trapped. The convective zone and optically thick photosphere are examples of such
regions. As the material becomes optically thin in higher layers of the atmosphere, it
is clear that material properties vary greatly over the course of a photon’s mean free
path. Hence non-local radiation transport becomes increasingly important to consider,
and application of the strict LTE assumption could lead to serious errors in calculations.
See Hubeny and Mihalas (2015) for further details for modelling radiation transport in
stellar atmospheres.

In optically thin regions, the population statistics can be far from the equilibrium im-
posed by Saha-Boltzmann statistics, and it becomes necessary to solve kinetic equations
alongside radiative transfer to converge to the correct solution. This departure from LTE
is known as radiative non-LTE (NLTE), and many works have explored the effects of this
on various atomic and even molecular species (Amarsi et al., 2019a; Gerber et al., 2022;
Mashonkina, 2020; Popa et al., 2022; Shchukina, Sukhorukov, and Trujillo Bueno, 2012;
Steffen et al., 2015). Radiative NLTE calculations have proven to be very useful in deter-
mining the correct statistical equilibrium of a species in a given atmosphere. However,
most studies still consider a single or a few species since the calculations are compu-
tationally expensive – even more so in 3D. Additionally, this is a stationary solution.
Another way to analyse the implications of LTE is to perform a time-dependent chem-
ical kinetic analysis alongside the hydrodynamics and radiation transfer. This answers
the question: is there sufficient time for molecular species to form to their equilibrium
values?

Most studies of stellar photospheres assume that the molecular and atomic species
are in a chemical equilibrium, that is, there has been sufficient time for all species to
react and for the system to reach the minimum Gibbs free energy state (at constant
temperature and pressure (Goodstein, 1985)). Hydrodynamical processes (such as con-
vection) can disrupt this evolution by advecting species or by significantly changing the
local thermodynamic conditions such that a new minimum energy state would exist.
While the assumption of chemical equilibrium is well established in the solar photo-
sphere (Wedemeyer-Böhm et al., 2005, 2006), this assumption is called into question for
metal-poor atmospheres. Reaction rates are highly dependent on the number densities
of species, so in an atmosphere with 102 times fewer species ([Fe/H] = −2), reaction
rates are at least 102 times slower. In Chapter 3 these calculations are done for MP and
CEMP atmospheres to see the potential implications of the LTE assumption.

By implementing a chemical kinetics solver, we hope to gain practical predictive abil-
ity as to the evolution of species within the system. Some key questions are i) which
reactions proceed to products, ii) the timescales of individual reactions and how long
reactants / products remain before reacting, and iii) which reactions drive the overall
system.

The solver should be able to evolve a system of initial species to a certain specified
state by considering the reactants, products, and the rates of formations of each. In
essence, this becomes a system of reaction equations plus the constraint conditions (such
as mass conservation). Due to the vast differences in reaction rates, the system will be
stiff, so a solver that handles this property efficiently and stably should be chosen.

In the stellar atmosphere, convective motions can advect parcels of gas before they can
reach their equilibrium state. It is therefore necessary to consider the time-dependent
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evolution of the chemical system. The steady-state solution of a set of chemical species
connected by reaction pathways can be found by calculating the time evolution of the
system of equations formed from the reactions. This steady-state solution has the num-
ber of reactants and products constant over time. In the case of a closed system, then,
this is equivalent to chemical equilibrium, and will yield the same equilibrium abun-
dances as in Gibbs energy minimisation. Note that the complexity of the evolution
scales primarily with the number of species, but also with the number of reactions.

Every chemical reaction progresses at a certain rate, specified with a rate constant
(rate coefficient). The reaction rate expression relates the concentration of species to the
rate of the reaction. Consider a reaction

aA+ bB→ cC+ dD. (76)

This is equivalently

0 = −aA− bB+ cC+ dD. (77)

The prefactors a, b, c are stoichiometric coefficients (defined as negative for reactants
and positive for products). The evolution of this reaction is governed by

1

a

d[A]

dt
=
1

b

d[B]

dt
=
1

c

d[C]

dt
=
1

d

d[D]

dt
(78)

since a moles of species A are used with b moles of species B to form c moles of species
C. [X] is the number of moles of species X. If the reaction takes place in a closed system
at constant temperature and volume, and there is no buildup of reaction intermediates,
its reaction rate v is given by

v =
1

νi

d[Xi]

dt
, (79)

where νi is the stoichiometric coefficient for species Xi. The initial reaction rate (which is
specified at the start of a chemical kinetics calculation), has some functional dependence
on the concentrations of the reactants, and is typically determined experimentally; for
the above reaction

v0 = f([A], [B]). (80)

This dependence is termed the rate equation or rate law, and often takes the form of a
power law. For the above reaction, we have

v0 = k(T)[A]
x[B]y. (81)

k is the temperature-dependent rate coefficient and the indices x, y are the partial orders
of the reaction: their sum is the overall order of the reaction. Sec. 3.2.1 includes an in-
depth discussion on these methodologies in the context of MP and CEMP atmospheres.

1.4.3 Spectroscopic modelling

Determining parameters from stellar spectroscopy requires a firm grasp of the physics
present within a spectral line profile. In a laboratory setting, a spectral line would appear
as a perfect Dirac delta peak, but in the atmospheres of stars, thermal, Doppler and
atomic broadening effects shape the line core and the wings. By studying the shape of
these spectral lines and analysing the physical effects contributing to its strength and
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broadening, we can determine parameters such as stellar abundances, surface gravity
and temperature. However, to do so accurately is not a completely objective task. There
are many choices to be made during the analysis, such as the choice of observational
material as well as which spectral lines to use. Moreoever, the entire process is further
complicated by noise and blending lines that obscure the primary feature and make it
difficult to extract details.

In Chap. 2, we will present a full end-to-end analysis of the solar silicon abundance
determined using the model atmosphere code CO5BOLD and spectral synthesis code
LINFOR3D . For now, we will consider the generalised approach of synthesising a re-
alistic stellar spectrum which we can use to analyse observations.

There are many codes for synthesising the formation of a stellar spectrum. Some
notable examples include TurboSpectrum (TS) (Gerber et al., 2022; Plez, 2012), LINFOR3D
(Gallagher et al., 2017b), and MULTI3D (Amarsi et al., 2018; Leenaarts and Carlsson,
2009). Each of these codes takes a model stellar atmosphere (the quantities describing
the structure of the atmosphere) and information about the various absorbing species
(atomic and molecular data) as an input, and produce an output spectrum in the desired
wavelength or frequency range. These can be compared to observations in an iterative
process in order to determine stellar abundances. TS operates on 1D model atmospheric
inputs (either the output from a 1D stellar atmospheric model or a 3D model averaged
to 1D), while both LINFOR3D and MULTI3D can operate on 3D inputs.

1.4.4 Machine learning methods

In recent years, machine learning (ML) and artificial intelligence (AI) methods have
taken off in almost every field. Particularly recently, large language models (LLMs)
have revolutionised natural language processing tasks, and are quickly making their
way into many other domain-specific applications (Bubeck et al., 2023; Taori et al., 2023;
Touvron et al., 2023). Though still new compared to conventional modelling techniques,
it can be argued that AI had its start with Claude Shannon and his mechanical labyrinth-
solving mouse, Theseus 3. This was the early 1950s, and the ideas of ML and AI were
still very much in their infancy – particularly when it came to involving computers.
Theseus the mouse was able to solve mazes even when placed in arbitrary locations
and in unfamiliar territory by utilising clever search algorithms and a system to add
new locations to its memory. This process of developing a system that learns directly
from the data it is presented is one of the cornerstones of machine learning and data-
driven approaches. Note that other pioneers worked on similar projects at this time –
Warren McCulloch and Walter Pitts introduced the artificial neuron in 1943, Alan Turing
proposed a “learning machine” in 1950, and Marvin Minsky and Dean Edmonds built
the first neural-based learning machine in 1951.

ML refers to the development of algorithms that solve problems by discovering solu-
tions, rather than using prescribed models (Alpaydin, 2020). This is particularly useful
when it is cost-prohibitive to create models, and when sufficient relevant data is present.
The basic premise is that the data an algorithm is presented (“trained” on) contains suf-
ficient information to form patterns for predicting future behaviour. In astronomy, ML
methods have felt the effects of the “AI summer”, with advances in detections (Hughes
et al., 2022) and modelling (Ho et al., 2016; Ting et al., 2019) in recent years. ML tasks
can generally be put into two categories: classification finds similarities between inputs
and groups them; regression finds patterns in the input data in order to make predic-
tions. There are (at least) three distinct approaches for these tasks. Supervised learning

3 https://historyof.ai/shannon/
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involves providing the ML algorithm with a set of input-output pairs, from which the al-
gorithm will learn the underlying mapping from input to output (Mohri, Rostamizadeh,
and Talwalkar, 2012). Unsupervised learning does not provide the algorithm with an
output, and is therefore mainly used in classification tasks such as clustering. Reinforce-
ment learning allows the ML “agent” to interact with an “environment” and receive
feedback for the actions it takes (Kaelbling, Littman, and Moore, 1996). For a detailed
overview of ML techniques and their development, see Géron (2022).

Figure 22: Diagram showing the differences between supervised, unsupervised, and reinforce-
ment learning algorithms. Information flows from the top (input) to the bottom (out-
put).

One class of ML algorithms that deserve their own explanation in the context of this
work are artificial neural networks (ANNs), often abbreviated simply to neural networks
(NNs). The first NN was the perceptron introduced in 1943 (McCulloch and Pitts, 1943)
and built in 1957 by Frank Rosenblatt (Rosenblatt, 1957). The perceptron is an algorithm
for supervised learning of a binary classifier, that is, it is a function that maps the inputs
x (real-valued vector) to a single binary output value f(x):

f(x) =

1, if w · x + b > 0

0, otherwise

where w is a vector of real-valued weights and b is the bias. The weights and bias are
learnt through the supervised learning process.

The successor to the perceptron was the multilayer perceptron (MLP) (Rosenblatt,
1962). This was the first ANN to include multiple layers through which a signal was
propagated unidirectionally from input to output, in an architecture that has since be-
come known as a feedforward ANN. The MLP introduced by Frank Rosenblatt con-
sisted of an input layer, one hidden layer, and the output layer. Both the hidden and
output layers had weights, though the weights in the hidden layer were randomised
(and constant), while the weights in the output layer were learnt. Moving forward to
1967, the first MLP incorporating deep learning was introduced (Berners-Lee, 1968).
Deep learning simply refers to multiple layers with learning connections; indeed, this
new MLP architecture added learning connections to the hidden layer. Fig. 23 shows
the architecture of an MLP that accepts multiple inputs to provide a single output.
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Figure 23: Diagram showing the basic architecture of a multi-layer perceptron with an input
layer supporting 3 inputs, a hidden layer with 4 neurons and an arbitrary activation
function, and a singular output in the output layer.

The activation function (often denoted σ) defines the output of a given layer. If all the
activation functions in an NN are linear, then the NN will only be able to produce linear
mappings from input to output. For nonlinear behaviour, then, nonlinear activation
functions should be used. For training this new MLP, the backpropagation algorithm
was introduced (Griewank, 2012). Put simply, backpropagation is a generalisation of
the least-squares algorithm where the error is propagated backwards from output to
input, and the learnt weights are updated in a similar fashion. Various techniques exist
to actually update the weights, such as gradient descent, and these techniques, as well
as their parameters, form a set of hyperparameters that the ML engineer must optimise.
Hyperparameters are parameters about the network architecture, such as the number
of layers, or number of neurons per layer, that are not learnt by the network itself, but
still affect the learning process.

ML has advanced significantly since the invention of the MLP, and it is not uncom-
mon for modern NNs to have millions of trainable parameters. Many sophisticated
techniques have been developed to deal with certain kinds of data. Convolutional lay-
ers (see Fig. 24) combine patterns and are widely used in image-processing NNs. For
astronomical modelling, both simple and complex architectures have been proven to
work well. The Payne (Ting et al., 2019) is an N-D interpolator for stellar spectra mod-
els, and consists primarily of an MLP. Arévalo, Asensio Ramos, and Esteban Pozuelo
(2021) introduce a graph convolutional network, which combines convolutional layers
with a graph structure, in order to predict NLTE corrections for Ca II.

In Chap. 5, the goal is to overcome model and observational shortcomings in spec-
troscopy by training algorithms to remove noise from spectra without removing impor-
tant information (such as the line shape). In Chap. 6, the goal is to train NNs to predict
the steady-state of a system of ordinary differential equations, and validate them with
the findings from Chaps. 3 and 4. Relevant details for these specific tasks are provided
in the respective chapters, and a useful set of definitions is given in the introduction
preceding these two chapters. We are now equipped with the required knowledge to
tackle the first problem in this work, the determination of an accurate photospheric
solar silicon abundance.
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Figure 24: Diagram showing the basic function of a convolutional layer, typical in 2-D convolu-
tional neural networks.
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Part II

C O N V E N T I O N A L M O D E L L I N G T E C H N I Q U E S





a brief note on conventional techniques

The following three chapters cover conventional modelling techniques for stellar atmo-
spheres. Chap. 2 covers the determination of the photospheric solar silicon abundance,
an important element for comparing with primordial meteoritic abundances. The work
is also of interest to missions such as PLATO, as a certain set of solar abundances must
be used during its operation. I also cover model shortcomings in the chapter, and show
that they are not unique to the models used in this work, but are likely general to other
3D codes. Understanding the sources for these shortcomings is a crucial part of further
improving them.

Chaps. 3 and 4 explore the time-dependent evolution of molecular species in metal-
poor stellar atmospheres. Chemical equilibrium, the notion that chemical species have
had sufficient time to react to their equilibrium values, is a widely used assumption in
the computation of spectra in stellar atmospheres. These two chapters cover the detailed
time-dependent modelling of a chemical reactin network alongside the hydrodynamics
and radiative transfer steps in the stellar atmosphere modelling code CO5BOLD. This
is the first time these calculations have been performed for (carbon-enhanced) metal-
poor dwarf and giant stellar atmospheres, and links to the trend of increasing carbon
abundance seen at decreasing metallicity. If the chemical equilibrium assumption is not
valid within the relevant line-forming regions, then this trend could be attributed to this
bias rather than an actual astrophysical cause. Methods to compute whether a stellar
atmosphere is in chemical equilibrium are also discussed.
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2D E T E R M I N I N G T H E S O L A R P H O T O S P H E R I C S I L I C O N
A B U N D A N C E W I T H C O 5 B O L D A N D L I N F O R 3 D

This chapter is based on the published work in Deshmukh et al. (2022). I handled the
spectroscopic modelling, spectral line fitting, and differential analyses. Computing the
model stellar atmospheres, 1D NLTE syntheses, and the BALDER line syntheses, as well
as determining the de-broadening procedure and kernel were not handled by me. I ad-
ditionally investigated the new oscillator strengths presented in Pehlivan Rhodin (2018)
in order to choose which spectral lines to use for the investigation, however, this was
informed by previous work by co-authors who provided a filtered subset of spectral
lines shown to provide accurate abundance measurements.

2.1 introduction

The chemical composition of the solar photosphere serves as a widely applied yardstick
in astronomy, since it is considered largely representative of the chemical make-up of
the present-day Universe. The determination of solar abundances has a long history,
dating back at least to the 1920s (Payne, 1925; Russell, 1929; Unsöld, 1928). Among the
elements which are spectroscopically accessible in the solar photosphere, silicon plays
a somewhat special role. Besides being relatively abundant, it is used as a reference
to relate the solar photospheric composition to the composition of type-I carbonaceous
chondrites which are believed to constitute fairly pristine samples of material from the
early Solar System (e.g. Anders and Grevesse, 1989; Lodders, Palme, and Gail, 2009;
Lodders, 2003; Palme, Lodders, and Jones, 2014). This important aspect of the silicon
abundance led to many investigations trying to establish an ever more precise and accu-
rate solar reference value. Over the years, atomic and observational data have improved,
and increasingly sophisticated modelling techniques have been applied, including time-
dependent three-dimensional (3D) model atmospheres (e.g. Asplund, 2000; Caffau et
al., 2011a; Pereira et al., 2013) and treatment of departures from thermodynamic equi-
librium (NLTE) (e.g. Amarsi et al., 2019a; Bergemann et al., 2019; Steffen et al., 2015).

From the above, it is tempting to conclude that the determination of the abundance
of a particular element in the solar photosphere is an entirely objective process. Unfor-
tunately, this is not the case, due to several judicious decisions a researcher must make
along the way, namely: i) which observational material to use, ii) where to place the
continuum when normalising the spectrum, iii) which lines have accurate atomic data
(meaning oscillator strengths and broadening constants), and iv) which lines are largely
unaffected by blends. These aspects influence the final outcome of an analysis, and we
list some previous works’ results below to illustrate the evolution of the fitted solar sil-
icon abundance with time. Indeed, as we shall later show, statistical uncertainties are
of secondary importance here, and it is primarily the line selection that dominates the
final outcome (including uncertainties). Moreover, in the present analysis process, we
found that more sophisticated model atmospheres do not necessarily give a more co-
herent picture, since they can bring to light modelling shortcomings which were not
recognised before.

Holweger (1973) determined an LTE solar silicon abundance of log εSi = 7.65± 0.07
based on 19 Si I lines whose oscillator strengths were measured by Garz (1973). Wede-
meyer (2001) derived a 1D NLTE correction of -0.010 dex for silicon. Together with a cor-
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rection of the scale of Garz by Becker, Zimmermann, and Holweger (1980), they arrived
at a silicon abundance of log εSi = 7.550± 0.056. Some of the first multi-dimensional
(multi-D) studies were carried out by Asplund (2000) and Holweger (2001), who ar-
rived at log εSi = 7.51 ± 0.04 and log εSi = 7.536 ± 0.049, respectively. The statistical
equilibrium of silicon and collisional processes were investigated by Shi et al. (2008),
and an abundance of log εSi = 7.52± 0.06 was found, taking an extended line sample
into account. They also specified that the NLTE effects on optical silicon lines are weak,
but it was later found that near-infrared lines have sizeable NLTE effects (Bergemann et
al., 2013; Shi et al., 2012). Shchukina, Sukhorukov, and Trujillo Bueno (2012) conducted
an NLTE analysis of 65 Si I lines, and found log εSi = 7.549± 0.016. Shaltout et al. (2013)
obtained a 3D LTE solar silicon abundance of log εSi = 7.53 ± 0.07 and a 1D NLTE
abundance of log εSi = 7.52± 0.08, using the aforementioned -0.010 dex correction.

More recently, Scott et al. (2015) conducted a 3D LTE study and found an abundance
as low as log εSi = 7.52± 0.03. The result was later corroborated by Amarsi and Asplund
(2017) who derived a 3D NLTE correction of −0.01dex to this abundance. This analysis
used nine Si I lines and one Si II line in the optical wavelength range. The final abun-
dance was calculated by means of a weighted average. All in all, over the last twenty
years, a slight downward trend of the derived solar abundance of silicon has become
apparent, but, on a level which is on the edge of being statistically significant.

In the present work, we apply CO5BOLD model atmospheres (Freytag et al., 2012) to
derive the photospheric abundance of silicon in the Sun. Primarily, the motivation to do
so was the availability of new data for the oscillator strengths of silicon lines (Pehlivan
Rhodin, 2018). This enlarged the set of silicon lines that could be potentially useful in an
abundance analysis, adding oscillator strengths for near-infrared lines. Additionally, we
intended to relate solar abundances so far derived with CO5BOLD models (for a summary,
see Caffau et al., 2011a) to the meteoritic abundance scale. This is to unify various solar
abundance sets for use in various projects; for example, the PLATO Consortium must
decide on a set of solar abundances to compare against for the 2026 PLATO mission
(Gent et al., 2022b). Expanding the Si line set and deriving accurate abundances for
these solar lines would further help reduce uncertainties in this solar abundance set,
particularly when comparing to meteoritic abundances.

The necessary spectral synthesis calculations were performed with the LINFOR3D code1

in LTE approximation, with only a few exceptions. To compare this with observations,
we developed a custom spectral fitting routine that accounts for correlated photomet-
ric noise in the observations. Our analysis stands out by using a sizeable number of
lines with carefully calculated line broadening constants, new oscillator strengths, and
investigating systematic shortcomings of our 3D model atmosphere. The last point be-
came important since we found that our model was predicting systematically overly
broadened lines, seen also in Caffau et al. (2015) as a similar finding for oxygen lines.

The rest of the chapter is structured as follows: Section 2.2 discusses the details of the
model atmospheres used in this study, the methodology of line selection, and spectral
synthesis. It also touches on the role of magnetic field effects pertaining to these topics.
Section 2.3 describes the fitting routine and the implemented correlated noise model.
Our results, and the differences due to model choice, are shown in Section 2.4 and dis-
cussed in Section 2.5. Section 2.6 explains model atmosphere differences in abundance
and broadening. Section 2.7 explains differences in regard to NLTE The choice of the
broadening kernel, its properties, and its relation to other kernels is presented in Sec-
tion 2.8 The centre-to-limb variation of the continuum is presented in Section 2.9, and
the partition functions used in LINFOR3D are shown in Section 2.10 in further detail.

1 https://www.aip.de/Members/msteffen/linfor3d
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2.2 stellar atmospheres and spectral synthesis

2.2.1 Model atmospheres

Systematic errors from spectral synthesis and fitting come from the use of 1D hydro-
static model atmospheres, and the assumption of LTE when it is not valid to do so.
1D hydrostatic model atmospheres rely on mixing-length theory (Böhm-Vitense, 1958;
Henyey, Vardya, and Bodenheimer, 1965), and introduce additional free parameters
such as micro- and macro-turbulence (Gray, 2008). Spectral lines generated from these
model atmospheres are too narrow to fit observations, if they do not take macroscopic
broadening into account, necessitating the use of free parameters to fit observations.
3D model atmospheres, on the other hand, should in principle be able to reproduce line
shapes, shifts and asymmetries, and spectral lines synthesised with these can be directly
fit to observations.

The prominent state-of-the-art radiative-convective equilibrium 1D models of solar
and stellar atmospheres such as ATLAS (Kurucz, 2005), MARCS (Gustafsson, 1975;
Gustafsson et al., 2008), PHOENIX (Allard and Hauschildt, 1995; Allard et al., 2001),
and TLUSTY (Hubeny et al., 2021) use classical mixing-length theory, and the efficiency
of convective energy transport here is controlled by a free parameter αMLT. This, along
with the requirement of fitting the micro- and macro-turbulence free parameters during
line synthesis, is a major drawback of 1D models.

3D atmospheres account for the time-dependence and multi-dimensionality of the
flow, and a spectral synthesis using these atmospheres reproduces line shapes and
asymmetries. Prominent examples include STAGGER (Magic et al., 2013),MuRAM (Vögler
et al., 2005), Bifrost (Gudiksen et al., 2011), and Antares (Leitner et al., 2017). In this
work, we use CO5BOLD , a conservative hydrodynamics solver able to model surface con-
vection, waves, shocks and other phenomena in stellar objects (Freytag et al., 2012). As
3D atmospheres are understandably expensive to run, their output can be saved as a se-
quence where flow properties are recorded, commonly called a sequence of ‘snapshots’.
These snapshots are then used in spectral synthesis codes, such as LINFOR3D (used in
this study) or MULTI3D (Leenaarts and Carlsson, 2009). The parameters of the CO5BOLD

model atmospheres used in this work are summarised in Table 7. We use 20 model
snapshots to compute line syntheses with LINFOR3D. Throughout this work, the ‘Model
ID’ (see Table 7) for each model will be used to refer to it.

The msc600, m595, b000 and b200 models all use a short characteristics scheme with
double Gauss-Radau quadrature and 3 µ-angles. The n59 model uses a long characteris-
tics Feautrier scheme with Lobatto quadrature and 4+1 µ-angles. In the current version
of CO5BOLD the former scheme is given the name “MSCrad” and the latter is given the
name “LCFrad” (Freytag et al., 2012; Steffen, 2017).

2.2.2 Line sample

Silicon is an interesting element as it is an important electron donor in late-type stars.
Though it seems that Si I’s ionisation potential of 8.15 eV would mean a significant
amount of silicon to be present in the form of Si II, the higher ionisation potential of Si II
is unfavourable for the appearance of strong lines in the solar spectrum at wavelengths
longer than 3000 Å (Moore, 1970; Russell, 1929). We therefore primarily consider Si I
lines and two carefully chosen Si II lines.

The Si I and II line list below (Table 8) was compiled from the line lists used in
the solar abundance determination by Holweger (2001), Wedemeyer (2001), Shi et al.

57



Model ID Box Size Resolution Grid Points Teff < Bz > Rad. Trans.
(d3gt57g44) [Mm3] [km3] Nx ×Ny ×Nz [K] [G] Module

msc600 8.0× 8.0× 2.3 32× 32× 10 . . . 15 250× 250× 207 5773± 9.4 – MSCrad
n59 5.6× 5.6× 2.3 40× 40× 15 140× 140× 150 5774± 16 – LCFrad
m595 5.6× 5.6× 2.3 40× 40× 15 140× 140× 150 5775± 15 – MSCrad

b000 5.6× 5.6× 2.3 40× 40× 15 140× 140× 150 5750± 19 0 MSCrad
b200 5.6× 5.6× 2.3 40× 40× 15 140× 140× 150 5793± 17 200 MSCrad

Table 7: “Model ID” lists the name of a 3D model used in this paper (note all models share
the prefix “d3gt57g44”), “Box Size” the geometrical size of its computational domain,
“Resolution” the applied grid spacing, “Grid Points” the number of mesh points per
dimension, “Teff” the effective temperature of the model, “<Bz>” the mean magnetic
field component in vertical direction, and “Rad. Trans. Module” the name of the ra-
diation transport module used (see Sec. 2.2.1 for an explanation). Different from the
other models, the msc600 model uses a variable grid spacing in the vertical direction;
for that reason the covered range is provided. We note that ‘±’ in “Teff” should not be
interpreted as an uncertainty: it is the natural dispersion of effective temperature in the
time series illustrating fluctuations between snapshots. Each model has log(g) = 4.44
and solar metallicity.

(2008), and Amarsi and Asplund (2017). The initial line selection was performed by
synthesising line profiles and comparing to observations, thus checking these for blends.

We solely used the observational data by Neckel and Labs (1984) (hereafter the ’Ham-
burg spectrum’) and have worked with the disc-centre and disc-integrated spectrum.
Doerr, Vitas, and Fabbian (2016) show the resolution of the Hamburg spectrum to be up
to 520, 000 compared to the often-used Liege spectrum (Delbouille, Roland, and Neven,
1973), which practically was shown to have a resolution of ∼ 216, 000. The higher spectral
resolution allows for a more continuous representation of the pixel-to-pixel variations
in the spectrum, and we utilise a noise model that represents the covariance between
pixels. Additionally, the Liege spectrum covers a range of 3000 − 10000Å, while the
Hamburg spectrum covers a range of 3290− 12510Å, affording us access to very clean
near-infrared lines. Furthermore, it remains unclear whether the Liege spectrum is a
true disk-centre spectrum or an integral over a narrow range of angles around disk-
centre, and the available documentation does not precisely establish this.

From the original 39 lines, we chose a subset of 11 based on comparisons between
disk-centre and disk-integrated spectra, the line shape and the precision of oscillator
strength. We focus on lines that do not have strong line blends that can interfere with
abundance determination. Each line was weighted on a scale of 1− 3 based on these
criteria, and the resulting weights were used to compute the mean abundance. This
idea of a weighted mean was inspired by the work of Amarsi and Asplund (2017).

There are various sources of error that can enter during the spectroscopic fitting,
but the choice of oscillator strength for each spectral line is often the largest one. We
use semi-empirical gf-values from Pehlivan Rhodin (2018) (hereafter also PR18) for ev-
ery line in our chosen sub-sample, which have been updated with respect to previous
experimental values measured by Garz (1973) with accurate lifetime renormalisations
by O’Brian and Lawler (1991a,b) (hereafter also GOL). The gf-values from PR18 were
obtained by combining calculated level lifetimes with experimental branching ratios.
Moreover, the calculations were validated against existing measurements of level life-
times and oscillator strengths. An advantage of the PR18 data is the homogeneity of
the extensive set of line transitions, ranging from UV to infrared wavelengths. On av-
erage across all lines in Table 8, the new values give a ∆ loggf = 0.024 decrease with
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respect to the previous measurements, and lead to a respective increase of the mean
abundance by the same value when using all lines. Using the new values of the oscilla-
tor strengths lowers the overall scatter in fitted abundance values by 0.07 dex and the
formal uncertainty by 0.01 dex.

We investigated the overall performance of the PR18 gf-values on the set of lines
used in Scott et al. (2015) and Amarsi and Asplund (2017). Fig. 25 depicts the resulting
Si abundances. The use of the PR18 data reduces the overall scatter in the Si abun-
dances from 0.036 dex (applying the data of GOL) to 0.018 dex. In all cases, there is
no discernible dependence on line strength or excitation potential. The only Si II line at
6371Å that we consider sufficiently reliable for abundance analysis may indicate a slight
ionisation imbalance. However, this imbalance is of similar magnitude for both sets of
oscillator strengths. Moreover, the line has a high excitation potential and is partially
blended (see Fig. 27) so that the apparent imbalance could be the result of systematics
in the analysis.

In previous studies, strong infrared Si I lines above 10000Å often lacked reliable ex-
perimental oscillator strengths (Borrero et al., 2003; Shchukina, Sukhorukov, and Trujillo
Bueno, 2012; Shi et al., 2008). Shi et al. (2012) investigate near-infrared lines in nearby
stars with both LTE and NLTE, and find that there is a larger departure from LTE for
the infrared lines than optical ones. They point out that weak lines are insensitive to
NLTE effects, whereas stronger lines show visible effects. The new oscillator strengths
also afford us the use of near-infrared lines in our sample. These lines are not as affected
by blends as the optical lines (Shi et al., 2008), but some show strong NLTE cores. We
do not include these lines to determine a final abundance. During fitting, we clip points
that are more than 0.5% of relative (normalised) flux further from the observations after
an initial fit, removing weak line blends and deviating line cores from the abundance
determination.

2.2.3 Spectral synthesis

In this study, a 3D hydrodynamical solar model atmosphere with an initial silicon abun-
dance of log εSi = 7.55 was used for the line synthesis. Each line is synthesised with the
LINFOR3D code over 20 atmospheric snapshots. The lines are synthesised in full 3D, in-
cluding Doppler shifts, and the profile is averaged in time and space (horizontally). We
generate a set of syntheses for each spectral line, each with a different loggfε� value.
We alter loggf in this case, with a distinct stepping around a central value for each line
depending on the sensitivity of the lines to oscillator strength changes.

Our investigation of the solar silicon abundance is mostly 3D LTE, but the −0.01dex
correction due to NLTE effects determined by Amarsi and Asplund (2017) was used
globally for our calculated abundance. We investigate NLTE effects on broadening and
abundance in Sec. 2.7.

2.2.4 Line broadening

Aside from the abundance, we also aim to investigate the effects of broadening required
to fit synthetic spectra to observations. The broadening we see in the observed lines can
be attributed to broadening by macroscopic velocity fields, thermal broadening, and
atomic line broadening due to collisions with neutral particles and electrons. For broad-
ening due to macroscopic velocity fields, though a tendency towards less turbulent flow
is expected in numerical models due to limited spatial resolution, our 3D syntheses are
broader than the observations, even prior to applying instrumental profile broadening.
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Figure 25: Individual fitted Si abundances for a set of eight Si I lines and one Si II line as a
function of equivalent width (top) and excitation potential (bottom) for eight Si I
lines and one Si II line. Only the Si I lines are used to determine the mean and RMSE
(see definition in Eq. 90), given in the legend in the left panel. GOL indicates oscillator
strengths from Garz (1973) normalised according to the results of O’Brian and Lawler
(1991a); the oscillator strength for the Si II line for comparison was taken from Kurucz
(2014); PR18 indicates oscillator strengths from Pehlivan Rhodin (2018).
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λ Transition loggf loggf Weight Elow - Eupp Elim, low - Elim, upp n*low n*upp σ0 α

[Å] old new [cm−1] – [cm−1] [cm−1] – [cm−1] [a.u.]

Si I – – –

5645.61* 4s 3Po
1

– 5p 3P
2

– 2.04(3) GOL – 2.067 1 39760 – 57468 65748 – 65748 2.054 3.640 1791 0.223

5665.55* 4s 3Po
0

– 5p 3P
1

– 1.94(3) GOL – 2.025 2 39683 – 57329 65748 – 65748 2.051 3.609 1772 0.222

5684.48* 4s 3Po
2

– 5p 3S
1

– 1.55(3) GOL – 1.606 2 39955 – 57542 65748 – 65748 2.062 3.656 1798 0.221

5690.43* 4s 3Po
1

– 5p 3P
1

– 1.77(3) GOL – 1.802 3 39760 – 57328 65748 – 65748 2.054 3.609 1772 0.222

5701.11* 4s 3Po
1

– 5p 3P
0

– 1.95(3) GOL – 1.981 3 39760 – 57296 65748 – 65748 2.054 3.602 1769 0.222

5708.40 4s 3Po
2

– 5p 3P
2

– 1.37(3) GOL – 1.388 0 39955 – 57468 65748 – 65748 2.062 3.640 1788 0.223

5772.15 4s 1Po
1

– 5p 1S
0

– 1.65(3) GOL – 1.643 0 40992 – 58312 65748 – 65748 2.105 3.841 2036 0.208

5780.38 4s 3Po
0

– 5p 3D
1

– 2.25(3) GOL – 2.156 0 39683 – 56978 65748 – 65748 2.051 3.536 1691 0.228

5793.07* 4s 3Po
1

– 5p 3D
2

– 1.96(3) GOL – 1.893 2 39760 – 57017 65748 – 65748 2.054 3.544 1704 0.228

5797.86 4s 3Po
2

– 5p 3D
3

– 1.95(3) GOL – 1.830 0 39955 – 57198 65748 – 65748 2.062 3.582 1755 0.223

5948.54 4s 1Po
1

– 5p 1D
2

– 1.13(3) GOL – 1.179 0 40992 – 57798 65748 – 65748 2.105 3.714 1845 0.222

6125.02 3p3 3Do
1

– 5f 3D
2

– 1.465 K07 – 0 45276 – 61598 114716 – 65748 1.257 5.141 3354 0.348

6142.49 3p 3Do
3

– 5f 3D
3

– 1.296 K07 – 0 45321 – 61597 114716 – 65748 1.257 5.141 3354 0.348

6145.02 3p 3Do
2

– 5f 3G
3

– 1.311 K07 – 0 45294 – 61562 114716 – 65748 1.257 5.119 3295 0.341

6237.32 3p 3Do
1

– 5f 3F
2

– 0.975 K07 – 0 45294 – 61304 114716 – 65748 1.257 4.968 3081 0.351

6243.82 3p 3Do
2

– 5f 3F
3

– 1.244 K07 – 0 45294 – 61305 114716 – 65748 1.257 4.968 3081 0.351

6244.47 3p 3Do
2

– 5f 1D
2

– 1.091 K07 – 0 45294 – 61305 114716 – 65748 1.257 4.968 3081 0.351

6976.51 4p 3D
1

– 6d 3Fo
2

– 1.07(3) GOL – 0 48020 – 62350 65748 – 65748 2.487 5.681 4600 0.530

7003.57 4p 3D
2

– 6d 3Fo
3

– 0.793 GOL – 0 48102 – 62377 65748 – 65748 2.493 5.704 4700 0.531

7034.91 3d 1Do
2

– 5f 3F
3

– 0.78(3) GOL – 0 47352 – 61562 65748 – 65748 2.442 5.119 3232 0.338

7226.21 3p 3Do
1

– 4f 1D
2

– 1.41(3) GOL – 0 45276 – 59111 114716 – 65748 1.257 4.065 1745 0.307

7405.79 3p 3Do
1

– 4f 3F
2

– 0.72(3) GOL – 0 45276 – 58775 114716 – 65748 1.257 3.966 1585 0.304

7415.36 3p 3Do
2

– 4f 3F
2

– 0.65(3) GOL – 0 45294 – 58774 114716 – 65748 1.257 3.966 1585 0.304

7680.27* 4p 1P
1

– 5d 1Do
2

– 0.59(3) GOL – 0.678 2 47284 – 60301 65748 – 65748 2.437 4.487 2107 0.494

7918.38 4p 3D
1

– 5d 3Fo
2

– 0.51(3) GOL – 0.666 0 48020 – 60645 65748 – 65748 2.487 4.636 2934 0.234

7932.35 4p 3D
2

– 5d 3Fo
3

– 0.37(3) GOL – 0.472 0 48102 – 60705 65748 – 65748 2.493 4.664 2985 0.234

10288.94* 4s 3Po
0

– 4p 3S
1

– – – 1.622 2 39683 – 49400 65748 – 65748 2.493 4.664 739 0.230

10371.26 4s 3Po
1

– 4p 3S
1

– – – 0.789 0 39760 – 49400 65748 – 65748 2.493 4.664 739 0.230

10603.43 4s 3Po
1

– 4p 3P
2

– – – 0.394 0 39760 – 49188 65748 – 65748 2.493 4.664 727 0.231

10689.72 4p 3D
1

– 4d 3Fo
2

– – – 0.017 0 48020 – 57372 65748 – 65748 2.493 4.664 1418 0.234

10694.25 4p 3D
2

– 4d 3Fo
3

– – + 0.155 0 48102 – 57450 65748 – 65748 2.493 4.664 1445 0.750

10749.37 4s 3Po
1

– 4p 3P
1

– – – 0.268 0 39760 – 49061 65748 – 65748 2.493 4.664 721 0.231

10784.56 4p 3D
2

– 4d 3Fo
2

– – – 0.746 0 48102 – 57372 65748 – 65748 2.493 4.664 1417 0.296

10786.85 4s 3Po
1

– 4p 3P
0

– – – 0.380 0 39760 – 49028 65748 – 65748 2.493 4.664 719 0.231

10827.09 4s 3Po
2

– 4p 3P
2

– – + 0.227 0 39955 – 49188 65748 – 65748 2.493 4.664 728 0.231

12390.15* 4s 1Po
1

– 4p 3P
1

– – – 1.805 2 40992 – 49061 65748 – 65748 2.493 4.664 730 0.234

12395.83* 4s 3Po
2

– 4p 3D
1

– – – 1.723 2 39955 – 48020 65748 – 65748 2.493 4.664 675 0.231

Si II – – –

6347.10 4s 2S
1/2

– 4p 2Po
3/2

+ 0.170 K14 + 0.182 0 65500 – 81299 131838 – 131838 2.572 2.943 390 0.190

6371.36* 4s 2S
1/2

– 4p 2Po
1/2

– 0.040 K14 – 0.120 1 65500 – 81299 131838 – 131838 2.572 2.943 390 0.190

Table 8: Atomic data for spectral lines of Si I and Si II. An asterisk next to the wavelength
signifies the line was in the chosen subsample. References to the “old” gf-values are
GOL: Garz (1973), renormalised by +0.097 dex according to O’Brian and Lawler (1991a),
K07: Kurucz (2007), and K14: Kurucz (2014). “new” loggf values come from Pehlivan
Rhodin (2018). The “Weight” column specifies our weighting for each line. The right
portion of the table shows ABO theory parameters. “Elow” & “Eupp” show the lower
and upper energy levels of the transitions in cm−1, and “Elim” shows the series limit
energy for that level (see e.g. Heiter et al. (2021) for details). “n*low” & “n*upp”, are
the effective quantum numbers associated with the states of the transitions. “σ0” is the
line broadening cross section in atomic units and “α” describes the power law velocity
dependence.

The result is not unique to our work (see, e.g. Caffau et al., 2015), nor is it unique to
CO5BOLD models (see Sec. 2.6 for details).
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2.2.4.1 Collisional broadening

Solar spectral lines are subject to broadening from atomic effects. These are pressure
broadening effects arising from van der Waals and other interatomic forces. It turns
out that the 7680Å line shows sizeable Stark broadening, meaning the Stark effect is
non-negligible for some solar silicon lines and illustrating the importance of accurately
modelling these effects. We use the theory by Anstee, Barklem and O’Mara (Anstee and
O’Mara, 1991, 1995; Barklem, Anstee, and O’Mara, 1998) to describe the line broadening
effects of neutral particles, predominantly neutral hydrogen (hereafter ABO theory).
Note that the broadening constants were specifically calculated using existing tables
from the above papers or through extended calculations, and are shown in Table 8.
LINFOR3D additionally takes the Stark broadening of lines into account, employing line
widths from from the Vienna Atomic Line Database (VALD) (Kupka et al., 2000; Kupka
et al., 1999; Ryabchikova et al., 2015) and assuming temperature dependence from the
Unsöld theory (Unsöld, 1955).

The theory of collisional line broadening for neutral species (Anstee and O’Mara, 1991,
1995) was extended to singly ionised atoms in Barklem and O’Mara (1998). For the lines
corresponding to ionised Si in this study, we performed specific calculations assuming
Ep = −4/9 atomic units (the average value of the energy denominator of the second-
order contribution to the interaction energy), which is expected to give reasonable es-
timates, though this assumption is less secure for ions than for neutrals (see Barklem
and Aspelund-Johansson, 2005; Roederer and Barklem, 2018). Equation 1 of Anstee and
O’Mara (1995) describes the line broadening cross section σ (in atomic units) as a func-
tion of the relative collision velocity v, with respect to a reference value of v0 = 104m
s−1, with the parameter α giving the power law velocity dependence:

σ(v) = σ0

(
v

v0

)−α

. (82)

The line width at a given temperature can then be obtained from this relation by analytic
integration over the Maxwellian velocity distribution (see Equation 3 of Anstee and
O’Mara (1995)).

2.2.4.2 Rotational broadening

For disk-integrated spectra, we consider fixed solid body rotation assuming a synodic
v sin i = 1.8 km s−1 is present in the observations from the Hamburg spectrum (Bartels,
1934; Gray, 2008). In total, 1 vertical 16 inclined rays were used (4 µ-angles and 4 φ-
angles) with Lobatto quadrature (Abramowitz and Stegun, 1965). Rotational broadening
is not included for disk-centre spectra.

2.2.5 Magnetic fields

2.2.5.1 Effects on model atmospheres

It is known that weak magnetic fields are present in the solar surface layers and there is
evidence that the mean magnetic flux density for these is of the order of 102G (Bueno,
Shchukina, and Ramos, 2004; Nordlund, Stein, and Asplund, 2009). Numerical 3D con-
vection models predict that the granulation pattern is profoundly affected in regions
with high flux density (Cattaneo, Emonet, and Weiss, 2003; Cheung et al., 2008; Vögler
et al., 2005), in agreement with observations. Additionally, photospheric material be-
comes more transparent in magnetic concentrations due to their lower density, allowing

62



one to see into deeper, hence hotter, layers of the solar atmosphere (Stein and Nordlund,
2000). In these regions, where flux tubes are also heated through heat influx from the
surrounding material (Spruit, 1976), weak spectral lines will experience a brightening
of their core, meaning magnetic fields can act on temperature-sensitive lines not only
directly through the Zeeman effect, but also indirectly due to temperature stratification
in line-forming regions (Fabbian et al., 2012).

2.2.5.2 Effects on spectral synthesis

In 1D model atmospheres, Borrero (2008) showed that magnetic fields have non-negligible
effects on spectral line synthesis, and Fabbian et al. (2010) expanded this to 3D atmo-
spheres, finding an abundance correction for Fe of the order of ∼ +0.01dex when using
magneto-convection models. Fabbian et al. (2012) used 28 iron lines and found the
average solar iron abundance to be ∼ 0.03 − 0.11dex higher when using a magneto-
convection model with 〈Bvert〉 = 200G and investigated models with average magnetic
flux densities of 〈Bvert〉 = 0, 50, 100, 200G. They also showed that Zeeman broadening
gains importance in the infrared, and that the largest contribution to higher abundance
is the indirect effect of line-weakening caused by a warmer stratification as seen on an
optical depth scale.

Following this, Fabbian and Moreno-Insertis (2015) were able to reproduce the obser-
vations of 2 O I spectral lines with blends with the use of a 3D MHD photospheric model
with a uniform vertical magnetic field of 200G. They required an oxygen abundance sev-
eral centidexes higher than those suggested by Asplund et al. (2009) to fit observations
and again showed the need to consider magneto-convection processes when consider-
ing problems sensitive to the shape of spectral features, such as spectral synthesis and
fitting.

As shown in Table 7, we use two magnetic model atmospheres to investigate the ef-
fects of the magnetic field strength on the fitted abundance and broadening values. Zee-
man broadening is not taken into account in the spectral synthesis. Note that Shchukina,
Sukhorukov, and Trujillo Bueno (2015) and Shchukina, Sukhorukov, and Trujillo Bueno,
2016 also show that such vertical fields as in Fabbian et al. (2012) overestimate the ef-
fects when compared with a 3D MHD model with a self-consistent small-scale dynamo
and more realistic magnetic fields. With this in mind, and with the fact that the mag-
netic models used here are not of a high enough resolution to quantitatively investigate
the effects of magnetic fields, we consider only differential effects. Section 2.4 shows
these differences and concludes that the extra broadening present in the msc600 model
syntheses could be partly attributed to the lack of magnetic fields.

2.3 spectral fitting routine

The synthesised lines are fitted to the observations from the Hamburg spectrum via χ2

minimisation, where we define χ2 as

χ2 = ∆xTC−1∆x, (83)

where ∆x = Fobserved − Fmodel is the vector of flux residuals and C is the covariance
matrix of the data. We use maximum likelihood estimation using χ2 rather than the
conventional least-squares minimisation in order to incorporate the errors due to co-
variance in the spectrum.

In this analysis, we fit disk-centre intensities for abundance determination, but disk-
integrated spectra are also used when choosing the line sample. To mask weak blends,
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a window is chosen around each line for the fitting procedure. An example is shown in
Fig. 26.
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Figure 26: Synthesised fitted line profile (black line) against the observations from the Hamburg
atlas (points). Grey points were cut from the initial fit; blue points show areas where
the deviation between initial fit and data is too high, and so the subsequent fits do
not use the offending points; red points are used for computing all fitted quantities.
Removing the points on right hand side removes the strong blend, and sigma-clipping
handles weaker ones during fitting. wK is the width of the broadening kernel used.
Note that this line is not used in the final determination of the silicon abundance
because of the large line blends.

The routine involves first loading the observations and determining the covariance
between pixels for a given line (see Section 2.3.2 for details). Then, during the fitting,
instrumental profile broadening and rotational broadening (for disk-integrated spectra)
are applied to the syntheses. A monotonic cubic interpolation across abundance is used
to find the closest synthesis matching the observations, now also fitting the wavelength
shift, to create an array of syntheses. Finally, for the nine abundances in steps of 0.05 dex
that were synthesised, the abundance is fit by interpolating through the array of syn-
theses and constructing a spectrum from the overall best fitting points. Sigma-clipping
is employed to improve subsequent fits. The tight window is necessary with our partic-
ular combination of syntheses and observations to minimise the effects that weak line
blends have on fitting. The continuum placement is the same as that in the Hamburg
atlas. Originally, the continuum was fitted as a y−shift, however, it is degenerate with
the other fitting parameters and led to systematically lower abundances. As such, we
use the continuum normalisation of the Hamburg atlas and do not fit for it separately.

Some infrared lines exhibited strong NLTE cores, and we do not include these lines
in our final sample used to determine abundance. However, we did attempt to fit these
lines by masking the core and fitting the line up to 70% residual intensity, inspired by the
work of Shi et al. (2008). Their work revolves around accurately treating NLTE effects,
and we noticed that infrared lines shown in this work could be fit in LTE up to this 70%
intensity. In the end, clipping points at the 0.5% level was more versatile and useful than
simply masking the line cores. This choice of 0.5% eliminates stronger offending blends
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while still retaining important characteristics in the line profile. We fitted some infrared
lines with strong NLTE cores with this method, but ultimately chose to leave them
out of the subsample used to derive an abundance since they require excess negative
broadening (see Sec. 2.3.1) to fit, which could be indicative of smaller NLTE effects
present in the fitted parts of the line profile.

2.3.1 Profile (de)broadening

In the present investigation, we found that in many cases the synthetic line profiles were
already broader than the observations, even prior to the application of instrumental
broadening. Such a problem is specific to spectral synthesis calculations based on 3D
model atmospheres (Caffau et al., 2015), as broadening effects of the stellar velocity field
in 1D hydrostatic models are added in an ad-hoc fashion via fitting micro- and macro-
turbulent broadening to the observations. Hence, mismatches of the overall broadening
between model and observations cannot occur.

In our case, we could either broaden the observations or de-broaden the syntheses.
Unsurprisingly, broadening the observations a priori by 2.5 km s−1 (the value that al-
lowed our syntheses to fit the observations well) resulted in better statistical fits, as the
lines appeared more Gaussian-like. However, this removes information about the line,
such as weak blends and the overall shape. Instead, we chose to implement the capabil-
ity to de-broaden our syntheses, rendering them narrower to better fit the observations
as opposed to broadening observations instead. This is stated as equivalent to a negative
broadening, or broadening with a kernel that has a negative full width at half-maximum
(FWHM). We hoped to maintain the ability of 3D line profiles that allows one to identify
weak blends that can degrade fits without being immediately recognised. This provides
us a fully invertible method when it comes to fitting the broadening value of syntheses.
Note that the broadening value we fit is still much smaller than the values of micro- and
macro-turbulence fitted in 1D models, and our 3D model still reproduces line shapes
and asymmetries.

We formally associate broadening with convolution, and de-broadening (negative
broadening) as deconvolution and use a kernel inspired by Dorfi and Drury (1987). This
kernel is composed of a double exponential decay centred on zero (see Appendix 2.8
for details of the implementation), and is referred to throughout this work as the Gn
kernel, where n is an integer representing the order of the kernel. We can convolve the
G1 kernel (Equation 84) with itself to produce more Gaussian-like kernels, but note that
this brings back the issues we faced with using Gaussian kernels (the amplification of
noise in the far wings of the lines) that we aimed to mitigate with the use of the G1
kernel:

g1(x, x ′) = G1(x− x ′) =
α

2
exp(−α

∣∣x− x ′∣∣). (84)

Here, x is position (in velocity space) and α controls the width of the kernel.
Gaussian and sinc functions were both considered as instrumental profile broadening

kernels, but these do not allow for efficient and optimal computation of a de-broadened
profile, since as the Fourier transform of these kernel functions rapidly goes to zero
precluding a deconvolution, small disturbances cause large spikes in the wings of de-
broadened spectra. Across all lines (and across the downsample), the choice between
the G1 and G3 kernels does not affect the fitted abundance. The G1 kernel does result
in slightly better statistical fits, and so we favour it in this study.
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2.3.2 Photometric noise model

Often, the pixel-to-pixel correlation of the signal in the spectrum is ignored, despite
being rather commonly present due to instrumental imperfections during detection as
well as steps during data reduction. The Hamburg atlas was rebinned at steps of 3.8
mÅ. This rebinning introduced a correlation between pixels. We implement a photomet-
ric noise model that considers the relation between neighbouring pixels in the observa-
tions, whose correlated signal introduces correlation in the noise values in each pixel
(given by the root mean-squared error (RMSE) of a window). In order to model this, we
require a representation of the covariance matrix of the noise. This covariance matrix,
or correlated noise matrix, can then be applied to the set of observations in the fitting
routine to describe the pixel-to-pixel correlation of the noise in the spectrum. Due to the
nature of the covariance matrix, it must be positive semi-definite. To accurately estimate
the matrix of correlated noise, we fit the autocorrelation function of continuum regions
of the spectrum with an exponential decay.

Our line sample spans both the optical and near-infrared, and across a considerable
range of signal-to-noise ratios. In order to properly determine the effects of noise, it
was necessary to split the spectrum into several wavelength ranges. This is not a simple
task, since one could define many separate ranges based on signal-to-noise thresholds,
but we restrict our study to three representative regimes. The regimes themselves span
the ranges 5500− 6500 Å, 7000− 8000 Å, and 10000− 12500 Å, for the green, red and
near-infrared, respectively. Note that not all wavelengths are included in this, since
some pre-sampling was done in order to find ranges that were comparatively clean in
regard to continuum intensity. Both the overall RMSE value and the fitted exponential
decay constant vary with wavelength range. This means each wavelength range has a
distinct correlated noise matrix associated with it. For each of these, a signal-to-noise
ratio was computed by examining the RMSE scatter around the best continuum region
(i.e. the largest set of wavelength points devoid of any spectral lines and other features)
in each range. Then, an exponential decay was fitted to the autocorrelation function of
the spectral range where the continuum was computed in each wavelength region, in
order to calculate the decay constant chosen to fit the autocorrelation as an exponential
decay. The RMSE of this smaller range is then used for the entire regime. Table 9 shows
the calculated decay constants β and signal-to-noise ratios in each wavelength range.

Table 9: Signal-to-noise ratios and fitted decay constants β (see Eq. 85) for the three representa-
tive wavelength regimes chosen from the Hamburg spectrum.

Wavelength (Å) SNR RMSE β

5500− 6500 1720 5.82× 10−4 0.215
7000− 8000 2010 4.98× 10−4 0.309
10000− 12000 3760 2.66× 10−4 0.797
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2.3.2.1 Applying the model

The pixel-to-pixel autocorrelated noise is applied independently for each spectral line.
For n observed points, an n× n matrix is constructed with a matrix element Nij given
by

Nij = exp(−β |i− j|) (85)

β is the decay constant for the given regime, and |i− j| represents the autocorrelation
step. This covariance matrix is then normalised by the square of the noise-to-signal ratio.

Initially, the model was applied via Cholesky decomposition, but we found that in-
cluding the observed spectrum’s covariances as a parameter was a better way to intu-
itively formulate the problem due to our use of the ‘mpfitcovar’ routine (Markwardt,
2009) (which uses correlated inputs, but uncorrelates the calculated sum of squared
residuals). The correlated noise model decreases the reduced χ2 values during the fit-
ting routine for all of the infrared lines and some of the optical lines. The uncertainty
on fitted parameters hence includes correlations between neighbouring pixels in the
spectrum.

Nevertheless, the correlated noise approach presented here is still an approximation.
We assume that the noise present in spectral lines behaves the same way in the lines as
it does in the continuum near the line. We also assume that the noise is not extremely
wavelength-dependent, i.e. considering separate regimes in the spectrum is sufficient,
so that the noise determined at one wavelength can be used at a different wavelength
within the same regime, namely the wavelength of the line in question. While the cor-
related noise model does not drastically impact the final fitted abundance, we believe it
important to consider these sources of error in the procedure.

2.4 results

2.4.1 Line syntheses

The spectral line syntheses for the chosen 11 lines are shown in Fig. 27. The lines are
synthesised with the non-magnetic msc600 model atmosphere and use the G1 broad-
ening kernel during fitting. We also use a covariance matrix for pixel-correlated noise,
which results in an increase in mean abundance of 0.001 dex compared to assuming
uncorrelated noise. Our final derived photospheric solar silicon abundance is log εSi =
7.57± 0.04, including the −0.01 dex correction from NLTE effects (Amarsi and Asplund,
2017).

We find that simultaneously fitting the continuum for the entire selection of spectral
lines systematically lowers the abundance by 0.01dex. A local fit of the continuum
is therefore not representative of the spectrum on a larger scale, and we rely on the
normalisation provided by the Hamburg atlas. This comparison is shown for two lines
in Fig. 28. Broadening the observations a priori by 2.5 km s−1(to counter the overly
broadened syntheses) increases the abundance across all configurations by 0.02 dex as
this convolves weak line blends into the primary line shape, rendering the observations
more Gaussian-like and removing information (such as the observational line shape) in
the process.
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χ2
r = 12.93
wK= -0.19 km s−1

log (εSi) = 7.60

Si-I 05684 [Å]
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Figure 27: Synthesised fitted line shapes (black solid line) against observations from the Ham-
burg spectrum (points) for 11 silicon lines for the msc600 model. Grey points were
removed before fitting, blue points show areas where sigma-clipping was employed
to remove poorly fitting points, and red points were used for determining final fitted
quantities. Green lines show the residuals increased by a factor of 10 for readability.
In each panel, the name of the line, the reduced χ2 value, the width of the broaden-
ing kernel wK, and the LTE abundance log εSi are shown. The final weighted mean
abundance of 7.57± 0.04 includes the −0.01 dex NLTE correction, a fixed continuum,
no pre-broadening, and de-broadening.

2.4.2 Magnetic field effects

Figure 30 shows the difference in abundance and broadening fitted when comparing
different magnetic model atmospheres: one without a magnetic field and one with a
magnetic field of 200 G (b200).
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Figure 28: Comparison of two silicon line profiles while locally fitting the continuum. Observa-
tions are shown in black and the fitted syntheses at 5701.11 and 5708.40 Å are shown
in red and blue, respectively, along with the fitted continuum value. Across a wider
wavelength range, the various fitted continua are not consistent with one another.

The fitted results of the magnetic models should not be used on an absolute scale,
as the model atmosphere grids are too coarse to resolve the detailed structure of small
magnetic flux concentrations. Additionally, as the effective temperatures of these models
are further from the nominal Teff = 5772 K (Prša et al., 2016), we apply a correction to
each line’s fitted abundance to account for this change in temperature. The correction
was derived from the snapshot-to-snapshot variation of Teff and equivalent width. The
highest correction, for the b000 model, was +0.015 dex for the Si II lines, while the
Si I lines averaged a −0.005 dex correction. Si I and Si II lines show opposite trends in
each model. The models are used for differential comparison, noting that increasing the
magnetic field strength increases both the fitted abundance and broadening values. A
possible implication is that the over-broadening of synthesised lines is caused by a lack
of magnetic fields in the model atmosphere, as magnetic field lines constrain the flow of
material in the solar atmosphere, reducing turbulence and thereby the line broadening.
Fig. 29 illustrates this point for all 4 models alongside 2 models with much higher and
lower effective temperatures. Though the b200 model has a higher effective temperature
than the other solar-type models, its still has a lower vertical RMS velocity. Comparing
to the t63g45mm00 model at 6233 K, the increase in effective temperature in the b200

model to overcome the magnetic field effects would need to be much greater than the
current model’s value.

Additionally, a magnetic field strength of 200 G still does not give the full amount
of de-broadening required to fit the observations and is higher than the value of up to
75 G expected in the majority of the quiet photosphere (Ramírez Vélez, López Ariste,
and Semel, 2008). Again, as shown by Shchukina, Sukhorukov, and Trujillo Bueno (2015)
& Shchukina, Sukhorukov, and Trujillo Bueno (2016), a vertical field of 200 G would
overestimate the effects when compared with a self-consistent 3D MHD model with a
small-scale dynamo. The syntheses do not include the 1 km s−1 instrumental broad-
ening, meaning the nominal wK ≈ 1 km s−1 – hence even further de-broadening from
magnetic fields would be required. The centre-to-limb variation of the b200 model is also
incompatible with observations. Therefore, our results are suggestive but not definitive
that the lack of magnetic fields contributes to the over-broadening of spectral lines, and
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Figure 29: Vertical RMS velocity profiles in and around line-forming regions for the b000, b200

models (solid lines) with the msc600, n59, and 2 other models at much lower and
higher effective temperatures shown for comparison (dotted lines). The b200 model
clearly has lower RMS velocity than the other solar-type models, even though its
effective temperature is higher.

the high magnetic field strengths required to produce the required broadening would
not be consistent with 3D MHD models with small-scale dynamos.

2.4.3 Effects of model differences

The models presented in this work have different spatial resolutions and utilise different
radiation transport (RT) schemes. As a comparison, Fig. 31 shows the difference between
the fitted abundance and broadening values in the msc600, m595 and n59 models. We
find that using the coarser models predicts a slightly higher abundance, and the lines
are not synthesised as broad as when using the finer msc600 model, which is shown
in Fig. 32. This is in line with the reduced level of turbulence in the n59 model due
to its lower resolution. The n59 model also has a significantly higher extra viscosity
relative to the msc600 model, and utilises a long characteristic RT scheme while the
msc600 model uses a newer, multiple short characteristic scheme. The m595 model has
the same parameters as msc600, except the spatial resolution, which is that of n59. Its
fitted broadening lies between n59 and msc600, but is closer to the latter model. This
suggests that, rather than the spatial resolution, it is the RT scheme and viscosity pa-
rameters that primarily affect the line broadening; though the spatial resolution does
have a small effect. All models use the same opacity table and equation of state. With
the chosen line sample, generally positive broadening is required for the n59 model;
however, when considering all lines, the majority still require negative broadening to fit
the observations.
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Figure 30: Comparison of abundance and broadening between the b000 (red points), and b200

(blue points) models. The red and blue horizontal dashed lines follow the same colour
scheme and show the weighted average values (denoted by x). Triangles indicate the
lines used in the subsample. Increasing the magnetic field strength increases fitted
abundance and decreases negative broadening.

2.4.4 Disk-centre and disk-integrated spectrum differences

Comparisons between disk-centre and disk-integrated spectra for the msc600 model are
shown in Fig. 33. Disk-integrated spectra show a 0.01 dex higher abundance on average,
and a broadening 0.03 km s−1 more negative than the disk-centre spectra across the full
sample of 39 lines. The correspondence between disk-centre and disk-integrated fitted
abundance and broadening is hence quite satisfactory. The infrared lines not chosen
in the subsample show higher deviation than most optical lines, perhaps due to NLTE
core effects that are more prominent in the disk-integrated spectrum. Additionally, the
largest deviation is given by the Si II 6347.10 Å line, which is not used in the subsample
because of this large deviation. The other Si II at 6371.36 Å line is used in the subsample
and shows a large uncertainty in the fitted abundance.

The fitted abundance and broadening values for the disk-centre and disk-integrated
syntheses, as well as the old and new oscillator strengths used in this study are given in
Table 10. Only the disk-centre spectra and new gf-values are used for determining the
final abundance.

2.4.5 Comparisons with meteoritic abundances

Type-I carbonaceous chondrites (named after the Ivuna meteorite, usually abbreviated
to CI chondrites) constitute a special class of meteorites. Their chemical composition
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Figure 31: Comparison of abundance and broadening between the msc600 (red points), m595

(green points) and n59 (blue points) models. Triangles indicate the lines used in the
subsample. The red, green and blue horizontal dashed lines follow the same colour
scheme and show the weighted average values (denoted by x).

of refractory elements is believed to reflect the composition of the early solar system
(e.g., Lodders, Palme, and Gail, 2009). Conventionally, meteoritic abundances are given
relative to silicon on the so-called cosmochemical scale, here for an element X written
as

µX ≡ 106 ×
nX

nSi
, (86)

where nX denotes the number density per volume of element X. In this paper, we gave
abundances on the astronomical scale defined by

εX ≡ 1012 ×
nX

nH
. (87)

With these definitions we have2 lgµSi = 6, and lg εH = 12. Conversion from the abun-
dance of an element X from the astronomical to the cosmochemical scale reads

lgµX = lg εX − lg εSi + 6 (88)

which necessitates the knowledge of the silicon abundance on the astronomical scale.
Equation (88) shows that an increase of the silicon abundance – as found in this work
in comparison to earlier results – leads to a corresponding decrease of an abundance
given on the cosmochemical scale. Since the abundance on the cosmochemical scale

2 lg ≡ log10
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Figure 32: Line profiles from msc600 (black) and n59 (red) models with the residuals magnified
by a factor of 10 in green. The difference in the line profiles is greatest in the line core.
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Figure 33: Differences between disk-centre and disk-integrated fitted abundances for the msc600

model. Red triangles indicate the lines in the subsample used for the final abundance
calculation.

involves two abundances on the astronomical scale the conversion generally leads to
an increase of the resulting uncertainty for an abundance – assuming that there are no
significant correlations among the individual input uncertainties. Dealing with a ratio
of two metal abundances here has the advantage that settling effects over the lifetime
of the Sun should cancel out to first order (Lodders, Palme, and Gail, 2009), and we can
directly compare to the corresponding meteoritic ratios. In Fig. 34 we compare these
abundance ratios on the cosmochemical scale in ascending order of the 50% condensa-
tion temperatures of the elements. All condensation temperatures are from Palme, Lod-
ders, and Jones (2014) and meteoritic abundances are taken from Lodders (2021, here
Tab. 3, present solar system). We use the solar photospheric abundances of non-volatile
elements based on CO5BOLD models presented in Caffau et al. (2011a). The uncertainties
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Wavelength Wλ (DC) Wλ (DI) log εSi (DC) log εSi (DI) wK (DC) wK (DI)
[Å] [mÅ] [mÅ] [km s−1] [km s−1]

Si I

5645.6128* 37.285± 0.004 38.465± 0.004 7.583± 0.005 7.590± 0.006 −0.62± 0.01 −0.60± 0.02
5665.5545* 40.850± 0.003 42.100± 0.003 7.589± 0.004 7.600± 0.005 −0.36± 0.02 −0.40± 0.04
5684.4840* 66.447± 0.003 65.793± 0.003 7.560± 0.006 7.566± 0.007 −0.70± 0.01 −0.89± 0.01
5690.4250* 54.123± 0.003 54.875± 0.003 7.566± 0.006 7.581± 0.005 −0.83± 0.01 −1.12± 0.01
5701.1040* 40.941± 0.004 41.240± 0.005 7.554± 0.006 7.554± 0.007 −0.67± 0.01 −0.81± 0.02
5708.3995 83.932± 0.001 81.971± 0.002 7.547± 0.003 7.557± 0.004 −0.61± 0.01 −0.79± 0.01
5772.1460 58.461± 0.003 58.254± 0.003 7.578± 0.005 7.590± 0.004 −0.31± 0.02 −0.26± 0.25
5780.3838 34.914± 0.004 38.252± 0.005 7.618± 0.007 7.664± 0.007 +1.94± 0.02 +2.49± 0.00
5793.0726* 47.079± 0.003 47.932± 0.004 7.553± 0.005 7.565± 0.006 +0.27± 0.02 +0.49± 0.02
5797.8559 44.799± 0.003 46.259± 0.002 7.476± 0.005 7.497± 0.003 −0.67± 0.01 −0.48± 0.03
5948.5410 97.658± 0.002 94.248± 0.003 7.581± 0.005 7.598± 0.006 −0.60± 0.01 −0.82± 0.01
6125.0209 34.496± 0.005 34.737± 0.006 7.517± 0.006 7.529± 0.007 −0.58± 0.02 −0.53± 0.03
6142.4832 39.323± 0.004 38.765± 0.006 7.408± 0.006 7.413± 0.007 −1.10± 0.01 −1.12± 0.02
6145.0159 44.040± 0.004 42.187± 0.005 7.487± 0.006 7.479± 0.006 −1.17± 0.01 −1.36± 0.01
6237.3191 81.782± 0.002 76.779± 0.003 7.468± 0.003 7.462± 0.003 −1.23± 0.01 −1.39± 0.01
6243.8146 57.363± 0.003 54.134± 0.004 7.574± 0.004 7.567± 0.005 −0.96± 0.01 −1.13± 0.01
6244.4655 54.674± 0.003 52.042± 0.004 7.390± 0.005 7.388± 0.005 −0.98± 0.01 −1.15± 0.01
6976.5129 56.438± 0.003 52.806± 0.003 7.654± 0.003 7.648± 0.004 −1.22± 0.01 −1.22± 0.01
7003.5690 75.507± 0.002 68.469± 0.003 7.583± 0.003 7.569± 0.005 −1.43± 0.01 −1.39± 0.01
7034.9006 83.976± 0.002 76.443± 0.003 7.575± 0.003 7.565± 0.004 −1.13± 0.01 −1.28± 0.01
7226.2079 43.345± 0.004 42.227± 0.004 7.587± 0.005 7.597± 0.006 −0.24± 0.02 −1.47± 0.05
7405.7718 110.020± 0.002 101.650± 0.002 7.634± 0.004 7.655± 0.004 −1.31± 0.00 −1.27± 0.01
7415.9480 105.090± 0.002 99.125± 0.002 7.558± 0.004 7.590± 0.005 −0.83± 0.01 −0.87± 0.01
7680.2660* 102.790± 0.002 95.068± 0.002 7.669± 0.004 7.698± 0.005 −0.93± 0.01 −0.92± 0.01
7918.3835 103.440± 0.002 97.816± 0.002 7.690± 0.003 7.723± 0.004 −0.82± 0.01 −0.85± 0.01
7932.3479 127.030± 0.002 117.070± 0.002 7.689± 0.004 7.706± 0.004 −0.61± 0.01 −0.81± 0.01
10288.9440* 88.692± 0.001 85.213± 0.001 7.522± 0.002 7.538± 0.003 −0.37± 0.01 −0.39± 0.01
10371.2630 199.010± 0.001 189.420± 0.001 7.621± 0.002 7.668± 0.003 −0.63± 0.00 −1.08± 0.00
10603.4250 295.370± 0.001 281.120± 0.001 7.686± 0.002 7.742± 0.002 −1.24± 0.00 −1.88± 0.00
10689.7160 228.360± 0.001 205.700± 0.001 7.712± 0.003 7.741± 0.002 −0.91± 0.00 −1.28± 0.00
10694.2510 251.900± 0.001 230.870± 0.001 7.679± 0.002 7.727± 0.002 −1.15± 0.00 −1.51± 0.00
10749.3780 330.400± 0.000 308.620± 0.001 7.677± 0.001 7.713± 0.002 −1.44± 0.00 −2.08± 0.03
10784.5620 106.910± 0.001 98.584± 0.001 7.645± 0.002 7.664± 0.002 −0.54± 0.01 −0.72± 0.01
10786.8490 296.440± 0.001 278.200± 0.001 7.651± 0.001 7.687± 0.002 −1.29± 0.00 −1.98± 0.03
10827.0880 473.350± 0.000 433.190± 0.001 7.662± 0.001 7.678± 0.002 −2.32± 0.01 −1.97± 0.02
12390.1540* 89.770± 0.001 87.503± 0.001 7.615± 0.002 7.613± 0.003 −0.11± 0.03 −0.29± 0.83
12395.8320* 111.000± 0.001 106.810± 0.001 7.613± 0.002 7.609± 0.003 +0.08± 0.03 −0.38± 0.02

Si II

6347.1087 55.354± 0.002 48.835± 0.002 7.675± 0.005 7.547± 0.005 +0.91± 0.01 +1.43± 0.01
6371.3714* 37.936± 0.004 32.226± 0.006 7.610± 0.010 7.469± 0.011 +0.59± 0.02 +1.25± 0.03

Table 10: Fitted 3D LTE abundance and broadening values for disk-centre (DC) and disk-
integrated (DI) spectra with their formal statistical uncertainties. wK is the width of
the broadening kernel. The old and new loggf values are also provided. An asterisk
next to the wavelength signifies the line was in the chosen subsample.

indicated in Fig. 34 are dominated by the uncertainties of the spectroscopically deter-
mined photospheric abundances. The uncertainty of the silicon abundance noticeably
contributes here. The error bars are perhaps over-estimated since some compensatory
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effects due to error correlations might be present. With the exception of hafnium (a
well-known problem case) meteoritic and photospheric abundances are consistent with
each other on the 1 σ level. However, for being able to identify possible differences a
reduction of the uncertainties appears desirable.

2.4.6 Mass fractions of hydrogen, helium, and metals

In this section we calculate the mass fractions of hydrogen X, helium Y, and metals Z
which are of particular interest for stellar structure. Our intention is not so much to
provide the absolute numbers but rather to demonstrate the involved uncertainties.
Serenelli et al. (2016) and Vinyoles et al. (2017) both advocate the use of meteoritic
abundances for elements heavier than C, N, O in the Sun. We follow this idea, and aug-
ment the 12 photospheric abundances from Caffau et al. (2011a) (Li, C, N, O, P, S, K, Fe,
Eu, Os, Hf, Th) and the newly derived silicon abundance by the meteoritic abundances
given by Lodders (2021). To this end, we need to bring photospheric and meteoritic
abundances onto the same scale. For relating the abundances we use the abundance of
silicon only. Using Eq. (87) we obtain

lg ε�X = lgµ�X + lg ε�Si − 6 or ε�X =
n�X
n�Si

ε�Si , (89)

where diamonds (�) indicate meteoritic values, the Sun symbol (�) solar photospheric
values. The basic assumption underlying Eq. (89) is that ε�Si = ε�Si , that is to say, sili-
con is not subject to differentiation effects, neither in the solar photosphere, nor in the
meteorites.

Equation (89) shows that in the conversion of the meteoritic abundances we have
to take into account the uncertainties of the individual species including the silicon
abundance as measured in meteorites. The normalisation puts the meteoritic silicon
abundance on a value of 106, however, with an uncertainty of 3.4 %. The uncertainty
of the solar silicon abundance contributes to the meteoritic uncertainties in the con-
version to the astronomical scale. An input neither directly obtained from meteorites
nor from photospheric spectroscopy is the helium abundance. Here, we assume a ratio
n�He/n

�
H = (8.38± 0.39)× 10−2 as given by Lodders (2021) for the present Sun which is

motivated from helioseismic measurements. With these ingredients and atomic weights
assumed to be precisely known we ran Monte-Carlo error propagations and obtained
X = 0.7382± 0.0084, Y = 0.2456± 0.0086, Z = 0.0162± 0.0015, and Z/X = 0.0220± 0.0020
(independent of the abundance of helium). The uncertainties of X and Y are dominated
by the uncertainty of the helium abundance. In order to further quantify the uncer-
tainties of Z we present the build-up of the overall uncertainty of Z by sequentially
adding sources of uncertainty. We obtain the sequence σZ = (65, 77, 79, 148) × 10−5
when adding the uncertainties of the meteoritic abundances, of the photospheric abun-
dance of silicon, of all photospheric abundances except CNO, and of all contributions
including from CNO, respectively. This perhaps odd-appearing procedure is motivated
by the fact that the individual sources of uncertainty are not simply additive (rather
additive in quadrature), and there is some coupling emergent from the presence of the
photospheric silicon abundance in the conversion given by Eq. (89). Keeping this limi-
tation in mind, we see that the contribution to the overall uncertainty by the meteorites
is not insignificant, and noticeably increased by the uncertainty of the photospheric
silicon abundance. We emphasise that the “meteoritic” abundances include the noble
gases (particularly neon). Their assumed values are coming from measurements other
than those in meteorites. The photospheric abundances other than of CNO contribute
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little to the overall uncertainty, the most important contribution stems – perhaps unsur-
prisingly – from CNO. We conclude that the procedure of using the average of several
refractory elements (e.g., Lodders, Palme, and Gail, 2009) is a good way to reduce the
overall uncertainty on the mass fraction of metals. The precision to which the CNO
elements are measured in the solar photosphere is most important. Beyond that, any
reduction of the uncertainty of photospheric or meteoritic abundances is helpful.
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Figure 34: Elemental abundance differences between CI chondrites (µ�X) and solar photospheric
composition (µ�X ) according to CO5BOLD in ascending order of the condensation tem-
peratures of the elements. The silicon abundance difference is zero by definition, but
shown to illustrate the scale of the error.

2.5 discussion

2.5.1 Comparisons between models and line samples

Both the choice of model atmosphere and the line sample affect the final abundance
(and the level of broadening or debroadening required). Across all configurations, prior
broadening of the observations increases the fitted abundance. Moreover, there is a
spread of fitted abundances for even a single model based on the chosen line sample
and fitting method. Overall, it is the combination of more or less judicious decisions
taken during the fitting process that ultimately determines the final fitted abundance
value.

2.5.2 Comparisons with previous works

Our derived abundance of 7.57± 0.04 is 0.06 dex higher than the abundance recently
presented in Asplund, Amarsi, and Grevesse (2021). As a comparison to their work,
we calculated a mean abundance using the line sample they presented (leaving out the
6741.61 Å line) alongside their weights, and find an abundance of 7.55± 0.02, which
is 0.04 dex higher than that presented in their work. Part of the difference in fitted
abundance stems from the new oscillator strength data used; when using the same
oscillator strength data, we find an abundance of 7.54± 0.03. This is consistent with the
average difference of the oscillator strength data used for these lines. The equivalent
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widths obtained by our line profile fitting for all models are higher than those given in
Amarsi and Asplund (2017), and are shown in Table 11. The corresponding differences
in abundance are shown in Fig. 35. Altogether, the dominant difference comes from the
new oscillator strength data ( 0.04 dex) and equivalent widths ( 0.02 dex), while line
selection, weighting and 3D model are of secondary importance ( 0.01 dex).

Wavelength msc600 b000 b200 n59 m595 AA17

[Å] [mÅ] [mÅ] [mÅ] [mÅ] [mÅ]

Si I

5645.6128 37.4 37.4 37.5 37.4 37.4 35.0
5684.4840 66.5 67.0 67.0 66.5 66.5 63.7
5690.4250 54.2 54.2 54.6 54.2 54.1 52.6
5701.1040 40.9 40.9 41.1 40.9 40.9 39.5
5772.1460 58.8 58.8 59.4 58.8 58.8 56.0
5793.0726 47.4 47.4 47.9 47.4 47.4 45.8
7034.9006 83.4 83.4 84.6 83.5 83.2 74.0
7226.2079 43.4 43.4 43.7 43.4 43.4 38.7

Si II

6371.3714 38.1 37.6 37.6 37.6 38.3 36.6

Table 11: Equivalent widths for the four models presented in this study alongside those given
in Amarsi and Asplund (2017) (AA17). Our higher equivalent widths lead to a +0.02
dex increase in abundance across all cases (using the weighting of AA17).

2.5.3 Uncertainties

We use the root-mean-squared error (RMSE) of the selected sample to capture the fi-
nal uncertainty on the fitted abundance. This uncertainty represents the uncertainties
through the entire fitting procedure, including uncertainties in oscillator strengths as
well as statistical uncertainties. The RMSE is given by

RMSE =

√√√√ 1

N

L∑
i

(yi − ŷ)2, (90)

where ŷ is the weighted mean abundance, yi is the weighted abundance calculated
for a single line, L is the number of lines used to determine the weighted mean and
N is the sum of the weights. We chose this estimator since each line yields a different
fitted abundance, and the RMSE naturally incorporates this scatter. Additionally, since
we compute the RMSE on the final fitted abundances, the uncertainties in fitting and
in the oscillator strengths are already represented in the scatter. On average, the oscil-
lator strength uncertainty is 8.57%, which is compatible with our RMSE uncertainty in
abundance. For other fitted quantities, we use the statistical uncertainties from the fit-
ting procedure and other relevant sources of error, such as uncertainties in ABO theory
parameters for broadening.

Despite careful line selection, new oscillator strength values and an improved broad-
ening theory, there is still a substantial scatter in individual fitted abundance values.
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Figure 36: Correlation coefficient between fitted parameters for the msc600 model. ∆λ is the
wavelength shift, log εSi is the abundance and wK is the width of the broadening
kernel.

The scatter is included in the uncertainties by means of the RMSE. The (maximum -
minimum) scatter in abundance values is 0.15 dex for our main configuration, with an
RMSE of 0.04. Using the line list of Amarsi and Asplund (2017) decreases the scatter to
0.06 dex and the RMSE to 0.02. Again, this shows that the choice of lines to use has a
non-negligible impact on the final derived abundance.

We make use of the ‘mpfitcovar’ routine (Markwardt, 2009) which takes in the spec-
trum and correlated noise model and fits the free parameters of our routine (normally
abundance, broadening and wavelength shift). We use χ2 statistics to find the best fitting
parameter as well as the errors on those parameters. There is some correlation between
the quantities themselves, shown in Fig. 36 for the msc600 model.

2.6 comparisons between linfor3d/co5bold and balder/stagger

There was motivation to investigate whether the extra broadening present in the syn-
theses produced by LINFOR3D using the CO5BOLD model atmospheres was unique to these
codes. To test this, we compared six LTE Si I line syntheses using our models against
those produced by BALDER (Amarsi et al., 2018), a custom version of Multi3D (Leenaarts
and Carlsson, 2009) (data provided by A. Amarsi, priv. comm.). These data were cal-
culated on a 3D hydrodynamic STAGGER model solar atmosphere (Collet, Magic, and
Asplund, 2011). These lines were: 5690, 5780, 5793, 6244, 6976 and 7680Å.

We use the same loggf values, ABO parameters and central wavelengths for the lines
in both sets of syntheses. After fitting for the abundance (log εSi = 7.51 was assumed
in the BALDER syntheses), the results are near-identical, and the fits shown in Figs. 37 &
38 using the n59 and 600 models are excellent. We are able to refit the abundance and
broadening of the BALDER syntheses. The black points represent the BALDER synthesis,
and the red lines are the LINFOR3D syntheses after fitting the lines synthesised with
BALDER.

Two CO5BOLD model atmospheres were used for the analysis. The msc600 solar model
is a newer model that has a higher spatial resolution and larger box size than the older
n59 model (see Table 7 for details). The n59 model requires positive broadening to fit
the BALDER syntheses, while the msc600 requires negative broadening. Broadening-wise,
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Figure 37: LINFOR3D + CO5BOLD n59 model syntheses (red lines) fit to BALDER + STAGGER (black
points). Green lines show residuals increased by a factor of 10. The mean abundance
as derived by the CO5BOLD fit is 7.52± 0.01.

then, the BALDER syntheses lie somewhere between our two chosen models - they are
broader than the n59 model, but not as broad as the msc600 model. Table 12 shows
the broadening values required by our models to reproduce the STAGGER syntheses and
the observations from the Hamburg atlas. While the n59 model is less broad than the
STAGGER model in all cases and the msc600 model is broader, both of these models still
generally require negative broadening to fit a majority of the lines. Again, no instru-
mental broadening (typically ∼ 1 km s−1 FWHM) was applied to the synthetic spectra,
as should be possible without the presence of over-broadening. This shows the issue
of the syntheses being over-broadened is not unique to CO5BOLD + LINFOR3D but is also
present in the syntheses produced by BALDER + STAGGER.

2.7 1d lte versus nlte comparisons in linfor3d

Following the comparison between model atmospheres and spectral synthesis routines,
four lines were synthesised in both 1D LTE and 1D NLTE as an additional investigation
into the potential extra broadening seen in LINFOR3D. These lines were 5772.46, 5948.54,
7680.27 and 12288.15 Å. We fit the 1D NLTE line profiles with the 1D LTE syntheses for
nine different abundance values to investigate whether the consequent fitted broadening
is strongly affected. The abundance corrections generally remain within the predicted
−0.01 dex; the 12288.28 Å requires slightly higher corrections at higher abundances. The
employed model atom is the same as that in Wedemeyer (2001) with 115 energy levels
for Si I and Si II with 84 transitions. Moreover, the collisional cross-sections for neutral
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wK= -0.34 km s−1

log (ε) = 7.515

Si-I 05780 [Å]
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Figure 38: LINFOR3D + CO5BOLD msc600 model model syntheses (red lines) fit to BALDER + STAGGER
(black points). Green lines show residuals increased by a factor of 10. The mean abun-
dance as derived by the CO5BOLD fit is 7.51± 0.01.

particles follow Drawin (1967) and Steenbock and Holweger (1984) using a correction
factor of SH = 0.1.

Fig. 39 shows the fitted broadening at each abundance point for each line, and Fig. 40

shows the LTE versus NLTE line profiles. In this small sample, NLTE effects become
stronger with increasing abundance resulting in stronger negative broadening for the
5772.46Å, 5948.54Å and 12288.15Å lines, and less positive broadening for the 7680.27Å
line. It should be noted that the trends are reversed if we fit NLTE to LTE profiles, i.e.
lines that showed negative broadening would instead show positive broadening. The
three lines with a negative NLTE correction also require negative broadening, suggest-
ing that part of the overly broadened line profiles could be attributed to NLTE effects.
We also found that removing the core of the line (within ±3 km s−1) removes the neces-
sity for negative broadening, illustrating that the NLTE effects are concentrated in the
cores of these lines.

2.8 de-broadening of spectral lines

Mathematically, the effect of broadening is described as convolution and de-broadening
as deconvolution. It is well-known that deconvolution is an ill-posed problem. A robust
solution to a deconvolution problem can only be obtained by suitable regularisation.
The problem becomes immediately apparent when considering a Gaussian (the “ker-
nel”) with which a spectrum is to be de-convolved. In Fourier space, deconvolution
corresponds to a division with the Fourier transform of the kernel, which is again a

81



n59 – msc600 – n59 – msc600 –
Stagger Stagger Hamburg Hamburg

λ wK wK wK wK

[Å] [km s−1] [km s−1] [km s−1] [km s−1]

5690.4250 0.49 −0.33 −0.54 −0.83
5780.3838 0.45 −0.40 1.47 1.40
5793.0726 0.47 −0.36 0.72 0.27
6244.4655 0.34 −0.47 −0.79 −0.98
6976.5129 0.43 −0.38 −1.05 −1.23
7680.2660 0.57 −0.08 −0.38 −0.69

Table 12: Fitted broadening values for six lines chosen as a comparison to STAGGER. The values
come from fitting the n59 and msc600 models fitting to the STAGGER models (first two
columns) and to the Hamburg atlas observations (last two columns). In all cases, the
n59 model is less broad than the STAGGER model syntheses while the msc600 model
is broader. However, since the n59 model generally also requires significant negative
broadening to fit the observations, the STAGGER models must also yield too broad lines
compared to the observations.
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Figure 39: Fitted broadening values for four lines, fitting 1D LTE to 1D NLTE profiles. Larger
NLTE effects are present in 5948.65 Å and 12228.15 Å lines than the 5772.46 Å and
7680.27 Å lines.

Gaussian in this case. The rapid decline of the wings of a Gaussian leads to a division
by almost zero at distances of a few widths of the Gaussian away from its centre. Any
numerical or physical imprecision leads to large disturbance under such circumstances.
This means even noise-free synthetic line profiles cannot be de-convolved by a naive
division of the raw spectrum by the Fourier transform of a Gaussian kernel.

The key question is now whether one can suitably regularise the problem or reduce
the level of noise amplification. We followed the latter approach by seeking a different
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Figure 40: LTE (points) versus NLTE (solid lines) profiles for three representative abundance
values. The 5948.54 Å and 12288.15 Å show visible NLTE effects in the core that
become stronger with increasing abundance.

kernel with less steeply falling wings than a Gaussian. As starting point we chose the
kernel function

G1(x) =
α

2
e−α |x|, (91)

normalised to one according to
ˆ ∞
−∞ dx G1(x) = 1 . (92)

The parameter α controls the width of the kernel. The kernel is symmetric, and has
a peaked shape at the origin. Later, we shall discuss higher powers in terms of con-
volutions of the kernel with itself. We index the resulting kernels by the number of
convolutions, which in the present case is one. Convolving a function f with kernel G1
results in a function g according to

g(x) =

ˆ ∞
−∞ dx′G1(x′ − x) f(x′) . (93)

Our choice of the kernel function was inspired by work of Dorfi and Drury (1987). The
authors pointed out that the above kernel is the Green’s function associated with the
differential operator

1−
1

α2
d2

dx2
, (94)
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where 1 indicates the identity operator. This allows one to formulate the convolution
expressed by Eq. 93 as solution of a ordinary differential equation of second order.
Discretising the differential operator, as well as the functions f and g (simplest on an
equidistant x-grid), results in a set of linear equations of the form

Ag = f (95)

where A is a tri-diagonal matrix which can be inverted efficiently. Remarkably, in this
formulation a deconvolution appears even simpler than convolution: if g is given, a sim-
ple matrix multiplication with matrix A yields the de-convolved function f. It was this
feature that made us choose G1 as kernel for deconvolution, and for consistency, also for
convolution. Using the same kernel when convolving a line profile has the advantage
that during fitting there is a continuous transition from convolution to deconvolution
and vice versa. This improves the stability of the fitting operation when having to deal
with a situation where the broadening or de-broadening is around zero. It should be
noted that the G kernels are in fact the Matérn functions with half-numbered indices
(Genton, 2002).

One may question the suitability of the function G1 for describing broadening or de-
broadening effects, and might prefer a more Gaussian-shaped kernel. The Central Limit
Theorem states that repeated convolution of a function with itself (subject to certain
regularity conditions) approaches a Gaussian. We used this property to construct further
kernel functions by convolving G1 with itself. We obtained the following sequence of
functions

G2(x) ≡ G21(x) =
α

4
e−α |x|(1+α |x|), (96)

G3(x) ≡ G31(x) =
α

16
e−α |x|

[
3(1+α |x|) +α2 |x|2

]
, (97)

G4(x) ≡ G41(x) =
α

96
e−α |x|

[
15(1+α |x|) +α2 |x|2(6+α |x|)

]
. (98)

All functions are normalised to one according to Eq. 92. The possibility of formulating
the convolution operation in Fourier space let it appear desirable to have the Fourier
transforms of the Gn function at hand. Defining the Fourier transform via

Ĝ(k) ≡ 1√
2π

ˆ ∞
−∞G(x) exp(ikx)dx (99)

we obtained for the (purely real) transforms of the kernel functions

Ĝn(k) =
α2n√

2π (α2 + k2)n
n ∈ {1, 2, 3, 4} . (100)

Figure 41 illustrates the shapes of kernels G1 and G3. G3 already resembles a Gaus-
sian quite well, having a smooth maximum at the origin and wings that are moderately
wider than in the case of a Gaussian. One should keep in mind that approaching a
Gaussian brings back in the problems that we intended to mitigate, namely significant
amplification of noise. Hence, one should limit the number of repeated convolutions. A
last point concerns the choice of the broadening parameter α. While the formulae take a
simple form by using α, physically one likes to specify the width of the kernel more di-
rectly. Fortunately, except for the pre-factor, all kernels are functions of the product α |x|
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Figure 41: Shapes of the kernelsG1 andG3 in comparison with a Gaussian. For display purposes
all functions were normalised to Gi(0) = 1. All share the same FWHM.

alone, resulting in a simple (inverse) relation between the full width at half maximum
(FWHM) of a kernel and α. For kernel G1, the relation reads α = 2

√
ln 2/FWHM. The

other kernels can be obtained from G1 by two-, three-, and four-fold application of G1
with a FWHM of 0.42243, 0.29746, and 0.24325 times the targeted FWHM, respectively.
The numbers were obtained by solving numerically the transcendent equations for the
widths of the three kernels in question, and the approach was applied when creating
Figure 41.

Figure 42 illustrates the impact of convolving and de-convolving a Gaussian-shaped
line profile with kernels G1 and G3. The FWHM of the line and the levels of broadening
or de-broadening were roughly tailored after the silicon lines we observe in solar disk-
centre spectra. G3 has a milder effect on the line shape than G1 at the same FWHM.
While not clear from the plot, it turns out that one can largely mimic the effect of G1 by
using G3 with a greater width. For the given parameters the “peaky” shape of G1 leaves
no imprint in the line shape. So far, the kernels described above worked in practice, but
deconvolution can be handled only for kernels significantly narrower than the spectral
line to be de-broadened.

2.9 centre-to-limb variation of the continuum and line shapes pre-
dicted by the 3d models

Here we report on the performance of our 3D models in combination with our spectral
synthesis codes (LINFOR3D for line syntheses, NLTE3D for spectral energy distributions)
when representing the solar centre-to-limb variation (CLV) of its continuum radiation
and the shape of lines. We start with the CLV, and later point to investigations in the
literature which use features of line shapes that were calculated with the help of CO5BOLD
models.
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Figure 45 shows a comparison between prediction of our 3D models with obser-
vations by Neckel and Labs (1994, hereafter NL). NL provide 30 wavelengths from
the near-UV to the near-IR for which they measured relative intensities over narrow
bandwidths (in equivalent Doppler velocity between 1.4 to 1.9 km s−1). The wavelength
points were chosen to be largely free of absorption lines. We ran pure continuum synthe-
ses for the NL wavelengths for our four 3D models, and for further comparison for three
1D model atmospheres. The lower panels (left panels in rotated view) depict the result.
For the non-magnetic models msc600 and n59 the correspondence between observation
and model prediction is very good for λ > 0.6µm. We note that the results for models
msc600 and n59 are almost identical so that they are difficult to distinguish on the scale
of the plot. 1D models are added for setting the scale for a “very good” correspondence:
a standard ATLAS9 (Kurucz, 1979; Kurucz, 2005; Sbordone et al., 2004) model shows a
significantly steeper CLV than found in the observations. Similarly, an LHD model (LHD is
a home-grown 1D stellar atmosphere code that uses the same microphysics as applied
in our 3D models) shows a similar behaviour. Remarkably, our msc600 model performs
even slightly better than the well-known Holweger-Müller solar model (Holweger, 1967;
Holweger and Mueller, 1974) despite the fact that this semi-empirical model was con-
structed to match the CLV.

At λ < 0.6µm the good correspondence deteriorates. However, as NL point out them-
selves the notion of observing pure continuum over the bandwidth used in the mea-
surements becomes questionable. At wavelengths shorter than 0.6µm the previously
negligible contribution of line absorption to the observed intensity becomes non-zero
but otherwise undefined. To address this issue we took an extreme stand and calcu-
lated the intensity over 20Å wide intervals including all line absorption with the help
of opacity distribution functions (ODFs). We combined line ODFs from Kurucz’ ATLAS

86



suite (Kurucz, 2017) with continuous opacities from our own opacity package. In each
ODF interval the distribution of the line opacity was represented by a step-function
of 12 steps. For each step, the emergent intensity was calculated and finally integrated
over the whole ODF interval so that we obtained the intensity emerging in the 20Å
wide ODF interval. From the construction is is clear that one obtains the average effect
on the intensity of the absorbers present in the ODF interval. The upper panels (right
panels in rotated view) of Fig. 45 illustrate that the correspondence between model
predictions and observations clearly improves for wavelengths λ < 0.6µm, strongly
suggesting that indeed missing line absorption is the reason for the mismatch at these
shorter wavelength in the pure continuum calculations. In fact, the good correspondence
in the near-UV is striking. One has to admit that this is certainly in part fortuitous since
the true contribution of lines to the observations is unclear, and also whether the line
lists going into the construction of the ODFs are sufficiently complete in the near-UV.
To illuminate the influence of line absorption a bit further we write the intensity ratio
between a location µ and and disk centre µ = 1 as

Iµ

I1
=
cµ − lµ
c1 − l1

≈ cµ
c1

(
1−

lµ

cµ
+
l1
c1

)
(101)

where cµ is the continuum intensity at location µ and lµ the intensity reduction by
line absorption at this point. The approximate equality holds for weak line absorption.
Equation (101) shows that there is a compensatory effect by considering intensity ratios.
Moreover, since there is typically a reduction of the intensity ratio with respect to pure
continuum calculations the contribution of line absorption must become larger towards
the stellar limb. It is not straight forward to see why this is: the silicon lines synthesised
for this investigation generally show a mild decrease in strength towards the limb –
particularly the medium to strong lines. However, we conjecture that in fact molecular
lines are a major player here which significantly increase in strength due to the lower
temperatures at which line formation takes place towards the limb.

Since the contribution of lines is observationally not well-defined we have also plotted
intensity ratios considering ODF sub-intervals only. We expected that especially the
sub-interval with the smallest line contribution would result in a closer match to the
observations which was, however, not immediately apparent (not shown). We finally
remark that the findings discussed here coincide with results on the CLV based on a
CO5BOLD model of an earlier generation (Ludwig et al., 2010).

For completeness we also investigated the CLV of the magnetic models b000 and b200.
Figure 45 illustrates that the field-free model provides a reasonable match to the obser-
vations while the 200 G model is clearly off. For the given (somewhat artificial) field
configuration one may conclude that the observed CLV does not permit a mean field
strength & 50G on the Sun. Pereira et al. (2013) already arrived at a similar conclusion
by comparing a 100 G model with a field-free case.

All spectral synthesis calculations for the 3D models underlying Fig. 45 approximate
scattering in the continuum as well as lines as true absorption. We investigated the
effect of this approximation on the CLV in the continuum by comparing the cases of
isotropic coherent scattering and true absorption in a 1D stratification obtained when
averaging (over optical depth surfaces and time) the msc600 model. As a first step,
Fig. 43 illustrates that scattering generally leads to an increase of the emergent inten-
sity for wavelength . 0.65µm, and that effects becomes more pronounced towards the
solar limb. However, quantitatively the changes of the intensity are modest (. 4.5%).
Figure 44 shows that this translates into small differences (. 0.01) in the CLV, again,
mostly at short wavelengths and close to the limb. The overall limb darkening reduces
the effect apparent in the intensity ratios directly. To see this, we denote by S the inten-
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Figure 43: Ratio of the emergent intensities as function of wavelength and limb angle cosine
µ between cases when continuum scattering is treated exactly or as true absorption.
The average vertical profile of model msc600 was used as structure in the spectral
synthesis calculations.

sity when scattering is treated exactly, by A the intensity when scattering is treated as
true absorption. The difference in the CLV can then be written as

S(µ)

S(1)
−
A(µ)

A(1)
≈ S(µ) −A(µ)

A(1)
=
A(µ)

A(1)

(
S(µ)

A(µ)
− 1

)
. (102)

The approximate equality comes from the observation that S(1) ≈ A(1). All this means
that the very good correspondence between models and observations shown in Fig. 45

gets only very slightly worse when scattering is treated correctly but remains very sat-
isfactory.

We now briefly turn to line shapes, particularly line shifts, as predicted by model n59.
As a first example we point to González Hernández et al. (2020, Fig. 6) where absolute
core shifts of 144 Fe I lines are compared to observations. In their work a very accu-
rate wavelength calibration of the observed spectra was achieved by utilising a laser
frequency comb. Lines with an equivalent width less than 60mÅ show a good corre-
spondence with their observed shifts. One has to keep in mind here that a comparison
on an absolute scale also relies on accurately known laboratory wavelengths. The reason
for the mismatch of lines with equivalent widths greater than 60mÅ is not clear but not
necessarily related to shortcomings in the model structure. Moreover, it was also seen
in LTE line syntheses based on STAGGER models (see González Hernández et al., 2020,
for further discussion). As second example, in Löhner-Böttcher et al. (2019, Fig. 19) the
observed shape of the Fe I 6173 Å line is compared to synthetic line profiles computed
with a CO5BOLD model as a function of limb angle. While not all details are matched the
overall correspondence is satisfactory.
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Figure 44: Difference of the centre-to-limb variation when continuum scattering is treated ex-
actly or as true absorption. Note the reduction of the impact of scattering in compari-
son to Fig. 43.

2.10 the partition functions of silicon as implemented linfor3d

We compared the partition functions of the first three ionisation stages of silicon as
implemented in our spectral synthesis code to data given in the recent compilation of
Barklem and Collet (2016). We find a close to perfect agreement in the temperature
range relevant for the formation of silicon lines in the solar photosphere, as seen in
Fig. 46.

2.11 conclusions

We have presented a 3D LTE analysis of 39 silicon lines using CO5BOLD model atmo-
spheres and the LINFOR3D spectral synthesis code. Of these, a total of 11were selected for
the abundance analysis, comprising of 7 optical Si I lines, 3 near-infrared Si I lines and
1 Si II line. New oscillator strengths from Pehlivan Rhodin (2018) were used, enabling
the use of infrared lines alongside optical ones and providing smaller uncertainties for
oscillator strengths. Compared to the previous experimental strengths from Garz (1973),
the new log(gf) values and weighting scheme decrease the formal statistical uncertainty
across the relevant lines from 0.07 dex to 0.04 dex. An improved broadening theory also
helped to constrain statistical uncertainties further.

Our main conclusions are as follows:

• We find a photospheric solar silicon abundance of log εSi = 7.57± 0.04, including
the −0.01 dex correction from NLTE effects investigated in Amarsi and Asplund
(2017). The 0.06 dex increase with respect to the recent studies by Asplund, Amarsi,
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Figure 45: Centre-to-limb variation as predicted by our 3D models in comparison to observations
and 1D results. Syntheses excluding (bottom) and including (top) line absorption are
shown. Left panels: models msc600 and n59. Right panels: models b000 and b200.
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Figure 46: Partition functions implemented in LINFOR3D compared to data of Barklem and Collet
(2016).

and Grevesse (2021), Amarsi and Asplund (2017) suggests that the determination
of the solar silicon abundance is not yet a firmly solved problem. Our advocated
configuration uses the G1 broadening kernel, the higher resolution msc600 model
and our chosen subsample of lines.

• Several factors affect the fitted abundance and broadening, but the line selection
plays the primary role. We focus on lines that are devoid of major blends, have
updated oscillator strengths, and also where syntheses match well with observed
line shapes. Notably, the near-infrared lines give higher abundances than optical
lines on average.

• The over-broadened line syntheses we see in this work are not specific to the
CO5BOLD atmospheres. Comparisons were made with STAGGER + BALDER and we
are able to refit their abundances and broadening values using both the msc600

and n59 models. Broadening-wise, their syntheses lie between the msc600 and
n59 models described here. Additionally, the overly broadened line syntheses are
caused by the combination of various effects, including velocity fields, atomic
broadening and neglect of magnetic field effects – we did not find a single definite
cause for over-broadening.

• Using a magnetic model with a magnetic field strength of 200G increases the fit-
ted abundance and reduces the Doppler broadening when compared to the same
model with a magnetic field strength of 0G. These differential results could point
towards over-broadened syntheses resulting from a lack of consideration of mag-
netic field effects, particularly that strong magnetic fields impede turbulent flow in
the atmosphere (Cattaneo, Emonet, and Weiss, 2003), resulting in narrower lines.
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However, the vertical magnetic fields that would be required to offset the nega-
tive broadening are much too large to be consistent with 3D MHD models with
small-scale dynamos (Shchukina, Sukhorukov, and Trujillo Bueno, 2016; Shchuk-
ina, Sukhorukov, and Trujillo Bueno, 2015), meaning magnetic field effects likely
do not play a major role in the overbroadening of the line syntheses.

• The atomic broadening cross-sections for the silicon lines presented in this work
are remarkably large, which subsequently increases the effect of collisional broad-
ening. Alongside the effects of magnetic fields, the collisional broadening may
then also contribute to the over-broadening in the line syntheses.

• Meteoritic abundances when transformed onto the astronomical scale are increased
with respect to the previous study by Palme, Lodders, and Jones (2014) due to the
increase in our photospheric silicon abundance. The differences of the non-volatile
elements available from CO5BOLD-based analyses are – except for hafnium – con-
sistent with zero, however, with significant uncertainties. Serenelli et al. (2016)
and Vinyoles et al. (2017) both advocate the use of meteoritic abundances for el-
ements heavier than C, N, O in the Sun, but using only the silicon abundance
for the conversion between cosmochemical and astronomical scale (e.g., Asplund,
Grevesse, and Sauval, 2005) would give a 0.05dex increase for non-volatile met-
als. The sizeable uncertainty of the silicon abundance found in this study lets the
use of multiple elements for referencing meteoritic and photospheric abundances
appear attractive, such as done in Lodders, Palme, and Gail (2009).

• A local fit of the continuum level is clearly at odds when looking at the spec-
trum on a large scale. Performing such a fit results in an artificial lowering of the
equivalent width, and systematically lowers the abundance by 0.01dex.

• We find no strong evidence of NLTE effects severely affecting abundance calcula-
tions in optical lines and the chosen infrared lines beyond the −0.01 dex correction
included, though the negative broadening required could be indicative of minor
NLTE effects being present.

• The non-magnetic CO5BOLD models used for abundance determination show good
correspondence with observed centre-to-limb variations (CLV). The magnetic model
“b200” has CLV that are incompatible with observations, so though a lack of mag-
netic fields could account for the overly broadened syntheses, a field strength of
200 G would be observationally inconsistent.

• An NLTE solar silicon abundance of 7.57 ± 0.04 could improve the differences
for solar neutrino fluxes, sound speed profiles and the surface helium fraction.
Vinyoles et al. (2017) show that a solar model with the composition proposed
in Grevesse and Sauval (1998) statistically performs better in regard to the solar
sound speed profile than a model with a solar composition proposed in (Asplund
et al., 2009). The former composition uses log εSi = 7.56± 0.01, while the latter
uses log εSi = 7.51± 0.01. Serenelli et al. (2016) show that the silicon abundance
of log εSi = 7.82 from von Steiger and Zurbuchen (2016) gives worse fits overall
for solar neutrino fluxes, sound speed profiles, and the surface helium fraction,
so a silicon abundance of 7.57± 0.04, closer to the abundance derived from the
Grevesse and Sauval (1998) composition, clearly results in an improvement relative
to (Asplund et al., 2009).

All in all, our analysis suggests that the photospheric solar Si abundance is not yet
a definitively solved problem. The use of state-of-the-art 3D model atmospheres and
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an improved broadening theory is essentially a requirement to accurately reproduce
line shapes. Even with these improvements, our synthetic line profiles were generally
overbroadened with respect to the observations, and it is unlikely that this feature is
unique to CO5BOLD model atmospheres or to Si lines.
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3T I M E - D E P E N D E N T M O L E C U L A R C H E M I S T RY I N
C A R B O N - E N H A N C E D M E TA L - P O O R D WA R F S T E L L A R
AT M O S P H E R E S

3.1 introduction

Stellar atmospheres are generally assumed to preserve the makeup of their birth en-
vironment. The abundance of elements heavier than helium (known as metals) in a
star’s atmosphere is an indication of a star’s age, with older stars being deficient in
metals. Spectroscopy is one of the foremost tools in determining the abundances of
various elements in stellar atmospheres. Since the first studies on solar abundances
in the 1920s (Payne, 1925; Russell, 1929; Unsöld, 1928) to modern large-scale surveys
such as the Gaia-ESO survey (Gilmore et al., 2012), the Gaia survey (Gaia Collaboration
et al., 2022), GALAH (Bland-Hawthorn and Sharma, 2016), and Pristine (Starkenburg
et al., 2017), to name a few, spectroscopically determined stellar parameters have been
a key tool in understanding the composition of stellar atmospheres. Instrumentation
and modelling have been refined in tandem, with improvements such as the treatment
of departure from local thermodynamic equilibrium (LTE) and advancements in one-
dimensional (1D) and three-dimensional (3D) model atmospheres. These directly lead
to improvements in the determination of solar and stellar abundances, since the meth-
ods to do so often rely on model atmospheres and the assumptions therein. As a core
component of Galactic archaeology, abundance determinations of stellar photospheres
from spectroscopy often assume the presence of a chemical equilibrium (implicitly as-
sumed within the LTE assumption). While LTE studies have been used historically to
determine stellar abundances (Asplund, 2000; Caffau et al., 2011a; Holweger, 2001), the
accurate treatment of the departure from LTE of level populations (known as radiative
NLTE treatment) has been shown to provide more accurate abundances in both solar
and stellar photospheres (Amarsi et al., 2019b; Bergemann et al., 2013; Magg et al., 2022;
Mashonkina, 2020; Wedemeyer, 2001).

Molecular features are important in metal-poor (MP) stars as atomic lines are com-
paratively weak (Aoki et al., 2013; Beers, Preston, and Shectman, 1992; Koch, Grebel,
and Martell, 2019; Yong et al., 2013). In recent years, increasingly metal-poor stars have
been discovered (Aoki et al., 2013; Beers, Preston, and Shectman, 1992; Beveridge and
Sneden, 1994; Hughes et al., 2022) with a tendency of an enhancement of carbon in their
atmospheres (Beers and Christlieb, 2005; Carollo et al., 2014; Cohen et al., 2005; Hansen
et al., 2016; Lucey et al., 2022; Sivarani et al., 2006). These carbon-enhanced metal-poor
(CEMP) stars comprise a large fraction of the low-metallicity tail of the metallicity dis-
tribution function in the Galactic halo (Norris et al., 2007; Susmitha et al., 2020). Though
NLTE treatment of spectral lines is becoming more prominent (Bergemann et al., 2013,
2019; Mashonkina, 2020), most of the work concerning these abundance determinations
is still done under the assumption of chemical equilibrium, i.e. that all chemical species
are in equilibrium with one another. Most NLTE studies consider radiative NLTE, mean-
ing that the radiation field is not in equilibrium with the local background temperature.
This changes the population of energy levels in an atom or molecule. Radiative NLTE
is still considered in a time-independent fashion. We instead model the time-dependent
chemical processes for a variety of species to investigate the effects of hydrodynamics on
molecular formation & dissociation to study whether the carbon enhancement seen at
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very low metallicities is a real effect or due to a lack of consideration for time-dependent
chemistry.

Chemical species will react with one another in such a manner as to approach ther-
modynamic equilibrium, given enough time. However, as the rates of these reactions
depend strongly on temperature and density (Horn and Jackson, 1972), there may be
regions in the star where chemical equilibrium conditions are not met. In the deeper,
hotter, collision-dominated photospheric layers, chemical species evolve to equilibrium
on timescales much faster than other physical timescales in the system. The assumption
of chemical equilibrium therefore implies that the chemistry evolves to its equilibrium
state faster than other processes can significantly perturb it. In this work, the other
physical processes are hydrodynamical, and the key question is whether the chemistry
reaches its local thermodynamic equilibrium before the species are advected. Convec-
tion in a stellar atmosphere can also lead to compression shocks which quickly heat
material. When coupling chemical kinetics to these processes, the chemistry evolves on
a finite timescale, and a prevalence of such hydrodynamical effects can push the overall
chemistry out of its local equilibrium state.

Metallicity also has a large impact on both the overall structure of the atmosphere and
the number densities of the species. At a cursory glance, reducing the metallicity by a
factor of 100 immediately results in a 100x reduction in the number densities, which
naturally results in slower mass-action reaction rates. Relative abundances (especially
of C and O) also play a large role in determining the final yield as well as the chemical
timescales of different species (Hubeny and Mihalas, 2015). Simply due to the mass-
action rates, then, one can see that the sharp reduction in chemical timescales may
result in the chemistry being out of equilibrium in higher, cooler layers.

Currently, many different codes exist to model stellar atmospheres. While one-dimensional
(1D) atmospheres have been used to great effect (Allard and Hauschildt, 1995; Gustafs-
son et al., 2008), three-dimensional (3D) time-dependent modelling is essential for ac-
curately modelling hydrodynamical effects within an atmosphere (Pereira et al., 2013).
Codes such as CO5BOLD (Freytag et al., 2012), Stagger (Magic et al., 2013), Bifrost (Gudik-
sen et al., 2011), MuRAM (Vögler et al., 2005) and Mancha (Khomenko et al., 2017)
are prominent examples. In this work we use CO5BOLD model atmospheres to model
hydrodynamics, radiation transfer and time-dependent chemistry together.

We investigate two distinct methods to treat the chemical evolution in a stellar atmo-
sphere. The first is to evolve the chemistry as a postprocessing step, utilising outputs
from model atmospheres (known as snapshots) in order to determine the chemical evo-
lution of various species. This method yields accurate results in regimes where the
density-temperature profile is conducive to fast-evolving chemistry (in comparison to
advection). The second is to evolve the chemistry alongside the hydrodynamics, usually
done after advecting the species. While this is much more computationally expensive, it
will yield accurate results even in regimes where the timescales of the chemistry are com-
parable to that of advection. In principle, both approaches are equivalent given a fine
enough cadence, since the chemical species are treated as passive scalars. In other words,
given a fine enough sampling of snapshots, the postprocessing method would tend to-
wards the full time-dependent treatment. We will utilise the postprocessing method to
evolve chemical species into equilibrium in order to contrast the time-dependent case.

Wedemeyer-Böhm et al. (2005) investigated CO in the solar photosphere and chromo-
sphere in 2D, employing a chemical network with 7 species and 27 reactions. Wedemeyer-
Böhm et al. (2006) then expanded this into a 3D analysis, showing the formation of CO
“clouds” at higher layers. We build on this further to include an extended chemical
network involving 14 species and 83 reactions, and focus on the photospheres of main-
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sequence turn-off dwarf stars. We investigate CO, CH, C2, CN, OH in detail, since these
5 species are spectroscopically interesting for abundance determinations in MP stars.

The numerical methods and chemical network setup are described in Sec. 3.2. The
results of the three-dimensional simulations for the time-dependent and steady-state
calculations are presented in Sec. 3.3 and discussed in Sec. 3.4; additional results are
presented in Sec. 3.5. The effect of carbon enhancement and metallicity is further ex-
plored in Sec. 3.6.

3.2 methodology

3.2.1 Chemical kinetics and the reaction network

The time-dependent chemistry for a species ni takes the form

∂ni
∂t

+∇ · (ni~v) = S, (103)

where ~v is the velocity field and S is a source term. The source term is given by the
rate of formation and destruction of each species characterised by the reactions in the
network.

Each chemical reaction can be written as a differential equation describing the destruc-
tion and formation of species, and together the reactions form an ordinary differential
equation (ODE) system. We consider all reactions in this work to follow mass-action
kinetics. A reaction’s rate is then given by

wr = k
∏
j

nj (104)

where k is the rate coefficient and the product over nj includes the stoichiometry of
either the reactants (forward reaction) or products (reverse reaction).

The rate coefficient for mass-action kinetics is often given by the Arrehenius equation
(Arrhenius, 1889a,b)

k(T) = A exp
(
Ea

RT

)
, (105)

whereA is a constant of proportionality, Ea is the activation energy, R = 8.314 J K−1 mol−1

is the gas constant and T is the temperature. By making the temperature-dependence of
the prefactor explicit and defining γ = Ea

R , we arrive at the so-called modified Arrhenius
equation

k(T) = α Tβ300 exp
(γ
T

)
, (106)

with α as a constant of proportionality independent of temperature, T300 = T
300 K and

β being the explicit power on the temperature. With this formulation, we have α as a
temperature-independent prefactor and Tβ300 as a temperature-dependent prefactor. The
parameters α, β and γ vary based on the reaction, and are again typically experimentally
determined.

Some of the reactions presented in this work are unfortunately defined outside of
their temperature limits simply due to the lack of studies of chemical reactions in high-
temperature regions such as stellar photospheric layers. There is also an uncertainty
associated with the rate coefficients themselves. Despite these shortcomings, we believe
the chosen reaction rates describe the evolution of our species reasonably well. The
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reaction rates are all Arrhenius-like, given in modified Arrhenius form (Eq. 106). For a
reversible reaction, the forward and reverse coefficients are related to the dimensional
equilibrium constant K ′eq by

K ′eq =
k1
k2

, (107)

where k1 and k2 are the forward and reverse rate coefficients, respectively. This equilib-
rium constant can be used to determine the chemical equilibrium of a given composi-
tion, defined when all forward and reverse processes are balanced (Blecic, Harrington,
and Bowman, 2016; Stock et al., 2018). As our reaction network contains irreversible
reactions in the thermodynamic domain under study, equilibrium constants cannot be
determined for each chemical pathway. Hence, we study the “equilibrium” chemistry
by solving the chemical kinetics until the chemistry reaches a steady-state. In the ab-
sence of processes such as advection, this steady-state should correspond to chemical
equilibrium. For a generic reaction r with forward rate coefficient k1 and reverse rate
coefficient k2

aA + bB
k1k2 cC + dD, (108)

the rates of change of the generic species A, B, C and D in the reaction r are related via

−
1

a

(
∂nA

∂t

)
r

= −
1

b

(
∂nB

∂t

)
r

=
1

c

(
∂nC

∂t

)
r

=
1

d

(
∂nD

∂t

)
r

. (109)

Eq. (104) then gives the forward and reverse reaction rates w1 and w2, respectively, as

w1 = k1n
a
An
b
B , w2 = k2n

c
Cn
d
D

We can then construct the differential
(
∂ni
∂t

)
r

for a species ni and reaction r. The full
time-dependent chemical evolution of species ni is then given by the sum over the
reactions r:

∂ni
∂t

=
∑
r

(
∂ni
∂t

)
r

. (110)

The chemical reaction network (CRN) (which is described by a system of differential
equations) builds on the one presented in Wedemeyer-Böhm et al. (2005), extending it
to 14 species and 76 reactions. It also includes the catalytic “metal” species “M”, as in
Wedemeyer-Böhm et al. (2005). Table 13 describes these reactions along with the param-
eters of the rate coefficients. The present network is focused on the evolution of CO, CH,
C2, CN and OH through reactions with neutral atomic and bimolecular species. Radia-
tive association, species exchange, two- & three-body reactions, and collisional dissocia-
tion are included. Each reaction is given in the modified Arrhenius form, parametrised
by the pre-exponential factor α, an explicit temperature dependence β and a character-
isation of the activation energy γ. Some reactions with CO are catalysed reactions and
include a characteristic metal M.

A discussion on the choice of reactions follows below. Generally, the CRN was built to
analyse the species CO, CH, CN, C2and OH. As the network presented in Wedemeyer-
Böhm et al. (2005) already includes a good treatment of CO, CH and OH, we sup-
plement this network with reactions taken from the UMIST Astrochemistry Database
(McElroy et al., 2013) to model the other molecular species. Only neutral atomic and
bimolecular species are considered due to their prevalence compared to other trace
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molecules, and the storage limitations imposed by considering a full 3D, time-dependent
treatment. We neglect photodissociation in this network, though accept that the effects
may not be negligible in very optically thin layers. Additionally, as the reactions used
here often come from studies in planetary atmospheres and combustion chemistry, the
reactions presented are sometimes defined outside of their temperature limits, especially
when considering deep photospheric regions. We choose to focus on higher, cooler lay-
ers for this reason.

Reaction 58. We choose to use the rate that includes only α, instead of the rate that
includes explicit temperature dependence. This is because the temperature limits of this
reaction are 10− 300 K, and including the temperature-dependent rate would lead to a
much greater extrapolation due to the comparatively high temperatures in the model
atmospheres.

Reaction 116, 133, 198. For each of these reactions, two rates are presented in the
database for temperature limits of 10− 300 K, and 300− 3000 K. We opt to use the latter
rate as the temperature limits are closer to our use case.

Reaction 206. The reaction is defined for the temperature limits 298 − 3300 K and
295 − 4000 K. We opt to use the latter rate that includes a higher upper-temperature
limit.

Reaction 236. The reaction is defined for the temperature limits 10− 500 K and 158−
5000 K. We opt to use the latter rate that includes a higher upper-temperature limit.

Reaction 244. The reaction is defined for the temperature limits 10− 294 K and 295−
4500 K. We opt to use the latter rate that includes a higher upper-temperature limit.

Figure 47: Graph of the chemical reaction network with atoms (red), key molecular species (blue)
and remaining molecular species (grey). Connections qualitatively describe reaction
pathways.

A visualisation of the reaction network is shown in Fig. 47. Atomic species are shown
in red, key molecular species are shown in blue, and all other molecular species are
shown in grey. The full network with all reactions is too complex to show in full detail,
so we choose to highlight the important reactions as edges between nodes. It is clearly
seen that the network is connected, meaning one can reach any node starting from any
other node, but not fully-connected, since every node does not share an edge with every
other node. These properties allow us to find reaction pathways in the reaction network
(see Sec. 3.4.4).
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Index Reactants Products α β γ Reference

Radiative Association

3681 C + H =⇒ CH + γ 1.00e-17 0.00 0.0 UMIST
3683 H + O =⇒ OH + γ 9.90e-19 -0.38 0.0 UMIST
3703 C + C =⇒ C2 + γ 4.36e-18 0.35 161.3 UMIST
3705 C + N =⇒ CN + γ 5.72e-19 0.37 51.0 UMIST
3707 C + O =⇒ CO + γ 1.58e-17 0.34 1297.0 UMIST
3730 O + O =⇒ O2 + γ 4.90e-20 1.58 0.0 UMIST

3-body association

4079 H + M + O =⇒ M + OH 4.33e-32 -1.00 0.0 UMIST
4097 C + M + O =⇒ CO + M 2.14e-29 -3.08 -2114.0 BDDG76

5000 H + H + M =⇒ H2 + M 6.43e-33 -1.00 0.0 KCD
5001 H + H + H2 =⇒ H2 + H2 9.00e-33 -0.60 0.0 KCD
5002 H + H + H =⇒ H + H2 4.43e-28 -4.00 0.0 BDHL72

7000 H + H + O =⇒ H + OH 1.00e-32 0.00 0.0 BDHL72

7001 C + H + O =⇒ CO + H 2.14e-29 -3.08 -2114.0 BDDG76

Species Exchange

1 CH + H =⇒ C + H2 2.70e-11 0.38 0.0 UMIST
3 H + NH =⇒ H2 + N 1.73e-11 0.50 2400.0 UMIST
8 H + OH =⇒ H2 + O 6.99e-14 2.80 1950.0 UMIST

11 C2 + H =⇒ C + CH 4.67e-10 0.50 30450.0 UMIST
14 CO + H =⇒ C + OH 5.75e-10 0.50 77755.0 W80

18 H + NO =⇒ NH + O 9.29e-10 -0.10 35220.0 UMIST
19 H + NO =⇒ N + OH 3.60e-10 0.00 24910.0 UMIST
24 H + O2 =⇒ O + OH 2.61e-10 0.00 8156.0 UMIST
42 C + H2 =⇒ CH + H 6.64e-10 0.00 11700.0 UMIST
44 H2 + N =⇒ H + NH 1.69e-09 0.00 18095.0 UMIST
48 H2 + O =⇒ H + OH 3.14e-13 2.70 3150.0 UMIST
52 H2 + O2 =⇒ OH + OH 3.16e-10 0.00 21890.0 UMIST
58 C + CH =⇒ C2 + H 6.59e-11 0.00 0.0 UMIST
61 C + NH =⇒ CH + N 1.73e-11 0.50 4000.0 UMIST
62 C + NH =⇒ CN + H 1.20e-10 0.00 0.0 UMIST
66 C + OH =⇒ CH + O 2.25e-11 0.50 14800.0 UMIST
67 C + OH =⇒ CO + H 1.81e-11 0.50 0.0 W80

68 C + CN =⇒ C2 + N 4.98e-10 0.00 18116.0 UMIST
70 C + CO =⇒ C2 + O 2.94e-11 0.50 58025.0 UMIST
71 C + N2 =⇒ CN + N 8.69e-11 0.00 22600.0 UMIST
75 C + NO =⇒ CN + O 6.00e-11 -0.16 0.0 UMIST
76 C + NO =⇒ CO + N 9.00e-11 -0.16 0.0 UMIST
80 C + O2 =⇒ CO + O 5.56e-11 0.41 -26.9 UMIST

100 CH + N =⇒ C + NH 3.03e-11 0.65 1207.0 UMIST
102 CH + O =⇒ C + OH 2.52e-11 0.00 2381.0 UMIST
104 CH + O =⇒ CO + H 1.02e-10 0.00 914.0 UMIST
116 CH + O2 =⇒ CO + OH 7.60e-12 0.00 0.0 UMIST
126 N + NH =⇒ H + N2 4.98e-11 0.00 0.0 UMIST
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130 N + OH =⇒ NH + O 1.88e-11 0.10 10700.0 UMIST
131 N + OH =⇒ H + NO 6.05e-11 -0.23 14.9 UMIST
132 C2 + N =⇒ C + CN 5.00e-11 0.00 0.0 UMIST
133 CN + N =⇒ C + N2 1.00e-10 0.40 0.0 UMIST
138 N + NO =⇒ N2 + O 3.38e-11 -0.17 -2.8 UMIST
144 N + O2 =⇒ NO + O 2.26e-12 0.86 3134.0 UMIST
195 NH + NH =⇒ H2 + N2 1.70e-11 0.00 0.0 UMIST
197 NH + O =⇒ N + OH 1.16e-11 0.00 0.0 UMIST
198 NH + O =⇒ H + NO 1.80e-10 0.00 300.0 UMIST
206 NH + NO =⇒ N2 + OH 1.46e-11 -0.58 37.0 UMIST
236 O + OH =⇒ H + O2 1.77e-11 0.00 -178.0 UMIST
240 C2 + O =⇒ C + CO 2.00e-10 -0.12 0.0 UMIST
243 CN + O =⇒ C + NO 5.37e-11 0.00 13800.0 UMIST
244 CN + O =⇒ CO + N 5.00e-11 0.00 200.0 UMIST
251 N2 + O =⇒ N + NO 2.51e-10 0.00 38602.0 UMIST
261 NO + O =⇒ N + O2 1.18e-11 0.00 20413.0 UMIST
377 C2 + O2 =⇒ CO + CO 1.50e-11 0.00 4300.0 UMIST
382 CN + CN =⇒ C2 + N2 2.66e-09 0.00 21638.0 UMIST
387 CN + NO =⇒ CO + N2 1.60e-13 0.00 0.0 UMIST
392 CN + O2 =⇒ CO + NO 5.12e-12 -0.49 -5.2 UMIST
416 NO + NO =⇒ N2 + O2 2.51e-11 0.00 30653.0 UMIST

7601 NH + O2 =⇒ NO + OH 2.54e-14 1.18 312.0 UMIST

Collisional Dissociation

194 NH + NH =⇒ H + H + N2 1.16e-09 0.00 0.0 UMIST
205 NH + NO =⇒ H + N2 + O 7.40e-10 0.00 10540.0 UMIST

4060 H + H2 =⇒ H + H + H 4.67e-07 -1.00 55000.0 UMIST
4061 CH + H =⇒ C + H + H 6.00e-09 0.00 40200.0 UMIST
4062 H + OH =⇒ H + H + O 6.00e-09 0.00 50900.0 UMIST
4067 H + O2 =⇒ H + O + O 6.00e-09 0.00 52300.0 UMIST
4069 H2 + H2 =⇒ H + H + H2 1.00e-08 0.00 84100.0 UMIST
4070 CH + H2 =⇒ C + H + H2 6.00e-09 0.00 40200.0 UMIST
4071 H2 + OH =⇒ H + H2 + O 6.00e-09 0.00 50900.0 UMIST
4074 H2 + O2 =⇒ H2 + O + O 6.00e-09 0.00 52300.0 UMIST
4076 CO + M =⇒ C + M + O 2.79e-03 -3.52 128700.0 BDDG76

7002 CO + H =⇒ C + H + O 2.79e-03 -3.52 128700.0 BDDG76

7585 CH + O2 =⇒ CO + H + O 1.14e-11 0.00 0.0 UMIST

Table 13: Reactions used in this work. “Index” refers to the index in the UMIST astrochemistry
database. All reactions are of modified-Arrhenius form with rate coefficient k(T) =

α
(
T
300

)β
exp

(−γ
T

)
. References are: “UMIST” McElroy et al. (2013) “BDHL72” Baulch

et al. (1972), “KCD” Konnov (2000), “BDDG76” Baulch et al. (1976), “W80” Westley
(1980)

The carbon enhancement phenomenon is represented by a number of molecular carbon fea-
tures, including the strong CH G-band feature at 4300Å (Gray and Corbally, 2009), the C2
feature at 5636Å (Green, 2013), the Swan bands (C2) at 5635Å and 5585Å, and the 3883Å CN
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band (Harmer and Pagel, 1973). Koch, Grebel, and Martell (2019) also used CN features to iden-
tify CN-strong and CN-weak stars in globular clusters. Overall, spectral synthesis in cool carbon
stars from 4000− 10000 Å shows that the region harbours many CH, CN and C2 lines.

CO, having a very high bond-dissociation energy of 11.08 eV (March and Smith, 2001), is the
key stable state within the chemical network. In the regions where molecular features form it is
energetically favourable to form CO over, e.g. CH and OH. As such, CO dictates the relative yield
of other carbon- and oxygen-bearing molecules. Generally, C and O will be largely consumed
to form CO, and any excess then forms other molecular species. With a C/O ratio less than 1

(e.g. for solar composition), and at temperatures that allow for molecular formation, most of the
carbon is locked into CO leaving very little to form other carbonic molecules. With a C/O ratio
greater than 1 (e.g. certain carbon-enhanced stars), it is instead oxygen that is used up first and
more carbonic molecules form (see Fig. 55b).

We include OH to investigate the effect of the C/O ratio on molecular species. OH provides an
important symmetry to CH when considering the evolution of C, O, CH, OH and CO (Gallagher
et al., 2017a, 2016). As the amount of non-CO carbon-bearing molecules heavily depends on the
C/O ratio, so too does the evolution of OH.

3.2.2 Numerical Method

We use CO5BOLD, a conservative finite-volume hydrodynamics solver capable of modelling sur-
face convection, waves, shocks and other phenomena in stellar objects (Freytag et al., 2012). The
hydrodynamics, radiation transfer and chemistry are treated via operator splitting and solved
on a Cartesian grid in a time-dependent manner. The chemistry is solved after the hydrodynam-
ics and radiative transfer time steps. Standard directional splitting along the directions of the
1D operators is used. A Roe solver computes all updates in a single step, where higher order
terms in time are provided based on the applied reconstruction scheme.

Radiative transfer is solved frequency-dependently (non-grey) under the assumption of local
thermodynamic equilibrium (LTE) using a multiple short-scale characteristic scheme (Steffen,
2017). The opacity tables use 12 frequency bins and are consistent with the atomic abundances
used for the chemistry input. The model does not treat frequency-dependent photodissociation
of chemical species, nor heating and cooling via reactions. The equation-of-state is also consistent
with the abundances used in the chemistry input and assumes the formation of molecules in
instantaneous equilibrium.

All models used in this work were created by taking a thermally relaxed CO5BOLD model out-
put and adding “quantity centred” (QUC) cell-centred quantities. These QUC quantities allow
the user to arbitrarily add cell-centred quantities to the simulation, such as passive scalars. Here,
each QUC quantity stores the number densities of a single chemical species across all grid cells.
The QUC quantities can be advected as prescribed by the velocity field. Periodic boundary con-
ditions are implemented on the lateral edges of the computational domain. The lower boundary
layer is open with inflowing entropy and pressure adjustment, while the top layer is transmitting.
Number densities in ghost cells are copied from the nearest cells in the computational domain,
but scaled to the mass density of those cells. In this way, the chemistry is still consistent across
the boundary and the number densities of the elements are almost perfectly conserved. We only
present 3D models in this work as we focus on the stellar photosphere and it was shown that 1D
models are more insensitive to a change in CNO abundances (Gustafsson et al., 2008; Masseron,
2008; Plez and Cohen, 2005)

CO5BOLD includes a time-dependent chemical kinetics solver (Freytag et al., 2012; Wedemeyer-
Böhm et al., 2005) that has so far been used to investigate the solar photosphere and chromo-
sphere in two- and three-dimensions. The code includes modules to advect passive tracers and
to solve a chemical reaction network using these passive tracers. Once the model has been ini-
tialised with chemical species (QUC quantities), CO5BOLD then solves the chemistry for each cell
at each time step (alongside the equations of hydrodynamics and radiation transfer), and the
species are advected as prescribed by the velocity field.

The output of the model atmosphere is stored in a sequence of recorded flow properties,
commonly called a sequence of “snapshots.” Each snapshot also functions as a start model
to restart a simulation, or as a template to start a new simulation. A total of 20 independent
snapshots are chosen for the analysis. This is a large enough number to investigate interesting
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phenemena such as shocks without biasing the sample far from the expected ambient conditions.
To contrast the time-dependent chemistry, the same reaction network is solved on a background
static snapshot (i.e. a single snapshot without taking advection into account) until the chemistry
reaches a steady-state. This is similar to the treatment of chemistry in equilibrium, but in this
case we still solve the kinetic system instead of relying on equilibrium constants. The method
for solving the chemistry independently of the hydrodynamics in postprocessing is described in
Sec. 3.2.3. The models in this study do not utilise the MHD module, and hence represent only
quiet stellar atmospheres without magnetic fields.

Due to the high computational expense of computing time-dependent chemistry across a
large grid, parallelisation is highly recommended. This, along with the increased memory load
of storing the number densities of QUC species, limits the size of the network that can be treated
time-dependently. Even with these steps, solving the chemistry is still the most time-intensive
step, taking upwards of 75% of the total runtime.

The DVODE solver (Hindmarsh et al., 2005) is used to solve the system of chemical kinetic
equations, making use of the implicit backward differentiation formula (BDF). The solver uses
an internally adjusted adaptive time step – a requirement when considering that the system of
equations is often very stiff. The solution of the final number densities is provided after the full
hydrodynamics time step.

For stability, we utilise first-order reconstruction schemes for both the hydrodynamics and
advection of QUC quantities. Higher order schemes were found to cause some grid cells to
extrapolate beyond the equation-of-state tables or low number densities to become negative.
This was not a consistently reproducible effect for a given grid cell, meaning its source could lie
in single-precision numerical errors.

Model ID [Fe/H] A(C) A(O) log C / O Internal ID

(d3t63g40)

AM1 +0.00 8.41 8.66 −0.25 mm00

AM2 −2.00 6.41 7.06 −0.65 mm20

AM3 −3.00 5.41 6.06 −0.65 mm30

AC1 −3.00 7.39 7.66 −0.27 mm30C20N20O20

AC2 −3.00 7.39 6.06 +1.33 mm30C20N20O04

Table 14: Model atmosphere parameters for the five models used in the study. Each model has
Teff = 6250 K and logg = 4.00, a resolution of 140× 140× 150 cells and an extent of
26× 26× 12.7 Mm (x × y × z). The abundances for each model are consistent with
those in the respective opacity tables, and we use the “Internal ID” to refer to each
model uniquely within this work.

We use standard solar abundances from the CIFIST grid as the basis for our abundance values
(Caffau et al., 2011a), and initialise the molecular species to a number density of 10−20 g cm−3.

3.2.3 Steady-State Chemistry

The treatment of steady-state chemistry is handled via the solution of the chemical kinetic sys-
tem on a background model atmosphere (a single, static snapshot), neglecting advection. The
chemistry is evolved long enough to reach a steady-state where processes are balanced for each
grid cell. The formulation of the final system of equations is the same as that in Eq 110. In
this way, we are able to evaluate the time-dependent effects of advection when compared to the
statically postprocessed chemistry in steady-state.

To solve the chemistry on a background CO5BOLD model snapshot, we present the Graph
Chemical Reaction Network (GCRN) code1. GCRN handles strictly a chemical kinetics problem
and is able to evaluate the solution at arbitrary times, provided the chemical network, initial

1 https://github.com/SiddhantDeshmukh/graphCRNs
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number densities and temperature. The chemistry is solved isothermally in each cell. GCRN is
able to read and write chemical network files in the format required by CO5BOLD as well as that
of KROME (Grassi et al., 2014). The code is written in Python and Julia and relies primarily on
the numpy, scipy, and networkx Python libraries, and the DifferentialEquations.jl and Catalyst.jl
Julia libraries.

The numerical solver is the same as that used in the time-dependent case, namely DVODE
with the BDF method. By default the absolute tolerance is set to 10−30 and the relative tolerance
to 10−4. The Jacobian is computed and evaluated within the DVODE solver itself, but GCRN
supports a user-supplied Jacobian matrix. GCRN can also automatically compute an analytical
Jacobian based on the equation system and pass this to the solver. Supplying a Jacobian to the
solver can help improve stability, but it was not necessary in this work.

To understand the motivation for writing an in-house chemical kinetics solver, let us first
consider the nature of a CRN. A CRN consists of a set of chemical species that are connected to
one another via reaction pathways. A CRN can therefore be represented as a weighted, directed
graph. The vertices of this graph are the chemical species involved, and the edges represent
the reactions between them. The weights and directions of the edges describe the rates of the
reactions, often defined using the mass-action law (Érdi and Tóth, 1989). For single-species
reaction networks, where every reaction is of the form

A→ B, (111)

the CRN graph and its incidence and adjacency matrices can be easily represented. However,
when multiple reactants and products are involved in a reaction, it becomes necessary to intro-
duce the notion of a chemical “complex”, defined as the left or right-hand side of a reaction
equation. Expressing the system of reactions in terms of its complexes corresponds to a transla-
tion from the space of species Rs to the space of complexes Rc.

GCRN first represents the system of chemical reactions as a weighted, directed graph (see e.g.
Horn (1972) and van der Schaft, Rao, and Jayawardhana (2015)). The vertices of the graph are
the left- and right-hand chemical complexes, while the edges represent the reactions themselves.
The weights of the edges are the reaction rates, evaluated for the provided temperature and
initial number densities. For a reaction network with c complexes and r reactions, its directed
(multi)graph2 G can be characterised by its c × r incidence matrix D, which represents the
connection between vertices and edges i.e. which edges connect which vertices. Each column of
D corresponds to an edge (a reaction) of G. The (i, j)-th element of D represents the reaction j
containing complex i. It is +1 if i is a product, and −1 if i is a reactant. For s species, the s× c
complex composition matrix Z describes the mapping from the space of complexes to that of
species, i.e. it describes which species make up which complexes. Multiplying Z and D yields
the s× r stoichiometric matrix S = Z D. Finally, to include the mass-action kinetics, we require a
vector of reaction rates v(x) as a function of the species vector x. In general, for a single reaction
with reactant complex C specified by its corresponding column zC = [zC,1 . . . zC,s]

T of Z, the
mass action kinetic rate with rate coefficient k is given by

k x
zC,1
1 x

zC,2
2 . . . x

zC,s
m , (112)

or more concisely

k exp(zTCLn(x)), (113)

where Ln(x) is defined as an element-wise operation producing the vector [ln(x1) . . . ln(xs)]T .
Similarly, the element-wise operation Exp(y) produces the vector [exp(y1) . . . exp(ys)]T . With
this, the mass-action reaction rates for the total network are given by evaluating the expression

vj(x) = kj Exp
(

zT
j Ln(x)

)
(114)

for the j = 1, . . . , r reactions. This can be written compactly in matrix form. We define the r× c
matrix K as the matrix whose (j,σ)-th element is the rate coefficient kj if the σ-th complex is the
reactant complex of the j-th reaction, and zero otherwise. Then,

v(x) = K Exp
(

ZTLn(x)
)

(115)

2 allows for multiple edges between vertices
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and the mass-action reaction kinetic system can be written as

ẋ = Z D K Exp
(

ZTLn(x)
)

(116)

The formulation is equivalent to that in Eq. (110), with the stoichiometric matrix S = Z D sup-
plying the stoichiometric coefficients and the rates vector v(x) = K Exp

(
ZTLn(x)

)
supplying

the mass-action kinetic rates. A detailed explanation on the graph theoretical formulation and
further analyses can be found in van der Schaft, Rao, and Jayawardhana (2016).

To illustrate this, let us consider a simple two-reaction model of CO formation put forward
by Wedemeyer et al. (2003) based on the reactions from Ayres and Rabin (1996). There is one
reaction for formation (through radiative association), and one for destruction (through collision
with atomic hydrogen). The CO formation reaction is

C + O→ CO + hν, (117)

where hν represents the energy released, and is omitted in further notation since we are primar-
ily interested in the chemical species themselves. The CO destruction reaction is

CO + H→ C + O + H. (118)

This network comprises of 4 species, C, O, CO, and H. The two reactions yield four complexes:
(C + O), (CO), (CO + H), and (C + O + H). The vectors of number densities for species (x ∈ Rs+)
and complexes (y ∈ Rc+) are

x =


nC

nO

nCO

nH

 , y =


n(C+O)

n(CO)

n(CO+H)

n(C+O+H)


where nX represents the number density of the quantity X. The form of the ODE system is

given by Eq. 116. Our matrices of interest are: the complex composition matrix

Z(4species×4complexes)
=


1 0 0 1

1 0 0 1

0 1 1 0

0 0 1 1


showing which species (rows) belong to which complexes (columns); the complex incidence
matrix

D(4complexes×2reactions) =


−1 0

+1 0

0 −1

0 +1


, describing which complexes (rows) are reactants or products (−1 or +1) of reactions (columns);
and the complex kinetics matrix

K(2reactions×4complexes)
=

[
k1 0 0 0

0 0 k2 0

]
which describes the rate coeffients corresponding to the reaction (row) where the complex (col-
umn) is a reactant. The stoichiometric matrix S is found through S = ZD:

D(4species×2reactions) =


−1 +1

−1 +1

1 −1

0 0
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and describes the stoichiometry of each species (row) for each reaction (column). The first two
rows describe C and O, the third row describes CO, and the fourth describes H. Since our
reaction system is closed, and there are an equal number of sources and sinks for each species,
the rows sum to zero. Note that as H is a catalytic species here (in that it is always present on
both sides of the reaction equation), its stoichiometry is zero.

The rest of the right-hand side, involving the mass-action dependence of the rates, is given by
Eq. 115. Note that this represents the rate of change of the complexes, not the species themselves.
Left-multiplying by the stoichiometric matrix S completes the full equation representing the
rates of change of species.

A graph theoretical approach allows one to investigate certain behaviours across chemical
pathways, such as the timescales of processes and the importance of certain species. Note that
these graph representations are only created and accessed upon request and are not used when
solving the kinetic system. The graph representations then allow for the analysis of the network
in more depth before and after solving the system, such as finding reaction pathways and de-
termining symmetries. In solving the actual kinetic system, only the rates vector v(x) changes
based on the change in number densities. Sec 3.4.4 explores a novel pathfinding approach to
find the most important reaction pathways in a network that is achieved by representing the
system in this form.

A drawback of the Python version of GCRN is its low efficiency compared to compiled lan-
guages. Though we have implemented a few optimisations, computing the chemical evolution
for many snapshots in 3D is still computationally challenging. As such, we utilise the Julia li-
brary Catalyst.jl 3 for steady-state calculations across many 3D snapshots. The Python side of
GCRN is used primarily to evaluate 2D slices, 1D averages and timescales, and investigate reac-
tion pathways, while large, 3D steady-state calculations are performed in Julia. The results are
identical between the two.

3.3 results

3.3.1 Time-Dependent vs Steady-State Chemistry

We investigated the results of time-dependent (TD) chemistry compared to equilibrium (Eqm)
chemistry in 3D. For all models, chemical equilibrium is generally held below log τ = 1. In order
to consider relative differences, we introduce the mixing ratio

r =
ni
ntotal

, (119)

where ni is the number density of species i and ntotal is the number density of all species
excluding H, H2 and M. In this way, the mixing ratio describes the relative abundances of im-
portant atomic and molecular species in a given volume. H, H2 and M are much more abundant
than other species, and including these species simply scales the relevant quantities down. We
characterise deviations by considering the ratio of TD to CE mixing ratios, which is equivalent
to considering the ratio of TD to CE number densities. Large deviations between TD and CE
species might not be spectroscopically relevant if the species is anyways present at very low
abundances, since these deviations will not be observable. Considering both the total number
density and the mixing ratio of a species therefore allows the inspection of relative and abso-
lute deviations from equilibrium in order to understand whether the deviations are significant.
Fig. 48 shows the absolute number densities and mixing ratios of species across the photosphere
for both the time-dependent and steady-state chemistry as horizontal averages on optical depth
(log τ) surfaces, as a function of optical depth.

Molecular chemistry is clearly in equilibrium in the deeper photospheric layers, generally
below log τ = 1. This is expected, as the high temperatures in this collision-dominated regime
result in very short timescales (much shorter than characteristic hydrodynamical timescales). In
essence, the assumption of chemical equilibrium holds in these regimes. Significant deviations
are not present in the AM1 model, but appear above log τ ≈ −2 in model AM2, and above
log τ ≈ −1 in model AM3. In all cases where deviations are non-zero, time-dependent chem-

3 https://catalyst.sciml.ai/dev/
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(a) (b)

(c)

Figure 48: Mixing ratios and deviations from chemical equilibrium for the AM1, AM2 and AM3

models. (a) [Fe/H] = 0.0. (b) [Fe/H] = −2.0. (c) [Fe/H] = −3.0.
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istry is affected by hydrodynamics such that there is insufficient time to reach a local chemical
equilibrium.

As expected, decreasing metallicity decreases the amount of molecular species that can be
formed. Deviations from equilibrium molecular number densities increase with decreasing metal-
licity due to slower chemical timescales. The largest deviations are seen in C2 and CN in the
AM3 model, reaching up to 0.15 dex at log τ = −4. The deviations for other molecules similarly
increase with increasing height. These positive deviations are balanced by (smaller) negative
deviations in CO. Essentially, there is insufficient time to form the equilibrium yield of CO in
these thermodynamic conditions, and hence the yield of species that would react to form CO is
higher.

Often, differences present around local features such as shocks can be lost when viewing the
global picture (averaging over space and time). Even though the chemistry is mostly in equilib-
rium throughout the atmosphere, investigating cases where it is out of equilibrium can lead to
an understanding of the hydrodynamical effects as well as insights into where approximations
of chemical equilibrium break down. Figs. 49 & 50 show the time-dependent mixing ratios in a
horizontal and vertical slice through the AM3 model atmosphere, respectively.

In Fig. 49, deviations from CE are seen in CN in and around cool features. Mass-action rates
increase with temperature, hence cooler cells lead to longer chemical timescales. The instanta-
neous CE therefore predicts dissociation that is inconsistent with the time-dependent scheme,
and higher amounts of these molecular species are seen in the time-dependent scheme since
there is insufficient time for them to be dissociated to their equilibrium values. In higher layers,
the same reasoning applies generally, leading to a positive deviations in CN, CH and C2 , offset
by negative deviations in CO, as seen in Fig. 48.

The vertical slice in Fig. 50 shows the evolution of chemistry in various layers, and highlights
a shock in the upper photosphere. Deviations from CE are seen in all species in higher layers,
with the shock being the most prominent example. In CE, all molecular species are immediately
dissociated, while the time-dependent shows that, even in these higher-temperature regions,
CO is not so quickly depleted. While it may seem counterintuitive that CO then shows a small
negative deviation from CE, the mean amount of CO in the time-dependent case is less than
that in CE. This is reflected in the positive deviations from CE seen in CH and CN, which, due
to mass conservation, are offset by the negative deviation in CO. Additionally, the reverse trend
is also true, in that the formation of CO after a shock passes is slower than predicted in CE.

3.3.2 Carbon Enhancement

For the models presented thus far, oxygen has been more abundant than carbon. CO, being
extremely stable, often dominates the molecular species when it can form. It is possible, though,
that this preference towards CO formation is influenced by the enhancement of oxygen relative
to carbon present in the atmosphere. We investigated two cases of carbon enhancement in a
model atmosphere with metallicity [Fe/H] = −3.0. The first increases both C and O by 2.0 dex
(AC1), while the second increases only C by 2.0 dex (AC2). Nitrogen was also increased by 2.0
dex. The increase for all elements includes the 0.4 dex enhancement for alpha elements.

Fig. 51 shows the mixing ratios and deviations from equilibrium for the two CEMP model
atmospheres presented in this work. In model AC1 (log (C/O) = −0.26), more CO and CH is
formed compared to the standard metal-poor case, but OH is still more abundant than CH.
Almost all C is locked up into CO, hence the next most-abundant molecular species is OH.
This is analagoues to models AM2 and AM3, as O is still more abundant than C. Carbon-
bearing molecules are more abundant than in AM3, but it is clear when looking at the mixing
ratios of, e.g. CH to OH, that the carbon enhancement does not necessarily lead to a large
increase in all carbon-bearing molecular abundances. In model AC2 (C/O = +1.33), CO is still
the most abundant species, while CH is more abundant than OH. We observe the opposite effect
compared to models AM2, AM3 and AC1 where it is instead O that is locked up into CO. This
results in a significant depletion of OH compared to model AM3, as there is relatively little O
left to form OH due to the overabundance of C. The depletion of O hinders the formation of
further CO, and the chemical equilibrium is such that atomic C is the most abundant species. All
models hence reinforce the notion of CO being the most stable molecular state in the chemical
network.
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Figure 49: Mixing ratios of molecular species in a horizontal slice through the photosphere in
the AM3 model. Left. Time-dependent. Right. Equilibrium. Molecular formation fol-
lows a reversed granulation pattern. The effect of finite chemical timescales is most
prominent when contrasting warm and cool regions in CN and CH; CO is seen to
be relatively close to CE, as confirmed by Fig. 48c at log τ = −4. The white contour
traces a temperature of 4500 K.
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Figure 50: Time-dependent mixing ratios of molecular species in a vertical slice through the
photosphere above log τ = 1 in the AM3 model atmosphere. The white contour traces
a temperature of 4500 K. The colour scale is the same for all molecular species.
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(a) (b)

Figure 51: Mixing ratios and deviations from chemical equilibrium at [Fe/H] = −3.0 and a car-
bon enhancement of +2.0 dex for two atmospheres with different C/O ratios. (a)
Model AC1, C/O = −0.26. (b) Model AC2, C/O = +1.33.

Oxygen-bearing species seem to be further out of equilibrium in model AC1, while carbon-
bearing species are further out of equilibrium in model AC2. Interestingly, deviations from equi-
librium decrease in model AC2 where the C/O ratio of +1.33 means carbon is more abundant
than oxygen. While this favours formation of carbon-bearing species such as C2 and CH, the for-
mation of CO is hindered compared to model AC1 due to the lack of OH formation, reinforcing
the idea that the pathway for CO formation involving OH is an important one. The significantly
smaller deviations in model AC2 may suggest that oxygen-bearing molecules may show larger
deviations from chemical equilibrium due to hydrodynamical effects. All in all, CEMP atmo-
spheres do not seem to be largely out of chemical equilibrium for the species presented in this
work.

3.4 discussion

3.4.1 Effects of Convection

As material is transported from hotter, deeper photospheric layers to cooler, higher ones, the
conditions for chemistry to equilibriate change. It is feasible, then, that material from a lower
layer can be carried upwards, reach a new equilibrium state, and later return to a deeper layer.
In this process, molecular species will be present in greater amounts in cooler regions compared
to hotter regions. If chemistry does not equilibriate faster than advection occurs, we will observe
deviations from chemical equilibrium throughout convection cells. This effect is seen in Fig. 49

for CN and CH, where features are traced much more sharply in the equilibrium case than in the
time-dependent one. We see that the finite chemical timescales are responsible for differences in
formation in cool regions, and dissociation in hot ones. At this layer, the chemical equilibrium
approximation still holds well for CO.
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3.4.2 Behaviour around Shocks

While the overall differences in time-dependent and steady-state chemistry are small when av-
eraged over time and space (horizontally), there can be significant differences when looking at
individual instances in time. In addition to the shock seen in Fig. 50, Fig. 52 shows the deviations
from equilibrium molecular chemistry in the photospheres of the AM3, AC1 and AC2 models.
This histogram shows deviations from CE binned in gas density and temperature across the 20
snapshots used in this work. The top panel gives the bin counts, showing the difference between
background material (high density of points) and transient states (low density of points).

Though the background material is generally in equilibrium, three interesting regimes emerge
where the molecular chemistry is clearly out of equilibrium, labelled as R1, R2 and R3. R1 is
the regime of convection taking place in the upper photosphere and chromosphere, where hot
material is advected upwards to a new layer faster than the molecular chemistry can reach equi-
librium. When this material cools and falls, it can sometimes reach very high velocities (around
10 km s−1) exceeding the local sound speed. This supersonic material of the shock front is cap-
tured in the regime R2. Equilibrium chemistry predicts an almost-instantaneous dissociation of
molecular species, while the time-dependent case models this over a finite timescale. Thus an
excess of molecular species is present in the time-dependent case. Finally, the regime R3 is the
wake of the shock, where material has cooled and is subsonic. The slower chemical timescales
in this regime lead to a depletion of molecular species in the time-dependent case. CO is an
outlier here; it is still present in slight excess in R3 as it does not dissociate as quickly as the
other molecular species in the shock.

Models AC1 and AC2 show opposite trends in regimes R1 when considering CH, CN, C2
and OH. In model AC1 (log C/O = −0.26), the carbon-bearing molecules are more abundant
in the time-dependent case, and OH is in depletion. Model AC2 (log C/O = +1.33) instead
has the carbon-bearing molecules in depletion while OH is more abundant. This is due to the
relative abundances of C and O. Chemical timescales depend on the abundances of C and O,
so the oxygen-rich atmosphere AC1 has slower dissociation rates for carbon-bearing molecules
while having higher yield due to faster formation rates for OH (and vice versa for the carbon-
rich atmosphere AC2). Since CO is a stable end-product of most reaction pathways, it is not as
strongly affected by this phenomenon.

Overall, the differences between the time-dependent and steady-state treatments in the photo-
sphere are small, meaning the chemistry in convection cells is likely not far from its equilibrium
state. This is especially evident when averaging over space and time. However, it is possible
that the effects would become larger in stars on the red giant branch (RGB stars) due to larger
scale flows and M-type dwarfs due to cooler temperatures – though the latter have smaller ve-
locity fields, meaning the effects of advection on the evolution of chemical species are reduced.
Wedemeyer-Böhm et al. (2005) showed that the need for time-dependent chemistry becomes
increasingly important in the solar chromosphere due to the higher frequency of shock waves
alongside longer chemical timescales, but that the photosphere of the Sun was generally in chem-
ical equilibrium for CO. We find the same trend when considering metal-poor dwarf stars: that
chemical equilibrium does generally hold for the photospheres of these stars when averaging
over space and time, and that deviations are largely present in their chromospheres. This further
shows the need to include accurate time-dependent molecular chemistry when modelling stellar
chromospheres.

3.4.3 1D Analysis

Considering a 1D horizontal cut through the atmosphere shows the instantaneous variations
in parameters and can help identify patterns. Due to mass-action kinetics, chemical timescales
depend on gas density and temperature. Fig. 53 shows profiles of these quantities alongside
the time-dependent and equilibrium number densities of CO across a prototypical downflow
feature in the chromosphere of the AM3 model.

The equilibrium CO number density changes much more sharply across the feature than in
the time-dependent case, showcasing the finite chemical timescales in play. The number densities
are also more sensitive to fluctuations in temperature, as seen towards the end, where the gas
density is changing but temperature is constant. In the equilibrium number densities, there are
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Figure 52: Heatmaps of binned quantities for the AM3, AC1 and AC2 models. Each quantity
was binned using 20 snapshots of each 3D model. Deviations from equilibrium are
seen in three distinct regions, labelled R1 (convective cells in the upper photosphere),
R2 (shock fronts in the chromosphere), and R3 (wake of the shock).
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Figure 53: Gas density, temperature and the number density of CO molecules in a slice across the
AM3 atmosphere. The left panels show the 2D heatmaps of these quantities, while the
right panels show a 1D cut across a prototypical downflow feature, depicted by the
black solid line in the top panels. The bottom right panel shows the time-dependent
number density as a black solid line and the equilibrium number density as red
points.
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sharp discontinuities due to the vastly different chemical timescales around the shock front.
While these are implausible, the average number densities are very similar (as shown in Fig. 48),
showing that the shock here is not disruptive enough to CO chemistry to have a profound
impact overall.

3.4.4 Timescales and Pathways

It is perceivable that a metallicity reduction by 2.0 dex leads to timescales that are slower by
at least a factor of ∼ 102 − 104 due to the mass-action law for single-species and two-species
reactions. Additionally, relative abundances have a strong effect and the overall yield is lower
at lower metallicities. Fig. 55a shows the evolution and equilibrium times for 3 metallicities,
and Fig. 55b shows this for the two CEMP models. The equilibrium times for each model and
species of interest are given in Table 15. Note that due to the time-stepping of the solver, these
times are not necessarily exact, but they should give a clear picture of how the species interact.
The equilibrium times here are generally given as the point at which the relative difference in
the number densities falls below a threshold ε, i.e. teqm is reached when ni+1

ni
6 ε. We adopt

ε = 10−6 for this network. Again, since this definition relies on the solver’s time-stepping to
find ni, ni+1, the times are only exact to the times where the solution is evaluated.

Model teqm(C2) teqm(CH) teqm(CN) teqm(CO) teqm(OH)
[s] [s] [s] [s] [s]

AM1 4.5× 102 1.0× 103 2.4× 103 1.7× 102 1.7× 102
AM2 5.7× 103 5.1× 103 6.3× 104 3.9× 103 3.2× 103
AM3 4.9× 104 2.4× 104 2.4× 105 4.0× 104 1.3× 104

AC1 9.0× 103 7.7× 103 1.6× 104 1.6× 103 1.6× 103
AC2 2.2× 103 1.2× 103 2.4× 103 1.8× 103 2.4× 103

Table 15: Time-to-equilibrium for all models and key molecular species at a temperature of
3500 K and a gas density of 10−9 g cm−3, corresponding to the upper photospheric
layers. Due to the time-stepping of the solver, these times are not exact, but they pro-
vide a useful picture of how quickly various species set into equilibrium at varying
chemical compositions.

We find that the time for each species to reach equilibrium increases with decreasing metal-
licity. This is a direct consequence of the mass-action kinetics used to determine reaction rates.
The carbon-enhanced models show faster timescales for the same reason.

Another interesting investigation involves the pathways that molecular species are formed
(and disassociated) by, and how these change throughout the atmosphere. To pursue this, we
represent the reaction network as a weighted, directed graph, as shown in Sec. 3.2.3. The nodes
are the left- and right-hand sides of the reactions, (hereafter complexes) while the edges rep-
resent the reactions themselves, weighted by their corresponding inverse rate. As this graph is
often disconnected, and it is the species we are interested in, we add nodes for each individual
chemical species. To connect the graph fully, the individual species nodes have an unweighted
edge to each complex that contains it. In this way, we can represent the evolution of one species
into another by means of the reaction pathways.

We can now utilise pathfinding algorithms to move from a source species to a target species,
identifying the chemical pathway and its corresponding timescale (simply the sum of the edge
weights). These change not only with the temperature, but also with the number densities of
the reactants, meaning the most-frequented pathways for a given source-target pair can change
during the chemical evolution.

The custom pathfinding algorithm (based on Dijkstra’s shortest-path algorithm (Dijkstra,
1959) and taking inspiration from A* pathfinding (Foead et al., 2021)) is described in the fol-
lowing steps:
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Figure 54: Chemical evolution for 5 chemical mixtures at differing metallicities at T = 3500 K, ρ =
10−9 g cm−3 (corresponding to upper photospheric layers). Vertical dashed/dotted
lines show the time a species has set into equilibrium.

(a) A reduction in metallicity leads to a correspond-
ing reduction in time-to-equilibrium and overall
yield.

(b) In the oxygen-dominated atmosphere, CH is
depleted compared to OH, while the oppo-
site is true in the carbon-dominated atmo-
sphere.
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1. Start on a species source node.

2. If the current node is the target node, return the path.

3. Otherwise, find all nodes connected to the current node.

4. If the last travelled edge had a weight of zero, omit all edges with weights of zero from
the next choice of edges.

5. Pick an edge at random and repeat from 2.

6. Pathfinding will converge once all possible paths from source to target have been explored.

Step 4 is necessary to prevent “species-species” jumps that are included as a side-effect of
adding chemical species to the graph. These unweighted edges are represented with a weight
of 0, and traversing two of these consecutively is unphysical (e.g. moving from CO -> CO + H
-> H) as it represents a species transforming into another (often completely unrelated) species
without a reaction occurring. However, these connections are still necessary to fully connect the
graph; we remove the ability to travel along these connections consecutively, effectively altering
the graph during pathfinding.

In our network, we investigate key pathways from C and O to CO, as well as the reverse. In all
cases, reducing the metallicity results in longer timescales for reactions. Additionally, most path-
ways have a single reaction that dominates the pathway, often referred to as the “rate-limiting
step” (Tsai et al., 2018, 2017). Table 16 shows the main reactions involved in the formation and
dissociation of CO for the AM3 atmosphere. We qualitatively reproduce the same effects as those
explored in (Wedemeyer-Böhm et al., 2005), and find that of the three reactions that dissociate
CO to C and O, the reaction CO → CO + H is by far the most efficient, even in this extremely
metal-poor atmosphere. Additionally, formation via species exchange (especially by OH) is the
most preferable set of pathways.

We can examine the preferred pathways in the network for OH for 3 abundance mixtures:
AM3, AC1 and AC2. AM3 and AC2 are qualititively similar, where radiative association of OH
via H is a leading timescale. Species exchange with CH and CO is not as preferable. AC2 shows
exactly the opposite trend, with species exchange routes being significantly better-travelled than
direct radiative association. Again, this is because in both AM3 and AC2, more free O is available
after CO has been formed, while in AC1, very little O is present and OH formation relies on
carbonic species.

3.4.5 Treatment of Photochemistry

Our network does not include the effects of photodissociation of species, due to the greatly
increased complexity required to treat this process properly. In the collision-dominated layers,
photochemistry is unlikely to be important, but the situation may be different in higher, optically
thin layers, where radiation-driven processes become important. The importance of photochem-
istry is perhaps traced better by the prominence of radiative NLTE effects. The treatment of
neutral C in the Sun (Amarsi et al., 2019a) and O in the Sun (Steffen et al., 2015) shows that the
abundances are affected up to 0.1 dex in relevant line-forming regions. It is feasible that photo-
chemistry is then an important consideration in higher layers, but the treatment of all atomic
and molecular species’ photochemical reactions is a considerably difficult and time-consuming
endeavour. We welcome any further advancements in this direction.

3.4.6 Complexity Reduction

Ideally, one would like to include as many species and reactions as possible into the network
to model it as precisely as possible. Unfortunately, due to the large memory cost of storing 3D
arrays as well as the steep scaling of the solution time with the size of the kinetic system, meth-
ods to reduce complexity are often required. In this work, we have presented a heavily reduced
network that is focused on the formation and disassociation of a few key molecular species.
However, the existence and addition of other species into the network can alter evolution, path-
ways and timescales. It is often the case that only a small subset of reactions control the vast
majority of the evolution. Identifying these reactions can prove challenging, but a few methods
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Pathway Step Reactants Products Timescale [s]

C→ CO

Pathway 1 1. C + OH → CO + H 7.43× 10−5

Total: 7.43× 10−5
—————

Pathway 2 1. C + OH → CH + O 4.10× 10−3

2. CH + O → CO + H 4.27× 10−4
Total: 4.53× 10−3

—————
Pathway 3 1. C + NO → CN + O 1.44× 101

2. CN + O → CO + N 6.46× 10−3
Total: 1.44× 101

O→ CO

Pathway 1 1. CH + O → CO + H 4.27× 10−4

Total: 4.27× 10−4
—————

Pathway 2 1. CH + O → C + OH 2.63× 10−3

2. C + OH → CO + H 7.43× 10−5
Total: 2.70× 10−3

—————
Pathway 3 1. O + C2 → C + CO 6.72× 100

Total: 6.72× 100

CO→ C

Pathway 1 1. CO + H → C + OH 6.26× 10−5

Total: 6.26× 10−5
—————

Pathway 2 1. CO + H → C + O + H 5.27× 10−1

Total: 5.27× 10−1
—————

Pathway 3 1. CO + M → C + O + M 5.24× 100

Total: 5.24× 100

CO→ O

Pathway 1 1. CO + H → C + OH 6.26× 10−5
2. C + OH → CH + H 4.10× 10−3

Total: 4.16× 10−3
—————

Pathway 2 1. CO + H → C + O + H 5.27× 10−1

Total: 5.27× 10−1
—————

Pathway 3
1. CO + C → C2 + O 3.24× 101

Total: 3.24× 101

Table 16: Step-by-step reactions and rate-limiting steps for the AM3 model atmosphere at a
temperature of 3500 [K] and a gas density of 10−9 [g cm−3]. The rate-limiting step
(longest step in a pathway), is highlighted in bold.

exist to reduce the complexity of the kinetics problem (Grassi et al., 2012; Pope, 1997). In our
case, the network was already heavily reduced to the key reactions, and chemical pathways were
investigated by Wedemeyer-Böhm et al. (2005) which in part verify this. In the future, we aim
to investigate chemical pathways found via a graph theoretical analysis to reduce the number
of reactions and species to only those necessary to model significant trends in the regions of
interest.
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3.5 slices through the photosphere

The following figures show horizontal and vertical slices through the photospheres of all models,
analogous to Figs. 49 and 50. The slices in the xy direction are all taken at an optical depth of
log τ = −4. In all cases, the differences in the xy slices are minor, seen primarily around hot
shock fronts where equilibrium chemistry predicts near-instantaneous dissociation of molecular
species, while in the time-dependent case, this proceeds on a finite timescale. As such, time-
dependent molecular species are seen in excess.

In the xz slices, differences are seen in the uppermost layers of the atmosphere (generally only
in chromospheric layers). These layers are frequented by shock waves that disrupt molecular for-
mation, and when considering equilibrium chemistry, we once again see the effects of molecular
dissociation occurring too quickly in the hot shock fronts, and formation of CO occurring too
quickly in the cooler regions. As shown in Figs. 55a and 55b, molecular formation is very slow
(on the order of hours to days), and most molecular species first show an excess in their yield
profile before this decreases as they form CO.
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Figure 56: As Fig. 49, but with [Fe/H] = +0.0. The contour line traces a temperature of 5000 K
and highlights areas where deviations may be present (seen primarily in CN and
CO).
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Figure 57: As Fig. 50, but with [Fe/H] = +0.0. The contour line traces a temperature of 4550 K.
Minor deviations are present in the uppermost layers of the atmosphere for CN and
CO.
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Figure 58: As Fig. 49, but with [Fe/H] = −2.0. The contour line traces a temperature of 5000 K,
highlighting areas where CN chemistry is out of equilibrium. CH and CO are gener-
ally formed under equilibrium conditions.
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Figure 59: As Fig. 50, but with [Fe/H] = −2.0. The contour line traces a temperature of 5400 K
and highlight hydrodynamical features such as an updraft colliding with a downdraft
around x = 6.0 Mm, z = 2.5 Mm. All molecular species are out of equilibrium around
this feature as they do not dissociate as quickly as predicted by the equilibrium chem-
istry.
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Figure 60: As Fig. 49, but with a C & O enhancement of +2.0 dex and C/O = −0.27 The contour
line traces a temperature of 4900 K. The chemistry is almost entirely in equilibrium
in this layer of the atmosphere (due to the enhanced C & O abundances), and minor
deviations are visible only for CN around the hotter regions.
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Figure 61: As Fig. 50, but with a C & O enhancement of +2.0 dex and C/O = −0.27. The contour
line traces a temperature of 5150 K and highlights a hot updraft near x = 9.0 Mm
where primarily CN and CO molecular dissociation is out of equilibrium.
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Figure 62: As Fig. 49, but with a C enhancement of +2.0 dex and C/O = +1.33. The contour line
traces a temperature of 5000 K, showcasing minor deviations present only in CN. The
relatively high carbon abundance results in the molecular chemistry being very close
to equilibrium conditions.
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Figure 63: As Fig. 50, but with a C enhancement of +2.0 dex and C/O = +1.33. The contour line
traces a temperature of 4950 K, and the largest deviations are seen in a hot updraft
near x = 6.0 Mm, z = 3.0 Mm. The relatively high carbon abundances result in
these molecular species being formed very close to equilibrium conditions, though
differences are present in these very dilute regions.
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3.6 carbon enhancement and metallicity

The effect of the C/O ratio can be visualised by investigating reaction pathways between the
species C, O, CH, OH and CO. A simplified reaction network with 8 reactions was used in
this study with temperature-dependence removed from the rate coefficients to investigate the
effects of mass-action kinetics. This simplified network takes a subset of reactions from the
original network used in this work that characterise the formation and dissociation of CO via
CH & OH. In this network, there are 2 pathways from C and O to CO (and back), shown and
labelled in Fig. 64. The pathway involving C-CH-CO is labelled P1 and O-OH-CO is labelled P2.
Additionally, the pathways are constructed such that pathways P1 and P2 have the same rates
when the amount of C and O is equal. This symmetry allows us to investigate purely the effect
of the C/O ratio on the mass-action kinetics. The reaction rates are constant in temperature,
but are otherwise constructed to qualitatively match those of the larger network (apart from the
symmetry).

Figure 64: Diagram of the simplified reaction network showing pathways P1 and P2.

Fig. 65 shows the evolution of these species for three cases. In Case 1, there is more oxygen
than carbon; in Case 2, the amount of carbon and oxygen is equal; in Case 3 there is more
carbon than oxygen. As expected, the overall yield of the number densities reflects that of the
input abundances.

We adopt abundances similar to the AM2 model for the 3 cases. The total timescale is cal-
culated by summing the individual timescales of the reactions along the pathway. The total
timescales and abundances considered for each case are shown in Table 17, with the smallest
timescales highlighted in bold. Note that these are not the same timescales as shown in Table 15;
the timescales shown there represent the times various species evolve to chemical equilibrium,
while the timescales here are inverse reaction rates scaled by number densities. In this sense,
they are essentially e-folding timescales.

Case A(C) A(O) log C/O P1 P2

[s] [s]

1 6.41 7.06 −0.65 36.8 1.6
2 7.06 7.06 0.00 3.6 3.6
3 7.06 6.41 +0.65 1.6 36.8

Table 17: Total timescales for the C-CH-CO pathway P1 and the O-OH-CO pathway P2 (towards
formation of CO) for three different log C/O ratios.
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Figure 65: Evolution of C, CH, CO, O and OH for a simplified reaction network used to illustrate
the effect of the C/O ratio on equilibrium timescales.

In case 1, where O is more abundant than C, pathway P2 is faster since forming OH is
favourable to forming CH. This results in C and CH being considerably depleted compared
to the other species, and is the same effect as in model AM2. In case 2, where O and C are
equally abundant, CH and OH form equally quickly due to the symmetry in the simplified
network. In case 3, where C is more abundant than O, the exact opposite behaviour to case 1

is observed (again due to the symmetry), however this is qualitatively similar to model AC2.
All in all, the current method allows us to investigate favourable pathways in a given network,
validating which chemical species are especially important when considering the evolution of
another. The longer pathways seen here in the simplified network are indicative of similar trends
in the full network, reinforcing the notion that as chemical timescales grow longer, approaching
dynamical timescales, it becomes increasingly likely that chemical species lie further from their
equilibrium values. However, due to the inclusion of more species and many more pathways
between them, the dynamics of the full network are significantly more complicated and it is
not immediately clear from the timescales alone how far species will be out of equilibrium, nor
whether they would be present in excess or in depletion. Nevertheless, an analysis of favourable
reaction pathways could lead to improvements such as complexity reduction.

3.7 conclusion

We have presented a study of 3D time-dependent molecular formation and dissociation in one
solar metallicity and four metal-poor atmospheres. The chemistry is modelled through mass-
action kinetics with 76 reactions and 14 species which are advected by the velocity field during
the hydrodynamics step. We additionally present a comparison to the equilibrium abundances,
computed with a Python/Julia chemical kinetics code. Deviations from equilibrium are seen pri-

129



marily in higher photospheric layers, around shocks and in the temperature differences through-
out convection cells.

• Across all models presented in this work, molecular species are generally in chemical
equilibrium throughout the model photospheres. Molecular species show mean deviations
from equilibrium reaching 0.15 in the lower chromosphere, and these deviations increase
with decreasing metallicity and increasing height. The largest deviations are in CN, C2
and CH when log (C/O) < 1, and in OH when log (C/O) > 1. Above log τ ≈ −2, the less
abundant of C or O becomes locked into CO, inhibiting the formation of other molecular
species involving that species. This results in comparatively low amounts of CH, CN &
C2 in all models except AC2, and comparatively low OH in model AC2.

• The deviations from equilibrium can also be attributed to behaviour around chromo-
spheric shock waves. In the equilibrium case, the hot shock front contains very low num-
ber densities of molecular species, while the time-dependent treatment has greater num-
ber densities as the evolution proceeds with a finite timescale. In the uppermost, coolest
layers (T 6∼ 3500 [K]), slow chemical timescales result in a depletion of CO as there is
insufficient time to form it before material is advected to a significantly different thermo-
dynamic state.

• These deviations are unlikely to contribute significantly to spectroscopic measurements
for metal-poor dwarfs, as the line cores of key molecular species are generally formed
in deeper layers (Gallagher et al., 2017a). The largest deviations are mostly outside of
the range of the contribution functions for the CH G-band and OH-band, but these de-
viations could still affect spectral line shapes, which can only be properly reproduced in
3D models. The perceived trend of increased carbon enhancement with decreasing stellar
metallicity is therefore not due to an improper treatment of time-dependent chemistry. An
investigation including spectrum synthesis using the time-dependent number densities is
however warranted in light of these deviations.

• Relative deviations increase with decreasing metallicity due to slower mass-action reaction
rates. The change in metallicity does not lead to a strictly linear increase in chemical
timescale or decrease in yield in all layers, but generally, lower metallicities result in larger
chemical timescales and lower yields.

• The C/O ratio plays a key role in determining which molecular species are further out of
equilibrium. Both CH and OH are formed along reaction pathways to form CO. In the ma-
jority of atmospheres presented, oxygen is present in excess compared to carbon, making
OH formation more viable than CH. This leads to faster chemical timescales for reac-
tion pathways involving OH. Changing this ratio so carbon is in excess likewise changes
pathways to make the formation of carbon-bearing species preferential.
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4T I M E - D E P E N D E N T M O L E C U L A R C H E M I S T RY I N T H E P H O T O S P H E R E S
O F G I A N T S TA R S

4.1 introduction

Stars on the red giant branch (RGB) contain a wealth of information about stellar evolution,
much of which is accessible through their spectra. The spectra of late-type giants show a plethora
of molecular lines, as the cooler temperatures favour molecular formation of species such as CO,
CH and CN. These observations of the vast amount of molecular lines continues towards lower
metallicities, as atomic lines become comparatively weaker, and so the proper treatment of these
molecular lines becomes increasingly important. The most metal-poor stars show a trend of
increasing carbon enhancement with decreasing metallicity. In Chap. 3, we found that, in dwarf
stars, this effect does not come from an improper treatment of molecular chemistry, as the layers
in which molecular formation and dissociation is severely disrupted by hydrodynamic effects
lies outside the formation regions of key molecular species such as CH, OH, CO and CN. In this
work, we perform a similar analysis for red giant atmospheres.

RGB stars are important in the study of the evolution of low-mass stars. As the Milky Way
Halo contains a larger fraction of older, metal-poor Population II stars, the study of metal-
poor giants gives direct insights into the evolution of some of the oldest stars in the Galaxy.
The models we consider extend across the RGB, from Teff = 5000 K, logg = 2.5 to Teff =
3600 K, logg = 1.0. We also cover metallicities down to [Fe/H] = −3, approaching the tail of the
metallicity distribution function.

The extended atmospheres of RGB stars, along with the cooler temperatures we consider here
lead to environments where molecular chemistry (often described with mass-action kinetics)
slows down. In other words, there may not be sufficient time for species to react and form
their equilibrium yields before effects such as convection cause the local thermodynamic state
to change. We hence treat this as a departure from local thermodynamic equilibrium (LTE). In
contrast to radiative NLTE, we model the evolution of chemical species in a time-dependent
fashion, taking into account the advection of species as well as chemical reactions occurring on
a finite timescale.

In this work, we present three-dimensional model atmospheres with self-consistent molecu-
lar formation and dissociation for 7 stars computed with the radiation (magneto)hydrodynamics
code CO5BOLD. We use the same chemical network as the one presented in Table 13 to model the
evolution of molecular species such as CO, CH, CN and OH. In addition to the study of hydro-
dynamical effects and direct comparisons between equilibrium and non-equilibrium molecular
chemistry, we investigate the interplay between hydrodynamical and chemical timescales quan-
titatively to determine whether the question of whether chemical equilibri um holds for a given
chemical network can be precisely answered with a simpler methodology.

The methods are described in Sec. 4.2. The results and implications of the three-dimensional
simulations for the time-dependent and steady-state calculations are presented in Sec. 4.3. Chem-
ical and hydrodynamical timescales are discussed in Sec. 4.4.

4.2 methodology

4.2.1 Model Atmospheres

Our models have been computed with the CO5BOLD model atmosphere code. CO5BOLD is a con-
servative finite-volume hydrodynamics solver capable of modelling surface convection, waves,
shocks and other phenomena in stellar objects (Freytag et al., 2012). We treat hydrodynamics,
radiation transfer and molecular chemistry by means of operator splitting. Each model is solved
on a Cartesian grid in a time-dependent manner. For consistency, the chemistry is solved as the
last step in each iteration, meaning the final number densities are representative of the fluid
state in the moment. We employ standard directional splitting along the directions of 1D opera-
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tors, and a Roe solver is used to compute updates in a single time step. Higher order terms in
time are provided based on the applied reconstruction scheme, which, for the passive tracers, is
chosen such that number densities are strictly non-negative.

The properties of the model atmospheres used in this work are summarised in Table 18. For
each model, the passive tracers representing the chemical species were added to an already
thermally relaxed model. Each model was then evolved long enough to be chemically relaxed.

Model ID Teff logg [Fe/H] Internal ID

A1 4000 1.50 +0.00 d3t40g15mm00

A2 4000 1.50 -2.00 d3t40g15mm20

A3 4000 1.50 -3.00 d3t40g16mm30

B1 5000 2.50 +0.00 d3t50g16mm00

B2 5000 2.50 -2.00 d3t50g16mm20

B3 5000 2.50 -3.00 d3t50g16mm30

C1 3600 1.00 0.00 d3t36g10mm00*

Table 18: Model atmosphere parameters for the seven models used in the study. The C1 model
uses the smaller reaction network presented in Wedemeyer-Böhm et al. (2005).

The chemical network used in the time-dependent evolution is the same as that described in
Deshmukh and Ludwig (2023). The initial abundances for the molecular chemistry are scaled by
metallicity and alpha enhancement. Each model’s molecular chemistry input is consistent with
its equation-of-state and opacity table.

4.2.2 Equilibrium Chemistry

We use the GCRN code1 to compute the equilibrium number densities for the given chemical
network, provided the gas density, temperature and abundances. The GCRN code is capable
of solving chemical kinetics problems provided a chemical reaction network, and also includes
the ability to analyse reaction pathways in a graph theoretical manner. We directly compare
the equilibrium number densities to those obtained from the time-dependent evolution using
CO5BOLD. The assumption made in equilibrium chemistry is that chemical timescales are much
shorter than any other timescale in the system, meaning that chemical reactions proceed until
the material is in chemical equilibrium.

4.3 results

Figs. 66-68 show the mean number densities, mixing ratios and deviations for the models we
consider in this work in the range −4 6 log τ 6 2 for the different kinds of giants’ atmospheres
in this work.

Deviations increase with height in the atmosphere as the temperature and gas density de-
crease, leading to slower chemical kinetic rates. The largest deviations are seen in CN, C2 and
atomic C, though in all cases where deviations grow, the overall number densities and mixing
ratios of these species shrink. Therefore, convective flows advect these species into higher layers
and there is insufficient time for them to form more stable species due to the cooler, less dense
environment.

Somewhat surprisingly, average deviations in the A-series of models decrease with decreasing
metallicity, while normally, the lower metallicity would lead to slower chemical timescales and
increasing deviations. Instead, since the deviations seen here are due to upward flows advecting
material from lower layers (where they are present in excess) to higher ones, lower yields in
general lead to lower deviations in higher layers. All in all, the largest deviations coincide with

1 https://github.com/SiddhantDeshmukh/graphCRNs
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(a) [Fe/H] = 0.0 (b) [Fe/H] = −2.0

(c) [Fe/H] = −3.0

Figure 66: Mixing ratios and deviations from chemical equilibrium for the A1, A2 and A3 mod-
els. In the first and second panels, solid lines show the time-dependent quantities
while the hollow points show the equilibrium quantities.

decreasing number densities, meaning it is unlikely that these deviations will result in significant
NLTE corrections to abundances. Additionally, the cores of the spectroscopically accessible lines
are formed in the deeper layers, where the deviations are extremely minor.
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(a) [Fe/H] = 0.0 (b) [Fe/H] = −2.0

(c) [Fe/H] = −3.0

Figure 67: Mixing ratios and deviations from chemical equilibrium for the B1, B2 and B3 models.
In the first and second panels, solid lines show the time-dependent quantities while
the hollow points show the equilibrium quantities.

To see the effects of time-dependent chemical evolution in more detail, we can observe the
instantaneous differences that exist between the two treatments.
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Figure 68: Mixing ratios and deviations from chemical equilibrium for the C1 model. In the first
and second panels, solid lines show the time-dependent quantities while the hollow
points show the equilibrium quantities.

Fig. 69 shows a typical flow pattern in the atmosphere. Molecular formation is once again
seen to correlate with cool temperatures and large densities. A convective cell is visible in the
lower left corner (see top-right panel), and molecular chemistry is generally in equilibrium
here. The largest deviations from equilibrium are seen in the higher levels around the contour
line, particularly in the top-left part of the plots, where hydrodynamical flows advect molecular
species to higher levels where they exist in excess of their equilibrium values. While the overall
effect is small (see Fig. 67c), this effect is the most likely contributor to the excess CN number
density observed in the time-dependent case.

Fig. 70 shows the binned heatmaps of differences in time-dependent and steady-state chem-
istry. In the majority of the atmosphere, deviations are very small, and the deviations are only
seen in the uppermost, cooler layers. Many molecular species are present in excess in the time-
dependent case owing to the slow timescales of formation. Notably, the cool, diffuse region
around T ≈ 3000 K, log ρ ≈ −11 shows a depletion of CO and OH but an excess in other
molecular species. This is due to the formation pathways of CO and OH via the other molecular
species being inhibited due to the thermodynamic conditions. Overall, while significant devia-
tions are present at times, these are not reflected when considering the relevant line formation
regions.

Fig. 71 shows the 3D representation of the gas density, temperature and number density of
CO (time-dependent) in a portion of the higher layers. The formation of CO clouds can clearly
be seen in the cooler, denser regions of the atmosphere.

4.4 discussion

In order to better understand the regimes in which molecular chemistry is out of equilibrium,
we compute representative timescales for the two competing processes, namely chemical evolu-
tion and hydrodynamical mixing. The timescale of chemical evolution is derived by analysing
the system of ordinary differential equations (ODEs) that describe the change in the number
densities of the species, while the timescale of hydrodynamical mixing is obtained by analysing
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Figure 69: Time-dependent mixing ratios of molecular species in a vertical slice through the
photosphere above log τ = 2 in the B3 model atmosphere. The white contour traces a
temperature of 2850 K.

the velocity field of the 3D model atmosphere. While this analysis was done using 3D model at-
mospheres, the process involves the spatial and temporal averaging of flow quantities, meaning
the actual timescale comparison can be done in 1D.

Many different methods exist for determining the chemical timescale of a reaction system
(Caudal et al., 2013; Wartha, Bösenhofer, and Harasek, 2021) with varying levels of complexity.
We compared the use of the inverse reaction rate (Ayres and Rabin, 1996; Wedemeyer-Böhm
et al., 2005), Evans timescale (Evans et al., 2019) and inverse eigenvalue timescales.
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Figure 70: Heatmaps of binned quantities for the B-series of models. Each quantity was binned
using 20 snapshots of the relevant 3D model. Deviations from equilibrium are seen
primarily in regions with low counts that correspond to hydrodynamical features
found in the upper photosphere including the tops of convective cells, shock fronts,
and wakes.

The inverse reaction rate timescale involves simply inverting the reaction rate of a chemical
reaction and scaling by the number density of the chemical species in question. For example,
the evolution of CO via the reaction

C + O→k CO (120)
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(a) Gas density.

(b) Temperature.

(c) Number density of CO (time-dependent).

Figure 71

with rate coefficient k can be represented by the ODE

dnCO

dt
= knCnO. (121)
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From dimensional analysis, we can compute the relevant timescale by dividing both sides by
[CO] and inverting the right-hand side:

tchem,rate =
nCO

knCnO
(122)

In a reaction network with many different reactions, we then compute a different timescale for
each reaction. To find the relevant timescale in this analysis, it is necessary to first identify the
most important reactions, and to then take the fastest timescale, since this corresponds to the
reaction with the highest yield.

The Evans timescale is defined as

tchem,Evans = max
iεNmajor

[
ni
|ωi|

]
(123)

where ni is the number density of species i and ωi is the net reaction rate of species i (i.e., the
summed contribution of all reactions involving species i). Evans et al. (2019) suggest to use the
Nmaj major reacting species for this calculation.

Yet another method involves computing the inverse of the eigenvalues of the Jacobian matrix.
The inverse of the smallest (absolute) eigenvalue is then taken to be the dominant timescale:

tchem,Jacobian = min
[
1

λi

]
(124)

where λi is the ith eigenvalue of the Jacobian matrix J. In certain cases, the diagonal elements
of J can be taken as approximations of the eigenvalues (Wartha, Bösenhofer, and Harasek, 2021),
though in systems where off-diagonal elements are important, oscillating behaviour covered by
complex eigenvalues will be neglected.

In the end, we chose to use the inverse reaction rate timescale as it performed the best across
the atmospheric domain. We found that the inverse eigenvalue method gave extremely small
timescales that were not consistent with the deviations we observed, and the Evans method
did not provide sufficient detail as to the reaction mechanisms involved. However, we did take
inspiration from their filtering method and only considered the evolution reactions of C, O,
N, CO, OH, C2 and CN to compute relevant timescales, as these are the prominent reacting
species that are relevant. To compute a single timescale, we further consider only CO-relevant
timescales, as CO is the main molecular species in the network. Additionally, we sorted the
contributing terms to a given species evolution equation based on the rate (a proxy for the
yield), and removed all reactions that contribute less than 10%.

The hydrodynamical timescale should characterise the level of mixing in the atmosphere, as
it is this process that disrupts the chemical evolution process by changing the local tempera-
ture and gas density. Freytag et al. (2012) determine a convective turnover timescale using the
pressure scale height HP and characteristic convective velocity vc according to classical mixing
length theory:

tturnover =
HP

vc
(125)

We adopt a similar method, but use the root-mean-squared (RMS) velocity in the z-direction
instead of the characteristic convective velocity, since it is the quantity that characterises the
amount of mixing in the z-direction:

vRMS =
√

|〈v2z〉− 〈vz〉2|. (126)

The pressure scale height HP is given by

HP =
P

ρg
(127)

where P is the gas pressure, ρ is the gas density, and g is the surface gravity of the star. In full,
the hydrodynamical mixing timescale is hence given by

thydro =
HP

vRMS
=

P

ρg
√
|〈v2z〉− 〈vz〉2|

. (128)
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We can now compute a measure of chemical disequilibrium by means of the Damköhler
number (Schaschke, 2014) Da:

Da =
thydro

tchem
. (129)

Da can be used to identify which timescales are dominant in a regime. Large values of Da (greater
than 10) imply that hydrodynamical timescales are dominant, and hence the chemistry is not
largely affected by mixing. Conversely, small values of Da (less than 1) imply that chemical
timescales are dominant, and that there is insufficient time for chemistry to equilibriate before
hydrodynamical effects change the local state.

Figure 72: Da as a function of optical depth for all 7 atmospheres presented in this work. The
dotted and dashed lines mark Da = 10 and Da = 1, respectively.

Fig. 72 shows Da as a function of optical depth for all 7 atmospheres presented in this work.
This analysis shows that all molecular chemistry is in equilibrium below log τ = −1. The ap-
proach correctly predicts that models C1 and A1 show the largest deviations above log τ = −2,
and that the B-series of models show relatively minor deviations overall. However, the A1 and
A2 models both show deviations beginning above log τ = −1, yet the Da analysis predicts de-
viations to become significant closer to log τ = −2 for both of these models. While insightful,
other factors will likely need to be taken into account to utilise this as a means of determining
exactly where deviations from chemical equilibrium will occur. Overall, though, the Da analysis
provides a good first insight into where the assumption of chemical equilibrium may not be
valid.

4.5 conclusion

We have presented an analysis of time-dependent molecular formation and dissociation in 7 red-
giant atmospheres focusing on the evolution of CO, CH, CN, OH and C2Ṫhe models considered
here extend across a range of temperatures, surface gravities, and metallicities, and serve to
illustrate the validity of the approximation of chemical equilibrium in the spectroscopically
accessible regions.

• Deviations from chemical equilibrium are largest in the highest layers of the model atmo-
spheres, as expected with the decrease in temperature and gas density leading to slower
mass-action kinetic rates. In all atmospheres, the deviations do not exceed 0.2 dex in the
region −4 6 log τ 6 2, and rarely exceed 0.1 dex. These deviations are on-par with the
deviations seen in dwarf stellar models (Deshmukh and Ludwig, 2023). The assumption
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of chemical equilibrium is largely valid when performing abundance analyses within this
range.

• The largest average deviations are seen in CN and C2 which are also the least abundant
molecular species considered here. This is due to the structure of the chemical network,
which has many formation pathways towards CO, the most stable molecule. As the other
molecular species are generally formed along the path to CO, they are naturally less
abundant since the majority of potential carbon is locked into the CO molecule at these
cool temperatures.

• Molecular formation generally traces the reversed granulation pattern, though CH and
CN are more abundant in the time-dependent case while CO is depleted. This effect is due
to the long chemical timescales that model the species exchange of CH and CN to form
CO, which are not reached in the time-dependent case. As such, chemical equilibrium will
overestimate the abundance of CH and CN while underestimating the abundance of CO.
However, this effect is only seen clearly past the spectroscopically accessible region (above
log τ = −4) and is therefore unlikely to contribute significantly to abundance analyses.

• We present an analysis of various chemical timescales including the inverse-rate, Evans
and inverse-Jacobian timescales. The inverse-rate timescale, despite being the simplest,
yields the most plausible result when computed near chemical equilibrium. We filter the
reactions to use only those that give significant contribution to the formation or destruc-
tion of the species CO, CH, CN, OH and C2 .

• The Damköhler number Da can be used to find regions wher chemistry is likely to be out
of equilibrium. Da considers a ratio between the hydrodynamical mixing and chemical
timescales, and therefore provides a simple evaluation to check if molecular chemistry
is significantly affected by hydrodynamical effects. The Da analysis generally predicts
trends where chemistry is out of equilibrium correctly, under the assumption that chemi-
cal timescales are significantly slower than hydrodynamical timescales in these regimes.
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Part III

M A C H I N E L E A R N I N G M E T H O D S





a brief note on machine learning

So far, we have explored conventional modelling techniques for analysing stellar atmospheres.
In this penultimate part, the focus is on machine learning (ML) techniques. Chap. 5 explores
the problems encountered during spectroscopic analysis (such as line blends) seen through-
out Chap. 2, and describes ML techniques designed to remedy them. Chap. 6 considers the
time-consuming problem of solving stiff chemical ODE systems to their equilibrium point (en-
countered in Chaps. 3 & 4) and introduces novel neural network techniques to address it.

The use of ML techniques has increased drastically in recent years, and this increase also
applies to fields within astrophysics. While there is a large focus on the improvement of data re-
duction and analysis for large surveys, there have similarly been developments in astrophysical
modelling. The main ideas throughout the following chapters seek to further develop ML tech-
niques that complement conventional ones. Both the chapters presented in this section introduce
many operational defintions that are common in machine learning, but may have slightly differ-
ent meanings when used in an astrophysical context. For convenience, many of the operational
definitions are given below in alphabetical order:

• Activation function: a function that collects the outputs of a layer and combines them
into a value to be passed to the next layer. Activation functions for hidden layers are
usually non-linear to enable the neural network to learn non-linear behaviour, while the
activation function of the output layer depends on the output to be predicted, e.g., for
strictly non-negative outputs, a suitable function such as the Rectified Linear Unit will be
chosen.

• Batch size (mini-batches): The dataset is divided into “batch size”-length samples, and
one such sample is a mini-batch. The batch size is a hyperparameter chosen such that
training converges quickly while allowing for sufficient robustness to be learnt.

• Bias: a constant added to the weights vector in a layer, often denoted as b, with the full
bias vector (across all layers) denoted as b.

• Convolutional kernel: a matrix used for convolutional operations in convolutional lay-
ers. For image processing, these kernels often take the role of blurring, sharpening, edge
detection, and more.

• Early stopping: a method for preventing overfitting that halts the training process if a
certain metric (usually validation loss) ceases to improve for a given number of training
iterations.

• Epoch: one cycle through the entire training dataset. Neural network training often re-
quires more than one epoch, and the number of epochs is a hyperparameter.

• Feature: an input to the ML algorithm, with a set of features often denoted as the vector
X.

• Hyperparameters: parts of the ML algorithm that are determined by the user and are
not updated during the process. These include the learning rate, number of epochs, and
the batch size. As the hyperparameters affect the training process, it is often necessary
to optimise over the set of hyperparameters to find the best combination for a given
algorithm and dataset.

• Label: an output from a ML algorithm, with a set of labels often denoted as the vector y.

• Layer: a set of neurons that are usually not connected, but contribute to the same output.
Distinctions are often made between the input layer, hidden layers, and output layers.
Generally, weights are learnt in hidden layers and output layers. Each layer is followed by
an activation function.

• Learning rate: the step size at each iteration during the optimisation process that deter-
mines how far towards a minimum to move when applying a loss function. The learning
rate is a hyperparameter that can be altered during training; throughout the training pro-
cess, the learning rate is often altered depending on how close the current solution is to a
minimum.
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• Loss function: a function used in ML tasks to determine how close the ML solution is to
the ground truth solution.

• L1/L2 norm: distance functions corresponding to linear and squared distance, respectively.
These are common loss functions.

• Neuron: one “node” inside a layer in a neural network. A set of neurons makes up a layer,
and each neuron has a weight that it is often learnt.

• Optimiser: the optimisation method used to reach a satisfactory solution, such as gradient
descent. The choice of optimiser depends on the kind of ML task, and it is a hyperparam-
eter that is often a function of other hyperparameters, such as the learning rate.

• Parameters: parts of the ML algorithm that are usually updated during the training pro-
cess. For neural networks, these are the weights and biases of the layers.

• Regularisation: a process that removes needless complexity from the network, reducing
the likelihood of overfitting. Regularisation is an umbrella term and many methods fall
under it. Applying constraints is an example of explicit regularisation, while early stop-
ping is an example of implicit regularisation.

• Training/validation/testing datasets: the three commonly used splits from the entire dataset.
The training dataset contains data that the ML algorithm is trained on (used to update pa-
rameters); the validation dataset contains data used to compute validation metrics at the
end of each epoch; the testing dataset is used to evaluate the performance of the algorithm.
As a general rule, the validation and testing datasets are never seen by the network, and
hence represent datasets that the algorithm would encounter after real-world deployment.

• Weights: the vector of learnt quantities from a layer of neurons, often denoted as the
vector w, and the full matrix of weights is often denoted as the matrix W.
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5S P E C T R O S C O P I C A P P L I C AT I O N S O F M A C H I N E L E A R N I N G A N D
N E U R A L N E T W O R K M E T H O D S

5.1 introduction

Fitting synthetic spectra to observations is a commonly used tool in stellar spectroscopy (Amarsi
and Asplund, 2017; Asplund et al., 2009; Caffau et al., 2015). The technique involves computing
synthetic spectral lines from a model atmosphere (such as Freytag et al. (2012), Gudiksen et al.
(2011), Gustafsson et al. (2008), and Magic et al. (2013)) which often involves physically moti-
vated radiative transfer calculations (Leenaarts and Carlsson, 2009). These synthetic line profiles
are then fit to observations in order to determine quantities such as elemental abundances. The
choice of observations varies for different sources; we primarily consider stellar sources, and
within that subset, we focus on the Sun. In particular, we use the data from Neckel and Labs
(1984) (hereafter the Hamburg atlas) for our fitting routine.

However, regardless of their astrophysical source, observations contain noise. This can make
some data unusable, but it is often possible to take this into account statistically, and fit the
spectrum regardless. A larger issue in spectroscopy comes from the presence of line blends.
These are obscuring lines that mask the line of interest (e.g. neutral hydrogen lines in galactic
observations or magnesium absorption lines in stellar atmospheres), with an example of such a
blend obscuring a solar silicon line shown in Fig. 73.
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Figure 73: A synthesised fitted line profile (black line) against the observations from the Ham-
burg atlas (red and blue points). Strong blends have been removed from the line on
the right hand side. The blue points signify weak blends, and are not used for the
final fit.

In order to fit the observed silicon line profile, strong blends are masked from the observations.
This involves visually assessing each spectral line and choosing the window to use for line
profile fitting. One then has to make certain that small changes of the window size do not
drastically alter the fitted parameters; or if they do, that it is indeed due to the presence of these
blends, and the large changes are not representative of the primary line profile in question.
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The line profile shown in Figure 73 shows a single, isolated spectral line with a window
carefully chosen to allow for accurate fitting. It is often however the case that one wishes to use
larger parts of a spectrum, especially in the case of distant astronomical objects. Such a spectrum
is shown in Figure 74.

Figure 74: Hamburg atlas intensities from 5000− 5010Å.

Here, then, simply isolating line profiles and masking blends by hand is a very tedious task.
Though the principle remains the same, there are now many more lines to consider and the
process is much more complicated as a result. In fact, it is not immediately clear which lines
should be removed in such a spectrum, as works often use such data to determine multiple
elemental abundances (Holweger, 2001). Instrumental defects and mistakes can also lead to
spikes in the data which may also obscure crucial data points.

Work has been done to reproduce synthetic spectra using machine learning techniques (Ho et
al., 2016; Ting et al., 2019) which encompass the spectral fitting to determine parameter estimates
for astrophysical quantities. Though they do not necessarily directly use the observations, they
are trained with observed spectra, and so any issues can permeate through, leading to higher
errors and incorrect predictions.

With all this in mind, there is definitely motivation to improve the quality of observations for
spectral line fitting by implementing methods that handle root-mean-squared (RMS) fluctuations
(noise) and line blends. This was primarily motivated by the problems encountered in Chap. 2,
where strong and weak blends made many lines inaccessible for spectroscopic analysis. Ideally,
we would like to use as many clean spectral lines as possible for abundance analysis in order to
increase the precision of the final fitted abundance value. Three distinct methods are presented
to improve the quality of the data here: Section 5.2 details fitting Gaussian line shapes to fit
residuals, Section 5.3 discusses the use of Autonomous Gaussian Decomposition to acquire the
Gaussian components in a spectrum, and Section 5.4 investigates the use of an autoencoder
neural network to denoise spectra and extract the main features of a spectral line profile.

5.2 gaussian line shape fitting

An initial approach to fitting line blends was to consider the blends to be Gaussian line shapes
and to fit these accordingly. Initially, attempts were made to fit Gaussian line profiles to the
spectral lines in the spectral fitting routine itself. However, the issue with this method is the
fitting routine has no way of knowing which of the fitting parameters it should prioritise, and
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often the physical parameters such as elemental abundance were compromised. In addition,
when performing this simultaneous fitting, the number of Gaussians and the initial parameters
for each Gaussian must be supplied. In fact, the initial parameters needed to be supplied so
close to the actual optimum parameters that one was perhaps better off manually adding the
Gaussians to each blend. Indeed, the results of this simultaneous fitting were not significantly
better than simply removing the areas of the spectrum where line blends existed.

Instead, Gaussian profiles were fit to the residuals from the original fitting routine. Here, the
fitting routine was run normally, but with very wide windows (in a few cases, the windows
were still truncated as larger blends can badly skew the fitting routine), and the residuals were
used to identify blends. As the fitting routine employs sigma-clipping and hence ignores poorly-
fitting points, the line blends stand out. However, there is also a small amount of scatter (not
unlike noise in a signal) since the fit will not be perfect. The sigma-clipping can also introduce
discontinuities in the residuals. Figure 75 shows one such line profile’s residuals after an initial
run of the fitting routine.

Figure 75: Residuals of spectral fitting routine for a single line.

The line blends in the residuals appear as Gaussian-like line shapes. Initially, Gaussians were
fit to these by manually specifying the number of Gaussian components and the initial parameter
guesses for them (i.e., initial values for the amplitude, position and width of each Gaussian).
When this was seen to work in practice, steps were taken to automate this process. To do this, a
peak-finding algorithm was applied to the spectrum in order to detect the Gaussian line shapes.
However, it became necessary to determine a signal-to-noise threshold below which a peak
should not be detected, as well as a peak prominence threshold. The prominence of a peak is its
relative height compared to other peaks, rather than its absolute height above the baseline, and
is detailed in Figure 76.

Figure 76: Prominence of peaks.
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This takes into account that blended lines are close to one another, and so the relative intensity
does not reach the baseline in between the blended line profiles. Specifying the peak prominence
and the signal-to-noise threshold for peaks is sufficient to find Gaussian components in the
spectrum. In its current implementation, the user chooses the n most prominent peaks in the
spectrum to be fitted with Gaussian components, with n ∈ Z+.

The fitting routine works on a spectrum-by-spectrum basis, meaning the value of n can vary
between datasets. The reasoning behind this choice is that for single-line observations, as in
Figure 77, it is often very useful to visually identify the number of Gaussian components in the
spectrum first to prevent overfitting. By default, n = 5 for the dataset we are using (Neckel and
Labs, 1984) since this value was found to work well for all lines.

Figure 77: Single line profile with blends.

Once the Gaussian components have been identified and fitted, they are added to the original
fitted model (or subtracted from the original observations, depending on user preference) and
plotted for comparison. In this way, the independently fitted Gaussian components correctly
contribute to the overall spectrum and are on the same scale. The user can also choose to ignore
the line core, and though a Gaussian component is still fitted, it is not added as a contribution
in the final model. A few examples are shown in Figures 78-80, showing varying degrees of
success depending on the data. The core is ignored between −3− 3 km s−1in each.

Figure 78: Single optical line profile with blends.

In Figure 78, the peak-finding algorithm and Gaussian fitting routine works well, adding
the fitted components to the residuals. It correctly identifies the Gaussian components, though
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Figure 79: Single optical line profile without strong blends.

they are perhaps shifted. This could be due to the discreteness of the x-axis, though, since the
true centre of the Gaussian is likely slightly to the left of the detected peak. Figure 79 shows
a seemingly large scatter, but this is actually a very well-behaved line in that the residuals are
very small. Here, though, the routine still fits Gaussians as the combination of peak prominences
with a signal-to-noise threshold is not sufficient to completely ignore the scatter.

Figure 80 shows the reasoning behind ignoring line cores. In a few lines from our sample (pri-
marily infrared lines), the line cores demonstrate departures from local thermodynamic equilib-
rium (LTE), meaning they are deeper. As our synthetic lines assume LTE, we are unable to fit the
non-LTE (NLTE) part of the line. Since this is a physical process that should be properly mod-
elled rather than simply fitted based on residuals, we opt to mask the line core such that these
effects are not fitted for with Gaussian components. Unfortunately, this does lead to discontinu-
ities appearing in the final fitted model. Here, the discontinuity is only present on the positive
side of the line due to a combination of the x-axis discretisation’s effect on the peak-finding
algorithm as well as an inherent shift present in the line centre.

Figure 80 also shows an edge effect resulting from an older artefact in the spectral fitting
routine. Though the artefact is no longer present in the current version, it was enlightening to
find that the Gaussian fitting routine does not try to fit this as a peak, meaning it correctly
identifies spikes in the data as a form of noise.

5.2.1 Quality Control Options

The user has a few options to control the process. As stated above, the number of prominent
peaks to fit for (n) can be specified beforehand, and this is often used to prevent overfitting.
Since the peak-finding algorithm does not know anything about the scale of the dataset, this is
quite an important parameter to specify. When using this Gaussian fitting routine for our single-
line measurements of solar absorption spectra, n = 5 is a value that works well for every line. It
does allow for different scales of residuals to be fit, but this is simply due to the peak-finding
algorithm’s capabilities, not through any scale parameters present in the Gaussian fitting routine.
Due to the signal-to-noise threshold in place, the peak-finding algorithm does not detect every
instance of negative curvature as a peak, and many smaller bumps are indeed ignored. Ideally,
the value of n should not be much lower than the number of peaks the algorithm will find
naturally. But, n is also used for regularisation so that if this is the case, there will still be a
reasonable amount of Gaussian components.
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Figure 80: Single infrared line profile with strong NLTE line core.

Due to the nature of fitting residuals, it was also necessary to let the amplitude of the Gaussian
be negative. This is required when the model overestimates the observations and a negative
correction is needed. However, if the user adds the Gaussian fit contributions to the observations
rather than the model, the fit components are not allowed to take the fitted model below the
observations. This is simply because the purpose of this routine is to detect line blends, and
removing information about the observations does not lend itself to that task. Additionally,
though the routine is capable of adding the Gaussian fit components to the observations, using
those new data as new observations in our spectral fitting routine did not result in a better result,
suggesting that there are minute precision differences that become apparent only when fitting
synthetic spectra to the new observations.

To ensure the fits are of a good quality, the user should tweak options regarding the number of
peak prominences n as well as the choice of line profile function. Though originally intended to
be used with Gaussian line profiles, the fitting routine can be changed to use any single-peaked
line profile function, such as a Lorentzian or Voigt profile. However, the success of convergence
in these cases has not been rigorously tested, as using purely Gaussian line shapes offered a
sufficient analysis in our case.

5.2.2 Limitations and Possible Improvements

There are a few limitations of the described procedure, and quite a few possible improvements.
Firstly, there is no way to specify the length scales present in the data aside from tweaking the
number of prominent peaks n, which in turn actually depends on a peak threshold value. A
more elegant way of formulating the problem would remove this degeneracy and characterise
this as a length scale parameter to be specified by the user. However, this does remove some
intuition from the fitting routine. Currently, the "number of Gaussians to fit" is a simple quantity
to envision from a dataset, whereas a "length scale parameter for peak prominence" is rather less
so. Nevertheless, in the idea of specifying a length scale, it would be useful for the user to be
able to specify multiple length scales to describe smaller and larger peaks in the dataset. This
would further help in reducing noise being detected as a peak while still allowing for small line
blends to be fit. At the moment, all of this nuance is singly controlled by the parameter n.
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Figure 80 showed a dataset with edge effects present. Though these were not fit for, it does
bring to light the potential of such edge effects negatively affecting fit performance. Here, we
are again trusting the peak-finding algorithm to correctly determine peak prominences.

There is currently no implementation to re-fit Gaussian components (or the entire model)
if the comparison is poor. Originally, this was because the data we use for this analysis are
residuals themselves, and we did not want to alter these to the point where we could not use
the result as a physical analysis. An improvement that would also add regularisation would
be to check the distance between peaks and compare that to the widths of the said peaks. It is
perhaps possible to reduce the number of Gaussian components present in the model this way
while also improving the statistical fit. In this sense, both the individual fit components and
the resulting model should be re-fit to ensure that the improvement of one does not lead to the
detriment of the other.

Finally, the most important improvement would be to extract physical understanding of the
line blends from the fit Gaussian components. Each one has a specified width and height, but
these do not necessarily correspond to physical quantities such as broadening (due to macro-
scopic velocity flows in a stellar atmosphere, affecting the width) or an elemental abundance
(which would affect the amplitude). Unfortunately, this drawback means this particular method
is not well suited for our particular task of removing line blends from stellar spectra, since we
cannot be sure that the method does not also remove vital information about the primary line
profile. The described procedure is still a useful tool to analyse spectra, though, and shows that
the blended line components are indeed present in the residuals as Gaussian line shapes.

5.3 autonomous gaussian decomposition

Removing blended lines and noise is a difficult task and often done by hand. It is, however,
possible to use Autonomous Gaussian Decomposition (AGD) to decompose a spectrum into
its Gaussian components. Unlike other methods, one does not have to specify the number of
Gaussians beforehand, and the method is also flexible enough to handle lines of different promi-
nences in the spectrum. AGD combines derivative spectroscopy with machine learning in order
to provide optimised guesses for the locations, widths and amplitudes of the Gaussian compo-
nents in the signal (Lindner et al., 2015).

AGD has been tested in an astronomical context, namely on 21 cm absorption spectra from the
21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey (Lindner
et al., 2015). Here, the method produces results comparable to human-derived solutions. AGD
was used in conjunction with Monte Carlo methods to derive the H I line completeness as a
function of peak optical depth and velocity width for the observations. The authors also who
that the results of AGD are stable against observational noise intensity, meaning the method
generalises well to observations with higher or lower signal-to-noise ratios as well. Lindner et al.
(2015) have released their algorithm as a Python package GaussPy (github/gausspy?).

Riener et al. (2019) recently released GaussPy+ (), which builds upon GaussPy specifically
for emission spectra. They use this package to study detailed velocity structure of emission
line observations. In particular, they focus on a test field from the Galactic Ring Survey. Indeed,
though the GaussPy package works very well on isolated line profiles and smaller spectra, the
lack of full automation for training the algorithm means it does not scale well to large scale
surveys. GaussPy+ handles this by fully automating creation of the training set for the algorithm
adding preprocessing steps, and building in quality control and spatial coherence measures for
the fit results. The final point involves adding spatial coherence to the decomposition results
by refitting based on neighbouring solutions; a point that becomes increasingly important with
spectra where neighbouring lines are often not independent. GaussPy+ is able to handle cases
of complex emission and low signal-to-noise values.

Both GaussPy and GaussPy+ are extremely efficient, especially when compared to manual
masking blends in line profiles. They also significantly improve upon noise estimates and are
able to use quality control measures to ensure the algorithm is not overfitting the number of
Gaussian components and also that the errors are statistically accurate when spatial coherence
is taken into account.

In essence, AGD approaches Gaussian decomposition through least-squares minimisation
and focuses on automating the choice of parameters’ initial guesses. Accurately performing this
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allows the fit to quickly converge to a global optimum. For an example spectrum, let x be the
frequency grid of flux density values f(x). The algorithm then aims to decompose the spectrum
into Gaussian components, where the Gaussian function G is given by

G(x;a,µ,σ) = ae(x−µ)
2/2σ2 (130)

where a, µ, σ represent the amplitude, position and width (standard deviation) of the Gaus-
sian function. Note that, even with the empirical assumption of a Gaussian profile for the final
least-squares fit, the initial guesses are only weakly dependent on the specific Gaussian shape.
In fact, AGD can be used to provide reasonable initial guesses for the amplitude, position and
width of any well-behaved single-peaked profile, such as Lorentzian or Voigt profiles. This gen-
eralisation is important in regards to stellar spectroscopy, where the spectral line profiles often
show a resultant Voigt profile due to a combination of Doppler broadening (Gaussian) and
pressure broadening in the line wings (Lorentzian). However, this is more of a limitation in
GaussPy+.

AGD initially smooths the spectrum to remove noise and to better identify individual compo-
nents. This smoothing is controlled by a parameter α. A preliminary result for a single Gaussian
is shown in Figure 81 and the effect of the smoothing parameter α for multiple Gaussian com-
ponents is shown in Figure 82.

Figure 81: A single Gaussian component identified by AGD. The black line shows the data, the
purple line shows the final fitted model, and the green dashed lines are the errors.

5.3.1 Optimising the Smoothing Parameter through Supervised Machine Learning

Though one can tune the regularisation parameter α manually, it is much more efficient to train
the AGD algorithm using supervised machine learning techniques to optimise it. In supervised
machine learning, a collection of input/output pairs known as a training set is provided to the
algorithm in order for it to learn a general rule for mapping inputs to outputs. Here, it is used to
train AGD to optimise the value of α such that the accuracy of component guesses on a training
set of spectra is maximised.
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Figure 82: Multiple Gaussian components decomposed with different values of α. The black
lines show the original data, the purple lines show final fitted model, and the green
dashed lines give the errors. The red lines plot the individual Gaussian components.
In this example, the three components are only found with a smoothing parameter
logα = 1.5, as the other values both underestimate the number of Gaussian compo-
nents present in the dataset.

5.3.1.1 Creating a Training Dataset

Supervised machine learning techniques require training datasets to learn input-output map-
pings using nonlinear functions. A training set is a collection of data where the underlying
properties the machine learning algorithm is fitting for are already known. In this case, a train-
ing set can be constructed with data for which the underlying Gaussian decomposition is already
known, i.e. the number of Gaussian components and their centres, heights and widths of each
are known. The training set can contain real Gaussian samples or synthetically constructed ones,
so long as the underlying decomposition is known. This prior information is used to maximise
the accuracy of the AGD algorithm by optimising the regularisation parameter α.

Creating a synthetic training dataset is very straightforward. Firstly, one should specify the
number of training spectra to create. Then, it is best to randomise the number of Gaussian
components in a reasonable range based on the number of channels for each training spectrum
(i.e. the length of the x-axis). For each Gaussian component, the amplitude, position and width
(specifically the full-width at half-maximum (FWHM)) should be randomised in given ranges.
We choose these three parameters since they are the same parameters that will be fit by the
AGD algorithm. The goal is to produce a versatile and varied dataset that also reflects the
state of the actual data one wants to use. Taking the example of 21-SPONGE data, the training
dataset should resemble the style of emission spectra seen in those observations. Randomising
the Gaussian components ensures that the trained model will also generalise well, at least within
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the randomisation boundaries. These boundaries, then, should also reflect the state of the data.
Representative RMS noise should be added to each spectrum as well.

The number of training spectra will affect the accuracy and precision of the optimisation for
α. In general, a high number of varied training spectra will result in better optimisation, as the
model will generalise to many different potential spectra. However, using too many training
spectra without proper validation can result in the model overfitting. The number of training
instances to use depends on the machine learning problem at hand, but in general, more training
instances will result in faster and better convergence.

Though the methods described above work well for creating training data, real data may still
be rather different. For example, many spikes of noise could make a certain spectrum unusable
if the AGD algorithm cannot suitably smooth it, or a Gaussian component may be located past
the edge of the spectrum, but its tail could affect the signal in the observed spectrum. In these
cases, it may be useful to provide a few training instances where these previously unforseen
effects are taken into account. This will allow the algorithm to generalise further, resulting in a
more optimal value of α.

5.3.1.2 Training the Algorithm

GaussPy naturally incorporates methods to train the algorithm on a training dataset. The idea
behind training the algorithm is to apply GaussPy to the training dataset and compare the
results with the known underlying Gaussian decomposition. From this, the optimal value of the
regularisation parameter α can be found. Within GaussPy, an initial estimate for α as well as a
signal-to-noise threshold below which components should not be fit need to be provided. The
signal-to-noise threshold is simply the RMS noise present in the training dataset, and since this
can often also be measured for observations, it should be provided as accurately as possible.
The initial choice for α can heavily influence the optimal value (depending, of course, on the
complexity of the data), and so this should also be an accurate estimate.

From Figure 82, it is seen that slight deviations can cause mismatches in the number of
detected components, but the training algorithm is often versatile enough to handle this. So,
for example, if the correct value was logα = 1.45 for a given set of spectra, an initial choice of
logα = 1.0 would be sufficient to have the algorithm converge. As always, more accurate initial
guesses will result in faster and better convergence, though. Because of this potential uncertainty
in the best possible convergence, it is useful to rerun the training algorithm with multiple initial
choices for α.

The training process is iterative, starting with the initial choice of α and changing this while
comparing the GaussPy decomposition with the known decomposition. The accuracy of the
algorithm is associated with how well it recovers the true underlying composition. Note that
while accuracy could be high, the accuracy on the actual data is often lower. To know whether
or not the algorithm is overfitting, a validation dataset can be used to assess model performance.
The validation dataset is simply a subsample of the training dataset (e.g. the last 20%) that
is used at the end of each training iteration to gauge the model’s performance on data it has
not trained on. While the model updates the value of α after new training instances, it does
not update that value after validation instances, meaning the validation accuracy is a better
indicator on how the model will perform on new data. If validation accuracy remains stagnant
while model accuracy increases, the model is likely overfitting and will therefore not generalise
well to new instances.

5.3.1.3 Performance After Training

The algorithm was trained using a synthetic training dataset of 200 instances, with each spec-
trum containing three Gaussian components with reasonably randomised amplitudes, widths
and centres. This was to replicate the data seen in Figure 82. A small amount of RMS noise was
added, equivalent to the RMS noise present in the actual data. Using an initial value of logα = 1,
the algorithm converged to logα = 0.77.
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5.3.2 Two-Phase Regularisation

So far, α has been used as a regularisation parameter for the AGD algorithm. GaussPy extends
the AGD algorithm to search for Gaussian components at multiple different scales in the dataset
(Lindner et al., 2015). While α is used to smooth the derivatives in the so-called “one-phase”
mode, GaussPy offers a “two-phase” mode where the parameters α1 and α2 can be specified.
It is then possible to train the algorithm with the aforementioned supervised machine learning
approach to determine the optimal values of α1 and α2. Generally, the logα values between one-
and two-phase decompositions follow the trend logαtwophase

1 < logαonephase < logαtwophase
2 .

Figure 83: Multiple Gaussian components decomposed with different values of α. The black
lines show the original data, the purple lines show final fitted model, and the green
dashed lines give the errors. The red lines plot the individual Gaussian components.
The three components are only found with the choice logα = 1.4.

The reasoning behind the two-phase approach is to separate narrow and broad components
present in the spectrum. When using a single α value for regularisation, it must be tuned ex-
tremely carefully to avoid smoothing away narrow components. This can be seen in Figure 83,
where small deviations in α result in Gaussian components being ignored by the AGD algo-
rithm. Here, then, it would be useful to incorporate separate smoothing parameters for narrow
and broad Gaussian components. This can also be done by training the algorithm on a training
dataset. In fact, the same training dataset can be used, though it is perhaps better to include
training data that include both narrow and broad components (and in the same spectrum).
Now, initial estimates for both α1 and α2 must be provided, with the same caveats as discussed
previously. The training routine is exactly the same, but GaussPy will now optimise both regu-
larisation parameters.
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In general, two-phase decomposition will improve the accuracy of the algorithm since it is
introducing another free parameter. However, this could also lead to overfitting, and the training
algorithm should be monitored for this. One should also justify whether the use of two-phase
decomposition significantly improves the accuracy and quality of the decomposition compared
to one-phase decomposition. In the above examples, both one- and two-phase decompositions
successfully reproduce the spectrum. The choice between one- and two-phase decomposition is
also affected by the data. If the data contain signals from multiple types of components (such as
different physical sources) two-phase decomposition is likely to perform significantly better.

Figure 84: Spectra decomposed with best-fitting values in one-phase decomposition (left panel)
and two-phase decomposition (right panel). The black lines show the original data,
the purple lines show final fitted model, and the green dashed lines give the errors.
The red lines plot the individual Gaussian components. One-phase decomposition is
unable to retrieve the correct number of Gaussian components.

Figure 84 directly compares one- and two-phase decomposition for a dataset containing nar-
row and broad Gaussian components. Here, the combination of narrow and broad Gaussian
components shows the drawbacks of one-phase decomposition, which is unable to fit both types.
In this case, the one-phase decomposition is tuned to fit the narrow peak, but in doing so is
unable to fit the blended components that are broader; in fact it is not even able to correctly
identify the three components. On the other hand, two-phase decomposition both identifies the
three components and provides good estimates for the Gaussian parameters to reproduce the
signal.

In real astrophysical data, it is imperative to be able to separate spikes from noise from
narrow lines. For these cases, then, it is perhaps too great a risk to use a single regularisation
parameter α for smoothing the derivatives of the spectrum. For observational data, Lindner et al.
(2015) find that two-phase decomposition performs better than one-phase decomposition on the
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Figure 85: Silicon line at 7680 Å. The black line shows the observations, the red lines show the
individual Gaussian components, the grey line shows the total reconstruction and the
green dashed line shows the errors.

21-SPONGE data. Two-phase AGD resulted in lower residual errors when compared to human-
decomposed spectra as well as slightly more accurate estimates of the number of Gaussian
components.

5.3.3 Performance on the Hamburg Atlas

For the Hamburg atlas, we opt to use two-phase AGD with the parameters α1 = 0.3, α2 = 2.7.
These are the parameters obtained after training the algorithm on similar blended Gaussian line
profiles. Note that these estimates are not perfect since the line shapes in the Hamburg atlas
are not perfect Gaussians and there are many more weak blends. We show four decomposed
spectra that represent the different lines used for our determination of solar silicon abundance
from the Hamburg atlas in Figures 85 - 88. These show a clean optical line, a blended optical
line, a clean infrared line, and an infrared line with strong NLTE core effects, respectively.

Generally, the algorithm is able to correctly identify strong Gaussian signals and ignore scatter
from noise. However, despite using two-phase AGD, it is not able to pick up on very weak blends
present in the data, seen in Figure 86. Also, the decomposed Gaussians consistenly underpredict
the height of the spectral line, which is determined by both the amplitude and the width. This
is because the spectral line profiles are not pure Gaussians, but rather Voigt-like profiles. The
difference is exceedingly clear in the decomposition of an infrared line with strong NLTE core
effects, as in Figure 88, where a Gaussian is not at all able to reproduce the line shape.

In such cases, it would be useful to decompose the spectral lines with different single-peaked
functions. Unfortunately, this is not currently possible with the AGD algorithm, but will be
investigated in the future, along with GaussPy+. Despite these differences, though, the algorithm
performs well for autonomously identifying spectral lines within a spectrum. Though very weak
spectral lines are still ignored, this can be remedied through training the algorithm on a more
representative dataset. Overall, AGD works extremely well for decomposing Gaussians and can
additionally be used to successfully identify single-peaked functions in a dataset.
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Figure 86: Silicon line at 5645 Å. The black line shows the observations, the red lines show the
individual Gaussian components, the grey line shows the total reconstruction and the
green dashed line shows the errors.

Figure 87: Silicon line at 12390 Å. The black line shows the observations, the red lines show the
individual Gaussian components, the grey line shows the total reconstruction and the
green dashed line shows the errors.
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Figure 88: Silicon line at 10749 Å. The black line shows the observations, the red lines show the
individual Gaussian components, the grey line shows the total reconstruction and the
green dashed line shows the errors.

5.4 autoencoders for spectral line fitting

Autoencoders are a type of neural network that attempt to reproduce the input data they are
given. Suitable regularisation is required to avoid overfitting, such as constraining the number
of layers and number of neurons per layer. In spectroscopy, neural networks have been shown to
be successful in the past (Ho et al., 2016; Ting et al., 2019). In this study, we aim to use a neural
network to extract the key features from a spectrum (namely the individual lines) and remove
noise from these components. We investigated a few different machine learning methods for the
task, but ultimately settled on using autoencoders.

5.4.1 Overview of Machine Learning methods

Many machine learning methods exist and are used for data analysis. In our present situation,
we seek a method that is capable of identifying spectral line profiles and extracting the details of
these. The method should also be robust against small fluctuations in the signal (i.e. noise), and
be able to handle various input shapes of the data (e.g. single line profiles with blends or larger
pieces of a spectrum). With this in mind, two conventional methods come to mind: Principal
Component Analysis (PCA) (F.R.S, 1901) and Independent Component Analysis (ICA) (Hyväri-
nen, 2013). PCA is often used for dimensionality reduction (Pudil and Novovičová, 1998) and it
can identify the components of a dataset that exhibit the greatest variance. ICA attempts to de-
compose a multivariate signal into its individual constituent components, providing the details
of each. Additionally, two neural network architectures seem well suited for this task, namely
autoencoders (Kramer, 1991) and Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014). Autoencoders simply attempt to reproduce their input data, while GANs are made up
of two networks (a generative network and an adversarial network) which compete against one
another. But, while PCA, ICA and GANs are useful in their own right, there are some drawbacks
to each that render them fairly unusable in the current context of fitting spectral line profiles.
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5.4.1.1 Drawbacks of Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that utilises projection (Samet, 2006). It computes
principal components, which are axes of a hyperplane that retain the maximum variance. The
first axis ~c1 is chosen such that it accounts for the largest variance in the original dataset. Further
orthogonal axes ~ci are then found which maximise the variance in the dataset after the previous
axis has been considered. The first d components can then be used to project the n-dimensional
dataset to d dimensions.

While PCA is a powerful tool with many useful additions, using maximum variance is a
roundabout way of approaching the current problem. With a blended spectral line profile, it is
possible that each line component can be identified as its own axis, but there is no way of specify-
ing this to the algorithm. Kernel PCA (Schölkopf, Smola, and Müller, 1998) offers more control,
but in general this method seems unpredictable when used to fit spectral line profiles. Especially
in spectra with low signal-to-noise ratios, it could be that PCA falsely identifies multiple noise
components as principal axes and ignores weak line blends.

5.4.1.2 Drawbacks of Independent Component Analysis (ICA)

ICA attempts to decompse an incoming multivariate signal into independent signals; the caveat
is that these independent signals must be non-Gaussian. This is because the descriptions of
independence involve i) minimisation of mutual information (similar to maximum variance in
PCA) and ii) maximisation of non-Gaussianity. These conditions are tailored to find independent
signals whose values do not come from Gaussian distributions. Though spectral lines are not
purely Gaussian, this property of ICA renders it unusable in the current context.

5.4.1.3 Drawbacks of Generative Adversarial Networks (GANs)

GANs are very powerful neural networks that are often used to produce new samples based on a
training dataset. They are rather more advanced in architecture than autoencoders (which will be
detailed shortly) as they involve two networks which compete against one another to maximise
their individual performance. Though this makes them very powerful, it is also the reason why
they are notoriously difficult to train. Doing so in the present study would require a large
amount of training data and the outcome may not be worth the effort in producing this training
data. Additionally, the problems that GANs solve are slightly different to identifying features,
and though they can be used for feature extraction, a more simplified network architecture fits
the situation better.

5.4.2 Autoencoder Architecture

An autoencoder’s architecture appeals to the problem at hand. It consists of an input and an out-
put layer, and like most neural networks, contains hidden layers. The autoencoder is composed
of an encoder, which simplifies the input information to a representation or ‘code’ learnt by the
network, and a decoder, which takes the code and attempts to recreate the input data. From this,
it is easy to see that overfitting will be an issue if the network is able to simply map every input
to an output, effectively just memorising the data instead of finding patterns. To solve this, the
size of hidden layers is often decreased in the encoder and increased in the decoder. An example
of autoencoder architecture is shown in Figure 89.

Autoencoders with multiple hidden layers are known as stacked autoencoders and have
shown to be successful in regression tasks (De et al., 2017). Multiple hidden layers allow the
autoencoder to learn more complex mappings, but as always, with the risk of overfitting. Fig-
ure 89 is an example of a stacked autoencoder, and these types of networks are often symmetric
about their representation.

An autoencoder whose inputs have a dimensionality of n and whose representation has a
dimensionality d < n is said to be undercomplete. Undercompleteness results in the autoen-
coder being unable to simply copy the inputs to the outputs, and must instead learn an efficient
representation of the inputs to create the output reconstructions. We aim to use an autoencoder
to perform feature extraction and hence make our autoencoder undercomplete.
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Figure 89: Autoencoder architecture.

The number of hidden layers in the encoder and decoder portions of the network and the
number of neurons in each hidden layer should be tuned based on the problem. For this study,
we use three layers in both the encoder and decoder portions of the network, with 224, 128 and
32 neurons in the layers. The size of the layers reflects the input data which has a size of 256
pixels.

5.4.2.1 Hidden Layers

We make use of convolutional layers (Valueva et al., 2020) for every hidden layer in the encoder
and decoder. As the name suggests, convolutional layers perform a convolution on their input
using a convolutional kernel created in the layer. Each layer can use a different kernel, but we
use the same type of kernel throughout the network. Additionally, we apply a ReLU (Rectified
Linear Unit (Hahnloser et al., 2000)) activation function to each layer except the output layer,
which uses a sigmoid activation (Han and Moraga, 1995). The choice of activation function, as
well as the precautions taken to ensure good performance for each, is detailed in Section 5.4.2.2.

Convolutional layers are used primarily in computer vision applications (Huang, 1996) and
their use has met with great success. As a spectrum is essentially a measurement of correlated
light intensity, we make use of convolution to identify the strength of underlying correlations
as line profiles. Though our spectrum is essentially a 1D array of intensity measurements, we
reshape it into a 2D array, since it is currently not possible to effectively use the 1D convolutional
layers in Keras1. Since it often reverts to converting 1D convolutional layers into 2D ones any-
ways, the current network simply uses 2D convolutional layers and the input data is reshaped
to reflect this: The 256 pixel 1D spectrum is transformed into a 16 x 16 2D ‘image’. To consider
the image analogy further, convolutional autoencoders are often used for working with images
(Karimpouli and Tahmasebi, 2019). The encoder portion of the network typically reduces the
spatial dimensionality of the inputs (i.e. width and height) while increasing the number of fea-
ture maps (i.e. relations between pixels). The decoder portion then performs the opposite: it
upscales the image and lowers the number of feature maps to create a reconstruction of the
input. By formulating our spectrum as a 2D array, we are able to utilise these natural features
of convolutional autoencoders.

1 https://keras.io/
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Figure 90: Different activation functions.

We use a 3 x 3 pixel kernel for convolution. The size of the kernel affects the size of relative
correlation between pixels (simply by the nature of the convolution operation). Hence this size
should be roughly representative of the data.

A kernel constraint is used to directly regularise the loss penalty on the weights matrix. An
L2 norm will normally penalise high weights, and so a kernel constraint specifying a maximum
L2 norm m ensures that the matrix is scaled such that the norm is equal to m. This also reduces
the capability of overfitting.

5.4.2.2 Activation Functions

A few choices of activation function are widely used, such as ReLU, tanh and sigmoid, as shown
in Figure 90.

Aside from the output layer, each hidden layer in our network uses ReLU activation. ReLU
works well to avoid saturation during backpropagation (from Figure 90, the sigmoid activation
function saturates at values close to 0 and 1), but the signal can still flow poorly during back-
propagation, leading to vanishing or exploding gradients (Goh, Hodas, and Vishnu, 2017). To
alleviate this, each layer with ReLU activation uses He initialisation (He et al., 2015). The fi-
nal output layer is a normal convolutional layer with the sigmoid activation function. We use
this to ensure the output is between 0 and 1, since we primarily use single line profiles whose
intensities are in this range.

For now, we limit ourselves to the ReLU and sigmoid activation functions. The ReLU activa-
tion can suffer from ‘dead’ neurons (neurons whose weights are so low they never fire) and this
can be improved by using one of its variants (leaky ReLU, for example), but it still works well
in our case.

5.4.3 Denoising Autoencoders

As autoencoders learn a representation from an input to create reconstructions, it is possible to
formulate the supervised machine learning problem to use noisy input data as the labels and
cleaned input data as the features. In this way, the network will learn to remove noise from
input samples. It is also possible to switch off certain inputs to create gaps in the input dataset
that the network must learn to fill in. This is also a method of regularisation that prevents the
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network from overfitting and has the added benefit of forcing individual neurons to learn useful
features, lessening the probability that they will die during training.

To start with, we choose to simply add noise to the inputs to simulate actual noise present in
spectra. We intentionally use a noise value much higher than what we see in our observations
to test just the denoising capability of the autoencoder. While we want the network to perform
both denoising and feature extraction, these tasks are sometimes performed by separate autoen-
coders.

5.4.4 Denoising gaussian signals

For spectroscopic purposes, we need to be able to remove noise from single-peaked signals, not
just monotonically increasing ones. Here, we followed the same procedure as in the quadratic
test case, but used randomised Gaussian amplitudes, width and centres to generate the dataset.

Figure 91 shows three example Gaussian signals used for training the network.

Figure 91: Gaussian signals used in training.

The high level of noise is due to the amplitude and width constraints placed on the Gaussian
signal; the noise we use is additive, so weaker signals will see more noise. Again, the network
is provided with a noisy sample and attempts to reconstruct the pure one. Figure 92 shows the
results of denoising Gaussian signals.

Despite the large amount of noise relative to the signal, the autoencoder successfully denoises
the majority of the signal. As this works well for single-peaked functions, we extend the training
to spectra that contain multiple Gaussian components. These Gaussian components also have
randomised parameters, and additionally, each sample spectrum can have anywhere between 1
and 5 Gaussian components. Again, this is to reflect the solar observations we aim to fit with
this method but should be tailored to the problem at hand.

Figure 93 shows the results of training the same model on spectra with multiple Gaussian
components.

The autoencoder correctly identifies the Gaussian components in each signal and is able to
remove a large amount of the noise. The RMS scatter is more prevalent in narrower signals.
However, the autoencoder is able to remove noise from both narrow and broad Gaussian com-
ponents without specifying anything about the scale of the data. This is a promising result that
should also improve its capability to extract the main features of the spectrum.
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Figure 92: From left to right: pure, noisy and denoised Gaussian signals.

5.4.5 Training Diagnostics

The model is trained on 100, 000 random Gaussian samples. To ensure the autoencoder would
be robust to different signals, the properties of the function is randomised within a suitably de-
termined range, allowing for multiple Gaussian components with differing properties to blend
with one another. Each sample comprised of 256 channels and the data were reshaped into a
16×16 array. This does not have a large effect on the outcome, but the consequences are explored
further in Section 5.4.6.

The Gaussian samples each have randomised amplitudes, widths and centres, again subject
to the condition where the centre could lie outside of the fitting window. This condition directly
reflects spectroscopic observations of stars, where line blends outside of the wavelength range
used in the fitting affect the intensities of lines within the window. The randomisation ranges
for each parameter are summarised in Table 19.

Amplitude FWHM Mean

[km s−1] [km s−1]

Min 0.1 0.5 -35

Max 0.5 10 35

Table 19: Randomisation ranges for Gaussian parameters.

Note that both the FWHM and the mean are given in km s−1since we use this velocity-space
convention in our data. However, these limits are fairly arbitrary; the fitting window is [−30, 30]
km s−1, so the mean could be 5 km s−1outside the edge on either side.

Each model was trained for 5 epochs (meaning the 100, 000 samples were shown to the model
5 times) and the batch size parameter (the number of instances the model is shown at a time)
was set to 150. These numbers work well with the current example to show convergence to an
optimum solution without overfitting. The accuracy of the model does not improve significantly

166



Figure 93: From left to right: pure, noisy and denoised signals with multiple Gaussian compo-
nents.

past this pointand any improvement is likely due to model overfitting rather than generalisation.
We use binary cross-entropy as our loss metric, defined as

Hp(q) = −
1

N

N∑
i=1

yi · logp(yi) + (1− yi) · log 1− p(yi) (131)

where N is the number of points in a sample, yi is the label of a given point and p(yi) is the
predicted probability of a point matching the label. Note that this loss function is often used
in binary classification (Parmigiani, 2001), hence its binomial form. However, it can be used in
this case to determine the probability that a denoised point comes from the pure sample, i.e. the
sample without noise.

After 5 epochs, the model had a loss of 0.0869 and a validation loss of 0.0868, where the unit
is the flux amplitude. The similarities between the loss and validation loss of each model shows
that overfitting due to a large number of epochs is unlikely.

5.4.6 Further improvements

For both the quadratic and Gaussian test cases the autoencoder is able to remove a substantial
amount of noise. With the Gaussian samples (weaker signal), the network obtains higher accu-
racy, suggesting that the network correctly prioritises peaks over noise. In order to improve the
results further to apply them in astrophysical contexts, a few things should be tested. Firstly, the
scale of noise should be relative to the signal as well as varied between different points. Often,
the signal-to-noise ratio in a spectrum changes with wavelength. In the case of the Hamburg
spectrum (Neckel and Labs, 1984), the signal-to-noise can vary from ∼ 1500 in the optical to
∼ 3700 in the near-infrared. To be more representative of actual spectra, then, the noise should
be varied between points as well as between samples.

Additionally, the RMS scatter in intensity between neighbouring pixels is often correlated. In
the present study, we assume the noise is independent; it is certainly possible that adding this
correlation improves the capability of denoising spectra since the network would be able to find
a trend instead of a random scatter.
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Figure 94: From left to right: Ground truth, input and output from the feature extraction autoen-
coder.

Finally, the network architecture should be tuned and streamlined to prevent any possible
overfitting. By decreasing the size of hidden layers, the autoencoder is forced to learn more ef-
ficient representations of the data (up to a point). The 2D convolutional layers should also be
replaced with 1D convolutional layers whenever this becomes possible; at the moment, using
1D convolutional layers causes a failure during compilation of the model. By using 2D convo-
lutional layers and reshaping the input data as an image, the convolution kernel will consider
points to be correlated that should be independent of one another. Instead of only considering
neighbouring points in 1D, it considers neighbouring points in 2D. While this is less of an issue
with smaller spectra, large spectra could be reshaped in a way such that pixels normally very
far away from one another are considered to be correlated. This also goes hand-in-hand with
the correlated noise already present in the spectrum, and falsely adding correlation through
the convolution kernel could lead to higher loss when also considering the correlation between
neighbouring pixels.

5.4.7 Feature Extraction

After ensuring the denoising autoencoder gives satisfactory performance, we train another au-
toencoder with the same model architecture on feature extraction. The synthetic data with mul-
tiple Gaussian components is used as features in the training data while the labels are the data
with just the primary Gaussian component in each. To isolate this from the denoising autoen-
coder, no noise is added to the data. It is possible to do so, though, but keeping these two
problems separate is useful to diagnose any potential training issues.

We use the same model architecture for both denoising and feature extraction because the
ideal outcome is a single model which can do both. However, in order to properly test the
capabilities of each, it would be useful to change the model architecture of the feature extraction
network to be a sparse autoencoder (Makhzani and Frey, 2013). These are specifically built to
extract the most important features from a dataset.

Figure 94 shows the results of feature extraction with the current model.
The performance of this network for feature extraction is unfortunately rather poor. It is likely

that the model architecture is not well suited to this problem given that it has been created for
denoising.
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For this network to perform both denoising and feature extraction, the number of neurons
in each layer should be decreased in order to more closely emulate a sparse autoencoder. This
procedure can also lead to better performance with the denoising part of the network, as it is
possible that including too many neurons causes the network to interpret noise variations as
signal.

The problems of denoising and feature extraction for spectroscopy are two separate problems
and it is possible to create two separate networks for this, namely a denoising autoencoder and
a spare autoencoder. To link these together, we can turn to ensemble learning (Opitz and Maclin,
1999; Polikar, Third 2006; Rokach, 2010), which has been shown to improve the performance of
constituent machine learning algorithms by combining their strengths.

5.5 conclusion and future work

We have investigated three separate approaches for removing noise and blends from spectra,
each with their own strengths and weaknesses. The main conclusions are summarised below:

• Fitting residuals and using Autonomous Gaussian Decomposition both involve purely
Gaussian line shapes. Generalisation towards other single-peaked functions may be pos-
sible, but it is unclear what effect this would have on the selection criteria for peaks used
in both algorithms. On the other hand, autoencoders are insensitive to the shape of the
input data when it comes to denoising and are able to handle other kinds of datasets.

• The peak-finding algorithm in fitting residuals works well for identifying Gaussian line
shapes, as does AGD. Since they also directly fit the data, both algorithms are able to
provide information as to the amplitudes, widths and centres of spectral lines.

• A trained autoencoder is capable of removing a substantial amount of noise from data
while keeping the inherent signal, be it quadratic, Gaussian or a combination of compo-
nents. The small amount of remaining noise in the reconstruction is likely due to subopti-
mal mdoel architecture.

• An autoencoder with the model architecture described in 5.4.2 performs well on denoising
tasks but is unable to generalise to feature extraction. Closer emulation of sparse autoen-
coders may improve performance, but it is likely that denoising and feature extraction
will require separate networks in the context of spectral line profiles.

• Overall, Autonomous Gaussian Decomposition provides the best results for removing
blends and noise from the Hamburg atlas. However, it is not able to reproduce the line
shapes exactly (as the observations are not pure Gaussians), and training the algorithm
for the α1 and α2 parameters takes a very long time.

• With these methods, we are able to remove noise from spectra and decompose them into
multiple Gaussian components. In terms of stellar spectroscopy, we would be able to run
these as a preprocessing step on observations to yield cleaner spectra. Line blends and
noise can be difficult to handle during spectral fitting and often lead to poorer estimates
of spectroscopic parameters. Handling these issues as a preprocessing step, then, will
provide better input data to spectral fitting routines and hence more precise estimates of
spectroscopic parameters.

Though promising, it is clear that significant improvements can be made for each method.
Fitting the residuals does not seem to be a very viable method for large-scale spectral fitting,
since the spectral fits are still calculated with the original data. Additionally, there are issues
with discontinuities based on removing line cores as well as autonomously choosing the number
of Gaussian components. Here, AGD is able to perform much more efficiently, but still suffers
from the caveat that the input data must contain Gaussian components for the decomposition
to be accurate. A future project will involve incorporating different single-peaked functions into
the algorithm so that it is able to precisely determine the properties of spectral line profiles.

While autoencoders are able to remove noise from many different kinds of data, the model
presented here cannot extract the primary line component. It is clear that the model architecture
needs to be changed to account for the change in the problem and that the problems of denoising
and feature extraction may require separate networks. Also, the use of 2D convolutional layers
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and reshaping the data as an image is a drawback that adds incorrect information about pixel-
to-pixel correlation. Ideally, 1D convolutions should be used; this would also allow for longer
term trends to be detected more easily. Another drawback is the autoencoder is not able to
give information about the different components within the signal; it simply applies nonlinear
operations to remove noise. A future investigation in this field will involve extracting physical
parameters from these networks. This can be used not only for cleaning data and fitting spectra,
but also for generating more physically accurate synthetic spectra.
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6M A C H I N E L E A R N I N G T E C H N I Q U E S F O R C H E M I C A L K I N E T I C
P R O B L E M S I N S T E L L A R AT M O S P H E R E S

6.1 introduction

We present a novel method to compute the equilibrium state of a chemical reaction network
by training a neural network on input-output data points from stellar atmospheres. This was
motivated by the fact that solving a system of ODEs until they reach equilibrium can be a
computationally expensive task, and this system needs to be solved for every grid cell in a stellar
atmosphere. While it is of course possible to parallelise the problem, we explore the possibility
of significant computational speed-up with at run-time by first training a neural network (NN)
to map stellar atmospheric parameters to equilibrium number densities. To avoid confusion in
the naming scheme, “chemical reaction networks” will be referred to as “CRNs” or “chemical
networks”, and “neural networks” will be referred to as “NNs” or simply “networks”.

We train multiple NN architectures to model the equilibrium state produced by solving the
chemical kinetics problem. While many variants of architectures were tested, they all fall into
three distinct categories: multi-layer perceptrons (MLPs) (Rosenblatt, 1962), convolutional neural
networks (CNNs) (O’Shea and Nash, 2015) and encoder-decoder networks (Ye and Sung, 2019).
Each of these architectures consists of an input layer, several hidden layers and an output layer,
though the structure of the hidden layers differs between them. A key feature of all of these
networks is that the signal flows in a single direction, from input towards output. Other network
architectures exist where this is not necessarily the case (Cho et al., 2014; Sherstinsky, 2020;
Vaswani et al., 2017), but we focus on the three architectures presented here as they are simpler
to train without overfitting and can still provide very precise solutions.

6.1.1 Multilayer Perceptron

MLPs are some of the oldest neural network architectures, and are a direct evolution of (single-
layer) perceptrons (Rosenblatt, 1957). They consist of multiple fully-connected hidden layers
whose outputs go into an activation function. Fig. 95 shows the architecture of the MLP used in
this study.

Each fully-connected layer’s output h is calculated through

hW,~b(X) = φ(XW + ~b) (132)

where W is the weights matrix of the neurons in this layer, ~b is the bias vector, X is the matrix of
input features to the layer and φ is the activation function. Using a nonlinear activation function
alongside multiple hidden layers provides the MLP with the ability to reproduce almost any
function, as equation Eq. 132 represents a (nonlinear) function applied to a linear combination
of inputs.

6.1.2 Convolutional Neural Network

The second architecture we test is a convolutional neural network (CNN). Here, instead of the
hidden layer outputs being simple nonlinear combinations of weights, a convolutional kernel is
used to learn the relation between neighbouring input features. CNNs are often used for image-
classification tasks since the 2D convolutional kernel is naturally suited for these. In our case,
the inputs are 1D, so we use a 1D convolutional kernel instead, and the relations are determined
between the different input parameters. The MaxPooling layers collect the 2D outputs of the
convolutional layers and recombine them into 1D arrays. Fig. 96 shows the architecture of the
CNN used in this study.
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Figure 95: Network architecture for the multilayer perceptron (MLP). All layers use ReLU acti-
vation except the final output Dense layer, which uses linear activation.

Figure 96: Network architecture for the convolutional neural network (CNN). All layers use
ReLU activation except the final output Dense layer, which uses linear activation.

6.1.3 Encoder-Decoder Network

Fig. 97 shows the architecture of the encoder-decoder network (EncDec) used in this study.
The EncDec architecture is composed of two different networks that almost mirror one an-

other. The first is the encoder, a feedforward network where there are fewer and fewer neurons
in each subsequent hidden layer. The second is the decoder, where the number of neurons in-
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Figure 97: Network architecture for the encoder-decoder network (EncDec). All layers use ReLU
activation except the final output Dense layer, which uses linear activation.

crease throughout the hidden layers. The core principle is that the input signal travels through
the first network and is encoded as an embedding, and the second network decodes this embed-
ding into the relevant output. In our case, the input abundances, gas density and temperature
are encoded into a lower-dimensional embedding before the decoder network reconstructs the
output number densities. This architecture automatically regularises the propagating signal to
reduce overfitting, as the encoder network is constructed to only retain the most useful informa-
tion. When trained across a wide range of inputs, this architecture then becomes very robust to
changes.

6.1.4 Data

We first use the chemical network described in Wedemeyer-Böhm et al. (2005) that models the for-
mation of bimolecular species in stellar atmospheric conditions. This chemical (hereafter CRN1)
contains 8 chemical species: C, H, O, CH, OH, CO, H2 and a representative metal M (catalytic).
The 27 reactions in this network populate the 8 ODEs that model the time-dependent evolution
of the system. We later expand the modelling to the larger network (hereafter CRN2) presented
in Deshmukh and Ludwig (2023) (Chap. 3), consisting of 76 reactions and 15 species. As we are
only interested in the equilibrium state here, we pre-compute the equilibrium number densities
for each species across a 3D model atmosphere snapshot.

As input to the neural network we extract data from 3D model atmosphere snapshots. We
experimented with various inputs, and found the best quantities to use were gas density, tem-
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perature and the abundances (or log number densities) of the atomic species. The network is
then built to output the equilibrium number densities of all species of interest. In summary, ev-
ery NN has 6 input features and 8 output features when considering CRN1, and 7 input features
and 15 output features when considering CRN2. We choose to use data from 3D model atmo-
sphere snapshots since the data used for training is then representative of the environment in the
model atmospheres themselves. The datasets used included individual model atmosphere snap-
shots (only for the dwarf stellar models), and “composite” datasets that combine atmospheric
snapshots from all models of a certain type. Three composite datasets were created. The first
combines 5 dwarf models, the second combines 7 RGB models, and the third combines all afore-
mentioned models. In each case, these were split into a training/validation and testing dataset.
The training/validation dataset consists of a random 75% / 25% split, while the testing dataset
uses a completely separate set of snapshots that the NN has never seen. For the combined RGB
dataset, the training/validation dataset was created from a total of 6.89× 106 total data points,
and the testing dataset is a full 6.89× 106 data points from a completely different set of model
atmosphere outputs. In short, the training dataset is used for updating NN weights, the valida-
tion dataset is used for regularisation and to assess performance during training, and the testing
dataset is only used after the training is complete to assess how well the model performs on a
completely new dataset.

6.2 results

To evaluate the performance of the NNs, we consider the mean squared error (MSE) and mean
absolute error (MAE). The NNs were trained by minimising MAE, while callbacks to tune learn-
ing rate and control early stopping used MAE. For N samples, the MSE is given by

σ2MSE =
1

N

N∑
i=1

(yi − ŷi)
2 , (133)

and the MAE is given by

σMAE =
1

N

N∑
i=1

(| yi − ŷi |) , (134)

where yi is the ground truth value and ŷi is the predicted value. Both metrics are calculated
across all 8 output number densities and are evaluated for mini-batches during training. For
training, a batch size of 1024 was used.

Table 20 shows the MSE and MAE values evaluated on the entire test dataset for each of the
model architectures. We also experimented with pre-processing the abundance input into num-
ber density (log(n)), and found it slightly improved performance. However, the improvement is
comparatively small and allows for less flexibility compared to providing the abundance directly.
It does show, though, that adding another layer to the front of the NN to handle this conversion
could improve performance further.

It is clear that the EncDec model architecture has the best performance across all atmospheres.
As such, we opt to use this architecture for evaluation on the composite datasets. Table 21 shows
the same metrics evaluated on the full composite test datasets.

Training the composite dataset NNs took ∼ 15 hours in total. Once trained, though, running
the NN is extremely fast, with the most complex NN requiring ∼ 200 seconds to evaluate on the
full test dataset (a composite of 12 model atmospheres) on an AMD Ryzen 7 3700U laptop CPU.
For comparison, solving the CRN system for a single model atmosphere snapshot on the same
hardware took between 20 minutes to a few hours. For the work presented in Chapters 3 and 4,
the equilibrium state for 20 snapshots per model ID need to be calculated. This would amount
to a maximum of ∼ 1.1 hours with the NN method, compared to a maximum of ∼ 60 hours with
the conventional method.

The training loss curves for the networks presented in this work are shown in Figs. 98 for the
dwarf stellar atmospheric model dataset. Validation loss values follow training loss values well
for the entirety of the training process for all models. This demonstrates that the model is not
overfitting; halting the training process based on the improvement of validation loss similarly
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ID MSE (log(n) Input) MAE (log(n) Input) MSE (Abu. Input) MAE (Abu. Input)

AM1

MLP 4.26× 10−5 3.77× 10−3 7.62× 10−4 1.44× 10−2
CNN 1.14× 10−5 2.29× 10−3 3.50× 10−5 3.57× 10−3
EncDec 5.75× 10−7 4.98× 10−4 1.53× 10−6 8.20× 10−4

AM2

MLP 4.17× 10−4 1.21× 10−2 6.20× 10−4 1.37× 10−2
CNN 3.65× 10−5 4.15× 10−3 1.08× 10−4 5.49× 10−3
EncDec 1.30× 10−6 7.63× 10−4 6.87× 10−6 1.51× 10−3

AM3

MLP 6.93× 10−4 1.33× 10−2 4.51× 10−4 9.57× 10−3
CNN 2.81× 10−4 6.64× 10−3 1.20× 10−4 4.37× 10−3
EncDec 6.76× 10−5 2.74× 10−3 4.81× 10−5 2.71× 10−3

AC1

MLP 3.00× 10−4 1.03× 10−2 1.81× 10−4 7.81× 10−3
CNN 3.90× 10−4 9.96× 10−3 2.23× 10−4 6.30× 10−3
EncDec 2.67× 10−5 2.45× 10−3 2.01× 10−5 2.34× 10−3

AC2

MLP 1.02× 10−4 5.40× 10−3 1.55× 10−4 6.99× 10−3
CNN 1.92× 10−4 7.62× 10−3 1.53× 10−4 6.25× 10−3
EncDec 7.36× 10−6 1.54× 10−3 9.35× 10−6 1.70× 10−3

Table 20: Mean squared error (MSE) in dex2 and mean absolute error (MAE) in dex for the NNs
for individual atmospheres evaluated on the test dataset. In all cases, the Encoder-
Decoder model (EncDec) performs best.

ID MSE (log(n) Input) MAE (log(n) Input) MSE (Abu. Input) MAE (Abu. Input)

DCEMP chem1 2.73× 10−4 4.81× 10−3 2.18× 10−4 3.65× 10−3
DCEMP chem2 2.25× 10−4 4.77× 10−3 1.94× 10−4 5.48× 10−3

RGB chem1 7.21× 10−4 5.11× 10−3 7.28× 10−4 6.04× 10−3
RGB chem2 1.49× 10−4 4.71× 10−3 1.76× 10−4 5.64× 10−3

Combined chem1 1.33× 10−3 1.56× 10−2 4.23× 10−4 4.37× 10−3

Table 21: Mean squared error (MSE) in dex2 and mean absolute error (MAE) in dex for EncDec
NNs evaluated on the test datasets. The “ID” column refers to the training/valida-
tion/testing dataset and combines the set of models with the CRN: “DCEMP”, “RGB”
and “Combined” refer to the model atmospheres in Table 14, Table 18 and the com-
bination of the previous two, respectively; “chem1” and “chem2” refer to the CRNs
described in (Wedemeyer-Böhm et al., 2005) and (Deshmukh and Ludwig, 2023) (Chap-
ter 3), respectively.
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Figure 98: Loss values (MSE, MAE, val. MSE and val. MAE) for each of the networks presented
in this work. Validation loss values follow training loss values for the entirety of the
training process, showing effective regularisation.

guarantees this. The EncDec models find better solutions in fewer epochs, though do show
significantly more variance in their validation loss curves. This suggests that the landscape
past this point of significant improvement is a kind of plateau with many local minima (in
the training set) which are not necessarily reflected in the validation set. In short, the model
is potentially learning very specific features that are not common to both sets, and training is
correctly halted before the model overfits to the training set. Fig. 99 shows the training losses for
the best-performing EncDec models on each of the composite datasets considered in this work.
For the composite models, the “DCEMP chem2” and “RGB chem2” NNs perform much better
on the test dataset, but the “Combined chem1” NN performs much worse.

6.3 discussion

We have seen that using NNs to predict the equilibrium number densities of a CRN can be
quite efficient. In this section, we will review some of the shortcomings seen in performing this
analysis for RGB stellar atmospheres. Firstly, training and finetuning the NN architectures takes
a significant amount of time. Secondly, each NN is trained to predict the equilibrium state of a
certain CRN. Finally, the NN is limited to predictions within the range of parameters it has been
trained on; it is unable to extrapolate outside of these boundaries effectively.

While training the NNs takes time, their efficiency at runtime makes them well-suited to
computing 3D stellar atmospheres. The training and evaluation process can be further sped up
by utilising GPUs. A majority of the training time was spent finetuning network architectures.
Luckily, this process can be automated somewhat through libraries such as optuna (Akiba et al.,
2019), allowing the user to optimise the network architecture quickly.

We tested NNs trained on single model atmospheres as well as those trained on composite
atmospheres. In the first case, each model atmosphere (separated by metallicity) is treated com-
pletely separately. This is to investigate the effects of metallicity on the training and validation
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Figure 99: Loss values (MSE, MAE, val. MSE and val. MAE) for a sample of the EncDec net-
works presented in Table 21. Validation loss values follow training loss values for
the entirety of the training process, showing effective regularisation for the “DCEMP
chem2” and “RGB chem2” models, while the “Combined chem1” model shows much
larger fluctuations.

process. It was found that metal-rich atmospheres have a slightly higher overall accuracy; the dif-
ference is quite minor, though. However, an issue is that the NN trained on model AM1 cannot
be used on model AM3 outputs since the abundance inputs will be offset by the wrong value,
and the output number densities fall in different regimes. This can be remedied in two ways.
One involves creating an ensemble learning model, in which one NN for each model atmosphere
is trained simultaneously, and the results from each are compared to the ground truth. In this
way, certain NNs will perform better at certain metallicities, and the entire system will perform
better as a result. However, this obviously does not scale well, and involves a second round of
training. The other way is to include all atmospheric inputs into the NN during training. This
is far simpler and preferable, as the training process does not change, and will result in an NN
that is robust against changes in input abundance. Future work will include such a NN, as well
as including different kinds of stellar atmospheres.

It is also important to note that the NNs used here were trained on outputs from 7 different
atmospheres, meaning they can also be used to predict equilibrium chemistry for any of these
atmospheres’ snaphosts. This can of course be expanded further; continuing training on other
atmospheric outputs would allow the NN to effectively predict equilibrium chemistry in those
atmospheres as well.

Figs. 100 & 101 show the range of gas density and temperature seen in the training and test
datasets. The NNs are accurate within this set of atmospheric parameters, and at metallicities
ranging from [Fe/H] = 0.0 to [Fe/H] = −3.0. There are clear peaks visible in the density and
temperature histograms; this bias is mainly physical (due to the effective temperatures and
surface gravities of the models chosen), and partially due to the compositing scheme. When
combining into a single dataset, we chose to use a coarser selection in the x− and y-directions.
These biases may be reflected in the final output, in that predictions may be better for better-
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Figure 100: Histograms of gas density and temperature for the training (black) and test (red)
datasets. Compositing the 7 3D atmospheres allows for a large range of atmospheric
parameters to be explored.

sampled points. However, our sample size is significant across the majority of atmospheric
parameters, and so this bias is unlikely to be a major source of error across a large majority of
the dataset.

Perhaps the largest drawback is still the accuracy. The encoder-decoder model is quite accu-
rate, but still does not achieve perfect accuracy for every data point. We look forward to further
advances in this aspect, since techniques exist for improving the modelling of physical rela-
tions through machine learning, such as physics-informed neural networks (Raissi, Perdikaris,
and Karniadakis, 2019), Hamiltonian neural networks (Greydanus, Dzamba, and Yosinski, 2019),
and neural ODEs (Chen et al., 2018).

The NNs presented in the current work were trained solely on the CRNs from Wedemeyer-
Böhm et al. (2005) and Deshmukh and Ludwig (2023). It is also not possible to retrain the NN
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Figure 101: 2D Histograms of gas density vs temperature for the training (top) and test (bottom)
datasets. The influence of the singular atmospheres that went into the composite
dataset can be seen.

with new inputs from a different CRN, since the inputs and outputs are confined to those origi-
nally used during training. A new CRN would require a new NN to be trained. That being said,
we have restricted ourselves to simple feedforward networks in this work, as they are simpe to
train and analyse, though many more complex layers can be used to overcome these issues. For
example, convolutional layers can also be used as inputs and outputs to allow for varying-length
sequences. Recent advances in natural language processing has shown transformers utilising at-
tention to be extremely versatile and precise. These techniques can also help the NN to make
accurate predictions outside of its training set, since it learns embeddings in a latent space rather
than a direct mapping (analogous to learning a mapping in phase space).

Finally, while we set up a chemical kinetics ODE system, we only solve for the steady-state.
This was motivated by the long wall-clock times required to solve the ODE system to steady-
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state, but this problem extends of course to time-dependent solutions as well. However, this
adds another layer of dimensionality to the prediction problem, and requires many more inputs.
One way of remedying this is through on-the-fly training, where the NN and the true model are
fed inputs simultaneously during the training process. This is beyond the scope of this work,
though we aim to model time-dependent kinetics using NNs in the future.

6.4 conclusion

Equilibrium number densities of a CRN can be efficiently predicted with NNs, as has been
shown in this chapter. The key takeaways are summarised as follows:

• Predicting the equilibrium state of a CRN via a trained NN achieves a speed-up of 60x
compared to the conventional method of solving the chemical ODE system. The training
process is time-consuming, and restricts the NN to learn a single CRN. However, the
improvements in efficiency make the NN method preferable when relatively large, static
CRNs need to be used, such as in the applications of Chaps. 3 and 4.

• The Encoder-Decoder architecture performed best across all atmospheres, with an overall
MAE of ∼ 5× 10−3 dex. Both the MLP and CNN architectures require a greater number
of epochs to reach a minimum, and their loss values are higher in all circumstances. The
EncDec model includes more trainable parameters, but crucially, the architecture encour-
ages the NN to learn efficient mappings between parameters to form a low-dimensional
embedding that contains the necessary information to make accurate predictions.

• Combining atmospheric outputs to create composite datasets comprised of the conditions
present in multiple atmospheres improves the robustness of the model while simultane-
ously allowing it to make predictions in a larger parameter space. However, combining
both dwarf and giant stellar atmosphere outputs together resulted in worse overall perfor-
mance, as the parameter space becomes too large for the models presented in this work
to predict with high accuracy. Increasing the model complexity and adding mechanisms
such as attention (Vaswani et al., 2017) could lead to further improvements in this area.

• Pre-processing the inputs to use number densities instead of abundance marginally im-
proves performance. However, this comes at the cost of simplicity and ease-of-use, since
in a larger application, it is often more convenient to specify the abundance set rather than
calculating the number densities explicitly.
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7S U M M A RY A N D O U T L O O K

7.1 summary

This work has covered work encompassing conventional modelling techniques and machine
learning ones. In this section, the main conclusions from each chapter are summarised. A future
outlook is presented in Sec. 7.2.

In Chap. 2, the photospheric solar silicon abundance was determined with CO5BOLD model at-
mospheres and the LINFOR3D spectrum synthesis code. The determined abundance was log εSi =
7.57± 0.04, including a −0.01 dex correction for NLTE effects (Amarsi and Asplund, 2017). From
a total of 39 spectral lines, 11 were carefully chosen for the abundance analysis, comprising of 7
optical Si I lines, 3 near-infrared Si I lines, and 1 Si II line. New oscillator strengths from Pehlivan
Rhodin (2018) provided smaller uncertainties and facilitated the use of the near-infrared lines.
Overall, the 0.06 dex with resepect to recent studies by Asplund, Amarsi, and Grevesse (2021)
shows that the determination of the solar silicon abundance is not yet a firmly solved problem.
Several factors complicate the fitting process, and it was found that the synthesised lines were
too broad to fit observations without applying negative broadening during the process. These
over-broadened line syntheses are not specific to CO5BOLD atmospheres, and were also seen in
lines synthesised with STAGGER + BALDER . Meteoritic abundances are increased with respect to
the previous study by Palme, Lodders, and Jones (2014) due to the increase in the determined
photospheric silicon abundance.

Chap. 3 considered the validity of the assumption of chemical equilibrium in the atmospheres
of 5 metal-poor and carbon-enhanced metal-poor dwarf stars. Time-dependent molecular for-
mation and dissociation calculations were performed alongside hydrodynamics and radiative
transfer in order to make a differential comparison with chemical equilibrium models. A new
chemical reaction network was constructed for this work, building upon the network presented
in Wedemeyer-Böhm et al. (2005), comprising of 76 reactions and 14 chemical species. Overall,
molecular species are generally in equilibrium throughout the model photosphere, with molecu-
lar species reaching a maximum deviation from equilibrium of 0.15 dex at log τ = −4. Generally,
the deviations from equilibrium stem from a slowing of chemical timescales due to a reduction
in metallicity, and the finite timescales associated with chemical reactions in the time-dependent
case. These finite timescales are usually still much faster than hydrodynamical timescales in the
majority of the atmosphere, but around features such as shock waves, molecular species are
seen to dissociate slower than predicted by equilibrium chemistry around the hot shock front.
Additionally, the uppermost, coolest layers (T 6∼ 3500 K) show a depletion in CO as there is in-
sufficient time to form it to its equilibrium value before the material is advected. The deviations
are unlikely to contribute significantly to spectroscopic measurements for metal-poor dwarfs,
as the line cores of key molecular species such as CH, C2 and CN are formed in deeper layers
(Gallagher et al., 2017a, 2016), where the material is in chemical equilibrium.

Chap. 4 extended the treatment of time-dependent molecular formation and dissociation to
7 metal-poor red giant atmospheres. Much like for dwarf stellar atmospheres, the assumption
of chemical equilibrium holds well in the spectroscopically relevant region of −4 6 log τ 6 2,
with deviations from equilibrium staying below 0.2 dex. An investigation of various chemical
timescales was performed, and the inverse reaction rate timescale was found to give the most
plausible result for chemical timescales as a whole. The Damköhler number Da, the ratio of
hydrodynamical to chemical timescales, was calculated across the regime. Da was found to be
a reasonable approximation to determining which regions in the atmosphere could be out of
chemical equilibrium. However, since the analysis considers only mean variations, it does not
highlight transient instances that may be interesting, such as shock waves. Together, Chaps. 3

and 4 show that the assumption of chemical equilibrium is valid in the photospheres of metal-
poor dwarf and giant atmospheres, but indicate that higher layers, such as chromosphere, are
out of chemical equilibrium.
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Chap. 5 investigated three machine learning approaches for removing noise and blends from
spectral lines. This problem was first encountered in Chap. 2 when many lines were found
to contain blending components. Fitting Gaussian line profiles to residuals and Autonomous
Gaussian Decomposition (Lindner et al., 2015) work well, but the best overall performance for
denoising was achieved by training an autoencoder neural network. This did not extend to fea-
ture extraction, though, and AGD performed the best when it came to reproducing the lines
from the Hamburg atlas (Neckel and Labs, 1984). However, since AGD is only capable of repro-
ducing Gaussian lines, the Voigt-like profiles of solar photospheric absorption lines were not
reproduced. Though promising, significant improvements to the algorithms are required to use
them effectively in a standard spectral fitting pipeline.

Chap. 6 presented 3 neural network architectures built and trained to predict the equilib-
rium state of a chemical reaction network. The problem arose in Chaps. 3 and 4, as solving
the chemical ODE system until the equilibrium solution is found can be quite time-consuming.
The best trained network (an encoder-decoder) resulted in a ∼ 60x speed-up compared to the
conventional method. This network achieved an overall mean-absolute-error accuracy around
5× 10−3 dex. It was found that combining atmospheric outputs to create composite datasets
worked well when the composite datasets were of the same kind of atmosphere, that is, if all
atmospheres came from dwarf stars. Mixing dwarf and giant stellar atmospheres resulted in
worse overall performance, likely due to the relative simplicity of the neural network archi-
tectures when compared with the number of data points and the spread of the parameters.
Pre-processing the inputs to use number densities instead of abundances resulted in a slight
improvement in performance, though it is likely that this could also be achieved by constructing
a suitable combination of hidden layers in the neural network.

7.2 future outlook

The future landscape holds many possibilities for the merging of conventional and machine
learning modelling techniques. Further work on photospheric abundances to determine the con-
sistency of the current solar photospheric silicon abundance derived in Chap. 2 would involve
considering radiative NLTE effects as well as diving further into understanding the source of
overly broadened spectral line syntheses. Techniques from Chap. 5 should be refined and ap-
plied to these analyses in order to further lower uncertainties. It may be feasible to construct
high-resolution magnetic model atmospheres that accurately reflect the surface magnetic field
strengths of the Sun, and techniques to speed up radiative NLTE calculations would allow for
the efficient and precise calculation of solar abundances.

We are fortunate to have increasing access to better data in this age of astronomical surveys,
which further helps constrain physical models. Mission such as PLATO take a particular interest
in M-type dwarf stars, and applying the methods of time-dependent molecular formation and
dissociation seen in Chaps. 3 and 4 would be particularly relevant in the molecule-dominated at-
mospheres of these stars. Additionally, the presence of magnetic fields alters the structure of the
atmosphere. Considering magnetic fields alongside the time-dependent treatment of chemistry
is therefore a feasible extension. Recent advancements in radiative NLTE calculations suggest
that graph neural networks can provide effective solutions. The structure of a chemical reaction
network as a graph lends itself to similar solution mechanisms. Furthermore, constructing a neu-
ral network capable of predicting time-dependent chemistry would be an interesting extension
to the work presented in Chap. 6. All in all, the future of astrophysical modelling looks bright.
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Pudil, Pavel and Jana Novovičová (1998). “Novel Methods for Feature Subset Selection
with Respect to Problem Knowledge.” In: Feature Extraction, Construction and Selec-
tion: A Data Mining Perspective. Ed. by Huan Liu and Hiroshi Motoda. The Springer
International Series in Engineering and Computer Science. Boston, MA: Springer
US, pp. 101–116. isbn: 978-1-4615-5725-8. doi: 10.1007/978-1-4615-5725-8_7.

Raissi, M., P. Perdikaris, and G. E. Karniadakis (Feb. 2019). “Physics-Informed Neu-
ral Networks: A Deep Learning Framework for Solving Forward and Inverse Prob-
lems Involving Nonlinear Partial Differential Equations.” In: Journal of Computational
Physics 378, pp. 686–707. issn: 0021-9991. doi: 10.1016/j.jcp.2018.10.045.

Ramírez Vélez, J. C., A. López Ariste, and M. Semel (Aug. 2008). “Strength Distribution
of Solar Magnetic Fields in Photospheric Quiet Sun Regions.” In: A&A 487, pp. 731–
740. issn: 0004-6361. doi: 10.1051/0004-6361:20078654.

Rankine, William (Dec. 1870). “On the Thermodynamic Theory of Waves of Finite Longi-
tudinal Disturbance.” In: Phil. Trans. R. Soc. 160, pp. 277–288. issn: 0261-0523, 2053-
9223. doi: 10.1098/rstl.1870.0015.

203

https://doi.org/10.1051/0004-6361:20053307
https://doi.org/10.1051/0004-6361/201321227
https://doi.org/10.1088/0004-637X/759/1/18
https://doi.org/10.1088/0004-637X/759/1/18
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361:20042082
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.48550/arXiv.2212.06517
https://doi.org/10.1080/713665229
https://doi.org/10.1146/annurev.aa.12.090174.001353
https://doi.org/10.1146/annurev.aa.12.090174.001353
https://doi.org/10.3847/0004-6256/152/2/41
https://doi.org/10.3847/0004-6256/152/2/41
https://doi.org/10.1007/978-1-4615-5725-8_7
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1051/0004-6361:20078654
https://doi.org/10.1098/rstl.1870.0015


Riener, M., J. Kainulainen, J. D. Henshaw, J. H. Orkisz, C. E. Murray, and H. Beuther
(Aug. 2019). “GAUSSPY+: A Fully Automated Gaussian Decomposition Package
for Emission Line Spectra.” In: Astronomy and Astrophysics 628, A78. issn: 0004-6361.
doi: 10.1051/0004-6361/201935519.

Rinke-Kneapler, C. N. and M. E. Sigman (Jan. 2014). “15 - Applications of Laser Spec-
troscopy in Forensic Science.” In: Laser Spectroscopy for Sensing. Ed. by Matthieu
Baudelet. Woodhead Publishing, pp. 461–495. isbn: 978-0-85709-273-1. doi: 10.1533/
9780857098733.3.461.

Robinson, James W. (July 1996). Atomic Spectroscopy, Second Edition, CRC Press. isbn:
978-0-8247-9742-3.

Roe, P L (1986). “Characteristic-Based Schemes for the Euler Equations.” In: Annu. Rev.
Fluid Mech. 18.1, pp. 337–365. doi: 10.1146/annurev.fl.18.010186.002005.

Roederer, Ian U. and Paul S. Barklem (Apr. 2018). “A New Test of Copper and Zinc
Abundances in Late-type Stars Using Ultraviolet Cu II and Zn II Lines.” In: ApJ 857,
p. 2. issn: 0004-637X. doi: 10.3847/1538-4357/aab71f.

Rokach, Lior (Feb. 2010). “Ensemble-Based Classifiers.” In: Artif Intell Rev 33.1, pp. 1–39.
issn: 1573-7462. doi: 10.1007/s10462-009-9124-7.

Rosenblatt, F. (1957). The Perceptron, a Perceiving and Recognizing Automaton Project Para.
Cornell Aeronautical Laboratory.

Rosenblatt, Frank (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books.

Rossi, Martina, Stefania Salvadori, Ása Skúladóttir, and Irene Vanni (June 2023). “Under-
standing the Origin of CEMP – No Stars through Ultra-Faint Dwarfs.” In: Monthly
Notices of the Royal Astronomical Society: Letters 522.1, pp. L1–L5. issn: 1745-3925. doi:
10.1093/mnrasl/slad029.

Rowland (1882). “LXI. Preliminary Notice of the Results Accomplished in the Manufac-
ture and Theory of Gratings for Optical Purposes.” In: Lond. Edinb. Dublin Philos.
Mag. J. Sci. 13.84, pp. 469–474. doi: 10.1080/14786448208627217. eprint: https:
//doi.org/10.1080/14786448208627217.

Russeil, D. (Jan. 2003). “Star-Forming Complexes and the Spiral Structure of Our Galaxy.”
In: Astron. Astrophys. 397, pp. 133–146. issn: 0004-6361. doi: 10.1051/0004-6361:
20021504.

Russell, Henry Norris (July 1929). “On the Composition of the Sun’s Atmosphere.” In:
ApJ 70, p. 11. doi: 10.1086/143197.

— (May 1914). “Relations Between the Spectra and Other Characteristics of the Stars.”
In: Pop. Astron. 22, pp. 275–294. issn: 0197-7482.

Ryabchikova, T., N. Piskunov, R. L. Kurucz, H. C. Stempels, U. Heiter, Yu Pakhomov,
and P. S. Barklem (May 2015). “A Major Upgrade of the VALD Database.” In: Phys.
Scr. 90, p. 054005. issn: 0031-8949. doi: 10.1088/0031-8949/90/5/054005.

Rydberg, Claes-Erik, Erik Zackrisson, Peter Lundqvist, and Pat Scott (Mar. 2013). “Detec-
tion of Isolated Population III Stars with the James Webb Space Telescope.” In: Mon.
Not. R. Astron. Soc. 429, pp. 3658–3664. issn: 0035-8711. doi: 10.1093/mnras/sts653.

Salpeter, Edwin E. (Jan. 1955). “The Luminosity Function and Stellar Evolution.” In:
Astrophys. J. 121, p. 161. issn: 0004-637X. doi: 10.1086/145971.

Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures. /paper/Foundations-
of-multidimensional-and-metric-data-Samet/e8da033f03c679e87b95a9e8cc1cfdd8c6ccb526.

Sbordone, L., P. Bonifacio, F. Castelli, and R. L. Kurucz (Jan. 2004). “ATLAS and SYN-
THE under Linux.” In: Mem. Della Soc. Astron. Ital. Suppl. 5, p. 93. issn: 0037-8720.

Schaffenberger, W., S. Wedemeyer-Böhm, O. Steiner, and B. Freytag (Nov. 2005). “Mag-
netohydrodynamic Simulation from the Convection Zone to the Chromosphere.” In:
596, p. 65.1.

204

https://doi.org/10.1051/0004-6361/201935519
https://doi.org/10.1533/9780857098733.3.461
https://doi.org/10.1533/9780857098733.3.461
https://doi.org/10.1146/annurev.fl.18.010186.002005
https://doi.org/10.3847/1538-4357/aab71f
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1093/mnrasl/slad029
https://doi.org/10.1080/14786448208627217
https://doi.org/10.1080/14786448208627217
https://doi.org/10.1080/14786448208627217
https://doi.org/10.1051/0004-6361:20021504
https://doi.org/10.1051/0004-6361:20021504
https://doi.org/10.1086/143197
https://doi.org/10.1088/0031-8949/90/5/054005
https://doi.org/10.1093/mnras/sts653
https://doi.org/10.1086/145971


Schaschke, Carl (2014). A Dictionary of Chemical Engineering. OUP Oxford. isbn: 978-0-
19-965145-0.

Schatzman, Evry (Jan. 1949). “The Heating of the Solar Corona and Chromosphere.” In:
Ann. Astrophys. 12, p. 203. issn: 0365-0499.

Schaye, Joop et al. (Jan. 2015). “The EAGLE Project: Simulating the Evolution and As-
sembly of Galaxies and Their Environments.” In: Mon. Not. R. Astron. Soc. 446,
pp. 521–554. issn: 0035-8711. doi: 10.1093/mnras/stu2058.

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller (July 1998). “Nonlin-
ear Component Analysis as a Kernel Eigenvalue Problem.” In: Neural Comput. 10.5,
pp. 1299–1319. issn: 0899-7667. doi: 10.1162/089976698300017467.

Schönrich, Ralph and James Binney (June 2009). “Chemical Evolution with Radial Mix-
ing.” In: Mon. Not. R. Astron. Soc. 396, pp. 203–222. issn: 0035-8711. doi: 10.1111/j.
1365-2966.2009.14750.x.

Scott, Pat, Nicolas Grevesse, Martin Asplund, A. Jacques Sauval, Karin Lind, Yoichi
Takeda, Remo Collet, Regner Trampedach, and Wolfgang Hayek (2015). “The Ele-
mental Composition of the Sun I. The Intermediate Mass Elements Na to Ca.” In:
A&A 573, pp. 1–19. issn: 14320746. doi: 10.1051/0004-6361/201424109.

Seneca, Lucius Annaeus and John Clarke (1910). Physical Science in the Time of Nero: Being
a Translation of the Quaestiones Naturales of Seneca. Macmillan and Company, Limited.

Serenelli, Aldo, Pat Scott, Francesco L. Villante, Aaron C. Vincent, Martin Asplund,
Sarbani Basu, Nicolas Grevesse, and Carlos Peña-Garay (Nov. 2016). “Implications
of Solar Wind Measurements for Solar Models and Composition.” In: MNRAS 463,
pp. 2–9. doi: 10.1093/mnras/stw1927.

Shaltout, A. M K, M. M. Beheary, A. Bakry, and K. Ichimoto (2013). “The Abundance of
Silicon in the Solar Atmosphere.” In: MNRAS 430.4, pp. 2979–2985. issn: 00358711.
doi: 10.1093/mnras/stt103.

Sharma, Mahavir, Tom Theuns, Carlos S. Frenk, and Ryan J. Cooke (Jan. 2018). “Origins
of Carbon-Enhanced Metal-Poor Stars.” In: Mon. Not. R. Astron. Soc. 473, pp. 984–
995. issn: 0035-8711. doi: 10.1093/mnras/stx2392.

Shchukina, N., A. Sukhorukov, and J. Trujillo Bueno (Feb. 2016). “Impact of Surface
Dynamo Magnetic Fields on the Solar Abundance of the CNO Elements.” In: A&A
586, A145. issn: 0004-6361. doi: 10.1051/0004-6361/201526452.

— (2012). “Non-Lte Determination of the Silicon Abundance Using a Three-Dimensional
Hydrodynamical Model of the Solar Photosphere.” In: ApJ 755.2. issn: 15384357.
doi: 10.1088/0004-637X/755/2/176.

Shchukina, Nataliya G., Andrii V. Sukhorukov, and Javier Trujillo Bueno (Oct. 2015).
“The Impact of Surface Dynamo Magnetic Fields on the Chemical Abundance De-
termination.” In: 305, pp. 368–371. doi: 10.1017/S1743921315005062.

Shen, Juntai, R. Michael Rich, John Kormendy, Christian D. Howard, Roberto De Pro-
pris, and Andrea Kunder (Sept. 2010). “Our Milky Way as a Pure-disk Galaxy—A
Challenge for Galaxy Formation.” In: Astrophys. J. 720, pp. L72–L76. issn: 0004-637X.
doi: 10.1088/2041-8205/720/1/L72.

Sherstinsky, Alex (Mar. 2020). “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network.” In: Phys. Nonlinear Phenom. 404,
p. 132306. issn: 0167-2789. doi: 10.1016/j.physd.2019.132306.

Shi, J. R., T. Gehren, K. Butler, L. I. Mashonkina, and G. Zhao (2008). “Statistical Equilib-
rium of Silicon in the Solar Atmosphere.” In: A&A 486.1, pp. 303–310. issn: 00046361.
doi: 10.1051/0004-6361:200809452.

Shi, J. R., M. Takada-Hidai, Y. Takeda, K. F. Tan, S. M. Hu, G. Zhao, and C. Cao (2012).
“Silicon Abundances in Nearby Stars from the Si i Infrared Lines.” In: ApJ. issn:
15384357. doi: 10.1088/0004-637X/755/1/36.

205

https://doi.org/10.1093/mnras/stu2058
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1111/j.1365-2966.2009.14750.x
https://doi.org/10.1111/j.1365-2966.2009.14750.x
https://doi.org/10.1051/0004-6361/201424109
https://doi.org/10.1093/mnras/stw1927
https://doi.org/10.1093/mnras/stt103
https://doi.org/10.1093/mnras/stx2392
https://doi.org/10.1051/0004-6361/201526452
https://doi.org/10.1088/0004-637X/755/2/176
https://doi.org/10.1017/S1743921315005062
https://doi.org/10.1088/2041-8205/720/1/L72
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1051/0004-6361:200809452
https://doi.org/10.1088/0004-637X/755/1/36


Sivarani, T. et al. (Nov. 2006). “First Stars X. The Nature of Three Unevolved Carbon-
Enhanced Metal-Poor Stars.” In: Astronomy and Astrophysics 459, pp. 125–135. issn:
0004-6361. doi: 10.1051/0004-6361:20065440.

Sokasian, Aaron, Naoki Yoshida, Tom Abel, Lars Hernquist, and Volker Springel (May
2004). “Cosmic Reionization by Stellar Sources: Population III Stars.” In: Monthly
Notices of the Royal Astronomical Society 350.1, pp. 47–65. issn: 0035-8711. doi: 10.
1111/j.1365-2966.2004.07636.x.

Sparke, Linda S. and John S. Gallagher III (Aug. 2000). Galaxies in the Universe : An
Introduction.

— (Feb. 2007). Galaxies in the Universe.
Spruit, H. C. (Dec. 1976). “Pressure Equilibrium and Energy Balance of Small Photo-

spheric Fluxtubes.” In: Solar Physics 50, pp. 269–295. doi: 10.1007/BF00155292.
Stark, J. and H. Kirschbaum (1914). “Beobachtungen Über Den Effekt Des Elektrischen

Feldes Auf Spektrallinien. III. Abhängigkeit von Der Feldstärke.” In: Ann. Phys.
348.7, pp. 991–1016. issn: 1521-3889. doi: 10.1002/andp.19143480704.

Starkenburg, Else et al. (Nov. 2017). “The Pristine Survey - I. Mining the Galaxy for
the Most Metal-Poor Stars.” In: Mon. Not. R. Astron. Soc. 471, pp. 2587–2604. issn:
0035-8711. doi: 10.1093/mnras/stx1068.

Steen, William M. (1998). Laser Material Processing. London: Springer. isbn: 978-3-540-
76174-7 978-1-4471-3609-5. doi: 10.1007/978-1-4471-3609-5.

Steenbock, W. and H. Holweger (Jan. 1984). “Statistical Equilibrium of Lithium in Cool
Stars of Different Metallicity.” In: A&A 130.2, p. 319. issn: 0004-6361.

Steffen, M. (Jan. 2017). “Radiation Transport in CO5BOLD. A Short-Characteristics Mod-
ule for Local Box Models.” In: Mem. Della Soc. Astron. Ital. 88, p. 22. issn: 0037-8720.
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