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A B S T R A C T 

Citizen science is gaining popularity as a valuable tool for labelling large collections of astronomical images by the general 
public. This is often achieved at the cost of poorer quality classifications made by amateur participants, which are usually verified 

by employing smaller data sets labelled by professional astronomers. Despite its success, citizen science alone will not be able to 

handle the classification of current and upcoming surv e ys. To alleviate this issue, citizen science projects have been coupled with 

machine learning techniques in pursuit of a more robust automated classification. Ho we v er, e xisting approaches have neglected 

the fact that, apart from the data labelled by amateurs, (limited) expert knowledge of the problem is also available along with 

vast amounts of unlabelled data that have not yet been exploited within a unified learning framework. This paper presents an 

innov ati ve learning methodology for citizen science capable of taking advantage of expert- and amateur-labelled data, featuring 

a transfer of labels between experts and amateurs. The proposed approach first learns from unlabelled data with a convolutional 
auto-encoder and then exploits amateur and expert labels via the pre-training and fine-tuning of a convolutional neural network, 
respectively. We focus on the classification of galaxy images from the Galaxy Zoo project, from which we test binary, multiclass, 
and imbalanced classification scenarios. The results demonstrate that our solution is able to impro v e classification performance 
compared to a set of baseline approaches, deploying a promising methodology for learning from different confidence levels in 

data labelling. 
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 I N T RO D U C T I O N  

itizen science (CzS) (Show 2015 ; Kullenberg & Kasperowski 2016 )
as re-emerged as a type of crowdsourcing that entails involving
mateur participants in scientific research to perform large-scale
istributed data gathering or data processing, typically the classi-
cation of vast collections of images on the web (Lintott et al. 2008 ).
f particular note has been the great expansion of such paradigm

n astronomy, with the success of the Galaxy Zoo project in the
ast decade (Masters 2019 ) and many others that have followed a
imilar path (Fischer et al. 2012 ; Beaumont et al. 2014 ). The main
oti v ation behind the development of these initiatives is the need

o reduce the time to classify the large amounts of data generated
ithout involving experts in the process (Bonney et al. 2014 ; Lamas

t al. 2021 ). Despite their success and popularity, many application
reas such as astronomy or geo-sciences will soon achieve image
ata acquisition on a scale of billions of objects (Zhang & Zhao
015 ; Sudmanns et al. 2020 ), which would take hundreds of years to
lassify even with the help of the largest team of citizen scientists that
ave participated in any single CzS project to date (Walmsley et al.
 E-mail: majm8609@gmail.com (MJ); emilio@iaa.es (EJA) 
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Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
020 ). Consequently, there is a call for the development of no v el
achine learning (ML) (Witten & Frank 2005 ) approaches that can

f fecti vely automate the labelling of images at a higher scale (Sen
t al. 2022 ), ideally combining the power of humans and machines
n the context of CzS (Beck et al. 2018 ). 

The outcome of a CzS project generally consists of a data set
abelled by project participants that is substantially larger than
 xisting e xpert-labelled data sets (Lintott et al. 2011 ). These amateur
abels may be less reliable as they were assigned by people that tend to
old a variable set of skills and moti v ations (Herodotou et al. 2020 ).
urthermore, the final classification of an object must be deduced
rom a set of independent (amateur) judgements and multiple biases
re often found when amateur classifications are e v aluated with the
id of expert knowledge on the problem at hand (Lintott et al.
008 ; Kosmala et al. 2016 ). The methods followed to merge all
nformation derived from citizens’ efforts and tackle the inherent
ncertainty hav e pro v en to be decisiv e to obtain the most benefits
rom CzS data (Jim ́enez, Triguero & John 2019 ). Nonetheless, along
ith the smaller sets of expert-labelled data, there are also abundant
nlabelled data, which can be leveraged to improve the learning
rocess. 
In astronomical image classification, ML approaches have made

se of CzS data to train automated classifiers that are purely
© The Author(s) 2023. 
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Table 1. Extract of the data recorded in GZ1 project. Don’t Know scores 
account for blurry/undecidable images. 

Image ID Votes Elliptical Spiral – Don’t Know 

587727178449485858 24 0.125 0.875 – 0.000 
588015509806252152 38 0.711 0.132 – 0.158 
587730773351858407 64 0.625 0.282 – 0.078 
588015508195639450 42 0.429 0.357 – 0.214 
588017721180291223 26 1.000 0.000 – 0.000 
– – – – – –
587727220876705961 22 0.773 0.045 – 0.182 
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ased on amateur-labelled images (Banerji et al. 2010 ; Dieleman & 

ambre 2015 ; Cheng et al. 2021 ), without dealing with the pre v alent
ncertainty in this sort of data and neglecting the available expert 
nowledge. These works have generally exploited the potential 
ehind deep learning (DL) (Goodfellow, Bengio & Courville 2016 ) 
ith the use of convolutional neural networks (CNNs) (Bengio 
009 ; Guo et al. 2016 ). Similarly, convolutional auto-encoders 
CAEs) (Ribeiro, Lazzaretti & Lopes 2018 ) have been employed in 
any applications towards the unsupervised classification of images 

Cheng et al. 2020 ). Alternatively, semisupervised learning (SSL) 
Zhu & Goldberg 2009 ) methods applied to image classification 
ocus on improving performance by considering a combination 
f labelled and unlabelled data, but do not account for different 
onfidence levels within the labelled part of the training examples. 
umerous SSL approaches are found in the literature, most notably 

hose belonging to self-labelled techniques (Triguero, Garc ́ıa & 

errera 2015 ) or graph-based methods (Du et al. 2019 ), which
ave also combined their strengths with CNNs (Wu & Prasad 
018 ). Despite all this, the CzS data framework has not been
uitably leveraged from an ML perspecti ve, taking adv antage of
ll levels of knowledge (expert/amateur/unlabelled) in the model’s 
earning. 

To fill that gap, this paper presents a no v el learning methodology
ith CzS leading to a more robust astronomical image classifica- 

ion. Ultimately, our goal is the joint exploitation of expert-based 
lassifications, CzS data, and the wealth of unlabelled data pre v alent
owadays in astronomical surv e ys. We propose the Citizen Science 
earning (CzSL) methodology, an innov ati ve DL-based algorithm 

apable of sequentially taking advantage of expert and amateur labels 
n conjunction with unlabelled data. Such an approach is based on 
wo central elements. First, the pre-training and fine-tuning of neural 
etworks, a class of transfer learning (Pan & Yang 2010 ) that has been
horoughly used in the adaptation of very deep networks to problems 
n a specific domain (Marmanis et al. 2016 ; Ackermann et al. 2018 )
r to facilitate their use in situations where the scarcity of labelled
xamples makes training the network from scratch unfeasible (Kim, 
oh & Park 2020 ; Liu et al. 2020 ). In contrast, here we have

everaged this scheme to learn from both amateur- and expert-based 
lassifications with a CNN, which is a strategy that has already been
nvestigated by the authors with promising results (Jim ́enez et al. 
020 ), and have extended it to include learning from unlabelled data
ith a CAE. In addition, we hav e dev eloped a method to e xtend e xpert
nowledge to amateur classifications with a multilayer perceptron 
MLP) (Lecun, Bengio & Hinton 2015 ), which directly inputs CzS
ata and learns the best correlation between amateur and expert 
abels. 

As case study, we have considered the well-known Galaxy Zoo 1 
GZ1) project (Lintott et al. 2011 ), which tackled the classification of
alaxy images according to their morphology (Hubble 1926 ; Sandage 
005 ). On the basis of these data, we have covered three different
lassification scenarios: distinguishing between elliptical and spiral 
lasses (binary classification), differentiating the handedness of spiral 
rms in the last setting (Longo 2011 ) (multiclass classification), and 
erger detection (Darg et al. 2010 ) (imbalanced classification). We 

ave established a set of comparative approaches considering distinct 
ombinations of data and labelled samples, including a form of self-
abelled SSL. 

The rest of the paper is organized as follows. In Section 2 , we
xpand on the background of CzS and re vie w the current literature on
SL approaches and transfer learning with CNNs. Section 3 presents 

he CzSL algorithm. In Section 4 , we explain the experiments 
arried out to test the capability of such an approach, and Section 5
resents the results and analysis. Finally, in Section 6 we draw some
onclusions and outline potential directions for future work. 

 RELATED  WO R K  

his section provides a brief overview of current trends in CzS and
L concepts co v ered in the paper. First, we introduce in more depth

he CzS approach along with the GZ1 project and current attempts
o solve the galaxy classification problem with ML (Section 2.1 ).
econdly, we examine the landscape of SSL with CNNs to identify
imilarities with the proposed approach and re vie w the DL-based
ethods used in the implementation of CzSL (Section 2.2 ). 

.1 The use of CzS to boost automated galaxy classification 

zS has been standard practice since the earliest stages of modern sci-
nce (Silvertown 2009 ). However, the worldwide spread of internet 
nd the emergence of information technologies (cloud computing, 
eo-sensors, mobile devices, etc.) have greatly accelerated the rise 
f numerous CzS-based initiatives (Lamas et al. 2021 ), fostering the
xploitation of these resources for modern CzS in web platforms that
ring real science to amateurs’ homes and facilitate their develop- 
ent by professional researchers (Newman et al. 2012 ; Bonney et al.

014 ). Nowadays, online CzS projects co v ering multiple research
roblems in a variety of disciplines (Simpson, Page & De Roure
014 ) provide distributed data analysis at a scale that is unfeasible
or experts alone, and are having an impact on research (Follett &
trezov 2015 ; Masters 2019 ). 
Amongst others, classification is one of the most demanded 

undamental tasks in such projects (Kullenberg & Kasperowski 2016 ; 
rouille, Lintott & Fortson 2019 ). Typically, volunteer participants 
re asked to complete the classification of images that are sequentially 
isplayed in the project website by clicking on a set of pre-defined
hoices. In the case of GZ1, developers also included an option
or blurry/undecidable images, that is, a Don’t Know alternative 
Lintott et al. 2011 ). The resulting data look like a set of scores
hat are called ‘vote fractions’, defined as the ratio of the number of
otes for a particular class to the total number of votes. Assuming
hat they are unbiased, then they approximate the probability of 
n object belonging to a class. An extract of these data is shown
n Table 1 . Therefore, analysis of these data is crucial to achieve
orrect classifications and to get the best benefit from this people-
riven research (Jim ́enez et al. 2019 ). Previous works have already
nv estigated different strate gies to o v ercome this issue. F or instance,
an y methods hav e been proposed to counteract the effect of biases

y applying basic statistics to results (Bamford et al. 2009 ; Lintott
t al. 2011 ; Kosmala et al. 2016 ) or guiding participants through
he classification task during the course of the project (Crowston 
t al. 2020 ; Walmsley et al. 2022b ). Expert knowledge has also been
mployed to assess the confidence in amateur classifications (Lintott 
MNRAS 526, 1742–1756 (2023) 
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t al. 2008 ; Swanson et al. 2016 ) or enhance the CzS data utility
Jim ́enez et al. 2019 ). 

We have adopted the morphological classification of galaxy
mages as a case study (Hubble 1926 ). In the simplest version, it
an be regarded as a binary classification problem consisting of
wo main classes: elliptical and spiral. Ho we ver, the multiplicity of
ybrid types amongst them along with the huge variability in galaxy
hape, orientation, or brightness, turns it into a very challenging
lassification task, even for human classifiers (Lahav et al. 1995 ). 

The identification of elliptical and spiral classes was the target of
Z1 (Lintott et al. 2008 ; Masters 2019 ), which ended up recruiting
ore than 200 000 participants that produced the largest manually

lassified galaxy catalogue to date, including nearly 900 000 exam-
les (Lintott et al. 2011 ). In GZ1, amateur votes were spread across
ix options offered to participants, 1 namely: Elliptical ; Clockwise ,
nticlockwise , and Edge-on Spiral; Don’t Know and Merger . After

he project finalization, the GZ1 data were published and have since
acilitated many follow-up investigations that have resulted in dozens
f peer-re vie wed publications. 2 

There have been numerous attempts to apply ML techniques in
stronomy (Ball & Brunner 2010 ; Fluke & Jacobs 2020 ), consider-
ng either supervised (Dieleman & Dambre 2015 ), semisupervised
Rahmani, Teimoorinia & Barmby 2018 ; Slijepcevic et al. 2022b ),
elf-supervised (Hayat et al. 2021 ; Stein et al. 2022 ) or unsupervised
Spindler, Geach & Smith 2020 ) strategies. Furthermore, it is gaining
 great momentum the use of CzS data in conjunction with unlabelled
ata in contrastive learning applications (Slijepcevic et al. 2022a ;
almsley et al. 2022a ). Within the classification of galaxy images

sing CNNs, several works have investigated the potential of this
pproach employing CzS data as well, although neglecting available
xpert classifications (Dieleman & Dambre 2015 ; Kuminski &
hamir 2016 ; Cheng et al. 2021 ). In contrast, the use of CAEs in

his particular problem has barely been explored, and have been
roposed for feature extraction purposes in supervised classification
Jim ́enez et al. 2020 ). Ho we v er, the joint e xploitation of e xperts,
mateurs, and unlabelled data, in conjunction with ML and latest
dvances in DL has been disregarded across the literature. In the
ollowing section, we discuss related SSL approaches and review
he basics of DL-based models on which the CzSL methodology
s built. 

.2 Beyond supervised classification with CNNs 

SL methods aim to extend the advantages of supervised learning
y considering large amounts of unlabelled data together with a
mall number of labelled examples (Zhu & Goldberg 2009 ). Many
pproaches have faced this challenge from diverse points of view that
an approximately be categorized into generative models (Kingma
t al. 2014 ), self-training (Triguero et al. 2014 ), co-training (Appice,
uccione & Malerba 2017 ), and graph-based SSL approaches (Du

t al. 2019 ), which have also been coupled with the ef fecti veness of
L in image classification (Gu et al. 2018 ). In our experiments we

onsider self-training, or more specifically, a self-labelled approach
Triguero et al. 2015 ), as a state-of-the-art SSL-based comparative
lgorithm to test against the proposed CzSL method. These tech-
iques employ unlabelled data within a supervised framework, by
NRAS 526, 1742–1756 (2023) 

 The original GZ1 portal has been maintained as a tribute to the great success 
f the project and can be visited at http:// zoo1.galaxyzoo.org/ . 
 The up-to-date list of Galaxy Zoo publications can be consulted at https: 
/www.zooniverse.org/about/publications . 
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hich such data are gradually classified, thus enlarging the original
raining set. We implement a basic version with a CNN that first
xtends the labels to the entire training data in one single iteration
nd is then trained again using the full training set, as a comparative
pproach for our proposed method. 

CNNs (Bengio 2009 ) have been systematically outperforming
he benchmarks in image classification o v er the past few years
Rawat & Wang 2017 ; Gu et al. 2018 ) due to the increasing
evelopment of computational capacities and the availability of large
mage data sets required for their training (Szegedy et al. 2015 ).
tate-of-the-art deep CNNs are often composed of numerous layers
Simonyan & Zisserman 2015 ) and aim to cope with challenging
mage classification problems (Russako vsk y et al. 2015 ). In this
ontext, the pre-training and fine-tuning of deep networks (Yosinski
t al. 2014 ), as a form of transfer learning (Pan & Yang 2010 ),
epresents a way of taking advantage of these models in problems
here there is a scarcity of labelled examples that completely

nvalidates their training (Ackermann et al. 2018 ; Farrens et al. 2022 ).
he augmentation of the training data has also been demonstrated

o be ef fecti v e in impro ving the learning of CNNs, particularly
n astronomy (Dieleman & Dambre 2015 ). By generating more
mages with slight modifications, such as rotations, flips or small
hifts, the network gains generalization, and robustness in predictions
nd a v oids o v erfitting when training data are scarce (Alhassan,
aylor & Vaccari 2018 ; Maslej-Kre ̌s ̌n ́akov ́a, El Bouchefry & Butka
021 ). In our model, we leverage a particular implementation of
re-training and fine-tuning that uses amateur and expert labels,
espectively, which has already been successfully explored with a
imple yet ef fecti ve CNN (Jim ́enez et al. 2020 ). We also investigate
he effects of data augmentation applied to our training data sets on
he performance of the proposed approach. 

 CZSL:  L E A R N I N G  F RO M  EXPERTS,  C Z S  

ATA ,  A N D  UNLABELLED  DATA  

his section presents the CzSL algorithm. First, we discuss the moti-
ations that led us to devise such an approach to leverage all levels of
nowledge referred abo v e: e xpert- and amateur-labelled data, and
nlabelled data (Section 3.1 ). Secondly, we explain the learning
ethodology (Section 3.2 ) and describe the selected implementation

or the experiments (Section 3.3 ). 

.1 Moti v ation: lev els of kno wledge 

he CzS paradigm offers different levels of knowledge concerning
he data being classified that is worth considering in the development
f an impro v ed automated classification approach for astronomy, as
isplayed in Fig. 1 . On the one hand, we have a pool of amateurs
ho voluntarily dedicate their time and effort to the e x ecution of an

mage classification task on the web. They are people with a wide
and unknown) range of capabilities and backgrounds, ranging from
hildren to seniors. Consequently, the resulting amateur-labelled
ata suffer from an inherent uncertainty that affects its quality,
epresenting the amateur knowledge about the training data. On
he other hand, a cohort of professional astronomers in the field of
tudy usually validates and complements amateurs’ work. They have
 xtensiv e e xpertise on the issue, as well as complementary sources of
nformation to support and enrich their judgements. In this paper we
ill assume that expert ratings provide higher accuracy compared to
zS participants, which means the highest level of knowledge about

he data, the so-called expert knowledge . In conjunction with expert
nd amateur classifications, CzSL also delves into the exploitation

http://zoo1.galaxyzoo.org/
https://www.zooniverse.org/about/publications
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Figure 1. Levels of knowledge exploited by the CzSL algorithm. 
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Figure 2. Data subsets used in the CzSL learning. 
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f unlabelled data, which represent the lowest level of knowledge in 
his data framework. 

To date, several works have attempted to use CzS data to train
utomated classifiers, b ut ha ve typically ignored the potential of
oth expert-labelled and unlabelled data. This has been developed 
ither in off-line approaches, once the project had been concluded 
Banerji et al. 2010 ; Bahaadini et al. 2018 ), or in more recent on-line
pproaches, whilst the CzS data are being generated (Zevin et al. 
017 ; Walmsley et al. 2020 ). Efforts in the former have focused
rimarily on how to replicate the machine’s amateur capability 
Banerji et al. 2010 ; Dieleman & Dambre 2015 ), thus emulating
mateur classification skills but also propagating the biases and 
eaknesses that are latent within CzS data. On the other hand, expert

lassifications have been leveraged either to validate CzS results 
Lintott et al. 2008 ; Kosmala et al. 2016 ) or to impro v e the quality
f CzS data (Jim ́enez et al. 2019 ). In the last case, a set of data
ransformations is able to aggregate valuable information about the 
ncertainty in amateur classifications by aggregating the information 
bout the uncertainty in amateur classifications held in Don’t Know 

cores and the distribution of votes through the classes and examples 
Appendix A). Ho we ver, this approach only modifies the amateur 
cores, which leaves the problem of how to get a final label from
ultiple rankings unresolved. In addition, the amount of data either 

abelled by experts or participants in the course of a CzS project are
ften negligible in comparison with the large volumes of unlabelled 
ata available. 
The proposed CzSL algorithm encompasses the entire set of 

no wledge le vels, establishing a unified frame work for learning 
rom both expert and amateur labels, as well as from unlabelled 
ata. To this end, the developed DL-based implementation allows 
earning from amateur and expert labels by making use of pre- 
raining and fine-tuning of a CNN, respectively, an approach that 
as been successfully tested in a previous study (Jim ́enez et al.
020 ). Ho we ver, instead of using amateur and expert classifications
eparately, CzSL is able to extend the expert knowledge encapsulated 
n expert classifications to original amateur scores included in CzS 

ata, resulting in a larger amount of high-quality labelled data for
he training of the CNN. The complete learning process is described 
n the following section. 
.2 A unified DL approach for CzS 

he data framework employed in the CzSL learning is schematised 
n Fig. 2 . Let TR be the training set established to learn from expert
lassifications, CzS data and unlabelled data, and TS the test set
eserved for testing. Within TR , we consider an amateur subset A
f these images as labelled by CzS data, and the rest of the set as
nlabelled. That is to say, in A we keep amateur scores by counting
he votes coming from amateur participants, as shown in Table 1 .
dditionally, we assume to possess expert classifications for some 
art of the subset A , an expert subset E , thus completing the three
e vels of kno wledge (Fig. 1 ). Note that the E subset includes images
oth labelled by experts and amateurs. This is a basic assumption that
e make: there are expert classifications available for data already 

lassified in the course of the project. Therefore, E ⊂A by definition.
CzSL focuses on exploiting the expert-labelled part of the data, 

hich holds the highest confidence, exploring the best way to enlarge
he E set throughout several learning stages that leverage amateur- 
abelled and unlabelled examples. Hence, in addition to the TS set, in
he subsequent experiments we analyse the prediction capabilities of 
he model in the portion of expert-unlabelled data in TR , referred to
s U . This way, we differentiate between the so-called transductive
nd inductive learnings, similar to the way it is usually done in
SL experiments. The first one addresses label prediction for the 
nlabelled part of the set TR by jointly considering the labelled
nd unlabelled data provided at the beginning. The latter, ho we ver,
oncerns the whole set TR as training examples and targets the
rediction of unseen data (Triguero et al. 2015 ). Therefore, E ∪ U =
R , and A is partially o v erlapped with E and U . In terms of the
elative size of these sets, it is assumed that | E | � | A | � | TR | , as it
s the case in current CzS projects (Lintott et al. 2008 ). 

The CzSL methodology consists of three phases that sequen- 
ially learn from unlabelled data, amateur-labelled data, and expert- 
abelled data last. The DL-based implementation proposed enables 
ottom-up learning: it starts from the bottom up in the knowledge
ramework described earlier. This is in contrast to self-labelling 
trategies in SSL, which extend the labelling from labelled to 
nlabelled examples (Triguero et al. 2015 ). Such approaches tend to
ake misclassifications in the labelled set enlarging process, which 

lso increases the computational cost in terms of runtime due to
epeated trainings. In contrast, CzSL first exploits unlabelled data 
nd then learns from amateur and expert labels. As such, all of the
R data reinforce the CNN pre-training without using potentially 
oisy labels across U . 
The implementation of CzSL is based on tw o k ey elements: the

re-training and fine-tuning of a CNN aided by a CAE, and an MLP.
he former is used in the first and second stages of the method
MNRAS 526, 1742–1756 (2023) 
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Figure 3. The CzSL learning workflow. 
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o learn from unlabelled and amateur-labelled data using CAE and
NN, respectively, which share a common architecture that makes

t possible to transfer the weights across the three stages of the
ethod. The latter is employed in the first part of the third phase to

xtend the expert knowledge to all of the available CzS data. After
his, the CNN is finally fine-tuned, employing expert, and enhanced
mateur labels. These stages are described further. The complete
zSL learning workflow is depicted in Fig. 3 . 

(i) Stage 1: CAE-CNN pre-training. Exploiting unlabelled data
ith a CAE . CzSL starts by employing the whole set of images in TR
ith no consideration to image labels. The CAE learns patterns from

he data, and as such enables the unsupervised pre-training of the
NN employed in the subsequent stages. As described earlier, the

eature extraction layers of the CNN must match the CAE structure,
llowing weights to be transferred between both DL models (dashed
rrows from Stage 1 to Stage 2 in Fig. 3 ). We refer to this process as
AE-CNN pre-training. 
(ii) Stage 2: CNN pre-training. Learning fr om r ough amateur

abels . The CNN, previously loaded layer by layer with the CAE
eights, is pre-trained o v er the A subset using the amateur labels
erived from the scores included in the CzS data. These labels are
enerated adopting a simple majority criterion: the class holding
he highest score is assigned to the example. In case of a tie, the
lass is assigned at random. This phase aims at pre-training the
NN with rough labels, which are more numerous than their expert
ounterparts although noisier as well, in the sense of potentially
ncorrect. Then, CNN weights will be transferred to the last stage of
he learning process. Here, the CzS data are first leveraged in a rough

ode (majority criterion), in contrast with the following phase that
ocuses on enhancing amateur knowledge with the help of expert
lassifications. 

(iii) Stage 3.a: MLP extension. Extending expert knowledge to
zS data . At this stage, we complete the extension of the expert
nowledge in E to the remaining examples in A (note that E ⊂A , so
his affects the examples in A \ E ). To this end, we implement an MLP
hat learns the correlation between expert labels and amateur scores
ncluded in the CzS data. The MLP is trained using the expert-
abelled portion of the data: amateur scores are used as the MLP
nput, and expert labels as output. Ho we ver, note that this stage does
NRAS 526, 1742–1756 (2023) 
ot depend on the selected algorithm to carry out the knowledge
xtension process, and other suitable classifiers could be applied
uccessfully. 

(iv) Stage 3.b: CNN fine-tuning. Learning from expert and en-
anced amateur labels . Once the expert knowledge extension has
een completed using the amateur scores and expert labels in E , the
LP predictions are employed as enhanced amateur labels for the

est of images in A . Thus, the A image subset is labelled with expert
abels for examples in E and enhanced amateur labels for examples in
 \ E , which we denote as A 

∗ from now on. The CNN is loaded layer
y layer with the resulting weights of Stage 2 and using identical
onfiguration (dashed arrows from Stage 2 to Stage 3.b in Fig. 3 ) is
rained on the A 

∗ subset. This completes the CNN fine-tuning with
he finest labels, leveraging the highest level of kno wledge achie ved
rom expert labels and amateur scores. 

After completing the whole process, the CNN has captured the
nformation present in expert labels, rough amateur labels, and
atterns learnt in Stage 1 and it is ready to predict unseen examples
n TS set. Although the CzSL integrates both amateur and expert
e vels of kno wledge, we are also interested in exploring how the
reatment of the uncertainty by the data transformations proposed in
im ́enez et al. ( 2019 ) and briefly introduced in Appendix A behave
n conjunction with the CzSL learning. To this end, we employ either
riginal or transformed scores as input to the MLP in the Stage
.a, an aspect that will be tested in the experiments with binary and
ulticlass classification data sets. In the following section, we detail

he implementation of the DL models involved. 

.3 Implementation 

he CzSL implementation is based on the pre-training and fine-
uning of a CNN using a CAE, and an MLP for expert knowledge
xtension to CzS data. These architectures are not proposed as a final
esign for CzSL’s implementation, although the y hav e been tested
ith success in a previous study with GZ1 data that investigated

he pre-training and fine-tuning of a CNN employing amateur and
 xpert labels, respectiv ely (Jim ́enez et al. 2020 ). On the basis of these
esults, we add the CAE-CNN pre-training process to exploit the
ealth of unlabelled data. Ho we ver, other CNN or MLP topologies
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Table 2. CAE (left) and CNN (right) architectures implemented. 

Layer Type Size Stride Acti v ation Layer type Size Stride Acti v ation 

Convolution 16 kernels (3 × 3) 1 ReLU Convolution 16 kernels (3 × 3) 1 ReLU 

Pooling (2 × 2) 2 – Pooling (2 × 2) 2 –
Convolution 8 kernels (3 × 3) 1 ReLU Convolution 8 kernels (3 × 3) 1 ReLU 

Pooling (2 × 2) 2 – Pooling (2 × 2) 2 –
Convolution 8 kernels (3 × 3) 1 ReLU Convolution 8 kernels (3 × 3) 1 ReLU 

Pooling (2 × 2) 2 – Pooling (2 × 2) 2 –
(Embedded layer) Fully connected 256 neurons – ReLU 

Deconvolution 8 kernels (3 × 3) 1 ReLU Fully connected 128 neurons – ReLU 

Pooling (2 × 2) 2 – Output 2 or 3 neurons – SoftMax 
Deconvolution 8 kernels (3 × 3) 1 ReLU 

Pooling (2 × 2) 2 –
Deconvolution 16 kernels (3 × 3) 1 Sigmoid 
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Table 3. Data sets used in the experiments. The distribution v alues follo w the 
same order as in the data set label, for example, for GZ1-(RLE) the numbers 
indicate the percentage of right-handed and left-handed spiral, and elliptical 
classes. 

Data set No. examples Classes distribution (per cent) 
Expert labels Amateur labels 

GZ1-(SE) 40 902 60.7 : 39.3 58.6 : 41.4 
GZ1-(RLE) 40 902 30.1 : 30.6 : 39.3 28.8 : 29.9 : 41.3 
GZ1-(MG) 43 779 6.5 : 93.5 6.5 : 93.5 
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ould be beneficial depending on the classification problem being 
ackled or the data that are used. In what follows, the implemen-
ations of the DL models later employed in the experiments are 
ntroduced. 

.3.1 CAE-CNN pre-training and CNN fine-tuning 

e proposed very simple yet ef fecti ve CAE and CNN models that
ave been thoroughly tested with success in previous investigations 
ithin the galaxy image classification problem (Jim ́enez et al. 
020 ). The CAE deploys three pairs of convolution – pooling layers 
etween input and encoding. The first convolution layer contains 
6 kernels, and the second and third hold 8 kernels. Receptive 
elds are 3 × 3 pixels size with stride 1 and zero padding, and
ooling layers implement max pooling with 2 × 2 pixels windows 
nd stride 2. ReLU are selected as acti v ation functions along the
hole architecture except in the output layer that uses sigmoid 

unction. 
The implemented CNN resembles the CAE described earlier. It is 

omposed of three pairs of convolution – pooling layers that complete 
he feature extraction, followed by two dense layers of 256 and 
28 neurons and the output layer with same number of neurons as
lassification classes defined in the problem. For convolution layers, 
t also computes 16 feature maps in the first layer, and 8 in second
nd third layers with 3 × 3 receptive fields in all cases. Pooling layers
mplement max pooling with 2 × 2 pixels windo ws. ReLU acti v ations
re used except for the output layer, which uses the SoftMax function,
hus giving rounded probability distributions to produce the final 
lass labels. These specifications are summarized in Table 2 . 

.3.2 MLP for expert knowledge extension 

LPs represent the simplest type of feed-forward artificial neural 
etworks (Lecun et al. 2015 ), consisting of input and output layers
f neurons with a variable number of hidden layers in between. All
eurons deployed through the layers are densely connected, and the 
tructure is trained by the back-propagation algorithm (Rumelhart, 
inton & Williams 1986 ). The MLP implementation used in our 

xperiments is composed of four hidden layers with 8, 7, 5, and 3
eurons. As with the CNN implemented, SoftMax is applied to the 
ast layer to provide class probabilities. Prior to the experiments, 
ther architectures were thoroughly tested through a grid search that 
ighlighted the model that performed best with the classification 
roblems co v ered in our experiments. The procedure followed is
xplained in detail in Appendix B. 
 EXPERI MENTS  

his section presents the experiments that have been conducted to 
est the proposed CzSL approach. First, we describe the data sets
sed (Section 4.1 ). Secondly, we introduce a set of comparative
pproaches defined to develop a well-grounded analysis of the CzSL 

erformance (Section 4.2 ). Thirdly, we specify the criteria adopted 
n the e v aluation of experiments as well as the implementation
arameters employed (Section 4.3 ). 

.1 Data sets 

n the experiments, we leverage three distinct problems derived 
rom the GZ1 project results aiming to test the proposed learning
ethodology in varied classification environments. The data sets 

mployed are defined by the availability of expert labels, which are
onsidered as ground truth in the e v aluation of the results. These
ata sets are defined as follows, and their features are summarized in
able 3 : 

(i) GZ1-(SE): This data set derives from the expert catalogues 
riginally employed by the GZ1 developers for the assessment of the
roject results (Lintott et al. 2008 ). These are the MOSES catalogue
Schawinski et al. 2007 ), for elliptical galaxies (E), and the Longo
atalogue (Longo 2011 ), for spirals (S). The combination of both
amples forms a total of 40 902 examples classified as spiral or
lliptical (binary classification) which is called GZ1-(SE). 

(ii) GZ1-(RLE): The Longo catalogue also provides two sub- 
lassifications for spiral galaxies depending on the handedness of 
ts spiral arms. This information enables us to define a multiclass
roblem by splitting the spiral galaxies included in GZ1-(SE) into two 
lasses: right-handed (R) and left-handed spiral (L). In conjunction 
ith the elliptical class, we define the GZ1-(RLE) data set, also

onsisting of 40 902 examples. 
MNRAS 526, 1742–1756 (2023) 



1748 M. Jim ́enez et al. 

M

Figure 4. Sample of 64 × 64 pixels RGB images from the three data sets used in the experiments. Left panel shows images in which there was consensus 
between expert and amateur classifications. Right panel shows images in which there was disagreement between experts and amateurs: yellow and green labels 
indicate expert and amateur classifications, respectively. 
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(iii) GZ1-(MG): This data set comes from an expert catalogue
enerated for the study of galaxy mergers within the original GZ1
ata. This is the catalogue published in Darg et al. ( 2010 ), which
ncludes a set of 3003 visually selected pairs of merging galaxies. We
rst cross-match this catalogue against the combination of MOSES
nd Longo catalogues. Galaxies included in both samples are taken
s merger 3 (MG), whereas the rest of examples are kept as no-
erger (No-MG). Then, the rest of examples in the Darg catalogue

re added to the final sample as MG. Specifically, there is an o v erlap
f 126 examples both included in GZ1-(SE) and Darg catalogue, and
877 examples not present in GZ1-(SE) that are added. We refer
o this imbalanced data set as GZ1-(MG), which consists of 43 779
xamples. 

The amateur classifications considered are part of the so-called
Z1 Table 2 data set 4 (GZ1-T2) (Lintott et al. 2011 ), which does
ot provide a final classification for the galaxies but a set of votes
or each of the images displayed on the GZ1 website. Previous uses
f these data have drawn on the application of different thresholds
 v er these scores in order to obtain samples of varied quality, leaving
he major part of the CzS results unused (Jim ́enez et al. 2019 ). In
ontrast, in this paper we apply a ‘strict majority’ criterion to obtain
he rough amateur labels required by CzSL, allowing us to exploit
he totality of GZ1 results. In the case of a tie between the scores
e.g. elliptical and spiral scores both equal 0.5), we assign a random
lass to the example. In GZ1-(RLE) and GZ1-(MG) samples, the
ajority criterion is applied consistently to obtain amateur labels:

ight-handed spiral and left-handed spiral classes are assigned to the
lass with the highest score between Clockwise and Anticlockwise
piral scores, for examples whose combined spiral score is greater
han their elliptical score. Likewise, the merger class is allocated
NRAS 526, 1742–1756 (2023) 

 This is not a contradiction, since a galaxy merger is a fusion between two 
r more galaxies itself, it might be labelled as either spiral or elliptical with 
alidity depending on the morphology of the most prominent component of 
he merger. 
 These data are publicly available at https:// data.galaxyzoo.org/ . 

e  

p  

5

6

o examples holding a merger score greater than 0.5, and ties are
andled assigning a random class. 
The images utilized follow the same specifications originally

mployed in GZ1. We accessed the GZ1-T2 image collection from
he Sloan Digital Sk y Surv e y 5 using the CAS 

6 tool. To do so, we
ollowed the original specifications and 424 × 424 pixels size as is
xplained in Lintott et al. ( 2008 ). Ho we ver, pre vious investigations
oncluded that the performance of the proposed CAE and CNN is
ot significantly affected by the image size (Jim ́enez et al. 2020 ).
imilarly as is proposed in other works (Dieleman & Dambre 2015 ),
e first converted the images to TIFF format and cropped them

o half their original size, keeping the galaxy in the centre, and
ompressed them to 64 × 64 pixels size to accelerate the training of
he DL models. Fig. 4 shows a sample of actual images used in the
xperiments from the three data sets investigated. 

.2 Comparati v e approaches 

lthough there is a plethora of approaches that delves into the
ynergy between unlabelled and labelled data, some of which
ave been listed earlier, our proposal focuses on the simultaneous
xploitation of the three levels of knowledge identified (Fig. 1 ), which
as been barely explored trough the literature. We first conduct a
omparative study of the proposed algorithm versus a set of baseline
pproaches that are trained using different configurations of the data
ramework defined earlier (Fig. 2 ). In second place, we complete an
blation study in order to elucidate the contribution of the different
earning stages of the methodology (Fig. 3 ). In all cases the same
NN model is used, which allows us to analyse to what extent it is
ossible to predict TS examples by learning from single or combined
xpert and amateur label sets and introducing the MLP extension into
lay. We also define an additional approach inspired by self-labelling
 https:// www.sdss.org/ 
 http://cas.sdss.org 

https://data.galaxyzoo.org/
https://www.sdss.org/
http://cas.sdss.org
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Table 4. Comparative approaches established for the evaluation of the CzSL model. 

Approach Learns from (per cent of TR ) Labels used Description 

Expert Oracle TR (100 per cent) Expert CNN trained o v er the entire TR set with expert labels 
Amateur Oracle TR (100 per cent) Amateur CNN trained o v er the entire TR set with amateur labels 
Expert E (5 per cent) Expert CNN trained o v er the E set with expert labels 
Amateur A (25 per cent) Amateur CNN trained o v er the A set with amateur labels 
Expert-Amateur E ∪ A (25 per cent) Expert and Amateur CNN trained o v er E ∪ A using expert labels for examples 

in E and amateur labels in the rest ( A \ E ) 
MLP A 

∗ (25 per cent) Expert and MLP predictions CNN trained o v er A 

∗ using expert labels for examples 
in E and MLP predictions in the rest ( A \ E ) 

MLP-SL TR (100 per cent) Expert, MLP predictions, CNN first trained o v er A 

∗ using expert labels ( E ) and 
and CNN predictions MLP predictions ( A \ E ), and then o v er the entire TR 

adding its own predictions in the rest of examples ( U \ A ) 
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echniques (Triguero et al. 2015 ). These comparative approaches are 
escribed below. 

(i) Oracles . First, we contemplate an ideal situation in which we 
ould hold either expert or amateur classifications for the whole data. 
e refer to these approaches as or acles , as the y are meant to serve as

pper-bounds for the rest of the e xperiments. F or both Expert Oracle
nd Amateur Oracle , the CNN takes the whole TR set with expert and
mateur labels, respectively, although the evaluation in TS is al w ays
arried out using expert labels (ground truth). These two approaches 
ot only establish upper thresholds for the experimental results, but 
lso serve as an assessment of the CzS data, that is, amateur labels
hould lead to a worse performance in terms of prediction accuracy. 

(ii) Pure supervised learning . We then train using expert and am- 
teur labels, either independently or jointly. As such, we investigate 
he performance of the selected CNN in a purely supervised training 
ramework. This will also provide information about the relative 
ifficulty of the classification problems explored and the potential 
mpro v ements obtained by the CzSL model by treating the results of
he pure supervised training as lower-bounds. We define the Expert , 
mateur , and Expert-Amateur approaches, in which the CNN learns 

rom E , A , and E ∪ A sets, respectively. In the last case, expert labels
re considered for examples in E and amateur labels for the rest
 A \ E ). 

We also test the performance of the proposed MLP regardless of the
zSL model in two additional comparative approaches. Recall that 
zSL learns patterns from unlabelled data, and then from amateur 
nd expert labels, and MLP predictions, leveraging the full range of
v ailable kno wledge in a bottom-up f ashion. Conversely, these tw o
omparative approaches represent top-down strate gies: the y learn 
rom expert labels to enhance amateur labels and then extend the 
abelling to unlabelled data. 

(i) MLP . The first one, referred to as MLP , is intended to
nvestigate the MLP capabilities to replicate expert labels by using 
mateur scores only, enlarging the E set with additional examples 
resent in A . The MLP is trained on E using expert labels, and then
mployed to enhance amateur labels in A \ E . After this, the CNN is
rained on A 

∗ using expert labels and MLP predictions for images in
 and A \ E , respectively. 
(ii) MLP Self-labelling . The second approach is a test of the MLP

ithin a different learning algorithm, allowing us to evaluate this 
omponent of the CzSL model in a different setting. This approach, 
eferred to as MLP-Self-labelling and designated from now on as 

LP-SL , extends the previous MLP algorithm explained above to a 
asic self-labelled approach after completing the extension of expert 
nowledge. The CNN is trained o v er the entire TR set using expert
abels ( E ), MLP predictions ( A \ E ), and the CNN predictions for the
est of the examples in U , that is, 75 per cent of the data are not
ncluded either in E nor A . For simplicity, we only complete one
ingle iteration, given that multiple iterations would invalidate such 
n approach in terms of the training time. 

The complete set of comparative approaches is summarized in 
able 4 . With MLP and MLP-SL approaches we also investigate the
se of the data transformations developed in Jim ́enez et al. ( 2019 ),
hich aggregate additional information about the uncertainty present 

n the original GZ1-T2 data set. We compare the performance of these 
pproaches employing either the transformed scores or the original 
nes in GZ1-(SE) and GZ1-(RLE) data sets. The scores inputted 
o the MLP in Stage 3.a are those for the Elliptical , Combined
pir al , Clockwise Spir al , Anticlockwise Spir al , Edge-on Spir al , Don’t
now , and Merger classes. Therefore, with the transformed scores, 

he elliptical and combined spiral original scores were replaced by 
he scores obtained after applying the data transformation that best 
erformed in Jim ́enez et al. ( 2019 ). This transformation sequence is
omposed of a combination of Normalisation , DK Votes shift , and
otes boost transformations, applied to the scores in this order. A
etailed explanation is included in Appendix A. 
F or the e xperiments with the GZ1-(MG) data set, we consider two

dditional settings in order to verify the experimental results without 
he added complication of imbalanced classification. Amongst the 
lethora of data pre-processing techniques that have been widely 
tudied in the literature (Thabtah et al. 2020 ), we opt for random
 v er-sampling (ROS) and random under-sampling (RUS), two simple
pproaches that have extensively provided good results (Galar et al. 
012 ). R OS and R US are sampling techniques that most directly
djust the imbalance ratio (IR), defined as the ratio between the
ajority and minority classes numbers of examples in the data (L ́opez 

t al. 2013 ). For ROS, instances of the minority class are randomly
eplicated until certain IR is achieved. In the case of RUS, examples
f the majority class are randomly remo v ed to balance the IR. In our
xperiments ROS and RUS are applied to reach IR = 1.0, that is, the
ame number of merger and no-merger examples in the final data. 

.3 Experimental evaluation and parameters 

he data sets were partitioned using a five-fold cross-validation 
cheme, so that 80 per cent of the data were employed as a TR
et and the remaining 20 per cent as a TS set. In a similar way to how
SL experiments are usually conducted (Triguero et al. 2015 ), TR

s composed of a small amount of labelled data and a larger set of
nlabelled data. Following the nomenclature previously introduced 
Section 3.2 ), 75 per cent of the examples are included in the U set
MNRAS 526, 1742–1756 (2023) 
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Table 5. Results for oracles in the three data sets investigated. 

Data set Expert oracle Amateur oracle 
Acc TS Acc TS 

GZ1-(SE) 0.9510 ± 0.0037 0.9169 ± 0.0053 
GZ1-(RLE) 0.8181 ± 0.0166 0.8065 ± 0.0165 

G-mean TS G-mean TS 

GZ1-(MG) 0.7592 ± 0.0274 0.5768 ± 0.0613 
GZ1-(MG) + ROS 0.8487 ± 0.0026 0.7669 ± 0.0048 
GZ1-(MG) + RUS 0.8738 ± 0.0092 0.8754 ± 0.0050 

Figure 5. Execution times in logarithmic scale for oracles. 
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nd taken as unlabelled (labels are ignored), and the rest (25 per cent)
s assumed to hold amateur labels based on CzS data, forming the A
et. Of the data included in A , we consider 5 per cent of the entire
R as expert-labelled ( E ). Therefore, CzSL takes the E set entirely

ncluded in A : we assume that we have expert classifications for
0 per cent of the data labelled by amateurs. These percentages are
rbitrary and are only meant to reflect the relative abundancy of
xpert-, amateur-labelled, and unlabelled images. Mathematically:
 ∪ U = TR , and E ⊂A . The sizes of these sets remain fixed within
ach of the five TR partitions arranged as a result of the five-fold
ross-v alidation, allo wing us to keep the number of experiments
o a reasonable amount. Nevertheless, future work will entail the
xploration of 25 per cent and 5 per cent random samples of TR to
roduce the A and E sets, respectively. We first sample the five-fold
ross-validation and then define E , A , and U sets from TR . 

Expert classifications are al w ays regarded as ground truth for the
 v aluation of results, although classifications carried out by expert
stronomers are also prone to be biased or incorrect. Ho we ver, we
ill assume that expert classifications are the most reliable in terms
f classification accurac y. F or GZ1-(SE) and GZ1-(RLE) data sets,
iven that the class distributions are well-balanced (Table 3 ), we
mploy the accuracy (Acc) metric to compare the performance of
he different approaches (Witten & Frank 2005 ). Acc reports the
umber of correctly predicted e xamples o v er the total number of
lassified examples. Ho we ver, this measure is less representative
n imbalanced classification frame works, gi ven that the classes are
ot equally weighted in such cases. Instead, we use the geometric
ean (G-mean) (L ́opez et al. 2013 ) for the experiments involving

he GZ1-(MG) data set. G-mean is calculated as the geometric mean
f the true positive rate ( TP rate ) and true negative rate ( TN rate ), which
eports how well the algorithm examined is able to predict both
lasses at the same time. TP rate and TN rate quantify the percentage of
ositiv e and ne gativ e instances correctly classified, respectively, and
re mathematically defined as follows 

 P rate = 

T P 

T P + F N 

, T N rate = 

T N 

F P + T N 

. 

Then 

-mean = 

√ 

T P rate · T N rate . 

Besides the classification accuracy, we also examine the runtime to
haracterize the performance of each of the comparative approaches
efined. For Expert, Amateur, and Expert-Amateur approaches, the
untime is expected to be proportional to the amount of data used
n the model’s training. Ho we ver, for MLP, MLP-SL, and CzSL this
omparison is not so straightforward, given that these models are
omposed of several phases employing different partitions of the TR
et. In order to minimize the effect of the randomness due to the
nitialization of weights in DL models, we completed 10 e x ecutions
f every single experiment. Hence, the metrics’ values presented
n what follows correspond to the av erage o v er ten independent
 x ecutions of the same experiment. We take as representative the
verage runtime of the training over one single partition of the five-
old cross-validation ( TR data) along with its standard deviation. In
his respect, we report the CNN training time only, as this is the

ore significant phase of the experiment in terms of total runtime
nd accounts for a stage that is common to every approach across the
hree data sets investigated. 

All the experiments were run in a single node with an Intel(R)
eon(R) CPU E5-1650 v4 processor (12 cores) at 3.60 GHz and
4 GB of RAM. The training of CAE and CNN models implemented
ither in the CzSL approach or other algorithms used a NVIDIA
NRAS 526, 1742–1756 (2023) 
itan Xp GPU. CAE and CNN were trained o v er 100 epochs with
 batch size of 256 images, using mini-batch gradient descent for
ptimization, and TR was split into 70/30 for training and validation,
espectively. The MLP was trained over 300 iterations, employing
he ReLU acti v ation function and stochastic gradient descent as well.
n terms of software, we used the KERAS 7 and SCIKIT-LEARN 

8 Python
ackages for the implementation of CAE and CNN models, and
 v aluation metrics. Except for the aforementioned specifications, the
emaining parameters are kept at their default values. 

 RESULTS  A N D  ANALYSI S  

his section presents the results of the experiments conducted for
he testing of the proposed CzSL approach in accordance with
he comparative approaches and experimental framework that are
escribed in the previous section. The obtained results along with
heir analysis are summarized in the following for oracles and the
hree data sets co v ered (Sections 5.1 , 5.2 , and 5.3 , respectively). After
his, we investigate the application of data augmentation techniques
n the training data sets, comparing their effects on Expert and
mateur comparative approaches, as well as on CzSL (Section 5.4 ).
inally, the CzSL’s learning process is examined in an ablation study

hat elucidates the contribution of each of the learning phases of the
lgorithm to its o v erall performance (Section 5.5 ). 

.1 Oracles 

racles employ the entire TR set for completing the CNN training in
 pure supervised way, either using expert or amateur labels. These
esults are shown in Tables 5 for Acc and G-mean average values
btained in TS set, and Fig. 5 for average training times for the CNN

https://keras.io/
https://scikit-learn.org
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Table 6. Results with GZ1-(SE) and GZ1-(RLE) data sets. In each column, the best result is highlighted. 

Approach GZ1-(SE) GZ1-(RLE) 
Acc U Acc TS Acc U Acc TS 

Expert oracle – 0.9510 ± 0.0037 – 0.8181 ± 0.0166 
Amateur oracle – 0.9169 ± 0.0053 – 0.8065 ± 0.0165 

Expert 0.9222 ± 0.0040 0.9225 ± 0.0047 0.6320 ± 0.0058 0.6367 ± 0.0071 
Amateur 0.9162 ± 0.0028 0.9143 ± 0.0044 0.6520 ± 0.0074 0.6468 ± 0.0055 
Expert-amateur 0.9288 ± 0.0033 0.9285 ± 0.0038 0.6595 ± 0.0037 0.6555 ± 0.0033 
MLP original 0.9392 ± 0.0026 0.9381 ± 0.0023 0.6601 ± 0.0022 0.6563 ± 0.0030 
MLP transformed 0.9411 ± 0.0017 0.9402 ± 0.0023 0.6622 ± 0.0054 0.6585 ± 0.0042 
MLP-SL original 0.9419 ± 0.0016 0.9407 ± 0.0018 0.6735 ± 0.0059 0.6665 ± 0.0057 
MLP-SL transformed 0.9440 ± 0.0018 0.9430 ± 0.0023 0.6733 ± 0.0065 0.6656 ± 0.0058 
CzSL original 0.9396 ± 0.0025 0.9372 ± 0.0029 0.7334 ± 0.0062 0.7167 ± 0.0061 
CzSL transformed 0.9435 ± 0.0028 0.9405 ± 0.0036 0.7380 ± 0.0049 0.7192 ± 0.0052 
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Figure 6. Execution times in logarithmic scale for GZ1-(SE) and GZ1-(RLE) 
data sets. 
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 v er one single TR partition (average values o v er the 10 e x ecutions
ompleted in all cases). The computational time taken by ROS and 
US pre-processing phases is considered negligible. 
Although the three classification problems employ the same sort 

f images, experimental results show a wide range of difficulty 
n the recognition of patterns by the CNN. The CNN shows the
est performance with the binary problem. Then distinction between 
ight-hand and left-hand spirals appears to be more difficult, and the 
dentification of galaxy mergers highlights as the hardest problem. 
here is also a big difference in terms of label quality that is
learer in GZ1-(SE) and GZ1-(MG) data sets, probably because 
he identification of handedness does not depend on experienced 
nowledge (less discrepancy between expert and amateur labels). 
he training using expert labels yields better results, except for 
lassification of mergers with RUS. This may be due to the inherent
andomness of the under-sampling process in conjunction with the 
mall amount of data employed, which could tend to diminish the 
istinction between amateur and expert labels when the number 
f examples used in the learning is minimal. The pre-processing 
echniques used with the GZ1-(MG) data set also have a big impact
n terms of G-mean and runtime: RUS provides the best performance 
mploying the shortest runtime. 

.2 Binary and multiclass classification 

he experiments with GZ1-(SE) and GZ1-(RLE) data sets address 
inary and multiclass classification problems, respectively. In the 
ormer case, the CNN is trained to distinguish between elliptical and 
piral classes. In the latter, it must also discern the handedness of
he (spiral) galaxy’s arms. In these two problems, we additionally 
nvestigate the influence of the data transformations proposed in 
im ́enez et al. ( 2019 ), comparing the original scores, as they are
ncluded in GZ1-T2 data, against their transformed version. This 
omparison only involves the approaches that use the MLP classifier: 
LP, CzSL, and MLP-SL. Results are presented in Table 6 for

verage Acc values in transductive and inductive learning, that is, 
he performance in U and TS sets, respectively. Fig. 6 depicts the
otal training times, where top and bottom bars represent the same 
xperiment using original and transformed scores, respectively. In 
ddition, the total training times of MLP-SL and CzSL are detailed 
n Table 7 , where the different phases’ average runtime is presented.

From these results, we highlight the following remarks: 

(i) The comparison against oracles shows that there is a wider 
argin of impro v ement in the multiclass problem. The impro v ement

rovided by the use of more labelled data is almost homogeneous, 
xcept when using amateur data only (Amateur approach), starting in 
he pure supervised approaches, then MLP-based, and CzSL. Once 

ore, the employment of expert labels in comparison with their 
mateur counterparts seems more important for GZ1-(SE) than for 
Z1-(RLE), probably indicating that the noise margin is quite similar 

or both label sets in the latter problem. 
(ii) The use of additional levels of knowledge clearly represents 

n advantage, as the ablation study later confirms. For both data
ets, the employment of expert plus amateur-based data outstrip 
hese sets separately. The addition of unlabelled data also pro v es
o be key, either by MLP-based approaches or CzSL. In GZ1-
SE), MLP-SL slightly outperforms CzSL, and this result is more 
ccentuated in TS data. Nonetheless, this impro v ement is ne gli-
ible in comparison with the quality jump shown by CzSL in
he multiclass setting, which outperforms all top-down strategies 
xplored. 

(iii) Transformed scores surpass original ones for both GZ1- 
SE) and GZ1-(RLE) data sets, except for the MLP-SL approach 
or the latter. This can be explained considering that the trans-
ormations were designed to be used in the context of binary
lassification. Thus, the distinction between right-handed and left- 
anded spiral classes might not be impro v ed by using them. Ho we ver,
he o v erall tendenc y points towards the utility of this approach
ithin the CzSL learning, depending on the classification problem 

o v ered. 
(iv) CzSL increases the required runtime with respect to MLP-SL 

n ∼500 s, due to the CAE training o v er the entire TR set (Table 7 ),
hich signifies a slower training for the proposed CzSL with the data
artitions established for the e xperiments. F or the rest of approaches,
MNRAS 526, 1742–1756 (2023) 
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Table 7. MLP-SL and CzSL total training time analysis for GZ1-(SE) and GZ1-(RLE) data sets. All values are in seconds (s). 

Data set MLP input scores MLP-SL CzSL 

Training ( E ∪ A 

∗) Training ( TR ) Total 
CAE training 

( TR ) 
Pre-training 

( E ∪ A ) 
Fine-tuning 

( E ∪ A 

∗) Total 

GZ1-(SE) Original 272.0 ± 3.9 1185.0 ± 16.5 1457.0 ± 20.4 1422.3 ± 65.4 207.7 ± 7.7 209.0 ± 7.5 1839.0 ± 80.6 
Transformed 264.5 ± 4.1 1180.5 ± 18.9 1445.0 ± 23.0 236.1 ± 3.9 236.2 ± 4.7 1894.6 ± 74.0 

GZ1-(RLE) Original 268.6 ± 7.1 1176.8 ± 16.3 1445.4 ± 23.4 208.7 ± 5.3 211.5 ± 4.7 1842.5 ± 75.4 
Transformed 251.0 ± 8.4 1121.5 ± 15.7 1372.5 ± 24.1 167.3 ± 9.2 165.0 ± 6.8 1754.6 ± 81.4 
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 x ecution times are similar for both classification problems and
roportional to the amount of data used in the training. 

.3 Imbalanced classification 

xperiments with the GZ1-(MG) data set tackle the added difficulty
f imbalanced classification, for which we provide two additional
ettings with ROS and RUS techniques. In these experiments, the
NN is trained to distinguish between galaxy mergers and single
alaxies, either elliptical or spiral, using original scores only. Results
re presented in Table 8 for average G-mean values in U and TS sets.
ig. 7 depicts the total training times. As discussed earlier, the total

raining times of MLP-SL and CzSL are analysed in Table 9 . All
alues indicated are in seconds. 

From these results, we highlight the following remarks: 

(i) The inclusion of ROS and RUS techniques has pro v en to be
rucial, considering their o v erall performance in oracles, comparative
pproaches, and CzSL. As in GZ1-(SE), the best results across
he three variants of the problem reach comparable performance to
racles. Employing 5 per cent and 25 per cent of TR data only (with
xpert and amateur labels, respectively), CzSL and MLP-SL are able
o provide similar performance to the CNN using 100 per cent of the
ata. This clearly confirms the advantage behind the use of more data
nd levels of knowledge. 

(ii) CzSL provides the best result in experiments with no pre-
rocessing and RUS, showing more robustness in the former with
espect to the other two MLP-based approaches. Ho we ver, MLP-SL
eats CzSL in the classification with ROS, achieving an accuracy in
S similar to MLP approach. This might indicate that the CAE-CNN
nd CNN pre-training phases of CzSL learning lose ef fecti veness
ith the o v er-sampling of the data, by which the repetition of

xamples might prevent these models from learning more general
epresentations. 

(iii) Similarly to classification with GZ1-(SE) and GZ1-(RLE),
zSL increases the total runtime in comparison to MLP-SL on
ccount of the CAE training phase across the whole TR data.
xecution times are al w ays proportional to the amount of data
mployed in the training as a result of the application of ROS and
US techniques, or the unmodified GZ1-(MG) data set. 

.4 Data augmentation with CzSL 

revious experiments were carried out considering the data sets
ith no modifications (Table 3 ), except for the ROS and RUS
re-processings with GZ1-(MG) images. Ho we ver, it has been
emonstrated in the literature that data augmentation is capable of
nhancing the learning of the network when its complexity and the
umber of trainable weights exceed the available amount of images
Alhassan et al. 2018 ; Maslej-Kre ̌s ̌n ́akov ́a et al. 2021 ). To ensure
hat the results reported earlier for the Expert and Amateur baselines
ere sufficiently competitive with respect to using other strategies
NRAS 526, 1742–1756 (2023) 
o combat lack of labelled data, we aim to investigate the effect of
ata augmentation on the CNN’s learning that is implemented within
zSL. 
We make use of the ImageDataGenerator 9 utility from the

ERAS Python package, which generates augmented images from
 set of training data in a flexible and efficient way. It performs
light variations to the images, like rotations, vertical or horizontal
ips, and width or height shifts. The variation ranges are specified
or each of the transformations, and new images are generated
andomly in a certain amount. This randomness introduces diversity
nd variation in the training images, which is expected to enhance
he CNN’s prediction ability (Dieleman & Dambre 2015 ). To select
he configuration, we first compute several tests with Expert and
mateur comparative approaches to assess the influence of different

ransformations and ranges, noticing slight variations in the results.
e, therefore, establish a comprehensive parameter setup that in-

ludes rotation, width and height shifts, shear, zoom, and horizontal
nd vertical flips, as follows 

ImageDataGenerator(rotation range = 270, 
width shift range = 0.2, 
height shift range = 0.2, 
shear range = 0.2, 
zoom range = 0.2, 
horizontal flip = True, 
vertical flip = True, 
fill mode = ‘nearest’). 

By this, augmented images are rotated in a range of 270 ◦, are
oomed up to 20 per cent, and shifts and shears affect to the 20
er cent of image extent. Horizontal and vertical flips are also
pplied. Ho we v er, in the e xperiments involving the GZ1-(RLE) data
et, these are disabled, because a single horizontal or vertical flip
ould result in a change in the handedness of the galaxy, essentially

onverting right-handed spirals into left-handed ones and vice versa.
he ‘nearest’ fill mode indicates that new pixels that may be
reated or modified during transformations are filled with the value
f the nearest existing pixel. 
In these experiments, we augment the CNN’s training data,
aintaining the test and validation partitions unmodified. Using this

onfiguration, we extended the training data to four times its size
s it is suggested in related works with similar images (Maslej-
re ̌s ̌n ́akov ́a et al. 2021 ). In order to get an initial reference of the

ffect of the chosen technique, we first implement data augmen-
ation for Expert and Amateur comparative approaches (Table 4 ),
hich serves of a more competitive baseline using only expert

nd amateur labels, respectively. After this, we check whether the
roposed CzSL can also benefit from using data augmentation.
e do this in two different ways: first, augmenting the training

https://keras.io/api/preprocessing/image/
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Table 8. Results with GZ1-(MG) data set applying no pre-processing, ROS, and RUS. In each column, the best result is highlighted. 

Approach GZ1-(MG) GZ1-(MG) + ROS GZ1-(MG) + RUS 
G-mean U G-mean TS G-mean U G-mean TS G-mean U G-mean TS 

Expert oracle – 0.7592 ± 0.0274 – 0.8487 ± 0.0026 – 0.8738 ± 0.0092 
Amateur oracle – 0.5768 ± 0.0613 – 0.7669 ± 0.0048 – 0.8754 ± 0.0050 

Expert 0.2103 ± 0.0947 0.2096 ± 0.0973 0.7802 ± 0.0087 0.7834 ± 0.0091 0.6537 ± 0.0735 0.6537 ± 0.0736 
Amateur 0.2650 ± 0.1061 0.2624 ± 0.1063 0.7713 ± 0.0045 0.7482 ± 0.0066 0.8137 ± 0.0253 0.8107 ± 0.0226 
Expert-amateur 0.4252 ± 0.0869 0.4188 ± 0.0850 0.7951 ± 0.0130 0.7777 ± 0.0136 0.8182 ± 0.0185 0.8158 ± 0.0194 
MLP 0.7054 ± 0.0391 0.6957 ± 0.0377 0.8653 ± 0.0040 0.8333 ± 0.0069 0.8479 ± 0.0143 0.8439 ± 0.0141 
MLP-SL 0.7255 ± 0.0402 0.7053 ± 0.0422 0.8701 ± 0.0037 0.8373 ± 0.0056 0.8629 ± 0.0073 0.8573 ± 0.0086 
CzSL 0.7649 ± 0.0188 0.7431 ± 0.0217 0.8508 ± 0.0039 0.8144 ± 0.0049 0.8693 ± 0.0071 0.8631 ± 0.0079 

Figure 7. Execution times in logarithmic scale for GZ1-(MG) data set with 
no pre-processing, ROS, and RUS techniques. 
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ata in Stage 2 only and, secondly, in both Stages 2 and 3 (Fig.
 ). These results are shown in Table 10 for the three data sets
nv estigated. F or simplicity, we only compare performance metrics 
n TS data. In experiments with GZ1-(SE) and GZ1-(RLE) we em- 
loy the transformed scores, which in previous experiments demon- 
trate an impro v ed learning of CzSL in comparison with original
nes. 
As somehow expected, the use of data augmentation has a positive 

mpact in the performance for the majority of the tested models 
but not al w ays), including the two baselines (Expert and Amateur).
o we v er, the impro v ement of the baselines is generally limited with

espect to what we may impro v e using the proposed CzSL. Looking
t the results in detail, we see that such an impro v ement depends
n the classification problem being addressed. For the binary and 
ulticlass problems, both baselines impro v e slightly but still far

rom what CzSL may provide, especially if data augmentation is 
lso considered within CzSL. In particular, the most remarkable 
mpro v ement is achiev ed with the GZ1-(RLE) data set, where the
mplementation of data augmentation in Stages 2 and 3 of CzSL
eads to a significant enhancement in the model’s performance. In 
mbalanced classification problems, the results are more heteroge- 
eous. When no pre-processing is applied, the performance is greatly 
educed in all experiments, maybe due to the randomness of the data
ugmentation process that increases the dif ficulty deri ved from class
mbalance, reinforcing the majority class. The results with RUS are 
lso some what negati ve. Ho we ver, it is remarkable the increase of
erformance obtained when ROS is considered. In this case, the 
se of data augmentation has resulted in a much better performance 
or the baselines, comparable to the one we initially obtained with 
zSL. Nevertheless, CzSL also benefits substantially from using data 
ugmentation in this setting. Thus, we consider that the use of data
ugmentation is an interesting avenue to impro v e further the results
nd we recommend to explore in conjunction with the proposed 
zSL in the presence of low levels of labelled data. 

.5 Ablation study of CzSL 

inally, we conduct an ablation study to quantify separately the con-
ribution of the learning stages of the CzSL algorithm, which leverage 
he unlabelled, amateur- and expert-labelled data, respectively (Fig. 
 ). We compute the performance of an altered (ablated) version of
zSL, eliminating one of the three stages each time. We refer to

hese approaches as CzSL-[1], CzSL-[2], and CzSL-[3], indicating 
etween square brackets the stage that is ablated in accordance 
ith the description of the learning workflow (Section 3.2 ). These

esults are shown in Table 11 for the three data sets investigated,
nd original and transformed scores. For simplicity, we restrict the 
omparison to performance metrics on TS data. We also present in
ig. 8 a comparison of the ablated versions’ performances versus the
standard) CzSL’s performance. 

On the basis of these results, we elucidate that the three stages of
zSL contribute to the o v erall performance inv estigated in previous

ections. Ho we v er, the y do not equally weigh in the algorithm’s
earning. The ablation study demonstrates that the learning increases 
n the bottom-up direction, that is to say, the results for ablated
 ersions progressiv ely decrease from Stage 1 to Stages 2 and 3.
his indicates that the learning is more significant as higher levels
f knowledge are exploited, from unlabelled data to amateur and 
xpert labels. This fact is in accordance with the assumption made
s part of the moti v ation to exploit the three levels of knowledge
vailable, that is, small amounts of data are worth considering 
hether they hold a high-quality labelling. Moreo v er, this trend

hows clearer as the classification problem entails more difficulty: 
here are tiny discrepancies between the ablated versions in the 
inary problem, but these get more pronounciated for the imbalanced 
roblem and the multiclass problem, as the one presenting the 
reatest differences. Particularly, the CNN pre-training and fine- 
uning phases pro v e to be ke y in the e xperiments with GZ1-(RLE)
ata set, for which the accuracy decreases around 5–6 per cent if
e eliminate any of the two stages of the CzSL learning. Addi-

ionally, the ablation of the fine-tuning phase drastically reduces the 
erformance for the imbalanced problem when no pre-processing is 
pplied. 

 C O N C L U S I O N S  

n this paper, we have presented Citizen Science Learning, CzSL, 
 no v el learning methodology especially devised to exploit the
abelling framew ork deplo yed around the development of CzS 

rojects on the web towards an impro v ed image classification in
MNRAS 526, 1742–1756 (2023) 
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Table 9. MLP-SL and CzSL total training time analysis for GZ1-(MG) data set applying no pre-processing, R OS, and R US techniques. All values are indicated 
in seconds (s). 

Data set MLP-SL CzSL 

Training 
( E ∪ A 

∗) Training ( TR ) Total 
CAE Training 

( TR ) 
Pre-training 

( E ∪ A ) 
Fine-tuning 

( E ∪ A 

∗) Total 

GZ1-(MG) 143.5 ± 3.7 584.2 ± 6.4 727.7 ± 10.1 1712.0 ± 124.8 230.6 ± 4.7 231.1 ± 6.5 2173.7 ± 136.0 
GZ1-(MG) + ROS 290.3 ± 18.6 1191.0 ± 44.9 1481.3 ± 63.5 291.9 ± 11.2 280.0 ± 7.7 2283.9 ± 143.7 
GZ1-(MG) + RUS 24.7 ± 2.0 221.0 ± 43.6 245.7 ± 45.6 13.8 ± 0.6 21.3 ± 0.2 1747.1 ± 125.6 

Table 10. Results of the data augmentation study with Expert and Amateur comparative approaches, and the CzSL model. The best result is highlighted for 
each approach. 

Approach GZ1-(SE) GZ1-(RLE) GZ1-(MG) GZ1-(MG) + ROS GZ1-(MG) + RUS 
Acc TS Acc TS G-mean TS G-mean TS G-mean TS 

Expert (standard) 0.9225 ± 0.0047 0.6367 ± 0.0071 0.2096 ± 0.0973 0.7834 ± 0.0091 0.6537 ± 0.0736 
Expert (augmented) 0.9207 ± 0.0280 0.6363 ± 0.0298 0.0743 ± 0.1028 0.8155 ± 0.236 0.6590 ± 0.0842 

Amateur (standard) 0.9143 ± 0.0044 0.6468 ± 0.0055 0.2624 ± 0.1063 0.7482 ± 0.0066 0.8107 ± 0.0226 
Amateur (augmented) 0.9264 ± 0.0030 0.6773 ± 0.0353 0.1144 ± 0.0793 0.8147 ± 0.0336 0.7174 ± 0.0464 

CzSL (standard) 0.9405 ± 0.0036 0.7192 ± 0.0052 0.7431 ± 0.0217 0.8144 ± 0.0049 0.8631 ± 0.0079 
CzSL (Stage 3 augmented) 0.9452 ± 0.0052 0.7167 ± 0.0171 0.6619 ± 0.0557 0.8470 ± 0.0140 0.7999 ± 0.0383 
CzSL (Stages 2 and 3 augmented) 0.9468 ± 0.0022 0.7409 ± 0.0254 0.7052 ± 0.0615 0.8501 ± 0.0331 0.8270 ± 0.0107 

Table 11. Results of the CzSL ablation study. The number between square brackets refers to the learning stage that is ablated. 

Approach GZ1-(SE) GZ1-(RLE) GZ1-(MG) GZ1-(MG) + ROS GZ1-(MG) + RUS 
Original Transformed Original Transformed 

Acc TS Acc TS Acc TS Acc TS G-mean TS G-mean TS G-mean TS 

CzSL (standard) 0.9372 ± 0.0029 0.9405 ± 0.0036 0.7167 ± 0.0061 0.7192 ± 0.0052 0.7431 ± 0.0217 0.8144 ± 0.0049 0.8631 ± 0.0079 

CzSL-[1] 0.9325 ± 0.0042 0.9378 ± 0.0019 0.7002 ± 0.0052 0.7033 ± 0.0029 0.7331 ± 0.0219 0.8130 ± 0.0020 0.8496 ± 0.0375 
CzSL-[2] 0.9313 ± 0.0026 0.9327 ± 0.0016 0.6658 ± 0.0055 0.6660 ± 0.0026 0.7162 ± 0.0260 0.8018 ± 0.0037 0.8468 ± 0.0186 
CzSL-[3] 0.9144 ± 0.0059 0.9180 ± 0.0017 0.6535 ± 0.0074 0.6558 ± 0.0044 0.4845 ± 0.0413 0.7418 ± 0.0129 0.8197 ± 0.0160 

Figure 8. Comparative view of CzSL ablated versions’ performance. CzSL’s 
performance corresponds to 1.0. The number between square brackets refers 
to the learning stage that is ablated (Fig. 3 ). 
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stronomy. CzSL makes it possible to learn from data labelled by
rofessional and amateur astronomers, and from unlabelled data,
epresenting the three levels of knowledge available and worthy of
onsideration in modern CzS. It is a DL-based methodology based
n tw o k ey elements: a well-established form of transfer learning,
he pre-training and fine-tuning of CNNs, and the extension of expert
nowledge to CzS data. CzSL first learns patterns from unlabelled
ata via the pre-training of the network with a CAE, and then exploits
he limited expert knowledge to impro v e the accurac y of labels
hat are derived from a set of amateur classifications, featuring a
NRAS 526, 1742–1756 (2023) 
ransfer of labels between experts and amateurs. In summary, the
zSL algorithm has demonstrated a more integrated use of CzS data
nd classifications validated by professional astronomers that greatly
nlarges both CzS and expert efforts utility towards more robust and
eliable automated classifiers. 

As future work, we will consider a thorough exploration of more
dvanced semisupervised and self-supervised strategies to further
mpro v e the results and competitiveness of the proposed method com-
ared to current approaches that exploit labelled and unlabelled data.
s well, an in-depth investigation of data augmentation techniques

or the classification problem at hand towards a more efficient use
f expert-labelled data, the most difficult data to obtain, might entail
everal modifications to the DL solutions and architectures explored
n this research. Ho we v er, these upgrades could also pro vide fruitful
nsights at the boundaries between the use of high-quality labelled
ata, unlabelled data, and CzS. 

C K N OW L E D G E M E N T S  

uthors MJ and EJA acknowledge financial support from the State
gency for Research of the Spanish MCIU through the ‘Center
f Excellence Severo Ochoa’ award to the Instituto de Astrof ́ısica
e Andaluc ́ıa (grant no. SEV-2017-0709). This work is supported
y projects A-TIC-434-UGR20 and PID2020-119478GB-I00. We
ratefully acknowledge the support of NVIDIA Corporation with
he donation of the Titan Xp GPU used in this research. We also



CzSL: Ima g e classification with citizen science 1755 

t
d

D

D
s
r
a

R

A  

A
A
B  

B
B
B
B  

B
B
B  

C  

C
C
D
D
D  

F  

F
F  

F
G  

G  

G
G  

H  

H  

H
J
J  

K
K  

K  

K
K
L

L  

L
L
L
L
L  

L  

M  

M  

M
N  

P  

R  

R
R  

R
R
S
S  

S
S
S
S  

S  

S  

S  

S
S  

S  

S  

S  

T  

T  

T  

T  

V
W
W  

W
W  

W

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/2/1742/7277580 by U
niversidad de G

ranada - Biblioteca user on 07 N
ovem

ber 2023
hank Dr Steven Bamford (University of Nottingham) for the valuable 
iscussions about the Galaxy Zoo project and data. 

ATA  AVAILABILITY  
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esults and galaxy classifications from both volunteers and CzSL 

lgorithm as well as the images used in the CzSL training. 
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PPENDIX  A :  DATA  T R A N S F O R M AT I O N S  

he approach presented in Jim ́enez et al. ( 2019 ) aims to leverage
he uncertainty within data labelled by amateur participants in CzS
rojects, leading to impro v ed classifications and a better e xploitation
f CzS data. Such an approach assumes a Don’t Know (DK) option,
hat is, an alternative to be clicked on by participants whether the
mage is blurry, ambiguous, or difficult to be assigned to any other
f the classes, and the availability of expert classifications, which
re taken as ground truth. The method is composed of two phases.
irst, a set of three mathematical transformations is applied to the
zS scores. A hybridization strategy then explores the best joint
ombination of these based on their e v aluation against the ratings of
xperts. 

Let X = ( x 1 , x 2 ,..., x C ), x i = 

νi 

N 
, be the score vector for a given

xample, with C the number of options offered to participants in the
eb, ν i the number of votes assigned to option i , and N the total
umber of votes received by the example. The transformations are
efined as follows: 

(i) Normalization { 1 } : The scores are normalized according to
he main classes of the problem. These are the classes holding
 greater importance with respect to the rest and that repre-
ent the target of the classification problem being addressed. For
nstance, in GZ1 we highlight the Elliptical and Spiral scores
gainst the rest, Don’t Know and Merger . The normalized score
ector Z = ( z 1 , z 2 ,..., z M 

) is obtained by computing a normal-
zation z i = 

x i ∑ 

x i 
, for i ∈ { 1, 2... M } and M the number of main

lasses. 
(ii) DK votes shift { 2 } : The main classes’ scores ̂ X =

 x 1 , x 2 , ..., x M 

) are modified using the information about the
ncertainty held in DK votes. The shifted score vector ̂ W =
 w 1 , w 2 , ..., w M 

) is calculated first computing ε = 

α·μDK 

β+ νDK 
for ex-

mple, and then applying w i = x i + ε to the fa v oured class, or
 i = x i − ε

M−1 in other case, with μDK the average number of DK
otes across the entire data set, νDK the number of DK votes for
he example, and α and β parameters that are adjusted by testing a
et of pair of values and e v aluating the modified scores with expert
lassifications. The favoured class of the problem is the class that is
rone to receive more clicks whenever there is not evidence enough
o assign a different one. In GZ1, this is the case for Elliptical , as
n the absence of a good resolution, an image of a spiral galaxy will
end to be classified as elliptical. 

(iii) Votes boost { 3 } : Each score is modified using the distribution
or that class across the entire data. The boosted score vector ̂ R =
 r 1 , r 2 , ..., r M 

) is defined as r i = x i + σ sigmoid ( ̃  v i ), with ̃  v i = 

νi −μi 

σi 
,

i and σ i the mean and standard deviation o v er the entire data set for
he class, sigmoid ( x) = 

1 
1 + e −x the sigmoid function, and γ ∈ [0, 1] a

arameter to be adjusted similarly to α and β parameters introduced
arlier. 
NRAS 526, 1742–1756 (2023) 
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Once the three transformations are computed, an hybridization
trate gy e xplores the best concatenation of them, that is, the or-
er in which they are applied to the original data. For this, the
ransformations are computed following all possible combinations.
his yields a set of 

(3 
1 

) + 

(3 
2 

) · 2! + 

(3 
3 

) · 3! = 15 transformation
equences, which are e v aluated using expert classifications as ground
ruth. Finally, we obtain a ranking of sequences { xyz } that informs
bout the most adequate application of the transformations described
arlier. 

In the experiments carried out to test the CzSL algorithm, we
mploy the { 123 } transformation sequence, which applies the Nor-
alisation, DK votes shift, and Votes boost in this order to the original
Z1 scores. This sequence demonstrated the best performance

n the case study conducted with the GZ1 data. For a complete
escription of the method and the study, we refer to Jim ́enez et al.
 2019 ). 

PPENDI X  B:  MLP  DESI GN  

n order to select the best MLP architecture through experimentation,
e conduct a grid search to find the model with the best o v erall
erformance for the experiments with the classification problems
o v ered. We first establish a set of architectures involving a varied
umber of layers and neurons. Then, a nested cross-validation
Varma & Simon 2006 ) is carried out considering the E set, which is
plit in 80/20 to complete a five-fold cross-validation. This way, the
xamined MLP architectures are first trained on the 80 per cent of E
nd then ranked by e v aluating the performance of each model on the
est data (20 per cent), comparing the MLP predictions with the actual
xpert label. The obtained ranking for the three data sets explored is in
able B1 , where the number of hidden layers and neurons of the tested
odels are indicated in brackets (e.g. the [7, 5, 3] model consists of

hree hidden layers holding 7, 5, and 3 neurons, respectiv ely). F or
inary and multiclass classification problems, the values indicated
orrespond to the average Acc o v er the fiv e test data partitions. F or
he imbalanced classification problem, to the average G-mean. 

An e v aluation of the obtained results reveals that the best-
erforming MLP architecture is composed of four hidden layers
ith 8, 7, 5, and 3 neurons. As with the CNN implemented (Table 2 ),
oftMax is applied to the last layer to provide class probabilities. 

able B1. Results for the MLP architectures testing implementing 80/20
ested cross-validation o v er the E data set. The best result within each
lassification problem has been highlighted in bold. 

rchitecture Binary Multiclass Imbalanced 
(Acc TS ) (Acc TS ) (G-mean TS ) 

8, 7, 5, 3] 0.9584 0.9419 0.9773 
7, 5, 4, 3] 0.9578 0.5159 0.3911 
7, 5, 3] 0.9584 0.9328 0.9617 
5, 3] 0.9462 0.9352 0.9663 
3] 0.9266 0.5434 0.0000 
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