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Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the 
specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. 
Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number 
without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature 
search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The 
review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, 
muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, 
which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these 
physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify 
reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during 
hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. 
Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite 
well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do 
not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctua-
tions in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on 
physiological responses to hypoxia.

1 Introduction

Systemic hypoxia refers to an environment with a reduced 
oxygen  (O2) availability that arises from a decreased baro-
metric pressure (hypobaric hypoxia) or a reduced ambient 
 O2 concentration, which leads to lower inspired  O2 frac-
tion  (FIO2) (normobaric hypoxia), resulting in an inspired 
partial pressure of oxygen lower than 150 mmHg [1]. As 
a consequence, steps involved in the  O2 transport, known 
as the  O2 cascade, are altered [2], and without appropri-
ate responses,  O2 supply may be compromised. Hence, to 
maintain an acceptable  O2 supply, humans have developed 
many adaptations that are dependent on hypoxic stress. The 
duration, severity, type, and intermittent pattern of the expo-
sure to hypoxia modulate the acute responses or long-term 
adaptations [3, 4].

Over 500 million humans live above 1500 m, which rep-
resent about 7% of the total world population [5]. Moreover, 
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a growing number of individuals are exposed to altitude/
hypoxia in different scenarios, such as mountain tourism 
(e.g., mountaineering, trekking), winter sports, air travel, 
altitude training camps, or hypoxic training (i.e., tents/rooms 
at sea level). Therefore, adaptations to hypoxia have been 
investigated and described by researchers during the past 
decades [3, 6, 7]. However, despite the huge amount of lit-
erature regarding the specific responses to hypoxia, most 
studies were conducted in men [8]. Only a few studies have 
investigated putative sex-related responses to altitude and 
these were mainly limited to ventilatory [9, 10] or endo-
crine [11] functions. Overall, the underlying mechanisms 
of sex-related specificities remain scarcely investigated. To 
our knowledge, there is no comprehensive review covering 
the main sex-related physiological responses to hypoxia. 
Therefore, this review first draws upon an extensive litera-
ture search on five sex-related responses implied in oxy-
gen cascade changes in hypoxia (i.e., respiratory, hemody-
namic, haematological, muscle metabolism, and autonomic 
responses). We also discuss the impact of hypoxia on exer-
cise at altitude and the influence of sex hormone changes 
with menstrual cycle and menopause. While slight differ-
ences in the physiological responses to normobaric versus 
hypobaric hypoxia have been reported [12], both types of 
hypoxic exposure are considered in this review due to data 
scarcity. The impact of the type of exposure is identified 
and discussed whenever a difference is shown or suspected.

2  Physiological Mechanisms to Sex‑Related 
Differences in Hypoxia

2.1  Respiratory Responses

The pulmonary system plays a central role in both acute 
and chronic responses to hypoxia as the  O2 provider of the 
organism. An increase in ventilation, known as the hypoxic 
ventilatory response (HVR), occurs rapidly during hypoxic 
exposure to maintain a functional alveolar to arterial  O2 
pressure gradient, and consequently reduces the alteration 
in  O2 pulmonary diffusion. This HVR response is driven by 
chemoreceptors and is highly variable among individuals. 
The impact of sex on HVR is not fully understood, with con-
tradictory studies reporting either higher [13], lower [14], or 
similar [15] HVR between men and women. A recent study 
on a large cohort reported a lower HVR in women even after 
correction for body surface area [16]. These inconsistent 
findings regarding HVR could be explained by the impact 
of sexual hormones on ventilation and hence the menstrual 
cycle since sex hormone receptors are located in the carotid 
body, which contains the primary chemoreceptors monitor-
ing blood oxygen levels [17, 18] (peripheral chemoreceptors, 
see Sect. 3.1). Central chemoreceptors, located throughout 

the lower brainstem, modulate respiration based on changes 
in  CO2 and consequently in pH. Low chemosensitivity 
could greatly contribute to sex-related specific responses to 
hypoxia. This is suspected to be involved in acute mountain 
sickness (AMS) [19] and relative hypoventilation during 
exercise [20]. Moreover, it was recently demonstrated that 
women had a lower hypercapnic ventilatory response (i.e., 
lower central chemosensitivity) than men at rest [21] and 
during aerobic exercise [22], which may contribute to rela-
tive hypoventilation.

Relative hypoventilation (with shunt, ventilation-to-per-
fusion mismatch, diffusion limitation, and insufficient red 
blood cell transit time) is one of the underlying mechanisms 
of exercise-induced hypoxemia (EIH) [20]. Hypoxemia 
refers to a decrease in  O2 blood content and is a cause of the 
reduced  O2 availability. The EIH phenomenon observed at 
sea level is suspected to be more common in women [23] 
than in men [24] during a maximal cycling exercise (67% 
versus 52%; respectively), despite the lack of temperature-
corrected arterial blood gases. However, greater pulmo-
nary gas exchange impairment in women has not always 
been reported [25, 26]. Moreover, while EIH is exclusively 
observed in highly trained male endurance athletes [24], it 
has been reported in both trained and untrained women [23, 
27, 28]. Although the consequences of EIH during altitude 
exposure are not fully understood, higher oxidative stress 
[29], lower pulmonary vascular resistance [30], and lower 
 O2 arterial saturation  (SaO2) [31] have been reported in 
individuals exhibiting EIH when exposed to altitude. It is 
known that individuals with EIH have a larger drop in maxi-
mal  O2 uptake (VO2max) during exercise in acute hypoxia 
[31, 32]. Indeed, a relationship between EIH severity (i.e., 
lowest  SaO2 in normoxia) and V ̇O2max decline in hypoxia 
was reported even at a low altitude (1000 m) [32]. Knowing 
that even untrained women are susceptible to developing 
EIH and that EIH may be more prevalent in female athletes, 
one may speculate that, on average, women may exhibit a 
greater hypoxia-related decline in VȮ2max than men. Moreo-
ver, women seemed to be more hypoxemic than men when 
exposed to the same hypoxic intensity and duration because 
of poor ventilatory response, right shift in the oxyhaemoglo-
bin dissociation curve, and a lower circulating capacity and 
reservoir [i.e., lower body surface area and lower normalized 
blood volume and haemoglobin mass  (Hbmass)] [33–35].

Apart from reduced chemosensitivity, hypoventilation 
may also be due to mechanical constraints such as expiratory 
flow limitation (EFL) [27]. EFL occurs when ventilatory 
demands reach ventilatory capacity and refers to the inability 
to generate higher expired flow despite increased expiratory 
effort [36]. Women are known to have proportionally smaller 
lung volumes and airways than men [37], which lowers their 
ventilatory capacity. Lung size is related to standing height, 
and since men are taller than women, population-based 
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studies indicate that women have smaller absolute lung 
volume even when matched for height with men [38]. As 
a consequence, absolute gas exchange surface and pulmo-
nary capillary volume are reduced as well as lung diffu-
sion capacity (i.e., the ability of the pulmonary system to 
allow effective gas transfer between alveoli and pulmonary 
capillaries) [39]. A reduced diffusion capacity in women, 
which is known to change at rest [40] and during exercise 
[41] across the menstrual cycle, may affect pulmonary gas 
exchange under hypoxic conditions. However, the differ-
ence in lung diffusion capacity disappears when corrected 
for lung size and cardiac output [26, 39]. Therefore, women 
did not display higher diffusion limitation in normoxia and 
hypoxia  (FIO2 = 0.125) [26]. This highlights the importance 
of absolute lung volume in determining pulmonary limita-
tion to exercise, particularly when comparing women and 
men. Moreover, since hypoxic pulmonary vasoconstriction 
is one of the first adaptations to a hypoxic environment [42], 
its influence on sex-related differences in diffusion capacity 
remains to be characterized, especially given the attenuated 
pulmonary artery vasoreactivity in hypoxia when circulating 
oestrogen level is elevated [43]. Women also have a smaller 
large-conduit airway than men, which impacts flow resist-
ance [44]. Airflow passes from laminar to turbulent flow 
when air velocity (determined by ventilation) increases. In 
this context, a small airway cross-sectional area favors tur-
bulent flow, which increases the resistive work of breathing 
(Wb) [45]. Hence, women have an increased  Wb compared 
with men [46], and one can hypothesize that the hypobaric-
related decrease in air density at altitude may induce greater 
benefits in women (only during hypobaric exposure). Dur-
ing exercise, when women breathed a Heliox gas mixture 
(21%  O2 balance with Heliox), which is less dense than air, 
their Wb was similar to that of men breathing room air [46]. 
However, the reduction of air density is likely large enough 
to obtain such a benefit only at very high altitude, since indi-
viduals should be exposed to an altitude over ~ 5500 m to 
reach the Heliox gas mixture density. To our knowledge, 
although several differences in physiological responses to 
normobaric versus hypobaric hypoxia have been reported 
[12], there are no data comparing men and women exposed 
to these two hypoxic conditions.

Due to their above-described higher Wb, women exhibit 
greater respiratory muscle V ̇O2 and are thought to be more 
susceptible to exercise-induced diaphragm fatigue. A recent 
study showed that diaphragm fatigue was not impacted by 
sex in normoxia, while in hypoxia healthy women were more 
susceptible to this fatigue when compared with men [47]. 
However, during whole body exercise, diaphragm fatigue 
was not different between men and women in normoxia and 
hypoxia, but diaphragm recovery in hypoxia was impaired 
in women [48]. An efficient strategy to limit this exacerbated 
diaphragm fatigue in hypoxia consists of respiratory muscle 

training (RMT). A greater improvement of endurance per-
formance in hypoxia compared with normoxia was reported 
after 4 weeks (20 sessions) of RMT [49]. Of importance, 
this performance enhancement was greater in women than 
in men. Since a substantial percent increase in V ̇O2max fol-
lowing altitude training goes to fuel the respiratory muscles 
[50], one may speculate that the benefits of RMT prior to or 
during altitude exposure would be larger and may induce a 
greater post-altitude VȮ2max increase in women than in men.

Overall, the female pulmonary system seems more detri-
mentally impacted by altitude due to a higher propensity to 
exhibit EIH and exacerbated diaphragm fatigue in hypoxia. 
The difficulty in drawing definite conclusions regarding pul-
monary function in hypoxia is that lung size is impacted by 
sex; hence normalization could abolish potential sex differ-
ences. Moreover, many of these assumptions are drawn from 
studies including only few women. Therefore, further studies 
with specific attention toward sex-related pulmonary system 
responses to hypoxia are required.

2.2  Cardiac and Hemodynamic Responses

Growing evidence demonstrates sex differences in cardiac 
hemodynamic and vascular regulation, both at rest and 
during exercise, which have direct consequences on the 
responses to hypoxia.

Across all ages, at rest, women present similar [51] or 
higher heart rate (HR) [52] and lower absolute stroke volume 
(SV) and cardiac output (Q ̇C), but higher peripheral resist-
ance, compared with men [51, 53]. However, when body 
surface area is taken into account, no sex differences are 
reported for SV and peripheral resistance, though contrast-
ing results still persist regarding QĊ indexed for body surface 
area [51, 53]. When normalized for body surface area, differ-
ences in peripheral vascular tone disappear; this mechanism 
explains why the higher absolute total peripheral resistance 
in females remains debated. In women, contrary to men, the 
greater peripheral vascular tone at rest seems to be unrelated 
to sympathetic activity [51]. There are several candidates 
for sex differences in cardiovascular function: greater levels 
of circulating endogenous nonadrenergic vasoconstrictors 
[51], lower release of vasoconstrictors (primarily norepi-
nephrine and/or neuropeptide Y) per burst of sympathetic 
traffic [51], and/or specific effects of female sex hormones 
(i.e., estrogens) that may offset sympathetically mediated 
vasoconstriction [54, 55].

The differences in resting blood pressure between women 
and men are more complex since menopause reverses the 
relationship between blood pressure and age [56]. From 
youth to middle age, men consistently have significantly 
higher systolic and diastolic pressures compared with 
women [51, 52]. After the age of 55 years, due to a greater 
increase in systolic blood pressure and similar decrease in 
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diastolic blood pressure as compared with men, healthy 
women present a larger increase in pulse pressure (i.e., the 
difference between systolic and diastolic blood pressures, 
which is an index of arterial stiffness) [52, 56].

During exercise, HR, Q ̇C, and blood pressure increase 
due to sympathetic stimulation, catecholamines releases, 
and vasodilation occurs in contracting muscles. Even when 
matched for body size, females demonstrated divergent car-
diovascular responses to dynamic exercise compared with 
men [57], as demonstrated by a more rapid increase in blood 
pressure and HR, and a smaller exercise-induced increase 
in ejection fraction [58, 59]. Overall, it has been suggested 
that females have a greater reliance on HR to meet the meta-
bolic demands of exercise, whereas men rely on preload and 
enhanced use of the Frank–Starling mechanism to increase 
Q ̇C [59]. Moreover, premenopausal women (i.e., start of 
menarche to start of the menopause) demonstrate a greater 
vasodilatory capacity during incremental leg exercise com-
pared with men [60] and lower sympathetic vasoconstriction 
responsiveness to pharmacological and nonpharmacologi-
cal stimuli [61, 62], suggesting that β-adrenergic receptors 
are either more sensitive or upregulated in premenopausal 
women versus age-matched men.

Hypoxia also represents an important stressor for the 
cardiovascular system. The cardiac and blood flow control 
response is a dynamic process that progresses over hours, 
days, and weeks at altitude, and it appears to be largely 
driven by stimulation of the sympathetic nervous system. 
During acute exposure to altitude (> 700 m [63]), sympa-
thetic stimulation aims to increase HR, SV, and systemic 
blood flow (i.e., Q ̇C) proportionally to the degree of hypoxia 
[64, 65]. With prolonged exposure, gradual systemic adap-
tations (i.e., decreases in SV and Q ̇C despite an increased 
HR) occur to attempt to restore cardiovascular function 
toward normoxic levels [66, 67]. Substantial evidence 
suggests that differences in resting cardiac hemodynamic 
responses and vascular regulation during both acute and 
prolonged exposure to altitude might be influenced by sex 
[63, 64, 68, 69]. Specifically, while resting HR and blood 
pressure increase similarly between women and men acutely 
exposed to hypoxia [69, 70], there are contrasting results for 
sex differences in resting blood flow and vascular conduct-
ance between femoral and forearm vasculature [69, 70]. An 
emerging body of literature suggests that premenopausal 
women exhibit a different peripheral blood flow response 
(i.e., attenuated vasoconstriction or enhanced vasodila-
tion) to physiological stressors, including acute exposure 
to hypoxia, when compared with men [68–72]. Indeed, 
substantial sex differences exist in regional blood flow and 
compensatory vasodilatory response to hypoxic exercise. 
Casey and colleagues were the first to report a greater com-
pensatory vasodilatory response to submaximal handgrip 
exercise (10% and 20% of maximal voluntary contraction) 

in premenopausal, but not in older, females compared 
with males [69]. While female sex hormones likely influ-
ence these responses, it was suggested that premenopausal 
women present lower sympathetic vasoconstrictor activity 
during hypoxic exercise compared with men, and therefore 
a greater compensatory vasodilation [69]. Moreover, nitric 
oxide (NO) represents a major vasodilatory signaling mol-
ecule released in response to acute hypoxia [73], with the 
exception of the pulmonary vasculature where hypoxia elic-
its vascular constriction [74], and sex-specific differences 
in NO release and NO-dependent vasodilation may exist. 
Early animal models suggested greater NO-mediated sympa-
tholysis and sympathetic vasoconstriction at rest in females 
compared with male rats [75]. More recently, in humans, 
females showed similar resting cutaneous microvascu-
lar NO-dependent vasodilation to men. However, greater 
microvascular NO-dependent vasodilation was found in 
eumenorrheic women compared with both women using oral 
contraceptives and men [76]. Nevertheless, sex differences 
in the contribution of NO to hypoxia- or exercise-induced 
vasodilation remain to be further elucidated.

Exercise at altitude (acute exposure) increases HR but 
not SV, leading to an increased Q ̇C compared with the same 
exercise performed at sea level [77, 78]. However, the lit-
erature is still scarce about HR, SV, and Q ̇C responses to 
hypoxic exercise in females versus males.

In conclusion, substantial sex differences exist between 
premenopausal women and men in vascular control, rather 
than in the cardiac hemodynamic responses, during acute 
exposure to hypoxia at rest or in combination with exercise. 
These responses seem to be primarily mediated by lower 
activation of exercise- and hypoxia-induced β-adrenergic 
receptors or blunted sympathetic vasoconstriction observed 
in premenopausal females compared with males.

2.3  Hematological Responses

Plasma volume (PV) contraction is one of the first hema-
tological responses to a hypoxic environment [79]; hence, 
significantly higher haemoconcentration is observed in alti-
tude for lower basal values [80]. This hemoconcentration, 
which arises from a reduction in total circulating plasma 
protein mass (TCPP) rather than a fluid loss [81], is similar 
between men and women [82]. It has a direct impact on 
hemoglobin concentration (Hb) and hematocrit (Hct) levels. 
Despite lower average values in females [83], mainly caused 
by the effect of sex hormones on erythropoiesis [84], acute 
hematological changes seem to be sex independent [85]. 
However, women apparently reach maximal Hb and Hct 
values more rapidly (approximately 5 days, compared with 
7 days in men) during exposure to the same altitude [80].

Consecutive to the above-described initial hematologi-
cal adaptations, the increase in erythropoietic activity is 
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proportional to the severity of the hypoxic stimulation [86] 
and therefore determined by the hypoxic dose (e.g., the alti-
tude and duration of exposure) [87]. Erythropoietin (EPO) 
is the key hormone in the erythropoietic process [88] due 
to the upregulation of the hypoxia-inducible factor (HIF) 
[89]. Serum EPO tends to increase drastically during the 
first 3 days at altitude before progressively declining, with a 
return to basal values after 1–3 weeks [90]. Despite a large 
interindividual variability [91], the EPO time course at 
altitude seems to be very similar between women and men 
[92–94].

Several days are required before an increase in reticulo-
cytes is detected, frequently followed by an expansion of 
the total  Hbmass [95]. A greater within-subject variability in 
reticulocyte level was observed in female athletes, poten-
tially explained by the influence of the menstrual cycle [96]. 
Although the menstrual cycle is known to impact multiple 
blood variables such as Hb and reticulocyte parameters 
[97], study of the menstrual cycle in relation to hematologi-
cal adaptations at altitude remains poorly documented. An 
 Hbmass expansion of ∼1.0 to 1.1% per 100 h of altitude expo-
sure is commonly expected in male athletes [86, 98]. In line 
with the latter assertion, 12 nights of normobaric hypoxia 
were insufficient to detect a significant  Hbmass increase in 
elite female athletes [99], with the hypoxic dose probably 
being too low. Following a sigmoidal pattern, a stabiliza-
tion of  Hbmass is usually observed after 3 weeks of exposure 
[100]. As the decrease in PV is only partially compensated 
for by the progressive increase of  Hbmass, a decrease in blood 
volume is usually observed during the first weeks of expo-
sure [101]. No clear consensus is apparent regarding the 
impact of sex on  Hbmass increase. While some results did 
not report differences between sexes [92, 93], a recent study 
showed a smaller increase in female athletes [102], although 
the latter results are probably partially explained by a low 
initial level of s-ferritin in the female cohort (< 30 μg  L−1). 
Furthermore, the influence of the initial  Hbmass level on the 
potential gains does not seem to be fully understood, with 
contradictory results [103]. However, since the response 
to altitude training between the sexes has not been system-
atically studied, in addition to a smaller number of women 
commonly included in the studies [102], the putative sex-
related differences remain unclear and need to be further 
investigated.

Overall, most of the results do not show any large impact 
of sex on erythropoietic adaptation [91, 93, 104]. Neverthe-
less, a difference was observed among altitude residents, 
reporting a lower  Hbmass level in women than in men [105]. 
At that time, a better ventilatory response leading to bet-
ter arterial oxygenation and a consequently lower erythro-
cyte requirement in women was suggested by the authors. 
These mechanisms are not supported by the recent litera-
ture (see Sect. 2.1). Moreover, a later study did not confirm 

these mechanisms and reported a similar increase in  Hbmass 
between pre- and postmenopausal women living at 2600 m 
[106].

While the classification of altitude responders and non-
responders remains debated [91, 102], it is well known that 
iron stores, with increasing demand at altitude [107], are 
an essential component of hematological adaptations [90, 
104]. With a higher prevalence of iron deficiency in female 
athletes (15–35%) [108], this population could be more at 
risk for reduced hematological adaptations and this needs to 
be further investigated. Adequate pre-altitude iron stores are 
needed for hematological adaptations during altitude expo-
sure [109, 110]. Therefore, a critical point relates to iron 
status, with an adequate baseline s-ferritin (> 30 ng/mL for 
women and > 40 ng/mL for men) being assumed to support 
the general evidence of progressive enhancement of  Hbmass 
with altitude/hypoxia exposure [95, 109–113].

However, substantial  Hbmass increases can be achieved 
even with low pre-altitude s-ferritin, provided adequate 
iron supplementation is implemented at altitude [109, 114]. 
Koivisto-Mørk et al. [115] recently showed that pre-altitude 
s-ferritin or iron supplementation (which prevent a decrease 
in s-ferritin at altitude) were not the limiting factors for 
an altitude-induced increase in  Hbmass (+ 3.7%) in world-
class endurance athletes with clinically normal iron status. 
Whether iron treatment is appropriate or not for female ath-
letes with nonanemic iron deficiency (s-ferritin < 30 μg  L−1, 
with all other hematological variables being normal) still 
remains unresolved [116].

2.4  Muscle Metabolism

Beyond the sex differences in ventilatory and hemodynamic 
responses to hypoxia, distinct peripheral responses due to 
different physiological muscle properties have been identi-
fied between females and males.

For instance, studies reported that females have a higher 
portion of type I fibers in the vastus lateralis [117, 118], 
although males showed a larger fiber cross-sectional area 
[119].

In the literature, mixed results have been reported when 
sex differences in muscle capillarization are investigated 
[120, 121], but greater microvascular reactivity has been 
found in males compared with females [122]. Moreover, 
equivocal data are presented on skeletal muscle oxidative 
capacity [123, 124], even if the literature supports no differ-
ences between males and females when the populations are 
matched for fitness level and lean body mass [125, 126]. The 
magnitude of increase in muscle deoxygenation measured by 
near-infrared spectroscopy placed on vastus lateralis during 
repeated sprint exercise appeared to be significantly lower 
for females than males [127], supporting the current knowl-
edge of a more efficient oxidative metabolism in females 
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than males. However, this should be interpreted with caution 
because of the higher body fat mass reported in women that 
can confound the near-infrared spectroscopy signal [128]. 
Indeed, consistent results are reported on sex influences in 
skeletal muscle metabolism, with females oxidizing more 
fat and less carbohydrate and amino acids during endurance 
exercise compared with males [129], probably as a conse-
quence of the higher portion of slow oxidative fibers and 
lower glycolytic enzyme activity [130], in association with 
higher levels of 17-β-estradiol, which mediates lipid oxida-
tion [131].

The possible implications of the above-reported sex dif-
ferences in oxygen utilization in hypoxic conditions have 
been only marginally explored. The shift in substrate pref-
erence in hypoxia (i.e., a decreased reliance on free fatty 
acids and an increase in glucose dependence) is well known 
[132, 133]. Sandoval and Matt investigated sex differences 
in metabolic substrate utilization in hypoxia, with females 
shifting toward greater fat use and males shifting toward 
greater carbohydrate use during exercise [134]. However, 
the sex differences in the metabolic shift in hypoxia remain 
largely unexplored, along with the possible impact of these 
characteristics on hypoxic training interventions.

The pioneering work of Shephard and colleagues [135] 
demonstrated that the differences between males and females 
in maximal oxygen consumption in hypoxia are significantly 
decreased when the volume of active muscles is reduced 
during specific modalities of exercise (two-legged versus 

one-legged exercise). Reducing the active muscles during 
exercise makes peripheral limitations predominant in deter-
mining endurance performance [136], and when this condi-
tion is achieved by studying upper limb exercises, females 
seemed to have no impairment in hypoxic compared with 
normoxic exercise conditions [135]. This work suggests that 
the exercise capacity of the arms per unit volume of mus-
cle in hypoxia is greater in females compared with males, 
but more studies are needed to confirm this and investigate 
the possible impact of peripheral sex differences in oxygen 
utilization. The above-described mechanisms may alter  O2 
transport and consumption. Convective and diffusive com-
ponents of V ̇O2max in normoxia and hypoxia are displayed 
with representative data in Fig. 1. This method should help 
to highlight the cause of V ̇O2max limitations in female and 
male individuals in hypoxia.

2.5  Autonomic Responses

One critical response to hypoxia is the modulation of the 
autonomous nervous system activity, with an increased 
sympathetic activation concomitant with a parasympa-
thetic withdrawal [137, 138]. Several studies reported sex 
differences in autonomic function and its hypoxia-induced 
modulation.

In normoxia, the sex differences in various parameters 
associated with autonomic function are divergent. In pre-
menopausal women, cerebral autoregulation has been 

Fig. 1  Schematic representation of altitude-related changes in con-
vective (calculated from V̇O2 = cardiac output × difference in arterio-
venous  O2 content, sigmoid line, [236]) and diffusive (calculated 
from V̇O2 = diffusion coefficient × mixed venous  O2 pressure, straight 
line, [236]) components of V̇O2max in one male and female individual 
matched for sea-level V̇O2max. The full line is in normoxia, the dotted 
line is in hypoxia (5260 m). The individual datasets are from [237]. 
Cardiac output was computed with pulse wave contouring analysis. 
The convective component was reduced to a larger extent in female 

individual due to a higher altitude-induced hypoxemia and lower 
hemoglobin concentration, while no clear differences in cardiac 
hemodynamic responses were noted. Due to a higher compensatory 
vasodilation and lower sympathetic vasoconstrictor activity, the dif-
fusive component of V̇O2max was improved in female individuals in 
hypoxia. Therefore, female individuals seem more centrally but less 
peripherally limited than men when exercising in hypoxia. V̇O2 oxy-
gen uptake, PO2 oxygen pressure
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reported to be similar to [139, 140], more efficient than 
[141, 142], or less efficient than age-matched men [143]. 
Women show greater vagal modulation in heart rate variabil-
ity (HRV) in normoxia [144]. However, whether the cerebral 
autoregulation, which is partially dependent on vagal modu-
lation, is related to HRV in hypoxia remains unclear. Com-
parably, there was no clear difference in baroreflex function 
in premenopausal women and age-matched men, yet barore-
flex sensitivity seemed blunted in older women (> 40 years 
old) [145]. Moreover, women were shown to have a smaller 
increase in sympathetic indices and cerebrovascular resist-
ance index, and greater parasympathetic withdrawal and 
vasodilation during the tilt test than men [146–148].

Sex-based vascular differences have already been 
described (see Sect. 2.2). The response may differ between 
vascular beds, with sex-related differences being reported 
in the forearm circulation [71, 149] but absent in the legs 
[70]. Systemic vascular responses may not differ, whereas 
responsiveness within the mesenteric circulation is sex spe-
cific [150] and seemed neurally mediated [72]. Hypoxia 
differentially modulates vascular responsiveness to sympa-
thetic activation in men and women [151], which may partly 
explain the differences observed in AMS susceptibility [9].

In hypoxia, muscle sympathetic nerve activity (MSNA) 
responses were augmented in premenopausal women com-
pared with men, indicating an augmented sympathetic 
response to both central chemoreflex and combined periph-
eral and central chemoreflex activation [21]. These findings 
may be associated with the reduced ventilatory response, as 
described in Sect. 2.1. However, the causal link between the 
two phenomena remains unexplored [21]. In addition, sex 
differences in the respiratory–sympathetic coupling likely 
depend on intrinsic properties of the respiratory–sympathetic 
network [152]. This may be one underlying mechanism of 

the higher diaphragm fatigue described above in women 
[47] (Sect. 2.1). The sympathetic activity has a rhythmic 
component associated with the respiratory cycle [153], in 
which the sympathetic discharge occurs at the end of inspi-
ration and the beginning of postinspiration [154, 155]. This 
respiratory–sympathetic coupling is mainly due to synaptic 
interactions between respiratory and presympathetic neu-
rons at the rostral ventral medulla [156, 157]. Changes in 
the respiratory–sympathetic coupling may lead to increased 
sympathetic activity and may partially account for some of 
the sex differences listed above.

3  Impact of Hormonal Changes

3.1  Menstrual Cycle Variation

The different endocrine environments between females and 
males promoted by estrogen, progesterone, testosterone, and 
their precursors influence human physiology and sex differ-
ences [158]. In eumenorrheic women, these hormones fluc-
tuate along the menstrual cycle phases (Fig. 2). The ovar-
ian cycle starts with the first day of bleeding, when the sex 
hormone levels are at their lowest. Estrogen levels increase 
during the follicular phase and peak just before the surge 
of luteinizing hormone, stimulating ovulation that marks 
the transition to the luteal phase. During this phase, both 
estrogen and progesterone will increase and decrease shortly 
before the next bleeding in the absence of fertilization [159]. 
In women taking combined contraceptive pills (mono-, bi-, 
tri-, or quadriphasic oral contraceptives) the exogenous 
hormones are fairly constant and reduce the endogenous 
levels of sex hormones, followed by a phase without exog-
enous hormones during pill withdrawal. These sex hormone 

Fig. 2  Schematic representation of estrogen (blue curve) and proges-
terone (red curve) expected in eumenorrheic women and their poten-
tial influence on altitude-related physiological responses. The transi-
tion from follicular to luteal phase is determined by ovulation. The 

gray half circles represent each phase and the black line illustrates 
the schematic representation of the hormonal environment (related 
to the sum of estrogens and progesterone). HVRe hypoxic ventilatory 
response at exercise, SaO2 oxygen arterial saturation



 A. Raberin et al.

fluctuations impact numerous physiological functions that 
may influence training [160, 161] and performance [162, 
163], such as recovery [164], wellness [165], and in par-
ticular, considering the altitude environment, respiratory 
function [166].

In normoxic conditions, an increase in ventilation, basal 
temperature, and resting HR has been well established dur-
ing the luteal phase when progesterone peaks [167, 168]. 
With the use of combined oral contraception, an increase 
in ventilation, breathing frequency, and oxygen ventilatory 
equivalent occurs during the hormonal phase in compari-
son with the phase of pill withdrawal or nonhormonal phase 
[168].

Sex hormones may play a key role in the responses to 
hypoxic exercise depending on the ovarian cycle phase and 
menopausal status [9]. Studies have reported variations in 
ventilatory measures across the menstrual cycle [169–171]. 
Specifically, progesterone, acting both on peripheral and 
central chemoreceptors, has been suggested to be a potent 
respiratory stimulant [172]. The suggested mechanism is 
a reduced threshold of the medullary respiratory center, 
increasing its excitability [168]. There is ample evidence 
relating progesterone to the increase in resting minute venti-
lation during the mid-luteal phase [173, 174], favoring better 
oxygenation at high altitudes [175].

Some studies have hypothesized an increase in ventilatory 
levels, and ultimately in performance, in hypoxic conditions 
during the luteal phase. However, there is not a clear-cut 
answer to such a hypothesis. There are sparse studies relat-
ing the menstrual cycle to altitude performance, and the 
methods employed to define each phase (with or without 
hormonal measurements), the altitude level, the training 
status of the subjects, and the measured parameters differ 
widely, reducing comparability. The studied female popu-
lation also widely ranges, from sedentary mice to trained 
women, from acclimated to high altitude to lowlanders tested 
at rest or in exercising conditions [9, 10, 15, 174, 176–179].

A study including a large cohort, with 1060 healthy 
women showed that HVR at exercise (HVRe), which is a 
determinant factor of tolerance to high altitude, depends on 
the ovarian cycle phase [9]. As hypothesized, HVRe was 
maximal in the early luteal/mid-luteal phase, when estrogen 
and progesterone were high in comparison to the early folli-
cular phase, suggesting optimal oxygenation and ventilatory 
adjustments under such hormonal milieu. Oral contraception 
or hormonal treatment had no effect on ventilatory responses 
to hypoxia [9]. HVR was also shown to be higher during 
pregnancy [180, 181], when progesterone levels increase; 
while ovariectomy, which decreases natural hormones pro-
duction, decreased HVR [182]. Another study, based on nine 
trained women performing a maximal exercise test, showed 
that the ratio of minute ventilation and oxygen uptake did 
not differ across the menstrual cycle phases at sea level, but 

was greater in the luteal phase than in the follicular phase 
under hypobaric hypoxia conditions (equivalent to 3000 m), 
both at rest and during peak exercise [177]. In addition, the 
partial pressure of end-tidal carbon dioxide during exercise 
was lower in the luteal phase, indicating that a hyperventila-
tory response occurred during peak exercise [177].

This HVR increase during the luteal phase, with stim-
ulated breathing associated with sex hormones, seems 
a robust finding [14, 183–185]. Yet studies based on ten 
women with hormonal measurements to precisely discrimi-
nate the cycle phases, showed no differences in the ventila-
tory response to hypoxic exercise across the cycle [15, 174]. 
Also, when comparing women to men, no clear differences 
in HVR were found [184, 186–192].

The potential ventilatory impact on performance assessed 
through VȮ2max in healthy women is yet to be demonstrated, 
with most studies failing to show significant differences 
among the hormonal phases [174, 176, 177]. This could be 
related to compensatory mechanisms allowing reaching of 
similar performance levels during the cycle through different 
parameter adjustments occurring in each phase, as has been 
shown to occur for cognitive tasks across the menstrual cycle 
[193]. Robust research, properly classifying the hormonal 
phases is needed, especially in hypoxic conditions.

Other physiological parameters have been shown to be 
affected by the menstrual cycle in hypoxic conditions, such 
an increase of oxygen saturation  (SaO2) in the mid-luteal 
phase during exercise in hypoxic conditions [9] or with acute 
altitude exposure, but not large enough to affect submaxi-
mal exercise performance [174]. Hemodynamic pulmonary 
responses seem also to be dependent on the hormonal envi-
ronment. Physiological increases in circulating estrogen 
levels in rats attenuated pulmonary artery vasoconstriction 
under both normoxic and hypoxic conditions, suggesting 
an effect of the menstrual cycle on the pulmonary artery 
vasoreactivity [43, 194]. Such findings have not been inves-
tigated in women. In agreement, it has been shown that lung 
diffusion capacities at exercise are lower during the early 
follicular phase (when estrogen levels are low) because of 
reduced pulmonary blood volume [41].

An investigation of the sympathoadrenal responses during 
acute high-altitude exposure in healthy women showed no 
differences in catecholamine levels during cycle phases but 
found higher blood pressure and HR during the luteal phase 
[195]. Regarding hypoxic cardiac response at exercise, no 
difference was found between cycle phases [9].

Previous studies have highlighted the need for additional 
robust studies to identify minor to moderate impacts on 
complex outcomes, such as performance, in association with 
highly variant parameters of the menstrual cycle [163, 196]. 
More research [197], relying on precise hormonal measure-
ments (especially considering the potential alterations in 
the hormonal [198] and clinical profiles [199, 200] of the 
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menstrual cycle at high altitudes), and on larger cohorts fol-
lowed longitudinally, is needed to determine the coupled 
influence of menstrual cycle and altitude on performance.

Finally, an important clinical consideration is that men-
struating people, particularly those with heavy menstrual 
bleeding, are at an elevated risk of iron deficiency, which 
can impair performance [201] especially in high-altitude 
environments [116]. Hence, screening for iron deficiency 
is widely recommended [202], notably before high training 
loads in hypoxic conditions for menstruating athletes.

For all these reasons, monitoring the menstrual cycle 
with a validated methodology [159] prior to competitions 
or altitude exposure may be valuable for optimizing hypoxia-
induced benefits/performance. However, caution is needed. 
To date, there is no evidence on the effectiveness of such 
time-consuming protocols in women exposed to hypoxia/
altitude.

3.2  Pregnancy

Pregnancy is a unique physiological state characterized by 
significant changes in various systems to accommodate the 
growing fetus. It is estimated that almost half of pregnant 
women expose themself to altitude at some points during 
their pregnancy [203]. The risks associated with traveling to 
high altitudes during pregnancy have been reported as low 
[204]. Moreover, with adequate acclimatization, placental 
reserves can support exercise—even at vigorous intensity—
at moderate altitude [205]. However, important alterations 
in fetal development and growth can occur in pregnant 
highlander women [206]. This section will nevertheless not 
discuss the effects of altitude on the fetus (which is beyond 
the scope of this review) and is limited to pregnant women 
exposed to hypoxia.

During pregnancy, the outward expansion of the ribcage 
to accommodate the growing uterus induces a decrease in 
functional residual capacity [45]. Adaptations related to 
female sex hormones, such as an increase in ventilation 
inducing hypocapnia [207] and an increase in HVR [180, 
181], may also influence tolerance to hypoxia, as during 
the menstrual cycle (see Sect. 3.1). During hypoxic expo-
sure, pregnancy accentuates the well-known acclimatiza-
tion mechanisms, triggering additional hyperventilation, 
increases in cardiac output, and placental blood flow to 
ensure fetal oxygen supply. Intermediate acclimatization, 
marked by changes in 2,3-diphosphoglycerate and hemo-
globin levels, typically takes effect over the course of days 
to weeks. The fetus also develops several adaptation mecha-
nisms to face brief periods of hypoxia, as described else-
where [205]. These acclimatization mechanisms maintain 
sufficient oxygenation in healthy pregnancies during acute 
exposure up to 4000 m [205]. Finally, pregnancy does not 

appear to affect the susceptibility to high-altitude illness 
[208].

3.3  Aging and Menopause

Aging leads to different physiological changes. Meno-
pause, in particular, marks the end of the reproductive life 
of women and is a life phase in which osteoporosis [209] 
and cardiovascular diseases [210] become more prevalent.

While the median age of menopause among different pop-
ulations worldwide is ~ 50 years [211], several studies have 
reported a younger menopausal age at altitude [212–215]. 
It has been suggested that this could be due to increased 
gonadotropin stimulation, which increases the number of 
recruited follicles [216].

The increase in ventilation at altitude is a key adaptive 
mechanism. Richalet et al. [19], in their prospective cohort 
study, found that HVR to moderate exercise in hypoxia was 
the main physiological predictive parameter of AMS. The 
effect of age on HVR is debated: some studies reported an 
increase [217, 218], similar [219–224], or decrease in HVR 
[225–228] with aging. Overall, age does not seem to have a 
clear effect on HVR.

Even if age and sex seem to have no clear effect on HVR, 
one may expect that the change in sex hormones following 
menopause impacts HVR. Cistulli et al. [229] also reported 
increased HVR with estradiol treatment in postmenopausal 
women. However, most studies do not support this hypoth-
esis: Pokorski and Marczak [221] found that HVR was not 
different between premenopausal and older healthy women, 
while Richalet and Lhuissier reported an increased HVR 
with aging in men but not in untrained postmenopausal 
women [230], and that HVR at exercise was similar in pre-
menopausal versus postmenopausal women [9]. Overall, 
there is no evidence that menopause influences HVR.

Pulmonary function also declines with aging, which 
can impact the response to hypoxia. Indeed, loss of elastic 
recoil implies reduced ventilatory capacity and increased 
EFL in older men and women, but no sex-based compari-
son was performed [231]. Because of these mechanical 
constraints, EIH appears more frequently and at lower 
intensity in older individuals [232]. Although sex-
related differences in EFL and EIH and their impact on 
performance in hypoxia were previously described (see 
Sect. 2.1), the putative cross effect of aging and sex on 
these pulmonary limitations to performance at altitude 
remains to be characterized. Aging is also known to induce 
a pulmonary vascular remodeling that led to slight pro-
gressive increase in resting pulmonary vascular resistance 
and hypertension [233]. These increases are more pro-
nounced during exercise. While estrogen seems beneficial 
for pulmonary reactivity [43], women are more susceptible 
to pulmonary hypertension, a phenomenon known as the 
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‘estrogen paradox’ [234]. One may hypothesize that this 
loss of estrogen may alter pulmonary vasculature, making 
HPV more severe in older women than age-matched men.

Although premenopausal women have greater compen-
satory vasodilation in hypoxia compared with age-matched 
men, this sex difference disappears after menopause [69]. A 
reduction in estrogen could be suspected to be at the onset 
of this change since estrogen is known to modulate vascu-
lar tone in animal models during dynamic exercise [235] 
or hypoxia exposure [43]. However, greater compensatory 
vasodilation in hypoxia has been reported in women during 
their early follicular phase, which minimized the acute role 
of estrogen in this mechanism [69]. Hence the mechanism at 
the onset of the blunt vasodilatory response to hypoxia after 
menopause deserves further investigation.

In conclusion, (1) menopause occurs sooner in altitude; 
(2) age, sex, and menopause seem to have no effects on 
HVR; and (3) the age-related change in pulmonary and 

autonomic function could increase or reduce sex differences 
and may need more investigation.

4  Conclusions

In this review, we have emphasized the sex differences 
in responses to hypoxia (Fig. 3). The pulmonary system 
seems to be one of the functions most impacted by sex dif-
ferences and exposure in hypoxia, with women becoming 
more hypoxemic and having a greater work of breathing 
than men. Cardiac hemodynamics are not impacted by sex 
in hypoxia, but vascular reactivity is greater in women at 
rest or combined with exercise; hence, women seem less 
peripherally limited than men in hypoxia. While sex differ-
ences in hematological parameters are well known, they do 
not impact acute hematological responses to hypoxia (i.e., 
plasma contraction). Regarding increases in hemoglobin 

Fig. 3  Mechanisms of sex-related differences in response to hypoxia. 
HVR hypoxic ventilatory response, SaO2 oxygen saturation, BP blood 
pressure, HR heart rate. References: Lung and airway volume [37, 
38, 44], Ventilatory constraints [22, 23, 33], Exercise-induced hypox-

emia [27, 28, 33], BP and HR during exercise [57–59], Microvascular 
responses to occlusion and exercise [122, 127], Muscle composition 
[130], Substrate preferences in endurance exercise [129]
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mass, no clear consensus is apparent and the putative sex 
differences seem due to low iron stores (more common in 
women). Although these responses are known to be sensi-
tive to sex hormone fluctuations, the effect of menstrual 
cycle and the influence of menopause on physiological 
responses to hypoxia remain poorly investigated.

All these responses demand further investigation, with 
appropriate designs to characterize sex-specific differ-
ences. While a growing body of evidence has demon-
strated the mechanisms that could impact sex-depend-
ent responses to hypoxia, the impact on performance in 
hypoxia, mountaineering, and susceptibility to severe 
altitude illness is not yet fully understood.

Further work is required to translate these sex differ-
ences in responses to hypoxia into practical recommenda-
tions, either for reducing the risks at high altitude or for 
improving performance or health benefits associated with 
altitude training or hypoxic conditioning.
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