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Therapeutic antibody-epitope conjugates (AECs) are promising new modalities

to deliver immunogenic epitopes and redirect virus-specific T-cell activity to

cancer cells. Nevertheless, many aspects of these antibody conjugates require

optimization to increase their efficacy. Here we evaluated different strategies to

conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the

antibodies cetuximab and trastuzumab. Three approaches were taken: chemical

conjugation (i.e. a thiol-maleimide reaction) to reduced cysteine side chains,

heavy chain C-terminal enzymatic conjugation using sortase A, and genetic

fusions, to the heavy chain (HC) C-terminus. All three conjugates were capable of

T-cell activation and target-cell killing via proteolytic release of the EBV epitope

and expression of the antibody target was a requirement for T-cell activation.

Moreover, AECs generated with a second immunogenic epitope derived from

CMV (NLV/A2) were able to deliver and redirect CMV specific T-cells, in which

the amino sequence of the attached peptide appeared to influence the efficiency

of epitope delivery. Therefore, screening of multiple protease cleavage sites and

epitopes attached to the antibody is necessary. Taken together, our data

demonstrated that multiple AECs could sensitize cancer cells to virus-specific

T cells.

KEYWORDS

antibody-epitope conjugates (AECs), redirecting virus-specific T-cells, immunotherapy,
targeted therapy, conjugation strategies
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Introduction

Antibody-mediated immunotherapies like immune checkpoint

blockade (ICB) have demonstrated to be effective for the treatment

of tumors by activating the patient’s own immune system (1). Since its

efficacy depends on the mutational burden of the tumor and the

efficiency of T-cell infiltration, the treatment is not successful in

patients suffering from cancers with low immunogenicity (2, 3).

Moreover, a large fraction of tumor infiltrating lymphocytes (TILs) is

not tumor specific, as a wide range of epitopes presented in HLA class I

and II molecules unrelated to the tumor can be recognized (4).

A second class of immunotherapies, are CD3-bispecific

antibodies (CD3-BsAbs), which regardless of the specificity of the

T-cell receptor (TCR) engages all CD3+ T-cells and due to the

crosslinking with the cancer cells results in T-cell activation and

tumor cell killing (5, 6). However, in contrast to ICB, one of the

largest hurdles with CD3-BsAbs is overactivation of the CD3+ T-

cells, followed by excessive release of inflammatory cytokines, which

may trigger the cytokine release syndrome (CRS) (7).

An interesting group of T-cells present among TILs are T-cells

specific for viral antigens (8, 9). In particular, exposure to the

herpesviruses Epstein Barr-virus (EBV) and Cytomegalovirus

(CMV) results in persistent infections in a large fraction of the

human population and both viruses induce very potent T-cell

responses as a consequence of their occasional reactivations (10).

There is a relatively small number of immunodominant T-cell

epitopes and in infected individuals high frequencies of EBV- and

CMV-specific T-cells can be present (11, 12).

Virus-specific CD4+ (13, 14) and CD8+ T-cells (15, 16) can be

redirected towards viral antigen-negative cancer cells by coupling

antigens or T-cell epitopes to tumor-specific antibodies. We refer to

antibodies that are able to redirect CD8+ T-cells as antibody-epitope

conjugates (AECs). After binding of the AECs to the antibody target

on the cancer cell, the virus-peptide epitopes are proteolytically

released, and presented by HLA class I molecules, allowing

recognition by the virus-specific CD8+ T-cells.

AECs have shown great promise (15, 16), but more data is needed

to be able to optimize their use and to reveal possible limitations. There

are many methods to attach drugs, peptides, or other molecules to

antibodies as has been shown by the antibody engineering strategies

used in the past (17–19). Here, we compared three engineering

strategies for generating AECs and presented data on their

functionality, antibody target specificity and the proteolytic activity
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required for peptide release and T-cell activation. We successfully used

a chemical and an enzymatic conjugation strategy as well as genetic

fusions to create these AECs and compared them on a functional level.
Materials and methods

Antibodies and peptides

Cetuximab (CTX) was obtained from Merck (Germany,

Darmstadt). Trastuzumab (TRS), all genetically modified antibodies

and the AECs were produced at Genmab via transient expression in

ExpiHEK293 FreeStyle cells as described before (20) and purified by

Protein A affinity chromatography. If required, protein aggregates were

removed via Size Exclusion Chromatography (SEC) to yield protein

product with a >95% monomeric content as analyzed on high

performance liquid chromatography-SEC (HPLC-SEC). The

genetically fused AECs were produced with the following additional

amino acid sequence at the C-terminus of the heavy chains: GGSG-

LSGRSDNH-YVLDHLIVV, and the antibodies with the sortase A

recognition domain (CTX- and TRS-S-His6) with: LPTEGG-

HHHHHH. All antibodies were stored in phosphate-buffered

saline (PBS).

The following antibodies were used for flow cytometry: Goat

Anti-human IgG-A488 (Jackson immunoResearch, UK,

Cambridgeshire) or -PE (Jackson immunoResearch), Mouse Anti-

FLAG-tag-PE (M2) (Abcam, UK, Cambridge), Mouse anti-HLA-

A2 (produced inhouse from clone BB7.2 (21)), and Goat anti-

mouse-PE (Ebioscience, USA, San Diego). The antibodies used for

western blot were Mouse Anti-FLAG-tag (clone M2, Sigma, USA,

St. Louis), Mouse anti-His-tag (Qiagen, Germany, Hilden), Goat

anti-human-IgG-IRDye800CW (Licor, USA, Lincoln) and/or

Donkey anti-mouse-IgG-IRDye680RD (Licor).

Peptides used were produced within the LUMC and synthesized

with Fmoc chemistry and the identity was confirmed with mass-

spectrometry and are visualized in Table 1. All peptides were

dissolved in DMSO (Sigma) at 20 mg/mL before usage.
Cell lines

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium

(DMEM, Gibco, USA, Waltham), 1% Pen/Strep (Gibco), 10% Fetal
TABLE 1 List of peptides used.

Conjugation strategy: Peptide sequence: Epitope: Protease cleavage site designed for:

MAL
Maleimide-PEG11-LSGRSDNH-DYKDDDDK FLAG-tag

uPa, matriptase and legumain

Maleimide-PEG11-LSGRSDNH-YVLDHLIVV EBV

SrtA

GGGGG-PEG11-LSGRSDNH-DYKDDDDK FLAG-tag

GGGGG-PEG11-LSGRSDNH-YVLDHLIVV EBV

GGGGG-PEG11-LSGRSDNH-NLVPMVATV

CMVGGGGG-PEG11-VPLSLYSG-NLVPMVATV MMP2-7-9

GGGGG-PEG11-NSGAFRTY-NLVPMVATV uPA and HK2
The protease cleavage site is visualized in cursive and the epitope is underlined.
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Calf Serum (FCS, Biowest, France, Nuaillé). The cDNA encoding

HLA-A2 was transduced into the HeLa cells with the aid of a pEF1a
lentiviral vector. Transduced cells were selected by supplementing

the medium with 250 mg/mL zeocin (Invitrogen, USA,

Massachusetts, Waltham). Epidermal growth factor receptor

(EGFR) and human epidermal growth factor receptor 2 (Her2)

knockout cell lines were generated with an expression cassette

encoding the guide RNAs (Sigma, clone ID 123759703 and

244226520) in vector plv-u6g-ppb. Cells were simultaneously

transfected with the plasmids containing the gRNA and Cas9.

The next day, cells were selected with 2 mg/mL puromycin

(InvivoGen, USA, San Diego) for 48 hrs. With FACS-based cell

sorting the EGFR- and Her2- negative cell populations were

enriched, and knockout (KO) clones were selected by limiting

dilution. One of the HeLa-A2 Her2 KO clones was transduced

with a truncated-Her2 receptor encoding cDNA in the MP71

retroviral vector. Retroviral transductions were performed as

described previously (22). Cell cultures were enriched for

transduced cells by FACS sorting using an Aria III cell sorter (BD

Bioscience, USA, Franklin Lakes). The T-cells used were CMV

(NLVPMVATV presented in HLA-A*02 :01) or EBV

(YVLDHLIVV presented in HLA-A*02:01) specific T-cell clones,

or CD8+ T-cells derived from peripheral blood mononuclear cells

(PBMCs) that were transduced with the virus-specific TCR or, as a

control, with a non-specific TCR as described before (23). T-cells

were cultured in T-cell medium (TCM); Iscove`s Modified

Dulbecco`s Medium (IMDM, Lonza, Switzerland, Basel), 5% FCS,

5% human serum (Sanquin, the Netherlands, Amsterdam), 3 mM

L-glutamine (Lonza), 1% Pen/Strep, and 200 IU/ml IL-2, and

stimulated every 10-16 days with phytohaemagglutinin (PHA,

ThermoFisher, Germany, Dreieich) and irradiated feeder cells.

Before the T-cells were used in the assays they were washed 3

times with IMDM supplemented with 0.5% human albumin

(Albuman, Sanquin) to remove expansion-related cytokines.
Conjugation strategies and purification

For maleimide conjugation, 10 µM wildtype antibody, 500 µM

tris(2-carboxyethyl)phosphine (TCEP, Sigma) and 200 µM peptide

were added together in PBS, incubated overnight at 22°C whilst

shaking. Conjugates were purified over Size Exclusion

Chromatography (SEC) on a Superdex200 column (GE

Healthcare, Germany, Freiburg) equilibrated in PBS to remove

excess peptides. For the sortase A conjugation 25 µM sortase A

(produced in house), 5 µM Ab-S-his6 with a sortase A recognition

motif and a His-tag (LPTEGG-His6) on the C-terminus of the heavy

chain, and 500 µM peptide were incubated for 45 min at 37 ˚C in

sortase A buffer (150 mM NaCl, 50 mM Tris.Cl, 10 mM CaCl2,

pH=7.5). The reaction mixture was directly applied to a Superdex

200 SEC column coupled to a His-trap column (GE Healthcare)

equilibrated in 100 mM Tris with 20 mM Imidazole to remove

unconjugated antibody and His-tagged sortase A enzyme, and

conjugate-containing fractions were concentrated on an Amicon

concentration filter (MWCO 50K, Merck).
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Analysis of conjugation

The conjugates were analyzed by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) on hand-casted

gels (12,5%) in Laemmli sample buffer under reducing (in the

presence of 20 mM Dithiothreitol (DTT)) or non-reducing

conditions (no DTT added). The gels were either stained with an

instant blue staining (Abcam) or were subjected to western blot

analysis. For western blots, the gels were transferred onto

nitrocellulose membranes (Biorad, Germany, Feldkirchen) with

the Trans-Blot Turbo Transfer system (Biorad). Membranes were

blocked with 5% milk dissolved in PBS and stained with primary

antibodies diluted in 1% milk in PBS, containing 0.05% Tween 20

(PBST). Next, the membranes were washed 2x with PBST and

incubated with secondary antibodies in 1% milk in PBST. to

visualize the primary antibodies on the Odyssey DLx (Licor). The

epitope-to-antibody ratio`s (EARs) were estimated or determined

by Hydrophobic Interaction Chromatography (HIC), SDS-PAGE

or intact liquid chromatography-mass spectrometry (LC-MS).

Estimations on SDS-PAGE were made with Image Studio Lite

(version 5.2) or Fuji Image J.
Flow cytometry analysis

Cells were plated in a 96-wells U bottom plate and washed with

PBS, containing 0.5% bovine serum albumin (BSA) and 0.02%

sodium azide (PBA). Cells were incubated with primary antibody

for 30 minutes on ice. Hereafter, the cells were washed with PBA,

followed with 20 minutes incubation with the secondary antibody.

The cells were washed once more and analyzed with fluorescence-

activated cell sorting (FACS) on a LSRII (BD Bioscience).
T-cell activation and killing

To determine T-cell activation, 5,000 target cells/well were

seeded in a 384-well flat-bottom tissue culture plate and

incubated overnight to let them adhere. Antibody titrations were

prepared in IMDM supplemented with 0.5% human albumin, and

the target cells were incubated for 1 hour at 37 ˚C with the

antibodies. The antibody solution was thoroughly washed away

by 3 wash steps with IMDM supplemented with 0.5% human

albumin and 4,000 T cells/well were added to the target cells in

IMDM supplemented with 0.5% human albumin and 200 IU/ml IL-

2. After an overnight incubation, part of the supernatant was

harvested and the interferon-y (IFN-y) production was assayed by

enzyme linked immune sorbent assay (ELISA) as a marker for

activation (Diaclone, France, Besancon) according to

manufacturer’s protocol.

To investigate the killing potential of the T-cells, T-cell medium

was added and the plates were incubated for another 48 hours.

Subsequently, T-cells were removed by washing 3 times with

IMDM supplemented with 0.5% human albumin, followed by the

addition of HeLa culturing medium supplemented with 10%
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AlamarBlue HS cell viability reagent (ThermoFisher). Viability was

measured according to the manufacturer’s protocol. The percentage

target cell killing was calculated using:

% killing = 100 −
(RFUsample − averageRFUbackground)

(RFUno addition − averageRFUbackground)
� 100

In which RFUsample is the measured relative fluorescent units

(RFU) of the sample, averageRFUbackground represents the RFU that

comes from wells in which only T-cells were cultured and RFUno

addition represents the RFU of a coculture of target and effector T

cells which did not receive any antibody or peptide treatment.
Acidic heat treatment and
aggregation assay

Antibody binding was diminished by incubating the antibodies

at a concentration of 3.75 mg/ml (25 µM) at 98°C for 1 hour with

0.2 M HCl. Before the antibody was taken along in a T-cell assay it

was diluted to a concentration of 80 nM in IMDM after which the

pH was verified by looking at the phenol red indicator present in the

medium. The aggregation between the different batches was

measured with the PROTEAOSTAT protein aggregation assay

according to manufacturer’s protocol (Enzo Life Sciences,

Germany, Lörrach).
Statistical analysis

Graphpad Prism software (V.9.0.1) was used to perform the

statistical analysis. In the legend of the figure the used test is

indicated. The significance levels are indicated as ns: not

significant, *p<0.05, **p<0.01, and ***p<0.001.
Ethics approval

This study involves materials from human participants and was

approved by Institutional Review Board of the Leiden University

Medical Center (approval number 3.4205/010/FB/jr) and the

METC-LDD (approval number HEM 008/SH/sh). Materials from

healthy individuals were collected after written informed consent.
Results

Three conjugation strategies to attach
epitopes to antibodies

Three approaches were applied to create AECs: chemical

conjugation (maleimide reaction), enzymatic conjugation (sortase

A conjugation), and genetic fusion (Figure 1A). The maleimide and

sortase A (SrtA) conjugation reactions were optimized using a

FLAG-tag containing peptide on cetuximab (CTX). CTX binds to

the epidermal growth factor receptor (EGFR) that is overexpressed
Frontiers in Immunology 04
by many different cancerous cells. For the maleimide conjugation

reaction the four disulfide bridges were reduced with a reducing

agent to allow the maleimide to react with the free thiols, which

results in a heterogeneous conjugation mixture with an epitope-to-

antibody ratio that can range from 0-8. For the SrtA reaction, CTX

was produced with a SrtA recognition site (LPTEG) on the C-

terminus of the Heavy Chain (HC) followed by a His6-tag (CTX-S-

His6). With maleimide and SrtA conjugation, FLAG-tag containing

CTX conjugates were generated (CTX-MAL-FLAG and CTX-SrtA-

FLAG, respectively) and excess peptide was removed by SEC

(Figure S1A). For the SrtA conjugation an additional step was

taken to remove SrtA and unconjugated CTX-S-His6 from the

reaction mixture (RMX) with a His-trap column (Figure S1B).

To determine if conjugation was successful, conjugates were

analyzed by Western blot (Figure 1B). For CTX-MAL-FLAG two

strong bands of FLAG-tagged protein appeared above the HC of

CTX, which correspond to 1 or 2 conjugations on the HC and one

FLAG-tagged band appeared above the light chain (LC), indicating

that the disulfide bridges are reduced and conjugation has taken

place. However, there was still a fraction of unconjugated CTX

present as approximately 50% of the HC did not contain a FLAG-

tag. For CTX-SrtA-FLAG, only one Flag-tagged band with a higher

molecular weight than the unconjugated HC was observed,

indicating that conjugation only took place at the SrtA

recognition site.

We further analyzed the conjugation of the FLAG-tag on CTX

and the capability of CTX to retain binding to its receptor after

conjugation by flow cytometry. Both conjugates bound to the EGFR

positive HeLa cells, and the FLAG-tag was detected on both

conjugates, showing that the conjugation did not affect antibody

target binding and that the FLAG-tag was attached to the antibody

(Figure 1C). Since the long-term stability of a maleimide-thiol

linker cannot be guaranteed as it can be converted back to the

starting thiol and maleimide (Figure S2) (24), all purified antibody

conjugates were stored at -80°C, which kept the conjugates stable

over a longer period of time. By using the FLAG-tagged peptides, we

confirmed that both the MAL and SrtA conjugation strategy could

be used to attach peptides.
Conjugation of an EBV CD8+ T-cell epitope
to tumor-targeting antibodies

Next, we aimed to conjugate the highly immunogenic EBV

BRLF1/A2 T-cell epitope to CTX using the MAL and SrtA strategies

and generated the genetic variant (CTX-GEN) for comparison. We

chose the EBV BRLF1/A2 epitope based on the high frequencies of

BRLF1-reactive T-cells in EBV-positive individuals and the lack of a

cysteine in the sequence as free thiols are not compatible with

maleimide conjugation.

To allow release of the EBV epitope, the protease cleavage site

LSGRSDNH that is specific for urokinase-type plasminogen

activator (uPA), membrane-type serine protease 1 (MT-SP1/

matriptase), and legumain (25) was included at the N-terminus of

the EBV T-cell epitope. For MAL and SrtA conjugations, a poly

(ethylene glycol)-11 (PEG11) linker was introduced at the cleavage
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site to make the peptide more hydrophilic and increase the

conjugation levels and yields. For the genetically fused antibodies

a small spacer (GGSG) was placed in between the antibody and the

protease cleavage site (Figure 2A).
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The three differently generated AECs were analyzed on SDS-

PAGE under reducing (Figure 2B) and non-reducing conditions

(Figure 2C). Maleimide conjugation yields heterogenic product

under reducing conditions, as additional bands appeared for
A

B C

FIGURE 1

Three strategies to generate AECs: chemical, enzymatical and genetic. (A) Schematic representation of the reaction and/or the end-product of the 3
conjugation strategies: maleimide conjugation, Sortase A conjugation, and genetic modification. For the maleimide conjugation an example with 1 epitope
is given after reduction of the disulfide bridges. (B) Analysis of the FLAG-tag epitope conjugated to CTX by Western blot with in red the molecular weight
marker and FLAG-tag signal, and in green the human IgG signal. For CTX-SrtA-FLAG, the parental antibody with sortase recognition domain (S-His6) and
the reaction mixture (RXM) are shown. (C) FACs analysis to visualize the binding of the CTX conjugates with FLAG-tag, to HeLa cells expressing EGFR. As a
control a single anti-human-IgG-PE or anti-FLAG-PE staining was taken along.
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CTX-MAL above both HC and LC. Contrary to this and as

expected, homogeneous product was obtained for CTX-SrtA and

-GEN where a single HC band is observed at a higher apparent

molecular weight. Under non-reducing conditions we observed the

predicted antibody fragmentation pattern for CTX-MAL, as

cysteine conjugation impairs formation of oxidized disulfide

bridges. We also conjugated the EBV BRLF1/A2 epitope to an

alternative antibody, trastuzumab (TRS), and similar results were

obtained as for CTX (Figure S3). TRS binds the human epidermal

growth factor receptor 2 (Her2) and, similar to CTX, is

overexpressed in many cancers, primarily in breast and ovarian

carcinomas. The epitope-to-antibody ratio (EAR) was estimated

with Hydrophobic Interaction Chromatography (HIC), mass-

spectrometry (Figure S4), or SDS-PAGE, and summarized in

Table S1 and showed that all three conjugation strategies resulted

in an EAR of at least 2.

As the attached peptides are very hydrophobic and in the case of

MAL conjugation also tertiary structure changes in the antibody

can occur, the receptor-binding properties of the AECs were

analyzed by flow cytometry. All AECs were titrated on HeLa-A2

cells and binding efficiency was compared to the wildtype antibody
Frontiers in Immunology 06
(WT) (Figure 2D). Since, HeLa cells only express Her2 at low levels,

the TRS-AECs were tested on HeLa-A2 cells transduced with a

truncated Her2, which lacks the intracellular domain (HeLa-A2

tHer2). No significant differences were observed in target binding

capacity between the differently generated AECs compared to either

CTX-WT or TRS-WT. These results demonstrate that AECs can be

generated using these three different methods without changing the

binding properties of the antibodies.
AECs sensitize tumor cells to be
recognized by EBV-specific T cells

To determine whether the different AECs demonstrate potent

T-cell activation, HeLa-A2 cells were incubated for 60 minutes with

the different CTX-AECs, washed extensively, and co-cultured for 18

hours with EBV BRLF1/A2 specific T-cells (Figure 3A). Interferon-g
(IFN- g) concentration in the culture supernatant was determined

as measure for T-cell activation. All three CTX-AECs were able to

efficiently activate the T-cells at low antibody concentrations. TRS-

AECs incubated with HeLa-A2 tHer2 showed similar results
A

B DC

FIGURE 2

An EBV T-cell epitope preceded by a protease cleavage sequence can be conjugated chemically, enzymatically, or genetically to tumour-specific
antibodies. (A) The amino acid sequences of the peptides that are used in the reaction for maleimide- and sortase A conjugation and the peptide
sequence that is attached genetically to CTX. The three conjugation strategies analysed by SDS-PAGE visualized with an Instant Blue staining
(B) under reducing and (C) non-reducing conditions. With the conjugation possibilities for CTX-MAL depicted next to the gel. The conjugation
possibilities were determined by looking at the most abundant bands. (D) To determine whether the antibody conjugates still bind their target,
titrations were performed with CTX antibody conjugates on HeLa-A2 cells and with TRS antibody conjugates on HeLa-A2 Her2 cells and binding
potential was analysed by flow cytometry. Bound antibody conjugates were visualized with anti-human IgG-PE and representative data of two
independent experiments are shown.
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(Figure 3B). All AECs had a half maximum effective concentration

(EC50) in the range of 0.2-1 nM (Figure 3C), with no significant

difference between the three different conjugation strategies for both

CTX- and TRS-AECs. To show that the T-cell activation is specific

for recognition of the EBV BRLF1/A2 epitope, the cocultures with

the AECs were repeated with a CMV pp65/A2 specific T-cell line.

The CMV pp65/A2 T-cells only showed T-cell activation when

incubated with the pp65/A2 peptide (Figure S5).

To confirm that proteolytic processing and release of the EBV

T-cell epitope is required for T-cell activation a non-cleavable

peptide was conjugated to CTX. Amino acids in the proteolytic

cleavage site of the conjugated peptide used in the maleimide

conjugation were substituted by amino acids in the D

conformation (MALD-AA), which reduce recognition by the

proteases (26). The CTX-MAL and CTX-MALD-AA conjugates
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have a similar EAR (Figure S4) and therefore could be compared

in biological assays. Results shown in Figure 3D clearly demonstrate

that D- amino acid substitution completely prevent processing and

therefore T-cell activation. To determine whether the AECs were

able to sensitize target positive tumor cells to be killed by EBV-

reactive T cells an AlamarBlue viability assay was performed.

Interestingly, all three CTX-AECs efficiently induced high HeLa-

A2 target cell killing by the EBV-reactive T cells, whereas no killing

was observed when HeLa-A2 cells were incubated with CTX-WT or

CTX-MALD-AA (Figure 3E). This was also observed for HeLa-A2

tHer2 cells incubated with the different TRS-AECs (Figure

S6).These results clearly demonstrate that all three conjugation

methods are suitable and that proteolytic processing is required

to induce efficient T-cell activation and tumor-cell killing by the T-

cells at sub-nanomolar antibody concentrations.
A B

D E

C

FIGURE 3

EBV-AECs can sensitize tumour cell lines to be recognized and killed by EBV-specific T cells, irrespective of the strategy used for conjugation. CTX-
MAL, -SrtA and -GEN AECs (A) and TRS-MAL, -SrtA and -GEN AECs (B) were titrated on HeLa cells transduced with HLA-A2 (HeLa-A2) for CTX-AECs
and on HeLa-A2 tHer2 for TRS-AECs and incubated overnight with EBV-BRFL1/A2-specific T-cells. Supernatant was harvested and IFN-y production
as measure for T-cell activation was analysed by IFN-y ELISA. In (C) the EC50s of the different AECs were calculated and plotted. For the statistical
analysis, a RM one-way ANOVA with Tukey`s multiple comparisons was performed. (D) To test whether proteolytic activity is necessary CTX-MAL
and CTX-MALD-AA were taken along in a coculture assay and T-cell activation was analysed by IFN-y ELISA. (E) To check for target cell killing, an
AlamarBlue assay was performed. (A, B, D, E) Plotted values are means of duplicates (SEM) and graphs shown are representative figures of an n>3.
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Cell surface expression of
antibody target is essential for
T-cell epitope delivery

To determine whether the release of the EBV T-cell epitope

from the AECs was target specific, an EGFR knockout (KO) HeLa-

A2 cell line was generated (HeLa-A2 EGFR KO) (Figure 4A).

Incubation of the different CTX-AECs with HeLa-A2 cells, either

EGFRWT or KO, co-cultured for 18 hours with EBV-reactive T cell

demonstrated a significant difference in activation of the T-cells.

EBV T-cell activation only occurred when EGFR was expressed by

HeLa-A2 cells, indicating that AEC binding to target positive tumor

cells facilitates cleavage of EBV peptide and binding to HLA-A2

expressed by the tumor cells. At the highest AEC concentration, no

significant difference in IFN-g production by the EBV-T cells was

observed when CTX-MAL and CTX-SrtA were incubated with

EGFR-positive and -negative HeLa-A2 cells (Figures 4B, C). This

target independent activation of T cells at the highest concentration

of AECs was not observed for CTX-GEN (Figure 4D) and TRS-

GEN (Figure S7).

Next, we determined whether the stability of the AECs could

explain the target-independent activation of EBV-T cells observed

on the EGFR KO cells when incubated with high concentrations of

CTX-MAL and CTX-SrtA. CTX-GEN was treated with an acidic

heat shock (CTX-GENAHT.) to induce denaturation and therefore

its ability to bind to EGFR (Figure S8A) and repeated the cocultures

(Figure S8B). Low amounts of denatured antibodies already resulted

in a target independent recognition of EGFR KO cell lines (Figure

S8C), suggesting that a reduced stability might cause the target
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independent T-cell activation at the highest concentrations. As

(partial) unfolding of the antibody is also linked to aggregation,

the conjugates stored at -80°C were checked for aggregation with a

fluorescence-based aggregation assay (Figure S8D), which showed

that no aggregates were present at the start of our assays. In

conclusion, these experiments show that denatured antibodies can

activate T-cells independent of the antibody target. However, the

delivery of the EBV epitope by stable AEC is target specific.
Screening of protease cleavage site/
epitope combinations

To demonstrate the modularity of the designed approach and

explore if the patient target group could for instance be expanded,

in the next set of experiments we tested the conjugation of another

immunodominant epitope, the CMV pp65/A2 epitope. We chose

the SrtA conjugation method for further screening purposes. This

method is relatively quick and results in a homogeneous end-

product with 2 epitopes on the C-terminus of the HC, allowing

for straightforward comparison of the efficiency of different

cleavage sites. The CMV pp65/A2 epitope was synthesized with

three different proteolytic cleavage sites: the same cleavage site as

used for the EBV BRLF1/A2 epitope (CTX-SrtA-cl1-CMV), one for

matrix metalloproteinase (MMP)2, 7 and 9 (CTX-SrtA-cl2-CMV),

and one for human kallikrein-related peptidase 2 (HK2) and uPa

(CTX-SrtA-cl3-CMV) and conjugated with the sortase A

conjugation method to CTX. CTX-SrtA-cl1-CMV did not

efficiently activate T-cells as previously shown for the EBV-T
A B

DC

FIGURE 4

Recognition and activation of the T-cells is target specific and shows differences at high concentrations. (A) For both targets KO cells were
generated by using CRISPR/Cas9 technology and analysed with FACS for EGFR and HLA-A2 expression (B–D) The three CTX conjugates were also
titrated on the HeLa-A2 KO EGFR alongside the HeLa-A2 cells with wildtype (wt) EGFR expression for the three highest concentrations and T-cell
activation was measured with an IFN-y ELISA. Plotted values are the means of duplicates within one experiment of at least three independently
performed experiments. For the statistical analysis, a repeated measurements one-way ANOVA with Šidák multiple comparisons was performed.
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cells, whilst the other two AECs showed T-cell activation at

concentrations of 0.1-1 nM (Figure 5A).

Notably, when tested on the EGFR KO cell line, CTX-SrtA-cl3-

CMV showed target-independent T-cell activation (Figure 5B).

Even though there was still a 30-fold difference between target-

dependent and target-independent T-cell activation observed, CTX-

SrtA-cl2-CMV would be the preferred choice. These results suggest

that the peptide/protease cleavage site attached can induce

differences in the stability of the AECs. Moreover, it demonstrates

that it is possible to generate AECs with another immunodominant

epitope and that the cleavage site in front of the CMV pp65/A2

epitope influences the efficiency.
Discussion

The first studies with antibody-epitope conjugates (AECs)

demonstrated that these AECs are promising new modalities to

deliver immunogenic epitopes and redirect virus-specific T-cell

activity towards cancer cells (13, 15, 16, 27), tackling hurdles such

as lack of immunogenicity of tumors and possibly also CRS (28, 29).

Here we describe the successful generation of AECs using three

conjugation methods (chemical and enzymatical conjugation and

genetic fusion).All conjugation methods demonstrated to be able to

efficiently redirect EBV virus-specific CD8+ T-cell reactivity

towards tumor cells and showed an antibody target dependency

on target KO cell lines. The KO cell lines proved to be a valuable

tool to look at specificity and therefore at the stability. The genetic

AECs exhibited the highest stability and therefore have our

preference for future clinical studies, while maleimide and SrtA

conjugation may be more useful for defining the ideal antibody

target, viral epitope, as well as epitope-protease cleavage-site

combination or the mechanism of action.

All three methods can be used to gain a better insight into the

field of AECs. Depending on the question asked and the materials at

hand, the most suitable method can be selected. For example, to

screen different antibody targets, maleimide conjugation offers the

opportunity to test existing monoclonal antibodies as genetic

modification is not necessary. Whilst for the comparison of
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different protease cleavage site-epitope combinations, SrtA or

direct genetic fusion are the preferred choices as they result in a

defined stoichiometry of epitopes and facilitate screening and

comparing of the different combinations with the same antibody

target. For future purposes, multiple protease cleavage site-epitope

combinations should be screened to test which combination has the

highest efficiency, but also to see if the concept can be broadened

with additional epitopes. Next to that, a 2-step conjugation

approach like maleimide and SrtA conjugation, gives the ability to

include unnatural amino acids in the peptide’s sequences such as D-

amino acids, citrullinated amino acids, or other modifications such

as fluorophores (30–32). This may increase the possibilities or could

help elucidate the mechanism-of-action, whilst this would not be

possible with a more direct approach like genetic fusions. It should

be noted, though, that in the case of maleimide conjugation,

cysteine-containing protease cleavage sites and epitopes (e.g., the

EBV LMP-2/A2 (CLGGLLTMV) and the BMLF-1/A2

(GLCTVAML) epitopes) cannot be used as that could result in

unwanted cross-linking via disulfide bridge formation (12, 33).

On the other hand, one of the advantages of the direct genetic

approach is that the obtained conjugates are well-defined and can

be easily characterized and quantified with LC-MS, which can be

more complicated for the AECs generated with maleimide

chemistry and SrtA as these contain a PEG linker (34, 35).

Removal of the PEG11 is possible, however in the case of SrtA

conjugation the yield will drop drastically. Moreover, the SrtA

conjugates are homogenous in their number of epitopes, but not

necessarily in the amount of glycine residues attached between the

antibody and the epitope (36) (Figure 1A).

For research purposes all three methods have their merits.

However, for future therapeutic application aspects such as

stability and aggregation propensity, which is correlated to in vivo

half-life and/or immunogenicity are of a crucial importance (37). In

addition, aggregation is evidently unwanted as it was already a

challenge in the clinic and could reduce the efficiency, cause anti-

drug antibodies (ADAs), and could result in a low production yield

(38–40). We observed for two monoclonal antibodies with different

targets that the conjugation strategy, but also the attached peptide,

affects the stability of the AECs (35, 41). This also indicates that
A B

FIGURE 5

The CMV epitope NLV/A2 epitope was conjugated with sortase A with three different cleavage sites. (A) These conjugates were titrated on HeLa-A2
(B) or HeLa-A2 EGFR KO cells and incubated with CMV NLV/A2-specific T-cells. T-cell activation was measured with an IFN-y ELISA. Plotted values
are the means of duplicates (+/- SEM) and graphs shown are representative figures of an n=3.
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further testing and screening is necessary to find the AECs not only

with the highest efficiency, but also the highest stability. The AECs

can potentially avoid two of the main hurdles observed for ICB and

CD3-BsAbs. It has previously been shown that the intratumoral

delivery of virus epitopes can promote a long-term antitumor

immune response on top of the virus-mediated immune response

(42) and by reducing the number of T-cells that can be triggered the

chances of CRS mediated by CD3 binding can be reduced.

Moreover, it should not be forgotten that the AEC concept can be

applied to already existing monoclonal antibodies, which

potentially on top of the redirection of the virus-specific T-cells

allows for antibody mediated effects and a functional Fc-

backbone (43).

In conclusion, our data demonstrates that AECs can be efficiently

generated with three different conjugation strategies. All three AECs

induced T-cell activation and tumor cell killing, which was mediated

by proteolytic release of the epitope, and was dependent on the

presence of the antibody target for all stable AECs. For screening and

other research purposes the SrtA conjugation method is preferred as

the method is fast and results in homogeneous product with a

consistent EAR. Screening of multiple combinations is necessary to

give insight in stability and efficiency in which antibody target KO cell

lines proved to be an important control. However, our preferred

method for further in-depth studies to attach epitopes to antibodies

would be genetically fused, as it is well-defined and showed to have

the highest stability. This technology may aid further clinical

development of antibody-epitope conjugates that can sensitize

cancer cells to pre-existing virus-specific T cells.
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SUPPLEMENTARY FIGURE 1

Homogeneous CTX-SrtA purified by SEC followed by a His-trap column.
Samples were loaded in the following order: the unconjugated parental

antibody (S-His6), the reaction mixture of CTX-SrtA-FLAG before
purification (RXM) and after purification (SrtA-FLAG). The Western blot was

stained with both anti-His-tag (HIS) antibody and anti-human IgG (Ab).

SUPPLEMENTARY FIGURE 2

Long-term stability of CTX-MAL conjugates cannot be guaranteed as they
can be converted back to the starting thiol and maleimide. (A) CTX-MAL-

FLAG conjugates were kept at 4°C for different periods of time, before being
analysed by Western blot. (B)Quantification of the signal on the HC and LC of

the anti-FLAG (FLAG) and anti-human IgG (Ab) measured byWestern blot was
quantified and the % of residual FLAG-tag epitope was calculated for HC and

LC combined and separately.

SUPPLEMENTARY FIGURE 3

An EBV epitope preceded by a protease cleavage sequence can be
conjugated chemically, enzymatically, or genetically to TRS. (A) All three

the different conjugation strategies analysed with SDS-PAGE visualized with
an instant blue staining under reducing and (B) non-reducing conditions. With

the conjugation possibilities for CTX-MAL depicted next to the gel. The

conjugation possibilities were determined by looking at the most
abundant bands.

SUPPLEMENTARY FIGURE 4

Mass-spec and HIC analysis. (A) HIC analysis of the CTX-MAL conjugates and
(B) the intact Mass-spec analysis of the CTX-GEN.

SUPPLEMENTARY FIGURE 5

The CTX- and TRS-AECs are not recognized by a non-specific CMV pp65/A2

specific T-cell line . HeLa-A2 ther2 cells were incubated with 16 nM of the
different AECs, followed by a coculture with a CMV pp65/A2 specific T-cell

line. T-cell activation was measured with an IFN-y ELISA. As a positive control,
cells were incubated with the pp65/A2 peptide.
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SUPPLEMENTARY FIGURE 6

Target cell killing is also observed for HeLa-A2 tHer2 incubated with the
different TRS-AECs. To check for target cell killing, an AlamarBlue assay was

performed. Plotted values are means of duplicates (SEM) and the shown

graph is a representative figure of an n>3.

SUPPLEMENTARY FIGURE 7

Recognition and activation by the T-cells is target specific but show at high
concentration differences between the conjugation strategies also for

Trastuzumab. (A) KO cells were generated by using CRISPR/Cas9 and
analysed with FACS for Her2 and HLA-A2 expression (B-D) All three TRS

conjugates were titrated on the HeLa KO Her2 alongside the HeLa-A2 tHer2
and T-cell activation was measured with an IFN-y ELISA. Plotted values are

the means of duplicates within one experiment of at least three
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independently performed experiments. For the statistical analysis a RM
one-way ANOVA with Sidak multiple comparisons was performed.

SUPPLEMENTARY FIGURE 8

Denatured AECs can result in T-cell activation independent of the antibody target.

(A) CTX-GEN and CTX-GENAHT were titrated in an FACS experiment to check
whether the treated antibodies were still able to bind (B) CTX-GEN and CTX-

GENAHT were incubated on HeLa-A2 (target positive) and HeLa-A2 EGFR KO
(target negative) cell lines. (C) CTX-GEN was mixed with CTX-GENAHT in different

ratios (v/v) and incubated on the HeLa-A2 EGFR KO cell line. (D) Antibody

aggregation was measured for the TRS conjugates with the PROTEOSTAT
protein aggregation assay, in which the positive control is a Sortase A conjugate

that is already known to aggregate. Plotted values are the means of duplicates
within one experiment of at least three independently performed experiments.
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