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ABSTRACT: Intrinsically disordered proteins (IDPs) lack a stable
native conformation, making it challenging to characterize their
structure and dynamics. Key topological motifs with fundamental
biological relevance are often hidden in the conformational noise,
eluding detection. Here, we develop a circuit topology toolbox to
extract conformational patterns, critical contacts, and timescales
from simulated dynamics of intrinsically disordered proteins. We
follow the dynamics of IDPs by providing a smart low-
dimensionality representation of their three-dimensional (3D)
configuration in the topology space. Such an approach allows us to
quantify topological similarity in dynamic systems, therefore
providing a pipeline for structural comparison of IDPs.

■ INTRODUCTION
Until recent years, the dogma in protein biology entailed that
functional proteins or domains have unique and stable three-
dimensional (3D) structures. These native configurations can
be characterized by their virtually fixed atomic positions and
backbone Ramachandran angles, which vary only slightly as a
result of thermal fluctuations. However, there exists another
class of functional proteins which contain highly dynamic
regions or are characterized by the absence of apparent
ordered structure under physiological conditions. These
proteins have no single, well-defined equilibrium structure
but exist as heterogeneous ensembles of conformations that
cannot be sufficiently described by a single set of geometric
coordinates or backbone Ramachandran angles.1,2 These
proteins, present in all kingdoms of life, are biologically active
and adapt to a highly specific structure upon important
functional interactions with biological partners.3 They have
been called many names,4 but are now commonly referred to
as intrinsically disordered proteins (IDP) or intrinsically
disordered regions (IDR). It is estimated that more than
30% of all proteins in the eukaryotic proteome are either
entirely disordered or contain disordered regions of more than
50 consecutive amino acids.5 This fraction of the proteome
includes crucial proteins involved in essential biological
functions, like signaling,6 transcriptional control,7 and allosteric
regulation.8 Mutations in these proteins thus might play a role
in disease development.9 Indeed, IDPs and IDRs are
implicated in many pathologies ranging from cancer10 and
metabolic diseases to neuromuscular disorders11 and have
been suggested as an attractive target for therapeutic

interventions.12 For this reason, an understanding of the
structure−function relation in these disordered molecules is
paramount. The conformational disorder poses serious
challenges for experimental and computational analysis of
IDP/IDR conformations and interactions and, to date, even
the most state-of-the-art machine learning approaches have
been unable to successfully elucidate the native structures of
disordered proteins and regions.13 Despite these challenges,
modeling14,15 and experimental16,17 investigations have led to
important insights into the functional dynamics of these
intrinsically disordered proteins (IDPs).18,19

What hampers our understanding of these proteins is the
lack of a proper description of the dynamics that captures
topological motifs, hidden within the conformational noise.
Furthermore, there is a need for a “reaction coordinate” to map
the interconversion of potential motifs. Topology is a
mathematical framework that is designed to detect such
shape invariants in geometric ensembles. Recently, topology of
unknotted protein chains has been defined based on the
arrangement of loops or the associated intrachain contacts.
This approach, called circuit topology (CT),20−22 has been
applied to stable folded proteins for various applications,23,24

and has proven to be effective for modeling polymer folding
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reactions.25 CT is a very simple yet effective framework for the
characterization of the arrangement of interchain (residue−
residue) contacts in a folded molecule. The core idea is that
the arrangement of any pair of contact belongs to either one of
three topological relations: series (S), parallel (P), and cross
(X) (Figure 1). The assignment of topological relations relies
on the numbering and positioning of contact sites along the
chain sequence. Contacts belonging to the S class are spatially
“noninteracting”: their contact sites appear serially along the
chain, and the contacts do not intersect. On the other hand, a
contact which is fully encompassed by another contact is said
to be in P relation with the latter. Finally, contacts in X relation
“interact” spatially, but one is not fully enveloped by the other.
These three relations characterize all possible contact arrange-
ments within a chain. It is possible for two of these relations,
series and parallel, to share one of the contact sites between the
contact pair (Figure 1). In this case, we call this subclass
concerted relations, resulting in concerted parallel (CP) and
concerted series (CS).
The CT approach has not yet been applied to disordered

proteins. Since intrinsic disorder does not mean random, we
believe such a framework could capture conserved features in

the wide topological evolutions of such systems. Moreover, we
suggest this method could be able to detect topological
similarity between IDPs with similar function, providing a new
metric for the quantification of structural similarity suitable for
IDPs and proteins with a stable 3D structure alike. Here, we
coupled circuit topology and molecular dynamics (MD)
simulations for IDP analysis and applied it to the disordered
N-terminal transactivation domains (NTDs) of three proteins
from the family of nuclear hormone receptors (NHR), namely,
human androgen receptor (AR), glucocorticoid receptor (GR),
and estrogen receptors (ER). We mapped the folding dynamics
of the NTD domains onto the topological space, providing
reaction coordinates to finally visualize the intrinsically
disordered conformational dynamics. We performed a
comparative analysis of these disordered receptor domains,
using the disordered γ-synuclein (residues 1−114) and a few
well-folded proteins as references. We prove how it is possible
to find common traits characterizing such conformational
evolution, while also identifying differential patterns of
behavior among our protein dataset, ranging from the extent
and dynamics of topological evolution, as well as the
topological content itself. Modeling intrinsically disordered

Figure 1. Circuit topology relations: each pair of contacts can be characterized by one of three relations: series, parallel, and cross. The topological
relation between pairs of contacts is assigned based on the order in which contact sites (residues) appear along the sequence. Sometimes one
contact site is shared between contacts (green dots in the panel). In this case, we talk about concerted relations, which are a subset of either S or P
relations.

Figure 2. Sequence analysis of NTDs. (A) Multiple sequence alignment of the AR, GR, and ER NTDs. (B) Fraction of order and disorder-
promoting residues calculated based on the amino acid content of the chains. (C) Structural disorder analysis of AR-NTD obtained from PONDR
VSL2.
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proteins poses significant challenges due to the limited
sampling capabilities of their flat energy landscape.26 Here,
we do not aim at offering a solution to such challenges but
rather present a smart data representation for the topological
characterization and comparison of IDPs.

■ RESULTS
Basic One- (1D) and Three-Dimensional (3D) Com-

parative Analysis of NHR Dynamics. As a case study, we
focus on a comparative analysis of NTD regions of three
hormone receptors, including AR (residues 1−538), GR
(residues 1 to 420), and ER (residues 1−180). We first
looked at the amino acid composition of the chains and
performed multiple sequence alignment (MSA) and PONDR
analysis.27 MSA showed nonsignificant similarity between the
NTDs, but by comparing the sequences pairwise, we saw more
matching residues between ER, GR, and the C-terminal half of
AR (Figure 2A). Disorder prediction data produced by
PONDR analysis reveal that all three chains are highly
disordered. To further understand the dynamic nature of
these chains, we calculated the order (OPR) and disorder-
promoting residues (DPR) content. For all three NTDs, we
found a high DPR content (Figure 2B,C). As a comparative
analysis, the same parameters were calculated for intrinsically
disordered γ-synuclein (SNCG), which showed 64 and 24%
disorder- and order-promoting amino acids content, respec-
tively, and an average PONDR score of 0.83 ± 0.10.
Next, we modeled the dynamics of these three protein

domains in an aqueous solution with physiological salt
concentration, to develop reasonable toy models for the
proof-of-concept topological analysis. We note that modeling
large disordered protein chains is challenging due to the

limited accuracy of the force fields used to model interactions
and the need for adequate sampling of the large conforma-
tional space of the solvated chain. Here, we took a practical
approach and employed our recently developed and exper-
imentally validated protocol for AR NTD analysis28 on GR and
ER protein chains. The initial structures, for all three NTDs,
were built using the I-TASSER29 server and choosing the best-
ranked model. The model was superior to conformations
predicted by the AlphaFold based on confidence measures.
After minimization and relaxation, we performed molecular
dynamics simulations of the full-length NTD structures (see
the Methods section for details). Visual examination of the
trajectory and root mean square deviation (RMSD) plots show
that the initial conformations have undergone an extensive
structural change (Figure 3A,B). We repeated the MD
simulation three times for each NHR using different initial
velocities to ensure we had a sufficient sampling of the
configuration space for the purpose of this study. Importantly,
all three independent runs of all three NHRs consistently
resulted in the emergence of compactness in the chain within 2
μs of simulations. Interestingly, among the three, AR formed
two disjoint regions in Figure 3D within 2 μs of simulations: an
extended N-terminal subregion (AR NR, residues 1−224), and
a C-terminal subregion (AR CR, residues 225−538), as
reported extensively in our previous study30 (Figure 3F). In
contrast, ER-NTD stayed as a whole globularly shaped
conformation during the three runs of the simulations (Figure
3A). GR formed a few identifiable globular regions, which were
interconnected with each other. Despite the overall shape
taken by the chains, all three showed a high level of disorder
and structural dynamics (Figure 3C−E).

Figure 3. Molecular dynamics simulation of NTDs. (A) Three representative conformations from the last 10 ns of each replicate of the MD
simulations. (B) Time evolution of the root means square deviation (RMSD) of three runs of each NTD. All three NTDs show a dramatic
deviation from the initial structure (reference frame) during the first 2 μs of the simulations. (C) Average root mean square fluctuations of AR-
NTD were calculated per residue over the last 3 μs of the simulation. (D) The solvent-accessible surface area (SASA) was calculated for each
residue during the last 3 μs of the simulation. (E) Distribution of RMSF values calculated per residue from the last 3 μs of the simulations. (F)
Cartoon representation of the AR-NTD. Two disjoint regions are formed within 2 μs of simulations: an extended N-terminal subregion (NR,
residues 1−224) colored in red and a C-terminal subregion (CR, residues 225−538) colored in blue. Bead representation of residue 224 is colored
in pink.
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After the initial folding phase, we monitored the dynamics
for an additional 3 μs and computed root mean square
fluctuations (RMSF) to quantify the fluctuations of the chain.
Interestingly, RMSF analysis led to the largest values in AR and
significantly smaller in ER. It is worth mentioning that these
values were significantly larger in comparison to the folded
NHR-LBD, even for ER-NTD, with lowest RMSF values
among the three NHRs (Figure 3C). Further analysis of the
RMSF profiles (Figure 3E) revealed that in ER-NTD the
fluctuations were more uniformly distributed within the chain,
and distribution analysis showed a sharp peak at 0.5 nm.
However, GR- and AR-NTD both had wide distributions with
mean values at 1.5 nm and 1.3 nm, respectively.
Due to the highly dynamic nature of the chains, it was

expected to see a large part of the chains be exposed to the
solvent. In order to quantify that, we calculated solvent-
accessible surface area (SASA) of the polypeptide chains.
SASA analysis revealed that all three NTDs are highly solvent-
accessible (Figure 3D). Among them, ER-NTD showed the
widest range of exposure from 0.35 nm2 (residues buried inside
a compact region) to 1.3 nm2, (residues are fully accessible to
the solvent molecules).
Formation of the collapsed region(s) within the chain was

the common behavior of the NTDs we observed in our
simulations. In order to quantify the degree of compactness,
we calculated the radius of gyration (RG) values over the last 3
μs of the simulations, separately for NR and CR regions of AR

and full-length ER-NTD. Comparing the radii of gyration of
CR and NR regions in AR, one can clearly see that the CR
region is significantly more compact than the NR region
(Figure S1) and both are less compact in comparison to the
full-length ER-NTD. Note that all RG values are normalized to
the size (Flory radius with ν = 1/3) of the corresponding
region(s).
Disorder prediction data produced by PONDR analysis

agrees with the solvent accessibility and RMSF profiles of three
NTDs: with the central region within AR CR and GR having
less disorder than the rest of the chain (Figure 2C) and high
disorder score predicted for the C-terminal half the ER-NTD.
For ER-NTD, a high and low disorder score predicted for the
N-terminal half of the chain is nicely matched with the SASA
profile of residue 20−80. Furthermore, we clearly saw that the
OPR content of the NR region was significantly less than the
CR (18−23% of OPR content compared to 64−72% of DPR
content, Figure S2). This is in an agreement with the PONDR
score, SASA, and RG values calculated for CR and NR regions.

■ MULTI-TIMESCALE TOPOLOGICAL ANALYSIS OF
IDP CONFORMATIONAL EVOLUTION

The dynamic behavior of IDPs can hardly be characterized by
focusing on a single timescale.31,32 Here, we develop a multi-
timescale topological analysis, and we prove that different
dynamic modes of IDP conformational search can present
different topological characteristics. The timescale analysis

Figure 4. Adherence to the power law distribution can help us distinguish between short- and long-lived contacts. (A) Cumulative contact map of
AR NTD, MD run 1. The subdivision into two subregions (NR and CR) can be seen in the contact arrangement patterns. (B) Graphics
representing three contact maps, corresponding to three different time frames of a hypothetical IDP. Contacts represented in yellow are present in
all three frames because of their long lifetime. Contacts represented in orange are on the other hand short-lived, and they disappear in subsequent
time frames because they are short-lived. The presence of specific contacts over different time frames is detected in order to build the contact
lifetime distribution. (C) Contact lifetime distribution, and power law fit for AR-NTD, MD run 1. The fit was performed exclusively over short life
contacts, and then extrapolated over the whole range, for visualization purposes. (D) Coefficient of determination R2, used to evaluate the goodness
of the power law fit performed over subsequent chunks of the contact lifetime distribution. After roughly 0.5−1 μs, R2 plummets. We picked this
threshold in order to distinguish between short-lived contacts and contacts with a longer life, which make up only a smaller portion of the total
number of contacts.
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reported here is a generalization of the procedure applied in
our previous study30 to the AR-NTD. To this end we will be
focusing on the characteristic time frame for contact dynamics,
that is to say, contact formation and rupture. The rationale
behind this choice is that interchain-interaction topology has
been proven to be an efficient way to characterize IDP
configurational search and functional similarity.33 Our MD
simulations provide us with very detailed information about
atom coordinates and residue−residue contacts, as well as their
temporal evolution (with a resolution of 5 ns). We define
contacts between residues when those residues lie within a

distance in the 3D space that is less than a specified cutoff (4.5
Å for the purpose of this study). Figure 4A displays a residue−
residue contact map for AR, MD run 1. Here, all contacts
formed during the simulation are displayed, making this a
cumulative contact map for all of the temporal evolution. It is
interesting to see how the separation between the N- and C-
terminal regions of AR-NTD is also visible from the map,
highlighting a very clear boundary for the spatial range of
contact formation. For this reason, as well as the different
physical and geometrical characteristics of CR and NR
highlighted in the previous section, we decided to treat these

Figure 5. Population of longer-lived contacts is statistically more hydrophobic, has higher attractive energy, and presents a higher ratio of charged
contacts than its shorter-lived counterpart. (A) Boxplot of the statistical potential36 of short and middle life attractive contacts, for all proteins
involved in the study. The two distributions are statistically different, yielding a p value <0.05 for all 20 extractions of randomly sampled
subpopulations of 300 data points from the two groups. (B) Boxplot of the hydropathy index for short and middle life contacts, for all proteins
included in the study. The two distributions are statistically different, yielding a p value <0.05 for all 20 extractions of randomly sampled
subpopulations of 300 data points from the two groups. (C) Cumulative heatmap of all contacts formed after the first 2 μs of simulation in AR
(MD run 1). The coloring is given by the sum of the hydropathy index of the two residues involved in the contact. Positive indexes indicate overall
hydrophobic properties in the protein region. (D) Ratio charged versus total number of contacts N

N
c for short and middle/long life, for each protein.

(E) Circuit diagram of middle/long life charged contacts for each protein included in the study. Data from all three runs are included in each figure.
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two regions separately for topological analysis. The MD frames
give us access not only to the spatial but also temporal range of
contacts, allowing us to measure the duration of contacts
formed by each residue pair, as shown in the schematics
presented in Figure 4B; different time frames present different
configurations. Some contacts survive for multiple time frames
(contacts depicted in yellow), while others will be more
fleeting connections, breaking in the span of one (or few) MD
frames (contacts depicted in orange). We can compute the
maximum lifetime of each individual contact (hereafter
referred to as lifetime) and build a distribution of contact
lifetimes. The log−log plot of such a distribution (Figure 4C,
Figure S3) presents us with the opportunity of describing the
phenomenon of contact formation as a power law distribution,
as many other processes in biology, such as scale-free
networks.34 However tempting, this theoretical approximation
may sound, identifying power law distributions on empirical
data presents various challenges, mostly given by the large
fluctuations characterizing the right tail of the distribution, the
one characterized by large but rare events.35 For this reason,
we decided to tread carefully and define clear boundaries for
the validity of the law by quantifying the agreement with the
data by use of the determination coefficient R2 (Figure 4D).
We will also use this agreement to disentangle the role of high-
frequency contact formation and breaking from that of longer-
lived connections, which might impact the configurational
evolution in a meaningful way, steering toward a specific local
minimum in the topological space. In order to do so, we fit the
logarithm of the contact lifetime distribution by progressively
larger segments (with increments of 5 ns, which is as low as
our resolution allows us to reach). For each segment, we
calculate the coefficient of determination R2. Plotting the result
of this calculation versus time yields trends such as that
depicted in Figure 4D, for all proteins (see Figure S4): we
observe a good agreement between the law and the data for
very short time frames (generally around 1 μs). This range is
also where the majority of contact lifetimes lie. From now on,
we shall refer to the contacts within this range as short life
contacts. Afterward, we observe a drop in values of R2,
reflective of a lack of statistics in the distribution. We call this
longer-lived connections middle life contacts. After roughly 3
μs, we start observing a mild increase in R2, but this increase is
an artifact of the noise in the distribution. Long life contacts
that live in this range have lifetimes comparable to the total
duration of the MD simulation, and we are thus unable to
observe their full dynamic evolution.
It is challenging to provide a full biophysical characterization

of the nature of these contacts, and thus explain the shape of
the lifetime distribution. However, we can rely on statistical
indicators to explore the different properties of short, middle,
and long life contacts. It is intuitive to assume that longer-lived
contacts might have higher contact energies. By exploiting the
statistical potential as expressed by Thomas and Dill,36 we can
assign an energy value to each residue−residue contact. We
observe thus that indeed middle life contacts have statistically
higher absolute energy values (more negative), when it comes
to attractive contacts, for all proteins in the study (Figure 5A).
We can go beyond energy considerations and have a look at
the chemical nature of the residues involved in these contacts.
A simple and useful parameter is the hydropathy index of a
residue, a score indicating the hydrophobic/hydrophilic
properties of its side chain.37 In this instance, we assign a
hydropathy score to a contact obtained by summing the

hydropathic index of the two residues involved in its
formation: the larger the hydropathy index, the higher the
hydrophobicity of the amino acids. Applying this procedure to
short and middle life contacts reveals that the latter display
consistently a higher hydrophobicity than the former (Figure
5B). This crucial information suggests that middle life contacts
are those that are more likely to belong to a semistable
collapsed structure, as their hydrophobic nature will tend
toward shielding the sidechains from the aqueous environ-
ment. This simple procedure can also be applied locally, by
plotting the hydropathy score over the contact map (Figure
5C). This visualization can interestingly highlight regions in
the protein more or less prone to structure formation. In this
case, it is clear to see how AR NR has more marked
hydrophilic properties than AR CR, which is compatible with
the structural properties of the two regions we identified
previously.30

Both hydrophobic and charged residues are thought to play
a role in stabilizing distant parts of primary structures in
proteins.38 We can identify those contacts that are formed by
opposite charge residues (negatively charged−positively
charged residues) and what is the lifetime and spatial
distributions of such contacts. It is possible to define a ratio
between the number of charged contacts and the total number
of residue−residue contact combinations for a certain lifetime,
N
N

c . We observe that taken together, middle and long life
regimes present a higher charged contact ratio with respect to
short life, in all proteins present in the study (Figure 5D). In
this case, it was necessary to consider middle and long life
regimes as one group, in order to increase statistics: these two
groups are composed of a small number of contacts, of which
charged contacts are an even smaller subgroup. However, this
relative sparsity of information allows us to visualize all such
longer-lived charged contacts in one comprehensive circuit
diagram (Figure 5E). Circuit diagrams allow us to visualize the
topological arrangement between a set of contacts, as well as
the residues involved. Topological circuits are a useful tool to
interpret such a diagram:23,39 a topological circuit is defined as
a subsection of the chain that, if removed, would leave the
topology of the rest of the chain unchanged. In Figure 5E,
circuits are easily identifiable as those regions whose arcs do
not intersect. In the case of AR, for example, we can observe
two neatly identifiable circuits, as was to be expected from our
structural subdivision into NR and CR. The situation is
different for ER and γ-synuclein (SNCG), where charged
contacts tend to bring together the two ends of the chain,
making it one undivided circuit. GR, much like AR, tends to
create multiple substructures, as highlighted both by inspection
of the 3D structure and the by the three circuits visible in the
circuit diagram. Given the results of this exploratory analysis of
the biophysical nature of short- and longer-lived contacts, it is
fair to assume that longer-lived contacts maintain some
significance in the formation of transient semistable config-
uration for IDPs. We will then uncouple the role of such
contacts from that of short-lived ones in the context of
topological analysis, to increase the signal-to-noise ratio at the
level of structural and biological characterization. We will
mostly focus on middle and short life contacts, as the sample
size of long-lived contacts is often too small for statistical
analysis. Moreover, such contacts have a lifetime compatible
(or equal) to the duration of the MD runs; we are thus unable
to view their topological evolution play out and we cannot
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assess how dependent their arrangement is from the chosen
initial configuration.
One of the main advantages of using the CT framework for

the representation of such complex configurations is the
reduction in dimensionality. As a first-order analysis, we can
characterize any configuration by the percentage of S, P, and X
relations which contacts at a certain time ti occupy. This
procedure presents us with the nontrivial advantage of being
able to represent configurations as coordinates in a 3D space,
which from now on we will call the topological space (the
triangular plots in Figure 6A). Even with this substantial

simplification in terms of configurational complexity, the
patterns created during IDP evolution over the topological
space are extremely rich in information. One can, first and
foremost, identify the number and boundaries of transient
states, which appear as globular patterns in the triangular plot.
Moreover, one can detect an overall direction in the
configurational search, and quantify its topological evolution.
The first observation that becomes apparent inspecting such
plots is that the trajectories created by middle life contacts
generally present a higher number of transient states as
opposed to those created by short life contacts, indicating that,

Figure 6. Different timescales of IDR/IDP dynamics can be characterized by different topological makeup. (A) Topological evolution of short and
middle life contacts of ER-NTD, MD run 2. The evolution is depicted over the topological landscape, a three-dimensional space where the
dimensions correspond to the percentage of series, parallel, and cross contacts. The number of S, P, and X contacts was normalized so that the sum
is equal to 1. (B) Distribution of topological relations over the three MD runs for each protein. In most cases, middle life distributions show more
peaks, indicating that the system is exploring more transient states.
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indeed, IDPs experience a multimodal topological evolution,
which is timescale-dependent. This phenomenon becomes also
apparent if we plot the one-dimensional distribution of each
topological relation, for each protein under study (Figure 6B).
We can observe how middle life distributions have more local
maxima, indicating the transient occupation of multiple states.
Moreover, even with this first-order analysis, we could already
envision two subgroups with different behavior among the
NHR-IDRs under study and γ synuclein (SNCG), a synuclein
protein used in this study as an example of a non-NHR IDP;
AR CR and GR display narrower and more peaked
distribution, a sign of a much more stable structure subject
to smaller fluctuations. On the other hand, AR NR, ER, and
SNCG present spread distributions, often overlapping,
indicating a very fast-paced, plastic evolution. We will go in

depth exploring these patterns with our suggested higher-order
topological analysis.

■ CHARACTERIZATION OF IDP CONFORMATIONAL
TRAJECTORIES IN THE TOPOLOGICAL SPACE

The conformational space sampled by IDPs can be seen as a
quasi-continuum of rapidly interconverting structures.40 The
topological evolution of such proteins escapes the traditional
method of characterization, which is generally meant for
funnel-like folding pathways rather than a flat energy landscape
such as those characterizing IDP dynamics.26 The dynamic
behavior of IDPs is strongly related to their flexibility and
versatility,41 and therefore the ability to characterize their
interconversion between different topological states is key for
understanding their function. As a result of our intuitive

Figure 7. Topological evolution of IDRs/IDPs can be tracked and quantified by identifying intermediate topological states. (A) Scatter plot and
one-dimensional distribution of the topological coordinates (in terms of number of series, parallel, and cross contacts) for GR-NTD short life
contacts The Gaussian mixture (GM) clustering algorithm identified three clusters, corresponding to three different topological transient states. (B)
Maximum BIC score indicates the ideal number of clusters for the dataset, in this case, GR-NTD MD run 2, short life contacts. (C) Left: graphical
representation of clusters, cluster centroids, and distance between the cluster centroids. Right: representation of the outcome of the clustering
procedure displayed in (A) over the triangular topological space. The number of S, P, and X contacts was normalized so that the sum is equal to 1.
(D) Two examples of clustering over the topological space, one corresponding to high evolution score (AR NR, middle life) and one corresponding
to low evolution score (SNCG, short life). (E) Evolution score calculated over the whole dataset, subdivided into short and middle life regimes.
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representation of IDP trajectories over the topological space,
we are now in condition to characterize their dynamic hopping
between conformations. The first step in this direction is the
identification and segmentation of the trajectory into different
topological states. In order to do so, we performed clustering
over the three-dimensional topology state, where the variables
are the number of P, S, and X relations in each configuration.
As pointed out by Grazioli et al.,42 accurate clustering
procedures over the IDP conformational space can prove to
be quite challenging because of the vast and flat energy
landscape characterized by innumerable microstates corre-
sponding to roughly the same energy.43 For this reason, we
opted for the more expensive Gaussian mixture clustering
algorithm, instead of the more popular and fast option, K-
means. Modeling the conformational states as a superposition
of intersecting 3D Gaussian distributions yields a more natural
partition of the topological space (Figure 7A), rather than a
distinction based on the 3D distance between coordinates
(Figure S5). A rather crucial parameter for our analysis is the
number of clusters in which to segment the configuration
space. In order to provide an objective metric for it, we relied
on the optimization of the Bayesian Information Criterion
(BIC) score.44 The BIC score is calculated for the data by
fitting them for a varying number of clusters (Figure 7B). The
number of clusters that provides the highest BIC score is
picked for further analysis. We found that feeding the
algorithm a different value of parameters such as reg_covar
(the non-negative regularization added to the diagonal of
covariance) might result in a different number of clusters
selected by the BIC score. Here we report results for the
default value of reg_covar = 1.0 × 10−6. However, results for
other values are reported in (Figure S6), together with a
summary table of the number of clusters detected for each MD
run and each protein (Tables S1−S6). An example of such a
clustering procedure is reported in Figure 7A,C, for GR short
life contacts, MD run 2. As previously mentioned, clusters (or
topological states) appear as globules on the normalized
triangular topological space (Figure 7C). By inspecting such
patterns, it becomes apparent that some trajectories happen to
be more elongated, covering a higher portion of the topological
space, and show a higher tendency to hop between states than
others (Figure 7D). In order to quantify this tendency, and
also to provide a metric to characterize the quasi-continuum
interconversion between states typical of IDP dynamics, we
defined a new parameter. Given two clusters, C1 and C2, the
evolution score E21 is given by +

d
s s

21

1 2
, where s1 and s2 are the

spread of clusters C1 and C2, respectively, and d21 is the 3D
distance between the centroid of C1 and C2. Since by choice of
algorithm our clusters are described by Gaussian distributions,
the centroid corresponds to the mean of the Gaussian. This
definition is generalized for the case in which we have more
than two clusters by summing each contribution Eij to the total
evolution score E, where Ci is the cluster subsequent to Cj
from the point of view of temporal evolution. Other empirical
definitions of the evolution score were also tested; the results
can be found in Figure S7. Although our general conclusions
do not change, we found that the formulation described above
provided the best match to the visual behavior of the
trajectories in the topological space. What does this metric
portray, intuitively? We can expect a trajectory characterized by
a low E value to be very globular in nature, with few, wide
clusters, that tend to occupy the same portion of the

topological space. On the other hand, high E values are
yielded by trajectories that are very narrow and directional,
characterized by a substantial exploration of the topology
space, often with multiple clusters occupied in a row (Figure
7D). The results of such analysis are of course very much
dependent on which part of the conformational ensemble is
the IDR/IDP exploring with one particular trajectory, and
therefore several such trajectories should be explored in order
to make IDP-specific statements. However, even with our
limited sampling, we can already deduce some general
observations, from the results in Figure 7E. First of all, we
see that, in most cases, scores for short life topology are lower
than those for middle life topology. This finding quantifies our
previous intuition, which was, longer-lived contacts tend to
occupy a higher number of topological states, and cover larger
portions of the topological landscape. This conclusion could
help identify key contacts for semistable IDP structures, as well
as functional folding-upon-binding configurations.45 This trend
is particularly accentuated in AR NR, SNCG, and ER, which
show a consistent increase of E score from short to middle life,
for all runs. These three IDR/IDPs are also the ones showing
the overall minimum scores for short life. This result suggests
very wide clusters, characterized by a very unstable, plastic
structure. The bigger the spread, the less defined the
underlying structure. Moreover, the effect we observe might
be dependent on size, as these three specimens are the smallest
in our dataset; the shorter the chain, the easier it might be to
explore the configurational space with very wide clusters.
However, once the short-lived contacts are filtered out, a
directional topological evolution appears, which is not very
dissimilar from that of larger proteins.
On the other hand, GR and AR CR seem to maintain more

or less the same range of E scores for both short and middle
life, indicating a certain topological symmetry for what
concerns different temporal modes of evolution, and most
likely persisting semistable topological structures. In the case of
these two IDRs, we even observe sometimes a decrease in
evolution score going from short to middle life regime (run 1).
These simple considerations already allow us to cluster
together proteins displaying similar patterns of dynamic
behavior in short and middle life modes. Such an approach,
coupled perhaps with relaxation times experimentally derived
from NMR, or some other techniques for enhanced sampling,
could provide invaluable for the quantification of IDP
configurational dynamics.

■ TOPOLOGICAL STRINGS AND SEQUENCE
ALIGNMENT

Functionally similar IDPs often have no significant sequence
similarity.46 Moreover, the lack of stable tertiary structure
complicates the picture further, making it challenging to
compare such proteins by structure alignment techniques. The
issue of functional classification of IDPs was recently tackled
by a technique called sequence charge decoration (SCD),33

which relies on the charge patterning of the sequence, which
serves as an indication of the ensemble average distance
between pairs of residues.47 Here, we propose a method to
identify similar topological blueprints between different IDPs,
which can be applied to any transient conformation, without
relying on averaging conformations over the ensemble. We
create topological strings out of specific IDP conformations
which are suitable for sequence alignment, overcoming the
issue of little to no sequence similarity. In order to explain this
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topological alignment procedure, we have to introduce the
concept of topology matrix (Figure 8A). So far, we have only
considered the overall number (or percentage) of S, P, and X
relations characterizing a certain conformation occupied by the
protein at time t. However, we can also consider the patterning
with which these relations appear in the chain. To do this, we
consider an N × N matrix, where N is the total number of
contacts in the chain at a given timepoint. Each contact
(formed by residue i, j) is numbered based on the indexing of
its first contact site (residue i). Each element in the matrix is
filled in based on the topological relation between the relevant
pair of contacts. We can see two versions of the P and CP
relation in the matrix, that is, inverse P and CP (P−1, CP−1);
this specification is made because parallel is not a symmetric
relation: when contact A is enveloped by contact B, we say that
A is in parallel relation with B. However, B is now enveloping
contact A, not being enveloped by it. We say therefore that B is
in inverse parallel relation with A. However, these two
wordings refer to the same topological arrangement between

two contacts, so for the sake of topological sequence
alignment, only the labels P and CP will be used for all
cases. To retrieve sequences out of topology matrices we
perform a simple matrix linearization. Linearizing by rows or
columns makes no difference in this case since the matrix is
symmetric. Thanks to symmetry, linearizing by rows means to
account for the locality of matrix elements along both rows and
columns. This fact can be clarified by looking at the elements
highlighted in white in Figure 8A. Take element (4,6):
linearizing by rows, its nearest neighbors are CP on one side
and S on the other. Its nearest neighbors along columns, P and
CP, are at this stage not accounted for. However, when we get
to the symmetric representation of the same element, (6,4), we
see that its nearest neighbors along rows are now P and CP. In
this way, the locality of topological relations is accounted for
along both rows and columns, regardless of our choice of
linearization along rows or columns. In this way, we obtain
topology strings from any conformation. We can couple this
technique with the clustering procedure presented previously

Figure 8. Circuit topology, expressed in form of topology strings, can be used to measure the similarity between different IDPs/IDRs. (A)
Schematics representing the linearization procedure necessary to go from topology matrix to topology string. In the string, topological relations
such as P−1 and CP−1 are incorporated with P and CP since they all represent the same topological arrangement. The topology matrix is symmetric.
The elements highlighted in white, (6,4) and (4,6) indicate the same topological relation between contact pair 4 and 6. It is easy to see how
linearizing the matrix row by row accounts for all four nearest neighbors of each matrix element, along both rows and columns. Take element (4,6):
its nearest neighbors on the string will be (4,5), CP and (4,7), S. However, when we get to its specular representation on the other side of the
diagonal (6,4), we see that its nearest neighbors in the string will be P and CP−1, which were the nearest neighbors of element (4,6) along its
column. We are therefore accounting for the proximity of elements on both rows and columns. (B) Pairwise similarity scores for model proteins
and AR, GR, and ER LBD. The scores were obtained by alignment of strings representing protein native topology. (C) Pairwise similarity scores for
IDRs/IDPs. The scores were obtained by aligning strings corresponding to the topology reached by the protein in the centroid of the last occupied
topological state during the MD run. Scores obtained for all three MD runs are averaged into one value. On the diagonal, we have the average
similarity score obtained by comparing the three runs of one protein.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00391
J. Chem. Inf. Model. 2023, 63, 2586−2602

2595

https://pubs.acs.org/doi/10.1021/acs.jcim.3c00391?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00391?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00391?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00391?fig=fig8&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in this study, in order to pick meaningful configurations for our
analysis. For our exploratory comparative analysis, we picked
the centroid of the last cluster occupied by each protein in each
5 μs MD run. In this way, we could calculate a similarity score
for the pairwise alignment of three sequences for each IDR/
IDP, resulting in a 15 × 15 similarity matrix (Figure S8). The
choice in terms of cluster is by no means unique, and the
analysis could be generalized to any state occupied by the IDP
trajectory. We calculated the similarity score in two different
ways: by global sequence alignment, as provided by the
Biopython Pairwise2 module (Figure 8B,C), and by the difflib
SequenceMatcher class in python (Figure S9). Both methods
yield the same patterns of similarity. In order to test the
capability of the method to retrieve structural similarity
between related proteins, we tested it over six non-IDPs,
three evolutionary related regions (the LBD of AR, ER, and
GR) and three unrelated model proteins (maltose binding
protein, glutathione S-transferase, and lysozyme). The results
can be found in Figure 8B, where the highest similarity scores
are indeed found among LBD of hormone receptors.
Subsequently, we applied this analysis to the IDRs and
SNCG, for short and middle life trajectories. Figure 8C
presents an average similarity score over the three runs for each
protein. We see that, despite the natural heterogeneity of such
system, we see a picture emerge that is compatible with the
results obtained so far by looking at the dynamical properties
of the topological evolution. GR NTD remains the most stable
IDR in our dataset, scoring the highest similarity scores within
its three runs. Also, GR and AR CR score relatively high in
similarity for both short and middle life. ER is most similar to
AR NR and SNCG for short life topology. However, for
middle life, ER scores relatively high, behaving similarly to AR
CR and GR. This dual behavior is in perfect agreement with
the results obtained by conformational diffusion analysis.
SNCG records the lowest scores overall in the matrix, which is
unsurprising since it is functionally very different from the
NHRs. However, it does score relatively high with AR NR, also
for what concerns middle life, indicating that these two systems
share similarities in their topological behavior.

■ DISCUSSION
The elusive structural nature of IDPs makes them a very
challenging target for homology and functional classification.
However, there is growing evidence that common functions of
disordered regions and proteins can be found even across
evolutionary distant organisms.48,49 The recent development of
computational and theoretical tools has significantly enhanced
our understanding of disorder in proteins.15 Molecular
dynamics simulations, often coupled with experimental assays,
provided new insight into IDP conformational search and
ensemble.31,32,50 Topology-based modeling45 and machine
learning techniques42,51,52 proved to be invaluable in the
characterization of IDP configurational space, often due to
their ability to reduce the dimensionality of the system to a few
meaningful coordinates and metrics. However powerful,
machine learning models are still very dependent on the
quality of data and data representation they are fed. The
features extracted by circuit topology have the potential to
offer such data representation. We reduced the problem to its
topological coordinates, offering various types of analysis,
ranging from the characterization of the conformational
evolution in the topological plane to the topological content

itself, which can be quantitatively characterized and used for
comparison.
Concerning our dataset, we can summarize a few interesting

findings. Traditional methods such as disorder prediction with
PONDR and solvent accessibility analysis suggested a lower
level of disorder for AR CR and GR with respect to the rest of
the dataset. This finding was corroborated and expanded by
circuit topology analysis, which found consistent similarities in
dynamic behavior and topology for these two IDRs. Multi-
timescale analysis revealed that these two IDRs tend to
maintain the highest topological coherence between short and
middle life modes. AR CR and GR also score the highest in
terms of self-similarity among runs (Figure 8C). All of these
data depict a picture of a higher relative structural stability for
these regions, which are also quite different from the rest in
terms of topological makeup. From Figure 6B, we see that AR
CR and GR score consistently higher in series relations and
lower than the rest in parallel and cross. This finding is not
surprising when taken in context with the rest of the analysis;
generally speaking, IDPs have higher cross and parallel
relations with respect to proteins with a stable tertiary
structure. This difference is due to the principles of protein
folding and assembly: folded proteins tend to favor local
connections first, and form subdomains containing these local
elementary structures.53 Contacts within a domain will then be
in series with contacts within a different domain, or region,
because they are shielded and there is no interaction. In IDPs,
on the other hand, this happens to a lesser extent, as stable
structures are seldom created and interaction remains very
dynamic at all times. Therefore, the high percentage of series in
AR CR and GR might indeed indicate the formation of
semistable structures. This conclusion is also supported by the
circuit diagram in Figure 5E: AR CR and GR do not present,
like the other IDP/IDRs in the study, the tendency to have
charged contacts bringing together the ends of the chain, but
rather a more structured circuit structure, potentially indicating
the formation of highly connected subdomains.
Multiple sequence alignment found insignificant similarities

in the NHR NTD presented in this study, as is often the case
with IDRs/IDPs. However, relatively higher matches between
ER, AR CR, and GR. Circuit topology analysis depicted a
much more nuanced picture for ER, which displays a high
heterogeneity and asymmetric behavior with respect to short
and middle lifetime scales. While we do find significant
similarity in topology sequence matching with AR CR and GR
for middle life, in short life ER reveals a very dynamic behavior
which makes it easier to cluster it together with AR NR and
SNCG. Finally, AR NR and SNCG display very similar
behavior across the board, in spite of being evolutionarily
unrelated. They show very plastic evolution, with less tendency
to form semistable structure, and with significant asymmetry
when it comes to topological evolution in short and middle life
modes. It has been hypothesized that some IDPs present
residual structures which modulate the entropic cost of folding
facilitating binding thermodynamics.45,54 However, other cases
suggest that increased local structure in the unbound state of
IDPs might actually reduce binding rate,55 stressing the
importance of disorder for functionality and versatility of
these proteins. It is possible that we are now observing these
two opposite tendencies in our dataset, with AR CR and GR
presenting residual structure, AR NR and SNCG having a
higher level of disorder and plasticity, and ER being
somewhere in the middle.
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The analysis presented in this paper explores the possibility
of comparative IDP analysis by use of the circuit topology
framework coupled with molecular dynamics simulation. While
challenges related to the vast and flat energy landscape and
conformational space of IDPs remain, we believe CT could be
an invaluable framework for data processing and visualization
to tackle these systems. Moreover, several elements of the
presented pipeline can easily be coupled to other, well-
established topological frameworks, in order to enhance their
predictive capabilities and provide a more complete
description of protein structure. We exemplify here this
concept by discussing possible applications of the dynamic
CT pipeline to a successful mathematical tool for topological
analysis of biomolecules, persistent homology.56,57

Persistent homology is a branch of algebraic topology that
has allowed in recent years to define topological fingerprints
(MTF) of proteins,57,58 and reached high-performance
predictions in a variety of tasks, protein classification,58

protein/ligand binding affinities,59−61 protein/protein inter-
action energy,62 protein folding and stability changes upon
mutation,63 and drug virtual screening.60,64 To summarize,
persistent homology concerns itself with the identification of
topological properties of a given space, such as holes and voids,
and to quantify how long these features persist over different
spatial scales. This process, known as filtration, allows
researchers to examine the structure of a space at various
resolutions and understand how it changes as features appear
and disappear. At a given resolution, these topological
properties are expressed in terms of Betti numbers, indicating
the number of connected components, tunnels, cavities, etc.57

The CT formalism was previously applied in the context of
extended persistent homology:65 specifically, CT relations were
used for the characterization of simplicial complexes, which
constitute the mathematical construct used to represent the
topology of a space for PH characterization. It is noteworthy to
mention that spaces characterized by the same Betti numbers
might correspond to different configurations in the CT space,
as CT relations are mostly concerned by the reciprocal
arrangement of connected components of a space rather than
the number of connected components specifically. Therefore,
CT relations might be used to discern between different
configurations in the formalism of PH, if the problem at end
requires for it. Moreover, various methods described in this
paper could be coupled to PH in a variety of ways. For
example, Betti numbers could be used to select which
configurations to plot in the 3D topological space created by
CT parameters (Figure 6A). One could decide to plot only
those configurations that are topologically equivalent (identi-
fied by the same Betti number) and follow their evolution in
the CT space. Alternatively, one could choose to plot only
those configurations whose topological features display a
certain persistence or to observe only configurations at a given
resolution, provided by the filtration parameter. Moreover,
multiscale persistent functions such as, for example, multiscale
persistent entropy (MPE),66 can be used to assign specific
indexes to any given configuration, such as a protein structure
index (PSI). Such an index could be easily plotted as a color
map on the triangular CT space, to observe how configurations
evolve in terms of disorder.
Various additions have been made on the persistent

homology framework to ensure retention of fundamental
biological, chemical, and geometric characteristics. Examples of
these are multiscale and element-specific persistent homology

(ESPH),63 weighted and localized weighted persistent
homology (LWPH).67 These methods could be used for the
selection of biologically meaningful contacts to plot with our
circuit analysis (Figure 5E) while leveraging on this type of
visualization to identify the underlying reciprocal structure of
these contacts.
Topological features extracted by persistent homology have

seen very successful machine learning applications,59−63

displaying the potential of topology for predictive analysis.
Similarly, CT could easily be coupled with enhanced sampling,
clustering, and various machine learning and network analytics
methods, to provide a new topological perspective on intrinsic
disorder.

■ METHODS
Three-Dimensional Structure Prediction of NHR

NTDs. There are no resolved structures of the N-terminal
transactivation domains of the nuclear hormone receptors
deposited on the Protein Databank (PDB) due to their
disordered nature. To initiate our studies from computationally
efficient initial structures, the three-dimensional structure of
the NTDs was modeled using the I-TASSER server,29 the best
protein structure prediction method according to the Critical
Assessment of Protein Structure Prediction (CASP) commun-
ity.68 I-TASSER employs a hierarchical approach to protein
structure prediction and structure-based function annotation.
This approach is either comparable to or outperforms
AlphaFold69 and RoseTTAFold70 in predicting the exper-
imentally measured secondary structure content of disordered
proteins included in this study, based on the available data.28

To further optimize the initial structures, energy minimization
steps using the steepest descent method were performed
followed by conjugate gradients with an ff99SB all-atom force
field to perform a total of 100,000 steps per protein construct
using GROMACS software packages.71

Molecular Dynamics. For this study, 5 μs molecular
dynamics (MD) simulations were performed on the energy-
minimized structures acquired by the structure prediction
pipeline in the previous section. To reduce computational
costs, the SIRAH coarse-grained force field72 for proteins was
used in combination with a WT4 explicit coarse-grained water
model. The proteins were mapped to a coarse-grained
representation according to the standard SIRAH mapping. A
rhombic dodecahedron box was used to dissolve the structure
by adding WT4 water molecules. Electroneutrality and
physiological concentration of salt were achieved by replacing
the corresponding amount of water molecules with NaW and
ClW (coarse-grained representations of Na+ and Cl− ions,
respectively). All coarse-grained systems were minimized using
the steepest descent algorithm before a 5 ns NVT
equilibration, 5 ns NPT equilibration, and an NPT production
run. The leapfrog integrator with a 20 fs time step was used
throughout. Protein beads were constrained with the LINCS
algorithm73 during the equilibration, and no constraints were
employed during the minimization and production steps. The
temperature was kept at 310 K with a velocity rescale
thermostat,74 and the pressure at 1 bar with the Parrinello−
Rahman barostat. τT for the thermostat was set to 1.0 ps during
the equilibration phases and to 2.0 ps during the production. τP
for the barostat was set to 10.0 ps during both the NPT
equilibration and the production. Both nonbonded cutoffs
(van der Waals and short-range electrostatics) were set to 1.2
nm. Long-range electrostatics were treated with the particle
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mesh Ewald (PME) method with a 0.2 nm grid spacing during
the equilibration and 0.25 nm during the production.
Nonbonded interactions were calculated using a 1.2 nm cutoff
neighbor list, updated every 25 steps (in the production and
the NPT equilibration) or 10 steps (in the NVT equilibration).
Both energy and pressure dispersion corrections were applied.
Periodic boundary conditions and the minimum image
convention were used. Snapshots were collected every 1000
steps (20 ps). All simulations and subsequent analyses were
carried out with GROMACS 2020.71

Order−Disorder Prediction. Structural disorder was
analyzed using the PONDR27 webserver, and raw data
obtained from the server and plots were made using OriginPro
2021 (OriginLab Corporation, Northampton, MA).
Preparing the Structures for Circuit Topology

Analysis. After the trajectories of the systems were retrieved,
atomic positions of amino acids were generated from the
location of CG beads. Backmapping was done using the
sirah_vmdtk.tcl plugin, followed by 100 steps of steepest
descent and 50 steps of conjugated gradient minimization in
vacuum using the sander module of AmberTools.75 This
procedure was robust and independent of the fine details of the
backmapping library. The obtained atomistic coordinates were
used for circuit topology analysis.
Timescale Analysis. Contact maps were exported from

our custom-made Circuit Topology Python 3 tool.76 In our
CT tool, contacts are identified by means of two cutoffs, one
relative to the spatial distance r between atoms (4.5 Å), and
one relative to the number of atom pairs that need to be found
at a distance less than r to consider the two residues in contact.
Contact maps were then processed to extract the contact
lifetime distribution of a specific MD run. Each contact is
identified by the unique pair of residues forming it; the same
contact can form and break multiple times in an MD run,
therefore its lifetime is not unique. We picked the maximum
lifetime for each possible pair of residues to build the contact
lifetime distribution, under the assumption that a contact will
contribute the most to the structure when it persists the
longest in the run. The lifetime data were fitted by NaiveKDE
from the KDEpy library,77 a naive computation of a kernel
density estimate, in order to extract the underlying
distribution. The log−log plot of such distributions can be
seen in Figures 4C and S3. The log−log distribution was then
fit to a power law

=P K Ak( )

with the least square fitting procedure (Scipy.stats.linre-
gress78). Fitting was performed over subsequently larger
subsets of data, starting from the first three data points and
incrementing the set one datapoint at a time. The quality of
each fit was then evaluated by calculating the coefficient of
determination R2. This stepwise fitting and evaluation
procedure was done in order to set the boundaries for the
applicability of the power law and identify thus two different
timescales for IDP dynamics (short and middle life regime).
We set two thresholds for R2 values (Figure 4D): we set the
end of the short life regime when R2 displays and initial drop
below t1 = 0.8. The second boundary is retrieved from the
datapoint where the R2 curve rises above t2 = 0.3, after reaching
its global minimum. These two thresholds were set empirically
based on the good visual agreements between different IDPs
(Figure S4). Contacts were then assigned to either short,
middle, and long life regimes based on their lifetime and the

temporal threshold found via R2 evaluation. Two contact maps
were created, one for short and one for middle life contacts,
while long life contacts were discarded.
Circuit Topology Analysis. Contact maps calculated for

specific time regimes were loaded as filters in our CT tool,76 in
order to calculate topological parameters selectively for the
chosen dynamic mode. Topological relations are calculated
from residue−residue contacts, by assigning an index to
contacts based on the order with which the first residue in the
contact residue pair appears along the chain, scanning it from
left to right.
CT relations were assigned based on the mathematical

relations summarized below

[ ] [ ] =C C i j r sS , ,i j r s, ,

[ ]C C i j r sP , ( , )i j r s, ,

[ ] [ ] {[ ] [ ]}

{ }

C C i j r s i j r s

i j r s

X , , , , ,

( , , , )

i j r s, ,

[ ] [ ] = { } [ ] [ ] = { }C C i j r s i i j r s jCS (( , , ) ( , , ))i j r s, ,

[ ] [ ] = =C C i j r s i r j sCP (( , , ) ( ))i j r s, ,

denotes the powerset, i.e., all subsets of a set including the
null set (⌀). Ci,j and Cr,s indicate contacts formed, respectively,
by the ith and jth, and by the rth and sth contact sites. Contact
indexes (i, j, r, s) were assigned by scanning the chain from the
left end to the right end. For more information about the
formalism, we invite the reader to refer to Mashaghi et al.20,21

and Schullian et al.79 Topology matrices store then the
topological relation between each pair of contacts. Both CT
relations and topology matrices were exported for further
analysis.
Clustering. Clustering was performed by means of scikit-

learn,80 a library for machine learning in Python. CT relations
were preprocessed for clustering using MinMaxScaler (scaling
values from 0 to 1). Clustering was performed by following a
Gaussian mixture model probability distribution (mixture.-
GaussianMixture), by inputting a number of clusters ranging
from 0 to 10. Results reported in the paper were calculated
with the following input parameters: number of initializations
to perform: 100, convergence threshold: 1 × 10−4, maximum
number of iterations to perform: 10 000, non-negative
regularization added to the diagonal of covariance: 1 × 10−6.
Results for different regularizations can be found in Figure S6.
The ideal number of clusters for each dataset was then picked
by optimizing the Bayesian Information Criterion (BIC)
score.44 Centroids of the clusters were calculated as 3D
mean the cluster data points. The spread of the cluster was
evaluated by calculating the mean of the Euclidian distance
between the data points in the cluster and the centroid.
Sequence Alignment and Similarity Score. The

similarity score between topology strings was calculated with
two different procedures, to test the robustness of the method
and finding the least expensive computational method:

• Global alignment with Bio.pairwise2 (Biopython81): the
module provides pairwise sequence alignment using a
dynamic programming algorithm. Global alignment finds
the best concordance between all characters in two
sequences; the score thus found was then normalized by
multiplying it by 2/(l1 + l2), where l1 and l2 are the
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lengths of the first and second sequences, respectively.
Such an alignment procedure is symmetric, which means
that the similarity score does not depend on the order in
which the sequences are fed into the algorithm.
Although its many advantages, this method is computa-
tionally expensive in terms of memory usage and time.
Since we often incurred in memory errors while
handling alignment for the largest topology strings, we
decided to apply a coarse graining procedure over all
topology strings. A comparison between similarity scores
with and without coarse graining is presented in Figure
S10, for middle life contacts: differences in scores are
negligible and do not affect the general conclusions in
the study. Coarse graining was performed by assigning a
number to each topological relation: S = 0, CS = 1, P =
2, CP = 3, and X = 4. Numbers were assigned following
the rationale according to which entangled, interacting
topologies like X might weight more than noninteracting
one, such as S. Then, we performed a mean over each
five subsequent elements of the string, yielding the
corresponding element of the new coarse-grained string.
Each element was then rounded in order to yield an
integer. Sequence alignment was then performed on the
coarse-grained string.

• Similarity score calculation with the Python module
difflib, SequenceMatcher: this algorithm does not yield
minimum edit distance between sequences, but rather
finds the longest contiguous matching subsequence, and
then recursively applies the same procedure to the rest of
the sequence, to the right and to the left of the matching
part. This procedure is less precise than global
alignment. However, it is faster and does not require
any type of coarse graining. The two procedures yield
the same general results; the score similarity score in this
case is calculated as “quick_ratio” or “real_quick_ratio.”

■ ASSOCIATED CONTENT
Data Availability Statement
The python codes and force field parameters are deposited at:
https://github.com/circuittopology/dynamic_circuit_
topology.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00391.

Radius of gyration analysis of AR NR, AR CR, and full-
length ER NTD (Figure S1); order and disorder-
promoting residues content of the chain calculated
separately for AR NR and AR CR regions (Figure S2);
contact lifetime distribution for IDP/IDRs (Figure S3);
coefficient of determination R2, used to evaluate the
goodness of the power law fit performed over
subsequent chunks of the contact lifetime distribution
(Figure S4); comparison K-means and Gaussian mixture
(GM) clustering (Figure S5); evolution score results for
different clustering parameters (Figure S6); evolution
score results for different empirical definitions of
evolution score (Figure S7); similarity score for each
pair of IDP/IDR in the dataset (Figure S8); similarity
score as calculated by SequenceMatcher method (Figure
S9); and similarity score (for middle life contacts)
calculated with and without coarse graining of the
topology strings (Figure S10) (PDF)
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