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Abstract
Correlations between increasing concentrations of circulating tumor DNA 
(ctDNA) in plasma and disease progression have been shown. A nonlinear 
mixed effects model to describe the dynamics of epidermal growth factor recep-
tor (EGFR) ctDNA data from patients with non- small cell lung cancer (NSCLC) 
combined with a parametric survival model were developed to evaluate the 
ability of these modeling techniques to describe ctDNA data. Repeated ctDNA 
measurements on L858R, exon19del, and T790M mutants were available from 54 
patients with EGFR mutated NSCLC treated with erlotinib or gefitinib. Different 
dynamic models were tested to describe the longitudinal ctDNA concentrations 
of the driver and resistance mutations. Subsequently, a parametric time- to- event 
model for progression- free survival (PFS) was developed. Predicted L858R, exon-
19del, and T790M concentrations were used to evaluate their value as predictor 
for disease progression. The ctDNA dynamics were best described by a model 
consisting of a zero- order increase and first- order elimination (19.7/day, 95% con-
fidence interval [CI] 14.9– 23.6/day) of ctDNA concentrations. In addition, time- 
dependent development of resistance (5.0 × 10−4, 95% CI 2.0 × 10−4– 7.0 × 10−4/
day) was included in the final model. Relative change in L858R and exon19del 
concentrations from baseline was identified as most significant predictor of dis-
ease progression (p  =  0.001). The dynamic model for L858R, exon19del, and 
T790M concentrations in ctDNA and time- to- event model adequately described 
the observed concentrations and PFS data in our clinical cohort. In addition, it 
was shown that nonlinear mixed effects modeling is a valuable method for the 
analysis of longitudinal and heterogeneous biomarker datasets obtained from 
clinical practice.
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INTRODUCTION

Over the past two decades, new targeted therapies have 
been introduced in the treatment of several types of can-
cer. The pharmacology of these drugs is characterized by 
targeting specific biological processes that have been re-
lated to tumor development. As a result, new approaches 
to identify and to quantify the response to these drugs 
are needed. The identification of drug- specific biomark-
ers can provide guidance in monitoring the response to 
treatment and can enable individualization of therapy, 
both based on the change in biomarker levels. To this end, 
mutation analyses in liquid biopsies has gained interest. 
These patient friendly methods are being used to deter-
mine the genotype of tumors in human blood or plasma. 
These methods allow for a less invasive way of taking re-
peated measurements compared to the traditional method 
in which a biopsy from the tumor is obtained. This may 
facilitate the determination of the quantitative change in 
biomarker response.1,2 During treatment, selected drug- 
specific genes can be quantified and monitored to predict 
either response or progression of the tumor.

It has been shown that 5– 20% of patients with non- 
small cell lung cancer (NSCLC) present with activating 
mutations in the EGFR gene.3,4 Of these mutations, the 
L858R point mutation on exon 21 (L858R) and deletions 
on exon 19 (exon19del) of the EGFR gene are the most 
common.5,6 Erlotinib and gefitinib are orally available 

tyrosine kinase inhibitors (TKIs) targeting these EGFR 
mutations. Both TKIs are ATP competitors at the ATP- 
binding pocket in the intracellular kinase domain of 
EGFR and it has been shown that mutant kinases are 
more sensitive to inhibition by erlotinib and gefitinib. 
Significant improvements in progression- free survival 
(PFS) and overall survival (OS) have been shown in pa-
tients that were treated with either erlotinib or gefitinib. 
However, after an initial response, the tumor is likely to 
acquire resistance mechanisms, resulting in relapse of 
the disease.7,8 Resistance to EGFR inhibitors in NSCLC 
has been related to the development of a point mutation 
on exon 20 (T790M) in approximately 50% of patients.9– 11 
Several studies have shown correlations between increas-
ing concentrations of EGFR mutants (L858R, exon19del, 
and T790M) that were measured by droplet digital poly-
mer chain reaction (ddPCR) and progression of disease 
during treatment with erlotinib or gefitinib.2,12– 14 In ad-
dition, low concentrations of these mutants have been 
observed during response to treatment.1,15 In addition, we 
previously reported on the dynamics of the L858R, exon-
19del, and T790 mutations in a NSCLC cohort and showed 
that an increase in EGFR driver mutations may predict 
clinical progression.16 However, a significant relationship 
between the increase in EGFR driver mutation and time to 
progression could not be identified in this cohort.

The analysis of heterogenous longitudinal data 
collected in clinical practice is highly challenging. 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Correlations between increasing concentrations of circulating tumor DNA 
(ctDNA) in human plasma and progression of disease have been shown, suggest-
ing that longitudinally collected ctDNA can be used to guide treatment decision 
making. However, the analysis of heterogeneous longitudinally collected data is 
challenging.
WHAT QUESTION DID THIS STUDY ADDRESS?
A nonlinear mixed effects model to describe the dynamics of EGFR driver and re-
sistance mutation ctDNA data in combination with a parametric survival model 
was developed to evaluate the ability of these modeling techniques to describe 
ctDNA data from a clinical practice.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A dynamic model for the driver and resistance mutation concentrations in ctDNA 
and time- to- event model adequately described the observed concentrations and 
progression- free survival data in our clinical cohort.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Nonlinear mixed effects modeling is a valuable method for the analysis of lon-
gitudinal and heterogeneous biomarker datasets obtained from clinical practice 
and provides a framework for prediction of progression based on observed ctDNA 
concentrations.
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Conventional statistical techniques are impractical be-
cause most of these require homogenous sampling. 
Therefore, more sophisticated techniques are required. 
The use of nonlinear mixed- effects modeling enables the 
analysis of longitudinal and heterogeneous datasets as has 
extensively been described in the field of pharmacokinet-
ics (PKs) and pharmacodynamics (PDs).17 In this study, 
the application of these modeling techniques to circulat-
ing tumor DNA (ctDNA) biomarker and survival data was 
explored.

METHODS

Patients, study design, and data

Data were available from an observational study that was 
performed in the outpatient clinic of the Netherlands 
Cancer Institute, Amsterdam, The Netherlands.16 In this 
study, ctDNA from patients with NSCLC who received 
erlotinib or gefitinib as first- line therapy was analyzed in 
surplus plasma samples. Plasma samples were collected 
at random timepoints during treatment during routine 
hospital visits and put into EDTA tubes and stored at (at 
least) −20°C until DNA isolation. In addition, erlotinib 
and/or gefitinib dosing information, plasma sampling 
time, and date and PFS details were collected retrospec-
tively from medical records. The period from first dosage 
of erlotinib or gefitinib to the date of disease progression, 
based on computed tomography (CT) scan, was defined 
as PFS. For this retrospective observational study, no in-
formed consent was required in accordance with the code 
of conduct for responsible use of human tissue and medi-
cal research.18

Cell- free DNA was isolated from 1 ml plasma for mu-
tation analysis. The EGFR mutations L858R, exon19del, 
and T790M were a priori selected and hence quantified 
in purified DNA using ddPCR assays.19 Quantification 
of the ddPCR results was based on the quantity of posi-
tive droplets for mutation and wildtype, double positive 
droplets, and total accepted droplets in the assay. Allele 
concentrations were calculated by using the initial plasma 
sample volume from which the ctDNA was obtained and 
presented as copies per ml plasma.

ctDNA model development

Different dynamic models, such as baseline, turnover, 
and first- order growth models, were tested to describe 
the longitudinal data of ctDNA concentrations of L858R, 
exon19del, and T790M.20 Initially, models for the three 
mutations were developed separately. In order to explore 

correlations among the mutations, the final model was 
a joint model including the complete dataset. Treatment 
with erlotinib or gefitinib was tested as a binary covari-
ate in the final ctDNA model. We also used previously 
developed population PK models to derive individual pa-
rameter estimates based on relevant available covariates, 
as only dosing information was available for our patient 
population. These individual PK parameters were used to 
predict individual concentration- time profiles of erlotinib 
or gefitinib and derive the area under the concentration- 
time curve (AUC) as a measure of drug exposure.21,22 The 
ctDNA concentrations were related to individual drug ex-
posure, dose, and cumulative dose, to explore exposure- 
response relationships. Linear, maximum effect (Emax), 
and sigmoid Emax relationships were investigated.

Interindividual variability (IIV) was evaluated for all 
parameters using an exponential error model (Equation 1):

where the typical population parameter estimate and the in-
dividual parameter estimate for individual i are represented 
by Ppop and Pi, respectively.

The IIV for subject individual i is represented by ηi, 
which was assumed to be normally distributed following 
N (0, ω2). Residual unexplained variability was described 
by a proportional error (Equation 2):

where Cobs,ij represents the observed concentration for indi-
vidual i and observation j, Cpred,ij represents the individual 
predicted concentration, and εp,ij represents the proportional 
error distributed following N (0, σ2). Separate residual unex-
plained variability was estimated for T790M concentrations 
and for L858R and exon19del concentrations combined, in 
order to account for observed differences in variability be-
tween the various measurements.

Survival model

To investigate the relationship between ctDNA con-
centrations and disease progression, a parametric time- 
to- event model was developed. First, the exponential, 
Gompertz and Weibull hazard functions were explored. 
From the final developed ctDNA model, individual 
ctDNA concentrations for the driver and T790M resist-
ance mutations were predicted until the recorded time 
of progression/censoring. These predicted concentra-
tions were then used to evaluate their value as predic-
tors for disease progression. Absolute concentrations 
and relative change from baseline over time were tested 

(1)Pi = Ppop ⋅ exp
(

�i
)

(2)Cobs,ij = Cpred,ij ⋅
(

1 + �p,ij
)
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for significance and biological plausibility. Harboring 
the exon19del or L858R mutation and treatment with 
erlotinib or gefitinib were tested as (binary) covariates 
in the survival model.

Model evaluation

Discrimination between models was guided by physi-
ological and scientific plausibility, general goodness- of- 
fit (GOF) plots, precision of parameter estimates, and 
change in objective function value (dOFV). A drop of 
greater than or equal to 3.84, corresponding to a p < 0.05 
(χ2- distribution with 1 degree of freedom), was considered 
a significant improvement of the fit for hierarchical nested 
models. Kaplan– Meier plots were generated to evaluate 
the survival model. Prediction intervals were derived from 
500 simulations and visually compared with the observed 
data. Parameter precision was assessed by the sampling 
importance resampling procedure.23

Software

Nonlinear mixed- effects modeling was performed using 
NONMEM (version 7.3; ICON Development Solutions) 
and Perl- speaks- NONMEM (PsN, version 4.4.8) with 
First- Order Conditional Estimation with interaction as 
the estimation method for the ctDNA model. For the sur-
vival model, the Laplacian estimation method was used. 
Pirana (version 2.9.7) was used to compare and interpret 
model output.24– 26 R (version 3.4.3) was used for data 
management and graphical diagnostics.27

RESULTS

Patients and data

In total, 198 samples from 54 patients with NSCLC were 
available for this analysis. The L858R and exon19del driver 
mutations were detected in ctDNA of 19 (35.2%) and 35 
(64.8%) patients, respectively. Observed T790M concentra-
tions were lower compared with L858R and exon19del con-
centrations. In terms of treatment, 32 (59.3%) patients were 
treated with erlotinib, 16 (29.6%) with gefitinib, and 6 (11.1%) 
patients switched from erlotinib to gefitinib or vice versa.

ctDNA model

The observed L858R, exon19del, and T790M concen-
trations were best described by a zero- order growth 

model. The data was best described when the L858R 
and exon19del concentrations were combined and thus 
described by shared parameters.20,28 Equations 3 and 4 
describe the model for the L858R and exon19del driver 
mutations:

where y(t) is the change in either L858R or exon19del 
over time, kin represents the zero- order increase in ctDNA 
concentrations, kout represents the drug- driven decrease 
in ctDNA concentrations, and R(t) accounts for the time- 
dependent development of resistance where λ is the 
progression rate. The addition of this time- dependent 
resistance term resulted in a significant increase of the 
model fit (dOFV = −32.5) and was thus included in the 
model. T790M concentrations were also best described by 
a zero- order growth model, similar to Equation 3. In con-
trast to the time- dependent resistance development of the 
driver mutations, the T790M concentrations were better 
described (dOFV = −21.4) by a model in which the resis-
tance is depending on an increase in driver concentrations 
(y(t)) (Equation 5):

Plasma samples were collected after the start of treat-
ment with erlotinib or gefitinib and, as a consequence, 
the baseline before start of treatment was unavail-
able. An additional parameter was estimated in the 
final model to account for the baseline concentrations. 
Parameter estimates are depicted in Table 1. High IIV 
was observed for all parameters for which IIV could 
be estimated (451%, 782%, 185%, and 1245% for driver 
baseline, driver progression factor, T790M baseline, and 
T790M progression factor, respectively). Mixture mod-
els and models incorporating eta- transformations were 
tested in order to explore this high variability but were 
unable to improve the model.29 The GOF (Figure 1) and 
a selection of individual plots for three representative 
patients (Figure  2) show an adequate description of 
the L858R, exon19del, and T790M concentrations over 
time.

A continuous drug- driven effect of erlotinib or gefi-
tinib dosing or exposure (AUC) on the dynamics (kout) of 
the ctDNA concentrations could not be identified, most 
likely explained by the fact that all data was collected 
during treatment. In addition, no difference in parameters 
was identified for patients that were treated with gefitinib 
compared with patients that were treated with erlotinib.

(3)dy

dt
= kin − kout ⋅ y(t) ⋅ R(t)

(4)R(t) = e−�⋅t

(5)R(t) = e−�⋅y(t)
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Survival model

Exponential, Gompertz, and Weibull hazard functions 
were explored in order to describe the disease progres-
sion data. The Weibull distribution with increasing 
hazard over time best described the baseline hazard for 
disease progression (dOFV = +5.55 and dOFV = +5.37 
for the exponential and Gompertz models, respectively; 
Table  2). The visual predictive check of the survival 
model showed a good predictive performance of the 
model (Figure 3).

Relative change in driver concentration from the 
estimated baseline was a statistically significant pre-
dictor of disease progression, as shown by the diagnos-
tic stratified Kaplan– Meier curve (Figure  4, stratified 
by the median relative change of driver concentration 
of 0.034) and was therefore included in the model 
(dOFV = −10.9, p = 0.001). Absolute driver and T790M 
concentrations did not show an improvement of the 
model fit compared to the relative change in driver 
concentrations, as well as the relative change in T790M 
concentrations. The final Weibull model is described by 
Equation 6:

where λ is the hazard coefficient and α is the shape param-
eter, DriverREL is the relative change in driver concentra-
tions from baseline, and the covariate effect is represented 
by β. The final estimate for β was 0.0387 (95% confidence 
interval 0.0229– 0.0503). No differences in PFS were ob-
served for patients with the exon19del compared to the 
L858R mutation and for patients treated with erlotinib or 
gefitinib.

DISCUSSION

We successfully developed a nonlinear mixed effects 
model that describes the dynamics of L858R, exon19del, 
and T790M concentrations in plasma of patients with 
NSCLC who were treated with erlotinib or gefitinib. In 
addition, by using a parametric time- to- event model, the 
relative change in L858R and exon19del concentrations 
was identified as significant predictors of disease progres-
sion in this patient population. To the best of our knowl-
edge, we are the first in presenting a nonlinear mixed 
effects biomarker model that describes ctDNA concentra-
tions that were longitudinally collected from patients with 
NSCLC. To this end, we used a similar model as has been 
used previously to describe tumor size dynamics follow-
ing anticancer treatment.20

It has previously been shown that the trend of ctDNA 
concentrations measured in the plasma of patients cor-
related with the mutations detected in patient tumor tis-
sue and the change in tumor volume as measured by CT 
scan. In this study, patients with ctDNA concentrations 
below the detection limit (i.e., 0 copies/ml) showed lon-
ger PFS and OS compared with patients with detectable 
ctDNA concentrations. Furthermore, both the EGFR 
driver and resistance mutation concentrations in plasma 
showed a progressive increase during disease progression. 
Measurements of ctDNA allowed earlier detection of 
NSCLC relapse compared to standard CT scan diagnostics 
with a median interval of 70 days (range 10– 346 days).2,13 
In addition to an earlier detection of progression, measur-
ing ctDNA concentrations in plasma samples is much less 
invasive for patients compared to conventional diagnos-
tics, such as taking tumor tissue biopsies or making CT 
scans. This permits repeated determinations of ctDNA 
concentrations, thereby allowing for the monitoring of 

(6)h(t) = � ⋅ ta−1 ⋅ e�⋅DriverREL

T A B L E  1  Population estimates for the final ctDNA model

Units

L858R and exon19del T790M

Estimate (95% CIa) IIVb (95% CIa) Estimate (95% CIa) IIVb (95% CIa)

Population parameter

Baseline Copies/ml 12.5 (7.73– 18.6) 451% (279%– 887%) 7.96 (5.76– 10.8) 185% (139%– 290%)

kin Copies/ml/day 101 (76.7– 121) – 88.5 (70.2– 109) – 

kout /day 19.7 (14.9– 23.6) 16.3 (12.9– 20.0)

Progression rate (λ) /day 5.0 × 10−4 
(2.0 × 10−4– 7.0 × 10−4)

782% (320%– 986%) 1.6 × 10−3 
(7.0 × 10−4– 2.2 × 10−3)

1245% (324%– 1542%)

Residual variability

Proportional 
residual error

CV% 30.9% (27.6%– 34.9%) – 80.5% (69.0%– 94.5%) – 

Abbreviations: CI, confidence interval; CV%, coefficient of variation; IIV, interindividual variability.
aThe 95% CI values were obtained from sampling importance resampling.
bIIV expressed as CV%, calculated as sqrt(exp[variance]- 1).
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the change in these levels over time during treatment 
with EGFR inhibitors. Our survival model was signifi-
cantly improved by the addition of the relative change in 
EGFR driver concentrations from baseline as a predictor 
for disease progression. This finding further confirms that 
a relationship exists between EGFR driver concentrations 
in ctDNA and progression of NSCLC in patients treated 
with the EGFR inhibitors erlotinib and gefitinib.

Our longitudinal model of driver and resistance mu-
tations consisted of a zero- order growth function (kin) in 
combination with an elimination function (kout) and resis-
tance term (R(t)). The systemic measurements of ctDNA 
are derived from tumor cells, either in apoptosis or oth-
erwise. Occurrence of driver and resistance mutations in 
plasma may be partly the result of the same underlying 
mechanism of systemic DNA shedding, probably de-
pending on, for example, the level of drug exposure. For 
T790M, the resistance term appeared to be depending on 
an increase in driver mutation concentration. An abun-
dance of driver mutation ctDNA might therefore reflect 

an overall increase in tumor load, as such leading to in-
creased T790M shedding in circulation.

Nonlinear mixed effects modeling supports the longi-
tudinal and mechanism- based prediction of the full time 
course of biomarker concentrations in response to anti-
cancer treatment. By coupling dynamic biomarker models 
to time- to- event models, the relationship between time- 
varying biomarker concentrations and survival can be as-
sessed. fIn addition, the effects of drug administration and 
thus development of resistance under drug treatment can 
be explored. This model can also be used for the analysis 
of ctDNA concentrations obtained from future clinical tri-
als with targeted anticancer drugs.

Previous work has been focusing on fixed timepoint 
descriptors of drug exposure, biomarker concentrations, 
or tumor size as predictor for disease progression or OS. 
Modeling of continuous biomarker concentrations uses 
all available data and allows for simulations of the re-
sponse to future treatment regimens.30 This has also been 
shown by a PK/PD model that describes the tumor size 

F I G U R E  1  Goodness- of- fit plots of the final ctDNA model for the driver (blue dots) and T790M (red dots) concentrations. Including 
individual predictions (IPREDs) and population predictions (PREDs) vs. observed values and conditional weighted residuals (CWRES) vs. 
time after dose and PRED. Blue dots represent the driver concentrations and red dots are the T790M concentrations.
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dynamics in patients with gastrointestinal stromal tu-
mors. This model describes OS and tumor size dynamics 
as a function of the relative change in stem cell factor re-
ceptor, daily sunitinib exposure and relative change in the 
soluble vascular endothelial growth factor receptor 3.31

Our study does, however, harbor some limitations. As 
this was a retrospective analysis of data that was collected 
in a cohort study from routine clinical care patients, only 
limited data were available. The dynamics of the ctDNA 
concentrations, in particular, the time- dependent de-
velopment of resistance during treatment, could be cap-
tured by our model but was driven by a limited number 
of patients in our dataset. As a result, very high IIV was 

estimated for the progression factors. Mixture models and 
eta- transformations were tested but could not improve 
the eta- distributions. In addition, patient samples were 
collected as part of routine care. The number of samples 
collected directly after the start of treatment was therefore 
limited. As a result, the final model estimates for kin and 
kout were overestimated, complicating simulations based 
on this model early after initiation of treatment. In ad-
dition, repeated tumor size and PK measurements were 
unavailable. Therefore, we could not relate the model for 
ctDNA to tumor dynamics or assess the effects of PK on 
the ctDNA dynamics. It has, however, been shown that 
ctDNA concentrations in plasma correlated with tumor 

F I G U R E  2  Individual plots for 
observed (solid line) and individual 
predicted (dashed line) driver (a) and 
T790M (b) concentrations over time 
for three representative patients (1– 3). 
One patient with an increase in driver 
concentrations and stable T790M 
concentrations after ~ 1 year of treatment. 
Two patients with an initial decrease in 
both driver and T790M concentrations. 
Three patients with stable driver and 
T790M concentrations during ~ 1.5 years 
of treatment.
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size measurements in patients with NSCLC.2 Therefore, 
our model probably provides a good approximation of the 
tumor size dynamics in this patient population. We used 
previously developed PK models for erlotinib and gefitinib 
and individual dosing records to incorporate the effect of 
PK on the ctDNA dynamics but this did not improve the 
model. Most likely as a result of the very small dosing 
range and patients being at steady- state.

We analyzed the combined concentrations of patients 
harboring the exon19del or L858R mutations. Separate 

T A B L E  2  Population estimates for the final survival model for 
progression- free survival

Units Estimate (95% CIa)

Population parameter

Hazard coefficient, λ /day 0.0013 (0.0011– 0.0017)

Shape, α – 1.3338 (1.0494– 1.6130)

Covariate effect, β – 0.0387 (0.0229– 0.0503)

Abbreviation: CI, confidence interval.
aThe 95% CI values were obtained from sampling importance resampling.

F I G U R E  3  Kaplan– Meier plot of 
progression- free survival data. Blue line is 
the observed Kaplan– Meier curve and the 
shaded area represents the 95% prediction 
intervals (n = 500 simulations).

F I G U R E  4  Kaplan– Meier plot of 
observed progression- free- survival data 
stratified by median relative change in 
driver concentration from baseline at time 
of progression (p = 0.005, log rank).
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modeling showed similar parameter estimates for both 
mutations, but with poor parameter precision. In order to 
improve the power of this analysis, we decided to describe 
both driver concentrations by the same dynamics and pa-
rameters. It has previously been suggested that patients 
with the exon19del mutation have a higher response rate 
and longer median OS compared with patients with the 
L858R mutation.32 We performed a covariate analysis to 
explore this relationship, but could not identify a differ-
ence between these groups in our data. In addition, no 
differences were found in either the ctDNA model or the 
survival model for patients who were treated with erlo-
tinib or gefitinib. These results are in line with previous 
studies that compared erlotinib with gefitinib for differ-
ences in PFS, OS and biomarker tumor size dynamics.32– 34

CONCLUSION

In conclusion, we successfully developed a model that 
describes the longitudinal dynamics in ctDNA in a clini-
cal cohort and identified the relative change in EGFR 
driver mutations from baseline as a predictor for disease 
progression following erlotinib or gefitinib treatment. In 
addition, this model shows that nonlinear mixed effects 
modeling is a valuable method for the analysis of longi-
tudinal and heterogeneous biomarker datasets obtained 
from clinical practice and provides a framework for pre-
diction of disease progression based on observed ctDNA 
concentrations.
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