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Abstract. Nowadays, 35 million people worldwide su↵er from some
form of dementia. Given the increase in life expectancy it is estimated
that in 2035 this number will grow to 115 million. Alzheimer’s disease
is the most common cause of dementia and it is of great importance
diagnose it at an early stage. This is the main goal of this work, the de-
velopment of a new automatic method to predict the mild cognitive im-
pairment (MCI) patients who will develop Alzheimer’s disease within one
year or, conversely, its impairment will remain stable. This technique will
analyze data from both magnetic resonance imaging and neuropsycholog-
ical tests by utilizing a t-test for feature selection, maximum-uncertainty
linear discriminant analysis (MLDA) for classification and leave-one-out
cross validation (LOOCV) for evaluating the performance of the meth-
ods, which achieved a classification accuracy of 73.95%, with a sensitivity
of 72.14% and a specificity of 73.77%.

1 Introduction

The ability to diagnose and predict Alzheimer’s disease (AD) at an early stage
has great impact on the possibility for improving treatment choices of this dis-
ease. For this reason, in recent years there has been a large increase in the num-
ber of studies attempting to develop systems that help in the diagnosis of AD
( [1], [2], [3], [4]). In [5], a technique was proposed for predicting future clinical
changes of MCI patients by using both baseline and longitudinal multimodality
data. The main drawback of this study is the request of having multimodality
data across di↵erent time points for each subject, which limits the size of subjects
that can be used for the study. Most existing research focuses on only a single
modality of biomarkers for diagnosis of AD and MCI, although recent studies
have shown that di↵erent biomarkers may provide complementary information
for the diagnosis of AD and MCI ( [6], [7]).

Despite the brilliant solutions presented by these approaches, all of them are
focused on classifying AD or MCI patients from healthy controls. Since the earlier



the diagnosis of this disease, the more e↵ective the treatment, in this study we
propose a method to compare between MCI patients who had converted to AD
within 12 months and MCI patients who had not converted to AD within 12
months, in order to predict whether the patient will develop the disease or not.
Once the images have been preprocessed, the whole brain is then partitioned into
116 regions of interest (ROIs) in terms of the Automated Anatomical Labeling
(AAL) atlas, and the mean intensity and standard deviation value of each region
was acquired by averaging the intensities and standard deviations values within
that region. These extracted values along with the two neuropsychological tests
(MMSE and ADAS-Cog) make the dataset. To reduce its size, a Student’s t-test
selects the most important features, i.e. those with greater discrimination power.
Once this is achieved, MLDA algorithm is used for classification, evaluating the
performance with a Leave-One-Out cross validation technique (LOOCV).

The organization of the rest of the paper is as follows. Details or our method
based on both MR images and neuropsychological tests and MLDA algorithm
for classification are mentioned below. A description of the data used in the
preparation of this article is done in Section 2. The method consists of four
stages. In Section 3.1 we focus on the source of information, which is based on
an anatomical atlas for MRI and direct scores in the case of neuropsychological
tests. It is necessary to select the right features not to overtrain the system, since
this can cause a decrease in its performance and an increase in the computation
time. That is the purpose of Student’s t-test, which is described in Section 3.1.
The classification algorithm and the techniques to evaluate its performance are
available in Section 3.3. The experimental results are provided in Section 5, and
a discussion of research contributions and practical advantages in addition to
the conclusions are available in Section 6 and Section 7.

2 Database

The data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessments can be combined to measure the progression
of MCI and early AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their e↵ectiveness, as well as lessen the time and
cost of clinical trials. In this paper, only ADNI subjects with all corresponding
MRI, MMSE and ADAS-Cog baseline data are included. This yields a total of
134 MCI subjects who had at least three longitudinal scans (baseline image, and
two subsequent images six months and twelve months after) including 73 MCI
converters who had converted to AD within 12 months and 61 non-converters
who had not converted to AD within 12 months.



3 Methods

3.1 Feature extraction

In Alzheimer’s disease, the hippocampus is one of the first regions of the brain
to become damaged and that is why it is used as a marker of early AD in a
vast number of studies, therefore it is logical that some approaches focus on the
study of changes in it. In [8], the classification accuracy of a system was tested
using the hippocampal volume as an only feature. Volumes were normalized by
the total intracranial volume computed by summing SPM5 segmentation, aver-
aging left and right volumes for more robustness with respect to segmentation
errors as proposed in [9]. Hippocampal shape is another feature used in other
approaches. More specifically, [10] described a new method to automatically
discriminate between patients with Alzheimer’s disease or mild cognitive im-
pairment using spherical harmonics (SPHARM) coe�cients to model the shape
of the hippocampi. These coe�cients are a mathematical approach to represent
surfaces with spherical topology, which can be seen as a 3D analog of Fourier
series expansion.

Another approach is based on a labeled atlas for grouping the voxels into
anatomical regions and was employed in [11]. The number of available atlases is
large but this work uses AAL (Automated Anatomical Labeling), [12], a prede-
fined anatomical atlas formed by 116 regions of interest (ROI), meaning which
has not been specifically designed for studying patients with AD so its areas do
not necessarily represent pathologically homogeneous regions. Once the struc-
tural images were segmented into gray matter density (GMD) and white matter
density (WMD), individual GMD and WMD maps were partitioned into the 116
regions of AAL. Then both the mean and standard deviation of the GMD/WMD
values of each region was then extracted by averaging the GMD/WMD values
of all voxels within that region. Thus, each subject has a total of 464 features
from grey matter and white matter images and 2 more features from neuropsy-
chological tests, resulting on 466 features for each session.

3.2 Feature selection

Not all the features are equally e↵ective. Some of them may become irrelevant
or redundant for the classification process. From this arises the necessity to se-
lect a small set of features with the greatest discriminative power to improve
the performance of the final classifier ( [13], [14]) and to speed up computation
( [15] and [16]). PCA (Principal component analysis, [17]) and ICA (Independent
component analysis, [18]) are two methods widely used in literature ( [19], [20]).
The former is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables into a set of val-
ues of linearly uncorrelated variables, which are known as principal component.
The latter focus on separating a multivariate signal into additive non-Gaussian
and statistically independent subcomponents. However, a di↵erent approach was



adopted in this work, using a filter ranking based on two-sample two-tailed t-
tests. For each feature of the complete data set, a decision test was performed
for the null hypothesis that the data in features vector of both classes (MCI-C
and MCI-NC) come from independent random samples from normal distribu-
tions with equal means but unknown variances, at the 5% significance level. The
alternative hypothesis is that the data in both vectors come from populations
with unequal means. Mathematically, the test statistic is:

t =
x� yq
S2
1
n + S2

2
m

(1)

where x and y are the means of each group, S1 and S2 are the sample standard
deviations and n and m are the number of features for each group. This process
was developed on the training set of each LOOCV fold. Thus, features whose
p-values were less than the significance level were selected meaning that from
the whole 116 brain regions, only 26 of them had an adequate discriminative
power for use in the classification process.

Fig. 1. Map of the brain regions chosen by the feature selection process (white colour).
Some of the 28 areas with greater power of discrimination are the hippocampus, amyg-
dala, thalamus, insula, temporal medial, temporal superior and occipital inferior.



3.3 Classification

Although in the literature there are more commonly used algorithms (i.e, SVM),
in this work a variation of Linear Discriminant Analysis (LDA) was employed.
LDA is a classification method that projects high-dimensional data onto a line
and performs classification in this one-dimensional space. The projection max-
imizes the distance between the means of the two classes while minimizing the
variance within each class. This defines the Fisher criterion, which is maximized
over all linear projections, w:

J(w) =
|m1 �m2|2

s

2
1 + s

2
2

(2)

where m represents a mean, s2 represents a variance, and the subscripts de-
note the two classes. Therefore, the main objective of LDA is to find a projection
matrix that maximizes the ratio of the determinant of the between-class scatter
matrix to the determinant of the within-class scatter matrix. As in PCA, the
eigenvalues are of great importance in the correct separation of the classes. Fol-
lowing the complete mathematical procedure described in [21], Equation 2 can
be rewritten as follows:
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where SB is the ”between classes scatter matrix”, SW is the ”within classes
scatter matrix” and wk is the eigenvector associated to the eigenvalue �k. Con-
sequently, to maximize the solution the eigenvector associated with the largest
eigenvalue must be considered.

However, the traditional LDA cannot be directly used when the within-class
scatter matrix is singular, as in the case of limited samples and high dimensional
feature space. In this work, the dimension of feature space was still higher than
the number of samples. In order to avoid these critical issues, [22] proposed a
maximum uncertainty LDA-based approach (MLDA) to overcome the instability
of the SW matrix. It is based on the maximum entropy covariance selection
method developed to improve quadratic classification performance on limited
sample size problems.

The proposed method considers the issue of stabilizing the SW estimate with
a multiple of the identity matrix by selecting the largest dispersions regarding the
SW average eigenvalue. This selection algorithm expands only the smaller and
consequently less reliable eigenvalues of within-class scatter matrix SW . Thus,
it is necessary to replace SW matrix, as follows:

S

⇤
W = S

⇤
P (N � g) = (�⇤⇤

�

T )(N � g) (4)

where SP is the covariance matrix, � and ⇤ are the eigenvalues and eigenvec-
tors of the covariance matrix, respectively, N is the number of training patterns
from both classes and g is the total number of classes. It is a straightforward
method that overcomes both the singularity and instability of the within-class



scatter matrix SW when LDA is used in limited sample and high dimensional
problems, so that’s the reason why we chose it for this work.

4 Performance evaluation

In a general classification problem, the goal is to learn a classifier that performs
well on unseen data drawn from the same distribution as the available data.
One common way to estimate generalization capabilities is to measure the per-
formance of the learned classifier on test data that has not been used to train
the classifier. When a large test data set cannot be held out or easily acquired,
resampling methods, such as cross validation, are commonly used to estimate
the generalization error ( [23]). Leave-one-out cross validation (LOOCV) was
used to estimate the performance of the classifier. LOOCV involves separating
the data so in each iteration there is only a test data while the remaining data
are used to train the classifier. This means that on every fold of LOOCV, the
most discriminative features are calculated and projected onto a one-dimensional
space to properly determine the label of the testing sample.

Other measures to evaluate the performance of a classifier can be extracted
from the confusion matrix. Accuracy is the proportion of the total number of pre-
dictions that are correct. Secondly, sensitivity (or true positive rate) measures
the proportion of actual positives which are correctly identified. And finally,
specificity (also called the true negative rate) measures the proportion of nega-
tives which are correctly identified. It is desirable to have a classifier that gives
high values of these three measures. In [24], ROC curve illustrates the perfor-
mance of a binary classification as its discrimination threshold is varied. The
curve is created by plotting the true positive rate (i.e. sensitivity) against the
false positive rate (that is, 1-specificity) at various thresholds settings. This area
can be interpreted as the probability that given a couple of patients (in our
case, a mci converter and a non-converter patient), our algorithm classify them
properly.

Accuracy =
TP + TN

TP + FN + TN + FP

(5)

Sensitivity =
TP

TP + FN

(6)

Specificity =
TN

TN + FP

(7)

5 Results

The aim of this work was the development of a completely automatic method for
prediction of Alzheimer’s disease and it has been broadly achieved. The experi-
ments carried out on the database composed by both structural MRI (segmented
into gray matter density and white matter density) and neuropsychological tests



(MMSE and ADAS-Cog). Thus, in each session there are two measures (mean
and standard deviation) for each region of both segmented images besides the
two neuropsychological tests. Several trials were made combining the di↵erent
features yielding a value of accuracy equal to 73.95 %, with a sensitivity of
74.14%, a specificity of 73.77% and an area under the ROC curve of 0.7923.

Table 1. Results obtained using gray matter, white matter and neuropsychological
tests from sessions 6/12 months before conversion (MCI-converters) and combining
data from both sessions.

GRAY MATTER +
WHITE MATTER
6 months before conversion

Features used Sensitivity (%) Specificity (%) Accuracy (%) AUC
Means + Tests 65.67 72.13 68.75 0.7913

Deviations + Tests 65.67 70.49 67.97 0.7962
Means + Deviations + Tests 65.67 72.13 68.75 0.7839

12 months before conversion
Features used Sensitivity (%) Specificity (%) Accuracy (%) AUC
Means + Tests 67.24 63.93 65.55 0.7671

Deviations + Tests 68.97 62.3 65.55 0.7646
Means+ Deviations + Tests 67.24 65.57 66.39 0.7674

6 + 12 months before conversion
Features used Sensitivity (%) Specificity (%) Accuracy (%) AUC
Means + Tests 74.14 73.77 73.95 0.7923

Deviations + Tests 72.41 73.77 73.11 0.7911
Means + Deviations + Tests 74.14 73.77 73.95 0.7925

Table 1 shows the results obtained by the LDA classification algorithm when
data from MRI images (means and deviations) and neuropsychological tests
(MMSE and ADAS-Cog) are used as input features. For MCI converters patients,
the data from one and two sessions before their conversions (i.e. six and twelve
months before the conversion session respectively) can be used separately and
in combination of both sessions. Besides, the average conversion session was
calculated for all these patients, resulting that this was the fourth session (month
18 of the longitudinal analysis). Therefore, the data used for MCI non converters
patients were those relating to the second and the third sessions.

The results show that we can predict more reliably the development of
Alzheimer’s disease 6 months before it appears instead of 12 months before
the diagnosis of this disease, something which otherwise is logical. Regarding
the use of means and deviations of each atlas region, there are no major di↵er-
ences between choosing one or the other. However, combining the data from two



previous sessions to the diagnosis, both accuracy and specificity and sensitiv-
ity increases considerably (almost 10 percentage points), while the area under
the ROC curve remained almost unchanged. A t-test was used to compare the
di↵erent experiments, resulting in that they are statistically significant, with a
t-value exceeding 600 and a p-value less than 0.0001.

6 Discussion

In this study, we introduce a new method for discriminating MCI patients who
will be diagnosed with Alzheimer’s disease (up to a year before that it happens)
from MCI patients whose impairment will remain constant in this period of time.
Using an atlas (AAL) for partitioning the brain into 116 anatomical regions,
a t-test for feature selection and LDA as classification algorithm our method
achieved a high accuracy (73.95%), and the AUC was 0.79. Other methods ( [20],
[10]) achieved accuracies above 90%, which are superior to those achieved in our
work. It is necessary to clarify the complexity of the problem we faced and the
great potential our method has shown. The development of an automated system
for prediction of Alzheimer’s disease in an early stage is not a new challenge.
However, this work represents a step further in predicting this disease because
only patients with mild cognitive impairment are considered, because subjects
who developed Alzheimer’s disease at some point in our study are only considered
from sessions before conversion. Therefore, our method is able to find significant
di↵erences in patients whose clinical diagnosis is identical, using a very simple
approach in which the features are based on statistical measures from anatomical
regions of the brain.

Thus, this system can be used as an aid in the diagnosis of Alzheimer’s disease
because is fully automatic, so it is not required to choose a prior anatomical
region where focuses the analysis since the entire brain is considered. The fact
that it is only needed a nuclear magnetic resonance which is available in most
of the diagnostic centers and that only a few minutes are necessary to collect
the data from both neuropsychological tests are important advantages for using
this technique for clinical diagnosis. A suggestion for future research might be
to consider the contribution of each voxel separately, as Multi-Voxel Pattern
Analysis (MVPA) proposes, a technique which allows to detect di↵erences with
higher sensitivity than conventional univariate analysis.

7 Conclusion

In the current study, we have developed a system to predict if MCI patients will
develop Alzheimer’s disease within a period of one year by combining data from
magnetic resonance images (the mean and the standard deviation of each brain
region proposed by the atlas AAL) and the results from two neuropsychological
tests (MMSE and ADAS-Cog), yielding an excellent performance (73.95% ac-
curacy and AUC=0.79). This promising discrimination power suggests that this
technique could be used as an aid in the diagnosis of AD, becoming a promising



starting point for other more complex methods as multivariate pattern analy-
sis. We conclude that it would be so interesting to repeat all the procedure of
this work extracting the features from an anatomical atlas based on the most
damaged regions by this disease instead of an anatomical atlas, since it could
improve significantly the results.
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