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We perform a combined study of the two hadronic decays Dþ → K−πþπþ and Dþ
s → KþKþπ− using a

detailed analysis of the semileptonic decays Dþ → K−πþlþνl (l ¼ e, μ) thanks to the high-statistics
dataset provided by the BESIII Collaboration. We propose simple and suitable amplitude parametrizations
of the studied reactions that shall be of interest to experimentalists for upcoming analyses. These new
parametrizations are based on the naïve-factorization hypothesis and the description of the resulting matrix
elements in terms of well-known hadronic form factors, with special emphasis on the Kπ scalar and vector
cases. Such form factors account for two-body final-state interactions which fulfill analyticity, unitarity,
and chiral symmetry constraints. As a result of our study, we find that the P-wave contribution fits nicely
within the naïve-factorization approach, whereas the S-wave contribution requires complex Wilson
coefficients that hint for possibly genuine three-body nonfactorizable effects. Our hypothesis is further
supported by the examination of Dþ

s → KþKþπ− decays, where we achieve a description in overall good
agreement with data.

DOI: 10.1103/PhysRevD.108.094006

I. INTRODUCTION

In 2009, one of us presented a model for the decay
Dþ → K−πþπþ where the weak interaction part of the
reaction was described using the effective weak
Hamiltonian in the naïve-factorization approach, while
the two-body hadronic final-state interactions were taken
into account through the Kπ scalar and vector form factors,
fulfilling analyticity, unitarity, and chiral symmetry con-
straints [1]. However, due to the lack of precise data in
semileptonic Dþ → K−πþlþνl decays—a necessary
ingredient in the naïve-factorization approach—the model
introduced two free parameters to describe the semileptonic
form factor in terms of the scalar and vector Kπ form
factors that were fixed from experimental Dþ → K−πþπþ
branching ratios, preventing then a real prediction.
Allowing for a global phase difference between the S

and P waves, the Dalitz plot of the Dþ → K−πþπþ decay,
the Kπ invariant mass spectra, and the total branching ratio
were well reproduced. Of course, lacking any input from
semileptonic form factors, the model could not prove a real
validation of the factorization hypothesis. Moreover, this
motivates us to generalize the (necessary) simplistic
description in Ref. [1] for such form factors, that is
particularly relevant for the S wave.
With the advent of new results for semileptonic decays

by the BESIII Collaboration [2], the whole model for the
semileptonic form factor can be reviewed, and the perfor-
mance of the factorization approach be tested, in contrast to
Ref. [1]. To that end, we carefully analyze semileptonic
decays by employing simple yet well-motivated paramet-
rizations fulfilling analyticity and unitarity constraints to fix
the relevant hadronic matrix elements. These have their
own interest for future experimental analysis. The corre-
sponding matrix element, together with previously known
form factors, is then used to describe the Dþ → K−πþπþ
decay in the naïve-factorization approach. As a result, we
find that naïve factorization describes well the P-wave
contribution in Dþ → K−πþπþ decays for benchmark
values of the Wilson coefficients, whereas the S wave,
that can also be effectively well described, forces us to
incorporate complex Wilson coefficients. These are
common anyway in D decays [3–5] and, in our opinion,
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point to nonfactorizable corrections that might be attributed
to effective genuine three-body effects. In this respect, it is
worth emphasizing that our work is not meant to provide
a precise and general description of these decays (see
Refs. [6–10] regarding three-body unitarity effects missing
here and Refs. [11,12] for previous works) but a first-order
approximation that also allows to better understand the
underlying fundamental QCD dynamics through the naïve-
factorization approach. As a result, while our framework
does not account for genuine three-body effects,1 it allows
for a simple parametrization fulfilling two-body unitarity
and, not least, to connect Dþ → K−πþπþ decays to the
isospin-related Dþ

s → KþKþπ− ones. This actually allows
us to confront our hypothesis and results against Dþ

s →
KþKþπ− decays, improving and reinforcing our results.
The article is organized as follows: In Sec. II, we outline

the naïve-factorization approach applied toDþ → K−πþπþ
decays, recapitulating all the necessary form factors
that enter the description; in Sec. III, we review the
semileptonic decays in detail, putting forward a paramet-
rization that is used to extract the relevant form factors
based on BESIII [2] results; in Sec. IV, we use the form

factor from the previous section to put forward a descrip-
tion for Dþ → K−πþπþ decays; in Sec. V, this paramet-
rization is applied to the isospin-related Dþ

s → KþKþπ−
decays. Conclusions are given in Sec. VI.

II. NAÏVE FACTORIZATION
IN D+ → K −π +π + DECAYS

For Dþ → K−πþπþ decays, we closely follow Ref. [1].
The effective weak interactions driving such decay follow
from the Lagrangian at low energies:

Leff ¼ −
GFffiffiffi
2

p VudV�
cs½C1ðμÞO1 þ C2ðμÞO2� þ H:c:;

O1ð2Þ ¼ 4
h
s̄iLγ

μciðjÞL

ih
ūjLγ

μdjðiÞL

i
; ð1Þ

where i and j are color indices and the Wilson coefficients
above differ from those at the electroweak scale due to
renormalization [13]. In the following, we employ the
naïve-factorization hypothesis (see Fig. 1) that implies the
following decomposition for the process [1]:

iM ¼ −i
GFffiffiffi
2

p VudV�
cs

h
a1hK−πþ1 js̄γμð1 − γ5ÞcjDþihπþ2 jūγμð1 − γ5Þdj0i

þ a2hK−πþ1 js̄γμð1 − γ5Þdj0ihπþ2 jūγμð1 − γ5ÞcjDþi
i
þ ðπþ1 ↔ πþ2 Þ; ð2Þ

where naïve factorization implies a1 ¼ C1 þ C2=Nc and
a2 ¼ C2 þ C1=Nc. While, ideally, these coefficients should
be universal, their scale and scheme dependence, together
with potential nonfactorizable corrections [3,4], render
them somewhat phenomenological, with mild variations
expected across different processes. Theoretically, Ref. [13]
obtained a1 ¼ 1.31ð19Þ and a2 ranging between −0.55ð15Þ
and −0.60ð22Þ, depending on the chosen renormalization
scheme. Alternatively, phenomenological processes can be

used to determine them. For instance, an estimate coming
from D → Kπ decays [13,14] obtains a1 ¼ 1.2ð1Þ and
a2 ¼ −0.5ð1Þ that can be considered as benchmark values.
Different processes can be used to extract alternative
determinations, whose agreement with previous numbers
will allow us to test the goodness of the naïve-factorization
approach and our understanding of QCD dynamics. Fol-
lowing Eq. (2), factorization boils down the problem to the
description of the following matrix elements in Eq. (2):
hπþjūγμð1 − γ5Þdj0i ¼ ifπp

μ
π with fπ ¼ 130.2ð1.7Þ MeV

[15]; hK−πþjs̄γμð1−γ5Þdj0i that reduces to the well-known
scalar and vector Kπ form factors and that, following
Ref. [1], we take from Refs. [16,17]; hπþjūγμð1 − γ5ÞcjDþi
is connected via isospin symmetry to D0 → π−lþν decays;

FIG. 1. The O1 (left) and O2 (right) operator contributions to Dþ → K−πþπþ decays within naïve factorization. For each operator,
there is a N0

c- and N−1
c -suppressed contribution; cf. left and right in each figure.

1The model does not account either for two-body πþπþ final-
state interactions, but these are nonresonant and presumably
small, in such a way that naïve factorization should encompass
the most relevant two-body interactions.
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finally, the remaining matrix element, hK−πþ1 js̄γμð1 − γ5Þ×
cjDþi, corresponds to that appearing in semileptonic
Dþ → K−πþlþνl decays. Indeed, a closer look reveals
that all that is required for the current process is2

ifπp
μ
π2hK−πþ1 js̄γμð1 − γ5ÞcjDþi

¼ fπðmc þmsÞhK−πþ1 js̄iγ5cjDþi; ð3Þ

that selects a single form factor among those appearing in
semileptonic decays. It turns out that such a form factor
produces a contribution to the semileptonic decays propor-
tional to the lepton masses that is irrelevant for Dþ →
K−πþeþνe decays [see Eqs. (8), (12), and (A9)–(A17)].
Potentially, Dþ → K−πþμþνμ decays could probe such a
form factor. At the moment, there are available data from
FOCUS [18] and CLEO [19]. Regarding FOCUS, the
available statistics cannot discern a nonvanishing value for
the form factor in Eq. (3). Concerning CLEO, their results
are controversial regarding the q2 dependence. Thereby,
some modeling is required. In the following, we employ
known relations due to Ward identities to suggest a plausible
low-q2 description based on existing results from semi-
leptonic decays. To that end, in the following section we

revise the model put forward in Ref. [1] to describe the
semileptonic matrix element, taking advantage of the precise
results from BESIII not available at the time. This allows for
a strict application of the naïve-factorization approach and a
comprehensive evaluation of its performance.

III. D+ → K −π +l+ νl DECAYS

In this section, we address the semileptonic decay in
detail, carefully reviewing the relevant form factors and
paying special attention to the known restrictions that
follow fromWard identities that, under reasonable assump-
tions, allow one to extract the relevant form factor entering
hadronic decays. Our phenomenological description gen-
eralizes that in Ref. [1] by incorporating free parameters
previously identified with those appearing in Kπ form
factors—a necessary assumption back then in the absence
of data that can be relaxed now by using the recent results
from BESIII [2].

A. General definitions

The matrix element for semileptonic decays is given
as3 [20]

M ¼ −
GFffiffiffi
2

p V�
cshπþK−js̄γμð1 − γ5ÞcjDþi½ūνγμð1 − γ5Þvl� → jMj2 ¼ 4G2

FjVcsj2HμνLμν; ð4Þ

where we used plν ¼ pl þ pν and p̄lν ¼ pl − pν and

Hμν ¼ hπþK−js̄γμð1 − γ5ÞcjDþihπþK−js̄γνð1 − γ5ÞcjDþi†; ð5Þ

Lμν ¼ 1

2
½pμ

lνp
ν
lν − p̄μ

lνp̄
ν
lν − ðslν −m2

l −m2
νÞgμν þ iϵplνμp̄lνν�: ð6Þ

As such, the central quantity is the matrix element in Eq. (2) which, using the variables p ¼ pK þ pπ, p̄ ¼ pK − pπ , and
q ¼ pD − p, can be expressed as [20,21]

hK−πþjs̄γμð1 − γ5ÞcjDþi ¼ iwþpμ þ iw−p̄μ þ irqμ − hϵμqpp̄

¼ iwþ

�
pμ − qμ

p · q
q2

�
þ iw−

�
p̄μ − qμ

p̄ · q
q2

�
þ ir̃
q2

qμ − hϵμqpp̄; ð7Þ

where the four form factors have an implicit dependence on
q2, p2, and p̄ · q. Note that corresponding quantities in D−

decays are related via appropriate CP transformations that
amount to flip signs for the antisymmetric tensor. In
addition, the Ward identities [i.e., Eq. (3) and finiteness
at q2 ¼ 0] imply

r̃ ¼ −ðmc þmsÞhK−πþjs̄iγ5cjDþi;
lim
q2→0

½ðp · qÞwþ þ ðp̄ · qÞw− − r̃� ¼ 0: ð8Þ

In particular, their dependence on p̄ · q ∼ cos θKπ (see
Appendix A) means that the relation should be fulfilled

2In the last step, iðms −mcÞhK−πþjs̄cjDþi ¼ 0 has been used
based on parity arguments.

3Note our ϵ0123 ¼ 1 convention, leading to opposite signs
compared to Ref. [20] wherever the antisymmetric tensor appears
(the sign can be inferred from Lμν). We also employ ϵμkpq≡
ϵμναβkνpαqβ.
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for each partial wave (see also Ref. [20]), a property that we
will employ when constructing the form factors. Note that
the appearance of p̄ in the tensor structure accompanying
w− and h requires partial-wave contributions with l ≥ 1.
To make contact with experiment, it is customary to employ
the following form factors4 [20,21] (see definitions in
Appendix A):

F1 ¼
1

X
ðX2wþ þ ½ðp · qÞðp̄ · qÞ − q2ðp · p̄Þ�w−Þ; ð9Þ

F2 ¼ βKπ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
w−; ð10Þ

F3 ¼ βKπX
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
h; ð11Þ

F4 ¼ r̃; ð12Þ

where Fi ≡ Fiðq2; p2; p̄ · qÞ. F4 was not defined in
Ref. [20] and is relevant only for finite lepton masses,
so that results in Appendix A might be of some interest.
Furthermore, Eq. (8) implies for these form factors that

lim
q2→0

½F1ðq2; p2; p̄ · qÞ − F4ðq2; p2; p̄ · qÞ� ¼ 0 ð13Þ

that relates again the normalization at q2 ¼ 0 that, as
mentioned, must be fulfilled for each partial wave. This
is as far as can be reached in a model-independent way,
and we refer to Appendix A for the differential decay width
expressed in terms of the previous form factors. In the
following section, we revise the model that was used in
Ref. [1] to parametrize F4 that, in essence, assumes the Kπ
spectra to be dominated by intermediate resonances with
roles parallel to those in hK−πþjs̄γμdj0i form factors. In
doing so, we employ a more flexible description compared
to that in Ref. [1] that will prove convenient to make contact
with the standard phenomenological analysis.

B. Resonance model

With the lack of precise data for semileptonic decays,
Ref. [1] assumed a model for the F4 form factor saturated
by the lightest K�

ð0Þ resonances. Assuming a similar model

for the Kπ scalar and vector form factors allowed them to
relate the p2 dependence of the previous form factors to that
of the Kπ scalar and vector form factors. While this was a
necessary assumption back then, the current available data
for semileptonic decays from BESIII [2] allow one to relax
this assumption and to provide a more flexible and realistic
model based on analyticity and unitarity that might be of

interest for future experimental analysis. In particular, in the
following, we assume that the S- and P-wave contributions
share the same phase as the scalar and vector form factors
(that holds below threshold due to Watson’s theorem) but
have, in general, a different q2 dependence compared to the
Kπ scalar and vector form factors.

1. Scalar contributions

In the original work from Ref. [1], the scalar contribution
was assumed to be dominated by the K�

0ð1430Þ [15]
resonance, whose peak dominates the Kπ scalar form factor
FKπ
0 ðsÞ at intermediate energies. Under the assumption that

such a resonance is a quasistable (e.g., narrow) state, the
Dþ → K̄�

0l
þν decay can be described via its matrix element

(p is the momentum associated to the K̄�
0)

hK̄�
0js̄γμð1 − γ5ÞcjDþi ¼ i

�
w
K̄�

0þ ðq2Þ
�
pμ
K̄�

0

−
q · pK̄�

0

q2
qμ
�

þ qμ
r̃K̄

�
0ðq2Þ
q2

�
; ð14Þ

where once more

r̃K̄
�
0ðq2Þ ¼ −ðmc þmsÞhK̄�

0js̄iγ5cjDþi;
lim
q2→0

½ðq · pÞwK̄�
0þ ðq2Þ − r̃K̄

�
0ðq2Þ� ¼ 0: ð15Þ

Finally, the q2 dependence is reduced, as usual, to the closest
charmonium resonance. Its subsequent K̄�

0 → K−πþ decay
merely adds the resonance structure, meaning that the full
amplitude is given as hK−πþjK̄�

0iPK̄�
0
hK̄�

0js̄γμð1−γ5ÞcjDþi,
with PK̄�

0
the scalar propagator. Were this fully dominated by

the K�
0 resonance for both the semileptonic and Kπ scalar

form factors, then hK−πþjK̄�
0iPK�

0
→ χK̄�

0
FKπ
0 , where χK̄�

0
¼

ðm2
K −m2

πÞ=ðms −mdÞ=hK̄�
0js̄dj0i [1]. However, the differ-

ent interplay of scalar resonances shall, in general, differ, yet
their phase shift below inelasticities must agree by Watson’s
theorem. We reflect this by shifting FKπ

0 → FDl4
0 that allows

for the following ansatz for the S-wave contribution:

wþðq2; p2; p̄ · qÞ ¼ X−1F
K̄�

0

1 ðq2; p2; p̄ · qÞ
¼ 2χeffS FDl4

0 ðp2Þð1 − q2=m2
Ds1

Þ−1; ð16Þ

r̃ðq2; p2; p̄ · qÞ ¼ F
K̄�

0

4 ðq2; p2; p̄ · qÞ
¼ χeffS ðm2

D − p2ÞFDl4
0 ðp2Þð1 − q2=m2

Ds
Þ−1:
ð17Þ

The parametrization in Eq. (17) has been chosen to fulfill
Eqs. (8) and (15) and to include the closest pole with

4Note in this respect that, for the kinematic variables
chosen for the semileptonic decay, X2 ¼ ðp · qÞ2 − p2q2, while
½ðp · qÞðp̄ · qÞ − q2ðp · p̄Þ� ¼ XðzβKπ cos θKπ þ XΔKπÞ, repro-
ducing the result in Ref. [21]. However, we keep it general in
order to use it in Dþ → K−πþπþ decays.
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appropriate quantum numbers. Regarding the parametriza-
tion used in BESIII [2], we identify 2χeffS FDl4

0 ðp2Þ¼ASðp2Þ
[see Eq. (20) from Ref. [2] ].
In contrast to Ref. [1], in order to parametrize FDl4

0 ðp2Þ,
we follow the approach in Refs. [22–24]. This uses an
Omnès representation subtracted at p2 ¼ 0 and the Callan-
Treiman point ΔKπ ¼ m2

K −m2
π:

FDl4
0 ðsÞ ¼ exp

�
s½lnCDl4

þ G0ðsÞ�
ΔKπ

�
; ð18Þ

G0ðsÞ ¼
ΔKπðs − ΔKπÞ

π

Z
∞

sth

dη
δ1=20 ðηÞ

ηðη − ΔKπÞðη − sÞ ; ð19Þ

with δ1=20 the scalar I ¼ 1=2 Kπ phase shift that preserves
the constraints provided by unitarity and analyticity
below higher inelasticities. The subtraction constant

lnCDl4
encapsulates high-energy effects that need not be

the same as in theKπ scalar form factor case, thus requiring
data on semileptonic decays to fix it. For the phase shift,
we take that in Ref. [16] below Λ ¼ 1.67 GeV, where
δ1=20 ðΛÞ ¼ π; above, we take a constant phase δ1=20 ¼ π
following Refs. [22–24]. This model allows for a relatively
simple and flexible parametrization that improves the one
used by the BESIII Collaboration by incorporating appro-
priate analyticity and unitarity constraints (up to higher-
threshold inelasticities). As such, it might be useful in
future experimental analyses.

2. Vector contributions

The next relevant wave is the P wave, where the narrow
K̄� resonance plays a prominent role both in the Kπ vector
form factor and semileptonic decays. Again, assuming
them to be narrow states, the Dþ → K̄�lþν decay can
be described via the corresponding matrix element5

hK̄�js̄γμð1 − γ5ÞcjDþi ¼
�
Aϵμνqp − i

�
B

�
gμν −

qμqν

q2

�
þ Cqν

�
pμ −

q · p
q2

qμ
�
þ D̃
q2

qμqν
��

mK̄�εν; ð21Þ

where mK̄� has been used for later convenience. In addition, the Ward identity implies

mK̄�D̃ðq2Þðq · εÞ ¼ ðmc þmsÞhK�js̄iγ5cjDþi; ð22Þ

lim
q2→0

½Bðq2Þ þ ðq · pÞCðq2Þ − D̃ðq2Þ� ¼ 0: ð23Þ

Again, the q2 dependence can be saturated via the appropriate charmonium resonances. Then, along the lines in Ref. [1], the
subsequent K−πþ decay would closely resemble the vector Kπ form factor if both cases were fully dominated by the K�.
Still, as for the scalar case, these will generally differ—even if the phase shift below inelasticities should be the same.
Therefore, we replace once more FKπþ ðp2Þ → FDl4þ ðp2Þ (for a single resonance contribution χK̄� ¼ f−1K̄� [1]), obtaining

F1ðq2; p2; p̄ · qÞ ¼ −χK̄�FDl4þ ðp2ÞβKπ cos θKπ½X2Cð0Þ þ ðq · pÞBð0Þ�½1 − q2=m2
Ds1

�−1; ð24Þ

F2ðq2; p2; p̄ · qÞ ¼ −χK̄�FDl4þ ðp2ÞβKπ ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
Bð0Þ½1 − q2=m2

Ds1
�−1; ð25Þ

F3ðq2; p2; p̄ · qÞ ¼ −χK̄�FDl4þ ðp2ÞβKπX ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
Að0Þ½1 − q2=m2

D�
s
�−1; ð26Þ

F4ðq2; p2; p̄ · qÞ ¼ −χK̄�FDl4þ ðp2ÞNðp2Þ
2

D̃ðq2; p2Þ

¼ −χK̄�FDl4þ ðp2ÞNðp2Þ
2

�
Bð0Þ þm2

D − p2

2
Cð0Þ

�
½1 − q2=m2

Ds
�−1; ð27Þ

where Nðp2Þ=2 ¼ ½p2ðp̄ · qÞ − ðp · p̄Þðp · qÞ�=p2 is a variable defined in Ref. [1] that reduces to XβKπ cos θKπ
in semileptonic decays and the last form factor is chosen to fulfill Eq. (13) and saturated with the closest

5Different parametrizations appear in Refs. [25–31]; the connection reads, up to overall signs,

A ¼ −
2V

mK̄� ðmD þmK̄� Þ ; B ¼ mD þmK̄�

mK̄�
A1; C ¼ −

2A2

mK̄� ðmD þmK̄� Þ ; D̃ ¼ 2A0: ð20Þ
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resonance.6 Note also the different p2 dependence with
respect to the one in Ref. [1]. The connection to the
ansatz employed by the BESIII Collaboration [2] can be
easily obtained accounting that 2α

ffiffiffi
2

p
m−1AðmÞ ¼

−gK̄�KπβKπPK̄� ðm2Þ, with PK̄�ðsÞ the standard propagator.
Once again, to obtain a description fulfilling appropriate
analyticity and unitarity constraints below higher inelas-
ticities, we take

FDl4þ ðsÞ ¼ exp

�
λ1

s
m2

π
þGþðsÞ

�
;

GþðsÞ ¼
s2

π

Z
∞

sth

dη
δ1=21 ðηÞ
η2ðη − sÞ ; ð28Þ

with δ1=21 the P-wave I ¼ 1=2 Kπ phase shift. The input for
the phase shift is taken from the result in Ref. [32] with
a single vector resonance and with a single subtraction
constant. To match their results, we choose an upper cutoff
s ¼ 4 GeV2 and λ1 ¼ 0.025, but such a parameter could be
fitted from the experiment, providing then a useful para-
metrization for experimentalists. Further details are given in
Appendix C.

C. Extraction of the parameters from BESIII

Since there are no available data from experiment (that
should be also unfolded), we have to restrict ourselves to fit
our model to the scalar and vector form factors extracted by
the BESIII Collaboration. Still, we emphasize that having
such data available would allow for a more reliable estimate
of our parameters and a more robust analysis for the Swave

compared to Ref. [2]. Regarding the free parameters for the
scalar part [cf. Eq. (18)], we fit 2χeffS FDl4

0 ðsÞ to pseudodata
from the ASðsÞ form factor from BESIII, obtaining

χeffS ¼ 2.13ð16Þ GeV−1; lnCDl4
¼ 0.152ð11Þ; ð29Þ

with a correlation of −0.27. We show our results in Fig. 2.
Here, it is worth emphasizing two aspects. First, regarding
the right panel, the δ1=20 Kπ phase shift has been taken from
the sophisticated analysis in Refs. [16,33], in contrast
with Ref. [2] that uses an effective-range expansion [34].
Second, with regard to themKπ behavior depicted in the left
panel, it is important to note that the two models must
necessarily differ by construction. Indeed, Ref. [2] assumes
explicitly a linear dependence below the K̄�

0ð1430Þ that
contrasts with the behavior dictated by analyticity and
unitarity that is fulfilled by the Omnès-like solution but not
in their simplified model and is ultimately responsible for
the differences. The crucial point here is whether our
predicted differential spectra (see Fig. 3) compares well
to data [2]. Whereas the data are well described by the
model in Ref. [2], the data precision is well below the
one that would be inferred from their model away from
the K̄�ð892Þ resonance. Note that, in the case of FKπ

0 ðsÞ,
the chosen parametrization would require lnCDl4 ¼
0.206ð9Þ [24], based on a combined analysis from
τ → Kπν and Kl3 decays. This is not inconsistent but
shows that the necessary assumption adopted back in
Ref. [1] holds only approximately. Concerning the vector
part, we fit the differential decay width distributions
obtained from pseudodata from BESIII parametrization
with vector contributions only. This way we obtain the
parameters

χeffA ¼ −3.35ð16Þ GeV−3; χeffB ¼ 8.44ð23Þ GeV−1;

χeffC ¼ −1.64ð12Þ GeV−3; ð30Þ

FIG. 2. Modulus (left) and phase (right) of the scalar form factor. The gray band stands for BESIII results [2], while the blue band
represents our model. The dotted line in the phase plot represents the original input from [16]. We neglect errors from the phase shift that
are subleading as compared to BESIII uncertainties on the modulus.

6Furthermore, the q2 dependence is chosen to vanish asymp-
totically, since, otherwise, the lν → DK� amplitude would grow
indefinitely. Moreover, this dependence matches the pole-domi-
nance behavior that would be assigned for a pseudoscalar form
factor.
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where χeffX ≡ χK̄�Xð0Þ in Eqs. (24)–(27). The error to
describe the semileptonic decay is fully dominated by
that of χeffB . The correlation for χeffB and χeffC , that enters the
F4 form factor, reads −0.35. In Fig. 3, we show our
description for the differential mKπ spectrum compared
to the central values of BESIII, showing nice agreement.
We observe that an overall sign cannot be extracted
from experiment; to do so, we make use of quark
models [29,35] that allow one to choose a sign that is
consistent among the different matrix elements here
considered. These imply a positive sign for χeffB . That
this gives the correct interference pattern in the hadronic
decays below can be considered as a positive test of the
naïve-factorization hypothesis.

IV. CASE I: D+ → K −π +π + DECAYS

The analysis presented in the preceding section, com-
bined with the pertinent form factors introduced in Sec. II,
provides all the necessary inputs for the application of the
naïve-factorization approach, an accomplishment that was

not possible in Ref. [1]. That allows the possibility to
strictly test its performance. The relevant matrix element
are summarized in the following:

hK−πþjs̄γμð1 − γ5Þdj0i ¼
�
p̄μ
Kπ −

ΔKπ

p2
Kπ

pμ
Kπ

�
FKπþ ðp2

KπÞ þ
ΔKπ

p2
Kπ

pμ
KπF

Kπ
0 ðp2

KπÞ; ð31Þ

hπþjūγμð1 − γ5ÞcjDþi ¼
�
pμ
Dπ −

ΔDπ

p̄2
Dπ

p̄μ
Dπ

�
FDπþ ðp̄2

DπÞ þ
ΔDπ

p̄2
Dπ

p̄μ
DπF

Dπ
0 ðp̄2

DπÞ; ð32Þ

ifπp
μ
π2hK−πþ1 js̄γμð1 − γ5ÞcjDþi ¼ −fπF4 ¼ −fπ

�
χeffS ðm2

D − p2
KπÞFDl4

0 ðp2
KπÞ

−
1

2
Nðp2

KπÞFDl4þ ðp2
KπÞ

�
χeffB þm2

D − p2
Kπ

2
χeffC

��
1

1 −m2
π=m2

Ds

; ð33Þ

where pμ
AB¼pμ

Aþpμ
B, p̄

μ
AB¼pμ

A−pμ
B, and ΔAB¼m2

A−m2
B.

The form factors FDl4
þ;0 are those from the previous section.

Concerning FKπ
0 ðsÞ, we use that from Ref. [16], while for

FKπþ ðsÞ we take that from Ref. [32]. For the Dþ → πþ

transition, we use isospin symmetry that relates it to that in
D0 → π−lþν decays that is parametrized as [36]

FDπ
þð0ÞðsÞ ¼

FDπ
þð0Þð0Þ

1 − s=m2
D�0

ð0Þ

;

FDπ
0 ð0Þ ¼ FDπþ ð0Þ ¼ 0.612ð35Þ: ð34Þ

The final result for the amplitude and differential decay
width can be easily obtained by applying Eq. (2) and is
given in Appendix B. With the necessary expressions at
hand, we proceed to precisely fix the Wilson coefficients
as inferred by this process, which comparison to bench-
mark values will provide valuable insight about naïve

factorization and our understanding of the QCD dynamics.
To do so, it is instructive to work out the P-wave
contribution first and the S-wave subsequently.

A. P-wave contribution

The P-wave contribution, with a branching ratio (BR)
of 1.06(12)% [15], is fully dominated by the K̄�0ð892Þ
resonance. As such, it essentially corresponds to that of a
quasi-two-body Dþ → K̄�0ð892Þπþ decay and should be
relatively free of genuine three-body problems (that amount
to nonfactorizable corrections). Consequently, it represents
a theoretically clean observable compared to the S-wave,
which discussion is relegated to the following section.
Before extracting the Wilson coefficients, it is instructive
to estimate first the results for benchmark a1;2 values.
Taking the aforementioned theory estimate, a1 ¼ 1.31ð19Þ,
a2 ¼ −0.55ð30Þ, we obtain BR ¼ ð0.24þ1.22

−0.30Þ%, perfectly
consistent with the experiment, albeit with large

FIG. 3. The differential spectra normalized to BESIII events.
The red band is our scalar contribution, the blue one is the vector
part, and the purple band is their combination. The black dotted,
dashed, and full lines stand for the scalar, vector, and full BESIII
model, respectively.
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uncertainties. The phenomenological estimate [a1¼1.2ð1Þ,
a2 ¼ −0.5ð1Þ] points toward a lower value, BR ¼
ð0.19þ0.42

−0.22Þ%, but once again with large uncertainties.
Overall, it seems that the P-wave BR is consistent with
benchmark estimates. However, its specific value proves to
be highly sensitive to the Wilson coefficients, making it
challenging to obtain a precise and reliable prediction in
this manner. As such, after this detour, we finally proceed to
extract the Wilson coefficients by demanding the exper-
imental P-wave BR be fulfilled that requires (errors are
omitted here)

ð2.87a21 þ 10.55a22 þ 10.98a1a2Þ% ¼ 1.06%: ð35Þ

This admits several possibilities for fa1; a2g, such as
f1.56;−0.5g, f1.2;−0.21g, or f1.31;−0.37g, all falling
within the ballpark estimates. This represents a positive
indication of the effectiveness of the naïve-factorization
approach. It must be emphasized that the relative sign
between the a1;2 contributions constitutes a prediction within

this framework. Were this sign to be opposite, one would
require a1 ≤ 0.61 and ja2j ≤ 0.32 (with the equal sign
achieved for either a1;2 ¼ 0) that significantly deviates from
the benchmark values for a1. In conclusion, the preceding
discussion highlights that the naïve-factorization approach
offers a satisfactory description for Dþ → K−πþπþ decays
concerning the P wave, albeit its prediction remains highly
sensitive to the values of the Wilson coefficients. To
determine the precise a1;2 values, we propose a fitting
procedure that will be feasible once we incorporate the
S-wave contribution in the following subsection.

B. Complete description

To close our discussion and to extract our final results for
the Wilson coefficients, we consider the full contribution,
consisting on the S- and P-wave contributions. For later
convenience, we consider independent Wilson coefficients

aSðPÞ1;2 for the S and P waves, obtaining for the full BR in
10−2 units

BR ¼ 2.87ðaP1 Þ2 þ 10.55ðaP2 Þ2 þ 10.98aP1a
P
2 þ 0.92ðaS1Þ2 þ 1.46ðaS2Þ2 − 2.04aS1a

S
2 − aP1a

S
1ð0.01 cos δ − 0.23 sin δÞ

þ aP1a
S
2ð0.06 cos δ − 0.27 sin δÞ − aP2a

S
1ð0.12 cos δ − 0.49 sin δÞ þ aP2a

S
2ð0.24 cos δ − 0.58 sin δÞ; ð36Þ

here a relative phase between the S and P waves has been
introduced as well. For aSi ¼ aPi and δ ¼ 0 that would
correspond to our initial naive expectations, it is impossible
to reproduce both the total BR [that amounts to 9.38(16)%
PDG [15] ] and the P-wave contribution simultaneously for
a1;2 values within the benchmark estimates. Beyond this,
the Dalitz-plot distribution shows an interference pattern
amongst the S and P waves that necessarily requires an
additional relative phase, as already observed in
Refs. [1,37]. This is a clear indication of nonfactorizable
effects [3,4] for the S-wave contribution, the origin of
which we speculate about later in our analysis. In the
following and abandoning the most conservative naïve-
factorization approach, we consider the possibility that
such effects can still be effectively incorporated by adopt-
ing complex Wilson coefficients, which is nevertheless a
common practice in the field; see Refs. [3–5], and refer-
ences therein. To do so, we take independent Wilson
coefficients aPi and aSi e

iδ, with aS;Pi real, that can be
physically interpreted as assigning different Wilson coef-
ficients for the Dþ → K̄�πþ and Dþ → K̄�

0π
þ subpro-

cesses. Also, to help stabilize the fit and try to keep the
Wilson coefficients not far from benchmark estimates, it is
useful to use priors in the fitting procedure.7 Employing a

Monte Carlo procedure that assumes Gaussian noise for the
data and priors to fully account for correlations, we find8

aP1 ¼ 1.40ð8Þdatað3ÞSð1ÞP½9�;
aP2 ¼ −0.43ð4Þdatað2ÞSð3ÞPð2ÞFDπ ½6�; ð37Þ

aS1 ¼ 2.04ð17Þdatað23ÞSð1ÞP½29�;
aS2 ¼ −0.80ð15Þdatað1ÞSð1ÞPð5ÞFDπ ½16�; ð38Þ

δ ¼ ð116ð3Þdatað2ÞSð1ÞP½4�Þ°; ð39Þ

where the quantity in brackets refers to the total uncertainty
that is obtained by combining the individual ones in
quadrature. The fit yields BR ¼ 9.13ð5Þdatað1ÞSð0ÞP½5�%,
a P-wave BR ¼ 0.94ð4Þdatað3ÞS½5�%, and the Dalitz-plot
and invariant mass distribution shown in Figs. 4 and 5. The
description reproduces well all quantities and provides a
reasonable approximation to first order, even if the fine
details of the invariant mass distribution are not precisely
reproduced (that is partly related to the 1.5σ deviation
displayed by the total BR). This is nevertheless to be
expected given that accurate descriptions of the Dalitz-plot

7In particular, our results assume Gaussian priors with aP1 ¼
1.31ð8Þ, aS1 ¼ 1.31ð31Þ, aS;P2 ¼ −0.55ð30Þ, and δ ¼ 118ð24Þ°;
see also Appendix D.

8The uncertainties correspond to data, S- and P-wave model
uncertainties, and FDπ form factor uncertainties. Whenever any
source of uncertainty is irrelevant for a given parameter, this is
omitted.

ESCRIBANO, MASJUAN, and SANCHEZ-PUERTAS PHYS. REV. D 108, 094006 (2023)

094006-8



seem to require, at this precision, nonresonant I ¼ 2 and
3=2 contributions [9,10,37,38] that are beyond our ap-
proach. While these can be incorporated in more sophis-
ticated frameworks, this is commonly at the expense of
abandoning the underlying microscopic theory. In the
following, we discuss some aspects regarding the value
found for the Wilson coefficients and the naïve-factoriza-
tion hypothesis. The result for aPi notably lies within
benchmark estimates, signifying an excellent performance
of naïve factorization (it is worth reiterating that such
outcome critically relies on the predicted relative signs

between the a1;2 contributions). By contrast, this is not the
case for the aSi coefficients. Furthermore, the latter require
an additional overall phase that could be questioned on the
basis of analyticity and unitarity, despite ad hoc complex
phases being common in phenomenological descriptions of
D decays [3–5]. In our perspective, this additional phase
can be attributed to genuine three-body effects that are
beyond the naïve-factorization hypothesis and can alter the
original S-wave phase; see, for instance, [10]. The reason
for such effects to be stronger for the S wave might be its
flat behavior, as compared to the P wave that is fully
dominated by the K̄�ð892Þ contribution that could make
rescattering effects relevant along the entire spectra. It is
important to note that, while our phase is not dynamical,
it can be viewed as its average value in the vicinity of the
K̄�ð892Þ region, where the S and P waves exhibit signifi-
cant interference. Indeed, the observed positive shift in this
window is similar to the one found in Ref. [10]. Summa-
rizing, it seems that strict naïve factorization exhibits a
successful performance in determining the P-wave con-
tribution in this process, whereas the S wave receives
sizable nonfactorizable effects which can be nonetheless
effectively accommodated in this picture by introducing
complex Wilson coefficients, a common procedure found
in the literature. We have argued that such coefficients can
be attributed to genuine three-body effects and the absence
of quasi-two-body dynamics for the S wave. To further test
this hypothesis and to better constrain the Wilson coef-
ficients (that, for the aSi cases, largely depend on the
assumed priors; see Appendix D), we propose studying
Dþ

s → KþKþπ− decays that were not discussed in Ref. [1]
and can provide further insight in this respect.

FIG. 4. Differential decay width for Dþ → K−πþπþ compared
to E791 data [37]. The dark gray band represents our model,
while the light gray bands represent the low- and high-mass parts
of the spectra. The dashed blue lines represent the scalar and
vector components in our model. The bands are dominated by our
MC fit uncertainties but do not contain inherent uncertainties
from the naïve-factorization hypothesis.

FIG. 5. The symmetrized Dalitz plot forDþ → K−πþπþ in our model (left) together with the experimental one from E791 [37] (right).
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V. CASE II: D +
s → K +K +π − DECAYS

One advantage of the naïve-factorization approach over
more sophisticated approaches lies in its connection with
the underlying microscopic theory. This connection enables
us to relate Dþ → K−πþπþ to Dþ

s → KþKþπ− decays,
partially accounting for SUð3Þ-breaking effects, that allows
us to test our concluding hypothesis in the previous section.
In particular, the connection from Dþ → K−πþπþ to
Dþ

s → KþKþπ− decays is achieved through the following
replacements:

fπ → fK; FDπ
þð0ÞðsÞ → FDsK

þð0ÞðsÞ;
FDl4
4 ðm2

π; s; tÞ → FDsl4
4 ðm2

K; s; tÞ; ð40Þ

as well as VudV�
cs→VusV�

cd,mDþ → mDs
, andmK� ↔ mπ�

where necessary. We take fK=fπ ¼ 1.193ð2Þ [15] and
FDsK
þð0Þð0Þ ¼ 0.720ð84Þð13Þ [39] as well as effective masses

mD�0
ð0Þ
. Regarding the semileptonic form factors, there are

results in Ref. [39] that show a similar pattern for the
relative strengths but do not report the overall normaliza-
tion. We assume it to be the same based on approximate
U-spin symmetry. With our model above and taking
our results from previous section, we find BR ¼
0.71ð22ÞMCð14ÞFDsK ½26� × 10−4, while for the P-wave
one we find a fit fraction 0.29ð10ÞMCð2ÞFDsK ½11� (the
invariant mass distribution is also shown as a light gray
band in Fig. 6). Compared to the experimental result for the
total BR ¼ 1.27ð3Þ × 10−4 [15] and for the P-wave fit
fraction, 0.47(22)(15) [40], we find seemingly lower
values, albeit once more within large uncertainties. Still,
since we found that aSi values had a sizable dependence on
the assumed priors, it is still possible to reproduce both
decays at once. To explore this possibility and to better
constrain the Wilson coefficients, we propose a combined

fit that incorporates the total BR for Dþ
s → KþKþπ−,

obtaining

aP1 ¼ 1.37ð7Þdatað6ÞSð1ÞPð2ÞFDsK ½9�;
aP2 ¼ −0.42ð4Þdatað4ÞSð3ÞPð2ÞFDπ ð1ÞFDπ ½7�; ð41Þ

aS1 ¼ 2.41ð2Þdatað26ÞSð0ÞPð7ÞFDsK ½27�;
aS2 ¼ −0.48ð1Þdatað3ÞFDπ ð6ÞFDSK ½7�; ð42Þ

δ ¼ ð119ð3Þdatað2ÞS½4�Þ°: ð43Þ

Regarding Dþ → K−πþπþ decays, these values imply
BR ¼ 9.14ð5Þdatað1ÞP½5�%, and P-wave BR ¼
0.93ð4Þdatað4ÞS½6�%, essentially the same as in the previous
section. Regarding Dþ

s → KþKþπ− decays, the new fit
drastically improves the results. In particular, we obtain
BR ¼ 1.27ð3Þdatað1ÞSð0ÞP½3� × 10−4, in excellent agree-
ment, while the P-wave fit fraction is reduced to
0.14ð1Þdatað3ÞSð2ÞPð2ÞFDπð4ÞFDsK ½6�, in agreement with
experiment at 1.2σ and suggesting a lower value.
The Dalitz plot and invariant mass distribution for
Dþ → K−πþπþ decays remain the same, while the corre-
sponding quantities for Dþ

s → KþKþπ− decays are shown
in Fig. 6. It is remarkable that the interference pattern in the
Dalitz plot is in excellent agreement with recent LHCb
results [41], that confirms once more an overall phase
around 120° among the S and P waves and reinforces our
unified model. In addition, the invariant mass distribution
seems in good agreement with the one in Ref. [40] that is
subject to large uncertainties. Unfortunately, those datasets
are not available. Summarizing, Dþ→K−πþπþ and Dþ

s →
KþKþπ− decays support a good performance of naïve
factorization regarding the P-wave contribution that
amounts to a quasi-two-body decay. This is not the case
for the S-wave contribution that seems to require sizable
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FIG. 6. Left: invariant mass distribution for Dþ
s → KþKþπ− decays. Our predictions from Dþ → K−πþπþ decays are shown as light

gray bands, whereas our fit result is shown as a gray band. The S-wave and P-wave contributions are shown as dashed blue bands. Right:
Dalitz plot. Note, in particular, the depleted lower-left corner that requires the same relative scalar phase as in Dþ → K−πþπþ decays.
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nonfactorizable effects. These can be nevertheless effec-
tively encapsulated within the naïve-factorization approach
through modified scalar Wilson coefficients that we
ascribed to genuine three-body effects and the absence
of quasi-two-body dynamics in the scalar channel. In order
to strengthen our findings, it would be interesting to have a
detailed Dalitz plot analysis from Ref. [41] that would
allow us to test our predictions for differential quantities.
Likewise, we have large uncertainties from the current
determination of FDsK

þð0Þð0Þ. It would help reduce the current
uncertainty if future lattice calculations become available.
Similarly, it would be very interesting to have some higher-
statistic measurement of semileptonic Dþ

s → Kþπ−lþν
and Dþ → K−πþμþν decays to better understand the
involved form factors and to better judge the quality of
our current description.

VI. CONCLUSIONS

In this work, we have performed a study of Dþ →
K−πþπþ and Dþ

s → KþKþπ− decays using the naïve-
factorization framework, following the work in Ref. [1].
Compared to that work, we have taken advantage of the
precise data that have become available for semileptonic
Dþ → K−πþlþνl decays [2]. To that purpose, we have
adopted a parametrization that incorporates final-state Kπ
interactions and fulfills analyticity and unitarity constraints
below higher inelasticities, finding differences compared to
Ref. [1], particularly for the S wave. The resulting para-
metrization may be interesting in itself for experimentalists,
and we encourage them to adopt it in future studies.
Armed with these results, that were missing in Ref. [1], we

have revisited the description of Dþ → K−πþπþ decays.
Compared to Ref. [1], with our new parametrization, we are
in the position to infer the relevant Wilson coefficients from
Dþ → K−πþπþ decays. Remarkably, the P-wave contribu-
tion was accurately reproduced for benchmark values of the
Wilson coefficients, a critical outcome given its strong
dependence on the relative sign of a1;2 contributions, which
is predicted within our framework. Interestingly, the result is
highly sensitive to the Wilson coefficients. By contrast, the
S-wave contribution requires substantial deviations from
benchmark values as well as a complex phase. While in our
opinion this represents a departure from the strict factori-
zation framework, it effectively provides a reasonable
description and is nevertheless common to phenomenologi-
cal descriptions of D decays. We attribute this to genuine
three-body effects, beyond the capabilities of naïve factori-
zation, and to the absence of an effective quasi-two-body
description for the S-wave channel.
To test our hypothesis and to better constrain the Wilson

coefficients, we have investigated their counterpart in Ds
mesons decays, specifically, Dþ

s → KþKþπ− decays, that
were not explored in Ref. [1]. Notoriously, the results
confirm the possibility to have a combined description

for both decays. Our findings reaffirm that the P-wave
contribution is successfully captured by the naïve-factori-
zation framework, whereas the S-wave can again be
effectively described by adopting complex Wilson coef-
ficients. Remarkably, the overall phase, which is predicted
from Dþ → K−πþπþ decays, successfully predicts the
interference pattern observed in the Dalitz plot of
Dþ

s → KþKþπ− decays.
In the future, it would be interesting to have a available

Dalitz-plot analysis, for which LHCb has accumulated
data [41]. In addition, further results on semileptonic
decays (possibly with muons), as well as DðsÞ → πðKÞ
form factors, would allow us to further test our results.
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APPENDIX A: DEFINITIONS FOR
D + → K −π +l+ νl DECAYS

1. Phase space and kinematics

For this process, we take the conventions in Ref. [42].
Note, in particular, that our lepton-hadron-plane angle (ϕ in
the following) defined in Fig. 7 has opposite sign to that in
Refs. [2,20] (χ in the following). The phase space can be
described in terms of the invariant masses p2

KπðlνÞ ¼
sKπðlνÞ, angles in the hadronic and leptonic reference
frames θKπðlνÞ, and hadron-lepton plane angle. For the
calculation, all that is required is (pij ¼ pi þ pj,
p̄ij ¼ pi − pj)

pKπ · plν ¼ ðm2
D − sKπ − slνÞ=2≡ z; ðA1Þ

p̄Kπ · plν ¼ Δ̃Kπzþ XβKπ cos θKπ ≡ ζ; ðA2Þ

pKπ · p̄lν ¼ Δ̃lνzþ Xβlν cos θlν; ðA3Þ

p̄Kπ · p̄lν ¼ ½zðΔ̃KπΔ̃lν þ βKπβlν cos θKπ cos θlνÞ
þ XðΔ̃Kπβlν cos θlν þ Δ̃lνβKπ cos θKπÞ�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
βKπβlν sin θKπ sin θlν cosϕ; ðA4Þ
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ϵpKπ p̄Kπplνp̄lν ¼ −X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
βKπβlν sin θKπ sin θlν sinϕ;

ðA5Þ

where Δ̃ij ¼ ðp2
i − p2

jÞ=p2
ij, βij ¼ λ1=2ij =p2

ij, X ¼ λ1=2Kπ;lν=2,
and λij ¼ ½p2

ij − ðp2
i þ p2

jÞ�2 − 4p2
i p

2
j . Finally, the differ-

ential phase space can be defined as

dΦ4 ¼
1

ð4πÞ6
1

2m2
D
XβKπβlνdsKπdslνd cos θKπd cos θlνdϕ:

ðA6Þ

2. Decay width

Following Eq. (4) and the notation for the hadronic form
factors in Eqs. (7) and (9)–(12), the differential decay width
is given by

dΓ ¼ G2
FjVcsj2

ð4πÞ6m3
D
XβKπβlνðHμνLμνÞdsKπdslν

× d cos θKπd cos θlνdϕ: ðA7Þ
Taking in parallel to Ref. [20] the following decomposition9

(for corresponding CP-related D− decays, ϕ → −ϕ needs
to be taken):

HμνLμν ≡ I1 þ I2 cos 2θlν þ I3sin2θlν cos 2ϕ

þ I4 sin 2θlν cosϕþ I5 sin θlν cosϕ

þ I6 cos θlν − I7 sin θlν sinϕ

− I8 sin 2θlν sinϕ − I9sin2θlν sin 2ϕ; ðA8Þ
the results in Ref. [20] are modified for finite lepton masses
(mν ¼ 0) as follows:

I1 ¼
1

4
βlν

��
1þm2

l

slν

�
jF1j2 þ

3

2
sin2θKπ

�
1þ m2

l

3slν

�
ðjF2j2

þ jF3j2Þ þ
2m2

l

slν
jF4j2

�
; ðA9Þ

I2 ¼ −
1

4
β2lν

�
jF1j2 −

1

2
sin2θKπðjF2j2 þ jF3j2Þ

�
; ðA10Þ

I3 ¼ −
1

4
β2lν½jF2j2 − jF3j2� sin2 θKπ; ðA11Þ

I4 ¼
1

2
β2lνReðF1F�

2Þ sin θKπ; ðA12Þ

I5 ¼ βlνRe

�
F1F�

3 þ
m2

l

slν
F4F�

2

�
sin θKπ; ðA13Þ

I6 ¼ βlνRe

�
F2F�

3sin
2θKπ −

m2
l

slν
F1F�

4

�
; ðA14Þ

I7 ¼ βlνIm
�
F1F�

2 þ
m2

l

slν
F4F�

3

�
sin θKπ; ðA15Þ

I8 ¼
1

2
β2lνImðF1F�

3Þ sin θKπ; ðA16Þ

I9 ¼ −
1

2
β2lνImðF2F�

3Þ sin2 θKπ; ðA17Þ

which in the ml → 0 coincides with that in Ref. [20]. Note
that the hadronic matrix element can also be expressed in
terms of the Fi form factors as (ξ ¼ ΔKπX þ zβKπ cos θKπ)

hK−πþjs̄γμð1−γ5ÞcjDþi

¼ iF1

X

�
pμ
Kπ−pμ

lν
z
slν

�
þ iF4

slν
pμ
lν

þ iF2

βKπ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p
��

p̄μ
Kπ−pμ

lν
ζ

slν

�
−
ξ

X

�
pμ
Kπ−pμ

lν
z
slν

��

−
F3

βKπX
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sKπslν

p ϵμplνpKπ p̄Kπ : ðA18Þ

APPENDIX B: DEFINITIONS IN D + → K − π +π +

DECAYS

Following Eq. (2) and the notation in Sec. III B and
Ref. [1], the matrix element of this process can be
expressed as M¼−iGFffiffi

2
p VudV�

cs½Mðs;tÞþMðt;sÞ�, where

FIG. 7. Definitions for the phase space variables inDþ→K−πþlþνl decays. The particle labeling reads f1;2;3;4g¼fK−;πþ;lþ;νg.

9Note, in particular, the minus sign in the I7–9 terms due to our
ϕ definition.
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Mðs; tÞ ¼ −a1fπ
1 −m2

π=m2
Ds

�
χeffS ðm2

D − sÞFDl4
0 ðsÞ − NðsÞFDl4þ ðsÞ 1

2

�
χeffB þm2

D − s
2

χeffC

��

þ a2

�ðm2
D −m2

πÞðm2
K −m2

πÞ
s

FKπ
0 ðsÞFDπ

0 ðsÞ þ NðsÞFKπþ ðsÞFDπþ ðsÞ
�
; ðB1Þ

with FKπ;Dπ
0;þ ðsÞ standing for the relevant scalar (vector)

form factors as defined in Ref. [1] and NðsÞ ¼ t − u −
ðm2

D −m2
πÞðm2

K −m2
πÞ=s defined below Eq. (27).

Consequently, the differential decay width can be
expressed in terms of the Dalitz variables as

dΓ ¼ 1

2

1

ð2πÞ3
1

32m3
D

G2
FjVudV�

csj2
2

jMðs; tÞ þMðt; sÞj2:

ðB2Þ

In our work, we adopt jVudV�
csj ¼ 0.971ð17Þ [15], GF ¼

1.1663787 × 10−5 GeV−2, and ΓDþ ¼ 6.33 × 10−13 GeV.

APPENDIX C: THE VECTOR FORM
FACTOR DESCRIPTION

The phase for the vector form factor is that of the
following [32]:

f̃Kπþ ¼
m2

K� −
�
192π
σ3Kπ

γK�
mK�

�
HKπð0Þ þ γs

m2
K� − s −

�
192π

σ3Kπðm2
K� Þ

γK�
mK�

�
HKπðsÞ

−
γs

m2
K�0 − s −

�
192π

σ3Kπðm2

K�0 Þ
γK�0
mK�0

�
HKπðsÞ

; ðC1Þ

with σ2KπðsÞ ¼ λðs;m2
K;m

2
πÞ=s2, where we used the Kahlén

function λða;b;cÞ¼a2þb2þc2−2ab−2ac−2bc, and
with

HKπðsÞ ¼
1

ð4πÞ2
1

12

�
sσ2KπðsÞB̄0ðs;m2

π; m2
KÞ −

s
2
ln
m2

πm2
K

μ4

−

�
Σ2
Kπ − Δ2

Kπ −
sΣKπ
2

�
ln m2

K
m2

π

ΔKπ
þ
�
2

3
s − 2ΣKπ

��
;

ðC2Þ

with ΔKπ ¼ m2
K −m2

π and ΣKπ ¼ m2
K þm2

π . The function
B̄ is defined in terms of the one-loop two-point function
B̄ðs;m2

K;m
2
πÞ ¼ Bðs;m2

K;m
2
πÞ − Bð0; m2

K;m
2
πÞ and reads

B̄ðs;m2
K;m

2
πÞ ¼

1

2

�
2þ

�
ΔKπ

s
−
ΣKπ

ΔKπ

�
ln

m2
π

m2
K

þ 2σKπðsÞ ln
�
ΣKπ þ sσKπ − s

2mKmπ

��
: ðC3Þ

In order to match their pole position, we use the same para-
meters mK� ¼ 0.94338ð69Þ GeV, γK� ¼ 0.06666ð8Þ GeV
and mK�0 ¼ 1.379ð36Þ GeV, γK�0 ¼ 0.196ð66Þ GeV.
Concerning γ, we choose γ ¼ 0 instead of γ ¼ −0.034,
since BESIII finds no evidence for a K�ð1410Þ. Still, the
model allows for an easy extension to study possible effects
of the K�ð1410Þ.

APPENDIX D: SOME RESULTS FROM THE FIT

In Fig. 8, we show our distribution of aP;S1 vs aP;S2

parameters obtained in our MC analysis. The benchmark

FIG. 8. The vector (left) and scalar (right) Wilson coefficients as obtained from our MC fit in Sec. IV. The blue points are the results
from the MC fitting procedure, whereas the ellipsis are the theoretically preferred values for the Wilson coefficients. Note, in particular,
the strong correlations.
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values are shown as an ellipse. A strong correlation among
them is clear. Note, in particular, that aPi parameters fit well
within benchmark estimates. This allows us to better

constrain them using priors. On turn, aSi values do not
fit within the ellipse, that implies a large dependence on the
assumed priors. This can be remedied by using Ds decays.
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