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Rescaled bootstrap confidence intervals for the
population variance in the presence of outliers or spikes

in the distribution of a variable of interest

Abstract

Confidence intervals for the population variance in the presence of outliers

or spikes in the distribution of a variable of interest are topics that have not

been investigated in depth previously. Results derived from a first Monte Carlo

simulation study reveal the limitations of the customary confidence interval for

the population variance when the underlying assumptions are violated, and the

use of alternative confidence intervals is thus justified. We suggest confidence

intervals based on the rescaled bootstrap method for many reasons. First, this

is a simple technique that can be easily applied in practice. Second, it is free

of probabilistic distributions. Finally, it can be easily applied to the cases of

finite populations and samples selected from complex sampling designs. Results

derived from a second Monte Carlo simulation study indicate that the suggested

confidence intervals have desirable coverage rates with smaller average widths.

Accordingly, an advantage of the suggested confidence intervals is that they offer

a good compromise between simplicity and desirable properties. The various

simulation studies are based on different scenarios that may arise in practice,

such as the presence of outliers or spikes, and the fact that the underlying

assumptions of the customary confidence interval are violated.

Keywords: Finite population, coverage rate, missing data, Normal distribution

1. Introduction

Many quantitative techniques are based on the variance of a random vari-

able, and they are applied to a wide range of disciplines and topics, such as
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social sciences, econometrics, engineering, etc. Some known examples are the

statistical inference, the hypothesis testing or the goodness of fit (see [46]). In5

particular, the variance has a relevant application in Statistical Quality Control

(SQC), since this parameter is commonly used to analyze the variability of the

production process, the construction of different limits (natural tolerance limits

of the process, control limits, etc.), and the implementation of various SQC

techniques (control charts, process capability index, etc.). See also [27], [29],10

[41] and [42].

The variance is usually an unknown parameter in practice. In this situation,

it is quite common to estimate the unknown parameter by using the information

collected from a random sample. For the problem of estimating the population

variance, the popular sample variance based on the Bessel’s correction is the15

most common estimator. In addition, most studies report the corresponding

confidence intervals along with the point estimators. Let X1, ..., Xn be a sam-

ple, with size n, taken from a given variable of interest x. The traditional con-

fidence interval for the population variance of x (σ2) is based on the following

assumptions:20

(A1) x follows a Normal distribution with mean µ and variance σ2, i.e., x →

N(µ, σ2).

(A2) X1, ..., Xn are independent and identically distributed (iid).

For instance, the Assumption (A2) holds when the sample is extracted from

an infinite population. However, this is not the case of many situations in25

practice. For example, many surveys conducted by official governments or insti-

tutions, such as the European Union Statistics on Income and Living Conditions

(see [15]), are based on finite populations. Similarly, many SQC techniques are

based on finite populations, since they are applied in finite lots of products. The

traditional confidence interval for the population variance may have a poor per-30

formance in the case of finite population with large sampling fraction f = n/N ,

where N is the size of the finite population. It is well known that the approxi-

mation to an infinite population may fit well when f is small (see, for example,
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[29]). Estimators of the population variance under different sampling designs

can be seen in [9], [12], [17], [36], etc. Some references that propose estimators35

of the population variance in the presence of auxiliary variables are [16], [24],

[38], [40] and [39].

The main contribution of this paper is to introduce an alternative method

to construct confidence intervals for the population variance, which may offer

a good performance in the presence of different scenarios that may arise in40

practice. In particular, we first analyze the presence of outliers, since they sig-

nificantly affect the estimation of the population variance. Second, the presence

of spikes in the distribution of the variable of interest may introduce biases in

the estimation of the population variance, hence this topic is also investigated.

For instance, this problem may arise when certain imputation techniques are45

used in the presence of missing data, which is quite common in practice. Addi-

tional scenarios based on simulated and real populations are also studied, and

they are used to analyze the empirical performance of the various confidence

intervals when the Assumptions (A1) and (A2) are violated.

The suggested confidence intervals are based on the bootstrap methodology,50

which is a common technique in social sciences when the theoretical distribu-

tion of an interest statistic is unknown ([10, 14, 47]). In particular, we consider

the rescaled bootstrap resampling method to construct confidence intervals for

the population variance. This method was originally proposed by [33], and

numerous extensions and applications have been subsequently proposed in the55

literature. The rescaled method suggested by [33] is only applicable to smooth

statistics due to the fact that the rescaling factors are applied to the survey

data values. However, [34] proposed a new version of this method where the

corresponding rescaling factors are applied to the survey weights (see [35]),

and both smooth and non-smooth statistics can be thus used. [2] proposed a60

rescaled bootstrap method that can be applied to the case of without replace-

ment sampling designs. Similarly, [8] modified the rescaled bootstrap method

to the situation where the bootstrap samples are selected without replacement.

[32] proposed an extension of the rescaled bootstrap to stratified multistage de-
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signs, which has relevant applications in large scaled sample surveys and a wide65

range of reweighting methods, such as the calibration estimators ([11, 25]). [3]

proposed a novel method for the problem of estimating quantiles, and the corre-

sponding confidence intervals are based on the rescaled bootstrap method. As-

suming also the context of finite populations, [4] applied the rescaled bootstrap

technique to the case of samples selected by ranked set sampling. Additional70

details related to the rescaled bootstrap and other bootstrap methods can be

found in [37]. On the other hand, the limits of the suggested confidence intervals

are obtained using the percentile and the studentized bootstrap approximations.

The suggested confidence intervals have some desirable properties. First, an

advantage of this method is its simplicity, i.e., it has a simple implementation75

in practice. Second, many methods are based on a certain probabilistic distri-

bution, and the performance of such methods may be poor if this assumption is

violated. In this sense, the suggested confidence intervals are free of probabilis-

tic distributions. Finally, they can be easily applied to finite populations and

samples selected from complex sampling designs. A Monte Carlo simulation80

study is carried out to analyze the empirical performance of the proposed con-

fidence intervals, and this study is based on multiple populations and scenarios

that may arise in practice. In particular, we investigate different cases where

the underlying assumptions of the customary confidence interval are violated,

such as the presence of outliers or spikes. Confidence intervals with desirable85

properties are obtained, i.e., they have empirical coverage rates close to the

required nominal level, and their average widths are smaller than the average

widths of alternative confidence intervals.

This article is organized as follows. In Section 2, some existing confidence

intervals of the population variance are introduced. In Section 3, we identify90

the limitations of the customary confidence interval, and they are empirically

analyzed via a first Monte Carlo simulation study. Results derived from this

section justify that the customary confidence interval may have a poor perfor-

mance under the situations investigated in this paper, and the use of alternative

confidence intervals is thus required in such cases. In Section 4, we propose using95
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the rescaled bootstrap method to construct confidence intervals for the popula-

tion variance. In Section 5, the empirical performance of the various confidence

intervals is analyzed via a second Monte Carlo simulation study, and desirable

results are obtained. Note that multiple scenarios are investigated in both simu-

lation studies, such as the fact that the underlying assumptions of the customary100

confidence interval are violated. Such scenarios include the presence of outliers

or spikes in the distribution. The main conclusions are summarized in Section

6.

2. Some confidence intervals for the population variance

Assuming that both Assumptions (A1) and (A2) hold, the customary 100(1−105

α)% confidence interval for the population variance σ2 is given by [44]:

CIχ2 = [Lχ2 , Uχ2 ], (1)

where the lower and upper limits are defined, respectively, as

Lχ2 =
(n− 1)S2

χ2
n−1,1−α

2

and

Uχ2 =
(n− 1)S2

χ2
n−1,α2

,

and where

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2

is the sample variance, x̄ = n−1
∑n
i=1 xi is the sample mean, xi denotes the ith

observed value of the variable of interest x, and χ2
df,a is the ath quantile of the

Chi-square distribution with df degrees of freedom. Note that the confidence

interval (1) is highly sensitive if the Assumptions (A1) and (A2) are violated110

([22, 26]), hence such confidence interval may have a poor performance under

different scenarios. Some examples are the situations investigated in this paper,

i.e., presence of outliers or spikes in the distribution.
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Bonett ([5]) proposed the 100(1− α)% confidence interval

CIB = [LB , UB ], (2)

where the lower and upper limits are given, respectively, by

LB = exp
{
ln(cS2)− Z 1−α

2
se
}
,

UB = exp
{
ln(cS2) + Z 1−α

2
se
}
,

Za is the ath quantile of the standard Normal distribution,

se = c

[
γ̂4(n− 3)/n

(n− 1)

]1/2
,

c = n/(n − Zα/2) is an empirically determined, small-sample adjustment that

helps equalize the tail probabilities,

γ̂4 = n

∑n
i=1(xi −m)4

[
∑n
i=1(xi − x̄)2]2

is the estimator of the coefficient of kurtosis

γ4 =
µ4

σ4
,

and m is a trimmed mean with trim-proportion equal to 1/[2(n − 4)1/2]. A115

Monte Carlo simulation study based on different probabilistic distributions was

carried out in [5]. Normal and non-normal populations were used to compare the

empirical performance of the customary (CIχ2) and Bonett (CIB) confidence

intervals, and both methods were not empirically investigated in the presence

of outliers or spikes in the distribution.120

3. Limitations of the customary confidence interval under the inves-

tigated scenarios

3.1. Description of populations and scenarios

Table 1 summarizes the different populations and scenarios considered in

the various Monte Carlo simulation studies discussed in this paper. First, we125
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observe that real and simulated populations are used to evaluate the empirical

performance of the various confidence intervals. Note that the real population,

named as “Rods”, is used to analyze the accuracy of the confidence intervals

under this real situation. This population contains 183 measurements of the

inside diameter of connecting rods manufactured for large diesel engines, where130

the average diameter is 112.015 millimeters, and the variance is given by 6.401×

10−4. The quality of the commented connecting rods is controlled and improved

via different SQC techniques that depend on the variance, and for this reason,

the problem of estimating the population variance is an important issue in

this population. Although there has been an improvement in the accuracy,135

traditional methods for data collection and processing, that is, manuals, are

still used. Accordingly, the presence of spikes is likely due to such manual

methods, and the fact that most measurements are around the target value for

the quality characteristic. A bar chart for this real population can be seen in

Figure 1. This data set is available from the authors upon request. Note that140

the Shapiro-Wilk test of normality is applied and the null hypothesis is rejected,

and this implies that the Assumption (A1) is violated in the Rods population.

***Table 1 about here***

***Figure 1 about here***

In addition, a deeper analysis is also obtained by using the simulated popula-145

tions, since they have different characteristics and probabilistic properties based

on the Normal and Uniform distributions. For each probabilistic distribution,

the parameters are chosen so that the correspondent population mean is 10, and

the population variance takes the values σ2 = {1, 5}. Note that the Normal

population, with variance σ2 = 1, is used to create the Outliers and Spikes150

populations, and the Assumption (A1) is violated in the Outliers, Spikes and

Uniform populations.

The customary confidence interval defined in (1) depends on a Chi-square

distribution. However, this distribution may not fit well when the Assumptions

(A1) and (A2) are violated, and the interval (1) may have a poor performance in155

this situation. From Table 1 we observe that the sizes of simulated populations
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are N = {1000, 10000}, and the sample size is fixed at n = 200. This implies

that the sampling fraction f = n/N takes the values 0.02 and 0.2 in the case

of simulated populations. Thus, we expect that the confidence interval (1)

performs well in the Normal population with a small sampling fraction (f =160

0.02), since the approximation to an infinite population may fit well in this

situation (see, for example, [29]), and both Assumptions hold. We consider the

values N = {500, 1000} for the case of the real population. For this purpose, the

size of the Rods population (NRods = 183) is duplicated k = bN/NRodsc times,

and N1 = NRods × k data are thus obtained. We assume that N = N1 + N2,165

and the N2 = N − N1 remaining units are randomly selected from the Rods

population. For instance, the population size N = 500 is obtained by taking the

values k = 2, N1 = 366 and N2 = 134. The same sample size used in simulated

populations is considered in this population, i.e., n = 200, and this implies that

the sampling fractions are f = {20%, 40%} in the Rods population.170

From Table 1 we observe that two important scenarios that may arise in

practice are also investigated. First, a common problem in many data sets is

the presence of outliers, i.e., values that statistically differ from the data set to

which they belong ([1, 48]). Note that outliers significantly affect the estimation

of the population variance, and important biases may be thus introduced. The175

Ouliers population is obtained by randomly selecting Nout units from the N

elements of the Normal population with mean 10 and variance σ2 = 1, and they

are replaced by Nout data extracted from a Normal distribution with mean 16

and the same variance. Different percentages of outliers (pout) are considered,

in particular, pout = {20%, 30%, 40%}, where pout = Nout/N .180

Second, the problem of spikes in the distribution may arise in practice, for

example, when dealing with missing data. The problem of missing data is very

common in many disciplines, and various solutions can be adopted in this sit-

uation, as can be seen in [20], [23], [28], etc. In practice, one of the most

accepted and used techniques are the imputation methods ([13, 45]). However,185

it is well known that various imputation techniques may create spikes in the

distribution of variables ([19]). Some examples are the (groupwise) mean and
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median imputation methods ([23, 43]). In addition, various imputation meth-

ods may also generate spikes in the case of categorical predictors with a small

number of categories. Some examples are the Nearest Neighbour Imputation190

(also named as NNI), and the regression imputation methods ([7, 21]). The

Spikes population is considered for the purpose of analyzing the problem of

spikes in the distribution of the variable of interest. This population is obtained

by randomly selecting nmd units from the original sample with size n, which

in turn is selected from the Normal population. The nmd units are treated as195

missing data, i.e., we assume that the original sample only has nr = n − nmd
respondents. The mean imputation method is then applied, and the nmd miss-

ing values are thus substituted by the mean of the nr observations. Different

percentages of missing data (pmd) are considered, where pmd = nmd/n. In

particular, pmd = {10%, 30%, 50%, 70%}.200

3.2. Empirical results

The customary confidence interval for the population variance defined in (1)

depends on the Chi-square distribution. In this section, QQ plots based on the

empirical and theoretical distributions of the statistic

Y =
(n− 1)S2

σ2
∼ χ2

n−1

are used to measure the impact on the performance of the distribution of the

sample variance under various of the populations described in Table 1. Poor

results derived from the QQ plots may have an important impact on the per-

formance of the customary confidence interval (1), and this issue justifies the205

use of alternative confidence intervals under situations where the Assumptions

(A1) and/or (A2) are violated, such as the presence of outliers or spikes in the

distribution. QQ plots can be seen in Figures 2, 3 and 4, and they contain the

empirical distributions based on a total of 10000 samples, with size n = 200,

selected under simple random sampling without replacement from various of the210

populations described in Table 1.

***Figure 2 about here***
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***Figure 3 about here***

***Figure 4 about here***

Figure 2 contains QQ plots based on the Normal and Uniform populations215

(see Table 1). As we expected, both empirical and theoretical distributions are

similar for the Normal population with small sampling fractions (f = 0.02),

since the Assumption (A1) holds, and the Assumption (A2) is approximately

satisfied. The Assumption (A2) does not hold in the case of large sampling

fractions (f = 0.2), and for this reason, the empirical distribution differs from220

the theoretical distribution in this situation. Important differences between

the empirical and theoretical distributions can be observed in the Uniform

population.

Figure 3 contains QQ plots based on the Outliers population. The As-

sumption (A1) is violated as the percentage of outliers (pout) increases, and for225

this reason, the distance between the empirical and theoretical distribution is

greater as pout increases. Finally, the presence of spikes in the distribution is

analyzed in Figure 4, which contains QQ plots based on the Spikes population.

As we expected, both empirical and theoretical distributions are similar when

the percentage of missing data (pmd) is small. The Assumption (A1) is violated230

as pmd increases, hence the presence of spikes has an important impact on the

performance of the distribution of Y . Results are slightly better as the sampling

fraction decreases.

Figures 2, 3 and 4 indicate that the empirical and theoretical distributions

of Y may differ substantially when the Assumption (A1) and (A2) are violated.235

In particular, the presence of outliers or spikes have a relevant impact on the

performance of the distribution of Y . Similarly, differences between the empir-

ical and theoretical distributions can be observed in the case of large sampling

fractions, since the Assumption (A2) is violated in this situation. As can be

seen in Section 5, the performance of the customary confidence interval for the240

population variance is poor when Y does not fit well to a Chi-square distribu-

tion. For instance, this is the situation of populations that contain outliers or

spikes in the distribution, or samples based on large sampling fractions. For the
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aforementioned reasons, the use of alternative confidence intervals for the pop-

ulation variance under the commented scenarios is thus justified. Confidence245

intervals based on the rescaled bootstrap method may be a possible solution, as

can be seen in Sections 4 and 5.

4. The suggested rescaled bootstrap confidence intervals

The customary confidence interval for the population variance (1) assumes

that the Assumptions (A1) and (A2) hold. In this section, we propose using the250

rescaled bootstrap method ([3, 4, 6, 31, 34]) to construct confidence intervals

for the population variance, since this method has some desirable properties.

First, confidence intervals based on the rescaled bootstrap method are free of

probabilistic distributions, hence the Assumption (A1) is not required. Second,

the suggested confidence intervals are based on sampling weights, which implies255

that they can be easily applied to the case of finite populations. In addition, the

rescaled bootstrap method can be easily applied to the case of samples selected

from complex sampling designs. Finally, the rescaled bootstrap method is more

simple than alternative resampling methods, since it only requires a new set of

sampling weights.260

We suggest two different confidence intervals for the population variance.

Assuming a general sampling design, the common implementation steps for

both confidence interval based on the rescaled bootstrap method are as follows:

Step 1. Draw the sample s, with size n, from a finite population and using a

general sampling design with inclusion probabilities given by πi.265

Step 2. Then calculate the original sampling weights, which are defined as

di = π−1
i , with i = {1, . . . , n}. See also [35].

Step 3. Calculate the Hájek-type estimator ([18, 35]) for the population vari-

ance σ2, which is defined as

σ̂2
H =

1

N̂

n∑
i=1

di(xi − x̄H)2, (3)
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where N̂ =
∑n
i=1 di, and

x̄H =
1

N̂

n∑
i=1

dixi

is the sample mean.270

Step 4. Then calculate the bootstrap weights d∗i , which are obtained after using

the scale adjustment on di suggested by [34].

Step 5. Set the number of bootstrap samples, which will be denoted as B.

Step 6. Calculate the Hájek-type estimator of σ2 for each bootstrap sample,

b = {1, ..., B}, and which is obtained by replacing di by d∗i into the ex-

pression (3), i.e.:

σ̂2
H(b) =

1

N̂∗
(b)

n∑
i=1

d∗i(b)(xi − x̄H(b))
2,

where N̂∗
(b) =

∑n
i=1 d

∗
i(b), and

x̄H(b) =
1

N̂∗
(b)

n∑
i=1

d∗i(b)xi.

The first confidence interval is based on the empirical distribution of the

bootstrapped values σ̂2
H(b), i.e., we consider the percentile bootstrap approxi-275

mation. The additional implementation step of this method is:

Step 7 (CIP ). Calculate the 100×(1−α)% confidence interval, which is defined

as

CIP = [LP , UP ],

where the lower and upper limits are defined, respectively, as

LP = σ̂2
H [α/2]

and

UP = σ̂2
H [1− α/2],

and where σ̂2
H [a] denotes the ath quantile of the bootstrapped values σ̂2

H(b).
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The second confidence interval is based on bootstrap distribution of the

Student’s t-test, which is commonly named as the bootstrap-t method or the

studentized bootstrap ([10, 14, 30]). The additional implementation steps of280

this second method are:

Step 7 (CIt). Calculate the rescaled bootstrap variance estimator, which is

defined as

V̂boot(σ̂
2
H) =

1

B

B∑
b=1

(σ̂2
H(b) − σ̂

2
H)2.

Step 8 (CIt). Then calculate the empirical t-values, which are given by

t∗b =
σ̂2
H(b) − σ̂

2
H

V̂boot(σ̂2
H)

,

with b = 1, . . . , B.

Step 9 (CIt). Then calculate the 100× (1− α)% confidence interval, which is

defined as

CIt = [Lt, Ut],

where the lower and upper limits are given, respectively, by

Lt = σ̂2
H + t∗α/2

√
V̂boot(σ̂2

H),

Ut = σ̂2
H + t∗1−α/2

√
V̂boot(σ̂2

H),

and t∗a is the ath quantile of the values t∗b .

5. Monte Carlo simulation studies

In this section, we empirically evaluate the different confidence intervals dis-285

cussed in this paper. In addition, we observe that both proposed confidence in-

tervals are based on the Hájek-type estimator σ̂2
H , and for this reason, the error

estimates of σ̂2
H are also calculated. We consider the populations and scenarios

described in Section 3.1. It is expected that the customary confidence inter-

val has a poor performance in the scenarios where its underlying assumptions290
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are violated, but an additional aim is to measure the impact on the empirical

performance of this confidence interval under the investigated scenarios.

It is quite common to use the empirical relative bias (RB) and the empirical

relative root mean square error (RRMSE) to evaluate the performance of a

given estimator (see [3]). For the Hájek-type estimator, such empirical measures

are defined as

RB = 100× E[σ̂2
H − σ2]

σ2

and

RRMSE = 100× MSE[σ̂2
H ]

σ2
,

where

E[σ̂2
H ] =

1

R

R∑
i=1

σ̂2
Hi

and

MSE[σ̂2
H ] =

1

R

R∑
i=1

(σ̂2
Hi − σ2)2

are, respectively, the expectation and the mean square error based on R =

10000 simulation runs, and σ̂2
Hi denotes the value of σ̂2

H at the ith simulation

run. On the other hand, the empirical performances of the various confidence

intervals, with a 95% for the confidence level, are compared in terms of the

empirical coverage rate (CR) and the empirical average width (AW ). For a

given confidence interval with lower and upper limits denoted as L and U ,

respectively, the CR is defined as

CR = 100× 1

R

R∑
i=1

δ
(
Li ≤ σ2 ≤ Ui

)
,

where Li and Ui are, respectively, the lower and upper limits for the ith sim-

ulation run, and δ(·) is the indicator variable, which takes the value 1 if its

argument is true, and δ(·) = 0 otherwise. The AW is the average width of the

R confidence intervals calculated in the simulation study, i.e.,

AW =
1

R

R∑
i=1

(Ui − Li) .

14



Note that a method for the construction of confidence intervals with desirable

properties should have values of CR close to the nominal level of 95%, and values

of AW smaller than the empirical average width of alternative methods. The295

error estimates of the Hájek-type estimator can be seen in Table 2, whereas Table

3 reports the empirical results derived from the various confidence intervals. The

algorithmic efficiency for the problem of calculating the proposed confidence

intervals was also measured, and the time efficiency can be approximated by

O(n2).300

***Table 2 about here***

***Table 3 about here***

First, we analyze the empirical performance of the Hájek-type estimator (see

Table 2). We observe that the empirical biases of σ̂2
H are negligible, with values

of RB smaller than 1% for the various populations. As we expected, σ̂2
H is more305

efficient as the sampling fraction increases, that is, as the sample size increases.

The values of RRMSE range from 12.5% (Spikes population with pmd = 70%

and f = 20%) to 69.6% (Spikes population with pmd = 10% and f = 2%).

From Table 3, we first use the Outliers population to analyze the impact of

the presence of outliers on the various confidence intervals. We observe that the310

customary confidence interval is extremely conservative, since the empirical cov-

erage rates are 100% when the percentage of outliers is large (pout = 40%), and

they are close to this upper bound when pout = 30%. However, the customary

confidence interval gives reasonable empirical coverage rates when pout = 20%.

The confidence interval proposed by [5] is also very conservative in the presence315

of outliers, with values of CR close to 100%. In addition, both alternative confi-

dence intervals (CIχ2 and CIB) are wider than the suggested rescaled bootstrap

confidence intervals, which in turn have reasonable coverage rates (close to the

nominal level of 95%). In particular, the values of CR are between 94.5% and

96.5% in the presence of outliers.320

The presence of spikes in the distribution (see the Spikes population) also

has an important impact on the customary confidence interval, since we ob-

serve values of CR between 65.8% and 82.8% for large values of pmd, which
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are considerably smaller than the nominal level. Reasonable empirical coverage

rates are observed for the suggested confidence intervals, with values of CR be-325

tween 92.9% (observed when the percentage of missing data is extremely large,

pmd = 70%) and 96.2% for the various scenarios of the Spikes population. The

values of AW are similar for the Bonett and suggested confidence intervals,

although the Bonett confidence interval is slightly worse than the suggested

confidence intervals in terms of empirical coverage rates.330

As we expected, desirable results are observed for the customary confidence

interval in the Normal population and when the sampling fraction is small

(f = 2%), since both Assumptions (A1) and (A2) hold. However, this method

is conservative as the sampling fraction increases, i.e., when the Assumption

(A2) is violated. Reasonable empirical coverage rates are also observed for the335

suggested confidence intervals (values of CR are between 93.7% and 96.7%),

and the corresponding values of AW are also smaller than the empirical average

widths of alternative confidence intervals.

The customary and Bonett confidence intervals are generally very conser-

vative in the Uniform population, and the values of AW are larger than the340

empirical average widths of the suggested confidence intervals, which in turn

have empirical coverage rates between 93.7% and 96.8%.

Finally, we also observe desirable empirical coverage rates for the suggested

confidence intervals in the population based on the real data set (the Rods

population). The confidence interval CIB is very conservative, whereas the345

empirical coverage rates of CIχ2 are considerably smaller than the nominal level

in the Rods population. Note that similar results are observed for the suggested

confidence intervals (CIP and CIt) and for the various populations considered

in this study.

6. Concluding remarks350

The customary confidence interval for the population variance (see equation

(1)) performs well when the underlying Assumptions hold. However, this con-
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fidence interval is very sensitive when such assumptions are violated, i.e., the

interval CIχ2 may have coverage rates extremely far from the required nominal

level under certain scenarios. For instance, the values of CR for CIχ2 are 32.5%355

and 36.5% in the real population considered in this study (the Rods popula-

tion), and many of them are close to the upper bound (100%) in various of

the remaining populations analyzed in Section 5. Note that such results are

supported by the conclusions derived from [26]. [5] proposed an alternative con-

fidence interval for the population variance (see equation (2)), which is based360

on the estimation of the coefficient of kurtosis. Both confidence intervals (CIχ2

and CIB) were empirically compared under populations generated from various

probabilistic distributions.

Monte Carlo simulation studies can be seen in Sections 3 and 5. First, we

identify the limitations of the customary confidence interval under various of the365

scenarios investigated in this paper: (i) populations based on the Normal and

Uniform probabilistic distributions; (ii) large and small sampling fractions; (iii)

presence of outliers, and; (iv) presence of spikes in the distribution. The second

Monte Carlo simulation study is used to analyze the empirical performance of

the suggested confidence intervals, and results are compared to the customary370

(CIχ2) and Bonett (CIB) confidence intervals. The suggested rescaled bootstrap

confidence intervals have reasonable empirical coverage rates, with values close

to the required nominal level, and the values of AW are generally smaller than

the average widths of alternative confidence intervals. The interval CIB is very

conservative in various of the populations considered in Section 5. As far as the375

presence of outliers is concerned, beyond the fact that the empirical coverage

of the proposed confidence intervals are close to the required nominal level and

their competitors are very conservative, a relevant advantage is that the average

widths of the suggested confidence intervals are almost half of the values AW

of the customary and bonett confidence intervals. The presence of spikes in380

the distribution (see the Spike and Rods populations) has an important impact

on the customary confidence interval, since excessively small coverage rates are

observed.
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Various limitations of this study and some topics for further research are

now explained. As noted by [5], the estimator γ̂4 of the coefficient of kurto-385

sis can be substituted by a pooled estimator based on information collected

from a previous study (γ̂∗4), i.e., additional valuable prior information can be

introduced at the estimation stage. Rescaled bootstrap confidence intervals for

the population variance and based on prior information could be an interesting

topic for further research in the near future. One-sided confidence intervals are390

very common in the problem of estimating the population variance, hence some

research efforts on this topic are also welcome. Following [8], it could be inter-

esting to analyze the rescaled bootstrap confidence interval for the population

variance with bootstrap samples selected without replacement. The extension

of the suggested technique to stratified multistage designs is also a relevant395

topic for further research in the near future, since this sampling design is quite

common in large scaled sample surveys, and it could be used to a wide range

of reweighting methods. Finally, it is well known that the use of auxiliary in-

formation at the estimation stage may report more accurate estimates, and for

this reason, the construction of rescaled bootstrap confidence intervals for the400

population variance and based on auxiliary variables is a topic that may provide

confidence interval with better properties.
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Table 1: Description of the real and simulated populations considered in the various Monte

Carlo Simulation Studies. Samples, with size n = 200, are selected under simple random

sampling without replacement. N is the population size, and f = n/N is the sampling

fraction.

Type of population Code N f

Simulated Normal and outliers Outliers 1000 0.20

10000 0.02

Normal and spikes Spikes 1000 0.20

10000 0.02

Normal Normal 1000 0.20

10000 0.02

Uniform Uniform 1000 0.20

10000 0.02

Real Rods Rods 500 0.40

1000 0.20



Table 2: Values of the empirical measures RB (relative bias) and RRMSE (Relative root

mean square error) for the various populations (see Table 1) and the Hájek-type estimator

σ̂2
H . θ = {pout, pmd} for the Outliers and Spikes populations, respectively, and θ = σ2 for the

Normal and Uniform populations. CV is the coefficient of variation (in percentage).

Population θ CV f RB RRMSE

Outliers 0.4 25.05 0.20 -0.4 40.3

0.02 -0.6 56.7

0.3 24.80 0.20 -0.4 37.6

0.02 -0.5 45.6

0.2 23.22 0.20 -0.5 54.2

0.02 -0.4 43.9

Spikes 0.7 5.47 0.20 -0.1 12.5

0.02 -0.5 51.5

0.5 7.07 0.20 -0.5 48.6

0.02 -0.6 62.3

0.3 8.36 0.20 -0.3 32.3

0.02 -0.4 36.2

0.1 9.47 0.20 -0.4 36.5

0.02 -0.7 69.6

Normal 5.0 22.35 0.20 -0.2 17.6

0.02 -0.4 39.8

1.0 10.00 0.20 -0.5 51.5

0.02 -0.5 53.3

Uniform 5.0 22.38 0.20 -0.4 42.6

0.02 -0.5 54.5

1.0 10.00 0.20 -0.6 55.3

0.02 -0.5 45.2

∗Rods − 0.02 0.4 -0.5 49.8

0.2 -0.5 53.8



Table 3: Values of the empirical measures AW (average width) and CR (coverage rate) for the

various populations (see Table 1) and confidence intervals. θ = {pout, pmd} for the Outliers

and Spikes populations, respectively, and θ = σ2 for the Normal and Uniform populations. ∗

The values of AW are multiplied by 1000 in the Rods population.

Customary Bonett Bootstrap proposed

CIχ2 CIB CIP CIt

Population θ f AW CR AW CR AW CR AW CR

Outliers 0.4 0.20 3.9 100.0 3.3 100.0 2.0 96.5 2.0 96.5

0.02 3.8 100.0 3.2 99.8 1.9 94.6 1.9 94.6

0.3 0.20 3.4 99.7 3.4 99.7 2.4 96.5 2.4 96.5

0.02 3.4 99.4 3.4 99.5 2.4 94.8 2.4 94.8

0.2 0.20 2.7 96.2 3.4 99.3 2.7 96.1 2.7 96.1

0.02 2.7 93.8 3.4 98.5 2.7 94.5 2.7 94.5

Spikes 0.7 0.20 0.1 70.0 0.3 96.6 0.3 94.8 0.3 94.8

0.02 0.1 65.8 0.2 95.0 0.2 92.9 0.2 92.9

0.5 0.20 0.2 82.8 0.3 97.4 0.3 95.7 0.3 95.7

0.02 0.2 78.4 0.3 95.9 0.3 93.1 0.3 93.1

0.3 0.20 0.3 91.4 0.4 98.2 0.3 96.2 0.3 96.2

0.02 0.3 87.2 0.4 96.7 0.3 94.1 0.3 94.1

0.1 0.20 0.4 96.1 0.5 98.8 0.4 96.0 0.4 96.0

0.02 0.4 92.8 0.4 97.4 0.4 93.7 0.4 93.7

Normal 5.0 0.20 2.0 98.4 2.3 99.5 1.8 96.7 1.8 96.7

0.02 2.0 95.7 2.3 98.0 1.9 94.4 1.9 94.4

1.0 0.20 0.4 97.8 0.5 99.2 0.4 96.4 0.4 96.4

0.02 0.4 95.0 0.5 97.3 0.4 93.7 0.4 93.7

Uniform 5.0 0.20 2.0 100.0 1.9 100.0 1.3 96.8 1.3 96.8

0.02 2.0 99.9 1.8 99.6 1.2 94.1 1.2 94.1

1.0 0.20 2.1 92.0 2.8 97.5 2.3 93.7 2.3 93.7

0.02 0.4 100.0 0.4 99.5 0.3 96.1 0.3 96.1

∗Rods − 0.4 0.2 36.5 1.4 98.3 1.1 95.4 1.1 95.4

0.2 0.2 32.5 1.4 96.3 1.1 93.2 1.1 93.2
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Figure 1: Bar chart for the Rods population (183 measurements of the inside diameter of

connecting rods manufactured for large diesel engines).
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Figure 2: QQ plots for quantiles of the theoretical distribution χ2
n−1 and quantiles of the

empirical distribution of the statistic Y = (n − 1)S2/σ2, where σ2 = 1. Samples, with size

n = 200, are selected under simple random sampling without replacement from the Normal

and Uniform populations. The population sizes N = {1000, 10000} are considered, which

implies that the sampling fractions take the values f = {0.02, 0.2}.
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Figure 3: QQ plots for quantiles of probabilistic distribution χ2
n−1 and quantiles of the empir-

ical distribution of the statistic Y = (n−1)S2/σ2, where σ2 = 1. Samples, with size n = 200,

are selected under simple random sampling without replacement from the Outliers popula-

tion. Different percentages of outliers are considered (pout = {0.2, 0.3, 0.4}). The population

sizes N = {1000, 10000} are considered, which implies that the sampling fractions take the

values f = {0.02, 0.2}.
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Figure 4: QQ plots for quantiles of the theoretical distribution χ2
n−1 and quantiles of the

empirical distribution of the statistic Y = (n − 1)S2/σ2, where σ2 = 1. Samples, with size

n = 200, are selected under simple random sampling without replacement from the Spikes

population. Different percentages of missing data are considered (pmd = {0.1, 0.7}). The

population sizes N = {1000, 10000} are considered, which implies that the sampling fractions

take the values f = {0.02, 0.2}.
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