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Abstract

Motivation: Alternative splicing is a ubiquitous process in eukaryotes that allows distinct transcripts to be produced
from the same gene. Yet, the study of transcript evolution within a gene family is still in its infancy. One prerequisite
for this study is the availability of methods to compare sets of transcripts while accounting for their splicing struc-
ture. In this context, we generalize the concept of pairwise spliced alignments (PSpAs) to multiple spliced alignments
(MSpAs). MSpAs have several important purposes in addition to empowering the study of the evolution of tran-
scripts. For instance, it is a key to improving the prediction of gene models, which is important to solve the growing
problem of genome annotation. Despite its essentialness, a formal definition of the concept and methods to com-
pute MSpAs are still lacking.

Results: We introduce the MSpA problem and the SplicedFamAlignMulti (SFAM) method, to compute the MSpA of
a gene family. Like most multiple sequence alignment (MSA) methods that are generally greedy heuristic methods
assembling pairwise alignments, SFAM combines all PSpAs of coding DNA sequences and gene sequences of a
gene family into an MSpA. It produces a single structure that represents the superstructure and models of the gene
family. Using real vertebrate and simulated gene family data, we illustrate the utility of SFAM for computing accur-
ate gene family superstructures, MSAs, inferring splicing orthologous groups and improving gene-model
annotations.

Availability and implementation: The supporting data and implementation of SFAM are freely available at https://
github.com/UdeS-CoBIUS/SpliceFamAlignMulti.

Contact: Aida.Ouangraoua@USherbrooke.ca

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Alternative splicing is one of the most important mechanisms
revealed in the postgenomic era (Harrow et al., 2012). Over the past
decade, the number of alternatively spliced genes and alternative
transcripts annotated in eukaryotic organisms has increased dramat-
ically (Zerbino et al., 2018). It has now been established that alter-
native splicing was likely a feature of the eukaryotes’ common
ancestor. Nevertheless, several questions about the evolution and
conservation of sets of alternative transcripts annotated in different
members of a gene family remain open (Keren et al., 2010). For in-
stance, how do new isoforms arise during evolution? Understanding
the evolution of sets of alternative transcripts requires automated
methods to compare sets of transcripts from homologous genes. In
the past, alternative transcripts between homologous genes were

compared based on pairwise spliced alignments (PSpAs). A PSpA
consists in aligning a spliced RNA sequence or its DNA equivalent,
the coding DNA sequence (CDS) and an unspliced DNA sequence in
order to highlight homologous or equivalent exons between the
aligned sequences. This is an important step for genome annotation
and gene prediction using RNA-seq data or homologous gene infor-
mation (Dunne and Kelly, 2018; Stanke et al., 2006). For studying
evolution, PSpA is also an effective method for the identification of
splicing orthologous transcripts between genes, understood here as
alternative transcripts of homologous genes composed of homolo-
gous exons in the same order (Jammali et al., 2019; Zambelli et al.,
2010). Several methods have been developed to address different
versions of the PSpA problem which consists in finding an optimal
PSpA of two sequences given an optimization function (see Jammali
et al., 2019 for a review). PSpA, however, only allows two sequences
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to be compared at a time; therefore, it is not suited for studying al-
ternative splicing evolution in a phylogenetic framework.

A natural generalization of PSpA to study the evolution of sets of
alternative spliced RNA is multiple spliced alignment (MSpA),
which is a spliced alignment of a set of spliced RNA sequences with
a set of unspliced genomic sequences. Contrary to classic multiple
sequence alignment (MSA), MSpA accounts for the splicing struc-
ture and the exonic structure of the input gene sequences. Like MSA
that has been instrumental in better understanding the mechanisms
of sequence evolution, MSpA is expected to shed light on important
questions about the evolution of alternative splicing and of sets of al-
ternative spliced RNA. For instance, the question about the conser-
vation of the function of conserved transcripts between homologous
genes remains open. MSpA will allow us to directly compare the
exon architecture of alternative splicing in multiple genes and spe-
cies at once, in order to answer questions about the evolution of
transcripts as in (Christinat and Moret, 2013, Kuitche et al., 2017).
For instance, is an alternative transcript preserved between multiple
genes and species? Where was it gained or lost in the evolution?
How did the set of exons evolve? Moreover, like for MSA compared
to pairwise sequence alignment, an MSpA of all genes and spliced
RNA sequences of a gene family is expected to be more accurate
than the independent PSpAs of genes and RNA sequences of the
family. Furthermore, since MSpA accounts for the exon structure of
genes, it will likely help improve the estimation of MSAs, as in Nord
et al. (2018), which is critical because exon structure-related errors
are pervasive in MSA.

An MSpA has important purposes other than empowering the
study of the evolution of sets of alternative transcripts. Several de
novo and homology-based gene prediction algorithms have used the
idea of comparing multiple gene structures to improve gene annota-
tion by predicting gene models for multiple homologous genes sim-
ultaneously (Dunne and Kelly, 2018; Stanke et al., 2006). The
MSpA framework will help to annotate new genomes by identifying
exons that are homologous to exons already identified in well-
annotated species, and to predict putative conserved isoforms for
the newly annotated genes. Despite its essential nature, the MSpA
problem has never been introduced and, to the best of our know-
ledge, no automated method currently exists for computing MSpAs.

In this paper, we introduce the MSpA problem as an extension
of the PSpA problem that aims at finding an optimal MSpA for a set
of spliced RNA sequences and a set of genes. The MSpA problem
also extends a homonym but distinct problem studied in Brendel
et al. (2004), which consists in finding an optimal alignment for a
set of spliced RNA sequences and a single gene. Section 2 provides a
formal definition of the MSpA problem. It also describes
SplicedFamAlignMulti (SFAM), a collection of greedy heuristic
methods designed to combine all PSpAs of known CDSs and gene
sequences of a gene family into an MSpA. An MSpA of a gene family
provided by SFAM produces a single superstructure representing the
exon structure of the gene family. It separately aligns all homolo-
gous exons of all transcripts from the gene family, thus highlighting
classes of conserved exons of the gene family. MSpA opens the door
to broad applications for identifying and classifying splicing hom-
ology relationships between transcripts of homologous genes as in
Kuitche et al. (2017) and to provide better gene models for genome
annotation. Section 3 illustrates the utility of SFAM by comparing it
to other methods on simulated gene family data to compute CDS
MSAs and groups of orthologous CDSs. As no other methods exist
to compute MSpA to our knowledge, the evaluation is based on
MSAs and CDS orthology inferences deduced from MSpA, and the
comparisons are done against state-of-the-art MSA and orthology
inference methods. Lastly, we show how MSpA can be used to pre-
dict gene models by homology on a real vertebrate gene family data-
set in order to improve existing genome annotations.

2 Materials and methods

This section introduces the MSpA problem. We then present algo-
rithmic solutions to build an MSpA given a set of PSpAs. Lastly, we
describe the experimental setup used to evaluate the methods.

2.1 Definition of the MSpA problem
In this section, we present formal definitions and notations of a gene
model, a gene structure and spliced alignment problems.

2.1.1 Gene model and gene structure

The definitions of the gene models and structure are derived from
the set of RNA transcripts produced from this gene. In this study,
we focused on eukaryote coding genes; the definition of gene models
and structures was limited to the information about CDSs corre-
sponding to RNA transcripts.

A gene sequence is a DNA sequence on the alphabet of nucleoti-
des R ¼ fA;C;G;Tg. Given a gene sequence g of length n, an exon
of g is a segment represented by the pair of its start and end locations
on g, (a, b) such that 1 � a � b � n. A gene model of g is a repre-
sentation of a CDS c of g as a chain of exons of g,
c ¼ fða1;b1Þ; . . . ; ðaj; bjÞg, such that for any two successive exons
(ai, bi) and ðaiþ1; biþ1Þ in c, we have bi < aiþ1. The ith exon of a
CDS c is denoted by c½i�. We denote by CðgÞ the set of alternative
CDS of a gene g. The set of all exons of g composing its CDS is
denoted by EðgÞ ¼ [c2CðgÞ c. The gene structure of g, denoted by SðgÞ
is the chain of nonoverlapping segments of g obtained by merging
all overlapping exons of EðgÞ, and ordering the resulting segments
according to their locations in g (see Fig. 1A).

The sequence of a CDS c of g, denoted by g½c�, is the concaten-
ation of the sequences of gene exons composing c. An exon of a
CDS g½c� of length m is a segment represented by the pair of its start
and end locations on g½c�, (k, l) such that 1 � k � l � m. We
denote by Eðg½c�Þ the set of all exons composing a CDS g½c�. For
instance, the example depicted in Figure 1A shows that
g[c1]¼ATGCAAGCAGGTCTGGGGTGA has a length of 21 with
a set of exons Eðg½c1�Þ ¼ fð1;4Þ; ð5;16Þ; ð17; 21Þg. Given a CDS g½c�
of length m and a location k such that 1 � k � m; gposc!gðkÞ
denotes the location on gene g corresponding to the location k on
g½c�. For instance in Figure 1A, gposc1!gð1Þ ¼ 9; gposc1!gð5Þ ¼ 25.

2.1.2 Spliced alignment problems

A PSpA is an alignment of a CDS and a gene sequence that accounts
for the splicing structure of sequences and allows identification of
homologous exon sequences. In Jammali et al. (2019), a PSpA was
formulated as a chain of blocks corresponding to pairwise sequence
alignments of segments of the CDS with segments of the gene. This
formulation makes it possible to define various versions of the PSpA
problem under a unified framework. It also allows to highlight the
macroscopic alignment at the level of the splicing (exon–intron)
structure, rather than the microscopic alignment at the level of nu-
cleotide, since we focus here on the splicing trends and exon usage
differences between different gene family members. Herein, the con-
cept of PSpA and the formulation from Jammali et al. (2019) are
extended to define MSpAs. An MSpA is an alignment of a set of
CDSs with a set of gene sequences that accounts for the splicing
structure of sequences and makes it possible to highlight homolo-
gous exons.

Definition 1 [multiple spliced alignment (MSpA)] An MSpA of a set of

CDSs C and a set of genes G from the same gene family is represented as

a chain A ¼ fA½1�; . . . ;A½n�g of maps called multiblocks such that A½i�
denotes the ith multiblock of A. Each multiblock A½i� is a map whose key

set, denoted by keyðA½i�Þ, is a subset of C [ G, and A½i� associates each

CDS or gene x 2 keyðA½i�Þ to a segment on the sequence of x represented

by the pair ðsx
i ; e

x
i Þ of its start and end locations. An MSpA A ¼

fA½1�; . . . ;A½n�g of a set of CDSs C and a set of genes G must satisfy the

following four conditions (see Fig. 1B for an illustration):

1. For any multiblock A½i�, we must have j keyðA½i�Þ j > 0.

2. For any CDS or gene x 2 C [ G and any two multiblocks A½i1�
and A½i2� such that i1 < i2 and x 2 keyðA½i1�Þ \ keyðA½i2�Þ, we

must have ex
i1
< sx

i2
, i.e. the end location of the segment of x in

A½i1� is before the start location of the segment of x in A½i2�.
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3. For any CDS c 2 C, the set of segments of c induced by A,

fðsc
i ; e

c
i Þ j 1 � i � n and c 2 keyðA½i�Þg covers entirely c.

4. For any multiblock A½i� and any CDS c 2 C of a gene g 2 G such

that c 2 keyðA½i�Þ, we must have g 2 keyðA½i�Þ and the interval

ðgposc!gðsc
i Þ; gposc!gðec

i ÞÞ is included in the interval ðsg
i ; e

g
i Þ, i.e.

the segments of c and g in A½i�must be consistent.

Each multiblock A½i� ¼ fx : ðsx
i ; e

x
i Þ j x 2 keyðA½i�Þg represents

an alignment of the set of segments associated with elements of
keyðA½i�Þ. It represents a set of conserved exon segments. The size of
a multiblock A½i� is the size of its key set keyðA½i�Þ.

Given two multiblocks a ¼ fx : ðsx
a ; e

x
aÞ j x 2 keyðaÞg and

b ¼ fx : ðsx
b; e

x
bÞ j x 2 keyðbÞg, we say that a is consistent with b, if

one of the following conditions is satisfied:

• for any x 2 keyðaÞ \ keyðbÞ; ex
a < sx

b, i.e. a is located before b

or
• for any x 2 keyðaÞ \ keyðbÞ; ex

b < sx
a , i.e. a is located after b or

• for any x 2 keyðaÞ \ keyðbÞ, the segments ðsx
a ; e

x
aÞ and ðsx

b; e
x
bÞ

overlap, i.e. a overlaps b.

Given an MSpA A of C [ G and a multiblock a on C [ G, the mul-
tiblock a is consistent with A if for any multiblock A½i� of A, a is con-
sistent with A½i�.

Definition 2 [pairwise spliced alignment (PSpA)] A PSpA is an MSpA of

a single CDS and a single gene. In this case, the multiblocks of the align-

ment are called blocks (see Fig. 1C for an illustration).

Let X be a PSpA of a CDS c 2 C and a gene g 2 G. A block X½i� of
X is a conserved block if c and g belong to keyðX½i�Þ Otherwise, if
c 2 keyðX½i�Þ and g 62 keyðX½i�Þ, then X½i� is called a deleted block
(see Fig. 1C for an illustration).

An MSpA A ¼ fA½1�; . . . ;A½n�g of a set of CDSs C and a set of
genes G induces a PSpA Ac;g of each pair of CDS c 2 C and gene
g 2 G. The induced PSpA is obtained by first reducing A to the chain
of multiblocks A½i� such that c 2 keyðA½i�Þ, and then removing all
entries except c and g from the multiblocks. For instance, for the
MSpA depicted in Figure 1B, the induced PSpA of CDS c3 and gene
g is composed of 3 blocks, Ac3;g ¼ fAc3;g½1�;Ac3;g½2�;Ac3;g½3�g that
are reductions of A½2�; A½3� and A½5�.

Various definitions of similarity scores for PSpAs have been con-
sidered to define various versions of the PSpA problem (Jammali
et al., 2019). Let S be a scoring function that associates any PSpA P
of a CDS sequence c and a gene sequence g with a similarity score
SðPÞ. The general MSpA problem is defined as follows:

2.1.3 Multiple spliced alignment problem (MSAP_I)

Input: A set of CDSs C; a set of genes G.
Output: An MSpA A of C on G that maximizes the sum of the scores
of induced PSpAs:

P
ðc;gÞ2C�G SðAc;gÞ.

There exist several methods for computing PSpAs between a
gene and a CDS (Jammali et al., 2019). Considering this, if a set of
optimal PSpAs of all pairs of a CDS and gene in C � G is available,
the MSAP can be reduced to one of optimally combining the PSpAs
into an MSpA, as follows:

2.1.4 Multiple spliced alignment problem (MSAP_II)

Input: A set of CDSs C; a set of genes G; a set of PSpAs X ¼
fXc;g j ðc; gÞ 2 C � Gg for all pairs in C � G.
Output: An MSpA A of C and G that maximizes the number of
blocks of pairwise alignments in X that are included in multiblocks
of A.

2.2 The SFAM algorithms
We now describe our heuristic algorithms for building an MSpA of
a set of CDSs C and a set of genes G, given a set of PSpAs X ¼
fXc;g j ðc; gÞ 2 C � Gg for all pairs in C � G (MSAP_II problem).
MSA methods usually make use of greedy heuristics, including the
most widely used progressive alignment strategy (Feng and
Doolittle, 1987). The progressive alignment strategy consists in first
building a guide tree using pairwise comparison information. The
sequences and alignments are then merged progressively from
the leaves to the root of the guide tree. Progressive alignment has the
classic local-optimum limitations of greedy algorithms. One way to
address this problem is to use consistency scoring that was pioneered
by T-Coffee (Notredame et al., 2000). The consistency-based strat-
egy consists in evaluating the degree to which the alignment of two

Fig. 1. (A) Examples of two genes g and h having lengths 62 and 60, respectively,

with sets of CDS CðgÞ ¼ fc1; c2g and CðhÞ ¼ fc3; c4g. Noncoding nucleotides in the

gene sequence (i.e. introns, untranscribed and untranslated regions) are represented

with the character ‘*’. For example, the sets of exons of g are EðgÞ ¼
fð4; 12Þ; ð9; 12Þ; ð25; 30Þ; ð25; 36Þ; ð41; 46Þ; ð51; 55Þ; ð51; 59Þg and the gene struc-

ture of g is SðgÞ ¼ fð4; 12Þ; ð25; 36Þ; ð41; 46Þ; ð51; 59Þg. (B) An example of MSpA of

G ¼ fg; hg and C ¼ fc1; c2; c3; c4g that is composed of 5 multiblocks. (C) Examples

of PSpAs W (3 blocks), X (2 blocks), Y (4 blocks), Z (4 blocks) for the pairs of CDS

and gene ðc3; gÞ; ðc4; gÞ; ðc1; hÞ and ðc2; hÞ, respectively. All blocks are conserved

blocks, except Z½1�, which is a deleted block. For each conserved block, the PID of

the segment alignment is depicted

SplicedFamAlignMulti 3



residues or segments in a precomputed pairwise alignment is sup-
ported by other precomputed pairwise alignments. Using the
consistency-based strategy in a progressive alignment approach can
account for the information of all pairwise alignments at each stage
of the alignment in order to avoid the classic limitations of progres-
sive alignment.

The first algorithm named SplicedFamAlignMulti_tcoffee
(SFAM_tcoffee) uses a consistency-based progressive alignment that
relies on the use of the T-Coffee alignment package (Notredame
et al., 2000).

The second algorithm named SplicedFamAlignMulti_mblock
(SFAM_mblock) also uses a greedy approach that consists in first
precomputing a set of candidate multiblocks by assembling aligned
pairwise blocks that share identical segment. The candidate multi-
blocks are then sorted according to their size, including multiblocks
one-by-one into a growing consistent set of multiblocks. We call this
approach the greedy multiblock approach. The rationale behind this
approach is that a candidate multiblock of large size is supported by
a high number of pair blocks, and is less likely to be a random arti-
fact than a multiblock containing a small number of segments. Like
the consistency-based progressive alignment, the greedy multiblock
approach also takes into account the information of all pairwise
alignments at each stage of the alignment by considering candidate
multiblocks instead of pair blocks.

2.3 Spliced alignment graph
The two algorithms SFAM_tcoffee and SFAM_mblock make use
of a spliced alignment graph, denoted by graphðXÞ, that repre-
sents a set of PSpAs X ¼ fXc;g j ðc; gÞ 2 C � Gg (see Fig. 2 for an
illustration).

Definition 3 (spliced alignment graph) Let X ¼ fXc;g j ðc; gÞ 2 C � Gg be

a set of PSpAs. For any CDS c 2 C of a gene g 2 G, and any gene h 2 G,

for any conserved block Xc;h½i� ¼ fh : ðsh
i ; e

h
i Þ; c : ðsc

i ; e
c
i Þg of Xc;h, the

spliced alignment graph graphðXÞ represents the segments

ðsh
i ; e

h
i Þ; ðsc

i ; e
c
i Þ and ðgposc!gðsc

i Þ; gposc!gðec
i ÞÞ as vertices with an edge

between segments ðsh
i ; e

h
i Þ and ðsc

i ; e
c
i Þ that represents the conserved

block, and an edge between segments ðsc
i ; e

c
i Þ and

ðgposc!gðsc
i Þ; gposc!gðec

i ÞÞ that represents the alignment of CDS segment

ðsc
i ; e

c
i Þ on the corresponding gene segment. The edges of graphðXÞ that

represent conserved blocks are called block edges, while edges that repre-

sent alignments of CDS segments of their corresponding genes are called

CDS edges. Note that if g¼ h, then ðsh
i ; e

h
i Þ¼ ðgposc!gðsc

i Þ; gposc!gðec
i ÞÞ,

and the conserved block X½i� ¼ fh : ðsh
i ; e

h
i Þ; c : ðsc

i ; e
c
i Þg induces a single

edge in graphðXÞ that is a CDS edge.

A fully detailed description of each step of the algorithms is provided in

the Supplementary Material. Below, we briefly describe the steps in each

algorithms. See Supplementary Figure S1 for an overview of the two

methods.

2.4 T-Coffee-based MSpA
The SFAM_tcoffee algorithm follows a consistency-based progres-
sive alignment strategy that relies on the use of the T-Coffee align-
ment package (Notredame et al., 2000). The T-Coffee algorithm
implements the consistency-based strategy by generating and mak-
ing use of a library of pairwise residue matches obtained from pair-
wise alignments. Each pair of aligned residues in the primary library
is first weighted using the sequence identity of the pairwise align-
ment from which it comes. This is done in order to reflect the cor-
rectness of their alignment in a pairwise context. Next, the library is
extended in order to include pairs of residues between two sequences
induced by a third sequence. The weights of pairs of residues are
also extended such that the final weight of a pair of residues reflects
the similarity of their sequences as well as the consistency of the

Fig. 2. Spliced alignment graph graphðXÞ of the PSpA depicted in Figure 1C. Block edges are represented as solid lines, and CDS edges as dashed lines. The value of con-

nect(e) is indicated for each edge e. Segments that do not correspond to exons in CDS or gene sequences are represented as dashed lines. The edge represented by a

thicker line is removed at Step 3 of the graph-based MSpA algorithm to obtain graph0ðXÞ. The connected components of graph0ðXÞ are numbered in decreasing order of

size
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residue pair with all other residue pairs in the library. The
SFAM_tcoffee algorithm is composed of three steps:

1. Generate the primary library of residue pairs: SFAM_tcoffee pro-

vides two ways to generate the primary library of residue pairs.

• The first method named SFAM_tcoffee_p (p for pairwise)

makes direct use of the blocks of the PSpAs given as input to

SFAM_tcoffee to extract the pairs of aligned residues between

gene sequences.

• The second method named SFAM_tcoffee_m (m for multiple)

makes use of the alignment graph graphðXÞ. For each con-

nected component cc of graphðXÞ, an MSA is computed for

the set of gene segments contained in cc, and pairs of aligned

residues between gene sequences are extracted from the MSA.

2. Compute an MSA M of G: An MSA of gene sequences is com-

puted using the T-Coffee algorithm and the library of residue

pairs computed at Step 1.

3. Compute an MSpA of C [ G given the MSA M of G: The MSA

computed at Step 2 is used to partition the set of all segments of

all gene structures into groups of aligned segments that corres-

pond to multiblocks of an MSpA.

2.5 Multiblock greedy MSpA
The SFAM_mblock is based on the alignment graph graphðXÞ. It
aims at defining the multiblocks of the MSpA as the connected com-
ponents of a graph obtained after modification of graphðXÞ. The al-
gorithm compromises four steps:

1. Compute the alignment graph graphðXÞ.
2. Weight the edges of graphðXÞ: Two scores denoted by PID(e)

and connect(e) are assigned to each edge e of graphðXÞ. PID(e)

is the percent sequence identity (PID) of the pairwise sequence

alignment represented by e. connect(e) evaluates the strength of

the connectivity between the two vertices connected by e. The

two scores serve as confidence scores for the segment alignment

represented by e.

3. Split connected components of graphðXÞ: For each connected

component cc of graphðXÞ, if cc contains two vertices corre-

sponding to two nonoverlapping segments of a sequence x, then

cc cannot correspond to a multiblock, since a multiblock con-

tains at most one segment from each sequence x 2 C [ G. In this

case, based on the confidence scores computed in the preceding

step, a set of low confidence edges are removed from cc to dis-

connect the two vertices.

4. Build the MSpA in a progressive manner: The connected compo-

nents of graph0ðXÞ are considered as candidate multiblocks. For

each connected component cc of graph0ðXÞ, a candidate multi-

block composed of the segments (vertices) in cc is built. The

resulting set M of candidate multiblocks is ordered by decreas-

ing multiblock size. The MSpA A is initialized to an empty

chain, and candidate multiblocks that are consistent with A are

progressively added to A.

2.6 Computation of multiple CDS alignments, CDS

orthology groups and putative CDS given an MSpA
Let A ¼ fA½1�; . . . ;A½n�g be an MSpA of C [ G. A multiple CDS
alignment, CDS orthology groups and putative CDS can be deduced
from A as follows:

Computing an MSA of C: An MSA is first computed for each
multiblock A½i� while forcing the correct alignment of any CDS seg-
ment on its corresponding gene segment. The resulting alignments
are then reduced to C, and concatenated to obtain an MSA of C (see
Fig. 3 for an illustration).

Computing CDS orthology groups: Given two CDSs c1 and c2 of
C from two distinct genes of G, we define c1 and c2 as orthologous
CDS if:

• for any multiblock A½i� 2 A; c1 2 keyðA½i�Þ if and only if

c2 2 keyðA½i�Þ, and;
• if c1 2 keyðA½i�Þ then ðec1

i � sc1

i Þ � ðe
c2

i � sc2

i Þ % 3 ¼ 0.

In other terms, c1 and c2 are orthologs if they have segments in the
same multiblocks, and the lengths of each pair of segments of c1 and
c2 that belong to the same multiblock are congruent modulo 3.
These conditions ensure that c1 and c2 have the same splicing struc-
ture, and are translated in the same reading frame in order to yield
similar protein sequences. For instance, in the MSpA depicted in
Figure 3, g[c1] and h[c3] are orthologs. Given the orthology relation
defined on the set of CDSs C, we extend it to a reflexive, transitive
and symmetric relation (i.e. an equivalence relation), and the result-
ing equivalence classes are defined as CDS orthology groups.

Predicting gene models by homology: Let c1 be a CDS of a gene
g 2 G, and h 2 G be a gene distinct from g. A putative CDS c2 can be
predicted for h if:

• for any multiblock A½i� 2 A; c1 2 keyðA½i�Þ if and only if

h 2 keyðA½i�Þ, and;
• if c1 2 keyðA½i�Þ then ðec1

i � sc1

i Þ � ðeh
i � sh

i Þ % 3 ¼ 0.

The putative CDS c2 is obtained by concatenating the set of seg-
ments of h contained in multiblocks that contains segments of c1,
fðsh

i ; e
h
i Þ j 1 � i � n and c1 2 keyðA½i�Þg. The resulting sequence

c2 is a predicted CDS for h, if it is not already a CDS of h, and it
does not contain any STOP codons. It is easy to see that c1 and the
predicted CDS c2 will then be orthologs according to the definition
provided above . For instance, in the MSpA depicted in Figure 3, a
CDS g½c3� ¼AAGCAGGTCTGGjGGTGATTGA orthologous to h½c4� and
composed of two exons can be predicted.

2.7 Experimental setup
2.7.1 Dataset

To evaluate the performance and show the utility of SFAM, we used
three datasets of 20 simulated gene families, and a dataset of 20 real
gene families from the Ensembl database (Zerbino et al., 2018).

2.7.1.1 Simulated data. Since true MSpAs of real gene families were
not available for validating our MSpA method, we generated three
datasets of 20 simulated gene families with gene sequences and
CDSs using SimSpliceEvol (Kuitche et al., 2019). SimSpliceEvol
relies on a model of gene splicing structure evolution and the evolu-
tion of transcript sets through alternative splicing events. It takes as
input a gene tree with branch lengths representing evolutionary
rates. It relies on empirically determined distributions of the number
of exons per transcript, the number of alternative transcripts per

A Multiple spliced alignment obtained using SFAM mblock

---------------(2)+(10)---------(1)+(3)+(4’)+(7’)----(8)------(5)+(6)+(9)
---------------=========--------================----======----============
g ---:----- ***ATGGAATGC********AAGCAG----GTCTGG****ACGTGG****GG---TGATTGA***
g[c1]: ------------ATGC--------AAGCAG----GTCTGG--------------GG---TGA
g[c2]: -------ATGGAATGC--------AAGCAG--------------ACGTGG----GG---TGATTGA
h ---: *******-----ATGA--****--ATGCCG****GTAACG**************GACTTTGAATAA***
h[c3]: ------------ATGA--------ATGCCG----GTAACG--------------GACTTTGA
h[c4]: ------------------------ATGCCG------------------------GACTTTGAATAA

B Induced CDS alignment

g[c1]: -----ATGCAAGCAGGTCTGG------GG---TGA
g[c2]: ATGGAATGCAAGCAG------ACGTGGGG---TGATTGA
h[c3]: -----ATGAATGCCGGTAACG------GACTTTGA
h[c4]: ---------ATGCCG------------GACTTTGAATAA

Fig. 3. (A) The MSpA of the set of genes G ¼ fg; hg and the set of CDSs C ¼
fc1; c2; c3; c4g from Figure 1A, resulting from the application of Algorithm

SFAM_mblock. (B) The MSA of C ¼ fc1; c2; c3; c4g induced by the MSpA
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gene, the length of exon segments, the length of intron segments in
189 eukaryotic species to generate realistic gene sequences. It gener-
ates an ancestral gene sequence at the root of the tree with exon–in-
tron structure and its set of CDSs. It makes this gene evolve along
the branches of the gene tree to generate a gene sequence and a set
of CDSs for each node of the tree. The root gene sequence, its CDS,
and its exon–intron structure are generated based on parameters
learned from a dataset of 10 000 vertebrates genes from amniote
species from the Ensembl database (Zerbino et al., 2018). The evolu-
tion simulated along branches of the tree accounts for two levels of
evolution. First, at the level of genes, the evolution model includes
exon duplication; gain and loss events that can modify the exon–in-
tron structure of genes and amino-acid (resp. nucleotide) insertion,
deletion and substitution events that can modify the sequence of
coding exons (resp. noncoding introns). For sequence evolution and
indel model, SimSpliceEvol uses the simulation models in Strope
et al. (2009). In indel-Seq-Gen 2, the branch lengths given in the
guide tree determine the rates of evolution, which are introduced
based on models of continuous substitution evolution processes with
lineage- and site-specific conservation as well as heterogeneous evo-
lution. For realistic sequence evolution, it also uses an indel model
that relies on a noncontinuous process with dynamic sequence
length adjustment, event tracking and empirical length distribution,
with respect to different sequence and functional constraints placed
on insertion and deletion processes. Second, at the level of

transcripts, the evolution model includes isoform creation and loss
events, as well as alternative splicing events that can modify the sets
of transcripts (CDSs) generated by genes. Using SimSpliceEvol, we
generated three sets of 20 gene families: a first set called Small using
as input gene tree a species tree of 5 primates with low evolutionary
rates on the tree branches, a second set called Medium with medium
evolutionary rates using a tree of 5 primates and rodents, and a third
set called Large with high evolutionary rates using a tree of 5 amni-
ote species. The input trees used for the simulations were retrieved
from the Ensembl Compara database (Zerbino et al., 2018). They
are described in the Supplementary Material. The simulation using
the guide trees does not follow a strict molecular clock, but rather
relies on a model of continuous and heterogeneous substitution evo-
lution for realistic sequence evolution (see description of indel-Seq-
Gen 2). Each of the three sets contains 20 simulated gene families
with 5 genes and 5–11 CDSs in total. For each family,
SimSpliceEvol provides the true MSA of all CDS and gene sequences
generated. SimSpliceEvol also outputs all groups of splicing ortho-
logs that are groups of CDSs descending from the same ancestral
CDS without any alternative splicing events in their evolutionary
history from the ancestral CDS. In other words, two CDSs from two
different genes are orthologs and belong to the same group if their
sets of exons descend from the same ancestral set of exons and only
sequence mutations events have occurred in the evolution of exons
from their common ancestor. Table 1 shows the detailed description
of the simulated datasets.

2.7.1.2 Real dataset. We randomly selected 20 gene families from
the Ensembl database containing genes from 6 amniote species:
human, mouse, dog, dingo, cow and chicken. For each gene family,
we removed all genes except those from the 6 selected species. For
each gene family, the dataset contains the sequences of the remain-
ing genes from 6 species, and all CDSs from these genes. For each
gene family, the sets of CDSs from genes were retrieved for releases
97 and 98 of the Ensembl database, because, in release 98 a new
gene annotation of dog was provided, leading to an increase from
19 857 to 20 257 coding genes, and from 39 074 to 60 994 gene
transcripts. This dataset was used to evaluate the ability of
SpliceFamAlignMulti to predict the new dog CDSs present in release
98, based on the spliced alignments computed on the data from re-
lease 97 of Ensembl. Table 2 shows the detailed description of the
real dataset.

Table 2. Description of the real dataset of 20 gene families (PID)

Gene family (tree) ID No. of total genes No. of total CDS

(97)–(98)

No. of dog genes No. of dog CDS

(97)–(98)

PID

ENSGT00530000063205 19 42–45 3 3–6 0.098

ENSGT00390000008371 12 27–28 2 2–3 0.604

ENSGT00390000000715 6 12–15 1 1–4 0.474

ENSGT00940000157909 6 31–35 1 1–5 0.623

ENSGT00530000063187 17 28–30 3 3–5 0.177

ENSGT00950000182978 24 88–103 4 4–19 0.106

ENSGT00950000182681 43 79–89 7 9–19 0.147

ENSGT00950000182875 37 57–63 5 4–10 0.112

ENSGT00950000182728 35 75–83 6 6–14 0.073

ENSGT00950000182931 24 73–83 4 5–15 0.168

ENSGT00950000182705 39 111–115 6 5–9 0.087

ENSGT00530000063023 23 41–46 4 6–11 0.103

ENSGT00940000153241 14 16–19 3 3–6 0.06

ENSGT00950000182956 23 56–71 4 5–20 0.257

ENSGT00950000182783 29 72–77 4 4–9 0.045

ENSGT00950000183192 19 69–72 3 3–6 0.051

ENSGT00950000182727 30 73–84 5 6–17 0.047

ENSGT00390000004965 6 7–8 1 1–2 0.89

ENSGT00390000003967 6 9–12 1 1–4 0.799

ENSGT00390000005532 6 12–13 1 1–2 0.545

Table 1. Description of the three simulated datasets: for the aver-

age measures, the standard deviations are also given in parenthe-

ses (PID)

Small Medium Large

Number of families 20 20 20

Number of genes per family 5 5 5

Avg. number of CDS 8.8 8.55 9.35

(3.02) (3.04) (2.70)

Avg. CDS length 802.65 820.49 778.13

(204.41) (288.37) (281.77)

Avg. gene length 2358.71 2724.82 2418.22

(713.76) (813.09) (601.44)

Avg. pairwise PID (%) 71.24 54.39 41.61

(4.36) (2.52) (2.4)
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2.7.2 Evaluated methods

To the best of our knowledge, SFAM has no competing methods for
MSpAs. For this reason, the performance of SFAM algorithms was
compared to the performance of popular MSA methods, using the
resulting multiple CDS alignments. This is pertinent because the
quality of a multiple CDS alignment induced by an MSpA is directly
related to the quality of the MSpA. The SFAM algorithms were also
compared to sequence clustering and orthology group inference
methods used to compute CDS orthology groups within a gene
family.

2.7.2.1 MSA methods. SFAM was compared to popular MSA meth-
ods including MUSCLE (Edgar, 2004), MAFFT (Katoh and
Standley, 2013), MACSE (Ranwez et al., 2018), CLUSTAL_O
(Sievers et al., 2011), PRANK (Löytynoja and Goldman, 2005,
2008), T-Coffee (Notredame et al., 2000) and Mirage (Nord et al.,
2018). MUSCLE (Edgar, 2004) is a multiple sequence aligner that
uses the log-expectation score to speed up its progressive alignment
protocol. MAFFT (Katoh and Standley, 2013) is an MSA program
based on the identification of homologous regions by the fast
Fourier transform. MACSE (Ranwez et al., 2018) is a multiple se-
quence aligner that accounts for the underlying codon structure of
protein-coding nucleotide sequences. CLUSTAL_O (Sievers et al.,
2011) uses guide trees and an HMM profile-profile approach to
compute MSAs. PRANK (Löytynoja and Goldman, 2005, 2008) is a
probabilistic MSA program, based on maximum likelihood methods
that take into account the evolutionary distances between sequences.
T-Coffee (Notredame et al., 2000) is a multiple sequence aligner
that uses a consistency-based progressive strategy that relies on a li-
brary of pairwise residue matches obtained from pairwise align-
ments. Mirage (Nord et al., 2018) is a multiple sequence aligner for
alternatively spliced protein isoforms that maps protein sequences to
their corresponding genomic sequences, and then aligns the isoforms
based on these mappings. The three algorithms of SFAM
(SFAM_tcoffee_p, SFAM_tcoffee_m and SFAM_mblock) were
included in the comparison. The default parameters were used for
all the methods included in the comparison.

2.7.2.2 Sequence clustering and orthology group inference methods.
SFAM was compared to the following sequence clustering methods
that can be used to compute CDS orthology groups within a gene
family: Cluss (Kelil et al., 2008), OrthoFinder (Emms and Kelly,
2019) and SplicedFamAlign (SFA; Jammali et al., 2019). Cluss (Kelil
et al., 2008) is a fast alignment-free method for clustering protein
families. OrthoFinder (Emms and Kelly, 2019) is a widely used
alignment-based method that infers orthogroups of coding genes by
solving the gene length bias in orthogroup inference. SFA (Jammali
et al., 2019) is the PSpA methods on which SFAM algorithms are
based. SFA infers CDS orthology groups based on the set of all
PSpAs within a gene family. The default parameters were used for
all the methods.

2.7.3 Performance metrics

The following performances metrics were used to compare the meth-
ods included in the analyses.

2.7.3.1 Performance for MSAs. Based on the true MSAs of the CDS
of each family of the simulated datasets, the precision, recall,
F-score, and computing time for each method and each gene family
were computed. The precision is the fraction of nucleotide pairs
in the estimated alignment that are also in the true alignment. The
recall is the fraction of nucleotide pairs in the true alignment that
are also in the estimated alignment. The F-score is the harmonic
mean of precision and recall. In order to account for the fact that
the methods of SFAM and Mirage use the gene sequences as guides
to improve CDS alignment, we considered two sets of results. The
first set of results was obtained by directly aligning only the CDSs
using the other MSA methods (MUSCLE, MAFFT, MACSE,
CLUSTAL_O, PRANK, T-Coffee). The second set of results was

obtained by aligning the gene sequences and the CDSs using the
other alignment methods (MUSCLE_G, MAFFT_G, MACSE_G,
CLUSTAL_O_G, PRANK_G, T-Coffee_G), and then computing the
CDS alignments induced by these whole MSAs. The precision, re-
call, F-score and computing time were computed for each of these
sets of results. For SFAM, the computing time for PSpAs is included.

2.7.3.2 Performance for CDS orthology group inference. Based on
the true splicing orthologous groups of the CDS for each family of
the simulated datasets, the Rand index (RI) and the computing time
for each method and each gene family were calculated. The RI is the
fraction of CDS pairs that have the same relation in the estimated
clustering and the true clustering, either in the same cluster or in dif-
ferent clusters.

2.7.3.3 Performance for gene-models prediction. Based on the
results of the comparison of MSA methods and the comparison of
sequence clustering and orthology group inference methods, only
the best performing algorithm of SFAM SFAM_mblock was used in
predicting new gene models by homology. For each gene family of
the real dataset, we considered the set T (for true) of dog CDSs pre-
sent in release 98 of the Ensembl database, but absent in release 97,
and the set P (for predicted) of dog CDSs predicted by
SpliceFamAlignMulti (SFAM_mblock) based on data from release
97. We computed the precision, recall and F-score of the prediction.
The precision is the fraction of CDSs in P that correspond to CDS T.
The recall is the fraction of CDS in T that corresponds to CDS in P,
and the F-score is again the harmonic mean of precision and recall.
For each gene family, we considered two methods to define the cor-
respondence between CDSs of T and P. The more stringent method
defines two CDSs of T and P as matching if they are 100% identical.
The second less stringent method defines two CDSs of T and P as
matching if they are >90% identical and reciprocal best hits. For
this second method, the PID is computed based on a pairwise align-
ment of the CDS that is computed using a global alignment method,
FsePSA (Jammali et al., 2017), a pairwise alignment for CDSs that
simultaneously considers nucleotide and amino-acid sequences and
accounts for frameshift translation initiation and length.

3 Results and discussion

3.1 Performance for MSA
The results of the comparison with MSA methods are shown in
Figure 4.

3.1.1 Comparison of Graph and T-Coffee-based MSpA

Comparing the different versions of our SFAM method in terms of
precision, recall and F-score, SFAM_mblock performed best for all
classes of sequence similarity (Fig. 4, left). Of the two versions of
SFAM based on T-Coffee, SFAM_tcoffee_p appears to perform
slightly better than SFAM_tcoffee_m, but the difference is not sig-
nificant. This shows the superiority of the strategy that consists in
macroscopically assembling pairwise blocks into multiple blocks
without relying on sequence alignment (SFAM_mblock) over the
strategy that first computes the sequence alignment and then com-
putes the multiple blocks of the MSpA based on the sequence align-
ment (SFAM_tcoffee). It is worth noting that the low performance
of the SFAM_tcoffee methods might well be related to the low per-
formance of T-Coffee observed and discussed in the next paragraph.
As SFAM_mblock performed best, we excluded SFAM_tcoffee_p
and SFAM_tcoffee_m from the rest of the analysis, and only consid-
ered SFAM_mblock for comparison with the other methods.

3.1.2 Comparison of SFAM_mblock MSpA with MSA methods

In terms of precision, SFAM_mblock, MUSCLE, MAFFT, MACSE,
PRANK and Mirage performed well with precision rates higher than
0.9 for all classes of sequence similarity (Fig. 4, left). Among these
methods, SFAM_mblock was the most robust across the three
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classes of sequence similarity, and had a precision rate close to 1, the
best among all the methods. In contrast, the precision rates of
CLUSTAL_O and T-Coffee decreased significantly from the Small
to the Large datasets. In terms of recall, we observed the same trend
as for the precision rate. CLUSTAL_O and T-Coffee performed least
well, while the other methods performed well with a recall rate
higher than 0.9 for all classes of sequence similarity. Unlike the case
of precision, however, no methods significantly outperformed the
others in terms of recall across the three classes of sequence similar-
ity. As expected, the F-score measures reflect what was observed
with precision and recall, showing good and comparable performan-
ces for SFAM_mblock, MUSCLE, MAFFT, MACSE, PRANK and
Mirage for all datasets with values higher than 0.9. SFAM_mblock
was the most robust across the three classes of sequence similarity,
trailed closely by MACSE, PRANK and Mirage. These results show
that SFAM_mblock produced sequence alignments at least as accur-
ate as the compared multiple sequence aligners.

3.1.3 Comparison when adding the gene-sequence information for

other methods

Unlike the other methods, SFAM and Mirage use the gene-sequence
information. To evaluate the advantage provided by the inclusion of
gene-sequence information, they were added as input for the other
methods. Figure 4 right provides the comparison results. As
expected, adding the gene sequences in the alignment improves the
precision of MUSCLE, MAFFT, MACSE and T-Coffee. As for the
recall measure, however, only MACSE showed slightly higher for
the rest of the analysis when gene sequences were considered in the
alignment. The recall measures for MAFFT and especially PRANK
significantly decreased. Lastly, CLUSTAL_O performed clearly
worse, in terms of both precision and recall, when the gene sequen-
ces were added to the alignment. Overall, when taking account of
the gene sequences, MAFFT, MACSE, MUSCLE and Mirage
achieve good and comparable performance. SFAM_mblock and
MACSE performed best, followed by Mirage, MAFFT and Muscle.
These results show that the inclusion of gene-sequence information
improved the accuracy of most of the methods, especially in terms

of precision but SFAM_mblock stood out as among the methods
with the best performance. Moreover, including gene-sequence in-
formation made the other methods much more time-consuming, as
discussed in the next paragraph.

3.1.4 Comparison of execution times

All the methods ran on the same platform using the same environ-
ment (Fig. 4, left). MACSE and PRANK had much higher execution
times than the other methods, with comparable execution times of
<200 s on all datasets. Nevertheless, the SFAM algorithms had lon-
ger execution times than MUSCLE, MAFFT, CLUSTAL and
Mirage. This is probably due to the inclusion of gene sequences in
the inputs of SFAM, since when gene sequences were added for
other methods, their execution times were at least as high for SFAM
(Fig. 4, right). When the gene sequences were added, the execution
times of MACSE and PRANK the two most computationally inten-
sive were even greater compared to the other methods. This can be
explained by the time complexities of MACSE and PRANK, which
increase more rapidly as the length of the input sequences increases,
because gene sequences are much longer than CDSs.

3.1.5 Conclusion on the performance for MSA

The results of the comparison of the different versions of SFAM
show that SFAM_mblock performed best and was the most robust
for all classes of sequence similarity, thanks to its macroscopic ap-
proach that assembles PSpA blocks into multiple blocks, instead of
relying on MSA. The results also show that SFAM_mblock pro-
duced MSpAs that yielded sequence alignments with accuracy
higher than or comparable to that of state-of-the-art MSA methods.
The power of SFAM_mblock derives from using splicing structure
information (i.e. the exon–intron structure for genes and the exon–
exon structure for CDSs) and the spliced alignment graph that
makes it possible to consistently group conserved exon blocks of
PSpAs in MSpA blocks without relying on sequence alignment. This
shows the accuracy of the underlying MSpAs. This also illustrates
that it is possible to obtain high-quality MSpAs in a reasonable

Fig. 4. Precision, recall and F-score measures with their standard deviations for all compared methods for the MSAs of CDSs (left column). The first set of results obtained by

aligning only the CDSs using the MSA methods (MUSCLE, MAFFT, MACSE, CLUSTAL_O, PRANK, T-Coffee) (right column). The second set of results obtained by aligning

the gene sequences and the CDSs, and then extracting the induced CDSs alignment. The sum of execution times in second for all methods and all simulated datasets are also

given
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amount of time by focusing on the splicing structure information.
Some MSA methods that are agnostic to splicing structure infor-
mation such as Mirage, PRANK and MACSE performed compar-
ably to SFAM_mblock for MSA. In contrast, their performance
either decreased faster when the sequence similarity increased or
they were much more computationally intensive. Even if some
MSA methods performed as well as SFAM_mblock and might be
preferred if the splicing structure information is not available or
splicing structure conservation is not important, the accurate
MSAs provided by SFAM_mblock constitute robust foundations
for its other applications: CDS orthology groups inference and
gene-model prediction.

3.2 Performance for CDS orthology group inference
3.2.1 Comparison based on RI

Figure 5 shows the comparison of the RI measure of SFA, SFAM
(SFAM_mblock, SFAM_tcoffee_p, SFAM_tcoffee_m), Cluss and
OrthoFinder. The RI of SFA and SFAM_mblock was the highest
(close to 1) for all classes of sequence similarity compared to the
other methods. The RI of SFAM_tcoffee_p, SFAM_tcoffee_m and
OrthoFinder decreased faster when sequence similarity decreased,
while the performance of Cluss increased. It is not surprising that
the performance of Cluss increased when the sequence similarity
decreased, because Cluss is an alignment-free clustering method
designed especially for hard-to-align sequences such as highly dis-
similar sequences. The low performance of Cluss and OrthoFinder
compared to SFA and SFAM_mblock for CDS orthology group in-
ference can be explained by the fact that Cluss and OrthoFinder are
not designed for at distinguishing isoforms of the same gene, since
they solely rely on sequence similarity. Thus, most of the time, they
put isoforms of the same gene in the same orthology groups. In con-
trast, SFA and SFAM_mblock are able to discriminate between iso-
forms of the same gene thanks to accounting for the splicing
structure comparison between CDS. This illustrates the importance
of taking account of splicing structural information to compare and
cluster spliced sequences.

3.2.2 Comparison of execution times

As for the execution times, SFA, SFAM_mblock, SFAM_tcoffee_p,
SFAM_tcoffee_m and OrthoFinder had comparable running times

for all classes of sequence similarity (Small, Medium and Large).
Cluss had the lowest running time, because, unlike the other meth-
ods, it does not rely on any computationally intensive sequence or
structure alignment step. Rather it relies on an alignment-free se-
quence similarity measure.

3.3 Performance in predicting gene models
Table 3 shows the precision, recall and F-score of the prediction of
new CDS for each of the 20 real gene families in release 97 of the
Ensembl database. SFAM_mblock predicted new CDSs for all 20
gene families (i.e. jPj > 0). Based on the stringent method that
defines two CDSs of the true and predicted CDS sets as matching if
they are 100% identical, SFAM_mblock succeeded in predicting
true new CDSs (present in release 98) in 10 out of the 20 gene fami-
lies (i.e. jT \ Pj100 > 0) with a precision rate up to 50% (for family
ENSGT00390000004965), a recall rate up to 100% (for
ENSGT00390000004965 and ENSGT00390000005532) and an
F-score rate up to 67% (for ENSGT00390000004965). With the se-
cond less stringent method which defines two CDSs as matching if
they have a PID higher than 90% and are reciprocal best hits,
SFAM_mblock succeeds to predict true new CDS in 15 out of the 20
gene families (i.e. jT \ Pj90 > 0) with a precision rate up to 50% for
3 families, a recall rate up to 100% for 2 families and an F-score
rate up to 67% for 1 family.

Overall, with the stringent method, SFAM_mblock effectively
predicted 15 out of the 106 new dog CDSs in release 98 of Ensembl
but not in release 97 (i.e. recall¼14%). With the less stringent
method, it predicted 29 out of the 106 new dog CDS (i.e. recall-
¼27%). This can be attributed to the comparison with homologous
genes from only five other species. It is important to indicate that
the new CDSs were findable by SFAM_mblock only if they had con-
served counterparts (splicing orthologs) in homologous genes in re-
lease 97 of Ensembl. Thus, there was a proportion of new CDSs that
lack splicing orthologs in homologous genes that were not targeted
by SFAM_mblock, and which should be predicted using comple-
mentary methods. Yet, SFAM_mblock’s ability to predict up to
27% of the new CDSs is remarkable. It demonstrates the usefulness
of SFAM_mblock predicting gene models by homology in order to
improve existing genome annotations. Moreover, the number of
newly annotated exons and alternative splicing transcripts is

Fig. 5. RI with standard deviations (top), and computing times (bottom) for the CDS clusters obtained using SFA, SFAM (SFAM_mblock, SFAM_tcoffe_p, SFAM_tcoffe_m),

Cluss and OrthoFinder for each simulated dataset
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constantly increasing in databases. This indicates that there is a pro-
portion of CDSs yet to be found. These CDSs might not be currently
annotated because they contain exons that have not yet been anno-
tated. Thus, the set of true CDSs might be larger in reality, and so
would the intersection of the true and predicted CDS sets.
Therefore, the predictions underestimated the precision and recall
rates.

4 Conclusion

The ability to identify conserved gene transcripts in gene families is
a fundamental step for studying the evolution of alternative tran-
scripts. This will help identify which alternative transcripts are con-
served across genes and species, and thus are the probable main
functional isoforms of a gene. It will also make it possible to study
the impact that new alternative transcripts have upon the function
of a gene. It will offer a broader picture of the timing of gain and
loss of alternative transcripts and help refine hypotheses concerning
these evolutionary events.

Moreover, several ongoing projects aim to fully sequence thou-
sands of eukaryote genomes (Lewin et al., 2018). In this context, the
availability of proper automated gene-model inference methods is
critical gaining the most insight from these data. It is especially im-
portant because, in most eukaryote species, the coding portion of
genes is divided by long introns, making identification of the actual
CDSs and actual exon boundaries difficult. This work illustrates
that MSpA can help identify CDSs that are conserved across mul-
tiple genes and species. A better understanding of the evolutionary
history of alternative transcripts will also help in this regard, as
more weight will then be given to conserved CDSs identified in the
genome annotation.

This paper introduced the MSpA problems and describes the
SFAM method that computes MSpAs and provides for effectively
identifying conserved gene transcripts by performing CDS orthology
group inference. Compared with popular MSA methods and se-
quence clustering methods, SFAM_mblock achieved comparable or
higher performance than other methods with more robustness to

changes in the sequence similarities. SFAM_mblock was also effect-
ive at predicting gene models by homology based on the computa-
tion of MSpAs. Applying SFAM_mblock to 20 real gene families
from the Ensembl database revealed that up to 27% of the true new
dog CDSs in release 98 could be predicted based on data from re-
lease 97.

The SFAM method takes into account both evolutionary rate
and changes in the splicing structure, but does not include other
events commonly discussed in gene orthology inference and evolu-
tionary biology: duplication and losses of genes. These events are
commonly the target of orthology inference methods such as
OrthoFinder. Future work will define spliced homology groups in
this context as proposed in Kuitche et al. (2017). This might be

handled by generalizing the gene-tree-species-tree reconciliation
framework to transcript-tree-gene-tree reconciliations (Kuitche
et al., 2017, 2021) to account for events that modify sets of alterna-
tive transcripts.
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Table 3. Precision, recall and F-score of the prediction of new CDS by SFAM_mblock on the 20 real gene families

Gene family (tree) ID jjPjj jjTjj jjT \ Pjj (100)–(90) Precision–recall–

F-score (100)

Precision–recall–

F-score (90)

ENSGT. . .3205 7 3 0–1 0–0–0 0.14–0.33–0.2

ENSGT. . .8371 7 1 0–0 0–0–0 0–0–0

ENSGT. . .0715 2 2 0–0 0–0–0 0–0–0

ENSGT. . .7909 10 4 0–2 0–0–0 0.2–0.5–0.29

ENSGT. . .3187 4 3 0–2 0–0–0 0.5–0.67–0.57

ENSGT. . .2978 24 13 4–5 0.17–0.31–0.22 0.21–0.38–0.27

ENSGT. . .2681 15 10 2–2 0.13–0.2–0.16 0.13–0.2–0.16

ENSGT. . .2875 10 4 0–0 0–0–0 0–0–0

ENSGT. . .2728 9 8 1–3 0.11–0.12–0.12 0.33–0.37–0.35

ENSGT. . .2931 13 10 1–2 0.08–0.1–0.09 0.15–0.2–0.17

ENSGT. . .2705 36 4 1–1 0.03–0.25–0.05 0.03–0.25–0.05

ENSGT. . .3023 9 4 0–1 0–0–0 0.11–0.25–0.15

ENSGT. . .3241 4 3 0–0 0–0–0 0–0–0

ENSGT. . .2956 19 13 0–2 0–0–0 0.11–0.15–0.12

ENSGT. . .2783 11 4 0–0 0–0–0 0–0–0

ENSGT. . .3192 22 4 2–2 0.09–0.5–0.15 0.09–0.5–0.15

ENSGT. . .2727 11 11 1–2 0.09–0.09–0.09 0.18–0.18–0.18

ENSGT. . .4965 2 1 1–1 0.5–1–0.67 0.5–1–0.67

ENSGT. . .3967 4 3 1–2 0.25–0.33–0.29 0.5–0.67–0.57

ENSGT. . .5532 4 1 1–1 0.25–1–0.4 0.25–1–0.4

Total 223 106 15–29 0.07–0.14–0.09 0.13–0.27–0.18

Notes: The results for the stringent method requiring 100% PID between matching CDSs, and the less stringent method requiring at least 90% identity are

provided. P means predicted CDS by SFAM_mblock and T means true CDS from release 97.
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