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Abstract

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs),
but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can
resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the
genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS
methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple
traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus
exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the
impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model
fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property
analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples.
For the externalizing GWAS, although down-sampling resulted in a loss of genetic signal and fewer genome-wide signifi-
cant loci; the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses were
found robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators
who generate and share down-sampled summary statistics report these analyses as accompanying documentation to support
other researchers’ use of the summary statistics.

Keywords Genomic SEM - Summary statistics - Data removal - Down-sample - Leave-one-out - Meta-analysis -
Genomics - Genome-wide association study

Introduction GWAS summary statistics and require a potentially lengthy
and burdensome application process for researchers to gain

The success of genome-wide association studies (GWASs) access. In some cases, researchers’ institutions are unwill-

depends on sample size (Abdellaoui et al. 2023). Accord-
ingly, genetics researchers increasingly depend on pub-
lic—private partnerships that pool data collected by academic
researchers, national biobanks, and private companies. For
example, the company 23andMe Inc. contributed an aston-
ishing 2.5 million observations to a recent GWAS of height
(Yengo et al. 2022). However, to protect their interests, pri-
vate companies place restrictions on the public sharing of
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ing to agree to the legal terms set by private companies in
their material transfer agreements. These restrictions pose
a challenge to scientific transparency and slow the pace of
genetic discovery.

To address this challenge, researchers can publicly share
down-sampled GWAS summary statistics that exclude
restricted data (Coleman et al. 2020; Lee et al. 2018; Yengo
et al. 2022). This is an imperfect solution, as leaving out
a large part of the study sample not only reduces power
but can also change the genetic etiology of the trait being
studied, potentially leading to substantial differences in
downstream analyses (Vlaming et al. 2017). For instance,
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down-sampling could influence estimates of genetic cor-
relations with other traits, associations in polygenic score
analyses, and insights from bioannotation analyses. We are
only aware of one study investigating the effects of excluding
restricted data from a univariate depression GWAS (Cole-
man et al. 2020), prior to including them in a meta-analysis
of mood disorders. The authors examined the robustness of
SNP heritability estimates, genetic correlations, and gene
identification. Although they identified fewer variants in the
down-sampled analyses, results were otherwise similar, sug-
gesting that excluding data in their study did not markedly
change the genetic etiology of their focal phenotype. How-
ever, most of the studies providing down-sampled summary
statistics have not evaluated the comparability with restricted
data counterparts (Lee et al. 2018; Liu et al. 2019; Wray
et al. 2018).

There have been few if any, systematic investigations
of how down-sampling affects results from multivariate
GWASs. Multivariate GWAS methods, such as genomic
structural equation modeling (Genomic SEM; Grotzinger
et al. 2019), have become increasingly popular, as there is
substantial genetic overlap across psychiatric and behavio-
ral phenotypes. Genomic SEM models the shared genetic
architecture among traits with latent factors representing
cross-cutting genetic liabilities. Rather than just examining
genetic associations with individual phenotypes, Genomic
SEM enables the identification of shared genes. As in pheno-
typic factor analysis, the construct represented by latent fac-
tors could be sensitive to the choice of indicator phenotypes
used in the factor analysis, or the construct might be fairly
robust to this decision (Johnson et al. 2004, 2008). Using
down-sampled univariate GWAS summary statistics as
inputs in Genomic SEM could, therefore, identify a genetic
factor structure that occupies a different position in genetic
multivariate space. Yet, no studies to our knowledge have
examined how down-sampling affects multivariate GWAS
in the context of Genomic SEM.

Here, we present a systematic approach to assess the
comparability of down-sampled summary statistics with
their full data counterparts and examine their suitability for
typical follow-up analyses. We used externalizing, a latent
factor representing a cross-cutting liability to behaviors and
disorders characterized by problems with self-regulation,
as our model phenotype. A previous multivariate GWAS
by the Externalizing Consortium identified several hundred
genomic loci associated with an externalizing (EXT) factor,
reflecting shared genetic liability among seven indicator phe-
notypes (Karlsson Linnér et al. 2021): (1) attention-deficit/
hyperactivity disorder (ADHD; Demontis et al. 2019), (2)
problematic alcohol use (ALCP; Sanchez-Roige et al. 2019),
(3) lifetime cannabis use (CANN; Pasman et al. 2018), (4)
reverse-coded age at first sexual intercourse (FSEX; Karls-
son Linnér et al. 2019), (5) number of sexual partners
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(NSEX; Karlsson Linnér et al. 2019), (6) general risk toler-
ance (RISK; Karlsson Linnér et al. 2019), and (7) lifetime
smoking initiation (SMOK; Liu et al. 2019). However, the
univariate GWASs on two of the seven phenotypes, SMOK
and CANN, contain restricted data, which limits public shar-
ing of the summary statistics from this multivariate GWAS
(hereafter, the original study on externalizing).

Therefore, we developed the following six steps to inves-
tigate the robustness of down-sampling and applied them to
our scenario of assessing the impact of excluding restricted
data from the original study on externalizing (Karlsson Lin-
nér et al. 2021). As an initial check, we recommend that
authors who generate and share down-sampled summary
statistics report whether the genetic correlation between the
full and down-sampled version is less than unity, suggesting
an imperfect overlap of GWAS coefficients and genetic etiol-
ogy. The greater the discrepancy between the genetic cor-
relation of the full and down-sampled GWASs on the same
trait, the more important it is to evaluate the comparability
of down-sampled analyses.

We recommend that investigators who share down-sam-
pled summary statistics generated with multivariate GWAS
methods (e.g., Genomic SEM) report all six steps as sup-
porting documentation, while steps 2-3 can be skipped when
generating down-sampled univariate GWAS:

1. What is the loss of genetic signal in down-sampled uni-
variate GWASs (which may later be used as indicator
phenotypes in Genomic SEM)?

2. How do the factor loadings and factor model fit differ in
multivariate Genomic SEM when the indicator pheno-
types are down-sampled univariate GWASs?

3. What is the loss of genetic signal at the factor level of
multivariate GWAS when the indicator phenotypes are
down-sampled univariate GWASs?

4. How similar are gene-property analyses when using
down-sampled GWASs?

5. How similar is the pattern of genetic correlations with
other traits when using down-sampled GWASs?

6. How much explanatory power is lost when using poly-
genic scores (PGSs) constructed from down-sampled
GWASs?

Methods

The code is publicly available here: https://github.com/
Camzcamz/EXTminus23andMe, and the GWAS summary
statistics on externalizing that excluded restricted data from
23andMe (“EXT-minus-23andMe”) are available here:
https://externalizing.rutgers.edu/request-data/.


https://github.com/Camzcamz/EXTminus23andMe
https://github.com/Camzcamz/EXTminus23andMe
https://externalizing.rutgers.edu/request-data/
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1. What is the loss of genetic signal in down-sampled uni-
variate GWASs?

The following five key indicators are useful for evaluat-
ing the loss of genetic signal in down-sampled univariate
GWAS:s: (1) effective sample size (EffN), (2) heritability, (3)
mean 42, (4) genomic inflation factor, and (5) the LD Score
regression attenuation/stratification bias ratio (see formula
in Table 1). EffN is a transformation relevant for GWAS
on binary traits that transforms an unbalanced number of
cases and controls to effectively reflect the sample size of a
balanced analysis (i.e., 50% cases). For a meta-analysis of
k cohort-level univariate summary statistics, it is the sum
of EffN, = 4 X V,(1-V,)N,, where V, is the cohort-specific
proportion of cases, and N, is the total number of cases
and controls. For GWAS on continuous traits, EffN can be
replaced by the total sample size (N). The remaining four
key indicators are standard estimates of LD Score regression
(version 1.0.1; Bulik-Sullivan et al. 2015).

In addition to evaluating the loss of genetic signal, we
recommend three checks to examine concordance in GWAS
coefficients (f), which should preferably be applied to
near-independent SNPs (Step 3 explains a standard prun-
ing procedure to find near-independence). If correlated
SNPs are included, larger LD blocks will be given more
weight. Depending on the power of the full-data GWAS,
the checks could be applied only to genome-wide significant
hits or could be expanded to a less stringent threshold (say,
P<1x107%). The three checks are to (1) test for sign con-
cordance, (2) inspect for outliers, and (3) run a regression
of the down-sampled GWAS coefficients on their full-data
counterparts (as absolute values).

Sign concordance can be evaluated by reporting the pro-
portion of SNPs that have concordant direction of effect or
by performing a binomial test. The binomial test requires
an assumed null hypothesis of the true probability of suc-
cess, which we set to 99% to make the test sensitive enough
to detect minor deviations from near-perfect concordance
(100% is too sensitive as a single discordant observation will
reject the null). Power calculations show that 150 independ-
ent SNPs provide > 80% power to reject this null even if the
true, imperfect concordance is as high as 95%. To detect
outliers, we suggest evaluating whether the down-sampled
GWAS coefficients fall outside the 95% confidence inter-
vals of their full-data counterparts. If outliers are detected,
then we recommend adding an extra indicator column to the
down-sampled summary statistics to allow its users to filter
out SNPs with deviating down-sampled GWAS coefficients.
The regression analysis of the down-sampled coefficients
on the full-data coefficients should investigate whether (a)
the intercept is zero, (b) whether the regression coefficient
is unity (i.e., diagonal line), and (c) whether the adjusted
coefficient of determination (adj. R?) is high. These checks

Table 1 Summary of GWAS summary statistics with and without 23andMe data for seven externalizing-related disorders and behaviors

Down-sampled EXT (EXT-minus-23andMe)

EXT (Karlsson Linnér et al. 2021)

Phenotype

Ratio

Aae Mean y2 Intercept Ratio Max N (EffN) n? Age Mean y2 Intercept

h2

Max N (EffN)

(SE)

(SE)

0.113

1.034
1.013

1.297
1.174
1.245
1.868
1.674
1.461

0.260 (0.017) 1.25
0.055 (0.004) 1.15
0.068 (0.004) 1.22
0.115 (0.004) 1.63
0.099 (0.004) 1.49
0.053 (0.002) 1.37
0.079 (0.003)1.73

53,293 (49,017)

0.113

1.034

1.013
1.026

1.297
1.174
1.267
1.869
1.682
1.461
3.152

0.235 (0.015) 1.25
0.055 (0.004) 1.15
0.066 (0.004) 1.23
0.115 (0.004) 1.62
0.097 (0.004) 1.49
0.053 (0.002) 1.37
0.078 (0.002) 2.33

53,293 (49,017)

ADHD
ALCP

0.073

164,684 (150,640)
164,192 (157,230)

357,187

0.073

164,684 (150,640)
186,875 (179,534)

357,187

0.113
0.041

1.028
1.036
1.027
1.019
1.037

0.098

CANN
FSEX*
NSEX

RISK

0.041

1.036
1.027

1.019
1.126

0.041

336,121
426,379

0.041

336,121

0.041

0.041

426,379

0.035

652,520 (652,518) 2.062

0.058

1,251,809 (1,232,397)

SMOK

sum of cohort-level effective sample sizes. The statistics reported in this table were all estimated with LD

Score regression (v1.0.1) (Bulik-Sullivan et al. 2015): Heritability () is on the observed scale. The genomic inflation factor, A, is the median )(z statistic divided by the expected median of

the 42 distribution with 1 degree of freedom. Mean 4 is the average y” statistic. Intercept is the estimated LD Score regression intercept. The ratio measures stratification bias, defined as (inter-

cept — 1)/(mean )(2 -1

EXT: Externalizing. Bolded rows indicate down-sampled summary statistics. EffN

lifetime tobacco initiation

ADHD attention-deficit/hyperactivity disorder; ALCP problematic alcohol use; CANN lifetime cannabis use; FSEX age at first sexual intercourse (reverse coded*); NSEX number of sexual part-

*Age at first sex was reverse coded so as to expect a positive relationship with EXT and EXT-minus-23andMe

ners; RISK risk tolerance; SMOK
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are applicable to both univariate and multivariate GWAS
(thus, also in Step 3). Here, because we did not generate any
down-sampled univariate summary statistics to be dissemi-
nated, we report these checks only for the down-sampled
multivariate GWAS on externalizing.

To generate a down-sampled version of the multivariate
GWAS on externalizing, we first down-sampled the univari-
ate GWASs of SMOK and CANN by mirroring the meta-
analysis protocol of the original study (Karlsson Linnér et al.
2021) while excluding restricted 23andMe data. We then
used these five key indicators to assess the loss of genetic
signal in the down-sampled univariate GWASs. Finally, we
estimated genetic correlations among the seven indicator
phenotypes in the down-sampled analysis using LD Score
regression (Bulik-Sullivan et al. 2015) and compared them
to genetic correlations among the indicator phenotypes in
the original study.

Stable heritability estimates and attenuation ratios across
the original and down-sampled indicators should yield com-
parable factor loadings in the down-sampled Genomic SEM
factor analysis (Step 2), whereas loss of genetic signal, indi-
cated by a decrease in mean y°, should yield larger standard
errors in the factor analysis and loss of statistical power to
detect SNP effects in the multivariate GWAS (Step 3).

2. How do the factor loadings and factor model fit differ in
Genomic SEM when the indicator phenotypes are down-
sampled univariate GWASs?

Genomic SEM is a flexible modeling approach that (1)
estimates an empirical genetic covariance matrix and sam-
pling covariance matrix from input GWAS summary statis-
tics, and (2) evaluates a set of conventional parameters for
structural equation modeling, such as factor loadings and
residual variances, to minimize the discrepancy between the
model-implied and empirical genetic covariance matrices
(Grotzinger et al. 2019). Typically, several alternative mod-
els are compared (e.g., a single-factor model versus a two-
factor model) followed by multivariate GWAS to estimate
SNP effects on each of the factors in the preferred factor
solution (Step 3).

To assess the impact of down-sampling on the factor load-
ings and model fit, we suggest forcing the best-fitting factor
solution from the Genomic SEM analysis of the full data-
set (that includes restricted data) onto the empirical genetic
covariance matrix of the down-sampled summary statistics,
and then evaluating the stability of the factor loadings and
factor model fit indicators (e.g., the comparative fit index or
the root mean square residual). We do not suggest searching
for a better factor solution with the down-sampled indica-
tors because the aim is to evaluate whether down-sampled
analyses are representative of their corresponding versions
with restricted data.

@ Springer

Thus, we ran the best-fitting Genomic SEM factor model
of the original study (Karlsson Linnér et al. 2021): a sin-
gle-factor model with seven indicator phenotypes (ADHD,
ALCP, CANN, FSEX, NSEX, RISK, and SMOK), using
unit variance identification of the factor model without SNP
effects. However, in the analysis reported here, the input
summary statistics for SMOK and CANN were replaced by
down-sampled versions (see Step 1). We refer to the origi-
nal factor model based on analyses with 23andMe data as
the EXT factor and the down-sampled version as the EXT-
minus-23andMe factor.

3. What is the loss of genetic signal at the factor level of
down-sampled multivariate GWAS when the indicator
phenotypes are down-sampled univariate GWASs?

After conducting a multivariate GWAS on the latent fac-
tors in down-sampled analyses with Genomic SEM, the loss
of genetic signal at the factor level can be assessed by (i)
examining the genetic correlation between the respective
latent factors of the full and down-sampled summary sta-
tistics using bivariate LD Score regression (Bulik-Sullivan
et al. 2015) and by (ii) estimating the decrease in genetic sig-
nal with key indicators (1), (3), and (4) from Step 1. Please
note that key indicators (2) and (5) are not used to evaluate
the genetic signal of the latent factor because they are not
clearly defined (e.g., heritability is defined as a ratio with
phenotypic variance as the denominator, which is absent in
latent genetic factors).

To generalize the loss of statistical power to identify
individual SNP effects, we need to make assumptions
about their magnitude. One approach is to compute the
squared standardized coefficients,! approximated as
r> = 7% /N, and then evaluate the median among the sub-
set of genome-wide significant SNPs (P <5 x 107®) in the
down-sampled GWAS. Given that statistical power is the
probability of correctly rejecting the null hypothesis when
the alternative hypothesis is true, it can be computed as
1 — CDF,[ 471, where CDF ; is the cumulative distribution
function for a y? distribution with 1 degree of freedom
and the non-centrality parameter A = Nr2. The sample
size, N, is set to the EffN of the summary statistics being
evaluated. The term )(]2(0) is the critical value (~29.7) at
the threshold of genome-wide significance (P <5x 107%)
for a y*-test with 1 degree of freedom. As a complement,
we suggest evaluating the power to detect arbitrary effect-
size magnitudes, for which we selected three magnitudes
representative of effects reaching genome-wide signifi-
cance in recent large-scale GWAS (2 = 0.003%, 0.004%,

' An approximate measure of variance explained (R?), standardized
with respect to the outcome.
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or 0.005%). Because power loss is more noticeable at the
level of individual SNPs compared to methods that aggre-
gate genetic signal among sets of SNPs or genome-wide,
we recommend researchers interested in following up on
individual SNPs use the original and not the down-sam-
pled summary statistics for best precision.

As in the original study (Karlsson Linnér et al. 2021),
we estimated individual SNP effects on the latent EXT-
minus-23andMe factor with Genomic SEM, which we refer
to as the EXT-minus-23andMe summary statistics. We then
evaluated the loss of signal at the factor level. We expect the
loss of power to be more noticeable at the level of individual
loci compared to the follow-up analyses presented below,
which aggregate genetic signal across larger sets of SNPs
or genome wide. Lastly, we examined the concordance of
GWAS coefficients on the latent factor per the three-check
procedure outlined in Step 1.

Because of its accessibility and ease of use, we recom-
mend using FUMA to find near-independent genome-wide
significant “lead SNPs”. FUMA conducts conventional
linkage-disequilibrium (LD) informed pruning (‘“clump-
ing”). The default settings are sensible to use in most cases.
FUMA computes LD with the publicly available European
subsample of the 1000 Genomes Phase 3 reference panel as
the default setting (though, researchers should depart from
this default to match the genetic ancestry of the summary
statistics being evaluated). The default settings largely over-
lap with those of the original study on EXT (importantly,
the LD 72 threshold of 0.1 to define lead SNPs is identical),
though the original study used a larger restricted-access
reference panel that combined the 1000 Genomes Phase 3
reference panel with other reference data.

4. How similar are gene-property analyses when using
down-sampled GWASs?

The biological correspondence of down-sampled univari-
ate or multivariate GWAS can be evaluated by comparing
the results from the Multi-marker analysis of genomic anno-
tation (MAGMA) gene-property analyses in the SNP2GENE
function of Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA; Watanabe et al. 2017);
version 1.5.0e) software using Spearman rank correlations
of point estimates.

As done in the original paper, we ran gene-property anal-
yses on the EXT-minus-23andMe summary statistics to (1)
test 54 tissue-specific gene expression profiles, and (2) test
gene expression profiles across 11 brain tissues and devel-
opmental stages with reference data from BrainSpan (Allen
Institute for Brain Science 2022). We used the default set-
tings of SNP2GENE, which match those used to conduct the
gene-based analyses reported in the original study (Tables
S3, 4).

5. How similar is the pattern of genetic correlations with
other traits when using down-sampled GWASs?

To assess the convergent and discriminant validity of
down-sampled multivariate GWAS on latent factors, we can
examine potential changes in the pattern of genetic correla-
tion with other traits. If the down-sampled analysis tags the
same genetic etiology, the confidence intervals of the point
estimates should display considerable overlap. The overall
pattern can be examined by estimating the rank correlation
of the point estimates across traits, whereas significance of
changes to individual genetic correlations can be assessed
using a ¢-test.

The original study estimated genetic correlations between
EXT and 91 other traits (Karlsson Linnér et al. 2021). Here,
we performed the same analysis for EXT-minus-23andMe
and then examined whether the pattern of genetic overlap
was preserved after removing restricted data. Since the sum-
mary statistics of some of the 91 traits in the original study
include restricted data, we conducted these analyses on the
79 traits with publicly available data.

6. How much explanatory power is lost when using poly-
genic scores (PGSs) constructed from down-sampled
GWASs?

Generally, the loss of genetic signal from down-sampling
will only exacerbate the problem of measurement error in
PGSs constructed with finite-sample estimates as weights
(Becker et al. 2021). As one of the most common third-party
applications of publicly available GWAS summary statistics,
we strongly encourage researchers to evaluate the loss of
explanatory power in their main PGS analysis before they
share down-sampled summary statistics with other users.
This loss can be evaluated (i) across traits, as indicated by
the overall reduction in variance explained (R*/pseudo-R?)
and (ii) with the rank correlation of point estimates to eval-
uate the comparability of the overall pattern of polygenic
score associations.

Following the original study protocol (Karlsson Linnér
et al. 2021), we constructed PGSs in two hold-out sam-
ples: the Collaborative Study on the Genetics of Alcohol-
ism (COGABegleiter 1995; Bucholz et al. 2017; Edenberg
2002); N=7594) and the National Longitudinal Study of
Adolescent to Adult Health (Add HealthHarris et al. 2013;
McQueen et al. 2015); N=5107). We constructed the PGSs
from the EXT-minus-23andMe summary statistics (EXT-
minus-23andMe PGS), adjusted for LD with PRS-CS (ver-
sion 20 October 2019; Ge et al. 2019), which restricts the
PGS to~1 million HapMap3 SNPs. The default settings are
sensible for most standard uses (Bayesian gamma-gamma
prior of 1 and 0.5, and 1000 Monte Carlo iterations with 500
burn-in iterations).
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1.0

EXT EXT minus 23andMe

Fig.1 LD Score genetic correlations and heritability estimates for
the seven indicator phenotypes of the single-factor models of EXT
and EXT-minus-23andMe (see Step 1). The left panel displays the
analysis of the original study with 23andMe data, the middle panel
displays the down-sampled analysis excluding 23andMe data, and the
right panel displays the difference in estimates computed by subtract-
ing the values in the middle panel from those in the left panel. The
lower and upper triangles display pairwise genetic correlation (r,)

We compared the explanatory power of the EXT-minus-
23andMe PGSs with the one reported in the original study
from analyses of a phenotypic externalizing factor, followed
by a set of outcomes related to, or affected by, externaliz-
ing behaviors and disorders (e.g., smoking initiation, sub-
stance-use disorders, or childhood developmental disorders)
(Table S6). Linear regression was applied to continuous out-
comes and logistic regression to dichotomous outcomes. We
evaluated the incremental R*/pseudo-R? by subtracting the
variance explained by a baseline model with only covariates
(age, sex, and the first ten genetic principal components)
from the variance explained by a model with the covariates
and PGS. Confidence intervals were estimated with the per-
centile bootstrap method (1000 iterations). We then evalu-
ated whether the coefficient estimates of the down-sampled
EXT-minus-23andMe PGSs were comparable to the esti-
mates of the PGS of EXT from the original paper.

We are aware of recent suggestions to evaluate the
squared (semi-)partial correlation in favor of the incremen-
tal Rz/pseudo—RZ, but the results of these two alternative
approaches are often highly similar (except for certain phe-
notypes, e.g., height). For comparability with the original
study, we retained the incremental R%/pseudo-R? measure.

Results

1. What is the loss of genetic signal in down-sampled uni-
variate GWASs?

@ Springer

Difference

estimates and standard errors, respectively. The diagonals display
the observed-scale heritability (h?; see Table 1 for standard errors).
These results are also reported in Table S1. ADHD attention-deficit/
hyperactivity disorder; ALCP problematic alcohol use; CANN lifetime
cannabis use; FSEX age at first sexual intercourse (reverse coded);
NSEX number of sexual partners; RISK risk tolerance; SMOK lifetime
tobacco initiation

In the initial check of genetic overlap between the full
and down-sampled summary statistics of the same trait, we
found genetic correlations close to, but still significantly
less than unity: 0.966 (SE=0.007) for SMOK and 0.953
(SE=0.012) for CANN,? which motivated us to apply our
approach to evaluate the comparability of the down-sampled
summary statistics to those from the original paper.

The loss of genetic signal was evaluated using the five
key indicators. First, down-sampling reduced the EffN of the
two univariate GWASs on SMOK and CANN by about 47%
and 12%, respectively (Table 1), which is a marked reduc-
tion with potential down-stream consequences. However,
down-sampling did not meaningfully impact heritability
estimates nor the attenuation/stratification bias ratio, which
is important for expecting a comparable factor structure in
the multivariate analysis below. Similarly, down-sampling
did not meaningfully influence the genetic correlations
among the seven indicator phenotypes (Fig. 1, Table S1),
which increases the likelihood of obtaining a similar factor
structure.

Nevertheless, there was a noticeable loss of genetic
signal as measured by mean y? and the genomic inflation
factor. The greatest decrease was observed for the down-
sampled GWAS on SMOK (A mean ;(2 =2.06-3.15=-1.09;
—34.6%), while the decrease for CANN was less pronounced

2 Estimated with the chi-square cut-off set to 30, i.e., the default cut-
off applied by bivariate LD Score regression when estimating the her-
itability. To our knowledge, there is no consensus on the best cut-off
to use.
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(=1.3%). Similar decreases were observed for the genomic
inflation factor: —25.9% and —1.0% for SMOK and CANN,
respectively. The overall stability we observed for the her-
itability estimates and attenuation ratios suggest that the
factor loadings in the down-sampled Genomic SEM factor
analysis will resemble those of the original paper (Step 2).
The decrease in genetic signal in SMOK and CANN should
translate into larger standard errors in the factor analysis and
loss of statistical power to detect SNP effects in the multi-
variate GWAS of EXT-minus-23andMe (Step 3).

2. How do the factor loadings and factor model fit differ in
multivariate Genomic SEM when the indicator pheno-
types are down-sampled univariate GWASs?

The factor loadings, residual variances, and model fit
statistics were comparable in the down-sampled single fac-
tor solution (Fig. 2; Table S2). Neither the factor loadings
nor residual variances were statistically different from the
original estimates (a path diagram of the original estimates
was therefore omitted). The largest non-significant differ-
ence was observed for the factor loading of the indicator
phenotype RISK, which increased from 0.54 (SE=0.03) to
0.56 (SE=0.03). A similar-sized, non-significant decrease
was observed for CANN: from 0.77 (SE=0.03) to 0.75
(SE=0.03). Furthermore, the comparative fit index (CFI)
and standardized root mean square residual (SRMR) were
similar between the down-sampled and original factor mod-
els and were within the preregistered thresholds for “good
fit” (i.e., CFI>0.9, and SRMR < 0.08) of the original study.
In our example, we obtain close to identical factor loadings
and model fit when applying the best-fitting factor solution
of the original study to the empirical genetic covariance
matrix of the down-sampled summary statistics.

3. What is the loss of genetic signal at the factor level of
multivariate GWAS when the indicator phenotypes are
down-sampled univariate GWASs?

We estimated a multivariate GWAS of the EXT-minus-
23andMe factor (see Step 2) (Figures S1). The genetic corre-
lation between the summary statistics from the multivariate
GWAS of EXT and EXT-minus-23andMe was strong but
significantly less than unity (r,=0.978, SE=0.001), which
motivated Steps 4-6. The EffN of the multivariate GWAS
of EXT-minus-23andMe was 1,045,957 (about 70.1% of
that on EXT). The mean y° of the EXT and EXT-minus-
23andMe factors were 3.12 and 2.37, respectively, corre-
sponding to a 24% decrease. The reduction in the genomic
inflation factor was similar (—18%). Thus, there was an
appreciable loss of genetic signal in the down-sampled
GWAS of EXT-minus-23andMe.

EXT-min-

23andme

0.79
(0.02) 0.72

(0.02) 0.60
(0 03) (0.04)
: ADHD

o 37(0. 03) 0.48 (o 03) 0.75 (0 07) o ss (0.06)

0.56
0.80 (0.03)
(003 (002

o

Q)

0.44 (o 05 036 (o 02)  0.69(0.00)

0 13 (0.03) o 39 (0.03)

X2 (12)=325.472, AIC= 357.471,
CFI=0.955 and SRMR=0.078

Fig.2 Path diagram of a single-factor model with seven indica-
tor phenotypes, of which SMOK and CANN are down-sampled, as
estimated with Genomic SEM. These results are also reported in
Table S2. Neither the factor loadings nor residual variances were sta-
tistically different from the original estimates (a path diagram of the
original estimates was therefore omitted). The same figure displaying
the results of the original study is available here: https://www.nature.
com/articles/s41593-021-00908-3/figures/1. EXT-minus-23andMe
genetic externalizing factor; ADHD attention-deficit/hyperactivity
disorder; ALCP problematic alcohol use; CANN lifetime cannabis
use; FSEX age at first sexual intercourse (reverse coded); NSEX num-
ber of sexual partners; RISK risk tolerance; SMOK lifetime tobacco
initiation; AIC Akaike Information Criterion; CFI comparative fit
index; SRMR standardized root mean square residual

The reduction in mean y* and genomic inflation fac-
tor suggested some loss of power to detect SNP effects.
Down-sampling decreased the power by 17.8 pp to detect
the median of squared standardized coefficients among the
genome-wide significant SNPs (i.e., median 7 =0.0038%),
and about 5-45 pp less power to detect the three assumed
effect-size magnitudes (2> = 0.003%, 0.004%, or 0.005%)
(Figures S2, 3). Therefore, we recommend that users inter-
ested in following up on individual genome-wide significant
SNPs associated with externalizing prioritize the version
with 23andMe data.

Pruning of the summary statistics to find near-independent
lead SNPs (using the FUMA default settings), identified 358
lead SNPs for the down-sampled EXT-minus-23andMe, as
compared to 842 in the full-sample version. (Note that the
number of lead SNPs reported here for EXT differs from the
855 reported in the original study because that study used a
restricted-access genetic reference panel and somewhat differ-
ent settings for the pruning parameters.) Thus, down-sampling
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reduced the number of lead SNPs by 57.5%, which could
appear problematic. However, the results of the following
three checks of the concordance in coefficients (see Step 1)
suggested no strong reason for concern (Figure S4). First, all
the 842 lead SNPs identified in the full-data version had a
consistent direction of effect, meaning the null hypothesis of
near-perfect sign concordance (99%) could not be rejected
(P=1). Moreover, there was 100% sign concordance among
all 130,176 SNPs with P < 1x 107 (in the full-data GWAS).
Second, we identified only 21 lead SNPs (out of the 842;
2.5%) for which the down-sampled coefficient fell outside
the 95% confidence interval of the full-data estimate. Among
the 130,176 SNPs, we found 2202 such outliers (1.7%). We
marked these SNPs in the disseminated summary statistics,
but otherwise interpret their small number as unproblem-
atic for the comparability of the down-sampled multivariate
GWAS. Third, regression analysis of the down-sampled coef-
ficients on the full-data estimates with the 842 lead SNPs
found an intercept close to zero (~0.0005, P=0.045), a regres-
sion coefficient statistically different from but still near unity
(~0.898, P=5.24x107%), and high adjusted R’ =0.86. We
found similar results for the 130,176 SNPs (reported in Fig-
ure S4). The regression results suggest the down-sampling
induced some, but not marked, attenuation of the coefficients.
Overall, these results demonstrate satisfactory concordance
for the down-sampled multivariate coefficients.

4. How similar are the gene-property analyses when using
down-sampled GWASs?

We ran gene-property analyses using MAGMA on the
EXT-minus-23andMe summary statistics. The Spearman
rank correlation of the point estimates from the MAGMA
54 tissues-specific gene expression profiles on the down-
sampled and restricted data multivariate GWAS summary
statistics was 0.98, suggesting a comparable pattern of gene-
tissue expression (Table S3 and Figure S5). The Spearman
rank correlation of the point estimates from the MAGMA
gene expression profiles across 11 brain tissues and devel-
opmental stages also suggested great similarity (r=0.98)
(Table S4 and Figure S6). Furthermore, the same 14 tis-
sues, and three developmental stages, remained significant
after Bonferroni-correction in the down-sampled analysis
(Table S3-4). This evaluation showed that, in the case of
EXT-minus-23andMe, the down-sampled gene-property
analyses led to similar biological insights as those from the
original paper (Karlsson Linnér et al. 2021).

5. How similar is the pattern of genetic correlations with
other traits when using down-sampled GWASs?

We assessed the pattern of genetic correlations of EXT-
minus-23andMe with other traits and found this pattern to be
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Fig.3 Scatterplot of genetic correlations (r,) and marginal density
plots between EXT (y-axis) or EXT-minus-23andMe (x-axis) with 77
other phenotypes. Each point corresponds to the genetic correlation
coefficient with its 95% confidence intervals (ry = 1.96 X SE) esti-
mated with bivariate LD Score regression. Table S5 reports the esti-
mates, their standard errors, and confidence intervals. The Spearman
rank correlation reported in the figure is rounded from »r=0.9995. No
particular shape, such as a normal distribution, is expected for the
marginal density because the figure displays an arbitrary selection of
traits

nearly identical to that of the original study (Spearman r~1)
(Fig. 3, Table S5). Furthermore, none of the point estimates
were statistically different. Thus, in our scenario, down-sam-
pling did not meaningfully impact the genetic correlations
with other traits, meaning that researchers interested in such
analyses can safely proceed with using the down-sampled
summary statistics.

6. How much explanatory power is lost when using poly-
genic scores (PGSs) constructed from down-sampled
GWASs?

The down-sampled PGS for EXT-minus-23andMe
explained 8.4% and 8.5% of the variance of a phenotypic
externalizing factor in Add Health and COGA, respectively,
which is 1.9 pp and 0.5 pp less compared to the same analy-
sis in the original study (Table S6). The overall reduction
in explanatory power across other outcomes was less pro-
nounced, on average 0.35 pp in Add Health, and 0.23 pp
in COGA. The largest decrease was observed for lifetime
smoking initiation with 2.1 pp and 1.7 pp, followed by
lifetime cannabis use with 1.1 pp in Add Health (but only
0.55 pp in COGA), which may be explained by these two
indicator phenotypes being most affected by the down-sam-
pling. For most other traits, the variance explained by the
down-sampled PGS was comparable to the original study.
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Fig.4 Comparison of the down-sampled polygenic score (PGS)
analyses in Add Health (29 phenotypes) and the Collaborative Study
on the Genetics of Alcoholism (COGA; 26 phenotypes). Panel A
displays the standardized difference between the coefficient esti-
mates (i.e., a Z-statistic) of the down-sampled PGS for EXT-minus-
23andMe versus the PGS for EXT from the original study. Absolute
values were evaluated so that a negative standardized difference
refers to an attenuation towards zero in the down-sampled analysis.
Panel B displays the same measure but as a histogram. Four coeffi-

Secondly, the Spearman rank correlation of the regression
coefficients was 0.996, suggesting great similarity in point
estimates (Fig. 4). All the coefficients of the down-sampled
PGS fell within the confidence intervals of their original
study counterparts (Table S6), except those for the pheno-
typic externalizing factor (in Add Health), lifetime smoking
initiation, and lifetime cannabis use (in Add Health). Over-
all, our down-sampled polygenic score results were compa-
rable to those from the original study, meaning that research-
ers interested in using the down-sampled summary statistics
to construct PGS for EXT-minus-23andMe can generally
expect similar results. However, we recommend the users be
aware of the weaker explanatory power for certain outcomes.
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cient estimates were significantly (at the 5% level) attenuated in the
down-sampled analysis: lifetime smoking initiation (Add Health and
COGA; P=3.18x107 and 4.17x 107>, respectively), the phenotypic
externalizing factor (Add Health; P=0.046), and lifetime cannabis
use (Add Health, P=0.03). None of the coefficients were signifi-
cantly larger in the down-sampled analysis. Panel C displays a scatter
plot of the absolute value of the coefficient estimates divided by their
respective standard errors (i.e., a Z-statistic). These results are also
reported in Table S6

Discussion

Unrestricted access to data and results is the cardinal tenet
of open science. Here, we propose a systematic approach
for researchers disseminating GWAS summary statistics
with restricted data removed (i) to evaluate the comparabil-
ity of down-sampled GWAS summary statistics with their
restricted data counterparts, and (ii) to assess the impact of
using down-sampled univariate summary statistics in mul-
tivariate GWAS with Genomic SEM. We examined the loss
of genetic signal in down-sampled univariate GWAS (Step
1), the change in the factor model loadings and fit (Step 2),
the loss of genetic signal at the factor-level of down-sampled
multivariate GWAS (Step 3); and for potential changes to
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gene-property analyses (Step 4), the pattern of genetic corre-
lations with other traits (Step 5), and the explanatory power
of polygenic score analyses in independent samples (Step 6).
We applied these steps to the largest available multivari-
ate GWAS of externalizing to evaluate the quality and pre-
dictive performance of the results following restricted data
removal. We found nearly identical model fit and parameter
estimates, genetic correlations with other phenotypes, and
polygenic score analyses of externalizing phenotypes in
independent samples. As expected, we observed a decrease
in power and genetic signal in the down-sampled univariate
and multivariate summary statistics. Although fewer lead
SNPs were identified for EXT-minus-23andMe compared
to EXT, the genes associated with EXT and EXT-minus-
23andMe were similar in terms of region and developmental
timing of expression. In the PGS context, EXT and EXT-
minus-23andMe performed similarly well. Therefore, while
we suggest that the down-sampled summary statistics may
be used in analyses related to gene enrichment, genetic cor-
relations, or polygenic scores, the summary statistics with
restricted data should be prioritized for gene identification
or to follow up on genome-wide significant hits. Prioritizing
the restricted data when following up on individual GWAS
hits is less of a problem because results for significant SNPs
are more likely to be reported in full in the original study.
In our example, removing restricted data did not change
the construct that was identified by genetic factor analysis:
The genetic correlation between the factor identified without
23andMe data and the factor identified with 23andMe data
was near unity, and the factors had highly similar associa-
tions with external variables. But this outcome is not guar-
anteed. Removing restricted data may be more impactful for
univariate GWASs prior to their inclusion in meta-analyses
and multivariate GWAS with different indicator phenotypes
and model structures. The consistency we observed between
EXT and EXT-minus-23andMe is likely explained by the
inclusion of restricted data in only a subset of indicators,
with just one of seven summary statistics experiencing a sub-
stantive reduction in genetic signal (i.e., 35% decrease in the
mean > of SMOK). In the circumstance that more indicators
had included 23andMe data, we could have expected greater
discrepancies between EXT and EXT-minus-23andMe.
The issues raised here are also relevant in the context of
GWAS meta-analyses. Removing a restricted set of cohort-
level summary statistics from a single-phenotype GWAS
meta-analysis should mainly affect power if the genetic corre-
lation between the cohort-level summary statistics is close to
unity. However, considering that genetic correlations between
cohort-level GWASs of the same trait can be substantially
less than unity (Levey et al. 2021), removing a large cohort
from the meta-analysis can change the genetic etiology of
the trait being studied (de Vlaming et al. 2017). Research-
ers should thus use the approach presented here to examine
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potential changes in a phenotype’s genetic etiology alongside
the expected power reduction after removing a sample from
their GWAS meta-analysis. To our knowledge, this has only
been done by one meta-analysis (Coleman et al. 2020), where
the authors conducted a subset of the steps described in the
present study (e.g., changes in heritability, genetic correla-
tions with external variables, and gene enrichment analyses).
Therefore, the utility of our systematic approach goes beyond
the Genomic SEM context, as some of these steps may apply
to other multivariate GWAS implementations.

Providing public summary statistics to the wider research
community is crucial to facilitating open science and advanc-
ing behavioral and biomedical research. The first step in this
process should be to evaluate the comparability of down-sam-
pled summary statistics and their restricted data counterparts.
Herein, we provide a systematic approach to investigators who
resort to sharing down-sampled GWAS summary statistics
and recommend they report these analyses as accompanying
documentation to facilitate open science and data sharing.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10519-023-10152-z.
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