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Rescaled bootstrap confidence intervals for the
population variance in the presence of outliers or spikes
in the distribution of a variable of interest

Abstract

Confidence intervals for the population variance in the presence of outliers
or spikes in the distribution of a variable of interest are topics that have not
been investigated in depth previously. Results derived from a first Monte Carlo
simulation study reveal the limitations of the customary confidence interval for
the population variance when the underlying assumptions are violated, and the
use of alternative confidence intervals is thus justified. We suggest confidence
intervals based on the rescaled bootstrap method for many reasons. First, this
is a simple technique that can be easily applied in practice. Second, it is free
of probabilistic distributions. Finally, it can be easily applied to the cases of
finite populations and samples selected from complex sampling designs. Results
derived from a second Monte Carlo simulation study indicate that the suggested
confidence intervals have desirable coverage rates with smaller average widths.
Accordingly, an advantage of the suggested confidence intervals is that they offer
a good compromise between simplicity and desirable properties. The various
simulation studies are based on different scenarios that may arise in practice,
such as the presence of outliers or spikes, and the fact that the underlying
assumptions of the customary confidence interval are violated.

Keywords: Finite population, coverage rate, missing data, Normal distribution

1. Introduction

Many quantitative techniques are based on the variance of a random vari-

able, and they are applied to a wide range of disciplines and topics, such as
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social sciences, econometrics, engineering, etc. Some known examples are the
statistical inference, the hypothesis testing or the goodness of fit (see [46]). In
particular, the variance has a relevant application in Statistical Quality Control
(SQC), since this parameter is commonly used to analyze the variability of the
production process, the construction of different limits (natural tolerance limits
of the process, control limits, etc.), and the implementation of various SQC
techniques (control charts, process capability index, etc.). See also [27], [29],
[41] and [42).

The variance is usually an unknown parameter in practice. In this situation,
it is quite common to estimate the unknown parameter by using the information
collected from a random sample. For the problem of estimating the population
variance, the popular sample variance based on the Bessel’s correction is the
most common estimator. In addition, most studies report the corresponding
confidence intervals along with the point estimators. Let X, ..., X,, be a sam-
ple, with size n, taken from a given variable of interest x. The traditional con-
fidence interval for the population variance of z (02) is based on the following

assumptions:

(A1) z follows a Normal distribution with mean p and variance o2, i.e., z —

N(p,0?).
(A2) Xi,..., X, are independent and identically distributed (iid).

For instance, the Assumption (A2) holds when the sample is extracted from
an infinite population. However, this is not the case of many situations in
practice. For example, many surveys conducted by official governments or insti-
tutions, such as the European Union Statistics on Income and Living Conditions
(see [19]), are based on finite populations. Similarly, many SQC techniques are
based on finite populations, since they are applied in finite lots of products. The
traditional confidence interval for the population variance may have a poor per-
formance in the case of finite population with large sampling fraction f =n/N,
where N is the size of the finite population. It is well known that the approxi-

mation to an infinite population may fit well when f is small (see, for example,
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[29]). Estimators of the population variance under different sampling designs
can be seen in [9], [12], [I7], [36], etc. Some references that propose estimators
of the population variance in the presence of auxiliary variables are [16], [24],
[38], [40] and [39].

The main contribution of this paper is to introduce an alternative method
to construct confidence intervals for the population variance, which may offer
a good performance in the presence of different scenarios that may arise in
practice. In particular, we first analyze the presence of outliers, since they sig-
nificantly affect the estimation of the population variance. Second, the presence
of spikes in the distribution of the variable of interest may introduce biases in
the estimation of the population variance, hence this topic is also investigated.
For instance, this problem may arise when certain imputation techniques are
used in the presence of missing data, which is quite common in practice. Addi-
tional scenarios based on simulated and real populations are also studied, and
they are used to analyze the empirical performance of the various confidence
intervals when the Assumptions (A1) and (A2) are violated.

The suggested confidence intervals are based on the bootstrap methodology,
which is a common technique in social sciences when the theoretical distribu-
tion of an interest statistic is unknown ([I0} [14) 47]). In particular, we consider
the rescaled bootstrap resampling method to construct confidence intervals for
the population variance. This method was originally proposed by [33], and
numerous extensions and applications have been subsequently proposed in the
literature. The rescaled method suggested by [33] is only applicable to smooth
statistics due to the fact that the rescaling factors are applied to the survey
data values. However, [34] proposed a new version of this method where the
corresponding rescaling factors are applied to the survey weights (see [35]),
and both smooth and non-smooth statistics can be thus used. [2] proposed a
rescaled bootstrap method that can be applied to the case of without replace-
ment sampling designs. Similarly, [8] modified the rescaled bootstrap method
to the situation where the bootstrap samples are selected without replacement.

[32] proposed an extension of the rescaled bootstrap to stratified multistage de-
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signs, which has relevant applications in large scaled sample surveys and a wide
range of reweighting methods, such as the calibration estimators ([I1], [25]). [3]
proposed a novel method for the problem of estimating quantiles, and the corre-
sponding confidence intervals are based on the rescaled bootstrap method. As-
suming also the context of finite populations, [4] applied the rescaled bootstrap
technique to the case of samples selected by ranked set sampling. Additional
details related to the rescaled bootstrap and other bootstrap methods can be
found in [37]. On the other hand, the limits of the suggested confidence intervals
are obtained using the percentile and the studentized bootstrap approximations.

The suggested confidence intervals have some desirable properties. First, an
advantage of this method is its simplicity, i.e., it has a simple implementation
in practice. Second, many methods are based on a certain probabilistic distri-
bution, and the performance of such methods may be poor if this assumption is
violated. In this sense, the suggested confidence intervals are free of probabilis-
tic distributions. Finally, they can be easily applied to finite populations and
samples selected from complex sampling designs. A Monte Carlo simulation
study is carried out to analyze the empirical performance of the proposed con-
fidence intervals, and this study is based on multiple populations and scenarios
that may arise in practice. In particular, we investigate different cases where
the underlying assumptions of the customary confidence interval are violated,
such as the presence of outliers or spikes. Confidence intervals with desirable
properties are obtained, i.e., they have empirical coverage rates close to the
required nominal level, and their average widths are smaller than the average
widths of alternative confidence intervals.

This article is organized as follows. In Section 2, some existing confidence
intervals of the population variance are introduced. In Section 3, we identify
the limitations of the customary confidence interval, and they are empirically
analyzed via a first Monte Carlo simulation study. Results derived from this
section justify that the customary confidence interval may have a poor perfor-
mance under the situations investigated in this paper, and the use of alternative

confidence intervals is thus required in such cases. In Section 4, we propose using
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the rescaled bootstrap method to construct confidence intervals for the popula-
tion variance. In Section 5, the empirical performance of the various confidence
intervals is analyzed via a second Monte Carlo simulation study, and desirable
results are obtained. Note that multiple scenarios are investigated in both simu-
lation studies, such as the fact that the underlying assumptions of the customary
confidence interval are violated. Such scenarios include the presence of outliers
or spikes in the distribution. The main conclusions are summarized in Section

6.

2. Some confidence intervals for the population variance

Assuming that both Assumptions (A1) and (A2) hold, the customary 100(1—

a)% confidence interval for the population variance o2 is given by [44]:
Cl2 = [Ly2,U,-], (1)

where the lower and upper limits are defined, respectively, as

—1)8?
L= 2D
Xn-1,1-2
and
—1)82
g DS
Xn—l,%
and where

is the sample variance, z = n~! >""" | x; is the sample mean, z; denotes the ith
observed value of the variable of interest z, and X?lﬁa is the ath quantile of the
Chi-square distribution with df degrees of freedom. Note that the confidence
interval is highly sensitive if the Assumptions (A1) and (A2) are violated
([22, 26]), hence such confidence interval may have a poor performance under
different scenarios. Some examples are the situations investigated in this paper,

i.e., presence of outliers or spikes in the distribution.



Bonett ([5]) proposed the 100(1 — )% confidence interval
Clg =[Lg,Ug|, (2)
where the lower and upper limits are given, respectively, by
Lp = exp {1n(cS2) - ZlfTase} ,

Up = exp {1n(cS2) + Zl_Tase} :
Z, is the ath quantile of the standard Normal distribution,

Fa(n —3)/n]"?
se=c¢c|—F— ,
(n—1)
c=mn/(n— Z,) is an empirically determined, small-sample adjustment that
helps equalize the tail probabilities,
" /'TL_ T; —Mm 4
-
D ici(zi — )?]

is the estimator of the coefficient of kurtosis

ns and m is a trimmed mean with trim-proportion equal to 1/[2(n — 4)'/2]. A
Monte Carlo simulation study based on different probabilistic distributions was
carried out in [5]. Normal and non-normal populations were used to compare the
empirical performance of the customary (CI,2) and Bonett (CIp) confidence
intervals, and both methods were not empirically investigated in the presence

120 of outliers or spikes in the distribution.

3. Limitations of the customary confidence interval under the inves-

tigated scenarios

8.1. Description of populations and scenarios

Table [I] summarizes the different populations and scenarios considered in

125 the various Monte Carlo simulation studies discussed in this paper. First, we
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observe that real and simulated populations are used to evaluate the empirical
performance of the various confidence intervals. Note that the real population,
named as “Rods”, is used to analyze the accuracy of the confidence intervals
under this real situation. This population contains 183 measurements of the
inside diameter of connecting rods manufactured for large diesel engines, where
the average diameter is 112.015 millimeters, and the variance is given by 6.401 x
10~%. The quality of the commented connecting rods is controlled and improved
via different SQC techniques that depend on the variance, and for this reason,
the problem of estimating the population variance is an important issue in
this population. Although there has been an improvement in the accuracy,
traditional methods for data collection and processing, that is, manuals, are
still used. Accordingly, the presence of spikes is likely due to such manual
methods, and the fact that most measurements are around the target value for
the quality characteristic. A bar chart for this real population can be seen in
Figure [Il This data set is available from the authors upon request. Note that
the Shapiro-Wilk test of normality is applied and the null hypothesis is rejected,
and this implies that the Assumption (A1) is violated in the Rods population.

***Table 1 about here***

***Pigure 1 about here***

In addition, a deeper analysis is also obtained by using the simulated popula-
tions, since they have different characteristics and probabilistic properties based
on the Normal and Uniform distributions. For each probabilistic distribution,
the parameters are chosen so that the correspondent population mean is 10, and
the population variance takes the values 02 = {1,5}. Note that the Normal
population, with variance o = 1, is used to create the Qutliers and Spikes
populations, and the Assumption (A1) is violated in the Outliers, Spikes and
Uni form populations.

The customary confidence interval defined in depends on a Chi-square
distribution. However, this distribution may not fit well when the Assumptions
(A1) and (A2) are violated, and the interval (1)) may have a poor performance in

this situation. From Table [I| we observe that the sizes of simulated populations
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are N = {1000, 10000}, and the sample size is fixed at n = 200. This implies
that the sampling fraction f = n/N takes the values 0.02 and 0.2 in the case
of simulated populations. Thus, we expect that the confidence interval
performs well in the Normal population with a small sampling fraction (f =
0.02), since the approximation to an infinite population may fit well in this
situation (see, for example, [29]), and both Assumptions hold. We consider the
values N = {500, 1000} for the case of the real population. For this purpose, the
size of the Rods population (Ngoqs = 183) is duplicated k = | N/Ngoqs] times,
and N1 = Ngogs X k data are thus obtained. We assume that N = Ny + N,
and the Ny = N — N; remaining units are randomly selected from the Rods
population. For instance, the population size N = 500 is obtained by taking the
values k = 2, N; = 366 and No = 134. The same sample size used in simulated
populations is considered in this population, i.e., n = 200, and this implies that
the sampling fractions are f = {20%,40%} in the Rods population.

From Table [1| we observe that two important scenarios that may arise in
practice are also investigated. First, a common problem in many data sets is
the presence of outliers, i.e., values that statistically differ from the data set to
which they belong (|1}, [48]). Note that outliers significantly affect the estimation
of the population variance, and important biases may be thus introduced. The
Ouliers population is obtained by randomly selecting N,,; units from the N
elements of the Normal population with mean 10 and variance 02 = 1, and they
are replaced by N, data extracted from a Normal distribution with mean 16
and the same variance. Different percentages of outliers (pot) are considered,
in particular, pu: = {20%, 30%, 40%}, where pour = Nout/N.

Second, the problem of spikes in the distribution may arise in practice, for
example, when dealing with missing data. The problem of missing data is very
common in many disciplines, and various solutions can be adopted in this sit-
uation, as can be seen in [20], [23], [28], etc. In practice, one of the most
accepted and used techniques are the imputation methods ([13, [45]). However,
it is well known that various imputation techniques may create spikes in the

distribution of variables ([I9]). Some examples are the (groupwise) mean and
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median imputation methods ([23] [43]). In addition, various imputation meth-
ods may also generate spikes in the case of categorical predictors with a small
number of categories. Some examples are the Nearest Neighbour Imputation
(also named as NNT), and the regression imputation methods (|7, 21]). The
Spikes population is considered for the purpose of analyzing the problem of
spikes in the distribution of the variable of interest. This population is obtained
by randomly selecting n,,q units from the original sample with size n, which
in turn is selected from the Normal population. The n,,q units are treated as
missing data, i.e., we assume that the original sample only has n, = n — n;,q
respondents. The mean imputation method is then applied, and the n,,q miss-
ing values are thus substituted by the mean of the n, observations. Different
percentages of missing data (pmq) are considered, where p,q = npma/n. In

particular, p,q = {10%, 30%, 50%, 70%}.

3.2. Empirical results

The customary confidence interval for the population variance defined in
depends on the Chi-square distribution. In this section, Q@ plots based on the

empirical and theoretical distributions of the statistic

(n—1)52

2
Y= 2 ~ Xn—-1

g

are used to measure the impact on the performance of the distribution of the
sample variance under various of the populations described in Table Poor
results derived from the QQ plots may have an important impact on the per-
formance of the customary confidence interval , and this issue justifies the
use of alternative confidence intervals under situations where the Assumptions
(A1) and/or (A2) are violated, such as the presence of outliers or spikes in the
distribution. Q@ plots can be seen in Figures [2] [B] and [] and they contain the
empirical distributions based on a total of 10000 samples, with size n = 200,
selected under simple random sampling without replacement from various of the
populations described in Table

**Figure 2 about here™**
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***Pigure 3 about here***

***Figure 4 about here***

Figure 2] contains QQ plots based on the Normal and Uni form populations
(see Table . As we expected, both empirical and theoretical distributions are
similar for the Normal population with small sampling fractions (f = 0.02),
since the Assumption (A1) holds, and the Assumption (A2) is approximately
satisfied. The Assumption (A2) does not hold in the case of large sampling
fractions (f = 0.2), and for this reason, the empirical distribution differs from
the theoretical distribution in this situation. Important differences between
the empirical and theoretical distributions can be observed in the Uniform
population.

Figure |3| contains QQ plots based on the Outliers population. The As-
sumption (A1) is violated as the percentage of outliers (p,y:) increases, and for
this reason, the distance between the empirical and theoretical distribution is
greater as po,: increases. Finally, the presence of spikes in the distribution is
analyzed in Figure [d] which contains Q@ plots based on the Spikes population.
As we expected, both empirical and theoretical distributions are similar when
the percentage of missing data (p,,q) is small. The Assumption (A1) is violated
as pm,q increases, hence the presence of spikes has an important impact on the
performance of the distribution of Y. Results are slightly better as the sampling
fraction decreases.

Figures and [] indicate that the empirical and theoretical distributions
of Y may differ substantially when the Assumption (A1) and (A2) are violated.
In particular, the presence of outliers or spikes have a relevant impact on the
performance of the distribution of Y. Similarly, differences between the empir-
ical and theoretical distributions can be observed in the case of large sampling
fractions, since the Assumption (A2) is violated in this situation. As can be
seen in Section [B] the performance of the customary confidence interval for the
population variance is poor when Y does not fit well to a Chi-square distribu-
tion. For instance, this is the situation of populations that contain outliers or

spikes in the distribution, or samples based on large sampling fractions. For the

10
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aforementioned reasons, the use of alternative confidence intervals for the pop-
ulation variance under the commented scenarios is thus justified. Confidence
intervals based on the rescaled bootstrap method may be a possible solution, as

can be seen in Sections E] and [{

4. The suggested rescaled bootstrap confidence intervals

The customary confidence interval for the population variance assumes
that the Assumptions (A1) and (A2) hold. In this section, we propose using the
rescaled bootstrap method (3] 4, @, BTl 34]) to construct confidence intervals
for the population variance, since this method has some desirable properties.
First, confidence intervals based on the rescaled bootstrap method are free of
probabilistic distributions, hence the Assumption (A1) is not required. Second,
the suggested confidence intervals are based on sampling weights, which implies
that they can be easily applied to the case of finite populations. In addition, the
rescaled bootstrap method can be easily applied to the case of samples selected
from complex sampling designs. Finally, the rescaled bootstrap method is more
simple than alternative resampling methods, since it only requires a new set of
sampling weights.

We suggest two different confidence intervals for the population variance.
Assuming a general sampling design, the common implementation steps for

both confidence interval based on the rescaled bootstrap method are as follows:

Step 1. Draw the sample s, with size n, from a finite population and using a

general sampling design with inclusion probabilities given by ;.

Step 2. Then calculate the original sampling weights, which are defined as

di =m; ', with i = {1,...,n}. See also [35].

Step 3. Calculate the Héjek-type estimator ([I8| [35]) for the population vari-

ance o2, which is defined as

! > di(wi — zn)?, (3)
i=1

62 =

=

11



where N = Y2 d;, and

1 n
TH = = E dixi
" N i=1

270 is the sample mean.

Step 4. Then calculate the bootstrap weights d;, which are obtained after using
the scale adjustment on d; suggested by [34].

Step 5. Set the number of bootstrap samples, which will be denoted as B.

Step 6. Calculate the Hajek-type estimator of o2 for each bootstrap sample,
b = {1,..., B}, and which is obtained by replacing d; by d} into the ex-
pression , ie.:

~2 1 - * — 2
Tl = < D b (@i — Trw),
Ngy i

where N =371, djj;,, and

_ 1 & .
TH) = T Zdz'(b)xz*
(b) =1

The first confidence interval is based on the empirical distribution of the
a5 bootstrapped values 61%1(,]), i.e., we consider the percentile bootstrap approxi-

mation. The additional implementation step of this method is:

Step 7 (CIp). Calculate the 100x (1—«)% confidence interval, which is defined
as

Clp =[Lp,Up],

where the lower and upper limits are defined, respectively, as

and

and where 6% [a] denotes the ath quantile of the bootstrapped values &?{( b

12
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The second confidence interval is based on bootstrap distribution of the
Student’s t-test, which is commonly named as the bootstrap-t method or the
studentized bootstrap ([I0, 14, B0]). The additional implementation steps of

this second method are:

Step 7 (CI;). Calculate the rescaled bootstrap variance estimator, which is

defined as

Step 8 (CI;). Then calculate the empirical ¢t-values, which are given by

~2 2
£ = Ou®) ~ %9H
%oot(&?{)

withb=1,...,B.

Step 9 (CI;). Then calculate the 100 x (1 — a)% confidence interval, which is
defined as
CI; = [Lt, Uy,

where the lower and upper limits are given, respectively, by

Ly = 6% + 1521/ Vooot (63));

Ur = 6% +t5_ a2\ Voot (6%),

and ¢} is the ath quantile of the values ¢} .

5. Monte Carlo simulation studies

In this section, we empirically evaluate the different confidence intervals dis-
cussed in this paper. In addition, we observe that both proposed confidence in-
tervals are based on the Héjek-type estimator 6%, and for this reason, the error
estimates of 6% are also calculated. We consider the populations and scenarios
described in Section It is expected that the customary confidence inter-

val has a poor performance in the scenarios where its underlying assumptions

13



are violated, but an additional aim is to measure the impact on the empirical
performance of this confidence interval under the investigated scenarios.

It is quite common to use the empirical relative bias (RB) and the empirical
relative root mean square error (RRMSE) to evaluate the performance of a
given estimator (see [3]). For the Hajek-type estimator, such empirical measures

are defined as

E ~2 2
RB = 100 x 210 — "]
o
and
MSEI[62
RRMSE = 100 x %
where
i
i=1
and

are, respectively, the expectation and the mean square error based on R =
10000 simulation runs, and 6%, denotes the value of 6% at the ith simulation
run. On the other hand, the empirical performances of the various confidence
intervals, with a 95% for the confidence level, are compared in terms of the
empirical coverage rate (CR) and the empirical average width (AW). For a
given confidence interval with lower and upper limits denoted as L and U,

respectively, the C'R is defined as

CR =100 x !

=

R
25(Li <o?< Ui) .
i=1

where L; and U; are, respectively, the lower and upper limits for the ¢th sim-
ulation run, and 4(-) is the indicator variable, which takes the value 1 if its
argument is true, and 6(-) = 0 otherwise. The AW is the average width of the

R confidence intervals calculated in the simulation study, i.e.,

R
1
AW = — U,—L;).
R;( )
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Note that a method for the construction of confidence intervals with desirable
properties should have values of C'R close to the nominal level of 95%, and values
of AW smaller than the empirical average width of alternative methods. The
error estimates of the Héjek-type estimator can be seen in Table[2] whereas Table
Blreports the empirical results derived from the various confidence intervals. The
algorithmic efficiency for the problem of calculating the proposed confidence
intervals was also measured, and the time efficiency can be approximated by
O(n?).

***Table 2 about here***

***Table 3 about here***

First, we analyze the empirical performance of the Héjek-type estimator (see
Table. We observe that the empirical biases of 6% are negligible, with values
of RB smaller than 1% for the various populations. As we expected, 6% is more
efficient as the sampling fraction increases, that is, as the sample size increases.
The values of RRM SE range from 12.5% (Spikes population with p,,q = 70%
and f = 20%) to 69.6% (Spikes population with p,,q = 10% and f = 2%).

From Table 3] we first use the Outliers population to analyze the impact of
the presence of outliers on the various confidence intervals. We observe that the
customary confidence interval is extremely conservative, since the empirical cov-
erage rates are 100% when the percentage of outliers is large (pout = 40%), and
they are close to this upper bound when p,,: = 30%. However, the customary
confidence interval gives reasonable empirical coverage rates when p,,; = 20%.
The confidence interval proposed by [5] is also very conservative in the presence
of outliers, with values of CR close to 100%. In addition, both alternative confi-
dence intervals (CI,> and Clp) are wider than the suggested rescaled bootstrap
confidence intervals, which in turn have reasonable coverage rates (close to the
nominal level of 95%). In particular, the values of CR are between 94.5% and
96.5% in the presence of outliers.

The presence of spikes in the distribution (see the Spikes population) also
has an important impact on the customary confidence interval, since we ob-

serve values of C'R between 65.8% and 82.8% for large values of p,,q, which

15
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are considerably smaller than the nominal level. Reasonable empirical coverage
rates are observed for the suggested confidence intervals, with values of CR be-
tween 92.9% (observed when the percentage of missing data is extremely large,
Pmd = 70%) and 96.2% for the various scenarios of the Spikes population. The
values of AW are similar for the Bonett and suggested confidence intervals,
although the Bonett confidence interval is slightly worse than the suggested
confidence intervals in terms of empirical coverage rates.

As we expected, desirable results are observed for the customary confidence
interval in the Normal population and when the sampling fraction is small
(f = 2%), since both Assumptions (A1) and (A2) hold. However, this method
is conservative as the sampling fraction increases, i.e., when the Assumption
(A2) is violated. Reasonable empirical coverage rates are also observed for the
suggested confidence intervals (values of CR are between 93.7% and 96.7%),
and the corresponding values of AW are also smaller than the empirical average
widths of alternative confidence intervals.

The customary and Bonett confidence intervals are generally very conser-
vative in the Uniform population, and the values of AW are larger than the
empirical average widths of the suggested confidence intervals, which in turn
have empirical coverage rates between 93.7% and 96.8%.

Finally, we also observe desirable empirical coverage rates for the suggested
confidence intervals in the population based on the real data set (the Rods
population). The confidence interval CIp is very conservative, whereas the
empirical coverage rates of CI,2 are considerably smaller than the nominal level
in the Rods population. Note that similar results are observed for the suggested
confidence intervals (CIp and CI;) and for the various populations considered

in this study.

6. Concluding remarks

The customary confidence interval for the population variance (see equation

(1)) performs well when the underlying Assumptions hold. However, this con-

16
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fidence interval is very sensitive when such assumptions are violated, i.e., the
interval CI,> may have coverage rates extremely far from the required nominal
level under certain scenarios. For instance, the values of CR for CI,> are 32.5%
and 36.5% in the real population considered in this study (the Rods popula-
tion), and many of them are close to the upper bound (100%) in various of
the remaining populations analyzed in Section Note that such results are
supported by the conclusions derived from [26]. [5] proposed an alternative con-
fidence interval for the population variance (see equation ), which is based
on the estimation of the coefficient of kurtosis. Both confidence intervals (CT,2
and CIg) were empirically compared under populations generated from various
probabilistic distributions.

Monte Carlo simulation studies can be seen in Sections [3| and |5} First, we
identify the limitations of the customary confidence interval under various of the
scenarios investigated in this paper: (i) populations based on the Normal and
Uniform probabilistic distributions; (i) large and small sampling fractions; (ii7)
presence of outliers, and; (iv) presence of spikes in the distribution. The second
Monte Carlo simulation study is used to analyze the empirical performance of
the suggested confidence intervals, and results are compared to the customary
(C1I,2) and Bonett (CIp) confidence intervals. The suggested rescaled bootstrap
confidence intervals have reasonable empirical coverage rates, with values close
to the required nominal level, and the values of AW are generally smaller than
the average widths of alternative confidence intervals. The interval CIp is very
conservative in various of the populations considered in Section[5} As far as the
presence of outliers is concerned, beyond the fact that the empirical coverage
of the proposed confidence intervals are close to the required nominal level and
their competitors are very conservative, a relevant advantage is that the average
widths of the suggested confidence intervals are almost half of the values AW
of the customary and bonett confidence intervals. The presence of spikes in
the distribution (see the Spike and Rods populations) has an important impact
on the customary confidence interval, since excessively small coverage rates are

observed.
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Various limitations of this study and some topics for further research are
now explained. As noted by [B], the estimator 54 of the coefficient of kurto-
sis can be substituted by a pooled estimator based on information collected
from a previous study (7}), i.e., additional valuable prior information can be
introduced at the estimation stage. Rescaled bootstrap confidence intervals for
the population variance and based on prior information could be an interesting
topic for further research in the near future. One-sided confidence intervals are
very common in the problem of estimating the population variance, hence some
research efforts on this topic are also welcome. Following [§], it could be inter-
esting to analyze the rescaled bootstrap confidence interval for the population
variance with bootstrap samples selected without replacement. The extension
of the suggested technique to stratified multistage designs is also a relevant
topic for further research in the near future, since this sampling design is quite
common in large scaled sample surveys, and it could be used to a wide range
of reweighting methods. Finally, it is well known that the use of auxiliary in-
formation at the estimation stage may report more accurate estimates, and for
this reason, the construction of rescaled bootstrap confidence intervals for the
population variance and based on auxiliary variables is a topic that may provide

confidence interval with better properties.
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Table 1: Description of the real and simulated populations considered in the various Monte
Carlo Simulation Studies. Samples, with size n = 200, are selected under simple random
sampling without replacement. N is the population size, and f = n/N is the sampling

fraction.

Type of population Code N f

Simulated Normal and outliers  Qutliers 1000 0.20

10000 0.02

Normal and spikes Spikes 1000 0.20

10000 0.02

Normal Normal 1000 0.20

10000 0.02

Uniform Uniform 1000 0.20

10000 0.02

Real Rods Rods 500 0.40

1000  0.20




Table 2: Values of the empirical measures RB (relative bias) and RRMSE (Relative root
mean square error) for the various populations (see Table 1) and the Héjek-type estimator
&%I. 0 = {Pout,Pma} for the Outliers and Spikes populations, respectively, and 8 = o2 for the

Normal and Uniform populations. C'V is the coefficient of variation (in percentage).

Population 6 cVv f RB RRMSE

Outliers 0.4 25.06 0.20 -0.4 40.3
0.02 -0.6 56.7

0.3 2480 0.20 -0.4 37.6

0.02 -0.5 45.6

0.2 2322 020 -0.5 54.2

0.02 -04 43.9

Spikes 0.7 547 020 -0.1 12.5
0.02 -0.5 51.5

0.5 707 020 -0.5 48.6

0.02 -0.6 62.3

0.3 836 0.20 -0.3 32.3

0.02 -04 36.2

0.1 947 020 -0.4 36.5

0.02 -0.7 69.6

Normal 5.0 2235 020 -0.2 17.6
0.02 -04 39.8

1.0 10.00 0.20 -0.5 51.5

0.02 -0.5 93.3

Uniform 5.0 2238 0.20 -0.4 42.6
0.02 -0.5 54.5

1.0 10.00 0.20 -0.6 55.3

0.02 -0.5 45.2

*Rods — 0.02 04 -05 49.8

0.2 -0.5 53.8




Table 3: Values of the empirical measures AW (average width) and C'R (coverage rate) for the

various populations (see Table 1) and confidence intervals. 6 = {pout, Pmd} for the Outliers

and Spikes populations, respectively, and § = ¢2 for the Normal and Uniform populations. *

The values of AW are multiplied by 1000 in the Rods population.

Customary Bonett Bootstrap proposed
Cl,»> Clp Clp Cl
Population 6 AW CR AW CR AW CR AW CR
Outliers 04 020 39 1000 33 1000 20 965 2.0 96.5
0.02 3.8 1000 32 998 19 946 1.9 946
03 020 34 997 34 997 24 965 24 965
0.02 34 994 34 995 24 948 24 9438
02 020 27 962 34 993 27 96.1 2.7 96.1
002 27 938 34 985 2.7 945 2.7 945
Spikes 07 020 01 700 03 966 03 948 0.3 948
0.02 01 658 02 950 02 929 0.2 929
05 020 02 88 03 974 03 957 03 957
002 02 784 03 99 03 931 03 931
03 020 03 914 04 982 03 962 03 962
002 03 872 04 967 03 941 03 941
01 020 04 961 05 988 04 960 04 96.0
0.02 04 928 04 974 04 937 04 937
Normal 50 020 2.0 984 23 995 1.8 96.7 1.8 96.7
0.02 20 9.7 23 980 19 944 19 944
1.0 020 04 978 05 992 04 964 04 964
002 04 90 05 973 04 937 04 937
Uniform 50 020 20 1000 19 1000 13 968 1.3 96.8
0.02 20 999 18 996 1.2 941 1.2 941
1.0 020 21 920 28 975 23 937 23 93.7
0.02 04 1000 04 995 03 961 0.3 96.1
*Rods - 04 02 365 14 983 1.1 954 1.1 954
0.2 02 325 14 963 1.1 932 11 932
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Figure 1: Bar chart for the Rods population (183 measurements of the inside diameter of

connecting rods manufactured for large diesel engines).
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Figure 2: QQ plots for quantiles of the theoretical distribution X%—l and quantiles of the
empirical distribution of the statistic Y = (n — 1)S2/02, where 02 = 1. Samples, with size
n = 200, are selected under simple random sampling without replacement from the Normal
and Uniform populations. The population sizes N = {1000, 10000} are considered, which
implies that the sampling fractions take the values f = {0.02,0.2}.
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Figure 3: QQ plots for quantiles of probabilistic distribution x%71 and quantiles of the empir-
ical distribution of the statistic Y = (n—1)S2/02, where 02 = 1. Samples, with size n = 200,
are selected under simple random sampling without replacement from the Outliers popula-
tion. Different percentages of outliers are considered (pouwt = {0.2,0.3,0.4}). The population
sizes N = {1000,10000} are considered, which implies that the sampling fractions take the
values f = {0.02,0.2}.
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Figure 4: QQ plots for quantiles of the theoretical distribution x%71 and quantiles of the
empirical distribution of the statistic Y = (n — 1)S? /02, where 02 = 1. Samples, with size
n = 200, are selected under simple random sampling without replacement from the Spikes
population. Different percentages of missing data are considered (pp,q = {0.1,0.7}). The
population sizes N = {1000, 10000} are considered, which implies that the sampling fractions
take the values f = {0.02,0.2}.
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inside diameter of connecting rods manufactured for large diesel engines).

Figure 2: QQ plots for quantiles of the theoretical distribution x2_; and
quantiles of the empirical distribution of the statistic Y = (n — 1)S?/02,
where 02 = 1. Samples, with size n = 200, are selected under simple
random sampling without replacement from the Normal and Uniform
populations. The population sizes N = {1000,10000} are considered,
which implies that the sampling fractions take the values f = {0.02,0.2}.

Figure 3: QQ plots for quantiles of probabilistic distribution x2_; and
quantiles of the empirical distribution of the statistic Y = (n — 1)5%/02,
where 02 = 1. Samples, with size n = 200, are selected under simple
random sampling without replacement from the Outliers population. Dif-
ferent percentages of outliers are considered (powt = {0.2,0.3,0.4}). The
population sizes N = {1000, 10000} are considered, which implies that the

sampling fractions take the values f = {0.02,0.2}.

Figure 4: QQ plots for quantiles of the theoretical distribution y2_; and
quantiles of the empirical distribution of the statistic Y = (n — 1)5%/02,
where 02 = 1. Samples, with size n = 200, are selected under simple
random sampling without replacement from the Spikes population. Dif-
ferent percentages of missing data are considered (p,,q = {0.1,0.7}). The
population sizes N = {1000, 10000} are considered, which implies that the

sampling fractions take the values f = {0.02,0.2}.
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