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Abstract

Human macrophages are innate immune cells with diverse, functionally distinct

phenotypes, namely, pro‐inflammatory M1 and anti‐inflammatory M2 macro-

phages. Both are involved in multiple physiological and pathological processes,

including would healing, infection, and cancer. However, the metabolic differences

between these phenotypes are largely unexplored at single‐cell resolution.

To address this knowledge gap, an untargeted live single‐cell mass spectrometry‐

based metabolomic profiling coupled with a machine‐learning data analysis

approach was developed to investigate the metabolic profile of each phenotype

at the single‐cell level. Results show that M1 and M2 macrophages have distinct

metabolic profiles, with differential levels of fatty acyls, glycerophospholipids, and

sterol lipids, which are important components of plasma membrane and involved in

multiple biological processes. Furthermore, we could discern several putatively

annotated molecules that contribute to inflammatory response of macrophages.

The combination of random forest and live single‐cell metabolomics provided an

in‐depth profile of the metabolome of primary human M1 and M2 macrophages at

the single‐cell level for the first time, which will pave the way for future studies

targeting the differentiation of other immune cells.

K E YWORD S

human macrophages, phenotype classification, random forest, single‐cell metabolomics

1 | INTRODUCTION

Macrophages are critical immune cells known to be highly

heterogenous with two major functionally distinct subtypes

(Franken et al., 2016; Verreck et al., 2006; Verreck Frank

et al., 2004). Namely, classically activated M1 (pro‐inflammatory

phenotype) and alternatively activated M2 macrophages (anti‐

inflammatory phenotype), which represent the extreme polarization

states of macrophages in response to different environmental

changes and stimuli (Yao et al., 2019). M1 macrophages have an

enhanced bactericidal and tumoricidal capacity fueled by the

production of high levels of pro‐inflammatory cytokines. On

the other hand, M2 macrophages are commonly associated with

the secretion of anti‐inflammatory cytokines to promote the

resolution of inflammation and facilitate tissue repair and remodel-

ing (Cammarota et al., 2020; Shapouri‐Moghaddam et al., 2018;
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Verreck et al., 2004, 2006; Zhang et al., 2017). The balance between

these two macrophage phenotypes plays a central role in maintain-

ing tissue homeostasis under steady‐state conditions and after

exposure to pathogens and tissue damage (Abuawad et al., 2020). It

is well known that the progression of various inflammatory diseases

is also determined by the balance of proper polarization and

functioning of the two phenotypes (McWhorter et al., 2013; Raggi

et al., 2017). However, the molecular events that control M1 and

M2 polarization and the metabolic differences between human M1

and M2 macrophages that determine their distinct functional

properties are not fully understood, especially at the single‐cell

level. There are several limiting factors, among them are the

technical limitations associated with analyzing the small volumes of

single cells, and the difficulty in extracting meaningful insights from

the complex, multidimensional data sets generated from untargeted

metabolomics experiments (Evers et al., 2019).

The usage of primary human M1 and M2 macrophages in

metabolome comparison studies is currently limited. Previous studies

were conducted on murine bone marrow‐derived macrophages or

immortalized macrophage cell lines (Diskin & Pålsson‐McDermott,

2018), all of which have various extents of differences with human

primary macrophages. These differences include but are not limited

to cell surface markers expression, compound production (e.g., nitric

oxide), arginine metabolism, transcriptomic and proteomic profiles,

and so on (Andreu et al., 2017; Fuchs et al., 2019; Martinez

et al., 2013; Murray & Wynn, 2011; Tedesco et al., 2018; Thomas &

Mattila, 2014; Vrieling et al., 2020). Therefore, additional research is

needed for better understanding of the correlation between the

metabolic state and the phenotypic heterogeneity of macrophages,

with particular emphasis on human primary macrophages. Metabo-

lomics is a powerful tool that can achieve this objective by identifying

changes in small molecule metabolite profiles and metabolic path-

ways. However, traditional population‐level metabolomic approaches

do not consider the inherent cellular heterogeneity and instead

average out the metabolic profile across a large number of cells

(Evers et al., 2021). This is especially relevant to macrophages, which

are known to be heterogenous. Therefore, ignoring cellular hetero-

geneity may adversely affect biological insights gained from averaged

population metabolic studies.

Single‐cell metabolomics provide the capability to reveal the

cellular metabolic heterogeneity of individual cells that is often

masked in pooled analyses (DeVilbiss et al., 2021; Duncan et al., 2019;

Kumar et al., 2020). Cellular heterogeneity is ubiquitous but still

poorly understood. This is mainly due to the insufficient sensitivity

and inapplicability of current technologies to low analyte abundances

and limited sample volumes associated with single cells (Ali, Abouleila,

Shimizu, Hiyama, Emara, et al., 2019; Yin et al., 2019). Live single‐cell

mass spectrometry (LSC‐MS) is a promising technique that has

the required sensitivity and selectivity for single‐cell metabolic

profiling (Ali, Abouleila, Shimizu, Hiyama, Watanabe, et al., 2019;

Duncan et al., 2019; Evers et al., 2021; Okubo‐Kurihara et al., 2022).

In LSC‐MS, a live single cell or single organelle is sampled into a

tapered glass microcapillary under microscopic observation with

minimal disruption to the cellular microenvironment (Figure 1a). The

sampling capillary is then attached to a modified mass spectrometry

source where the cellular contents are sprayed, and subsequently

measured by mass spectrometry with minimal dilution (Abouleila

et al., 2019). This technique has been successfully employed to

discern metabolic differences and targeted metabolites analysis for

single plant cells, and mammalian cells (Abouleila et al., 2019; Fujii

et al., 2015), but never been performed on primary human cells and

immune cells. Another reason that hinders the adoption of single‐cell

metabolic studies is the difficulty of analyzing the complex spectral

data sets generated from such experiments. This complexity is largely

due to the lack of proper sampling processing and separation, two

essential steps in traditional metabolomics experiments that are

extremely difficult to implement in single‐cell studies due to the low

volumes of single cells.

Random forest (RF) is a machine‐learning (ML) approach that

uses an ensemble classification trees for classification and feature

F IGURE 1 Schematic of live single‐cell mass spectrometry combined with random forest. (a) Single M1 or M2 macrophage samples were
picked up using a tapered glass capillary attached to a micromanipulator, followed by mass spectrometry measurement after adding ionization
solvent from the opposite end of the capillary. (b) Random forest model was constructed on the obtained mass spectrometry data sets after
data preprocessing to characterize the potential distinct metabolic signature between human M1 and M2 macrophages.
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selection (Zhao et al., 2019). RF has been applied in the analysis of

population‐level metabolome data obtained from mass spectrometry

measurements (Liebal et al., 2020), with its unique advantages,

namely, high‐classification performance, no need of kernel and

complex parametrization adjustments, fast at prediction time, and

can provide feature importance assessment for the results (Melo

et al., 2018). Therefore, it represents a promising candidate as a high‐

performance classifier based on the mass spectral input data (mass‐

to‐charge ratio [m/z value] × intensity) generated from the analysis of

single‐cell samples (Figure 1b). Furthermore, features used in the

classification can be extracted from the RF model, and then used to

identify the peaks unique to each phenotype.

Here, we demonstrate for the first time the applicability of LSC‐

MS to metabolic analysis of primary human cells, specifically immune

cells. To achieve this, an innovative single‐cell methodology based on

untargeted LSC‐MS metabolomic profiling combined with RF was

developed and applied to provide an accurate prediction model for

metabolomics, and enable single‐cell‐based discrimination of primary

human M1 and M2 macrophages. This platform succeeded in

capturing the metabolic signature unique to M1 and M2 macrophages,

and then leveraging it to classify each phenotype with a high degree of

selectivity and sensitivity, all at the single‐cell level. Furthermore,

putatively annotated metabolites that are differentially present in each

phenotype were extracted from the RF model, such as fatty acyls,

glycerophospholipids, and sterol lipids, which are important compo-

nents of plasma membrane and involved in multiple biological

processes such as inflammation and cell differentiation. These findings

showcase the potential of using single‐cell metabolomics, coupled with

RF models to do phenotypical classification based on single‐cell

metabolomics data, and subsequently, gain a deeper understanding of

the metabolome of heterogenous cell populations. This will help fuel

the future research that aims to explore modulatory mechanisms of

immune cell differentiation at the single‐cell level.

2 | MATERIALS AND METHODS

2.1 | Macrophage differentiation

Peripheral blood mononuclear cells were isolated from buffy coats of

healthy blood bank donors. Monocytes were isolated through density

gradient centrifugation over Ficoll‐Paque followed by magnetic‐

activated cell sorting using CD14 microbeads and differentiated for 6

days into M1 or M2 macrophages with 5 ng/mL of granulocyte‐

macrophage colony‐stimulating factor (GM‐CSF; 130‐093‐864,

Miltenyi Biotec) or 50 ng/mL macrophage colony‐stimulating factor

(M‐CSF; 130‐096‐489, Miltenyi Biotec) respectively. Cells were

cultured at 37°C/5% CO2 in RPMI 1640 medium (31870025, Gibco)

supplemented with 10% FBS, 2 mM L‐alanyl‐L‐glutamine (GlutaMAX;

35050038, Gibco), and penicillin‐streptomycin (35050038, Gibco).

As quality control, macrophages were stained for surface expression

of CD14, CD163, and CD11b acquired on a flow cytometry (BD

LSRFortessa, BD Biosciences). Macrophage differentiation and

activation status was determined by quantifying IL‐12 and IL‐10

secretion by ELISA following stimulation of cells in the presence of

100 ng/mL lipopolysaccharide for 24 h.

2.2 | Single‐cell sample preparation

Single‐cell sampling was achieved using a sampling setup which

includes a 3D micromanipulator (Narishige) connected to a platinum‐

coated glass capillary (Humanix) and fixed onto a video microscope

(Olympus). Macrophages cultured in a 35mm petri dish were

observed under microscopy, a single M1/M2 macrophage of interest

was sucked into a glass capillary (CT‐2; Humanix) by applying

negative pressure on the sampling capillary with constant visual

feedback from the microscope (n = 23 for single M1 and n = 33 for

single M2 samples). Similarly, the culture medium was also sampled as

control (n = 7). To each capillary, 2 μL of the ionization solvent (a

mixture of 80% methanol, 10% dimethyl sulfoxide, and 0.1% formic

acid) was introduced from the rear end, followed by the introduction

of the capillary's content into the mass spectrometer by applying high

voltage to the capillary, where the voltage differential between the

capillary and the mass spectrometer's inlet causes the capillary

contents to be sprayed into the mass spectrometer for measurement.

2.3 | Mass spectrometry measurement

Mass spectrometry measurements were performed on a Q‐Exactive

orbitrap mass spectrometer (Thermo Fisher Scientific) equipped with

an offline nanoelectrospray source (Nanospray Flex; Thermo Fisher

Scientific) to introduce the cellular contents into the instrument.

Since the sampling capillaries are coated with platinum, they also act

as a nanospray emitter once a voltage differential is established

between the capillary and the mass spectrometer inlet. To initiate

measurements, the glass capillary was fixed onto the offline

nanospray source at 2mm away from the inlet. Spectra acquisition

was done in positive mode, with spray voltage set between 1 and

1.5 kV, to maintain a spray current between 0.1 and 0.12

microampere. The inlet capillary temperature was set to 250°C,

instrument resolution to 100,000 full‐width half maxima, normalized

automatic gain control target to 1e6, and maximum injection time to

500ms. The mass spectra were obtained in successive SIM regions

covering the m/z ranges from 100 to 880m/z. Each SIM window

width was set to 50m/z. The instrument was calibrated according to

the manufacturer's standard operating procedures before the start of

measurements every day to make sure that the m/z error does not

exceed the accepted values (5 ppm).

2.4 | Data processing

Measured data were converted from the vendor's raw proprietary

format to text files by an in‐house script after centroiding.

2316 | TANG ET AL.

 10970290, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28494 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [26/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The resulting peak lists were aligned using MarkerView (Sciex)

with an m/z threshold of 5 ppm. The aligned peaks were then

imported in R statistical software, where the rest of data

processing and analysis was done. To check the quality of the

MS spectra obtained, the total number of peaks, median measured

m/z, and the peak intensities were plotted. Based on the

aforementioned data, a total of six samples were eliminated

based on their extremely low number of peaks of intensities above

1000 absolute intensity value, indicating an unsuccessful MS run.

Of the removed samples, two were M1 cells (n = 21 left), and four

were M2 cells (n = 29 left). Background subtraction was achieved

by removing peaks in the samples appearing in 75% of the

measured blanks. Furthermore, contaminants, salt clusters, and

exogenous molecules were removed from the data set by

calculating the mass defect of all measured peaks and eliminating

those with a characteristically high mass defect (McMillan

et al., 2016). Peak intensity values were then log2 transformed,

and pareto scaled in preparation for the statistical analysis.

2.5 | Statistical analysis

RF was selected as the ML algorithm of choice due to its good

performance in phenotypic discrimination and biomarker isolation

(Chen et al., 2013), especially in high‐dimensional data sets as is the

case in this study.

Highly correlated peak pairs with a Pearson correlation

coefficient of more than 0.75 were identified, and one of the peaks

in each correlating set was removed to prevent deterioration of the

statistical mode performance. Feature selection was then done

using recursive feature elimination (RFE) with preset subsets. RFE is

an efficient approach for feature selection by eliminating specified

proportion of variables with the smallest importance upon each

iteration, so that determines a minimal subset of variables needed

for an effective model with good prediction accuracy (Acharjee

et al., 2020; Darst et al., 2018; Degenhardt et al., 2019). The

resultant features were then used in the first RF model. M1 and M2

samples were split randomly into a training set (70% of the samples)

and a test set (30% of the samples). The training set was then used

for cross‐validation of discriminative features identification as

shown below, while the test set was set aside for assessing the

performance of the RF model later.

Cross‐validation was done using successive splits of the training

data set to test the performance of the generated model. This was

done by manual cross‐validation, where the data were randomly split

into five subsets. In each subset, an RF model was built to classify

both phenotypes. The features that were commonly used by all

five cross‐validation models were selected and designated as the

most common discriminative features. The receiver operating

characteristic (ROC) curves of previous models were then plotted.

The identified common discriminative features from the previous

step were in the first RF model. The model was tuned by selecting the

optimum mtry value that corresponds to the lowest out‐of‐bag

(OOB) error rate. The mtry represents the number of variables

randomly sampled as candidates at each split, which is important

parameter in RF: individual trees would have poor predictions with a

low mtry value, and collection of trees would not diverse enough

with high value (Capitaine et al., 2020; Couronné et al., 2018; Wenck

et al., 2022). Typically, around 2/3 of samples are used as training set

while the remaining is used as test set, termed as the OOB samples

(Acharjee et al., 2020; Zhao et al., 2019). OOB is used to access the

prediction performance of the model, the lower the OOB error rate,

the better the classification (Oza et al., 2019). For the number of

trees selection, number of trees versus the OOB were plotted

(Figures 2a and 3a) and 500 trees were chosen.

The first model was tested against the test set and by using

confusion matrix (Figure 2b) and permutation test. For the permuta-

tion test, we developed the permuted model by blinding the samples

and randomly assigned M1 and M2 phenotypes to them. We used

this data as test for the model and for this permuted data we had an

AUC of 0.5 and this confirmed that our model is robust against

randomly classified samples. The comparison between the five cross‐

validation model, permutated model, and the final model was

visualized using an ROC curve (Figure 2c).

The features used in the aforementioned model were reduced

further by removing peaks with mean signal‐to‐noise (S/N) ratio < 10

as well as peaks that could not be putatively identified by matching to

databases (Human Metabolome Database [HMDB] or Lipidmaps).

The resulting final set of discriminative features were used to

generate the second, and final RF model, which was cross‐validated

using a new 80/20 split and a confusion matrix.

The final discriminative features were visualized using most

important plot, multidimensional scaling (MDS) plot of the final RF

model and a heatmap of the scaled transformed intensities of those

peaks. Finally, a t‐test was performed on the final discriminative

features to test the significance of their abundance between the two

phenotypes (M1 and M2). The script used in data processing and

analysis is available upon request from the authors.

3 | RESULTS

3.1 | Feature selection and identification of
discriminative features

Feature selection was undertaken between M1 (n = 21 after removal)

and M2 (n = 29 after removal). Out of the initial 17,364m/z peaks in

the data set, 9770 remained after blank subtraction and highly

correlated peaks removal. The RFE designated 170 features as the

most important features. This was done using five RF model repeats

of the RFE control which gave the highest accuracy (Supporting

Information: Figure S1). The 170 features from the RFE control were

used to select the most common discriminative features. Samples

underwent a 70/30 split, and the 70% portion was split five times

into training and test subsets where five cross‐validation RFs were

done. The top 100 features used in each model were combined and
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F IGURE 2 (See caption on next page).
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designated as the most common discriminative features (151

features, Supporting Information: Table S1).

3.2 | RF model and classification performance

The first RF model was established based on the most common

151 peaks. In total, 500 trees were grown and during the growing,

proximities were computed for the cases. Similar cases may fall

into the same terminal node or derive from the same parent. After

tuning our RF model using 500 trees and mtry = 23 resulted a

model had OOB estimate of error rate = 11.43%. The OOB error

rate did not decrease with the number of trees constructed, and

the RF algorithm could avoid overfitting to a certain extent as

shown in Figure 2a. Its classification accuracy was tested using a

confusion matrix against the main test data set that was set aside

from the beginning and resulted in an accuracy of 0.93

(Figure 2b). The ROC curve coupled with its area under the

curve (AUC) was used as a parameter to compare between the RF

model, the five cross‐validation models and the permutated

model (Chen et al., 2013). RF score was used to plot the ROC

curve, and to calculate the AUC. The ROC curve shows the

correlation between sensitivity and specificity at different cutoffs

of the RF score. AUC indicates the performance of the model

where a larger value indicates higher prediction ability. The ROC

curves and AUC values are shown in Figure 2c with a final value

of 0.917 which demonstrates the overall stability of the

generated RF model. The mean decrease in accuracy was used

to measure the contribution of individual peaks in the RF model,

and an alternative approach using mean decrease in Gini index

are shown in Figure 2d. To visualize the metabolic profile of the

samples, MDS was employed to map them into a lower

dimensional space. The MDS plot showed that M1 and M2 cells

can be characterized according to their respective features as

shown in Figure 2e. To visualize the abundance levels of features

in each phenotype, a heatmap was used to map the intensity of

the 151 features selected by the RF model in all samples

(Figure 2f). These visualized results provide an overview of the

metabolic alternations in the two‐cell phenotypes, as well as the

heterogeneity at the single‐cell level.

3.3 | Heterogeneous metabolomic profile and
putative metabolites in macrophages

Among the important peaks highlighted by the first RF, a total of

23 potential matches were recognized as putatively heteroge-

neous metabolites between M1 and M2. This was done by

matching their m/z values in Lipidmaps and HMDB databases

with 5 ppm tolerance. Using this reduced feature set, an RF model

was built and cross‐validated using an 80/20 training and test sets.

After tuning the model with 500 trees and mtry = 15, The resulting

model had an OBB error rate of 12.5% (Figure 3a). The RF

classification accuracy was tested using confusion matrix against

the test set and resulted in accuracy of 0.9 (Figure 3b). The ROC

curves and AUC values are shown in Figure 3c with a final value of

0.87. Important variables plots, MDS plot, and heatmaps were

done again with final 23 potential peaks used in the second RF

model (Figure 3d–f). T‐test was implemented to test the signifi-

cance of these metabolites by their peak intensity as summarized

in Table 1. The classes of metabolites that could be putatively

annotated were fatty acyls, sterol lipids, glycerophospholipids,

amino acids, and others.

4 | DISCUSSION

In this study, we present a powerful connection of LSC‐MS and RF

prediction model for metabolomics data analysis. The model was built

by combining RF algorithm with RFE and cross‐validation to find the

features necessary and sufficient to classify single‐cell MS data by

ranking feature importance. It was then applied to incorporate spectral

data from all single‐cell samples and isolate the most discriminant

feature m/z peaks between polarized macrophages. Furthermore,

using this model, we could isolate several putatively annotated

molecules that contribute to discriminating macrophages upon

different polarization. Although both LSC‐MS and RF are well‐

established and have been largely utilized within their respective

fields, the connection of these two provides an alternative to existing

approaches given its effective performance on sparse, high‐

dimensional data with collinear features and straightforward under-

standability for single‐cell data (Park et al., 2020). Despite the

F IGURE 2 Classification performance of the first random forest (RF) model for discriminating M1 and M2 macrophages. (a) Plot of overall
out‐of‐bag (OOB)/overall error rate for RF classification of M1 and M2 versus number of trees. The black curve is the OOB of the model, the
green curve is the OOB error rate when classifying M1 (reference), and the red curve is the OOB error rate when classifying M2. (b) Confusion
matrix generated after training the first model with the selected peaks. (c) Assessing the performance of RF using cross‐validation. A 5‐fold
cross‐validation of the RF model was performed to select the common important peaks by each cross‐validated model. The final performance
with area under the curve value of 0.917 demonstrates the overall stability of our RF model. (d) The contribution of individual peaks in the RF
model. The mean decrease in accuracy and alternative approach using mean decrease in Gini were used to rank the relative importance of
individual peaks for metabolic pattern recognition in the RF model. Only the 30 top‐ranked peaks and variables for each cell type are shown.
(e) Multidimensional scaling plot for mass spectrometry data of M1 and M2. (f) Heatmap of important peaks found in all collected M1 and M2.
Heatmap visualizes the intensity of each significant peak measured in all M1 and M2 single‐cell samples. The color scales between black and
bright green represent lower intensity to higher intensity, respectively.
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F IGURE 3 Classification performance of the second random forest (RF) model. (a) Plot of overall out‐of‐bag (OOB) error rate for
RF classification of M1 and M2 versus number of trees. The black curve is the OOB (overall error rate) of the model, the green curve is the OOB
error rate when classifying M1 (reference), and the red curve is the OOB error rate when classifying M2. (b) Confusion matrix generated after
training the second model with the final selected peaks. (c) Assessing the performance of RF using cross‐validation with the final performance
area under the curve value of 0.875 that demonstrates the overall stability of second RF model. (d) The contribution of individual peaks in
the second RF model. The mean decrease in accuracy and mean decrease in Gini were used to rank the relative importance of the 23 selected
peaks for each cell type. (e) Multidimensional scaling plot for mass spectrometry data of M1 and M2 using the second RF model. (f) Heatmap of
selected 23 peaks found in all collected M1 and M2. The color scales between black and bright green represent lower intensity to higher
intensity, respectively.
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limitations in sample size and the inherent issues associated with

single‐cell metabolomics; the study successfully demonstrates the

applicability of untargeted LSC‐MS metabolomic profiling combined

with RF for macrophage analysis.

Most of the putatively annotated metabolites belong to lipids. It

has been reported previously that lipids, such as fatty acyls,

glycerophospholipids, sterol lipids, and so on, are components of

the cells' plasma membrane and are involved in multiple biological

TABLE 1 Summaries of the discriminatory metabolites between M1 and M2.

m/z
Mean peak
intensity in M1

Mean peak
intensity in M2 p Value

M1
vs.
M2 Matches Class Database

165.0522 1193.11 81.10 0.0003 M1 FA 7:2;O Fatty acyls Lipidmaps

193.12 494.29 90.20 0.0005 M1 FA 10:1 (8‐Methylnonenoate) Fatty acyls HMDB

195.0742 308.56 105.31 0.0994 M1 Glycylproline
Prolylglycine

Amino acids HMDB

205.0837 1080.60 218.71 0.0083 M1 FA 10:3;O

(‐)‐5‐oxo‐1,2‐campholide

Fatty acyls

Prenol lipids

Lipidmaps

233.1511 854.25 429.15 0.2240 M1 WE 13:2
FA 13:2

Fatty acyls Lipidmaps

307.1306 683.93 120.21 0.0004 M1 Estrone‐2,3‐quinone
Estrone‐3,4‐quinone
ST 18:5;O3

Sterol lipids Lipidmaps

307.2242 1371.95 212.69 0.00002 M1 FA 17:1;O Fatty acyls Lipidmaps

359.1978 33.19 321.53 0.0278 M2 FA 20:4;O (20‐HETE) Fatty acyls Lipidmaps

375.3238 450.68 243.27 0.0504 M1 WE 23:1

FA 23:1

Fatty acyls Lipidmaps

385.1979 1297.44 459.10 0.00001 M1 ST 21:3;O5 (Cortisol)
1 alpha, 17 alpha, 21‐trihydroxy‐20‐oxo‐

22,23,24,25,26,27‐hexanorvitamin D3
FA 18:1;O4

Sterol lipids
Sterol lipids

Fatty acyls

HMDB/
Lipidmaps

Lipidmaps
Lipidmaps

398.2026 325.01 102.01 0.0001 M1 Kinetensin 1‐3 Amino acids HMDB

425.1936 1267.95 476.45 0.0584 M1 ST 23:5;O6
FA 20:3;O5

Sterol lipids
Fatty acyls

Lipidmaps

427.21 1908.71 755.79 0.0141 M1 ST 23:4;O6

5,6‐Dihydroxyprostaglandin F1a

Sterol lipids

Fatty acyls

HMDB

443.2051 3144.80 1206.73 0.0002 M1 PG 12:0 Glycerophospholipids Lipidmaps

468.3383 538.93 92.90 0.0001 M1 ST 29:1;O2 Prenol lipids HMDB

469.184 3707.47 1286.36 0.0021 M1 ST 18:4;O2; GlcA Sterol lipids Lipidmaps

496.2436 707.71 657.89 0.0033 M1 LPE 18:4 Glycerophospholipids Lipidmaps

501.21 1570.89 272.76 0.0008 M1 4‐Hydroxyandrostenedione glucuronide
ST 19:3;O3; GlcA (2‐Methoxy‐estradiol‐

17beta 3‐glucuronide)

Sterol lipids HMDB
Lipidmaps

514.2352 736.19 45.64 0.0858 M1 LPE 18:3 Glycerophospholipids Lipidmaps

559.2161 768.97 254.21 0.0159 M1 ST 21:4;O5; GlcA

25‐Hydroxyvitamin D3‐bromoacetate

Sterol lipids Lipidmaps

561.1842 318.57 63.22 0.0062 M1 12R‐acetoxy‐punaglandin 3
12R‐acetoxy‐7Z‐punaglandin 3

Fatty acyls Lipidmaps

794.5688 481.50 224.41 0.0552 M1 PE 40:5
PC 37:5

Glycerophospholipids
Glycerophospholipids

HMDB
Lipidmaps

985.6684 373.90 126.04 0.0014 M1 PI 43:1
TG 60:14

Glycerophospholipids
Glycerolipids

Lipidmaps
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processes such as inflammation and cell differentiation (Glass &

Olefsky, 2012; Masoodi et al., 2015; Zhang et al., 2017). Their

metabolism has a role in the pro‐ or anti‐inflammatory functions of

macrophages by meeting energetic requirements and modulating

membrane fluidity (Mukundan et al., 2009; Zhang et al., 2017). Our

results show an elevated fatty acyls level in M1 compared to M2, this

is likely due to the ability of M1 cells to sustain inflammatory

responses by biosynthesizing of fatty acids and using them as

precursors for the synthesis of inflammatory mediators, while M2

relies on fatty acid oxidation to mediate the resolution of inflamma-

tion and tissue repair (Batista‐Gonzalez et al., 2020). As the main

components of cell membrane, the elevated level of the glyceropho-

spholipids in M1 macrophages are clearly from the increased level of

PE 40:5/PC 37:5, PE 42:10, and PI 43:1, which is supported by

previous findings that an increase in PC, PE, and PI species in M1

polarization while opposite tendency in M2 (Zhang et al., 2017).

Besides, our results show that sterol lipids are another metabolite

class pre‐eminent in M1, this is in line with previous study that

macrophage polarizing to the M1 phenotype has increased cellular

cholesterol (Lee et al., 2016), which has been theorized to be a

potential mechanism for inflammation (Na et al., 2016). Additionally,

we observed M1 has increased level of TG 60:14. This is consistent

with the results of previous work on bulk level that M1 has

substantially higher levels of TG (Morgan et al., 2021). In particular,

TG was recently demonstrated to play important antibacterial roles

and its synthesis was demonstrated to be required for macrophage

inflammatory functions especially the production of PGE2 (Bosch

et al., 2020; Castoldi et al., 2020). Furthermore, cortisol (ST

21:3;O5) was observed, which is a potent mediator of the activity

of macrophages and for the regulation of macrophage polarization,

via intracrine interaction with glucocorticoid receptors, to finally

determine the outcome of infection (Maciuszek et al., 2019, 2020).

The only metabolites higher in M2 was FA 20:4;O (20‐HETE) which

is involved in arachidonic acid metabolism. This is consistent with

previous findings which stated that this pathway is the most

remarkable lipid metabolism disparity between M1 and M2. This

finding reaffirms its pivotal role in determining the phenotype of M2

macrophages and highlights the potential of using it as a biomarker

for M2 differentiation (Xu et al., 2021).

Despite its promise, it's worth noting that this method is not

without its set of limitations. Single‐cell sampling process suffers

from low throughput and requires highly skilled operators,

applying automated methods or microfluidic techniques may

overcome these challenges for large‐scale single‐cell studies.

Although many metabolites were putatively annotated, the limited

volume of a single cell makes it difficult to perform exhaustive

MS/MS identification. It is important to note that the data

obtained from single‐cell measurements in the current study is

semi‐quantitative at best. This is due to the difficulties in

incorporating internal standards and homogenizing them with

single cell without significant dilution and consequently, loss of

signal. Progress in enrichment and separation techniques such as

capillary electrophoresis, or miniaturized sample preparation via

microfluidics can be utilized to overcome this limitation in a future

study. Furthermore, the lack of a separation technique adversely

affects the selectivity of the method and makes it difficult to

perform structure elucidation, especially in the case of lipids.

Thus, further studies involving targeted and quantitative analyti-

cal measurements at single‐cell level are required to confirm the

metabolomic alterations detected.

5 | CONCLUSIONS

This proof‐of‐concept study presents a powerful combination of

high‐resolution LSC‐MS, an RF prediction model for data analysis

and rapid database match to distinguish human M1 and M2

macrophages. This platform is sensitive enough to detect subtle

changes in a wide range of metabolites from single‐cell macro-

phage samples upon polarization and successfully characterized

the potential distinct metabolic signature of human M1 and M2

macrophages. Given the distinct functions and significant number

of diseases involving macrophage immunity, the putative metabo-

lite matches found here may provide better understanding of

underlying mechanisms in macrophages polarization. The meth-

odology presented here can be applied to various macrophage

biology studies and can be adapted to study other immune and

other cells as well.
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