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Simple Summary: Patients with locally advanced gastric cancer have a five-year survival rate of
36–45% after curatively intended D2-gastrectomy combined with perioperative chemotherapy. This
relatively poor survival is mainly due to recurrence of the disease. The aim of this study was to
improve detection of peritoneal and distant metastases on [18F]FDG-PET images in patients with
advanced gastric cancer using radiomics. Radiomics consists of the extraction of large amounts of
quantitative features from medical imaging and the subsequent mining of this dataset for potential
information to monitor disease characteristics in clinical practice. Three classification models were
developed to determine the added value of radiomics: a model with clinical variables only, a model
with radiomic features only, and a clinicoradiomic model, combining clinical variables and radiomic
features. [18F]FDG-PET-based radiomics showed no additional value in predicting peritoneal and
distant metastases in locally advanced gastric cancer patients.

Abstract: Aim: To improve identification of peritoneal and distant metastases in locally advanced
gastric cancer using [18F]FDG-PET radiomics. Methods: [18F]FDG-PET scans of 206 patients acquired
in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours
were delineated and 105 radiomic features were extracted. Three classification models were developed
to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a
model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic
features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained
and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and
distant metastases. To exclude features with high mutual correlations, redundancy filtering of the
Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area
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under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on
Lauren classification were performed. Results: None of the models could identify metastases with
low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively.
Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the
clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup
analysis of diffuse-type tumours did not improve the classification performance. Conclusion: Overall,
[18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and
distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type
tumours, the classification performance of the clinical model slightly improved with the addition of
radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.

Keywords: [18F]FDG-PET/CT; gastric cancer; radiomics; machine learning

1. Introduction

Gastric cancer is the third most common cause of cancer-related death worldwide [1].
The prognosis after curatively intended treatment is relatively poor, with a five-year sur-
vival rate of 36–45% after a D2-gastrectomy combined with perioperative chemotherapy.
The main reasons for failure of curative treatment are the detection of distant metastases
during neoadjuvant chemotherapy, unexpected intraoperative peritoneal metastases, or
tumour irresectability at the onset of gastrectomy, or local or distant recurrences shortly
after surgery [2,3]. In the Netherlands, only 60% of gastric cancer patients undergo curative
D2-gastrectomy, since the remaining patients present with irresectable tumours or distant
metastases [4]. After detecting distant metastases or irresectable disease, treatment is
changed from curative to palliative intent. Hence, accurate primary staging is crucial.

Currently, computed tomography (CT) of the thorax and abdomen is performed to
detect any metastases. However, the sensitivity of CT to detect peritoneal and distant
metastases is low with 22–33% and 14–65%, respectively [5–7]. The Dutch multicentric
PLASTIC study assessed the diagnostic performance and clinical and financial impact of 2-
[18F]fluoro-2-deoxy-D-glucose positron emission tomography combined with CT ([18F]FDG-
PET/CT) and staging laparoscopy in addition to initial staging with CT for locally advanced
gastric cancer (cT3-4 and/or cN+) [8]. Nevertheless, the sensitivity of visual assessment of
[18F]FDG-PET/CT for the detection of distant metastases was only 33% (95% CI: 17–53%),
and the PLASTIC-study did not find additional value of qualitative assessment of [18F]FDG-
PET/CT in gastric cancer [9]. However, medical images might contain more information
than can be assessed visually. Therefore, quantitative assessment using radiomics might be
of added value [10]. Radiomics, the extraction of large amounts of quantitative features
from medical imaging and subsequent mining of this dataset for potential information
useful for quantification or monitoring of tumour or disease characteristics in clinical
practice, is a rapidly evolving field in medical imaging [11,12]. Radiomics aims to find
stable and clinically relevant image-derived biomarkers that may provide new insights in
tumour biology and guide patient management.

Several studies have shown promising results of CT-based radiomics for the identifi-
cation of metastases in gastric cancer [13–15], but only a few studies investigated the pre-
dictive value of [18F]FDG-PET/CT radiomics [16,17]. Hence, the added value of [18F]FDG-
PET/CT-radiomics for gastric cancer is unclear.

The aim of this study was to assess the added value of [18F]FDG-PET-based radiomics
and clinical characteristics of the primary tumour for the identification of peritoneal and
distant metastases in patients with advanced gastric cancer.
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2. Materials and Methods
2.1. Patient Population

[18F]FDG PET scans of the multicentre PLASTIC study were analysed [9]. The
PLASTIC study assessed the diagnostic performance and clinical and financial impact
of [18F]FDG-PET/CT and staging laparoscopy in addition to initial staging with CT in
patients with surgically resectable, locally advanced gastric adenocarcinoma (cT3-4b, N0-3,
M0). After the initial CT, patients underwent an [18F]FDG-PET/CT, followed by a staging
laparoscopy if [18F]FDG-PET/CT was found negative, as standard of care according to the
Dutch national guidelines [4]. The presence of peritoneal and distant metastases was con-
firmed based on (histo)pathological biopsy/cytology and/or follow-up imaging. Because
this study did not allocate patients to interventions other than standard of care according to
national guidelines, the study did not fall within the Medical Research Involving Human
Subjects Act (WMO). A non-WMO declaration (METC 16-633/C) had been obtained from
the Medical Ethical Review Board of the University Medical Center Utrecht. In addition,
the trial was approved by the institutional review boards in each of the 18 participating
centres (Trial registration: NCT03208621. The PLASTIC-study was regis-tered prospectively
on 30 June 2017).

2.2. Image Acquisition and Reconstruction

[18F]FDG-PET/CT acquisition was preferably performed following the European
Association of Nuclear Medicine (EANM, Vienna, Austria) guidelines version 2.0 for
tumour PET imaging [18]. PET/CT scanners were required to have EANM Research
Ltd. (EARL) accreditation, but when EARL-compliant PET images were not available,
the PET images were reconstructed according to the site-specific reconstruction protocol.
Patients had to refrain from exercise and fast for at least 4 to 6 h before the injection of
[18F]FDG. Patients were prehydrated by drinking approximately 1 litre of water in the 2 h
before injection. Fasting blood glucose had to be preferably below 11 mmol/L. After the
injection of [18F]FDG, patients remained seated or lying and silent for 1 h in a warm room.
The acquisition of a PET scan from eyes to thighs started approximately 60 min (range
55–75 min) after the injection of [18F]FDG, being accompanied by a low-dose CT of the
same scanning range [8].

2.3. Quantitative Image Analysis
2.3.1. VOI Delineation

Volume of interest (VOI) delineation was performed using 3DSlicer version 4.11.2
(www.slicer.org, accessed on 1 June 2022) [19] and in-house built software implemented
in Python version 3.7 (Python Software Foundation, Wilmington, DE, USA). Tumours
were delineated on [18F]FDG PET scans using an isocontour that applies an adaptive
threshold of 50% of the peak standardised uptake value (SUVpeak), obtained using a sphere
of 12 mm diameter [20], corrected for local background [21]. Boxing was applied to exclude
surrounding [18F]FDG-avid tissues.

2.3.2. Radiomic Feature Extraction

Radiomic feature extraction was performed in PyRadiomics version 3.0 in Python version
3.7 (Python Software Foundation, Wilmington, DE, USA) [22]. For each VOI, 105 radiomic
features were extracted: 18 first order features, 14 shape features, and 73 texture features
(22 grey level co-occurrence matrix (GLCM), 16 grey level run length matrix, 16 grey level size
zone matrix, 14 grey level dependence matrix, 5 neighbouring grey tone difference matrix).
In addition, the total lesion glycolysis, the product of the mean SUV and the metabolic
tumour volume, was calculated. A fixed bin size of 0.5 g/mL was applied, and images were
interpolated to isotropic voxels of 4.00 × 4.00 × 4.00 mm3 using B-spline interpolation, with
grids aligned by the input origin.

www.slicer.org
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2.4. Statistical Analysis

The statistical analysis was performed in Python version 3.7 (Python Software Foun-
dation, Wilmington, DE, USA) and Orange Data Mining (University of Ljubljana, Ljubljana,
Slovenia) [23]. A schematic overview of the analysis can be found in Figure 1.
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Figure 1. Schematic overview of the statistical analysis including ComBat harmonisation of the
features from non-EARL-compliant images to EARL-compliant-images, 100-times repeated ran-
dom split, stratified for the presence of metastases (80% training, 20% test), standardisation (µ = 0,
σ = 1), redundancy filtering of the Pearson correlation matrix (r = 0.9), and fitting of a LASSO
regression classifier.

ComBat harmonisation was used to harmonise the features extracted from the non-
EARL-compliant images to features of the EARL-compliant-images using Python package
neuroCombat version 0.2.10 [24,25]. Since raw imaging data were not stored, it was not
possible to harmonize images posteriori. Therefore, other ways to harmonise radiomic
features were investigated. ComBat harmonisation is a method that originates from ge-
nomic research and is able to compensate for batch effects introduced, e.g., by scanners or
protocols. ComBat was directly applied to features already extracted from the images. A
Kolmogorov–Smirnov test was performed to test differences in the distribution of SUVmean
between EARL-compliant and non-EARL-compliant images, and ComBat was applied in
case of a significant difference in distributions [26].
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A least absolute shrinkage and selection operator (LASSO) regression classifier was
trained and evaluated in a 100-times repeated random split, stratified for the presence of
peritoneal and distant metastases. In each split, 80% of the data were used for training
of the model and 20% for testing. Radiomic features were standardised (µ = 0, σ = 1) to
prevent a large contribution of high-valued features. To exclude features with high mutual
correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9).
The redundancy filtered feature matrix was used as an input for LASSO regression. Model
performances are expressed by the area under the receiver operating characteristic curve
(AUC) of the test sets.

In addition to the radiomic model, a model based on the clinical characteristics age,
sex, clinical T-stage, clinical N-stage, tumour location, Lauren classification, degree of
differentiation, and Her2Neu status was built. The clinical variables Lauren classification,
degree of differentiation, and Her2Neu-status had many missing values (21%, 43%, and
54%, respectively). Therefore, these values were imputed based on the variables PET
positivity, positivity of diagnostic laparoscopy, primary tumour positivity on PET, lymph
node positivity on PET, presence of fluid on diagnostic laparoscopy, curative or palliative
treatment, gastric resection performed, curative treatment plan, type of resection, type of
treatment, chemotherapy scheme, recurrence after six months, location of recurrence after
six months, and survival status after six months. A clinicoradiomic model was created,
combining all clinical variables and selected radiomic features.

Moreover, subgroup analyses based on the Lauren classification were performed, since
intestinal-type and diffuse-type tumours show different metastatic patterns and [18F]FDG-
uptake [27]. For intestinal and mixed-type tumours, as well as for diffuse-type tumours, a
clinical, radiomic, and clinicoradiomic model was developed.

The findings were validated in a sham experiment [28]. The outcome labels were
randomly shuffled for 100 iterations, and mean AUCs were calculated. Randomisation of
the outcome labels preserves the distributions and the multicollinearity of the radiomic
features and the prevalence of the outcome, but it uncouples their potential relation. In the
sham experiment, AUCs of 0.50 were expected.

3. Results

A total of 236 patients were considered for radiomic analysis, of whom thirty were
excluded. Reasons for exclusion were lesion could not be identified on [18F]FDG-PET/CT
(n = 12), corrupt DICOM files (n = 10), or missing clinical variables (n = 8). Thus, 206 remaining
patients with advanced gastric adenocarcinoma were analysed, of which 43 (21%) had metas-
tases (Table 1, Figure 2).

Table 1. Clinical characteristics and traditional quantitative imaging parameters of included patients.

Characteristic (n (%)) Value

Age (years), median (range) 70 (35–87)
Sex

Male 130 (63%)
Female 76 (37%)

Presence of metastases
Yes 43 (21%)
No 163 (79%)

Clinical T-stage
T3 15 (7%)
T4a 156 (76%)
T4b 33 (16%)
Missing 2 (1%)

Clinical N-stage
N0 96 (47%)
N+ 106 (51%)
Missing 4 (2%)
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Table 1. Cont.

Characteristic (n (%)) Value

Tumour location
Cardia 40 (19%)
Corpus & fundus 57 (28%)
Antrum & pylorus 85 (41%)
Diffuse 19 (9%)
Missing 5 (3%)

Lauren classification
Intestinal and mixed 125 (61%)
Diffuse 81 (39%)

Differentiation
Well 9 (4%)
Moderate 87 (42%)
Poor 107 (52%)
Undifferentiated 3 (2%)

Her2Neu status
Positive 13 (6%)
Negative 193 (94%)

EARL-compliant PET scan
Yes 94 (46%)
No 112 (54%)

SUVmax (g/mL), median (range) 6.9 (1.5–51.4)
MTV (cm3), median (range) 17.8 (2.6–135.0)

SUVmax: maximum standardised uptake value, MTV: metabolic tumour volume.

Cancers 2023, 15, x FOR PEER REVIEW 6 of 13 
 

 

   
(a) (b) (c) 

Figure 2. Volume of interest (VOI) of a tumour in the (a) transversal, (b) coronal, and (c) sagittal 
direction. Volumes of interest are indicated in orange. 

Table 1. Clinical characteristics and traditional quantitative imaging parameters of included 
patients. 

Characteristic (n (%)) Value 
Age (years), median (range) 70 (35–87) 
Sex  

Male 130 (63%) 
Female 76 (37%) 

Presence of metastases  

Yes 43 (21%) 
No 163 (79%) 

Clinical T-stage  

T3 15 (7%) 
T4a 156 (76%) 
T4b 33 (16%) 
Missing 2 (1%) 

Clinical N-stage  

N0 96 (47%) 
N+ 106 (51%) 
Missing 4 (2%) 

Tumour location  

Cardia 40 (19%) 
Corpus & fundus 57 (28%) 
Antrum & pylorus 85 (41%) 
Diffuse 19 (9%) 
Missing 5 (3%) 

Lauren classification  

Intestinal and mixed 125 (61%) 
Diffuse 81 (39%) 

Differentiation  

Well 9 (4%) 
Moderate 87 (42%) 
Poor 107 (52%) 
Undifferentiated 3 (2%) 

Her2Neu status  

Positive 13 (6%) 
Negative 193 (94%) 

EARL-compliant PET scan   

Yes 94 (46%) 
No 112 (54%) 

SUVmax (g/mL), median (range) 6.9 (1.5–51.4) 
MTV (cm³), median (range) 17.8 (2.6–135.0) 
SUVmax: maximum standardised uptake value, MTV: metabolic tumour volume. 

Figure 2. Volume of interest (VOI) of a tumour in the (a) transversal, (b) coronal, and (c) sagittal
direction. Volumes of interest are indicated in orange.

SUVmean values were significantly different between EARL-compliant and non-EARL-
compliant images (p = 0.04). Therefore, ComBat harmonisation was performed, which
lead to no significant differences in SUVmean (p = 0.95). Therefore, results are presented for
data harmonised using ComBat.

None of the models could identify metastases with mean AUCs in the test sets aver-
aged for the 100 splits of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic
model, respectively (Table 2, Figure 3). In the sham experiment, no model yielded a test
AUC different from 0.50 (range: 0.49–0.51).

Subgroup analysis based on the Lauren classification did slightly improve the classifi-
cation performance for the intestinal and mixed-type tumours (Table 3, Figure 3). While the
clinical model and the radiomic model alone both showed poor performances with AUCs
of 0.67 and 0.60, respectively, the combination of clinical and radiomic features resulted in
a moderate AUC of 0.71. In the sham experiment, no model yielded a test AUC different
from 0.50 (range: 0.49–0.51).
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Table 2. Mean test set AUCs of the clinical model, the radiomic model, and the clinicoradiomic model,
averaged for the 100 splits. For all models, the included variables are specified; feature classes are
in brackets.

Model Variables AUC

Clinical model

Age

0.59

Sex
Clinical T-stage
Clinical N-stage

Tumour Location
Lauren classification

Differentiation
Her2Neu status

Radiomic model

Small area low grey level emphasis (GLSZM)

0.51

Grey level non-uniformity (GLRLM)
Inverse difference moment normalised (GLCM)

Grey level non-uniformity (GLSZM)
Small area emphasis (GLSZM)
Cluster prominence (GLCM)

Cluster shade (GLCM)
Large dependence high grey level emphasis (GLDM)

Size zone non-uniformity (GLSZM)
Sphericity (shape)
Elongation (shape)

Clinicoradiomic model All variables specified above 0.56
AUC: area under the receiver operating characteristic curve; GLCM: grey level co-occurrence matrix, GLRLM:
grey level run length matrix; GLSZM: grey level size zone matrix; GLDM: grey level dependence matrix.
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Finally, subgroup analysis of diffuse-type tumours did not improve the classification
performance with AUCs of 0.58, 0.53, and 0.56 for the clinical, radiomic, and clinicoradiomic
model, respectively (Table 4, Figure 3). In the sham experiment, no model yielded a test
AUC different from 0.50 (range: 0.49–0.51).



Cancers 2023, 15, 2874 8 of 12

Table 3. Mean test set AUCs of the of clinical model, the radiomic model, and the clinicoradiomic
model for the subgroup analysis of intestinal and mixed-type tumours, averaged for the 100 splits.
For all models, the included variables are specified; feature classes are in brackets.

Model Variables AUC

Clinical model

Age

0.67

Sex
Clinical T-stage
Clinical N-stage

Tumour Location
Differentiation
Her2Neu status

Radiomic model

Skewness (shape)

0.60

Correlation (GLCM)
Inverse difference moment normalised (GLCM)

Grey level non-uniformity (GLSZM)
Cluster prominence (GLCM)

Elongation (shape)

Clinicoradiomic model All variables specified above 0.71
AUC: area under the receiver operating characteristic curve; GLCM: grey level co-occurrence matrix; GLSZM:
grey level size zone matrix.

Table 4. Mean test set AUCs of the clinical model, the radiomic model, and the clinicoradiomic model
for the subgroup analysis of diffuse-type tumours, averaged for the 100 splits. For all models, the
included variables are specified; feature classes are in brackets.

Model Variables AUC

Clinical model

Age

0.58

Sex
Clinical T-stage
Clinical N-stage

Tumour Location
Differentiation
Her2Neu status

Radiomic model

Contrast (NGTDM)

0.53

Strength (NGTDM)
Correlation (GLCM)
Elongation (shape)

Small area low grey level emphasis (GLSZM)
Skewness (first order)

Clinicoradiomic model All variables specified above 0.56
AUC: area under the receiver operating characteristic curve; GLCM: grey level co-occurrence matrix; GLSZM:
grey level size zone matrix; NGTDM: neighbouring grey tone difference matrix.

4. Discussion

In this side study of the PLASTIC-study, we have built an [18F]FDG-PET radiomics model
with the aim to preoperatively identify peritoneal and distant metastases in 206 patients with
surgically resectable, advanced gastric adenocarcinoma (cT3-4b, N0-3, M0). We found that
neither the radiomics model nor the clinicoradiomic model showed any added value in the
identification of peritoneal and distant metastases. Subgroup analysis based on the Lauren
classification, slightly improved the classification performance in intestinal and mixed-type
tumours. Separately, the clinical model and the radiomic model showed poor AUCs, but the
clinicoradiomic model resulted in a borderline moderate AUC. However, weighing the slight
improvement in model performances against the laborious radiomic analysis, the additional
value of radiomics was still limited for this subgroup, and therefore not clinically relevant.
Moreover, diffuse-type tumours did not benefit from [18F]FDG-PET radiomics. Similarly to
the original PLASTIC-study, which did not find an additional value of qualitative assessment
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of [18F]FDG-PET/CT in gastric cancer [9], this study also shows that quantitative assessment
does not provide additional value.

Several studies have investigated both CT and [18F]FDG-PET radiomics for the identi-
fication of metastases in gastric cancer, showing promising results [13–17]. However, to
the best of our knowledge, only one study developed an [18F]FDG-PET radiomic model
for the identification of peritoneal metastases in primary gastric cancer [17]. Similar to
our study, this study by Xue et al. compared a clinical model, an [18F]FDG-PET-based
radiomic model, and a clinicoradiomic model to identify peritoneal metastases in gastric
cancer, resulting in validation AUCs of 0.87, 0.69, and 0.90, respectively. It is challenging to
directly compare these results to ours, since Xue et al. only identified peritoneal metastases,
while our work tried to identify peritoneal as well as distant metastases. However, a trend
can be observed when comparing the results of Xue et al. to our subgroup analysis of
the intestinal and mixed-type tumours. For both analyses, the clinical models performed
better than the radiomic models and the clinical models were only slightly improved by
the addition of radiomic features in the clinicoradiomic model. Therefore, the value of
[18F]FDG-PET radiomics in both studies is limited when these slight improvements in
model performances are compared to the laborious radiomic analysis. In addition, our
clinical and clinicoradiomic models performed substantially worse than the models of Xue
et al. This might have been caused by the imputation of our clinical variables. For three
of the eight clinical variables, more than 20% of the values were missing. By excluding
patients with missing data, almost 50% of the data would have been discarded. Therefore,
missing variables were imputed based on fourteen other clinical and treatment variables.
The imputation may have negatively impacted our clinical and clinicoradiomic models.

Furthermore, a class imbalance might have complicated the classification task. Our
dataset consisted of 21% of patients with peritoneal and distant metastases, compared to
31% of patients with peritoneal metastases in the study of Xue et al. As a result, the machine
learning algorithm was trained using data with an overrepresentation of the characteristics
of the majority class, while underrepresenting the characteristics of the minority class, i.e.,
the presence of metastases. To validate our findings, these AUCs were compared to AUCs
of sham experiments, where the outcome labels were randomly shuffled.

Subgroup analyses based on the Lauren classification were performed since intestinal-
type and diffuse-type tumours show different metastatic patterns and [18F]FDG-uptake [27].
Diffuse-type tumours frequently present with peritoneal metastases, while intestinal-type
tumours more often show other type of distant metastases, e.g., in the liver or lungs.
Moreover, intestinal-type tumours show significantly higher [18F]FDG-uptake compared to
diffuse-type tumours [27]. Furthermore, [18F]FDG-PET/CT has shown a higher sensitivity
for detecting recurrence in gastric cancer in [18F]FDG-avid primary tumours compared to
non-[18F]FDG-avid tumours [29]. It was hypothesised that radiomics would perform better
in [18F]FDG-avid tumours (such as intestinal-type tumours) than in non-[18F]FDG-avid
tumours (such as diffuse type tumours) since, in case of a fixed bin width, the larger range of
voxel values within the VOI enables more variation in the values of some texture features.
Ultimately, in intestinal and mixed-type tumours, a limited added value of radiomics
was observed.

Our study has several strengths and limitations. A strength is the relatively large
number of patients. Most radiomic studies in nuclear medicine consider relatively small
patient cohorts, as a result of the specialised nature of the imaging procedures compared to
for instance CT. In addition, [18F]FDG-PET/CT scans were collected from sixteen health
care institutes in the Netherlands, which is both a strength and a limitation. As a result of
the multicentre setting, a larger cohort of patients could be obtained. In addition, [18F]FDG-
PET/CT-scans were acquired using different scanners and reconstruction protocols, which
is representative for the clinical practice. However, the variation in imaging protocols
was also challenging, since not all scans were EARL-compliant. This increased variability
and reduced the repeatability and reproducibility of the extracted radiomic features [30].
To minimise the difference between EARL-compliant images and images reconstructed
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with clinical, site-specific reconstruction protocols, ComBat harmonisation towards the
EARL-compliant scans has been performed [26]. Another limitation of the study was the
VOI delineation. Twelve patients were excluded because lesions could not be detected on
[18F]FDG PET/CT. Low [18F]FDG-avidity also complicated the VOI delineation of some
included lesions.

Although [18F]FDG-PET radiomics analysis was ineffective for the detection of peri-
toneal and distant metastases in gastric cancer, radiomics derived from other imaging
modalities might be beneficial. Radiomics derived from contrast-enhanced CT has already
shown promising results [13–15]. Since diagnostic CT is incorporated in the Dutch national
guidelines of gastric carcinomas, future studies might focus on handcrafted or deep learn-
ing radiomic analysis of these scans. Recently, some studies suggested a potential added
value of diffusion weighted magnetic resonance imaging and fibroblast-activation-protein-
inhibitor (FAPI) PET for preoperative staging of gastric cancer [31,32]. Radiomics derived
from these modalities may provide new insights in the tumour biology of gastric cancer.

5. Conclusions

Similarly to qualitative assessment of [18F]FDG PET, quantitative assessment using
radiomics did not contribute to the preoperative identification of peritoneal and distant
metastases in patients with surgically resectable, locally advanced gastric adenocarcinoma
(cT3-4b, N0-3, M0) in a large Dutch multicentric patient cohort. In intestinal and mixed-type
tumours, the classification performance of the clinical model slightly improves with the
addition of radiomic features, but this slight improvement does not outweigh the laborious
radiomic analysis.
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