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A B S T R A C T   

Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and 
secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of 
its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current 
anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a 
better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently 
needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic 
approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvi-
ronment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological 
cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, 
strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor 
microenvironment.   

1. Introduction 

Gynecological cancers, such as ovarian cancer, cervical cancer, and 
endometrial cancer, have an estimated worldwide incidence of one 
million cases and an estimated mortality rate of 500,000 deaths every 
year [1]. Each type of these cancers is unique with different 

epidemiologic and genetic risk factors, symptoms, prognoses, and re-
sponses to therapy. However, what they have in common is that curative 
options are limited [2–6]. Therefore, novel insights at the molecular and 
cellular level are needed to improve and personalize treatment 
strategies. 

The understanding that vascularization is essential for tumor growth 
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has led to the development of therapeutic approaches directed against 
the tumor vasculature [7,8]. Although anti-angiogenic therapy has 
become part of first-line maintenance treatment in several types of 
human cancers, including gynecological cancers, anti-angiogenic agents 
in use today are only effective in a subset of patients, and many patients 

who initially respond to these drugs develop resistance over time. These 
disappointing results in cancer patients emphasize the urgent need for 
new insights at the molecular and cellular levels of the effects of the 
current inhibitors of angiogenesis and/or for discovering alternative 
anti-angiogenic agents. For example, recurrent glioblastoma shows a 

Fig. 1. Endothelial cell differentiation: tip cell, stalk cell, and phalanx cell phenotypes. (A) Quiescent ECs form a monolayer of cells that are surrounded by pericytes, 
which suppress EC activation and stabilize the quiescent vessel. (B) During angiogenesis, a single leading tip cell is attracted by microenvironmental signals and (C) 
breaks down the basal lamina and migrates into the extracellular matrix. (D) Tip cells possess actin stress fibers with probing filopodia and are characterized by their 
low proliferation activity, high migratory capacity, and their ability to recruit non-vascular cells. (E) The highly proliferative stalk cells follow the tip cell, form a 
vascular lumen, and ensure vessel elongation. (F) Tip cell and stalk cell phenotype regulation involves several factors, including growth factors, transcription factors, 
and metabolism. (G) A new vascular loop is established by connecting two sprouts of endothelial tip cells, thereby forming a continuous lumen, also known as 
anastomosis. (H) The phalanx cell phenotype is eventually acquired by differentiated ECs once the new vessel is formed. 
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radiographic response to bevacizumab, but patient survival is not 
improved [9–12]. Below in chapter 6, we show that also in gynecolog-
ical cancers bevacizumab therapy has disappointing effects on patient 
survival. 

The healthy endothelium remains quiescent throughout adulthood 
and is only activated during physiological processes such as wound 
healing and the female reproductive cycle. During angiogenesis, endo-
thelial cells (ECs) rapidly switch to an activated state and start to form 
new blood vessels. This process is tightly regulated by pro-angiogenic 
and anti-angiogenic factors [13,14]. Angiogenesis is important in the 
female reproductive system to allow monthly ovulation and successful 
realization of pregnancy, but also has a critical role in the pathogenesis 
of its cancers, by promoting tumor growth and metastatic spread. High 
microvessel density of cancers is often associated with poor prognosis 
and a greater risk of recurrence [15–24]. The female reproductive sys-
tem and its cancers have such an angiogenic molecular signature that 
anti-angiogenic therapy theoretically is promising. 

In the current review, we describe the process of angiogenesis and its 
role in cancer in general, the genetic and metabolic regulators of 
angiogenesis in the context of the female reproductive system, and their 
role in ovarian cancer, cervical cancer, and endometrial cancer. We 
highlight existing and novel therapeutic strategies for targeting angio-
genesis in these types of cancers and discuss the advantages and draw-
backs of these approaches. 

2. Angiogenesis 

2.1. Endothelial cell differentiation: Tip cell, stalk cell, and phalanx cell 
phenotypes 

Growing tissues become vascularized via different types of angio-
genesis [25]. Vessel co-option is a type of passive angiogenesis where 
cells grow along existing vessels [26]. Intussusceptive angiogenesis is 
characterized by splitting of existing blood vessels [27]. Sprouting 
angiogenesis (Fig. 1) is the most efficient type of vascularization 
[28,29]. In cancer, there is also a tumor cell-organized form of vascu-
larization called vasculogenic mimicry, leading to vascular networks 
made up of transdifferentiated cancer cells that have an EC phenotype 
[30,31]. 

Throughout the process of sprouting angiogenesis (Fig. 1), devel-
oping capillaries are guided by specialized ECs, located at the top of 
growing vessels, the tip cells [32–34]. Tip cells have a low proliferative 
activity, possess actin stress fibers with probing filopodia and migrate 
into the extracellular matrix (ECM) (Fig. 1) towards a gradient of 
angiogenic growth factors. Consequently, tip cells assimilate directional 
cues from the environment and thereby determine the direction in 
which the new sprout grows [32]. Additionally, tip cells actively recruit 
pericytes and non-vascular cells, likely by platelet-derived growth 
factor-B (PDGF-B) secretion. In resting vessels, pericytes share a basal 
lamina with the ECs of capillaries and post-capillary venules (termed ’ 
intramural’ pericytes) and are involved in the stabilization of the vessel 
wall and control EC proliferation [14,35–38]. In sprouting angiogenesis, 
pericytes reside outside the capillary wall, which has been termed 
‘extramural’, and migrate alongside the angiogenic sprout [35]. Tip cells 
are followed by stalk cells, which in contrast to tip cells are highly 
proliferative, produce less filopodia, form a vascular lumen (Fig. 1) 
[40–42], and establish adherens and tight junctions to maintain the 
stability of the new sprout [43]. Tubulogenesis, the process of lumen 
formation by ECs, is an essential step of angiogenesis and involves in-
teractions with the ECM and cytoskeletal reorganization [14,36,44]. The 
third known specialized ECs are the phalanx cells, which tightly align 
and form a smooth internal monolayer of the newly formed blood vessel 
(Fig. 1). Phalanx cells have a more dormant phenotype, they do not 
proliferate. These specialized ECs express tight junctions and are 
involved in the normalization and stabilization of the newly for-
medvasculature through increased cell adhesion [45,46]. Finally, a new 

vascular loop is established by connecting two sprouts of endothelial tip 
cells, thereby forming a continuous lumen, also known as a process 
called anastomosis [14,47–49]. 

2.2. Genetic control of EC differentiation and new developments in 
sprouting angiogenesis 

Quiescent ECs form a monolayer of cells that is surrounded by per-
icytes, which provide cell-survival factors and anti-proliferative factors 
(e.g. transforming growth factor (TGF)-β) that suppress EC activation 
and stabilize the quiescent vessel [50]. The recruitment and mainte-
nance of pericytes requires growth factors such as PDGF and angio-
poietin 1 (ANG1) [51]. Endothelial cells and pericytes share a lamina 
basalis consisting of ECM proteins that prevent ECs from leaving their 
position. The need for oxygen and nutrients in surrounding tissues ini-
tiates sprouting angiogenesis by inciting the production of pro- 
angiogenic signals, such as vascular endothelial growth factor (VEGF), 
angiopoietin 2 (ANG2), fibroblast growth factor (FGF), epidermal 
growth factor (EGF), and insulin-like growth factor 2 (IGF2) [52–54]. In 
response to these angiogenic cues, the basal lamina of the quiescent EC 
monolayer is degraded by matrix metalloproteases (MMPs), pericytes 
detach from the vessel wall, and ECs of the quiescent vessel loosen their 
junctions. Detachment of pericytes is stimulated by ANG2 that is pro-
duced and stored by ECs for rapid release when needed [55–58]. 

VEGF-A is the most important angiogenic factor that controls vessel 
formation. VEGF-A expression is regulated by several factors including 
hypoxia (hypoxia-inducible factor 1 (HIF1), growth factors, cytokines 
(e.g. TGF-β), hormones (e.g. estrogen and progesterone), and expression 
of oncogenes and tumor-suppressor genes [50,59,60]. Both tip cells and 
stalk cells are stimulated by VEGF-A, but they have differential tran-
scriptional signatures [14,32,46,61]. VEGF binds to its receptor VEGFR2 
on the ECs of the preexisting vessel and a single tip cell migrates into the 
ECM and senses microenvironmental signals for guidance [32,46]. To 
prevent excessive tip cell formation and movement towards the angio-
genic signal, the selection of a tip cell from a population of quiescent ECs 
is tightly regulated. The selected tip cell itself prevents neighboring ECs 
to become a tip cell via the delta-like 4 (DLL4)-Notch signaling pathway 
[14,41,62–65]. The VEGF-VEGFR2 interaction induces upregulation of 
DLL4 expression in tip cells and then DLL4 is transported to the cell 
membrane to bind to Notch receptors on adjacent ECs causing the Notch 
intracellular domain (NICD) to be released from the membrane. NCID 
translocates to the nucleus and drives the expression of VEGFR1, while it 
reduces the expression of VEGFR2 [66]. Soluble VEGFR1 acts as a decoy 
receptor and limits the activity of VEGF and imposes a stalk cell 
phenotype [40]. By lowering extracellular VEGF levels, soluble VEGFR1 
modulates the signaling via VEGFR2 [67]. 

Besides their morphological characteristics, tip cells express tip cell- 
specific genes (Fig. 1) that are much lower expressed by the other EC 
subtypes [34,53,68]. Del Toro et al. identified tip cell-specific genes by 
laser-capture analysis of ECs that were isolated from DLL4+/− mouse 
retinas compared to wild-type retinas [69]. Previous studies reported 
that some of these genes are upregulated by VEGF stimulation (Dll4 and 
endothelial cell-specific molecule 1 (Esm1)) [62,70] and under hypoxic 
conditions (Esm1, Pdgf-b, and apelin (Apln)) [34]. Recombinant ESM1 
protein promotes VEGF-induced EC migration and proliferation in vitro 
[70] and induces endothelial tube formation [71]. Although ESM1 was 
previously described to be specifically expressed in tip cells in the 
developing mouse retina [69,72], in tumor blood vessels ESM1 expres-
sion was not restricted to sprouting cells, but can be detected throughout 
the vasculature [73]. Recently, it has been shown that the VEGF- 
activated transcription factor forkhead box 01 (FOXO1) inhibits tip 
cell formation by inhibiting DLL4 expression [74]. FOXO1 is activated 
via the protein kinase mammalian sterile 20-like kinase 1 (MST1), a core 
kinase of the hippo pathway, under hypoxia. This results in the nuclear 
import of FOXO1 in endothelial tip cells, thus increasing its transcrip-
tional regulation of genes associated with tip cell function and polarity. 
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Consequently, MST1- or FOXO1-deficient mouse models showed loss of 
tip cell polarity and impaired sprouting angiogenesis [75]. Furthermore, 
knockdown of these genes in human umbilical vein endothelial cells 
(HUVECs) reduced migration activity and inhibited the expression of 
migration-associated genes [75]. Like MST1, yes-associated protein 
(YAP) and its paralog transcriptional co-activator with PDZ-binding 
motif (TAZ) are also core molecules of the hippo pathway [76]. YAP/ 
TAZ acts downstream of the hippo pathway and regulates key events in 
angiogenesis. Yap/Taz knockout in mice reduced the number of prolif-
erating ECs and the number of tip cells and decreased filopodia density 
on these cells [77]. In contrast, endothelial YAP/TAZ hyperactivation in 
mice induced excessive filopodia on tip cells at the retinal vascular front 
[78]. These findings suggest that YAP/TAZ is involved in the morpho-
genesis and abundancy of tip cells and in the proliferation of stalk cells 
during sprouting angiogenesis. The 6 CCN family members, secreted 
matricellular proteins that are associated with the ECM [79], are 
involved in angiogenic processes, such as EC proliferation, migration, 
and differentiation [37,80]. One of its members, cysteine-rich protein 61 
(CYR61, also known as CCN1), is a target of the YAP/TAZ signaling 
molecules [81,82], and regulates the tip cell phenotype through inter-
play with integrin αvβ3 and VEGFR2 [83]. 

The sialomucin CD34 is another tip cell marker that has been used to 
study tip cell biology and function in vitro (Fig. 2). CD34+ tip cells are 
present in all EC cultures and show increased abundance of the mRNA of 
tip cell-specific genes. Genome-wide mRNA profiling of these cells 
demonstrated enrichment for functions related to angiogenesis and 
migration as compared to CD34− non-tip cells [84]. Furthermore, 
CD34+ tip cells demonstrated a much lower proliferation rate [84] and a 
higher migratory capacity [85] compared to CD34− non-tip cells. 
Several other tip cell and stalk cell regulators and markers have been 
reviewed recently [53,86,87]. 

3. Angiogenesis in the female reproductive system 

Angiogenesis has physiological functions in the female reproductive 
system which do not occur in other organs. Ovaries and endometrium 
undergo cyclic changes that are associated with angiogenesis and sub-
sequent loss of blood vessels. Therefore, ovaries and endometrium 

produce both pro-angiogenic and anti-angiogenic factors. In fact, both 
basic FGF (bFGF), the first pro-angiogenic growth factor discovered, as 
well as VEGF, were initially characterized in human ovaries [88–90]. 
ANG2 was the first anti-angiogenic factor found to function as an 
endogenous regulator of blood vessel regression, and is highly expressed 
in the ovarian corpus luteum during luteolysis, a process involved in the 
structural and functional degradation of the corpus luteum and its 
associated vasculature at the end of the ovarian cycle [91,92]. In the 
following sections, we describe the dynamics of angiogenic processes in 
the ovary and endometrium. The blood supply of the female reproduc-
tive system and its histology are shown in Fig. 3. 

3.1. Angiogenesis in ovaries 

In the ovaries, angiogenesis is one of the most important processes in 
the development of primordial follicles into ovulatory follicles and 
subsequently into a corpus luteum. The cyclic growth and maturation of 
primordial follicles and luteal regression depend on angiogenesis and 
subsequent breakdown of blood vessels [93,94]. Primordial follicles do 
not have a vascular network of their own and their maintenance relies 
on blood vessels in the surrounding stroma [95]. As follicles continue to 
grow, an antrum develops in the follicles and ECs of blood vessels in the 
adjacent stroma are activated for sprouting angiogenesis into the thecal 
layer. A vascular sheath, consisting of two capillary networks in the 
theca interna and externa, is formed. The newly formed vessels are 
separated from the avascular granulosa cells by the membrana gran-
ulosa. Angiogenesis into the developing follicles increases steadily and 
the newly-formed blood vessels provide oxygen, nutrients, and hor-
mones (e.g., gonadotropins), which are essential for the maturation of 
follicles during the ovarian cycle [96–101]. Angiogenesis becomes even 
more intense after ovulation, during the development of the corpus 
luteum [96,102]. After enzymatic breakdown of the membrana gran-
ulosa, ECs from the theca interna rapidly migrate into the avascular 
granulosa layer, and theca capillaries expand by angiogenesis to form a 
dense sinusoidal capillary network [99,103–105]. Maturation of the 
transient vascular bed of the corpus luteum is characterized by the 
recruitment of pericytes that cover the capillaries to ensure vessel sta-
bilization [106]. Remarkably, the corpus luteum is so well vascularized 

Fig. 2. CD34+ tip cells in a 3D angiogenic 
sprouting model. In channel 1 of an Orga-
noPlate® (Mimetas), a confluent layer of ECs 
has formed a vessel on an ECM gel contain-
ing collagen 1 (channel 2). Out of the vessel, 
sprouts are formed that grow towards chan-
nel 3 that contains angiogenic factors. 
Immunofluorescent staining was performed 
of CD34 (green), F-actin (red) and nuclei 
(blue). ECs in the vessel show a luminal 
staining of CD34. In addition, CD34 staining 
was present on the tips of EC sprouts that 
have a tip cell morphology including filopo-
dial extensions. Magnifications are shown 
and indicated in the overview image. Scale 
bars, overview, 100μm; higher magnifica-
tions, 50μm.   
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that ECs are its most abundant cell type, with the majority of the 
parenchymal cells in close contact with one or more capillaries 
[99,102,107,108]. The mature corpus luteum has one of the highest 
blood supplies per unit mass [109]. When fertilization and intra-uterine 
implantation do not occur, the corpus luteum and the newly formed 
vessels regress at the end of the ovarian cycle [100]. 

3.2. Angiogenesis in the endometrium 

In the endometrium, vascular growth starts in the proliferative phase 
and continues throughout the secretory phase of the menstrual cycle 
[110,111]. The spiral arteries lengthen and have a coiled appearance 
during the post-ovulatory phase of the menstrual cycle [112]. Long 
straight pre-capillaries connect the coiled spiral arteries with the sub- 
epithelial capillary plexus which matures below the epithelium 
[111,113]. In the absence of an embryo, the functional layer of the 
endometrium is shed and the superficial layer of the remaining basal 
layer is repaired by angiogenesis [114]. Vascular sprouts have not been 
found in the endometrium whereas proliferating ECs have been identi-
fied within existing endometrial vessels. In addition, EC proliferation 
and capillary density in the endometrium does not change significantly 
during the menstrual cycle [115–117]. These findings suggest that 
vascular expansion in the endometrium does not occur as sprouting 
angiogenesis but rather by elongation [118] and intussusceptive 
angiogenesis [113,119–121]. In contrast to sprouting angiogenesis, 
intussusceptive angiogenesis occurs rapidly within minutes or hours and 
does not rely on EC proliferation [122]. 

4. Angiogenesis in gynecological cancers 

The growth of primary tumors and secondary metastases depends on 
angiogenesis as solid tumors and their metastases cannot grow beyond 
1–2 mm3 without additional vasculature, because of the lack of suffi-
cient nutrients and oxygen that are required for the growing tumors 
[123–126]. Furthermore, unlike after physiological angiogenesis, tumor 
blood vessels remain structurally and functionally abnormal. Tumor 
angiogenesis takes place by uncontrolled proliferation of ECs that have a 

different phenotype than ECs in non-cancer physiological conditions 
[39,127]. Consequently, the tumor vasculature is irregularly shaped, 
dilated, tortuous, and disorganized [126,128,129] which is associated 
with high expression levels of pro-angiogenic factors, including VEGF, 
bFGF, neuropilin 1 (NRP1) [130,131], TGF-β [132] andneurotrophins 
[133]. Interestingly, it is also becoming evident that microRNAs (miRs) 
play a major role in the viability, proliferation and integrity of the tumor 
vasculature [134,135]. Examples here are miR125-a [136] that regu-
lates the VEGF signaling pathway, and miRs 7, 141, 153 and 221 
[137–140] that each intervene in critical stages of tumor angiogenesis. 
The density of the capillary network is inversely associated with overall 
survival and progression-free survival of women with gynecological 
cancers [15–24,141,142], at least partly due to increased metastatic 
spread. 

4.1. Angiogenesis in ovarian cancer 

The majority of ovarian cancers are epithelial ovarian cancers 
(EOCs), and high grade serous carcinoma (HGSC) is the most prevalent 
subtype (70–80%) [143]. Other subtypes of EOCs are low-grade serous 
carcinoma (<5%), endometrioid carcinoma (10%), clear cell carcinoma 
(10%) and mucinous carcinoma (3%) [144]. Most women with EOC are 
diagnosed in an advanced stage of the disease, when metastases are 
manifest on the peritoneum (also called peritoneal carcinomatosis often 
accompanied by calcifications that are called psammoma bodies) 
(Fig. 4) [145], in lymph nodes and/or in other organs [146–148]. The 
peritoneal cavity has no anatomical barriers and allows cancer cells to 
spread relatively easily. Metastatic spread primarily occurs by shedding 
of the EOC cells from the ovary into the peritoneal cavity. In the peri-
toneal cavity, EOC cells are transported passively by the physiological 
movements of peritoneal fluid and attach to the peritoneal mesenchymal 
cells to form small superficial tumors [149–151]. 

In general, EOC tumors are well vascularized. However, recently we 
have shown that the circulation in the vessels is poor [126]. Fig. 4E 
shows that the vasculature towards carcinomatosis on the peritoneum of 
ovarian cancer is dense, but insight the metastasis the flow in the blood 
vessels is poor (Fig. 4E) promoting edema formation and inflammation. 

Fig. 3. Anatomy, histology and the blood supply of the female reproductive system showing the locations where the largest part of gynecological cancers occur: 
endometrium (A; proliferative endometrium and B; secretory endometrium), transformation zone of stratified squamous epithelium of the exocervix and columnar 
mucus secreting epithelium of the endocervix (C and D) and cubic ovarian surface epithelium in E and F. Scale bars, A, B, C, 100 μm; D, 25 μm; E,F, 50 μm. 
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Besides the intraperitoneal dissemination of EOC cells, progression of 
EOC and its metastases depends on the nature of the intra-tumoral 
stroma. The stromal tumor microenvironment consists of ECM and a 
variety of cell types, including ECs, cancer-associated fibroblasts (CAFs), 
pericytes, mesenchymal stem cells, and white blood cells, such as 
cancer-associated macrophages [152–155]. These cells may also be 
involved in the interactive signaling with EOC cells and may promote or 
inhibit metastasis [156–158]. CAFs often form the majority of stromal 
cells in several types of human cancers and contribute to vascular sta-
bilization in EOC and other types of human cancers [158]. CAFs have a 
different gene expression profile than normal fibroblasts, and mediate 
paracrine or autocrine signaling in and between cancer cells and stromal 
cells [159–162]. Tumor-derived pro-angiogenic growth factors, such as 
PDGF, bFGF, TGF-β, and VEGF activate CAFs, demonstrating a close 
interaction between CAFs and angiogenesis [163,164]. On the other 
hand, CAFs promote angiogenesis by recruiting endothelial progenitor 
cells to the tumor stroma, mediated by secretion of stromal cell-derived 
factor-1α (SDF-1α). In addition, CAF-secreted SDF-1α stimulates tumor 
growth directly by signaling through the receptor CXC chemokine 
receptor type 4 (CXCR4), which is expressed by cancer cells [165–167]. 
The SDF-1α/CXCR4 axis also plays a role in the interactions between 
cancer cells, immune cells and mesenchymal stem cells and in the 

homing of cancer stem cells in their niches [154]. 
Cancer stem cells (CSCs) have been described in EOC [168–170]. 

Non-cancerous stem cells and CSCs are protected in their niches (their 
microenvironment) against radiotherapy and chemotherapy. This 
microenvironment enforces stem cells and CSCs not to proliferate and 
thus render them protected against therapy. CSCs are considered to be a 
cause of recurrence of tumors and, therefore, are in focus of cancer 
research in recent years [154,167–169,171,172]. Krishnapriya et al. 
have reported that ovarian CSCs can contribute to angiogenesis on the 
basis of in vitro experiments with the use of human ovarian CSCs har-
vested from ascites and grown in spheroids [168]. Under specific con-
ditions, the spheroids gave rise to EC-like cells that expressed EC 
markers and nitric oxide synthase and formed tube-like structures in the 
spheroids. The anti-VEGF antibody bevacizumab inhibited differentia-
tion into EC-like cells in the spheroids. These EC-like cells may be 
transdifferentiated CSCs involved in a process called vascular mimicry 
[173], which has been found frequently in tumors [174]. Vessel co- 
option also occurs when cancer cells are invasive along existing blood 
vessels [175,176]. An association between ovarian CSCs and angio-
genesis, on the basis of similar signaling pathways, such as VEGF, Wnt, 
Notch, and Sonic hedgehog was also noted by Markowska et al. [177], 
who listed clinical trials with anti-angiogenic agents. These clinical trials 
are discussed below. 

4.2. Angiogenesis in cervical cancer 

The most common cervical cancers are squamous cell carcinoma 
and adenocarcinoma [4,178]. Precursor lesions include cervical intra-
epithelial neoplasia (CIN) in squamous epithelium and adenocarcinoma 
in situ (AIS) in columnar epithelium [179]. High grade CIN (or HSIL), 
AIS and cervical cancer are characterized by a dense capillary network 
[180], and neovascularization and increased capillary density have also 
been demonstrated directly underneath precursor and malignant lesions 
of the cervix [181–183]. There is an inverse correlation between the 
density of the capillary network and the prognosis of cervical cancer 
[184,185]. More specifically, the density of the capillary network 
correlates inversely with pelvic lymph node metastases, disease-free 
survival and overall survival [24,186–188]. Expression of VEGF has 
been found to be directly correlated with the density of the capillary 
network and the degree of dysplasia [185,189]. The oncoproteins 
E6 and E7 that are encoded by human papillomavirus genes play a 
distinct role in this phenomenon. E6 induces degradation of the tumor 
suppressor protein p53 and E7 activates HIF1α and inactivates retino-
blastoma protein (pRb), which ultimately leads to upregulation of 
VEGF expression and consequently tumor angiogenesis [190–192]. 
Furthermore, ANG1 and ANG2 and their Tie receptors are upregulated 
in cervical cancer cells in vitro. 

4.3. Angiogenesis in endometrial cancer 

Endometrial cancers are broadly classified in two major types based 
on clinicopathological features (type 1 low grade and type 2 high grade) 
and can be further subdivided into POLE ultra-mutated, microsatellite 
instability hypermutated, copy-number low, and copy-number high 
[193]. High expression levels of pro-angiogenic factors including VEGF, 
platelet-derived EC growth factor (PD-ECGF) and FGF2, have been 
recognized as an essential characteristic of endometrial cancer growth, 
survival, and metastasis and these high levels inversely correlate with 
survival of patients with endometrial cancer [194–199]. The density of 
the capillary network increases progressively from benign to malignant 
tumors [22]. However, there are conflicting results with respect to the 
prognostic relevance of the expression of VEGF and its receptors in 
endometrial cancer [200–203]. In contrast, the density of the capillary 
network has been shown to be a prognostic factor for endometrial cancer 
[23,195,204]. VEGF expression is high in endometrial cancer, whereas it 
is hardly expressed in healthy endometrium [200]. HIF1α and HIF2α are 

Fig. 4. Human peritoneum with peritoneal carcinomatosis (PC; metastases of 
epithelial ovarian cancer (EOC)). A Laparoscopy image of the peritoneum of the 
anterior abdominal wall in a patient with PC of EOC. Numerous metastases are 
present on the peritoneum (red arrows). B Microscopic image of a metastasis 
(M) showing capillaries running from the normal peritoneal microvasculature 
towards the metastasis (arrows), bar = 500 um. C Differential interference 
contrast (DIC) microscopical image of a metastasis, bar = 50 um. D DIC 
microscopical image of calcium phosphate calcifications called psammoma 
bodies (arrows) attached to the peritoneum besides a metastasis, which are 
characteristic for carcinomatosis, bar = 10 um. E Incident dark field (IDF) 
image of capillaries running from the normal peritoneal microvasculature to-
wards the metastasis (M), the image represents a field of view of 1.55 × 1.16 
mm. F IDF image of the microvasculature of a metastasis, the image represents a 
field of view of 1.55 × 1.16 mm. Images E and F are from Kastelein et al. in 
Clinical Experimental Metastasis [126], with permission under the Creative 
Commons License (http://creativecommons.org/licenses/by/4.0/). No changes 
were made to the original images. 
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active as transcription factors in endometrial cancer cells and induce 
expression of VEGF [205,206]. Hypoxia is an important controller of the 
angiogenic switch that is mainly regulated by HIF1α. HIF1α and HIF2α 
are transcription factors with slightly different roles [154] that each 
activate transcription of a set of key genes that are involved in cell 
survival in hypoxic conditions such as those that are involved in the 
initiation of angiogenesis [207,208]. Hypoxia is a general phenomenon 
in solid tumors [209,210] due to their rapid growth, on the one hand, 
the high interstitial pressure [211], and the too large distances between 
cancer cells and capillaries on the other hand. 

5. Therapeutic targeting of angiogenesis in gynecological 
cancers 

5.1. VEGF-targeted therapy in gynecological cancers 

Current treatment of gynecological cancers includes surgery, radio-
therapy, and chemotherapy, and combination therapy with angiogen-
esis inhibitors [150,177,212–215]. Although in general the treatment of 
low stage gynecological cancers is often successful, with many patients 
achieving a long term survival, success of treatment of advanced or 
recurrent disease is disappointing. Compensatory mechanisms and/or 
escape mechanisms allow cancer cell survival leading to progression of 
disease and recurrence [178]. Recent developments in molecular 
biology of gynecological cancers have led to the development of agents 
that target signaling pathways of ECs of the tumor vasculature. 

In contrast to chemotherapy, targeted therapy interferes with spe-
cific molecular mechanisms and should take advantage of molecular 
differences between cancer cells and non-cancer cells. Targeted therapy 
can be divided into two major categories: monoclonal antibodies and 
small-molecular compounds. Monoclonal antibodies do not enter cells 
due to their size but target ligands in the extracellular environment of 
tumors or receptors on the surface of cells. Small-molecular compounds 
can enter cells, in particular when they have lipophilic moieties, to 
interfere specifically with target molecules that are essential for cancer 
cells and preferably not for non-cancer cells [216]. Anti-angiogenic 
therapies are tested in gynecological cancers because of the impor-
tance of angiogenesis in gynecological cancers and the need for new 
treatment strategies [152,217]. 

VEGF has emerged as a major therapeutic target in several types of 
cancers [156,157,218,219] and other pathological conditions 
[35,220–222]. Currently, three VEGF-targeting monoclonal antibodies, 
bevacizumab, ramucirumab, and aflibercept, have been approved for 
the treatment of various types of cancer [223,224]. Bevacizumab is a 
recombinant antibody that impedes blood vessel formation and the 
growth of tumor tissue by preventing the binding of VEGF-A to its re-
ceptors by neutralizing circulating VEGF. It has been approved by the 
Food and Drug Administration (FDA) for the treatment of ovarian and 
cervical cancer [216,225–227]. 

For ovarian cancers, bevacizumab treatment in combination with 
chemotherapy (carboplatin/paclitaxel), followed by single-agent bev-
acizumab, was approved by the European Medicines Agency (EMA) in 
2011 and by the FDA in 2018 as a first-line treatment for stage III and IV 
epithelial ovarian, fallopian tube, and primary peritoneal cancers after 
initial surgical resection. This approval was based on the GOG-0218 
randomized phase III trial which demonstrated that patients treated 
with this combination have a longer progression-free survival than pa-
tients treated with chemotherapy alone (14.1 versus 10.3 months) 
[228]. However, a follow-up study showed no differences in overall 
survival among patients receiving bevacizumab in combination with 
chemotherapy as compared to patients receiving chemotherapy alone 
[229]. 

In recurrent ovarian cancer, three phase III trials were conducted to 
evaluate the use of bevacizumab. Both the AURELIA study [230], which 
included platinum-resistant recurrent patients, and the OCEANS study 
[231], which included platinum-sensitive recurrent patients, 

demonstrated a longer progression-free survival in the groups treated 
with bevacizumab-combined chemotherapy as compared to chemo-
therapy alone (6.7 versus 3.4 months and 12.4 versus 8.4 months, 
respectively). Again, no significant differences in overall survival were 
found in these studies [230,231]. However, recently, the randomized 
phase III GOG-0213 trial with platinum-sensitive recurrent epithelial 
ovarian, fallopian tube or primary peritoneal cancers demonstrated an 
improved overall survival in the group of patients treated with bev-
acizumab in combination with chemotherapy as compared to the group 
of patients treated with chemotherapy alone (42.2 versus 37.3 months). 
Progression-free survival was longer with the addition of bevacizumab 
to chemotherapy than chemotherapy alone (13.8 versus 10.4 months) 
[232]. On the basis of these studies, bevacizumab treatment has been 
approved in both primary and recurrent ovarian cancer, although the 
clinical benefit for patients is still modest and overall survival seems 
unaffected. 

In metastatic and recurrent cervical cancer, the combination treat-
ment of bevacizumab and chemotherapy was approved by the FDA in 
2014 on the basis of the results of the Gynecologic Oncology Group 
(GOG)-240 phase III trial [227,233]. The GOG-240 trial demonstrated 
that patients treated with bevacizumab in combination with chemo-
therapy (topotecan/paclitaxel or cisplatin/paclitaxel) showed an 
improved overall survival (17 versus 13.3 months), progression-free 
survival (8.2 versus 5.9 months) and higher response rate (48% versus 
36%) as compared to patients treated with chemotherapy alone [233]. 

The clinical trials of bevacizumab to treat ovarian cancer and cer-
vical cancer argued for testing of bevacizumab therapy to treat endo-
metrial cancer. Bevacizumab-combined chemotherapy or bevacizumab 
as a single agent therapy for metastatic and recurrent endometrial 
cancer have been tested in phase II studies, but these studies showed 
only modest efficacy [234–237]. 

The overall positive effects of anti-VEGF therapy in gynecological 
cancers are limited and subgroups of patients that would benefit most 
have not yet been defined, as biomarkers of response are lacking [226]. 
The strict inclusion criteria that have been applied in the GOG-240 trial 
[233] would exclude patients with metastatic or recurrent cervical 
cancer from receiving bevacizumab treatment on the basis of the 
occurrence of bleeding, poor renal function or poor performance status 
[225]. In addition, there are still pending issues with respect to side 
effects, such as hypertension [238,239] and therapy resistance 
[152,217]. Adaptive resistance and intrinsic resistance, the upregulation 
of alternative pro-angiogenic pathways and expression of pro- 
angiogenic factors are considered to be mechanisms of bevacizumab 
resistance [240]. However, predictive biomarkers for drug resistance 
have not yet been identified [241,242]. Because the target cells (ECs) 
were considered to be genetically stable, it was assumed that ECs would 
not develop bevacizumab resistance. However, the study of Krishnap-
riya et al. (2019) has shown that bevacizumab inhibits the differentia-
tion of ovarian CSCs into ECs (vascular mimicry as described in chapter 
4.1) [168]. As a consequence, it cannot be excluded that the therapy- 
resistance of the ECs of the tumor vasculature is caused by the fact 
that these ECs have the genetic makeup of the ovarian CSCs and are in 
fact genetically-instable cancer cells. Identifying alternative anti- 
angiogenic therapeutic strategies and/or targeting multiple angiogenic 
pathways may increase the therapeutic benefit for gynecological cancers 
and may overcome drug resistance by compensatory escape mecha-
nisms. A summary of ongoing clinical trials investigating anti- 
angiogenic drugs in ovarian cancer, cervical cancer, and endometrial 
cancer is listed in Table 1. 

5.2. Targets within the tumor microenvironment: Pericyte-endothelial 
interactions in tumor angiogenesis 

Cancer cells may become resistant to anti-VEGF therapy because of 
their genetic instability as discussed above, and due to alterations in the 
microenvironment of cancer cells in response to anti-VEGF therapy 
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[240]. Cancer cells do not act alone in tumor progression and metastatic 
spread as these processes require remodeling of their microenvironment 
by communication between cellular and non-cellular components [156]. 
Unlike the heterogeneity of cancer cells, common features are found in 
the pro-angiogenic tumor microenvironment that supports vessel for-
mation and maturation [240]. Cancer progression creates hypoxia, 
acidity, and oxidative stress within the tumor microenvironment, which 
increases stiffness of the ECM and induces angiogenesis, and a metabolic 

switch towards aerobic glycolysis [156]. As tumor growth and resistance 
to anti-angiogenic therapy is associated with the (adapting) tumor 
microenvironment, targeting of the tumor microenvironment offers new 
therapeutic opportunities to treat gynecological cancers. 

During angiogenesis, pericytes in their intramural form are consid-
ered to play an important role in the final stabilization and maturation of 
the newly-formed vessels [14]. Vascular maturation and pericyte 
coverage of the tumor vasculature also induce resistance to anti- 

Table 1 
Summary of ongoing trials registered as ‘recruiting’ in clincicaltrials.gov investigating anti-angiogenic drugs in ovarian cancer, cervical cancer and endometrial cancer 
in September 2020.  

No Identifier Trial 
phase 

Short study title Anti-angiogenic 
intervention Drug(s)/ 
Biological(s) 

Tumor type 

1 NCT03737643 Phase 3 Durvalumab treatment in combination with chemotherapy and 
bevacizumab, followed by maintenance durvalumab, bevacizumab 
and olaparib treatment in advanced ovarian cancer patients 

Bevacizumab Advanced ovarian cancer 

2 NCT02399592 Phase 2 Bevacizumab and tocotrienol in recurrent ovarian cancer Bevacizumab Ovarian cancer 
3 NCT03353831 Phase 3 Atezolizumab with bevacizumab and chemotherapy vs. bevacizumab 

and chemotherapy in early relapse ovarian cancer 
Bevacizumab Ovarian cancer 

4 NCT02759588 Phase 
1b 
Phase 2 

GL-ONC1 oncolytic immunotherapy in patients with recurrent or 
refractory ovarian cancer 

Bevacizumab Ovarian cancer 

5 NCT03740165 Phase 3 Study of chemotherapy with pembrolizumab followed by 
maintenance with olaparib for the first-line treatment of women with 
BRCA non-mutated advanced epithelial ovarian cancer 

Bevacizumab Advanced epithelial ovarian cancer 

6 NCT02884648 Phase 2 Bevacizumab in ovarian cancer patients with disease at second-look 
surgery 

Bevacizumab Ovarian cancer 

7 NCT01932125 Phase 4 An interventional study of avastin (bevacizumab) in patients with 
advanced/metastatic epithelial ovarian cancer, fallopian tube cancer 
or peritoneal cancer 

Bevacizumab Advanced epithelial ovarian cancer, 
fallopian tube cancer, peritoneal 
carcinoma 

8 NCT03363867 Phase 2 BEACON - ABC in recurrent platinum resistant HGSOC (BEACON) Bevacizumab Ovarian cancer, fallopian tube cancer, 
peritoneal carcinoma 

9 NCT02584478 Phase 1 
Phase 2 

Phase 1/2a evaluation of adding AL3818 to standard platinum-based 
chemotherapy in subjects with recurrent or metastatic endometrial, 
ovarian, fallopian, primary peritoneal or cervical carcinoma 

AL3818 Recurrent or metastatic endometrial, 
ovarian, fallopian, primary peritoneal or 
cervical carcinoma 

10 NCT02873962 Phase 2 A phase II study of nivolumab/ bevacizumab/ rucaparib Bevacizumab Peritoneal cancer, ovarian cancer, 
fallopian tube cancer 

11 NCT03587311 Phase 2 Bevacizumab and anetumab ravtansine or paclitaxel in treating 
participants with refractory ovarian, fallopian tube, or primary 
peritoneal cancer 

Bevacizumab Fallopian tube cancer, ovarian cancer, 
primary peritoneal carcinoma 

12 NCT02839707 Phase 2 
Phase 3 

Pegylated liposomal doxorubicin hydrochloride with atezolizumab 
and/or bevacizumab in treating patients with recurrent ovarian, 
fallopian tube, or primary peritoneal cancer 

Bevacizumab Fallopian tube cancer, recurrent ovarian 
cancer, primary peritoneal cancer 

13 NCT02312245 Phase 2 Avatar-directed chemotherapy in treating patients with ovarian, 
primary peritoneal, or fallopian tube cancer 

Bevacizumab Recurrent fallopian tube carcinoma, 
recurrent ovarian carcinoma, recurrent 
primary peritoneal carcinoma 

14 NCT03239145 Phase 1 Pembrolizumab (Anti-PD-1) and AMG386 (Angiopoietin-2 (Ang-2) 
in patients with advanced solid tumor 

Trebananib (AMG386) Advanced solid tumors Gynecological: 
ovarian cancer 

15 NCT04121975 Phase 2 CCRT combined with endostar for the treatment of locally advanced 
cervical cancer 

Endostar Cervical cancer 

16 NCT03622827 Phase 2 Postoperative concurrent chemoradiotherapy combined with 
endostar for high-risk early stage cervical cancer 

Endostar Cervical cancer 

17 NCT03786081 Phase 1 
Phase 2 

Safety and efficacy of tisotumab vedotin monotherapy & in 
combination with other cancer agents in subjects with cervical 
cancer 

Bevacizumab Cervical cancer 

18 NCT03367871 Phase 2 Combination pembrolizumab, chemotherapy and bevacizumab in 
patients with cervical cancer 

Bevacizumab Cervical cancer 

19 NCT03912415 Phase 3 Efficacy and safety of BCD-100 (Anti-PD-1) in combination with 
platinum-based chemotherapy with and without bevacizumab as 
first-line treatment of subjects with advanced cervical cancer 
(FERMATA) 

Bevacizumab Cervical cancer 

20 NCT03912402 Phase 2 Efficacy and safety of BCD-100 (Anti-PD-1) in combination with 
platinum-based chemotherapy and bevacizumab in patients with 
recurrent, persistent or metastatic cervical cancer (CAESURA) 

Bevacizumab Cervical cancer 

21 NCT04138992 Phase 2 
Phase 3 

A study on the efficacy and safety of bevacizumab in untreated 
patients with locally advanced cervical cancer 

Bevacizumab Cervical cancer 

22 NCT03556839 Phase 3 Platinum chemotherapy plus paclitaxel with bevacizumab and 
atezolizumab in metastatic carcinoma of the cervix 

Bevacizumab Cervical cancer 

23 NCT03526432 Phase 2 Phase II study of atezolizumab + bevacizumab in endometrial cancer Bevacizumab Endometrial cancer 
24 NCT03694262 Phase 2 The EndoBARR trial (Endometrial bevacizumab, atezolizumab, 

rucaparib) 
Bevacizumab Endometrial cancer 

25 NCT01552434 Phase 1 Bevacizumab and temsirolimus alone or in combination with 
valproic acid or cetuximab in treating patients with advanced or 
metastatic malignancy or other benign disease 

Bevacizumab, 
Temsirolimus 

Malignant female reproductive system 
neoplasm  
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angiogenic therapy [240]. However, in most tumors, blood vessels are 
covered by high numbers of pericytes [127], which may be ‘extramural’. 
In the literature, there are conflicting reports on the presence and role of 
pericytes in tumor vasculature, which is probably due to the use of 
different pericyte markers, some of which, like smooth muscle actin, 
stain only highly differentiated pericytes [243]. Anti-VEGF therapy in-
hibits development of new vessels, but vessels that are already covered 
by mural pericytes are mature, functional and not responsive to VEGF 
anymore. In addition, blocking of VEGF signaling in human tumors in-
creases the number of vessels covered with mural pericytes [244–246]. 
Therefore, dual targeting of tumor-associated ECs and pericytes may be 
an attractive approach for the treatment of gynecological cancers. 

Recruitment of pericytes to the endothelium and their crosstalk with 
ECs is mediated by multiple ligand-receptor complexes, including PDGF- 
B/PDGF receptor-β (PDGFR-β), ANG1/Tie2, TGF-β/TGF-β receptor 
(TGF-βR), and heparin-binding EGF (HB-EGF)/EGF receptor (EGFR). 
During angiogenesis, PDGF-B is released by endothelial tip cells and 
binds to its receptor PDGFR-β expressed on pericytes. PDGF-B/PDGFR-β 
interaction is essential for vascular maturation, and blocking of either 
PDGF-B or PDGFR-β induces pericyte deficiency and vascular dysfunc-
tion [51]. Whereas PDGF-B/PDGFR-β signaling is EC-to-pericyte 
signaling, pericytes-to-EC signaling occurs through the ANG1/Tie2 
system [51,247]. ANG1 and ANG2 are both ligands for the endothelial 
Tie2 receptor, but have opposite effects on Tie2 activation and signaling. 
ANG1 is mainly expressed by pericytes and is considered to be an 
agonistic ligand for Tie2, whereas ANG2 is predominantly expressed and 
stored by ECs [55–58] and is an antagonistic ligand for Tie2 
[91,248,249]. ANG1/Tie2 binding promotes pericyte adhesion and 
vessel stabilization and is widely expressed in adult tissues, whereas 
ANG2/Tie2 binding disrupts blood vessel formation and is only 
expressed at sites of vascular remodeling [57,91]. 

TGF-β signaling induces the differentiation of myeloid progenitor 
cells into pericytes, but is also involved in endothelial stalk cell prolif-
eration and differentiation [250,251]. TGF-β signaling is complex [252] 
which is shown by the fact that both ECs and pericytes produce TGF-β 
and TGF-βR and the effects of TGF-β signaling is a result of the in-
teractions between the two cell types [253]. In addition, crosstalk be-
tween TGF-β and Notch regulates the expression of N-cadherin, a 
transmembrane protein that mediates cell-cell adhesion in junctional 
adhesion plaques of ECs and pericytes [254,255]. 

HB-EGF belongs to the EGF family of growth factors and is expressed 
in various types of cells, including ECs and pericytes [256,257]. Phos-
phorylation of EGFR on pericytes by EC-derived HB-EGF stimulates 
pericyte proliferation, motility and recruitment to ECs [257,258]. The 
observed increased activation of EGFR on pericytes in mouse xenografts 
that acquired resistance to bevacizumab treatment, suggests that HB- 
EGF/EGFR signaling plays a role in resistance to anti-VEGF inhibitors 
[259]. 

Clinical trials of combined therapies against pericytes and ECs are 
described in the following sections. 

5.3. Clinical anti-angiogenesis trials in ovarian cancer 

5.3.1. Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axes 
Several pericyte-endothelial combined targeted therapies in gyne-

cological cancers have been evaluated in clinical phase II/III trials. 
Pazopanib, a non-specific tyrosine kinase inhibitor with activity against 
VEGFR1, VEGFR2, VEGFR3, PDGFR-α, PDGFR-β, and c-Kit [260], 
showed prolonged progression-free survival in women with stages II-IV 
ovarian, fallopian tube, or peritoneal cancer, as compared to patients 
treated with placebo (17.9 versus 12.3 months) in the AGO-OVAR 16 
phase III trial [261]. Pazopanib in combination with paclitaxel treat-
ment showed prolonged progression-free survival in platinum-resistant 
ovarian cancer patients as compared to the placebo group (6.4 versus 
3.5 months) in the MITO-11 phase II trial [262]. Overall survival data of 
the AGO-OVAR 16 and MITO-11 trials were not different with or 

without pazopanib treatment. Moreover, secondary endpoint measure-
ments in the AGO-OVAR 16 trial did not show differences in health- 
related quality of life of patients treated with pazopanib as compared 
to the placebo group [263]. Clinical trials with erlotinib, a tyrosine ki-
nase inhibitor of EGFR, as monotherapy or in combination with bev-
acizumab did not show effects in patients with ovarian cancer 
[264,265]. 

5.3.2. Targeting the ANG/TIE axis 
The TRINOVA-1 double-blind phase III clinical trial investigated the 

combination of paclitaxel with placebo or with trebananib, an ANG1- 
and ANG2-neutralizing peptibody that prevents their binding to the Tie2 
receptor. A peptibody is the fusion protein of a peptide and an antibody 
to prolong its biological activity [266]. Treatment of patients with 
recurrent ovarian cancer with the combination of paclitaxel and treba-
nanib showed minimal prolonged progression-free survival as compared 
to patients treated with paclitaxel and placebo (7.2 versus 5.4 months), 
whereas overall survival did not differ (19 versus 17.3 months). In the 
combined paclitaxel/trebananib patient group, treatment was dis-
continued more often and there was a higher incidence of edema (17% 
versus 6% and 64% versus 28%, respectively) [267]. On the other hand, 
treatment with paclitaxel/trebananib did not compromise quality of life 
of the patients [268]. 

5.3.3. Targeting the TGF-β/TGF-βR axis 
Tasisulam, a TGF-β/TGF-β type I receptor kinase (ALK5) inhibitor, 

has been tested in two phase I clinical trials in patients with refractory or 
malignant solid tumors, including ovarian cancer, to determine the 
recommended dose for phase II trials [269,270]. Following these trials, 
the multi-arm phase Ib study determined the maximum tolerated dose 
for safety of tasisulam combined with standard chemotherapy in pa-
tients with advanced solid tumors. This study included ovarian, cervical, 
uterine and endometrial cancer, which comprised only 6% of the total 
number of patients [271]. The phase II single-arm study of tasisulam in 
patients with platinum-resistant ovarian cancer demonstrated a 
progression-free survival of 1.9 months and an overall survival of 12.9 
months [272]. 

Trabedersen, a specific phosphorothioate antisense oligodeox-
ynucleotide that binds to TGF-β2 mRNA and thereby inhibits TGF-β2 
protein synthesis, has been studied in phase I/II clinical trials in various 
types of cancers, including brain, prostate, pancreatic, and colorectal 
cancers [273]. To date, trabedersen and several tyrosine kinase in-
hibitors against the TGF-β pathway have been studied only in preclinical 
ovarian cancer models [132,274]. 

5.4. Clinical anti-angiogenesis trials in cervical cancer 

5.4.1. Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axes 
Pazopanib, lapatinib (a tyrosine kinase inhibitor with activity 

against EGFR and HER2/neu) or the combination of pazopanib and 
lapatinib treatment, were studied in the VEG105281 phase II open-label 
study in women with primary stage IVB or recurrent cervical cancer. 
Patients treated with pazopanib showed prolonged progression-free 
survival and significantly improved overall survival as compared to 
patients treated with lapatinib (18.1 versus 17.1 weeks and 50.7 versus 
39.1 weeks, respectively). Combined therapy of pazopanib and lapatinib 
was excluded from the analysis because of the ineffectiveness and higher 
toxicity compared to monotherapy [275]. 

5.4.2. Targeting the ANG/TIE axis 
To the best of our knowledge, clinical trials with inhibitors against 

the ANG/TIE axis have not been performed yet in patients with cervical 
cancer. 

5.4.3. Targeting the TGF-β/TGF-βR axis 
Tasisulam treatment in cervical cancer was tested in one phase I 
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clinical trial, which included only 1 patient with cervical cancer [269], 
and one phase Ib clinical trial, which included 13 patients with ovarian, 
uterine, endometrial, or cervical cancer. The exact number of patients 
with cervical cancer was not indicated in this study [271]. As far as we 
know, other clinical trials of inhibitors against the TGF-β/TGF-βR axis 
have not been performed in cervical cancer patients. 

5.5. Clinical anti-angiogenesis trials in endometrial cancer 

5.5.1. Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axis 
Elevated VEGF expression is an independent prognostic factor for 

poor prognosis in endometrial cancer [276,277]. However, carboplatin- 
paclitaxel-bevacizumab treatment of advanced and recurrent endome-
trial cancer in a randomized phase II trial (the MITO END-2 trial) did not 
affect progression-free survival significantly in comparison to 
carboplatin-paclitaxel [277,278]. Only one study of pazopanib mono-
therapy to treat endometrial cancer has been reported so far. This PAZEC 
phase II non-randomized open-label study in chemotherapy-resistant 
patients or patients with a contraindication for chemotherapy, 
included a case report of a 57-year-old patient with FGF receptor 2 
(FGFR2)-positive recurrent metastatic endometrial cancer demon-
strating a positive response to pazopanib monotherapy [279]. The pa-
tient, who suffered from abdominal wall metastasis, was free from 
metastases of the abdominal wall and intestines after pazopanib treat-
ment and was still in complete remission 30 months after pazopanib 
discontinuation [279]. Data of the PAZEC study has not been published 
yet. 

5.5.2. Targeting the ANG/TIE axis 
Trebananib treatment has been evaluated in a single-arm clinical 

trial including 32 persistent/recurrent endometrial cancer patients. The 
progression-free survival and overall survival were 2.0 and 6.6 months, 
respectively. One patient showed a partial response, 8 patients had 
stable disease and 5 patients had 6 months event-free survival. Unfor-
tunately, trebananib monotherapy was not efficacious enough to war-
rant further studies [280]. 

5.5.3. Targeting the TGF-β/ TGF-βR axis 
Tasisulam treatment of endometrial cancer was tested in only a small 

number of patients with cervical cancer. Tasisulam treatment in endo-
metrial cancer was tested in two phase I clinical trials, which included 1 
patient with endometrial cancer [269,270], and one phase Ib clinical 
trial, which included 13 patients with ovarian, uterine, endometrial, and 
cervical cancer. The exact number of patients with endometrial cancer 
was not indicated [271]. As far as we know, other trials with inhibitors 
against the TGF-β/TGF-βR axis have not been performed in patients with 
endometrial cancer. 

6. Targeting the established tumor vasculature with vascular 
disrupting agents 

Vascular disrupting agents (VDAs) are a new class of anti-blood 
vessel drugs that are aimed to target ECs of established tumor vascula-
ture. Structural and functional differences between tumor vessels and 
non-tumor vessels allow selective vascular targeting. In contrast to non- 
tumor vessels, the tumor vasculature is often fragile, leaky, and has an 
abnormal blood flow [126,281]. Two types of VDAs have been tested 
[282]. The first types are VDAs such as combretastatin A4-phosphatase 
(CA4P) that disrupt the microtubular cytoskeleton and endothelial cell- 
cell junctions in tumors by targeting the colchicine-binding domain of 
β-tubulin, which leads to rounding up of ECs and a collapse of the 
immature tumor vasculature. This deprives the tumor of oxygen and 
nutrients and ultimately leads to ischemia and necrosis of the tumor 
mass [283]. Given the fact that the cytoskeleton is vital for EC functions 
such as proliferation, migration, and barrier function, treatment with 
VDAs may be successful in the treatment of (advanced) cancers 

[284–286]. The second type of VDAs are flavonoids [282] that target 
ECs in tumors via DNA-damaging effects and induce EC apoptosis. The 
exact mechanism of action that leads to EC apoptosis is not known 
[287]. 

The efficacy of VDA treatment has limitations because mature blood 
vessels in the periphery of tumors are not affected by VDAs. In contrast 
to immature vessels in the center of the tumor mass, ECs of mature 
vessels in the tumor periphery have a tight pericyte coverage, ensuring 
vessel stabilization [39,127,288,289]. ECs in the periphery are less 
dependent on the tubulin cytoskeleton for their structure and function, 
but are rather dependent on actin filaments to support their cytoskeleton 
[283,290]. Consequently, cancer cells in the periphery of tumors are still 
provided with oxygen and nutrients and remain viable after VDA 
treatment. Several attempts have been made to overcome tumor resis-
tance against EC-targeting VDAs. Chen et al. described the pericyte- 
targeting VDA called Z-GP-DAVLBH, which is activated by fibroblast 
activation protein α (FAPα). FAPα is specifically expressed on the plasma 
membrane of CAFs and pericytes of epithelial cancers and has low or 
undetectable expression in normal adult tissues [291,292]. Z-GP- 
DAVLBH has been proposed as a VDA that selectively destroys the 
cytoskeleton of FAPα-expressing tumor pericytes, disrupting the blood 
vessels in both center and periphery of tumors. This was confirmed in 
multiple lines of xenografts [293]. In addition, it was shown by Foley 
et al. that the VDA called (S)-2-amino-N-(2-methoxy-5-(5-(3,4,5-trime-
thoxyphenyl)isoxazol-4-yl)phenyl)-3-phenylpropanamide hydrochlo-
ride (STA-9584), targets vessels in both center and periphery in tumor 
xenografts in vivo, but this study did not have a follow-up yet [294]. 

Combination treatment of VDAs with anti-angiogenesis compounds, 
pericyte- and EC-targeting VDAs, or of VDAs and conventional chemo-
therapeutic agents may be an efficient treatment option [295]. Combi-
nation treatment of VDA and the mammalian target of rapamycin 
(mTOR) inhibitor temsirolimus may be an option to delay tumor 
recurrence after VDA treatment due to upregulation of HIF1α expression 
as the mTOR inhibitor prevents this [296]. 

Here, we describe the human clinical trials of VDAs in ovarian cancer 
and cervical cancer. To date, there are no trials of either type of VDA in 
endometrial cancer, nor were patients with endometrial cancer part of 
basket trials for solid tumors. 

6.1. Clinical trials of VDAs in ovarian cancer 

6.1.1. Combination of VDAs and chemotherapy 
The safety of combining CA4P with standard doses of carboplatin 

and paclitaxel was tested in a three-arm phase Ib dose escalation and 
pharmacokinetic study. CA4P is the only VDA that has been developed 
to treat ovarian cancer so far [297]. The combination with carboplatin 
and/or paclitaxel appeared to be safe. Pharmacological interactions 
between these drugs were were not found, and 7 out of 18 patients with 
ovarian, fallopian tube, and peritoneal cancer showed a response ac-
cording to the Response Evaluation Criteria In Solid Tumors (RECIST) 
and/or CA-125 criteria [298]. This study was followed by a single-arm 
phase II trial in which 18 patients with relapsed or platinum-resistant 
ovarian cancer received CA4P at 18–20 h prior to carboplatin and 
paclitaxel treatment. The addition of CA4P to carboplatin and paclitaxel 
treatment resulted in a response rate of 29% of this heterogeneous group 
of patients according to RECIST and/or CA-125 criteria [299]. 

6.1.2. Combination of VDAs with anti-angiogenic compounds 
The dose escalation and pharmacokinetic study of CA4P in combi-

nation with bevacizumab was tested in a single-arm phase I trial in 15 
patients with advanced cancer, including 4 patients with ovarian cancer. 
The combination of CA4P with bevacizumab was safe and well tolerated. 
Two patients with ovarian cancer exhibited stable disease and 2 patients 
had progressive disease according to RECIST. Among the patients with 
ovarian cancer, one patient showed a response by CA-125 criteria that 
lasted for over a year. The anti-vascular activity of CA4P in the presence 
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or absence of bevacizumab was analyzed with the use of dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI). DCE-MRI 
showed that CA4P alone increased vessel density in the tumors 
whereas anti-vascular effects were found after treatment with CA4P in 
combination with bevacizumab [300]. The GOG-186-I open-label ran-
domized phase II trial investigated treatment with the single agent 
bevacizumab as compared to bevacizumab in combination with CA4P in 
women with persistent or recurrent ovarian, fallopian tube, or perito-
neal cancer [301]. Patients treated with the combination of CA4P and 
bevacizumab showed prolonged progression-free survival as compared 
to patients treated with bevacizumab monotherapy (7.3 versus 4.8 
months). The overall response rate was similar in patients treated with 
bevacizumab alone and with CA4P and bevacizumab. However, patients 
treated with the combination of CA4P and bevacizumab developed hy-
pertension more often than patients treated with bevacizumab alone 
(35% versus 20%). [301]. Hypertension and adverse cardiovascular 
events are side effects both of CA4P and other anti-angiogenic therapy 
[302]. No treatment-related deaths were observed in this study. 

6.2. Clinical trials of VDAs in cervical cancer 

The flavonoid 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is the 
only VDA that has been tested in patients with cervical cancer [303]. 
The dose escalation, pharmacokinetics, and anti-vascular effects of 
DMXAA were investigated in a single-arm phase I trial in 63 patients 
with solid cancers, including 3 patients with cervical cancer. Tumor 
responses were analyzed by plain radiographs every 3 weeks and by 
computer tomography or ultrasound scans every 6 weeks. In general, 
DMXAA treatment showed anti-tumor activity at well-tolerated doses. 
One patient with metastatic cervical cancer showed a partial response 
after 8 courses (1100 mg/m2) [303]. Other clinical trials with (flavo-
noid) VDAs have not been reported thus far in patients with cervical 
cancer, which does not exclude the existence of unpublished negative 
studies as was indicated recently by Daei Farshchi Adli et al. [304]. 

Novel microtubule inhibitors are being developed, such as WX-132- 
18B [305], NOV202 [306], plocabulin [307], vinyl sulfone [308], de-
rivatives of quinaldine and carbazole [309], and ethoxy-erianin phos-
phate [310], but they have not been tested in clinical trials yet. 

7. Targeting the metabolism of the tumor vasculature 

7.1. Metabolic adaptation of ECs 

Formation of new blood vessels by differentiated endothelial tip 
cells, stalk cells, and phalanx cells during angiogenesis (Fig. 1) is an 
energy-demanding process. In addition to genetic signals, a metabolic 
switch has been associated with EC differentiation [311]. In vitro and in 
animal models, it has been shown that ECs in general have a relatively 
high glycolytic activity, which is further increased during angiogenesis 
[311,312], leading to metabolic characteristics similar to proliferative 
cancer cells [156,209,313–315]. ECs take up glucose via glucose 
transporters (GLUT), mainly by GLUT-1, and it has been shown that 
VEGF increases GLUT-1 expression via the activation of the PI3K-AKT 
signaling pathway [316]. In line with these observations, metabolic 
inhibitors are becoming attractive sensitizers to standard anti-cancer 
therapy [317–320]. Because angiogenesis depends on metabolism in 
EC, metabolic inhibitors can be regarded as anti-angiogenic agents as 
well. 

The main limitation of previous studies on EC metabolism is that the 
models employed in these studies did not allow for appropriate 
discrimination between tip cells and other angiogenic phenotypes 
[311,312,321]. The relative contribution and regulatory functions of 
metabolic pathways in tip cells and non-tip cells, respectively, were not 
determined in these studies. Therefore, we studied metabolism in iso-
lated fractions of tip cells and non-tip cells in more detail with the use of 
an in vitro approach to identify and isolate CD34+ tip cells and CD34−

non-tip cells in EC cultures using flow cytometry [85,322]. These studies 
have shown that both endothelial tip cells and non-tip cells use glycol-
ysis as well as mitochondrial respiration for their energy demand, but 
that tip cells are less glycolytic as compared to non-tip cells [85]. 
Although glycolysis is significantly lower in tip cells, glycolysis is 
essential to maintain the tip cell phenotype and for the differentiation of 
tip cells from non-tip cells [322]. It has been postulated that ECs increase 
their glycolytic flux when switching from quiescence to proliferation 
[321], but we found that glycolysis as well as mitochondrial respiration 
are necessary for the proliferation of non-tip cells [85]. 

Although ECs are considered to be glycolytic, studies have suggested 
that mitochondrial respiration is essential for homeostasis and angio-
genic capacity of the endothelium [323–325], indicating metabolic 
flexibility in the pathways to generate adenosine triphosphate (ATP) 
[209,314,315,326]. ECs are able to switch to mitochondrial respiration 
for their energy demand when anaerobic glycolysis is impaired, a con-
dition referred to as the Crabtree effect [327]. For example, it has been 
shown that inhibition of glycolysis in ECs induces a switch to mito-
chondrial respiration, inhibits cell proliferation, and enhances the 
oxidation of mitochondrial fuels (pyruvate, fatty acids, amino acids) 
[85,322,327,328]. Differentiated ECs and in particular tip cells are 
known to exhibit metabolic flexibility that is characterized by the ability 
to reversibly shift between substrates and/or metabolic pathways to 
respond or adapt to conditional changes that may occur during sprout-
ing angiogenesis [85,322,329,330]. 

Hypoxia triggers angiogenesis, but it is also known as a biologically 
unbalanced status, referred to as cycling hypoxia [331,332]. During 
angiogenesis, migrating tip cells and proliferating stalk cells are both 
exposed to various microenvironmental conditions, such as areas with 
hypoxia or normoxia and areas with or without growth factors. In 
addition, ECs are well-equipped to metabolize mitochondrial-oxidizable 
substrates such as fatty acids and glutamine [333,334]. Adaptations to 
such varying conditions in the microenvironment of the growing vessel 
requires the differentiated ECs to have a flexible metabolism that can 
meet such fluctuations, and in vitro studies have shown that this is the 
case [85,322]. The dynamic nature and the complexity of the metabolic 
networks in differentiated EC types (tip cells, stalk cells, and phalanx 
cells) during sprouting angiogenesis challenge/hamper the development 
of new effective anti-angiogenic therapy-based on targets of the meta-
bolic pathways, either or not in combination with standard therapies. 

7.2. Clinical trials of metabolic targeting in ovarian cancer 

Lonidamine is applied as an inhibitor of glycolysis in cancer cells, 
likely by inhibition of hexokinase [335]. Hexokinase is a rate-limiting 
glycolytic enzyme that converts glucose into glucose-6-phosphate and 
is found in several cellular compartments, including the outer mito-
chondrial membrane and in mitochondria. Interestingly, lonidamine 
elevates aerobic glycolysis in healthy cells, whereas in cancer cells 
lonidamide inhibits glycolysis [335]. Although the exact mechanism of 
metabolic lonidamine effects remains unclear, lonidamine has been 
shown to be tolerated well in a single-arm phase II study when combined 
with paclitaxel and cisplatin in patients with advanced ovarian cancer 
[336]. In the group of women with measurable disease (patients with a 
tumor size between 2 and 5 cm or > 5 cm) a complete or partial response 
was found in 80% of patients, and in the group of women with evaluable 
disease (patients with a tumor size of <2 cm, no evidence of disease, or 
microscopic disease only) 16% of the patients showed clinical progres-
sion according to WHO criteria [337]. 

Metformin is widely prescribed for type 2 diabetes and is considered 
to be an anti-hyperglycemic drug as it lowers blood glucose levels. The 
use of metformin is associated with a reduced risk of cancer in patients 
with type 2 diabetes [338,339]. Although the exact mechanism of action 
on cancer cells is unclear, the use of metformin in cancer treatment has 
gained a huge interest. Metformin inhibits complex I of the mitochon-
drial respiratory chain and thereby suppresses mitochondrial coupled 
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ATP production [320,339]. In addition, metformin has been reported to 
inhibit the glycolytic enzyme hexokinase by mimicking glucose-6- 
phosphate as a competitive inhibitor [340]. The dose escalation and 
pharmacokinetic study of the anti-cancer effects of metformin in com-
bination with temsirolimus was tested in a phase I trial including 21 
patients with advanced or refractory cancers, including 2 patients with 
ovarian cancer and 4 patients with endometrial cancer [341]. Temsir-
olimus is an inhibitor of mTOR, which is an enzyme that is regulated by 
upstream receptor tyrosine kinases such as the IGF-1 receptor (IGF-1R) 
and is involved in the regulation of cell growth, proliferation, and 
apoptosis [342]. The combination of metformin and temsirolimus 
appeared to be well tolerated. Tumor progression and response rate 
were evaluated according to RECIST and it appeared that 44% of the 
patients showed tumor progression and 56% of the patients showed 
stable disease as their best response. The clinical benefit, described as no 
evidence of progression during 6 or more treatment cycles, appeared to 
occur in 22% of patients with advanced or refractory cancers [341]. 

Sodium phenylbutyrate is a fatty acid compound that has been 
applied in the clinic for the treatment of children with genetic defects in 
the urea cycle [343]. The genetic defects in the urea cycle caused 
impaired conversion of the highly toxic ammonia, a waste product of 
amino acid catabolism, into urea. The resulting hyperammonemia re-
sults in cognitive decline. Phenylbutyrate is oxidized to phenylacetate, 
which conjugates with glutamine and lowers ammonia levels by pre-
venting glutamine-stimulated ammoniagenesis [344]. The dose escala-
tion and pharmacokinetic study of phenylbutyrate was tested in a phase 
I trial in 21 patients with advanced solid tumors, including 1 patient 
with ovarian cancer. Phenylbutyrate monotherapy was well tolerated. 
However, the clinical response rates were moderate because 4 patients 
developed rapid progression of their disease and were withdrawn from 
therapy and only 3 patients (2 patients with anaplastic astrocytoma and 
1 patient with glioblastoma) showed stable disease which lasted for 5, 7, 
and 4 months, respectively, according to the standard National Cancer 
Institute tumor response criteria [345]. 

7.3. Clinical trials of metabolic targeting in cervical cancer 

The association between the use of metformin and survival of women 
with cervical cancer has been tested in a retrospective study [346]. This 
study included 70 patients that had been treated with metformin and 
715 non-users of metformin. The percentages of patients with a 5-year 
progression-free survival and overall survival were similar between 
patients treated with metformin and patients not treated with metformin 
(57.3% versus 61.8% and 71.7% versus 70.7%, respectively). Patients 
treated with radiotherapy as primary therapy either or not in combi-
nation with metformin therapy also did not show significant differences 
in 5-year progression-free survival and overall survival. The use of 
metformin monotherapy does not appear to be associated with an 
improved clinical outcome in cervical cancer patients [346]. 

The dose-escalating and pharmacokinetic study of the glucose analog 
2-deoxyglucose (2-DG), an inhibitor of the glycolytic pathway by its 
interaction with the first glycolytic enzyme hexokinase, was tested in a 
phase I trial in 12 patients with advanced cancer, including 1 patient 
with cervical cancer. The uptake of 2-DG was assessed with 
fluorodeoxyglucose-positron emission tomography (FDG-PET) scan-
ning. Monotherapy with 2-DG appeared to be well tolerated by patients 
with advanced cancer [347]. However, a clinical outcome of treatment 
of patients with gynecological cancer is not available yet. 

7.4. Clinical trials of metabolic targeting in endometrial cancer 

A translational pre-operative prospective trial of metformin treat-
ment showed reduced cancer cell proliferation in patients with endo-
metrial cancer. Immunohistochemical analysis of endometrial cancer 
tissues showed reduced expression of the proliferation markers Ki-67 
and topoisomerase IIα after metformin treatment (in 90% and 80% of 

patients, respectively) [348]. Several other studies confirmed these 
findings [349,350]. Following these findings, a phase II trial of met-
formin was tested in combination with medroxyprogesterone acetate (a 
synthetic variant of the hormone progesterone) as treatment for fertility 
preservation and prevention of recurrence of endometrial carcinoma. 
This study included 17 patients with endometrial hyperplasia and 19 
patients with endometrial cancer. Treatment with metformin in com-
bination with medroxyprogesterone acetate appeared to be safe and well 
tolerated. Within 36 weeks of treatment, 81% of patients showed a 
complete response (16 patients with endometrial hyperplasia and 13 
patients with endometrial cancer) and of these patients 10.3% relapsed 
in a follow-up study. Partial responses were found in 14% of patients 
within 36 weeks of treatment. After initial treatment, 2 patients with 
endometrial cancer showed progression at 12 weeks. In both patients the 
cancer dedifferentiated from grade 1 endometrioid adenocarcinoma into 
undifferentiated adenocarcinoma. Despite the promising results, a lim-
itation of this study is that more than 80% of the patients were obese and 
showed insulin resistance, therefore the effect of metformin in non- 
obese patients or insulin-sensitive patients remains to be elucidated in 
future studies [348]. 

7.5. Therapeutic targeting of tumor metabolism in combination with anti- 
angiogenesis therapy in gynecological cancers 

Cancer cells also have flexible adaptive responses to hypoxia and 
limited availability of nutrients like ECs during angiogenesis. Metabolic 
adaptation of cancer cells is required for both malignant transformation 
and subsequent tumor development. Although aerobic glycolysis has 
been widely accepted as a common feature of metabolic adaptation of 
cancer cells, the so-called Warburg effect, recent studies have shown 
that mitochondrial respiration is also involved in the metabolic adap-
tation of cancer cells [314,351]. As the tumor microenvironment con-
tributes to adaptation of cancer cell metabolism and tumor vessel 
abnormalities impair the delivery and efficiency of current chemother-
apeutic agents, targeting of the dysregulated metabolism in combination 
with anti-angiogenesis therapy may be effective to suppress tumor 
growth and metastasis [352,353]. 

8. Conclusions 

Recurrent and advanced epithelial ovarian cancer, cervical cancer, 
and endometrial cancer have a poor prognosis, and current systemic 
therapies have limited effectivity. Alternatively, anti-angiogenic agents 
have been FDA approved, of which bevacizumab is the most widely used 
drug in gynecological cancers [354]. However, survival benefit for pa-
tients with ovarian cancer, cervical cancer, and endometrial cancer is 
disappointing. Other strategies, such as dissociating pericytes from the 
tumor vasculature and targeting both ECs and pericytes to overcome 
anti-VEGF therapy resistance, show more promising results in patients 
with gynecological cancers. However, these strategies have unwanted 
side effects because limited pericyte coverage of capillaries disrupt 
systemic endothelial integrity, causing vessel leakage, edema, and can-
cer cells to enter the vascular system to metastasize more easily [240]. 
Unfortunately, predictive biomarkers identifying the categories of pa-
tients who will benefit from targeted therapy against both ECs and 
pericytes are still missing. Newer anti-angiogenic strategies include 
tyrosine kinase inhibitors (drugs that target mediators of the signaling 
cascade of biological processes like cell growth, differentiation, and 
metabolism) and VDAs (drugs that target ECs of established tumor 
vasculature). Several tyrosine kinase inhibitors, administered as single 
agents or in combination with chemotherapy, showed only modest ef-
ficacy in ovarian cancer, cervical cancer, and endometrial cancer as well 
[355,356]. VDAs targeting established vasculature have been tested in 
clinical trials for ovarian cancers only, in combination with chemo-
therapy or with other anti-angiogenic compounds. Again, patient sur-
vival was only modestly prolonged. Therefore, new avenues have to be 
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found to render anti-angiogenesis agents including VDA successful. 
Combination therapies with metabolism-targeting therapeutics, ECM- 
targeting agents, and anti-inflammatory agents are attractive options 
that warrant further investigation. 
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