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Abstract—Restrictions inherent to processors used in Internet
of Things (IoT) devices, or the need for area reduction in
massively parallel processing systems for artificial intelligence,
lead to the search of trade-offs between precision and area in
arithmetic operations. In this sense, simple precision enables
to save area and to speed up computations when no higher
precision is required. On the other hand, iterative methods such
as Newton-Raphson’s or Goldschmidt’s allow to reduce or remove
the use of memory tables. In these methods, the selection of the
initial value or seed is critical to achieve a reasonable precision
using the lowest possible number or iterations. In this paper,
new hardware implementations of seed-generators with very low
area requirements are proposed for Square Root and Inverse
Square Root, while maintaining good precision, high performance
and low power consumption. A new design methodology, named
SUccessive Approximation Methodology (SUAM), enables to
implement seed-generators using only a few logic gates. The
presented experimental and implementation results support the
validity of the developed seed-generators.

Index Terms—Arithmetic, seed, Newton-Raphson, Square
Root, Inverse Square Root, hardware implementation, IoT, Gold-
schmidt.

I. INTRODUCTION

THE restrictions inherent to processors used in Internet
of Things (IoT) devices [1], or the massively parallel

processing systems for Artificial Intelligence (AI), are reviving
interest in iterative calculation methods operating in simple
precision for computing elementary functions, such as square
root, exponentiation, or natural logarithm. Simple precision
allows to save area and speed up calculations when no higher
precision is required, being specially suitable for the majority
of IoT applications and computations involved in machine-
learning [2]. Moreover, iterative methods allow to reduce or
remove the use of memory tables, thus saving the scarce mem-
ory resources available in this type of processing systems. One
important issue regarding iterative methods is the requirement
of a seed as the starting value for the iteration [3]. In the
case of square root (SQRT), the most used iterative methods
are based on the application of the Newton-Raphson (NR)
[4] and the Goldschmidt (GS) [5] [6] numerical procedures.
Regarding these, there are two main methods described in the
literature for computing square root by means of NR or GS: (1)
computing the square root directly using the Newton-Raphson
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method [7], and (2) computing the inverse square root (ISQRT)
by using Newton-Raphson or Goldschmidt iterations with a
final multiplication by the operand [5], [8]. This last method
is widely used since it avoids division when performing NR
iterations [9]. Recently, a modification of NR main iteration
has been proposed in [10], which enables a reduction of the
maximum relative error in each iteration. Nevertheless, in this
article we will use the classical NR formulation in order
to easy comparison to other methods and procedures in the
literature. Usually, seeds are stored as a set of values in a look-
up table (LUT), as in [11] or [12]. In [13], the hardware reuse
of a multiplier for generating seeds is proposed. Some works
have proposed the use of ”magic numbers“ combined with
simple arithmetic operations as in the ”Quake“ method [14],
[15], or its modifications for improved accuracy [16], [17]
(a brief discussion can be found in [18]). In [19] an approach
based on the use of low-degree, low-precision polynomials for
hardware implementations is presented, and in [20], minimax
polynomials are also used for computing seeds, thus providing
a table-free hardware implementation of a seed generator
focused on achieving high precision at the cost of high area
requirements. In this article, we propose a low-area overhead
table-free method, in which seeds are computed from the
operand by means of simple logical operations, thus opti-
mizing hardware implementations of square root and inverse
square root based on iterative approximations. Therefore, this
method is specially suitable for embedded systems or IoT
devices where restrictions in area and/or memory discourage
the use of memory-consuming tables. The rest of the paper is
organized as follows: Section II revises the Newton–Raphson
method and its application to the computation of square
root and inverse square root, Section III and IV are devoted
to the computation of optimal tables of seeds for square
root and inverse square root, respectively. Section V and VI
present the proposed seed generation methods for square root
and inverse square root and their corresponding experimental
results, respectively. Section VII includes a comparison of the
proposed methods to other works in the literature, and Section
VIII presents the conclusions of the paper.

II. NEWTON-RAPHSON FOR COMPUTING SQUARE ROOT
AND INVERSE SQUARE ROOT

The Newton–Raphson method is a well-known numerical
procedure for finding zeros of functions, i.e., for solving:

f(x) = 0 (1)
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TABLE I
NR FOR COMPUTING

√
5 WITH x0 = 0 IN DOUBLE-PRECISION

q xq xq+1 Absolute Error

0 1.0 3.0 0.764

1 3.0 2.3333333333333335 0.0973

2 2.3333333333333335 2.238095238095238 0.00203

3 2.238095238095238 2.2360688956433634 9.18e− 07

4 2.2360688956433634 2.236067977499978 1.88e− 13

5 2.236067977499978 2.236067977499978 < 2.2e− 16

where f is a well-behaved function (continuously differen-
tiable). NR is an iterative method, so if r is a root of (1),
the procedure starts with an initial value, x0, close to r. Then,
successive estimates of r are computed as:

xq+1 = xq −
f(xq)

f ′(xq)
(2)

where xq is the current estimate, and xq+1 the next one.
Convergence of iterations depends on the behavior of f(x),
and the selection of the initial value x0, also known as “seed”.
If f ′′(x) exists and it is continuous near r, it can be proved
that NR presents locally quadratic convergence [6] to r. Thus,
the seed is required to be close to r, with no other root in the
neighborhood.

A. NR for SQRT

In order to compute the square root r =
√
a using the NR

method, we can define f(x) as:

f(x) = x2 − a (3)

In this case, (3) has a unique solution in R+, f ′(x) = 2 · x
and f ′′(x) = 2, so convergence is guaranteed if x0 > 0. The
iteration defined in (2) can be then written as:

xq+1 =
xq

2
+

a

2xq
(4)

As (4) will not present convergence problems, the seed value
has effect only on the number of iterations required for
obtaining a given accuracy for the solution. As an example,
for computing

√
5 using double-precision floating-point, six

iterations are required if x0 = 1, as shown in Table I. If
x0 = 2 is used as initial seed, only four iterations are required
for achieving double-precision accuracy. Thus, a correct se-
lection of the seed directly impacts on the performance of the
SQRT implementation. Other issue of interest is related to the
implementation of the iteration described in (4). As it can be
observed, basically a division and an addition are required.
Division is a complex operation in hardware, specially when
double precision is required [21]. The use of ISQRT enables to
avoid division, as it will be commented in the next subsection.

B. NR for inverse square root

Inverse Square Root (ISQRT) is interesting by itself, be-
cause it is involved in several arithmetic computations [9]

and, additionally, can be used for computing SQRT taking
into account that:

√
x = x · 1√

x
(5)

In order to apply the NR method to ISQRT, we have to
consider that in this case f(x) = 1

x2 −a, and the NR iteration
will be:

xq+1 = xq(1.5− 0.5ax2
q) (6)

Therefore, only a subtraction and three multiplications are
required to compute ISQRT using NR, thus avoiding division.
Moreover, the ”Quake“ method provides a simple seed com-
putation enabling a fast software implementation of ISQRT
and SQRT [14]. As in the case of NR applied to SQRT, the
value of the seed is critical for performance in the ISQRT
computation.

III. OPTIMAL TABLES OF SEEDS

A. Fundamentals

Seed-tables are a fast method for providing initial values re-
quired by NR or other iterative methods such as Goldschmidt’s
[22]. Values to be stored in a seed-table must be carefully
selected in order to minimize table size and to optimize error.
When the IEEE 754 [23] standard is used for floating point
representation, the calculus of SQRT can be split into two
operations:

• Exponent and mantissa adjustment. If the operand ex-
ponent is even, the exponent of the square root will be
the half of this exponent. When it is odd, the mantissa
will be divided by two (it will be then of the form
”0.1xxxx” instead of ”1.xxxxx”), and the exponent will
be incremented by one (thus resulting in an even number)
and then halved.

• Computation of SQRT of the mantissa.

Whether the operand is odd or even, the range of the mantissa
is [0,2), and this interval is usually uniformly divided in order
to simplify addressing the table. As an example, if the four
most significant bits of the mantissa are used as table address,
a table of 16 values will be obtained. Usually, the half-point
of the interval is used as representative of the interval, and the
seed is the square root of such value [25] [26]. This is the
optimal value when considering monotonic functions, as it is
the case of SQRT or ISQRT. Indeed, if f(x) is monotonic in
the interval [a, b], the error when using a constant value f(v),
v ∈ [a, b] instead of f(x), x ∈ [a, b] is:

e(x) = |f(x)− f(v)| (7)

The expected value of the error in the interval is:

Eab = E[e(x)]ab =

∫ b

a

|f(x)− f(v)|P (x)dx (8)
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where P (x) is the density of probability of selecting x. If we
have the same probability for each x ∈ [a, b], and f(x) is a
monotonic increasing function then we can write:

Eab =
1

b− a

[ ∫ v

a

[f(v)− f(x)]dx +

∫ b

v

[f(x)− f(v)]dx
]

=
1

b− a

[
f(v)(v − a)−

∫ v

a

f(x)dx+∫ b

v

f(x)dx− f(v)(b− v)
]

=
1

b− a

[
f(v)(2v − a− b)−

∫ v

a

f(x)dx +

∫ b

v

f(x)dx
]
(9)

Computing the derivative of equation (9) and equaling it to 0
result in:

f ′(v) =
[
2v − (a + b)

]
= 0⇒ v =

a + b

2
(10)

Therefore, by evaluating f(x) in the midpoint of the interval
the expected error is minimized.

A refinement for the case of using these seeds for NR
iterations is proposed in [25], where an optimal evaluation
point is obtained for functions of the form f(x) = xp. This
evaluation point is given by:

vl =
a2

−l

+ b2
−l

a2−l−1 + b2−l−1 (11)

and it depends on the number of iterations l to be performed
when applying the NR method. Note that for l = 0, this
evaluation point is v0 = a+b

2 , as expected. In the case of l = 1,
v1 =

√
ab, thus being the geometric mean. Nevertheless, a

final step for generating seed-tables is required: the value f(v)
has to be rounded (rather than truncated) accordingly to the
precision of the values stored in the table. This leads in practice
to obtaining the same final values independently of l. As an
example, let us consider the SQRT function and a 16-row, 5-
bit precision seed-table. In the following, we will represent
the mantissa of the input number as x = x0.x1x2x3x4x5...,
where x0 is ’0’ or ’1’, and

√
x as r0.r1r2r3r4r5.... Indeed, in

the case of even exponents, the mantissa of the number can
be represented as 1.x1x2x3x4x5..., and then r =

√
x will be

represented as 1.r1r2r3r4r5... In the case of odd exponents,
we will have to compute the SQRT of 0.x1x2x3x4x5.., which
results in 0.r1r2r3r4r5.... Therefore, r0 = x0, and it is
possible to make the integer part implicit thus saving a bit
in the seed representation. As an example, Table II shows the
seed-table for n = 4 and m = 5, where n is the number of bits
addressing the table, and m is the number of bits representing
the mantissa of the seed value. Note that if normal numbers
are assumed, the first 2n−2 seeds can be removed (all numbers
will be represented as ”0.1xx” or ”1.xxx”, depending on the
parity of the exponent), thus requiring a table of 2n − 2n−2

values. In the case of n = 4, a table with 12 seeds will suffice
(addresses from ”0000” to ”0011” have been included in Table
II, but with don’t-care values ”- - - - -”).

Using Table II,
√

0.03125 will be computed as it follows:
1) 0.03125 is represented, using a 4-bit truncated mantissa

and the exponent, as 1.000 · 2−5.

TABLE II
SQUARE ROOT SEED-TABLE FOR n = 4,m = 5

address value address value

0000 - - - - - 1000 00001
0001 - - - - - 1001 00011
0010 - - - - - 1010 00101
0011 - - - - - 1011 00110
0100 11000 1100 01000
0101 11010 1101 01010
0110 11101 1110 01011
0111 11111 1111 01101

TABLE III
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), AND MAXIMUM RELATIVE
ERROR (MAXRE) FOR DIFFERENT VALUES OF n AND m

n m MAE MAXAE MRE MAXRE nbits

4 3 0.0389 0.1250 0.0378 0.1340 36
4 4 0.0226 0.0625 0.0215 0.0646 48
4 5 0.0161 0.0535 0.0157 0.0618 60
4 6 0.0150 0.0448 0.0146 0.0607 72
4 7 0.0148 0.0429 0.0145 0.0607 84
5 3 0.0358 0.1250 0.0342 0.1250 72
5 4 0.0203 0.0625 0.0199 0.0833 96
5 5 0.0111 0.0406 0.0108 0.0513 120
5 6 0.0081 0.0312 0.0079 0.0417 144

2) After exponent and mantissa adjustments, 0.03125 can
be represented as 0.100 · 2−4.

3) Corresponding address in Table II will be ”0100”.
4) From Table II, the mantissa of the seed will be ”11000”.
5) The approximate value corresponding to the seed is thus√

0.03125seed = 0.11000 · 2−2 = 0.1875.

The double-precision value of
√

0.3125 is
0.1767766952966369, so the error in this case is < 0.011.
Using this table for computing the square root, the Mean
Absolute Error (MAE) of all numbers in the range [0.5,2)
using single-precision (223 + 222 samples) is 0.0139 and the
MAXimum Absolute Error (MAXAE) is 0.0535. Table III
shows error figures corresponding to seed-tables built using
this method for different values of n and m. Presented values
have been obtained computing the square root and the seed
of all normal mantissas corresponding to the single-precision
IEEE 754 standard [23]. In this table, MRE is the Mean
of Relative Error, MAXRE is the Maximum Relative Error,
and nbits is the number of bits required for storing the
corresponding table of seeds.

Fig. 1 shows the precision (P) for different seed-tables in
terms of the number of NR iterations, l, when computing√
x. Precision is computed as the number of exact bits, i.e.,
−log2(MAXAE), where MAXAE is the maximum absolute
error for all the single-precision mantissas in the [0.5,2) range.
From this figure, the n = 4,m = 3 seed-table allows to
achieve single precision in 3 NR iterations, while double
precision requires 4 NR iterations. In order to achieve single
precision in 2 NR iterations and double precision in 3 NR

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3116536

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, JANUARY 2021 4

Fig. 1. Precision (P) for different n,m values after l NR iterations.

iterations, the n = 6,m = 8 seed-table is required, thus
increasing the size of the required table to 384 bits. In systems
without high-precision requirements, 20-bit precision can be
enough, as provided by a n = 5,m = 5 seed-table in 2
NR iterations. It should be noted that increasing m beyond
5 does not improve precision appreciably, so n = 4,m = 5
or n = 5,m = 5 represent good trade-offs for low-resource
implementations.

B. Hardware implementation of tables of Square Root seeds

An immediate approach to hardware implementation of
seed-tables consists on using ROM memories. However, this
is not an optimal implementation for embedded systems with
limited area resources, because of the need of addressing
circuits, and the non-minimal representation of information
inherent to ROM structures. As it is well known, this can be
solved considering a ROM memory as a set of combinational
functions that can be minimized using traditional Karnaugh
maps, Quine-McCluskey methods, or any other semi-heuristic
procedures used in modern design tools [24]. As commented
in the introduction, in this paper we focus on direct hardware
implementations of NR seeds, thus pursuing to achieve mini-
mal area to obtain SQRT and ISQRT seeds. Therefore, a first
approach can be to treat seed-tables as logic functions, mini-
mize them, and implement the resulting minimized functions
by using logic gates. Table IV shows implementation results
for this solution (Minimized table) on a 45-nm standard-cell
process, and also different types of FPGAs. The designs have
been optimized by the synthesis tools provided by the device
manufacturers. In the case of VLSI implementations, a 45-nm
process using the NandGateOpenCellLibrary v1011.01-HR04-
20011-01-19 operating at V DD = 1.25V has been used,
while it has been implemented with OASYS-RTL V2018.1
from Mentor Graphics. In the case of FPGAs, the Cyclone II
family from Intel, and the Spartan 3 and Spartan 6 families
from Xilinx have been selected. These are low-cost and low-
resource including 4-input LUTs (Spartan 3, Cyclone II) and
6-input LUTs (Spartan 6). Quartus II 13.01 sp1 from Intel and

ISE 14.7 from Xilinx were used for these implementations.
Power consumption in FPGAs has been estimated assuming
100 million transitions/s at the inputs of the design and, in
the case of the 45-nm VLSI process, assuming 500 million
transitions/s.

TABLE IV
IMPLEMENTATION RESULTS FOR MINIMIZED LOOK-UP TABLES FOR SQRT

SEED GENERATION.

n m Device/technology area delay power

4 5 Cyclone II FPGA 3 LUT4 3.29ns 49.96mW
4 5 Spartan 3 FPGA 4 LUT4 2.96ns 41.00mW
4 5 Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
4 5 45 nm NandGate process 8 squm 28.5ps 21.81uW

5 5 Cyclone II FPGA 8 LUT4 3.42ns 58.00mW
5 5 Spartan 3 FPGA 9 LUT4 2.96ns 41.00mW
5 5 Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
5 5 45nm NandGate process 16 squm 59.2ps 58.38uW

From Table IV, an increase of one unit in n produces a
duplication of area requirements in the VLSI process and in
4-input LUT FPGAs. Therefore, we will focus on proposing a
new direct hardware implementation close to a n = 5,m = 5
ROM-based implementation reducing area requirements. This
proposal will be developed in Section V.

IV. INVERSE SQUARE ROOT TABLES OF SEEDS

As commented in subsection II-B, the Newton Raphson
method applied to Inverse Square Root (ISQRT) requires only
multiplications, thus enabling the computation of ISQRT and
SQRT without using division. Indeed,

√
x can be computed

doing a final product by x,
√
x = x·(1/

√
x). Thus the number

of multiplications needed in this case for computing SQRT will
be 2l + 1, where l is the number of NR iterations, according
to equation (6). Note that the ISQRT seeds for NR can be
obtained using the same procedure presented in Section III
for SQRT, being the results for each of the 223 + 222 single-
precision values in [0.5,2) those presented in Table V.

Fig. 2 shows the precision achieved when using seed-tables
for different number of NR iterations. As it can be observed,
the n = 4,m = 4 seed-table provides single-precision with 3
iterations, and double-precision in 4. A n = 8,m = 8 table is
required to achieve double-precision in only 3 iterations (and
single-precision in 2).

In the case of using ISQRT for computing SQRT, the
corresponding figures for optimal seed-tables are presented in
Table VI, which are very similar to those from Table V.

Regarding precision when using ISQRT to compute SQRT
with the NR method, Fig. 3 shows that the n = 4,m = 4
seed-table provides single-precision (26.35 bits) in 3 NR
iterations, and double-precision in 4 iterations. As in the case
of computing 1/

√
x, a n = 8,m = 8 table is required to

achieve single-precision (28.3 bits) in 2 iterations, and double
precision in only 3 NR iterations.

V. SUCCESSIVE APPROXIMATION METHODOLOGY
(SUAM) FOR GENERATING SQUARE ROOT SEEDS

In the case of optimal tables of seeds, the target to be
optimized was the absolute value of the error (see equation
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TABLE V
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), AND MAXIMUM RELATIVE
ERROR (MAXRE) WHEN COMPUTING (1/

√
x)seed FOR DIFFERENT

VALUES OF n AND m

n m MAE MAXAE MRE MAXRE nbits

4 3 0.0854 0.3750 0.0873 0.3750 36
4 4 0.0277 0.1017 0.0287 0.0798 48
4 5 0.0189 0.1017 0.0192 0.0719 60
4 6 0.0165 0.1017 0.0160 0.0719 72
4 7 0.0150 0.0861 0.0147 0.0609 84
5 3 0.0660 0.375 0.0678 0.375 72
5 4 0.0272 0.1017 0.0279 0.0719 96
5 5 0.0148 0.0833 0.0148 0.0625 120
5 6 0.0101 0.0548 0.0102 0.0391 144
5 7 0.0079 0.047 0.0078 0.0333 168

Fig. 2. Precision (P) for different n,m values after l NR iterations when
computing 1/

√
x.

TABLE VI
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), AND MAXIMUM RELATIVE
ERROR (MAXRE) WHEN COMPUTING x · (1/

√
x)seed FOR DIFFERENT

VALUES OF n AND m

n m MAE MAXAE MRE MAXRE nbits

4 3 0.0921 0.3750 0.0873 0.3750 36
4 4 0.0308 0.0802 0.0287 0.0798 48
4 5 0.0203 0.0560 0.0192 0.0719 60
4 6 0.0163 0.0509 0.0160 0.0719 72
4 7 0.0150 0.0430 0.0147 0.0609 84
5 3 0.0702 0.375 0.0678 0.375 72
5 4 0.0300 0.0802 0.0279 0.0719 96
5 5 0.0154 0.0467 0.0148 0.0625 120
5 6 0.0108 0.0330 0.0102 0.0391 144
5 7 0.0081 0.0249 0.0078 0.0333 168

(7)). In our proposal, we will optimize the absolute difference
between squares of the function:

es(x) = |f2(x)− f2(v)| (12)

Fig. 3. Precision (P) for different n,m values after l NR iterations when
computing

√
x = x · (1/

√
x).

where x is the point selected for approximating f(x) to f(v)
(see Section III). Note that if f(x) =

√
x we have:

x > v ⇒ f(x) > f(v)⇒ f2(x) > f2(v) (13)

Therefore, in the case of x > v:

es(x) = f2(x)−f2(v) = (f(x)−f(v)) · (f(x)+f(v)) (14)

thus being:
es(x) = e(x) · (f(x) + f(v)) (15)

The same result is obtained when x < v. Moreover, if x is a
number expressed in the IEEE 754 standard, computation of√
x leads to two types of mantissas depending on the exponent

of x: 1.x1x2x3x4x5... and 0.x1x2x3x4x5..., so f(x)+f(v) ≥
1 when f(x) is an approximation of f(v). As a consequence:

e(x) =
es(x)

f(x) + f(v)
≤ es(x) (16)

This result shows that optimizing es(x) implies optimizing
e(s). In the following, we will consider:

e′s(x) = |f2(x)− x| (17)

as the target to optimize, where f(x) is the approximation to√
v and x ' v is assumed.
In order to simplify the process of obtaining SUAM equa-

tions, we will consider two cases corresponding to the two
types of mantissas obtained when using the IEEE 754 stan-
dard:

1) Case 1: x = 1.x1x2x3x4x5...: In this case, r =
√
x will

have the form 1.r1r2r3r4r5.... If we want to obtain a seed with
only one fractional bit optimizing es(x), we can write:

e′s(x) = 1.x1x2 − (1.r1)2 ≥ 0 (18)

where v ' x, and the condition of not having overflow (r2 >=
2) has been imposed. This expression can be rewritten as:

e′s(x) = 1 + x1 · 2−1 + x2 · 2−2 − [(1 + r1 · 2−1)2] (19)
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which results, after squaring, in:

e′s(x) = 1 + x1 · 2−1 + x2 · 2−2 − [(1 + r1) + r1 · 2−2] (20)

From (20), if we want e′s(x) to be as close to 0 as possible,
while not generating a carry to the integer part of r, it is clear
that r1 has to be r1 = 0. If two bits in the fractional part are
considered, the square of r will have four fractional bits, thus
having:

e′s(x) = 1.x1x2x3x4 − (1.0r2)2 (21)

that results in:

e′s(x) = 1 + x1 · 2−1 + x2 · 2−2 + x3 · 2−3 + x4 · 2−4

−[1 + r2 · 2−1 + r2 · 2−4] (22)

From this equation it is immediate that r2 = x1. Note that
r does not depend on x2, x3 and x4, which allows to save
three inputs in the corresponding circuit. From this result, and
adding a new bit to the representation of the square root, we
can write:

e′s(x) = 1.x1x2x3 − (1.0x1r3)2 ≥ 0 (23)

where equation (15) has been taken into account to limit the
x representation to three fractional bits (precision up to the
third fractional bit in r). Expanding (23) and removing terms
beyond 2−3, we obtain:

e′s(x) = 1 + x1 · 2−1 + x2 · 2−2 + x3 · 2−3

− [1 + x−11 + r3 · 2−2] (24)

From this last expression it can be stated that r3 = x2.
In order to get a new bit, r4, in our approximation, we will

consider the expression:

e′s(x) = 1.x1x2x3x4 − (1.0x1r4)2 (25)

Now, expanding the square to the 2−4 terms, we have:

e′s(x) = 1 + x1 · 2−1 + x2 · 2−2 + x3 · 2−3 + x4 · 2−4

−[1 + x−11 + x2 · 2−2 + r4 · 2−3 + (x1 + x1x2) · 2−4] (26)

Following again the objective of minimizing e′s(x) with the
condition e′s(x) ≥ 0, we can express r4 as a function of x1,
x2, x3 and x4, obtaining the truth table presented in Table VII.
From this table, we can write:

r4 = x3 · x̄1 + x3 · x̄2 = x3 · (x̄1 + x̄2) (27)

Note that r4 does not depend on x4 and don’t-cares have
been used when e′s(x) was the same for r4 = 0 and r4 = 1.
Using the same procedure for obtaining the bit r5, expressing
r5 as a function of x1, x2, x3 and x4, and building and
minimizing the corresponding truth table, we obtain:

r5 = x̄1 · x4 (28)

Table VIII summarizes the functions obtained for each bit
of the proposed SQRT seed for the case x0 = 1.

TABLE VII
TRUTH TABLE FOR r4 WHEN x0 = 1

r4 x1 x2 x3 x4

0 0 0 0 0
- 0 0 0 1
1 0 0 1 0
1 0 0 1 1
0 0 1 0 0
- 0 1 0 1
1 0 1 1 0
1 0 1 1 1
0 1 0 0 0
- 1 0 0 1
1 1 0 1 0
1 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

TABLE VIII
PROPOSED FUNCTIONS FOR HARDWARE-GENERATED SQRT SEED WHEN

x0 = 1

bit function

r0 1
r1 0
r2 x1

r3 x2

r4 x3 · (x̄1 + x̄2)

r5 x̄1 · x4

TABLE IX
PROPOSED FUNCTIONS FOR HARDWARE-GENERATED SQRT SEED WHEN

x0 = 0 AND x1 = 1

bit function

r0 0
r1 1
r2 x1

r3 x2

r4 r4 = x3

r5 r5 = x4

2) Case 2: 0.1x2x3x4x5...: In the case of numbers with
integer part x0 = 0, it will be x1 = 1 because the mantissa
with x0 = 0 comes from the adjustment due to an odd
exponent. This implies that r0 = 0 and r1 = 1. For the rest
of fractional bits, the same reasoning carried out above can be
applied, thus obtaining the functions presented in Table IX.

Both cases can be unified including x0 as an additional
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TABLE X
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), AND MAXIMUM RELATIVE
ERROR (MAXRE) FOR THE PROPOSED 5-BIT SUAM-SQRT HARDWARE

SEED GENERATOR

MAE MAXAE MRE MAXRE

0.0142 0.0521 0.0132 0.0607

variable, resulting in the following equations:

r0 = x0

r1 = x̄0

r2 = x1

r3 = x2

r4 = x3 · (x̄0 + x0 · x̄1 + x0 · x̄2)

r5 = x4 · (x0 · x̄1 + x̄0)

(29)

As it can be seen, the proposed seed generator depends on
5 inputs, thus being called 5-bit SUAM-SQRT seed generator.

A. Experimental results for SUAM-SQRT seeds

The 5-bit SUAM-SQRT seed generator proposed in equation
(29) provides the figures presented in Table X. If we compare
these results to optimal seed-tables in Table II, SUAM-SQRT
seeds present intermediate results between n = 4,m = 5 and
n = 5,m = 5 rows (SUAM-SQRT provides 6-output values,
corresponding to m = 5), and very similar to the n = 4,m =
7 row.

Fig. 4 shows error plots for n = 4,m = 4 and n = 5,m = 5
seed-tables, and the SUAM-SQRT proposal. Again, it can be
seen that SUAM-SQRT presents a compromise between these
two seed-tables.

Regarding the results obtained when performing NR itera-
tions starting with SUAM-SQRT seeds, Table XI shows those
results, and a comparison to optimal seed-tables with similar
characteristics. As it can be observed, l = 1 provides almost
10 bits of precision, l = 2 iterations nearly 20 bits, l = 3 more
than 40 bits, and l = 4 provides double-precision. Therefore,
in the majority of IoT applications, or other such as neural
networks where precision is not a priority, one or two NR
iterations will suffice.

Implementation results for the SUAM-SQRT seed generator
are presented in Table XII, and compared to optimal seed-
tables with similar performance. As it can be seen, the design
proposed in this work presents better figures than all the
other alternatives. Concretely, when compared to the seed-
table with n = 5,m = 5, which presents similar precision, our
proposal requires only a 37.5% of the area required by that
seed-table, and presents a 39.5% of the seed-table delay when
implemented on the 45-nm NandGate process, while precision
is only slightly worse (between 0 and 2.7 %) for l = 1, 2, 3, 4
NR iterations, as shown in Table XI and Table XIII. Our design
is also clearly better in terms of power consumption in the 45-
nm NandGate implementation, requiring only 14.3% of the
power of the other alternatives. Regarding FPGA technology,
SUAM-SQRT only needs from 37.5% to 66.7% of the area
required by the n = 4,m = 5 seed-table.

(a) n = 4,m = 4 seed-table error in [0.5,2) range

(b) n = 5,m = 5 seed-table error in [0.5,2) range

(c) SUAM-SQRT error in [0.5,2) range

Fig. 4. Error plots for high efficiency seed-tables and the proposed hardware
seed generator

TABLE XI
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), MAXIMUM RELATIVE ERROR
(MAXRE), AND PRECISION (P) OF SUAM-SQRT SEED GENERATOR FOR

DIFFERENT VALUES OF l(NUMBER OF ITERATIONS OF NR METHOD)

Design l MAE MAXAE MRE MAXRE P

n = 5,m = 4 1 2.82e-4 2.09e-3 2.88e-4 2.23e-3 8.91
n = 5,m = 5 1 9.59e-5 1.09e-3 9.96e-5 1.39e-3 9.83
SUAM-SQRT 1 1.43e-4 1.23e-3 1.37e-4 1.73e-3 9.67

n = 5,m = 4 2 1.22e-7 2.31e-6 1.32e-7 2.48e-6 18.72
n = 5,m = 5 2 1.58e-8 7.60e-7 1.83e-8 9.62e-7 20.30
SUAM-SQRT 2 2.33e-8 1.06e-6 2.87e-8 1.50e-6 19.84

n = 5,m = 4 3 6.51e-14 2.87e-12 7.10e-14 3.08e-12 38.34
n = 5,m = 5 3 2.20e-15 3.66e-13 2.75e-15 4.63e-13 41.31
SUAM-SQRT 3 3.87e-15 7.97e-13 5.86e-15 1.13e-13 40.19

n = 4,m = 7 4 4.62e-17 2.22e-16 4.15e-17 2.22e-16 52.00
n = 5,m = 4 4 4.62e-17 2.22e-16 4.15e-17 2.22e-16 52.00
n = 5,m = 5 4 4.62e-17 2.22e-16 4.15e-17 2.22e-16 52.00
SUAM-SQRT 4 3.97e-17 2.22e-16 4.15e-17 2.22e-16 52.00

VI. SUCCESSIVE APPROXIMATION METHODOLOGY FOR
GENERATING INVERSE SQUARE ROOT SEEDS

(ISQRT-SUAM)

In the case of ISQRT, the methodology followed to obtain
a seed has to be slightly modified. Indeed, we have:

f(x)2 =

(
1√
x

)2

=
1

x
(30)

and 1/x presents difficulties to be expressed in terms of the
binary digits of x. However, if we multiply (30) by x, we
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TABLE XII
IMPLEMENTATION RESULTS OF SUAM-SQRT COMPARED TO SIMILAR

PRECISION SEED-TABLES TECHNOLOGIES

Design Device/technology area delay power

n = 4,m = 5 Table Cyclone II FPGA 3 LUT4 3.29ns 49.96mW
n = 4,m = 5 Table Spartan 3 FPGA 4 LUT4 2.96ns 41.00mW
n = 4,m = 5 Table Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
n = 4,m = 5 Table 45 nm process 8 squm 28.5ps 21.81uW

n = 4,m = 6 Table Cyclone II FPGA 4 LUT4 2.86ns 50.83mW
n = 4,m = 6 Table Spartan 3 FPGA 5 LUT4 2.96ns 41.00mW
n = 4,m = 6 Table Spartan 6 FPGA 3 LUT6 1.73ns 43.00mW
n = 4,m = 6 Table 45 nm process 11 squm 62.7ps 37.61uW

n = 4,m = 7 Table Cyclone II FPGA 5 LUT4 2.83ns 52.11mW
n = 4,m = 7 Table Spartan 3 FPGA 6 LUT4 2.96ns 41.00mW
n = 4,m = 7 Table Spartan 6 FPGA 4 LUT6 1.73ns 44.00mW
n = 4,m = 7 Table 45 nm process 16 squm 40.6ps 45.31uW

n = 5,m = 5 Table Cyclone II FPGA 8 LUT4 3.42ns 58.00mW
n = 5,m = 5 Table Spartan 3 FPGA 9 LUT4 2.96ns 41.00mW
n = 5,m = 5 Table Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
n = 5,m = 5 Table 45nm process 16 squm 59.2ps 58.38uW

5-bit SUAM-SQRT Cyclone II FPGA 3 LUT4 2.82ns 49.84mW
5-bit SUAM-SQRT Spartan 3 FPGA 2 LUT4 2.96ns 41.00mW
5-bit SUAM-SQRT Spartan 6 FPGA 2 LUT6 1.73ns 42.00mW
5-bit SUAM-SQRT 45nm process 6 squm 23.4ps 8.32uW

TABLE XIII
IMPLEMENTATION RESULTS OF 5-BIT SUAM-SQRT COMPARED TO

n = 5,m = 5 SEED-TABLE (REFERENCE DESIGN, 100%)

Device/technology area (%) delay (%) power (%) l P

1 98.4%
Cyclone II FPGA 37.5% 82.5% 85.9% 2 97.7%

3 97.3%

1 98.4%
Spartan 3 FPGA 22.2% 100% 100% 2 97.7%

3 97.3%

1 98.4%
Spartan 6 FPGA 66.7% 100% 100% 2 97.7%

3 97.3%

1 98.4%
45nm process 37.5% 39.5% 14.3% 2 97.7%

3 97.3%

obtain: (
1√
x

)2

· x = 1 (31)

In terms of the error, it is equivalent to transform (12) in:

es(x) · v =
∣∣1− v · f2(x)

∣∣ .
= eone(x) (32)

thus having from (15) that:

e(x) =
1

v · [f(x) + f(v)]
· eone(x) (33)

Taking into account that v, x are in [0.5, 2) and x ' v, it is
easy to check that e(x) ≤ eone(x). Therefore, in this case we
will optimize:

e′one(x) =

∣∣∣∣∣1− x ·
(

1√
x

)2
∣∣∣∣∣ (34)

From (34) it is possible to extract conditions for the digits of
s = (1/

√
x) = s0.s1s2...sn−1 from x = x0.x1x2x3...xn−1.

TABLE XIV
TRUTH TABLE DERIVATION FOR s2 WHEN x0 = 1

x1x2x3x4 e′one(x)|s2=0 e′one(x)|s2=1 s2
0 0 0 0 0.111000 0.011100 1
0 0 0 1 0.101111 0.011010 1
0 0 1 0 0.101110 0.011000 1
0 0 1 1 0.101101 0.010110 1
0 1 0 0 0.101100 0.010011 1
0 1 0 1 0.101011 0.010001 1
0 1 1 0 0.101010 0.001111 1
0 1 1 1 0.101001 0.001101 1
1 0 0 0 0.101000 0.001010 1
1 0 0 1 0.100111 0.001000 1
1 0 1 0 0.100110 0.000110 1
1 0 1 1 0.100101 0.000100 1
1 1 0 0 0.100100 0.000001 1
1 1 0 1 0.100011 0.000001 1
1 1 1 0 0.100010 0.000011 1
1 1 1 1 0.100001 0.000101 1

Let us show an example for the case of x0 = 1 (x ≥ 1). In
this case, it is clear that

√
x ≥ 1 and s = (1/

√
x) ≤ 1. This

implies that s0 = 0 (except in the only case of x = 1). If we
do a first approach with one fractional bit for the seed, we
will have:

e′one(x) =
∣∣1− 1.x1x2 · (0.s1)2

∣∣ (35)

or:

e′one(x) =
∣∣1− s1 · 2−2 − s1x1 · 2−3 − s1x2 · 2−4

∣∣ (36)

In this case, it is clear that necessarily s1 = 1, independently
of x1 and x2, in order to generate the closest value to ”1.0000”.

Now, to obtain the bit s2 for the case of x0 = 1, we will
have the following expression:

e′one(x) =
∣∣1− 1.x1x2x3x4 · (0.1s2)2

∣∣ (37)

Expanding the square and considering terms down to 2−6 (for
to take into account inputs until x4), we obtain:

e′one(x) =
∣∣1− {(1 + s2) · 2−2 + (1 + s2)x1 · 2−3+

[s2 + (1 + s2)x2] · 2−4 + [x1s2 + (1 + s2)x3] · 2−5+

[s2x2 + (1 + s2)x4)] · 2−6
}∣∣ (38)

From (38) we have to select the value of s2 generating the
lowest e′one(x) for each 1.x1x2x3x4 input. For easing this
task, (38) can be split into two equations, one for s2 = 0, and
other for s2 = 1, as follows:

e′one(x)|s2=0 =
∣∣1− {2−2 + x1 · 2−3 + x2 · 2−4

+x3 · 2−5 + x4 · 2−6
}∣∣ (39)

e′one(x)|s2=1 =
∣∣1− {2−1 + x1 · 2−2 + x2 · 2−3

+(1 + x3) · 2−4 + (x1 + x4) · 2−5 + x2 · 2−6
}∣∣ (40)

Table XIV shows the e′one(x) values obtained in each case,
the selected s2 value, and the corresponding truth table. As it
can be seen, in all cases s2 = 1 provides the best approach to
the final value ”1.000000”. Repeating this process for s3 and
s4, and making the same study for the case x0 = 0, Table XV
has been derived, thus obtaining a proposal for an efficient
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TABLE XV
PROPOSED FUNCTIONS FOR HARDWARE-GENERATED 5-BIT

SUAM-ISQRT SEED

bit function when x0 = 0 function when x0 = 1

s0 1 0

s1 0 1

s2 x̄2x̄3 + x̄2x̄4 1

s3 x2x̄3 + x̄2x3x4 + x̄3x̄4 x̄1(x̄2 + x̄3)

s4 x̄2x4 + x2x3x̄4 x̄2x̄3 + x̄1x3

hardware implementation for the generation of ISQRT seeds.
Equations in this table have been unified as:

s0 = x̄0

s1 = x0

s2 = x0 + x̄0(x̄2x̄3 + x̄2x̄4)

s3 = x̄0(x2x̄3 + x̄2x3x4 + x̄3x̄4) + x0x̄1(x̄2 + x̄3)

s4 = x̄0(x̄2x4 + x2x3x̄4) + x0(x̄2x̄3 + x̄1x3)

(41)

Note that we have used 5 inputs (x0.x1x2x3x4) to per-
form the different products, so the proposed hardware seed-
generator has been called 5-bit SUAM-ISQRT.

Nevertheless, from Fig. 2 and Fig. 3, a seed obtained from
a 4-bit input requires the same number of NR iterations as the
n = 5 case to achieve single-precision (3 iterations for m ≥ 4)
and double-precision (4 iterations for m ≥ 4). Therefore, we
will also build a 4-bit SUAM-ISQRT hardware seed generator,
which will lead to simpler equations. Concretely, equations
corresponding to the so called 4-bit opt SUAM-ISQRT seed
generator are the following:

s0 = x̄0

s1 = x0

s2 = x0 + x̄0x̄2

s3 = x̄0x̄3 + x0x̄1(x̄2 + x̄3)

s4 = x0(x̄1x̄2 + x1x̄2x̄3 + x̄1x2x3)

(42)

A. Experimental results for SUAM-ISQRT

Table XVI shows error figures for the two proposed ISQRT
hardware-seed generators, when used for computing 1/

√
x

and
√
x = x · (1/

√
x). From this table, 5-bit SUAM-ISQRT

provides results close to the n = 5,m = 5 seed-table, while 4-
bit opt presents slightly better results than the n = 4,m = 4
table. When SUAM-ISQRT seed generators are used in NR
iterations, the results when computing ISQRT are presented in
Table XVII. Note that both 4-bit opt SUAM-ISQRT, and 5-bit
SUAM-ISQRT provide single-precision with 3 NR iterations,
while 4 iterations are required for double-precision with 5-
bit SUAM-ISQRT and 5 iterations in the case of 4-bit opt
SUAM-ISQRT.

In the case of computing SQRT from ISQRT, the results are
presented in Table XVIII, where 3 iterations are required again
for single-precision, 4 iterations for double-precision using
5-bit SUAM-ISQRT, and 5 iterations for double-precision
by means of 4-bit opt SUAM-ISQRT. Note that one more

TABLE XVI
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), AND MAXIMUM RELATIVE
ERROR (MAXRE) FOR THE PROPOSED USAM-ISQRT HARDWARE SEED

GENERATORS

design operation MAE MAXAE MRE MAXRE

4-bit opt ISQRT 0.0257 0.1101 0.0266 0.087
4-bit opt SQRT 0.0287 0.0858 0.0266 0.087

5-bit ISQRT 0.0195 0.0625 0.0213 0.0625
5-bit SQRT 0.0242 0.0858 0.0213 0.0625

TABLE XVII
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), MAXIMUM RELATIVE ERROR
(MAXRE), MEAN PRECISION (MP), AND MINIMUM PRECISION (MINP)
FOR DIFFERENT VALUES OF n, m AND l(NUMBER OF ITERATIONS OF NR

METHOD) WHEN COMPUTING ISQRT

design l MEA MAXEA MRE MAXRE P

4-bit opt 2 1.03e-5 2.58e-4 9.62e-6 2.04e-4 11.92
4-bit opt 3 1.11e-9 7.91e-8 9.49e-10 6.26e-8 23.59
4-bit opt 4 9.28e-17 7.77e-15 8.87e-17 6.14e-15 46.87

5-bit 2 3.21e-6 4.93e-5 3.72e-6 4.93e-5 14.31
5-bit 3 9.40e-10 3.64e-9 1.12e-10 3.64e-9 28.03
5-bit 4 5.48e-17 4.44e-16 5.71e-17 3.55e-16 51.00

TABLE XVIII
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), MAXIMUM RELATIVE ERROR
(MAXRE), MEAN PRECISION (MP), AND MINIMUM PRECISION (MINP)
FOR DIFFERENT VALUES OF n, m AND l(NUMBER OF ITERATIONS OF NR

METHOD) WHEN COMPUTING SQRT FRON ISQRT

design l MEA MAXEA MRE MAXRE P

4-bit opt 2 9.36e-6 1.61e-4 9.62e-6 2.04e-4 12.60
4-bit opt 3 8.25e-10 4.95e-8 9.49e-10 6.26e-8 24.27
4-bit opt 4 8.19e-17 4.77e-15 8.36e-17 6.04e-15 47.57

5-bit 2 4.43e-6 6.71e-5 3.72e-6 4.93e-5 13.86
5-bit 3 1.36e-10 4.78e-9 1.12e-10 3.64e-9 27.64
5-bit 4 5.64e-17 4.44e-16 5.22e-17 3.41e-16 51.00

iteration is required in both cases when compared to the direct
computation of NR-SQRT but, in return, no division operation
is performed.

Regarding implementation results, Table XIX shows area,
delay and power figures for the two proposed SUAM-ISQRT
implementations when compared to similar precision seed-
tables. Note that SUAM-ISQRT provides better implemen-
tation figures than the corresponding seed-tables, especially
when implemented on the 45-nm process, while maintaining
the same number of required NR iterations for achieving
single-precision and double-precision, as established in the
IEEE 754 standard.

VII. COMPARISON TO OTHER SEED-GENERATORS

Regarding other methods for seed generation in the litera-
ture, the majority of them are based on the use of tables, as
in [22] or [11]. Besides, they are oriented to using ISQRT for
SQRT computation as they take advantage of using only mul-
tiplications when applying NR. To the best of our knowledge,
only the so called ”Quake method” [14] and works in [15] and
[20] can be considered as seed-generators. The Quake method
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TABLE XIX
AREA, DELAY AND POWER FIGURES FOR OPTIMAL TABLES AND SUAM

PROPOSED DESIGN ON DIFFERENT TECHNOLOGIES.

Design Device/technology area delay power

n = 4,m = 4 Table Cyclone II FPGA 3 LUT4 2.94ns 51.49mW
n = 4,m = 4 Table Spartan 3 FPGA 3 LUT4 2.96ns 41.00mW
n = 4,m = 4 Table Spartan 6 FPGA 3 LUT6 1.73ns 41.00mW
n = 4,m = 4 Table 45 nm process 9 squm 39.0ps 30.13uW

n = 4,m = 5 Table Cyclone II FPGA 4 LUT4 3.07ns 51.02mW
n = 4,m = 5 Table Spartan 3 FPGA 5 LUT4 2.96ns 41.00mW
n = 4,m = 5 Table Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
n = 4,m = 5 Table 45 nm process 12 squm 37.1ps 30.25uW

n = 5,m = 4 Table Cyclone II FPGA 6 LUT4 3.11ns 52.69mW
n = 5,m = 4 Table Spartan 3 FPGA 5 LUT4 2.96ns 41.00mW
n = 5,m = 4 Table Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
n = 5,m = 4 Table 45nm process 15 squm 47.6ps 40.26uW

n = 5,m = 5 Table Cyclone II FPGA 9 LUT4 3.60ns 57.35mW
n = 5,m = 5 Table Spartan 3 FPGA 8 LUT4 2.96ns 41.00mW
n = 5,m = 5 Table Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
n = 5,m = 5 Table 45nm process 21 squm 70.1ps 69.46uW

4-bit opt SUAM-ISQRT Cyclone II FPGA 3 LUT4 3.13ns 50.91mW
4-bit opt SUAM-ISQRT Spartan 3 FPGA 3 LUT4 2.96ns 41.00mW
4-bit opt SUAM-ISQRT Spartan 6 FPGA 3 LUT6 1.73ns 41.00mW
4-bit opt SUAM-ISQRT 45nm process 5.9 sqm 26.3ps 12.66 uW

5-bit SUAM-ISQRT Cyclone II FPGA 5 LUT4 3.27ns 52.76mW
5-bit SUAM-ISQRT Spartan 3 FPGA 5 LUT4 2.96ns 41.00mW
5-bit SUAM-ISQRT Spartan 6 FPGA 3 LUT6 1.73ns 42.00mW
5-bit SUAM-ISQRT 45nm process 11 squm 40.0ps 32.23uW

is intended for software, thus it is not competitive for hardware
implementations (it requires a 32-bit subtractor), but we have
included it for comparing its precision with optimal tables. In
this sense, Table XX shows that the ”Quake” method provides
poor results (worse than the n = 4,m = 3 table) except in
the case of computing SQRT using 2 NR iterations. In the
rest of cases, seed-tables and the SUAM-ISQRT hardware
generator provide better results. In any case, for achieving
single-precision, l = 3 is required. Note that this method
cannot provide double-precision because it is intended for
software implementations on 32-bit numbers. In the case of the
other two works, [20] provides an approach based on minimax
polynomial interpolation into the intervals. It is focused on
achieving high precision, thus requiring also large area re-
sources. Nevertheless, there are parameter values that lead to
reduced area, such as n = 2, g = 1, providing a precision
similar to the optimal table n = 5,m = 5, as shown in
Table XXI. As it is shown in this table, where implementation
results have been obtained on Spartan 3 FPGAs for comparison
purposes, and also on a 45-nm ASIC process when possible,
the best trade-off between precision and area resources are
provided by SUAM-ISQRT implementations. The proposal
in [15] provides poor precision while requiring large area
resources.

VIII. CONCLUSION

In this paper a new methodology for building hardware
optimized seed-generators for square root and inverse square
root requiring low area resources has been presented. As a
result, three low-cost implementations have been carried out.
The first one, SUAM-SQRT, enables the generation of seeds

TABLE XX
MEAN ABSOLUTE ERROR (MAE), MAXIMUM ABSOLUTE ERROR

(MAXAE), MEAN RELATIVE ERROR (MRE), MAXIMUM RELATIVE ERROR
(MAXRE), MEAN PRECISION (MP), AND MINIMUM PRECISION (MINP)
FOR DIFFERENT VALUES OF n, m AND l(NUMBER OF ITERATIONS OF NR

METHOD) WHEN COMPUTING ISQRT

design l MEA MAXEA MRE MAXRE P

quake (sqrt) 0 0.0218 0.0416 0.023 0.034 4.59
quake (sqrt) 1 8.81e-4 2.04e-3 9.30e-4 1.75e-3 8.93
quake (sqrt) 2 1.67e-6 4.93e-6 1.78e-6 4.59e-6 17.63
quake (sqrt) 3 9.57e-9 2.88e-8 1.04e-8 2.87e-8 25.05
quake (isqrt) 0 0.0317 0.448 0.023 0.034 1.16
quake (isqrt) 1 1.28e-3 1.93e-2 9.30e-4 1.75e-3 5.69
quake (isqrt) 2 2.46e-6 4.57e-6 1.78e-6 4.61e-6 14.42
quake (isqrt) 3 1.54e-8 5.31e-7 1.04e-8 2.87e-8 20.84

TABLE XXI
COMPARISON OF PRECISION, AREA RESOURCES AND DELAY TO OTHER

METHODS IN SPARTAN 3 FGPA DEVICES AND 45-NM PROCESS

design P Area Delay Area Delay
(FPGA) (FPGA) (ASIC) (ASIC)

n = 5,m = 5 opt. table 6.1 8 LUT4 2.96 ns 21sqm 70.1ps
4-bit opt SUAM-ISQRT 5.3 3 LUT4 2.96ns 5.9sqm 26.3ps

5-bit SUAM-ISQRT 5.7 5 LUT4 2.96ns 11sqm 40.0ps
[20] with n = 2, g = 1 6.1 12 LUT4 5.9 ns - -

[15] 2.3 17 LUT4 2.96ns - -

for computing square root using the Newton-Raphson method
achieving 20-bit precision in 2 iterations, while requiring
37.4% less area in ASIC implementations than equivalent
optimized seed-tables, with only a 2.7% deterioration in preci-
sion. Moreover, SUAM-SQRT provides better delay and power
consumption figures, showing reductions of 61.5% and 85.7%,
respectively. In the case of Inverse Square Root, two hardware
implementations have been proposed: 4-bit opt SUAM-ISQRT
and 5-bit SUAM-ISQRT. 4-bit opt SUAM-ISQRT allows to
achieve single precision when computing ISQRT and SQRT
in 3 NR iterations, while requiring around 52% less area
than equivalent optimized seed-tables over a 45-nm process.
Regarding performance and power consumption, similar im-
provements have been achieved. Comparison to other seed-
generators in the literature reinforces the superiority of the
proposed hardware implementation for embedded systems
with limited area resources and not requiring high precision,
as in IoT applications or massively parallel processing units
used in AI.
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